
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information 
Sciences 

2008 

Improved and generalized learning strategies for dynamically fast and Improved and generalized learning strategies for dynamically fast and 

statistically robust evolutionary algorithms statistically robust evolutionary algorithms 

Yogesh Dashora 
University of Texas at Austin 

Sanjeev Kumar 
University of Bath 

Nagesh Shukla 
National Institute of Foundry and Forge Technology, nshukla@uow.edu.au 

M K. Tiwari 
Indian Institute Of Technology 

Follow this and additional works at: https://ro.uow.edu.au/engpapers 

 Part of the Engineering Commons 

https://ro.uow.edu.au/engpapers/4991 

Recommended Citation Recommended Citation 
Dashora, Yogesh; Kumar, Sanjeev; Shukla, Nagesh; and Tiwari, M K.: Improved and generalized learning 
strategies for dynamically fast and statistically robust evolutionary algorithms 2008, 525-547. 
https://ro.uow.edu.au/engpapers/4991 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F4991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F4991&utm_medium=PDF&utm_campaign=PDFCoverPages


Engineering Applications of Artificial Intelligence 21 (2008) 525–547

Improved and generalized learning strategies for dynamically fast and
statistically robust evolutionary algorithms

Yogesh Dashoraa, Sanjeev Kumarb, Nagesh Shuklac, M.K. Tiwarid,�

aMechanical Engineering Department, University of Texas at Austin, USA
bDepartment of Mechanical Engineering, University of Bath, UK

cDepartment of Manufacturing Engineering, National Institute of Foundry and Forge Technology, Ranchi, India
dDepartment of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur 721302, India

Received 22 March 2007; accepted 27 June 2007

Available online 26 November 2007

Abstract

This paper characterizes general optimization problems into four categories based on the solution representation schemes, as they have

been the key to the design of various evolutionary algorithms (EAs). Four EAs have been designed for different formulations with the

aim of utilizing similar and generalized strategies for all of them. Several modifications to the existing EAs have been proposed and

studied. First, a new tradeoff function-based mutation has been proposed that takes advantages of Cauchy, Gaussian, random as well as

chaotic mutations. In addition, a generalized learning rule has also been proposed to ensure more thorough and explorative search.

A theoretical analysis has been performed to establish the convergence of the learning rule. A theoretical study has also been performed

in order to investigate the various aspects of the search strategy employed by the new tradeoff-based mutations. A more logical

parameter tuning has been done by introducing the concept of orthogonal arrays in the EA experimentation. The use of noise-based

tuning ensures the robust parameter tuning that enables the EAs to perform remarkably well in the further experimentations. The

performance of the proposed EAs has been analyzed for different problems of varying complexities. The results prove the supremacy of

the proposed EAs over other well-established strategies given in the literature.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Evolutionary algorithms; Numerical optimization; Combinatorial optimization; Mutation step size; Chaos; Noise; Design of experiments;

Parameter tuning

1. Introduction

Since its advent, evolutionary optimization has gone
through various stages of evolution that have made it more
robust and fast; robust enough to be applied to all spheres
of optimization problems and fast enough to take decisions
in micro-seconds (Dimopoulos and Zalzala, 2000; Nissen
and Propach, 1998; Yao et al., 1999). In the present
scenario, evolutionary algorithms (EAs) are not limited to
the applications in artificial intelligence, and have been
increasingly used in various dimensions to solve real world
problems (Dimopoulos and Zalzala, 2000; Sinha et al.,
2003). Although, a plethora of literature pertaining to the

search strategies adopted by various EAs is available
(Nissen and Propach, 1998; Rana et al., 1996; Kazarlis
et al., 2001; Yao et al., 1999; Salomon, 1998; Choi and Oh,
2000; Yoon and Moon, 2002; Kim and Myung, 1997;
Storn, 1999), most of them restrict themselves to solving a
particular class of optimization problem and thus, fail to
provide generalized strategies that can be robustly used for
wide spectrum of optimization problems in science,
business and engineering applications. In general, optimi-
zation problems can be classified into two groups—
numerical optimization and combinatorial optimization
(Tsai et al., 2004; Gen and Cheng, 1999). Yet another
classification exists that is based on the representation
schemes—binary string, floating point string and integer
bit string representation (Rana et al., 1996; Kazarlis et al.,
2001; Yao et al., 1999; Salomon, 1998; Choi and Oh, 2000;

ARTICLE IN PRESS

www.elsevier.com/locate/engappai

0952-1976/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2007.06.005

�Corresponding author. Tel.: +91651 2291116; fax: +91 651 2290860.

E-mail address: mkt09@hotmail.com (M.K. Tiwari).

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2007.06.005
mailto:mkt09@hotmail.com


Yoon and Moon, 2002; Kim and Myung, 1997; Storn, 1999;
Zhang and Leung, 1999; Burke and Newall, 1999). In
general, the first two representations are more suited and
easy to implement on numerical optimization problems;
whereas, the third representation enjoys solving the combi-
natorial optimization problems with a greater ease and
efficiency (Nijssen and Bäck, 2003; Goldberg, 1989). Thus,
to propose effective algorithms that would efficiently work
in all the representations is a convoluted task. The schematic
representation of various optimization problems along with
their most suited representation classes are shown in Fig. 1.

All of the above-mentioned factors motivated the
authors to propose robust and fast EAs with improved
learning strategies to achieve the global optimization in all
of these cases. Before introducing the proposed algorithms,
the general formulation of a numerical optimization
problem can be mathematically described as

minimize gðtÞ; t ¼ ðt1; t2; . . . ; tnÞ 2 Kn, (1)

where tAC\X,C represents the ‘feasible region’ defined as

C ¼ ft 2 Kn
jcjðtÞp0 8j 2 f1; 2; . . . ; Jgg, (2)

where cjðtÞ; j 2 f1; 2; . . . ; Jg are the ‘constraints’ on the
problem; the n-dimensional ‘search space’ is defined by
XDKn and is constrained by the ‘parametric constraints’
given below:

ti ptipt̄i; i 2 f1; 2; . . . ; ng (3)

where ti and t̄i represent the lower and upper limits of the
variable ti. Here, it is evident that the solution is
represented as floating point string of type A (Fig. 1);
however, it can also be represented in the binary string
(type B of Fig. 1) by considering the representation of
floating numbers into binary numbers.

For the second class of optimization problems, i.e.
combinatorial optimization problems, the general formula-
tion can be given as

minimize hðsÞ s ¼ ðs1; s2 . . . snÞ 2 S, (4)

where S is the set of integers; s 2 J \ <;J denotes the
‘feasible range’ of variables and is given by

J ¼ fs 2 Sjc0jðsÞp0 8j 2 f1; 2; . . . ; J 0gg, (5)

where c0j(s) represents the ‘constraints’ of the problem; the
‘search range’ < is defined by < � S, which is constrained
by the ‘individual range’ defined by

c0ipc0ipc̄0i; i 2 f1; 2; . . . ; ng, (6)

where ci and c̄0i are the lower and upper limits of the
variable c0j. Generally, this formulation is utilized for the
type D representation. However, the representation type C
is used in the combinatorial problems class mapped by
traveling salesman problem (TSP). Its general formulation
is described as

minimize f TSP ¼
XN

i¼1

XN

j¼1

distijOij 8i; j 2 f1; 2; . . . ; Ng,

and iaj, ð7Þ

where

Oij ¼
1 if node i and j are selected in the tour;

0 otherwise;

(
(8)

subject to the constraints cj
00, j ¼ {1, 2,y, n}, where N is

the number of nodes; distij is the distance between nodes i

and j; Here, only minimization cases are considered as the
problems pertaining to maximization of objective can also
be mapped into minimization problem by making suitable
changes in the formulation.
Owing to the existence of all these formulations, authors

intend to present some improved learning rules suited to
each formulation in order to eliminate the difficulty and
dilemma of the practitioners and users of EAs while
searching the best strategy for their problem. In addition to
this, various testing phases based on design of experiments
are introduced in order to achieve robust parameter
control and tuning.
In the earlier studies, various modifications to the initial

versions of EAs have been proposed to suit the varying
complexity of the optimization problems. Some of the vital
factors that affect the search strategy of the EAs are: (1)
population representation, (2) information sharing among
members of the population, (3) mutation of the current
population, (4) generation scheme for new population, (5)
learning from previous generations (Kazarlis et al., 2001;
Yao et al., 1999; Salomon, 1998; Choi and Oh, 2000; Yoon
and Moon, 2002; Kim and Myung, 1997; Storn, 1999;
Zhang and Leung, 1999; Burke and Newall, 1999; Eiben
et al., 1999; Harik et al., 1999; Michalewicz et al., 2000;
Runarsson and Yao, 2000; Franc-ois and Lavergne, 2001;
Kazarlis et al., 2001; Ong and Keane, 2004). Even a small
variation in any of these factors has a considerable effect
on the EA performance.
The following discussion provides an insight to some of

the recent developments in the field of evolutionary
computation. In order to do away the slow convergence

ARTICLE IN PRESS

A

Binary string Integer StringFloating point String

CB

Optimization Problems 

Numerical Optimization Combinatorial Optimization 

0.025
0.049
0.965

•
•

0.001
10235

0
1
1
•
•
1
0

1
3
5
•
•
7
6

100

56
1
•
•

69
23

100, 23, 45, …, …, 1, 33 

D

Fig. 1. Classification of optimization problems in a hierarchical manner.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547526



of the classical evolutionary programming (CEP), Yao
et al. (1999) introduced fast evolutionary programming
(FEP) that utilized the mutation based on Cauchy function
because of its higher probability of making longer jumps
Runarsson and Yao (2000) introduced a novel approach to
balance objective and penalty functions stochastically, i.e.
‘stochastic ranking’ and presented a fresh view on penalty
function methods in terms of dominance of penalty and
objective functions. Salomon (1998) presented a new
hybrid approach, the evolutionary-gradient-search method
for the problems pertaining to numerical optimization. A
much broader collection of developments in evolutionary
computation for manufacturing optimization can be found
in Dimopoulos and Zalzala (2000). Zhang and Leung
(1999) proposed an orthogonal genetic algorithm for
multimedia cast routing that incorporated orthogonal
design to crossover operation. Francois (1998) presented
a mutation or selection evolutionary strategy (MOSES)
to solve complex discrete optimization problems. It
theoretically studied the relationship between convergence,
parameters of the method, and the geometry of the
optimization problem. An extensive empirical study on
the synergy among multiple crossover operators has been
provided in Yoon and Moon (2002).

Choi and Oh (2000) presented a new mutation rule for
evolutionary programming (EP) that has been motivated
from the back-propagation learning rule of the neural
networks. A method of decomposing larger problems into
smaller components, each of which is of a size that the
EA can effectively handle, was proposed by Burke and
Newall (1999) to solve timetabling problem. Eiben et al.
(1999) provided a broader classification for parameter
control mechanisms of EAs. They also provided a survey
of various types of control that have been used by
evolutionary computation community. A statistical meth-
od was described by Franc-ois and Lavergne (2001), which
was able to find good parameter settings for EAs. The
method utilized a functional relationship between the
algorithms performance and its parameter values. Yet
another statistical approach can be found in Czarn et al.
(2004).

Ahn and Ramakrishna (2003) described two elitism-
based compact genetic algorithms in order to design
efficient compact type GAs by treating them as the
estimation of distributed algorithms (EDAs) to efficiently
solve complex optimization problems. The compact GAs
utilized the concept of successive learning in generations
utilizing the probability strings for the solution representa-
tion. Various other learning approaches also persist in the
literature. In general, learning algorithms are termed as
learning automata approaches (Najim and Poznyak, 1994).
In Agache and Oommen (2002), two new generalized
pursuit algorithms were presented that falls in the category
of fastest learning automata algorithms. Howell et al.
(2002) proposed a hybrid genetic and learning automata
approach that enjoys the merits of both the strategies.
Various other relevant work like Papadimitriou (1994),

Najim and Poznyak (1994) in the context of learning
algorithms need to be mentioned here.
Many works have been reported in literature in order to

map the system chaos and noise within the working
dimensions of EAs (Nissen and Propach, 1998; Rana et al.,
1996; Caponetto et al., 2003). Caponetto et al. (2003)
introduced chaotic sequences instead of random sequences
during all the phases of random evolution process. The
approach was based on the spread spectrum characteristic
of chaotic sequences. In Nissen and Propach (1998), noise
function was introduced to the deterministic objective
function values in order to map the practical scenario of
the existence of noise while experimentation, stochastic
simulation, sampling and even interaction with users.
As it can easily be manifested from the above literature

review that though a wide range of modifications have been
carried out to enhance the performance of EAs, a robust
strategy is mandatory that can work in general for various
formulations of objective functions found in the real world
scenario. Also, an all purpose strategy for robust para-
meter control and tuning in the presence of noise is
essential to help the practitioners of EAs to come out of the
dilemma of choosing the control and tuning methods in
changing situations.
The aims of this paper are manifold. First, it introduces

the concept of developing general-purpose fast EAs that
equivalently achieve better results in all the previously
mentioned formulations (i.e. A, B, C, and D). Second, it
utilizes the enhanced learning mechanisms for all these
formulations in order to achieve better tradeoff between
exploration and exploitation of the search space; and to
achieve time gain over prevailing strategies. This has also
been theoretically validated. Third, it introduces a new
tradeoff function to decide the mutation step size. This
function makes a tradeoff between the fast convergence of
Cauchy function and the explorative search of Gauss
function to achieve better solutions. Fourth, the chaotic
sequences to map the random dynamics have also been
utilized to mutate the solutions. Thus, the evolutionary
strategies utilized in the paper, the mutation at each step is
performed both by the tradeoff function and the chaotic
sequence generator and the better offspring is evolved
further. Fifth, the paper proposes a design of experiments
model to conduct various experiments sequentially utilizing
the orthogonal array that symbolizes the variation in
various parameter values. This approach reduces the
tedious task of parameter control and tuning that were
earlier carried out by exhaustive experiments. Comparisons
with the existing EAs are also carried out that utilize the
well-designed experiments, and thus the efficacy of the
strategies has been established. Finally, the noise factor has
been incorporated in the deterministic objective function
value, and designed experiments are conducted to establish
the robustness of the algorithm.
The rest of the paper is organized in the following

sequence: The next section introduces the main intricacies
in defining the general-purpose EAs. Section 3 introduces

ARTICLE IN PRESS
Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 527



new generalized learning strategies and presents the new
guided mutation rule. It also provides the general-purpose
algorithms for all the four problem types. Section 4 deals
with the mathematical aspects of the proposed algorithms
and establishes their convergence. Section 5 provides the
classification of the test functions utilized to evaluate the
effectiveness of the proposed algorithm for numerical
optimization problems on the basis of their dimensional
complexity and degree of entrapment. It also presents the
test problems of combinatorial optimization utilized for the
comparative study. Section 6 formulates the design of
experiments for the parameter tuning and the analytical
study of the proposed algorithm. The results of the
extensive computational experiments, inferences drawn
from it and related discussions are presented in Section 7.
Section 8 concludes the paper.

2. An insight to intricacies in defining general-purpose

algorithms

As discussed in the previous section, a general optimiza-
tion problem can be conveniently framed into one of the
formulations depicted in Fig. 1, though, with slight
changes. The major obstacle in the presentation of robust
algorithms that can equivalently work in any of the varying
environment or formulation is the peculiar data type
handling method used in it.

Due to varying representation schemes, the general rules
for mutation cannot be implemented in all the cases.
Hence, the following proposition, though obvious, needs to
be stated.

Proposition 1. No single mutation strategy can equivalently

work for all the four problem formulations.

Validation: Let there be two formulations considered,
namely—‘A’ and ‘C’. The formulation of type ‘A’ requires
the representation of solution as the floating point number,
while, the problem type ‘C’, which is characterized by the
integer vector representation of the solution. In the first
case, the new perturbed vector is obtained by adding or
subtracting a calculated step (floating point form) into the
variable, whereas for the second case the perturbed vector
is obtained by the random replacements within allowable
range in the existing solution vector. Thus, the two schemes
are entirely different; one is based on algebraic addition
and other on random combinations. Similar logic can be
established for other formulations also. Thus, it can be
established that a single strategy for mutation cannot
equivalently work in all the cases; however, here it is
imperative to be mentioned that the different strategies
used may be guided by similar principles with adaptive
formulations for all the representations. This fact has
motivated the authors to present the generalized adaptive
mutation principle for all types of problems consid-
ered. &

When learning rules are advocated, the first thing
characterizing them is the dynamic learning of the optimal

actions for the environment, through interaction with
stochastic and unknown environment. Their ability to find
out best actions amidst the persisting noise makes them hot
case for the EA practitioners. However, in this case also a
proposition similar to Proposition 1, can be made for the
learning rules utilized in the EAs.

Proposition 2. No same learning strategies can be used for

all the four problem formulations.

Validation: Let again the cases ‘A’ and ‘C’ be considered.
The formulation type ‘C’ utilizes the probability strings to
obtain the probability to choose a set of actions among the
available ones. However, for a typical formulation type ‘A’,
the learning can be performed utilizing the environmental
(neighborhood) effects on the current solution (detailed in
Section 3). Here, the probability strings are of no use, as
the set of actions at a particular bit position are very large
to handle through probability strings. Thus, the learning
rules are defined in the form of solution perturbation rules
utilizing the learning schemes. Thus, the two cases are
entirely different, that establishes the proposition. &

Although, the above proposition holds, the learning
rules can be guided by similar strategies, and the fact has
been the prime motivation to devise the general-purpose
learning rules that can be utilized in all categories of the
problems.

3. The generalized dynamically fast EAs

This paper utilizes the following adaptations and
modifications in the existing strategies

� Learning strategy utilizing the neighborhood informa-
tion and improved updating rule.
� Guided adaptive mutation rule based on the better of

the step obtained from tradeoff function between
Cauchy and Gaussian distributions, and from the
random chaotic distributions.

Based on the aforementioned aspects, the general rules
for all the formulations are given in the following
discussion.

3.1. The generalized EA exemplification

In general, an EA can be represented by six basic
components namely—(1) encoding scheme of chromo-
somes; (2) fitness evaluation scheme; (3) initial population;
(4) set of rules for the offspring generation; (5) set of
operators to have comparative evaluation; and (6) working
parameters utilized. Earlier, Hung and Adeli (1994)
presented GA as a nine tuple entity to represent their
parallel genetic/neural network learning algorithm. Utiliz-
ing the idea, this paper presents the proposed generalized
EAs with a ten tuple entity

EA ¼ ðPopS;Pop0;Es; �L
chr
;F ;Ls;Mr;Ss;P;GÞ, (9)

ARTICLE IN PRESS
Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547528



where PopS is the population size; Pop0 ¼ Ch|Ch ¼ (Ch1
0,

Ch2
0,y, ChPopS

0 ), Chi
0 is the ith chromosome of initial

population; Es represents the encoding scheme of chromo-
somes; Ĺchr denotes the length of a chromosome depending
on representation scheme; F is the fitness function for the
parents and generated offsprings; Ls represents the learning
scheme utilized for the chromosomes; Mr is the mutation
rule to obtain new solutions; Ss symbolize the selection
scheme utilized to select the chromosomes; P is a set
representing the parameter values utilized; G corresponds
to the termination criteria used. The sections to follow will
utilize this representation scheme to detail an EA.

3.2. Improved general-purpose learning strategies

Taking cue from the genetic learning automata and S-
type learning automata (Howell et al., 2002), the general-
ized pursuit learning schemes (Agache and Oommen,
2002), the neighborhood learning of swarm intelligence
(Clerc and Kennedy, 2002; van den Bergh and Engelbrecht,
2004), and the generalization theory of learning (Butz et al.,
2004) improved and dynamic learning rules have been
formulated to guide the search procedure. The learning
rule has different updating schemes based on the problem
formulation but utilizes the similar updating functions,
therefore, is defined as general-purpose learning rule. The
proposed general-purpose rule is based on the updating in
the form of adaptive self-learning and neighborhood
learning. The learning can be in the form of probability
updating rule or as trajectory guide rule; however, both are
guided by the same rule as described above.

In general, a probability update learning rule utilizes
some well-acclaimed terminologies like the action prob-
ability vector ‘Prob’ and a learning update scheme ‘Ls’,
from the learning automata literature, and are defined as

ProbðgÞ ¼ ½p1ðgÞ; p2ðgÞ; . . . ; p3ðgÞ�
Ls

, (10)

where pi(g) is the probability that at generation g, the
learning strategy will select the action ai. aiAÂ, Â is the set
of available actions such that pi(g) ¼ Pr[a(g) ¼ ai], iA[1,ř], ř
is the number of actions. Here, pi(g) satisfies the following
condition related to probability definition i.e.:

X�r
i¼1

piðgÞ ¼ 1 8g. (11)

In the above discussion, the learning update scheme Ls:
[0, 1]ř� Â� b-[0, 1]ř, where, b is the set of responses from
the environment. Thus, a learning update rule can be
represented as

Probðgþ 1Þ ¼ LsðProbðgÞ; aðgÞ; bðgÞÞ; b 2 b. (12)

In the case of probability update rules, the populations
of bit strings are replaced by corresponding population of
probability strings. At each generation, the probability
string is first converted into the action string by the
probability distribution, thereafter, the probability strings

are again updated utilizing the update rules and responses
from the environment; and the process continues. The key
factor that guides the search procedure is the probability
update rule U. Many different rules for updating persists in
the literature (Agache and Oommen, 2002; Papadimitriou,
1994; Najim and Poznyak, 1994). In the sequel, this paper
presents improved and dynamic probability update rule in
order to achieve better tradeoff between exploration and
exploitation of the search space, and to achieve time gain
over prevailing strategies. The proposed learning update
rule can be defined as
L
s:

pjðgþ 1Þ ¼

ð1� BÞpjðgÞ þ ð1� uÞp0jðgÞ þ
Bþu
XðgÞ ;

if djðgÞ4diðgÞ; jai;

ð1� BÞpjðgÞ þ ð1� uÞp0jðgÞ;

if djðgÞpdiðgÞ; jai; ;

1�
P
jai

pjðgþ 1Þ;

8>>>>>>>><
>>>>>>>>:

(13)

where pj(g) is the probability at the generation g; p0j is the
probability of neighbors at generation g; B: 0oB1, is the
speed of learning parameter with respect to previous
probability; u:0ouo1, is the speed of learning parameter
with respect to probability of neighbors; X(g) represents
number of actions with higher estimates than the chosen
action at generation g; dj(g) is the reward estimate of action
j, defined as

@iðgþ 1Þ ¼ @iðgÞ þ ð1� bðgÞÞ, (14)

Cðgþ 1Þ ¼ CiðgÞ þ 1, (15)

diðgþ 1Þ ¼
@iðgþ 1Þ

Ciðgþ 1Þ
, (16)

where CiðgÞ represents the number of times the ith action
has been chosen; @iðgÞ denotes the number of times ith
action has been rewarded. This type of rule is adopted for
the formulations B, C, D. In the above formulation the
parameters B and u are adaptively changed as the number
of iterations increase. Their adaptive formulation and its
impact are detailed in Section 6.
For the trajectory guide rule, i.e. for formulation A, the

learning scheme is not based on the probability string as it
is not feasible for this formulation. Here also the learning
rule is guided by self-learning and neighborhood learning.
In this case, the solution is a point-based representa-
tion; hence, the learning rule can be formulated for each
solution as
Ls:

wiðgþ 1Þ ¼ wiðgÞ þ kiðgþ 1Þ, (17)

kiðgþ 1Þ ¼ okiðgÞ þ B� ranð0; 1ÞðwiðgÞ � wisðgÞÞ

þ u� ranð0; 1ÞðwiðgÞ � winðgÞÞ, ð18Þ

where B and u are the speed of learning parameters
depending on self experience and on the neighborhood

ARTICLE IN PRESS
Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 529



experience, respectively; wi(g) is the ith variable position at
generation g; wis and win are the respective previous best and
neighborhood best positions; ki is the update factor and o
is its corresponding dependency on previous iterations. In
the trajectory learning rule, each solution acquires its new
position based on the learning rules (17) and (18).

3.3. Guided adaptive mutation rule

As indicated from Proposition 1, a general guide rule
should be first devised for the adaptive mutation and
thereafter, the mutation rules for various encoding schemes
should be defined. In this paper, the mutation rule is based
on a new tradeoff function to decide the mutation step size
to generate a new offspring. This function can be general-
ized as a tradeoff between the fast convergence of Cauchy
function and the explorative search of Gauss function.
Since the Cauchy functions are very good at search in a
large neighborhood and Gaussian function performs better
in small neighborhood (Yao et al., 1999), the adaptive
scheme gives more emphasis to Cauchy mutations in the
initial phases of the search procedure and the preference of
Gaussian mutations is increased as the search proceeds.
The Gaussian and Cauchy functions with mean zero are
given below:

f GaussianðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�ðx

2=2s2Þ �1oxo1, (19)

f CauchyðxÞ ¼
t

pðt2 þ x2Þ
�1oxo1, (20)

where s is the standard deviation of Gaussian distribution
and t40 is the scale parameter for Cauchy distributions.
Fig. 2 presents the comparative plot of both the functions
drawn on the same scale.

Also Caponetto et al. (2003) indicated that by substitut-
ing the random mutation sequences by some chaotic

operators always enhance the performance of EAs; hence,
the proposed generalized mutation scheme generates
another offspring along with the one using tradeoff
function, and the better one is considered for further
operations. The following discussion formally introduces
the mathematical aspects to get the offspring:
Mr:

OcðgÞ ¼

Oc
tcg; if f ðOc

tcgÞ4f ðOc
chaosÞ;

Oc
chaos; if f ðOc

tcgÞof ðOc
chaosÞ;

Oc
tcgBOc

chaos; otherwise;

8><
>: (21)

where Oc(g) is the offspring generated from the c
chromosome at generation g; Otcg

c is the offspring
generated from the tradeoff function; Ochaos

c represents
the offspring generated utilizing the chaotic sequences; B
denotes the operator that randomly selects any of the two
quantities on its either sides; and f( � ) is the fitness function.
The generation of two parallel offsprings is based on the

following mutation rule:

Oc
i ðgÞ ¼ Chci ðgÞ þ miðgÞ � Dc

i ðgÞ, (22)

where Oi
c is ith part of offspring generated from chromo-

some c at generation g; Chi
c(g) represents the ith part of

chromosome c at generation g; mi(g) is known as the
standard deviation for the mutation; Di

c(g) is the mutation
step size obtained either from the tradeoff function or from
chaotic sequences at generation g. The case pertaining to
the tradeoff function is described below:

Dc
i ¼ |ðgÞ �Gs þ ð1� |ðgÞÞ � Cs, (23)

where

| ¼
g

gmax

. (24)

Gs and Cs are random steps generated utilizing Gaussian
and Cauchy distribution functions. Mathematically, step
size generation can be described as

Gs ¼ randðþ;�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� lnðz�

ffiffiffiffiffiffi
2p
p
Þ

q
, (25)

Cs ¼ randðþ;�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�

1

z� p
� t

� �s
, (26)

where rand(+,�) randomly assigns sign to the expression;
z is a random number in the range ]0, fGaussian(0) or
fCauchy(0) (as the case may be)]. Eqs. (25) and (26) can
easily be obtained from (19) and (20), respectively.
However, for the offspring generation from chaotic

sequences, many chaotic generators are defined in the
literature (Caponetto et al., 2003). This paper utilizes the
tradeoff function of the sinusoidal iterator and logistic map
due to their better performance and fast convergence. For
the offspring generation, the following formulation of
Di

c(g) is used:

Dc
i ¼ randðþ;�Þ � �s� ½_� dþ ð1� _Þ � �S�, (27)

ARTICLE IN PRESS

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.35

0.4

0.25

0.3

0.15

0.2

0.05

0

0.1

Fig. 2. Plot of Cauchy and Gaussian distributions with standard deviation

1; mean ¼ 0; t ¼ 1.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547530



where �s is the step parameter; _ is a random number in
range (0, 1); d and Š are the random numbers obtained
from the logistic map and sinusoidal iterator defined as

Logistic map: xc

zkþ1 ¼ a0 � zkð1� zkÞ; k ¼ 0; 1; . . . ; 400. (28)

Sinusoidal iterator:

zkþ1 ¼ a00 � z2k � sinðpzkÞ, (29)

where a0 and a00 are equation parameters. The step sizes
obtained from Eq. (27) are shown in Fig. 3.

3.4. The generalized EAs for various formulations

This subsection formally presents the generalized EAs
for all the four formulations. The basics of all these EAs
are guided by similar principles, though, varying somewhat
in implementation. The EAs represented as abstract ten
tuple entities are presented in Table 1. In the interest of
brevity, detailed algorithms for all the four problem types
are given in Table 2. Without the loss of generality, this
paper tries to put encoding schemes, learning strategies,
mutation rules, and similar other tuples of all the four EAs
on the same platform. This means that though the general
encoding schemes for the problem types may be as shown
in Fig. 1, they are somewhat modified to suit the broader
objective of generalization. Also, it has been shown in the
sections to follow that the proposed encoding schemes
work equivalently or sometimes better than the existing
strategies.

3.4.1. Type A problems

The problem type A is generally concerned with the
function optimization problems that require variable
values as floating point numbers. The algorithm for type
A utilizes the encoding of variables as floating point

numbers. The learning scheme utilizes the information
shared by the neighbors (other chromosomes) and the
previous experience of the chromosome. The mutation step
is straightforward and requires the algebraic summation of
mutation step obtained from (21). This algorithm is
characterized by the dynamic updating and fast conver-
gence, authenticity for which has been theoretically
established in Section 4, and experimentally revealed in
Section 7.

3.4.2. Type B problems

The type B problems are also generalized case of
function optimization problems. The difference lies in the
encoding scheme, where the binary encoding is utilized to
map the decision variables. Here also, the mutation rule is
straightforward and requires the binary addition of the
mutation step size obtained. However, the learning scheme
utilizes the probabilistic strings to get the probability of
being ‘1’ or ‘0’ at any particular bit position. This
algorithm is also marked by the fast convergence to near-
optimal solutions, as validated by the Sections 4 and 7.

3.4.3. Type C problems

In the same fashion, type C problems are generalized
cases of TSP problem or their modified versions. Here, the
proposed algorithms utilize different type of coding
schemes than what has been generally established in the
literature. The type C problems are intended to find best
sequence of nodes or objects among the given. In the
interest of generality of the proposed algorithms, the
encoding scheme utilizes partial binary coding, where a bit
position can be acquired by either 0 or 1 but they are
restricted by the following conditions and characteristics:

� The chromosome has length
Pn�1

i¼1 n� i, where n is the
number of nodes and i represents the ith node of the
sequence.
� There can be only a single ‘1’ in each subsequent n�i

bits, iA1, 2,y, n�1.
� To decode the solution, a lookup variable string is

utilized whose initial length is n and the ith position
contains the integer i.

The decoding steps are detailed in the algorithm
presented in Table 2.
In this case also the learning rule is similar to the type B

case. Here, due to the use of different encoding scheme, the
mutation scheme utilized in both previously mentioned
type of problems is not applicable. First, ‘n�1’ mutation
step sizes are calculated with the similar rules as previously
detailed. The step sizes obtained in the range of Dmin and
Dmax are then scaled on the range of (0, n�i) for each
subsequent i bits, iA1, 2,y, n�1. Now, based on the step
size obtained, the position of single ‘1’ is jumped and the
new solution is obtained. This feature of the algorithm has
also detailed in Table 2.

ARTICLE IN PRESS

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

Fig. 3. Chaotic steps from the proposed chaotic rule with

s0 ¼ a0 ¼ a00 ¼ 4.0.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 531



3.4.4. Type D problems

These types of problems are modified versions of TSPs.
In these types of problems, each problem variable has a
finite set of alternatives and the problem is to choose the
best out of them. The chromosome length is the sum of the
total number of alternatives available. The encoding is
similar to type C problems. The presence of ‘1’ in a bit
position ensures the selection of that alternative. The
mutation and learning schemes are similar to the type C

case (Table 2).
Further, an elite population has been maintained in each

class of problem that contains epop best individuals found
till the generation.

4. Mathematical aspects of the proposed strategies

4.1. Can the learning rule converge?

To show the convergence, the learning strategies are split
into two parts—first, the learning strategies which utilize
Eq. (13) and second, those utilizing Eq. (17). Let the case of
first type be taken. The convergence of the strategy can be
proved in two steps. First, the following theorem is
established.

Theorem 1. For some 40 and NoN, (B*40, u*40 and

ginitialoN such that 8B 2 ð0; B�Þ^u 2 ð0; u�Þ under Ls, prob-

ability r (all actions are chosen at least N times before g)

41� , 8gXginitial.

Proof. This theorem is parallel to that for TSE learn-
ing rule (Tathachar and Sastry, 1986). Let Pi

g repre-
sent a random variable as the number of times the ith
action was chosen upto generation g in any specific
algorithmic run. If the action ai is chosen at generation g,
then from (13),

pjðgÞ ¼

ð1� BÞpjðg� 1Þ þ ð1� uÞp0jðg� 1Þ þ Bþu
XðgÞ�1

if djðg� 1Þ4diðg� 1Þ; jai;

ð1� BÞpjðg� 1Þ þ ð1� uÞp0jðg� 1Þ

if djðg� 1Þpdiðg� 1Þ; jai:

8>>>><
>>>>:

(30)

Let the term ð1� BÞpiðg� 1Þ þ ð1� uÞp0iðg� 1Þ be written
as ð1� ZÞ � pi, where Z ¼ 1�[(1�B)+(1�u)] and

pi ¼
ð1� BÞpiðg� 1Þ þ ð1� uÞp0iðg� 1Þ

ð1� BÞ þ ð1� uÞ
. (31)

Now, the two cases arise—(1) the probability of the
chosen action, pi (g) is either ð1� ZÞ � pi, when ( other
actions j for which estimates d are better than those for ai,
or, (2) pi (g) is ð1� ZÞ � pi þ B when the action chosen has
maximal reward estimate dmax. However, in both of the
cases, the following inequality holds:

piðgÞXð1� ZÞ � pi. (32)

ARTICLE IN PRESS

Table 1

The EA abstraction

The EA

abstraction:

Type ‘A’ problems Type ‘B’ problems Type ‘C’ problems Type ‘D’ problems

PopS User defined parameter User defined parameter User defined parameter User defined parameter

Pop0 ¼ ðCh01;Ch
0
1 . . .Ch

0
PopSÞ

¼

Ch1;1

�

Ch
1; �L

chr

2
6664

3
7775 � � �

ChPopS;1

�

Ch
PopS; �L

chr

2
6664

3
7775

0
BBB@

1
CCCA 2 Es;

Similar to type ‘A’ Similar to type ‘A’ Similar to type ‘A’

Es
ftiptipt̄i; i 2 f1; 2; . . . ; ngg ti, n have

similar meanings as in (3);

(0,1) Ĺchr (i.e. probability

string)

(0,1) Ĺchr (i.e. probability

string)

(0,1) Ĺchr (i.e. probability

string)

Ĺchr n; If ith variable is encoded as

a ni digit binary number, the

total length of

chromosome ¼
Pn

i¼1ni

Length of chromosome ¼Pn�1
i¼1 n� i

If number of alternatives for ith

variable are nai, the total length

of chromosome ¼
Pn

i¼1nai

F 1/g(t); (Eq. (1)) 1/g(t); (Eq. (1)) 1/fTSP(t); (Eq. (7)) 1/h(t); (Eq. (4))

Ls EEqs (17) and (18); EEq. (13) EEq. (13) EEq. (13)

Ms Mutation stepEEq. (20), The mutation

step is directly added to the concerning

variable;

Mutation stepEEq. (21).

The mutation step size

converted to binary number

and added to parent string;

Mutation step (D)EEq. (21).

The bit having ‘1’ (in every

segment) is jumped by D cells.

(detailed in algorithm

description).

Mutation step (D)EEq. (21).

The bit having ‘1’ (in every

segment) is jumped by D cells.

(detailed in algorithm

description).

Ss A fixed percentage ‘fp’ of best offsprings

replace the fp% worst parents.

The probability strings of

populations are dynamically

updated.

The probability strings of

populations are dynamically

updated.

The probability strings of

populations are dynamically

updated.

P User defined values. User defined values. User defined values. User defined values.

G Number of generations. Number of generations/

convergence of probability

strings approximately to 1.

Number of generations/

convergence of probability

strings is approximately to 1.

Number of generations/

convergence of probability

strings approximately to 1.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547532



Again from (13) it can be concluded that a similar
inequality is valid 8j 2 ½1; �r�. Thus, it can be concluded that
for any g initial generations of the algorithm,

r ðai is chosenÞXð1� ZÞg � piðoÞ for any i 2 ½1; �r�. (33)

With the Eq. (33) established, the remaining proof is
similar to that for TSE learning rule (Tathachar and
Sastry, 1986), and hence is not presented for the sake of
conciseness. &

Now, in order to establish the convergence of the
proposed learning rule, it is to be proved that if ith action is
rewarded more number of times from ginitial onwards, as
compared to any other action, then the probability vector
of actions converges with a probability one.

Theorem 2. Let there be an action index i 2 ½1; �r� and

ginitialoN such that �diðgÞ4�djðgÞ; 8ðjaiÞð̂g4ginitialÞ, where
�diðgÞ ¼ max

i2½1;�r�
fdiðgÞg, then pi(g)-1 with probability 1 and g-

N.

Proof:. The convergence of the theorem is proved using the
Submartingle’s convergence theorem (Narendra and Tatha-
char, 1989). For this purpose, it is first proved that the
sequence of random variables fpiðgÞggXginitial

is a submar-

tingle.

To start with, the following equation is considered:

DpiðgÞ ¼ E½piðgþ 1Þ � piðgÞjStðgÞ�, (34)

where St(g) is the state vector for the estimator algorithms
that contains Prob(g) and d(g): dðgÞ ¼ fdiðgÞ; 8i 2 ½1; �r�g.
From the proposed learning rule and the theorem
assumptions, the probability for g+1th generation can be
represented as

piðgþ 1Þ ¼ ð1� ZÞ � pi þ
B

XðgÞ
if aj is chosen and jai,

piðgþ 1Þ ¼ 1�
X
jai

½ð1� ZÞ � pj �

¼ pi þ Z� ð1� pjÞ if ai is chosen.

Thus, it can be inferred that 8gXginitial; DpiðgÞ can be
calculated as

DpiðgÞ ¼
X
jai

Z
XðgÞ
� ZpiðgÞ

� �
pjðgÞ

þ ½Zð1� piðgÞÞ�piðgÞ, ð35Þ

DpiðgÞ ¼ Z
1

XðgÞ
� piðgÞ

� �
ð1� piðgÞÞ

þ Zð1� piðgÞÞpjðgÞ. ð36Þ

ARTICLE IN PRESS

Table 2

The generalized EAs

Algorithm for type A Algorithm for type B

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 533



Therefore,

DpiðgÞ ¼
Z

XðgÞ
ð1� piðgÞÞX0. (37)

Thus, it can be concluded that pi(g) is a submartingle.
Hence, by submartingle convergence theorem fpiðgÞggXginitial
converges as g-N and

E½piðgþ 1Þ � piðgÞjStðgÞ� ! 0 with a probability 1. (38)

Thus, pi(g)-1 with probability one that proves the
theorem. &

Now, the result of e-optimal convergence condition can
be given as

Theorem 3. In every static random scenario, ( a number

B*40, u*40 and ginitial40, such that 8B 2 ð0; B�Þû 2 ð0; u�Þ,

for any 2(0,1) and any eA(0,1):

Prob½piðgÞ41� ��41� 8g4ginitial. (39)

Proof:. Trivial from Theorems 1 and 2 (as a logical
consequence). &

Thus, the proposed learning rule is converging that
theoretically authenticates its formulation. With the similar
strategies, the theoretical convergence of second type of
learning rule can be established.

4.2. Why new tradeoff function?

This paper proposes a new tradeoff function that is uti-
lized to carry out mutations. In general, an efficient search
strategy should be characterized by more exploratory

ARTICLE IN PRESS

Table 2 (continued)

Algorithm for type C Algorithm for type D

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547534



search in the initial phases and thereafter converge by
exploiting the neighborhood rigorously. Let the case of
numerical optimization pertaining to the type A problems
be analyzed. If Gaussian distribution is used for mutation
operation in Eq. (22), the expected value of mutation jump
can be given as (Yao et al., 1999)

EGaussianðxÞ ¼ 2

Z þ1
0

x
1ffiffiffiffiffiffi
2p
p e�ðx

2=2Þ dx ¼
2ffiffiffiffiffiffi
2p
p ¼ 0:80,

(40)

ECauchyðxÞ ¼ 2

Z þ1
0

x
1

pð1þ x2Þ
dx ¼ þ1. (41)

Thus, the Gaussian mutations can be regarded as more
localized than Cauchy mutations. It is to be noted that the
generation of infinite variation is practically not feasible;
however, (41) indicates that it is possible to get large
deviations even at first generation—thus, avoiding possi-
bility of entrapment in local optima. In order to establish
the relevance of the proposed tradeoff function, first the
effect of mutation step size over the search is analyzed
mathematically.

Let the probability of generating a solution in the
neighborhood of x* (optimal point) using any distribution
D be PD (|x�x*|pe), where, e is the neighborhood size. The
following theorem is stated

Theorem 4. For any number a such that 0oao2e, larger the

value of s implies larger PGaussian (|x�x*|pe), if

so|x�e+a|; and larger value of s corresponds to smaller

PGaussian (|x�x*|pe), if s4|x�e+a|U

Proof. Fig. 4 demonstrates the various variables and their
assumed positions over the arbitrary probability distribu-
tion curve. For the Gaussian distribution function (19), the
probability that the a point is generated in the neighbor-

hood of x* can be given as

PGaussianðjx� x�jp�Þ ¼

Z x�þ�

x���
f GaussianðxÞdx. (42)

It has the step size equal to sU To assess the impact of s,
the derivative of (42) is to be evaluated with respect to s.
The mean value theorem of definite integrals (Hunt, 1986),
states that ( a number a such thatZ x�þ�

x���
f GaussianðxÞdx ¼ 2�f Gaussianðx� �þ aÞ. (43)

Thus,

q
qs

PGaussianðjx� x�j ¼ �Þ ¼
q
qs
ð2�f Gaussianðx� �þ aÞÞ.

(44)

Following the logical consequences to obtain derivative,
(44) can easily be written as (Yao et al., 1999)

q
qs

PGaussianðjx� x�j ¼ �Þ

¼
2�

s2
ffiffiffiffiffiffi
2p
p e�ðx

���þaÞ2=2s2 ðx
� � �þ aÞ2

s2
� 1

� �
. ð45Þ

Thus,

q
qs

PGaussianðjx� x�j ¼ �Þ40 if sojx� � �þ aj, (46)

q
qs

PGaussianðjx� x�j ¼ �Þo0 if s4jx� � �þ aj. (47)

Hence, from (46) and (47), it can be concluded that
larger the value of s implies larger PGaussian (|x�x*|pe), if
so|x�e+a|; and larger value of s corresponds to smaller
PGaussian (|x�x*|pe), if s4|x�e+a|; that in turn validates
the theorem. &

A similar theorem can be stated for the Cauchy
distribution function (Eq. (20)).

Theorem 5. For any number a such that 0oao2e, larger the

value of ‘t’ implies larger PGaussian (|x�x*|pe), if

to|x�e+a|; whereas larger value of ‘t’ corresponds to

smaller PGaussian (|x�x*|pe), if t4|x�e+a|U

Proof:. The proof can easily be followed from that of
Theorem 4. &

Since, s and t can be directly linked with mutation step
size, it can be concluded that larger step size is disadvanta-
geous if the distance between current search point and
neighborhood of optimal point is less than the step size;
however ,in the opposite case the larger step sizes are
advantageous in order to reach the optimal/near-optimal
point. Thus, using any one particular type of probability
distribution for mutation may deteriorate the efficiency of
the search procedure. This may be attributed to the fact
that in the initial stages, the population is formed in a
perfectly random manner, which requires explorative and
thorough search with large mutation steps, whereas, in the

ARTICLE IN PRESS

Fig. 4. Plot to demonstrate neighborhood search. The curve is of

probability distribution function.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 535



later stages more thorough neighborhood search is
required, though giving some chances to large steps. The
proposed tradeoff function (Eq. (24)) takes care of such
requirements efficiently due to the generation-dependent
adaptive parameter ‘|’. The following discussion is
dedicated to mathematical analysis of the attributes and
efficacy of the proposed tradeoff function.

4.3. Are the mean-square displacements promising?

The displacement f(g) at any generation g can be
attributed to the cumulative steps during g generations.
The proposed tradeoff function exhibits the following
expectation property of root mean-square displacements:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðgÞ
� �2q

¼ 1. (48)

This is due to the fact that the expected root mean-
square displacement for Cauchy mutations is infinity, thus
influencing the expectancy for tradeoff function, thanks to
the chances given to Cauchy mutations in tradeoff function
even at later generations. To empirically evaluate the effect
of displacements, Fig. 5 has been plotted that compares the
effect of mutations due to the three distribution functions.
Here, it is evident that the tradeoff mutations initially
explore the region thoroughly and at later generations, the
search is more explorative in neighborhood regions. This
fact is visualized by the diamond patches. The existence of
some patches far away can be interpreted as the effect of
Cauchy mutations at later generations. Thus, the muta-
tions of the proposed distribution are more likely to reach
at better solutions without entrapping into local optimas.

4.4. Generation of distinct values from mutation

Any offspring at a generation g can be considered as an
outcome of g-step random walk following a particular

random distribution. The number of distinct values Nd(g)
obtained upto generation g is an important criterion to
decide the effectiveness of mutation operation. To have a
better appraisal, the expectation hNdðgÞi is calculated. Let
pg0 be the probability that the value obtained at generation
g0 is new. Since obtaining a new value or not is a Bernoulli
trial, hence the expected number of distinct values can be
given as

hNdðgÞi ¼
Xg

g0

pg0 . (49)

Now, the value of hNdðgÞi is analyzed for Gaussian,
Cauchy (Yao et al., 1999) and tradeoff distributions:

hNdðgÞiGaussian / g1=2, (50)

hNdðgÞiCauchy /
g

lnðgÞ
, (51)

hNdðgÞiTradeoff /
g

lnðgÞ
. (52)

Thus, from the above equations, it can be seen that the
proposed tradeoff function yields more distinct values than
Gaussian distribution, while equivalent to Cauchy dis-
tribution. Thus, the tradeoff function has more explorative
and distinct search.
Although all the aforementioned proofs shown keeping

in mind the type A and B problems, similar arguments can
be established for the remaining cases also. Therefore, it
can be said that the new learning and mutation rules are
theoretically promising. Further sections would provide the
empirical study of these attributes.

5. Classification of the test problems

5.1. Test functions pertaining to type A and type B

To evaluate the performance of the proposed EAs and
carry out the designed experiments for the numerical
optimization problems (A and B), various benchmark test
functions available in the literature have been utilized (Yao
et al., 1999). Broadly the following classification of test
functions has been utilized:

(1) Unimodal functions, f1–f3 (i.e. with no local minima).
(2) Multimodal functions with many local minima, f4–f5.
(3) Multimodal functions with few local minima, f6–f7.

The functions and their characteristic curves for the two
variables have been shown in Fig. 6 and Table 3. Each
category has two/three functions with increasing complex-
ity. Several plots in Fig. 6 have been shown to visualize the
general trend followed by the functions in the case of two
variables.

ARTICLE IN PRESS

-60 -50 -40 -30 -20 -10 0 10 20 30 40

-50

-40

-30

-20

-10

0

10

20

30

vairable 1

v
a
ri
a
b
le

 2

Gaussian mutation
Cauchy mutations
proposed mutations

Fig. 5. Mutations obtained by utilizing different distributions over 500

generations and two variables x1 and x2. The initial values are set to 0.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547536



5.2. Test problem pertaining to type C formulations

To evaluate the performance EA pertaining to
type C problems, two real world TSPs (http://www.iwr.
uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB)
have been utilized along with five simulated small size
academic problems. The objective has been to minimize the
total distance covered (Eq. (7)). The related data set has
been provided in Appendix A.

5.3. Test problem related to type D formulation

Further, to assess the applicability and performance of
the proposed EA for type D problems, a real-time
reliability optimization problem has been considered from
the literature (Gen and Cheng, 1999). This problem had
been a benchmark problem for various researchers (Gen,
1975; Gen et al., 1989). The problem is to maximize the
system reliability that is subjected to three nonlinear
constraints with parallel redundant units in the subsystem.
These subsystems are subject to type A failures that occur
when entire subsystem is subjected to failure condition. Its

mathematical formulation can be given as

Max f reliability ¼
Y3
i¼1

1� ½1� ð1� qi1Þ
miþ1� �

X4
u¼2

ðqiuÞ
miþ1

" #
.

(53)

Subject to

C001ðmÞ ¼ ðm1 þ 3Þ2 þ ðm2Þ
2
þ ðm3Þ

2p51, (54)

C002ðmÞ ¼ 20
X3
i¼1

ðmi þ expð�miÞÞX120, (55)

C003ðmÞ ¼ 20
X3
i¼1

ðmi expð�mi=4ÞÞX65, (56)

1pm1p4; m2p1; m2p7, (57)

miX0 : integer; i ¼ 1; 2; 3, (58)

where m:m ¼ {mi, 8i} and mi denotes redundant units in
the system; qiu represents failure probability for ith failure

ARTICLE IN PRESS

2

1

0
100 100

100

-100
0

0 0
-100 -100

100
0

-100

6

4

2

0

-2

10

5

0
2

0

-2 -2
0

2

20

10

0
50

0
-50 -50

0

50

200

100

0

0
0

-1000 -1000

1000
-1000
1000

10000

5000

0

-5 -5
0

5
0

5

1500

1000

500

0
2

0

-2 -2

0

2

f1 f2 f3

f4 f5

f7

f6

Fig. 6. Graphs of the test functions (f1–f7) with n ¼ 2.

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 537



mode. The data regarding the failure modes and prob-
ability qiu in each system are presented in Appendix B.

6. Experimental design for parameter tuning

It has been an issue of challenge in the EA optimization
field to determine the parameter setting that yield efficient
performance on the problems at hand. Recently, no free
lunch theorem (Wolpert and Macready, 1997) has revealed
that the average performance of about all pairs of
algorithms is approximately same. This means that if any
algorithm performs better in some particular set of
problems, it is bound to perform worse in other problems.
Also, if an algorithm works well on a particular problem or
a class of problems, with a particular parameter setting, it
does not guarantee that it would work similarly for other
type of problems. Thus, each time, before attempting a new
class of problems, parameter tuning is required. The
previous sections throw light on the parameter control
policies in the form of adaptive mutation schemes. Very
often, it is not time efficient and also cumbersome to test all
possible combinations of parameters to gain best out of
them. Thus, a small but representative sample of combina-
tions is utilized, thanks to the introduction and develop-
ment of orthogonal design and orthogonal arrays (Phadke,
1989).

In this paper also, the parameter tuning has been
performed using various orthogonal arrays. Before getting
into the details of the arrays used, let the tuning parameters

be detailed first. The basic tuning parameters for various
algorithms described in the paper are speed of learning
parameters B and u; the standard deviation coefficient for
adaptive mutations ‘mi’ and population size PopS. Apart
from the aforementioned tuning parameters, a noise factor
has also been considered as tuning parameter, the
formulation of which is described in the following
subsection.
In general, real-time optimization problems require the

solution evaluation through experimentation, stochastic
simulation, sampling, etc. (Nissen and Propach, 1998).
Hence, most of the problems involve noise in one way or
the other.
Earlier, the effects of additive Gaussian noise have been

demonstrated on a set of five test functions (Rana et al.,
1996). The conclusions of the study were that after adding
noise, some cases exhibited soft annealing effect while most

ARTICLE IN PRESS

Table 3

Test functions for type A and type B

Test function Expression of function N (number

of variables)

Solution space fmin

f1 (Sphere function) X30
i¼1

x2
i

2 [�100, 100]2 0

f2 (Shwefell’s

function)
X30
i¼1

Xi

i¼1

x2
j

 !2 2 [�100, 100]2 0

f3 (Quartic function

or noise)

X30
i¼1

ðix4
i þ random½0; 1ÞÞ

2 [�1.28, 1.28]2 0

f4 (Ackley’s function)

�20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

30

X30
i¼1

x2
i

vuut
0
@

1
A� exp

1

30

X30
i¼1

cosð2pxiÞ

 !
þ 20þ e

2 [�32, 32]2 0

f4 (Griewank

function)
1

4000

X30
i¼1

x2
i �

Y30
i¼1

cos
xiffiffi

i
p

� �
þ i

2 [�600, 600]2 0

f6 (Six-hump camel-

back function)
4x2

1 � 2:1x4
1 þ

1

3
x6
1 þ x1x2 � 4x2

2 þ 4x4
2

2 [�5, 5]2 0.398

f7 (Goldstien Price

function)

1þ ðx1 þ x2 þ 1Þ2 19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2

� �	 

� 30þ ð2x1 � 3x2Þ

2
þ ð18� 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2Þ

	 
 2 [�2, 2]2 3

Table 4

Range of parameters utilized (distinguished as levels)

Parameter Level 2 Level 3 Level 4 Level 5

PopS 25 50 75 100

epop 0.2 0.4 0.6 0.8

ś 0.25 0.50 0.75 1.0

B 0.2 0.4 0.6 0.8

u 0.2 0.4 0.6 0.8

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547538



of the cases represented extra optima added to the
function. Yet another paper on the similar theme exists
(Hammel and Bäck, 1994), which concluded that increas-
ing the amount of noise generally deteriorates the
algorithmic performance, whereas, in general, increasing
the sample size per individual solution improves perfor-
mance, as it reduces the amount of uncertainty in the
evaluation process.

In the present paper, various parameters discussed above
have been robustly tuned by taking into account the noise
factors also. The experimental model concerning the
impact of noise level has been adopted from Nissen and
Propach (1998) and has been briefly stated here. The noisy
objective function used in the experimentations is given as

F ðxi;sÞ ¼ f ðxiÞ þNð0;sÞ, (59)

ARTICLE IN PRESS

Table 5

Performance of the proposed EA for problem type A (preliminary tuning results)

Experiment

number

PopS epop ś B u Deviation from optimal (%)

f1 (Sphere function) f4 (Ackley,s function) f6 (Six-hump camel-back

function)

Without

noise

With

noise

Without

noise

With

noise

Without

noise

With

noise

1 1 1 1 1 1 1.23 E�10 6.30 E�1 9.39 E�7 1.07 E 0 6.58 E�2 1.02 E�2

2 1 2 2 2 2 2.68 E�11 8.54 E�2 1.05 E�8 6.74 E�1 7.68 E�3 1.02 E 0

3 1 3 3 3 3 2.67 E�11 5.48 E 0 5.28 E�7 5.55 E�2 5.89 E�4 9.98 E�2

4 1 4 4 4 4 9.84 E�11 1.11 E 0 6.34 E�9 4.05 E�1 7.85 E�3 5.64 E�1

5 2 1 2 3 4 4.25 E�13 2.02 E�1 5.67 E�7 3.90 E�2 1.25 E�4 2.55 E�2

6 2 2 1 4 3 7.54 E�12 8.52 E�2 9.78 E�8 7.08 E�2 9.46 E�5 4.58 E�2

7 2 3 4 1 2 3.33 E�15 4.51 E�3 6.58 E�8 1.59 E�1 7.08 E�5 6.68 E�3

8 2 4 3 3 1 5.63 E�16 3.68 E�3 1.64 E�9 2.47 E�2 8.08 E�5 5.02 E�3

9 3 1 3 4 2 1.15 E�14 4.51 E�2 1.07 E�9 6.34 E�1 1.11 E�3 9.65 E�2

10 3 2 4 3 1 5.26 E�13 1.02 E�3 2.05 E�7 9.77 E 0 4.83 E�4 1.02 E�1

11 3 3 1 2 4 1.00 E�14 1.11 E�3 5.08 E�8 4.05 E�2 1.05 E�4 6.85 E�3

12 3 4 3 1 3 8.95 E�12 8.58 E�1 3.28 E�8 1.28 E�1 8.16 E�3 5.63 E�2

13 4 1 4 2 3 4.23 E�15 5.64 E�2 1.25 E�7 8.57 E�2 3.11 E�2 3.54 E�1

14 4 2 3 1 4 5.24 E�14 1.25 E�3 5.44 E�9 5.66 E 0 9.63 E�3 4.38 E�1

15 4 3 2 4 1 1.02 E�16 2.58 E 0 2.14 E�8 5.71 E�1 6.59 E�4 9.57 E�3

16 4 4 1 3 3 2.57 E�16 1.09 E�3 8.47 E�8 3.14 E�2 8.47 E�3 7.77 E�2

Table 6

Performance of EA problem type B (preliminary tuning results)

Experiment

number

PopS epop ś B u Deviation from optimal (%)

f1 (Sphere function) f4 (Ackley,s function) f6 (Six-hump camel-back

function)

Without

noise

With

noise

Without

noise

With

noise

Without

noise

With

noise

1 1 1 1 1 1 7.68 E�11 2.19 E�2 8.63 E�7 6.74 E�2 1.10 E�3 2.65 E�3

2 1 2 2 2 2 5.55 E�12 5.21 E�3 5.98 E�9 2.53 E 0 1.03 E�4 9.15 E�1

3 1 3 3 3 3 4.68 E�13 6.54 E�1 7.77 E�8 4.19 E�2 4.35 E�3 7.85 E�2

4 1 4 4 4 4 8.97 E�14 7.58 E 0 1.54 E�6 9.39 E�3 1.33 E�2 8.64 E�2

5 2 1 2 3 4 3.68 E�13 6.49 E�3 6.34 E�7 2.87 E�1 4.55 E�3 9.27 E�4

6 2 2 1 4 3 5.68 E�15 7.45 E�4 2.53 E�8 3.80 E�2 3.17 E�5 1.59 E�3

7 2 3 4 1 2 2.53 E�15 9.51 E�3 1.01 E�9 8.52 E�3 6.36 E�4 3.19 E�2

8 2 4 3 3 1 7.89 E�16 8.95 E�4 6.07 E�9 3.24 E�3 2.95 E�4 5.26 E�3

9 3 1 3 4 2 1.64 E�12 4.45 E�2 6.21 E�9 7.86 E�2 8.00 E�5 1.52 E�3

10 3 2 4 3 1 4.57 E�15 5.95 E�3 3.71 E�8 8.96 E�3 1.04 E�4 9.39 E�2

11 3 3 1 2 4 1.20 E�14 9.03 E�4 1.94 E�9 2.83 E�2 3.74 E�4 1.03 E�3

12 3 4 3 1 3 3.51 E�14 3.99 E�3 4.90 E�7 5.13 E�1 5.44 E�5 9.10 E�4

13 4 1 4 2 3 6.01 E�13 7.93 E�2 8.18 E�6 6.47 E�2 2.08 E�4 5.51 E�3

14 4 2 3 1 4 9.07 E�12 7.87 E�1 6.75 E�8 5.12 E�2 7.98 E�3 7.04 E�3

15 4 3 2 4 1 1.05 E�12 5.27 E�2 9.44 E�8 7.77 E�2 6.64 E�4 9.61 E�4

16 4 4 1 3 3 3.66 E�11 1.49 E�2 2.94 E�9 8.75 E�2 1.41 E�3 6.99 E�3

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 539



ARTICLE IN PRESS

Table 7

Results for algorithm to problem types C and D (preliminary tuning results)

Experiment

number

PopS epop ś B u Deviation from optimal (%)

Problem type C (simulated

TSP5)

Problem type D (freliability)

Without noise With noise Without noise With noise

1 1 1 1 1 1 1.65 E�4 4.10 E�2 �5.54 E�2 �7.80 E�1

2 1 2 2 2 2 5.48 E�4 6.85 E�2 �6.34 E�2 �4.67 E 0

3 1 3 3 3 3 6.52 E�4 1.04 E�2 �5.46 E�3 �5.01 E�2

4 1 4 4 4 4 5.14 E�3 7.58 E�1 �9.16 E�3 �8.40 E�1

5 2 1 2 3 4 9.72 E�5 8.86 E�1 �3.56 E�3 �4.53 E�0

6 2 2 1 4 3 8.52 E�3 6.61 E�2 �4.07 E�3 �6.56 E�1

7 2 3 4 1 2 5.90 E�5 5.78 E�2 �6.15 E�3 �7.86 E�2

8 2 4 3 3 1 4.06 E�4 1.47 E�3 �3.07 E�2 �1.66 E�2

9 3 1 3 4 2 1.25 E�6 5.33 E�2 �8.77 E�3 �5.68 E�1

10 3 2 4 3 1 3.16 E�5 5.77 E�2 �9.39 E�4 �1.08 E�2

11 3 3 1 2 4 7.19 E�5 5.90 E�2 �6.10 E�2 �8.45 E�2

12 3 4 3 1 3 1.79 E�6 9.30 E�1 �2.11 E�3 �8.38 E�2

13 4 1 4 2 3 2.80 E�6 2.70 E�3 �7.25 E�3 �5.79 E�1

14 4 2 3 1 4 4.50 E�5 7.02 E�2 �6.10 E�2 �1.42 E�2

15 4 3 2 4 1 7.33 E�4 1.60 E�3 �6.74 E�3 �3.62 E�2

16 4 4 1 3 3 5.81 E�5 2.75 E�2 �1.44 E�3 �7.77 E�2

10-10

10-20

1010

100

10-5

10-10

105

100

f1 f2 f3

f4 f5 f6

f7

o
b

je
c
ti
v
e

10-10

10-20

1010

100

o
b

je
c
ti
v
e

10-10

10-20

1010

100

o
b

je
c
ti
v
e

o
b

je
c
ti
v
e

10-5

10-10

105

105

100

10-5

100

o
b

je
c
ti
v
e

o
b

je
c
ti
v
e

101

100

100

103

105

102

o
b

je
c
ti
v
e

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

Trade off Function
Cauchy Function  
Gaussian Function

Fig. 7. Comparative results of the proposed tradeoff function-based EAs with the EAs that use Cauchy and Gaussian mutations. Here other parameters

and search procedure are kept similar (problem type A).

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547540



s ¼ jm� f ðx�Þj, (60)

m̄ ¼
1

100

X100
j¼1

f ðxjÞ; xj is chosen randomly in the

search space; ð61Þ

where N(0,1) represents the normally distributed random
variable with mean ‘0’and standard deviation s; # is noise
constant; x* is the best known solution for the actual test
function; and m̄ is the average of the 100 random function
values of the test functions (i.e. objective functions). The
following discussion presents the actual orthogonal arrays
utilized for the robust parameter tuning and provides the
description of actual experimental setup.

Since all the four EAs described previously deal with
generalized strategies, they encounter similar tuning para-
meters. All in all, five parameters have been recognized the
variation in values those significantly affect the algorithm
performance: (a) population size (PopS), (b) elite popula-
tion (epop) as the fraction of main population, (c) step size
(ś), (d) self-learning rate (B), and (e) neighborhood learning
rate (u). For the computational study, four levels of all
these parameters have been considered and L16

0(45)
orthogonal array (Phadke, 1989) has been utilized. The
range of parameters considered for the experimentation
according to the L16

0(45) array are detailed in Table 4. In
order to obtain the best set of parameter values, separate

experiments have been conducted for all the four problem
types. The experiments have been performed for one
problem of each kind in the presence of noise as well as
in the absence of noise, and the obtained sets of parameters
were used for further experiments on similar problems. The
results were reported for an average of 10,000 function
evaluations in terms of deviation from the optimal value.
After the parameter tuning, the experiments have been

performed in order to assess the performance of the
proposed generalized strategies over the established strate-
gies used so far in the literature. For the later experiments,
two main criteria have been considered: (1) number of
generations and (2) average deviation for the whole class of
problems. Here, the second criterion gives a glimpse to the
average performance of these algorithms for the concerned
problem types for which they have been defined. Next
section is devoted to the results obtained as per the
experimental setup described and a critical analysis of the
obtained results is being presented. All the experiments
have been done on a 1.8GHz Pentium 4 Processor and the
algorithms have been coded in MATLAB 6.1.

7. Computational results and inferences

In order to start the computational analysis, first the best
performing set of parameters has been obtained according
to the previously mentioned procedure. The following

ARTICLE IN PRESS

10-10

10-20

1010

100

10-5

10-10

105

100

f1 f2 f3

f4 f5 f6

f7

o
b
je

c
ti
v
e

10-10

10-20

1010

100

o
b
je

c
ti
v
e

10-10

10-20

1010

100

o
b
je

c
ti
v
e

o
b
je

c
ti
v
e

10-5

10-10

105

105

100

10-5

100

o
b
je

c
ti
v
e

o
b
je

c
ti
v
e

101

100

100

103

105

102

o
b
je

c
ti
v
e

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

Trade off Function
Random Generators
Logistic Mutation
Sinosuidal Mutation

Fig. 8. Comparative results of the proposed tradeoff function-based EAs with the EAs that use random, logistic and sinusoidal mutations. Here other

parameters and learning scheme are kept similar (problem type A) (values of both axes are in log).

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 541



subsection analyzes various results obtained for parameter
tuning.

7.1. Parameter tuning

First, the Problem type A has been analyzed. The results
obtained as per L016(4

5) orthogonal array have been
reported in Table 5. In this case, one function from each
of the three categories has been used and the experimental
runs have been performed in the presence of noise as well
as in the absence of noise (Eq. (59)). Noise attribute has
been utilized in the experiments as the presence of noise
simulates the real-time application and thus contributes to
establishing the robustness of the algorithm. Here, the
value of # was set to 0.002 for each experimental run as it is
found to provide a better estimate of noise (Nissen and
Propach, 1998). The results are presented in the form of
deviation from optimal value of objective function and is
subsequently calculated as

Deviation ¼
f calculated � f optimal

m
� 100. (62)

Similar experiments have also been conducted for the
algorithms concerned to the problem types B, C and D.
Tables 6 and 7 summarizes the respective results of tuning
experiments on these problems. The test conditions have
been kept similar to the previous case.

A closer look over the Tables 5–7 suggests that in the
first and second case, due to the presence of high
dimensional instabilities, the tuning results vary largely,
whereas the impact of tuning, although high, is compara-
tively less visible in the third and fourth case. In these
tables, the experiments in bold provide the best parameter
settings obtained, for both noisy and deterministic cases,
which have been used for the further experiments in the
following subsections.

7.2. Comparative performance evaluation

In order to have a comparative evaluation of the
proposed generalized strategies with the existing EA
strategies found in literature, various set of experiments
have been conducted. The results have been presented in
three categories:

(i) comparative convergence with the EAs utilizing simple
Gaussian mutations, simple Cauchy mutations and
those with tradeoff mutations;

(ii) comparative convergence with the EAs using random
mutations, Logistic mutations, sinusoidal mutations,
and tradeoff function-based mutations;

(iii) best objective functions obtained and the respective
deviations from the best known value all the test cases.

ARTICLE IN PRESS

Table 8

Best objective values and deviations obtained for the respective test cases

Problem type Problem Simple GA Proposed EAs

Best objective value

obtained

Deviation Best objective value

obtained

Deviation

A (floating point

representation)

f1 5.69E�15 0.006336 1.02E�17 0.022368

f2 1.23E�07 0.012693 1.63E�08 0.155238

f3 1.25E�03 0.022007 2.35E�04 0.036776

f4 6.96E�06 0.072274 1.58E�09 0.002013

f5 5.68E�14 0.006651 4.56E�16 0.004583

f6 4.00E�01 0.003419 3.98E�01 0.001055

f7 3.01E+00 0.003133 3.00E+00 0.000192

B (binary

representation)

f1 4.57E�15 0.002274 6.34E�16 0.000704

f2 6.35E�08 0.007453 1.07E�08 0.005313

f3 2.05E�03 0.004824 2.01E�03 0.021606

f4 2.05E�07 0.000322 6.69E�09 0.001833

f5 5.37E�10 0.260836 5.64E�16 0.000792

f6 4.01E�01 0.007474 4.00E�01 0.004666

f7 3.17E+00 0.050411 3.06E+00 0.01751

C Djibouti TSP-89 6.71E+03 0.007044 6.70E+03 0.006138

Western Sahara TSP-

29

2.78E+04 0.005542 2.76E+04 0

Simulated TSP1 1.79E+02 0 1.79E+02 0

Simulated TSP2 3.00E+02 0 3.00E+02 0

Simulated TSP3 2.22E+02 0 2.22E+02 0

Simulated TSP4 1.66E+02 0.015212 1.63E+02 0

Simulated TSP5 307.569 0.011318 3.06E+02 0.005952

D freliability 0.660685 0 6.61E�01 0

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547542



Here, it is important to mention that while any of the
experimental run was performed by varying a particular
strategy, all other steps and parameters related to other
strategies were kept similar.

First the seven functions, characterized as problem type
A on the basis of their coding strategy, have been targeted
by algorithm A. The parameters have been set according to
the values suggested in Table 5. Fig. 7 presents the
comparative convergence of the proposed tradeoff muta-
tions with Gaussian and Cauchy mutations. It is evident
from the figure that, in general, the tradeoff mutations with
the modified learning strategies are able to give better
convergence trends. Although in some cases (pertaining to
f1 and f3) Cauchy mutation-based strategies have con-
verged earlier, but in terms of solution quality, tradeoff
strategy is found to overrule other strategies. In the same
vein, Fig. 8 presents the comparative convergence of the
tradeoff mutations with random mutations, logistic muta-
tions and sinusoidal mutations. It can be easily assessed
from the figure that the tradeoff mutations perform
outstandingly better than the other three strategies, their
relative convergence being generally affirmative. In order
to have a comparison of simple GA with the proposed
generalized EAs a comparative analysis for the best
objective value obtained along with the concerned devia-

tions has been presented in Table 8. From the table it is
quite clear that the proposed strategies are outperforming
in almost all the cases. The results of the problems related
other types, although presented in the table, have been
analyzed later for the sake of maintaining the discussion
flow.
Having investigated the supremacy of the generalized

rules for problem type A, the task remains to investigate
the performance over other problem types. Thus, the
problem type B has been considered next. The problem
functions taken in this case are same as those used for type
A, the difference being the encoding schema utilized by
algorithm B (Table 2). In this case also the experiments
have been performed on the similar line as discussed for
type A. The results for the comparative performance over
simple GA have already been presented in Table 8,
whereas, the comparative convergence analysis has been
portrayed in Figs. 9. In this case also, the results and trends
obtained confirm the claim of faster convergence and
improved solution quality as has been theoretically
established.
Similar experiments were performed for the type C and

D problems. For type C, the respective deviations and the
objective function values obtained have been found to be
congruent with the optimal results for the smaller problems

ARTICLE IN PRESS

100 105

10-10

100
f1

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

100 105

generations

o
b

je
c
ti
v
e

10-10

100

o
b

je
c
ti
v
e

10-5

100

o
b

je
c
ti
v
e

10-10

10-5

100

105

o
b

je
c
ti
v
e

10-10

100

o
b

je
c
ti
v
e

101

100

102

o
b

je
c
ti
v
e

f2 f3

10-10

10-5

100

f4

o
b

je
c
ti
v
e

f5 f6

f7
Tradeoff Function 

Gaussian Mutation

Cauchy Mutation 

Random

Logistic Mutation 

Sinosuidal mutation

Fig. 9. Comparative results of the proposed tradeoff function-based EAs with the EAs that use Cauchy, Gaussian, random, logistic and sinusoidal

mutations. Here other parameters and learning scheme are kept similar (problem type B) (values of both axes are in log).

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 543



while outperforming the results obtained by simple GA for
the larger problems. Also the fast convergence is visualized
in almost all the cases studied. Fig. 10 portrays the relative
convergence trend of the proposed EA with various
established strategies. It can easily be concluded from the
figure that the tradeoff function provide better results as

compared to other strategies, although in order to tackle
larger problem of this type, some further investigations are
needed.
In the case of problem type D, the benchmark problem

from Gen and Cheng (1999) has been studied for the
convergence analysis. Fig. 11 shows the relative conver-
gence trend for the problem with various strategies. The
figure reconfirms the supremacy of the proposed EA.
Further applications and performance of the algorithm
over different real-time problems coming under type D are
under the testing phase and the supremacy of the algorithm
for much larger sized problems of this type are yet to be
proved and should be the focus of upcoming research.

8. Concluding remarks and future scope

This paper targets the real-time optimization from a
distinctive perspective. The generalized optimization pro-
blems have been first characterized as four basic type
problems on the basis of varying solution representations
utilized. Further, some generalized and enhanced learning
rules have been defined for the EAs. In addition, a new
tradeoff function-based mutation has been introduced that
ensures more explorative and thorough search. Based on
these modifications in the general EAs, four new algorithms,
one for each problem type, have been proposed. Although
these algorithms are different, yet they are marked by the

ARTICLE IN PRESS

100 105

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Fig. 11. Comparative results of the proposed tradeoff function-based EAs

with the EAs that use Cauchy, Gaussian, random, logistic and sinusoidal

mutations. Here other parameters and learning scheme are kept similar

(problem type D) (values of x-axis are in log; x-axis denoted number of

generations and y-axis represents corresponding value of objective

function).

100 105
103

104

105

Djibouti's TSP

generations

100 105

generations

100 105

generations

T
o

u
r 

le
n

g
th

102

103

104
T
o

u
r 

le
n

g
th

104

105

T
o

u
r 

le
n

g
th

Western Sahara TSP

Simulated TSP 5

Fig. 10. Comparative results of the proposed tradeoff function-based EAs with the EAs that use Cauchy, Gaussian, random, logistic and sinusoidal

mutations. Here other parameters and learning scheme are kept similar (problem type C) (values of both axes are in log).

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547544



similarity in the use of same tradeoff-based mutations and
generalized learning rules. In addition to this, the proposed
learning rule has been theoretically investigated for con-
vergence and has been proved to have better convergence. A
theoretical analysis over the need and explorative strategy of
tradeoff function has also been performed. It validates the
use and advantages of new tradeoff function instead of
single Gaussian or Cauchy functions.

Talking about the experimentations, an intensive study
has been done. To start the experiments, first parameter
tuning has been performed. Five parameters have been
recognized to be of importance. Four levels of values of each
parameter have been considered and the tuning has been
done using the concept of orthogonal arrays. This signifi-
cantly eases the tedious tack of tuning and can be relied
upon for the considerably good results. The utilization of
noise-based parameter tuning ensures the emergence of
robust set of performing parameters. In the later sections of
the experiments, the algorithms have been tested for their
relative convergence with various strategies along with the
simple GA. To have a better appraisal, seven functions for
type A and type B problems have been tested. For type B

problems, five simulated TSPs of varying dimensions and
two real-time TSPs have been utilized. A realistic benchmark
reliability problem has been considered to investigate the
performance for the type D problems. All the results have
shown the comparative supremacy of the proposed EAs.

However, the only limitation that lies in the paper is
concerned with the problems of typeD as not much problems
have been considered under this type. Although, the
performance of the proposed strategies has been established
over a benchmark problem of type D, it is yet to be proved

over other problems of the same class. The authors are under
the testing phase of the application of these generalized EAs
over a wide range of such problems, most of which comprise
of real-time manufacturing applications.
Having completed the preliminary tests of the proposed

strategies, a clear and more exhaustive future research is
ahead. These algorithms have to be tested and suitably
modified for the applications that are real challenges to the
optimization. More thorough research is needed to study
the various other critical aspects of the proposed strategies.
Presently authors are working over the extensive study of
algorithm applications over various problems of type D. A
parallel work concerning the application of algorithms for
type C problems related to controllers in FMS is under
research. Preliminary results over the mixed class pro-
blems, like those in Tiwari et al. (2005), have also been
encouraging.
In nutshell, the present paper is a small step towards the

bigger aim of generalization of the diverse field of
optimization. Though this paper presents the preliminary
results, the performance of the proposed strategies is
encouraging and supporting the notion of optimizing the
most crucial real-time problems.

Appendix A

See Tables A1–A3.

Appendix B

See Table B1.

ARTICLE IN PRESS

Table A1

Djibouti TSP-89 cities (points as (x,y) and distance taken is Euclidean)

(Cities 1–30) (Cities 31–60) (Cities 61–89)

x y x y x y

11511.3889 42106.3889 11963.0556 43290.5556 11569.4444 136.6667

11503.0556 42855.2778 11416.6667 42983.3333 11155.8333 42712.5000

11438.3333 42057.2222 11416.6667 42983.3333 11155.8333 42712.5000

11438.3333 42057.2222 11595.0000 43148.0556 11155.8333 42712.5000

11438.3333 42057.2222 12149.4444 42477.5000 11155.8333 42712.5000

11785.2778 42884.4444 11595.0000 43148.0556 11133.3333 42885.8333

11785.2778 42884.4444 11595.0000 43148.0556 11133.3333 42885.8333

11785.2778 42884.4444 11108.6111 42373.8889 11133.3333 42885.8333

11785.2778 42884.4444 11108.6111 42373.8889 11133.3333 42885.8333

12363.3333 43189.1667 11108.6111 42373.8889 11133.3333 42885.8333

11846.9444 42660.5556 11108.6111 42373.8889 11003.6111 42102.5000

11503.0556 42855.2778 11183.3333 42933.3333 11770.2778 42651.9444

11963.0556 43290.5556 12372.7778 42711.3889 11133.3333 42885.8333

11963.0556 43290.5556 11583.3333 43150.0000 11690.5556 42686.6667

12300.0000 42433.3333 11583.3333 43150.0000 11690.5556 42686.6667

11973.0556 43026.1111 11583.3333 43150.0000 11751.1111 42814.4444

11973.0556 43026.1111 11583.3333 43150.0000 12645.0000 42973.3333

11461.1111 43252.7778 11583.3333 43150.0000 12421.6667 42895.5556

11461.1111 43252.7778 11822.7778 42673.6111 12421.6667 42895.5556

11461.1111 43252.7778 11822.7778 42673.6111 11485.5556 187.2222

11461.1111 43252.7778 12058.3333 42195.5556 11423.8889 000.2778

11600.0000 43150.0000 11003.6111 42102.5000 11423.8889 000.2778

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 545



References

/http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.

htmlS.

Agache, M., Oommen, B.J., 2002. Generalized pursuit learning schemes:

new families of continuous and discretized learning automata. IEEE

Transactions on Systems, Man and Cybernetics—Part B 32 (6),

738–749.

ARTICLE IN PRESS

Table A1 (continued )

(Cities 1–30) (Cities 31–60) (Cities 61–89)

x y x y x y

12386.6667 43334.7222 11003.6111 42102.5000 11715.8333 41836.1111

12386.6667 43334.7222 11003.6111 42102.5000 11297.5000 42853.3333

11595.0000 43148.0556 11522.2222 42841.9444 11297.5000 42853.3333

11595.0000 43148.0556 12386.6667 43334.7222 11583.3333 43150.0000

11569.4444 43136.6667 12386.6667 43334.7222 11569.4444 43136.6667

11310.2778 42929.4444 12386.6667 43334.7222 12286.9444 43355.5556

11310.2778 42929.4444 11569.4444 43136.6667 12355.8333 43156.3889

11310.2778 42929.4444 11569.4444 43136.6667

Table A2

Five simulated TSP problems

Test problem

number

Number of

cities

x-coordinate y-coordinate

1 4 82.1407 44.4703

61.5432 79.1937

92.1813 73.8207

17.6266 40.5706

2 8 93.5470 91.6904

41.0270 89.3650

5.7891 35.2868

81.3166 0.9861

13.8891 20.2765

19.8722 60.3792

27.2188 19.8814

1.5274 74.6786

3 10 44.5096 93.1815

46.5994 41.8649

84.6221 52.5152

20.2647 67.2137

83.8118 1.9640

68.1277 37.9481

83.1796 50.2813

70.9471 42.8892

30.4617 18.9654

19.3431 68.2223

4 12 30.2764 54.1674

15.0873 69.7898

37.8373 86.0012

85.3655 59.3563

49.6552 89.9769

82.1629 64.4910

81.7974 66.0228

34.1971 28.9726

34.1194 53.4079

72.7113 30.9290

83.8496 56.8072

37.0414 70.2740

5 14 54.6571 44.4880

69.4567 62.1310

79.4821 95.6843

52.2590 88.0142

17.2956 97.9747

27.1447 25.2329

87.5742 73.7306

13.6519 1.1757

89.3898 68.45328

29.8723 66.1443

28.4409 46.9224

6.4781 98.8335

58.2792 42.3496

51.5512 33.3951

Table A3

Western Sahara TSP-29 cities (points as (x, y) and distance taken is

Euclidean)

Cities 1–15 Cities 16–29

x y x y

20833.3333 17100.0000 26150.0000 10550.0000

20900.0000 17066.6667 26283.3333 12766.6667

21300.0000 13016.6667 26433.3333 13433.3333

21600.0000 14150.0000 26550.0000 13850.0000

21600.0000 14966.6667 26733.3333 11683.3333

21600.0000 16500.0000 27026.1111 13051.9444

22183.3333 13133.3333 27096.1111 13415.8333

22583.3333 14300.0000 27153.6111 13203.3333

22683.3333 12716.6667 27166.6667 9833.3333

23616.6667 15866.6667 27233.3333 10450.0000

23700.0000 15933.3333 27233.3333 11783.3333

23883.3333 14533.3333 27266.6667 10383.3333

24166.6667 13250.0000 27433.3333 12400.0000

25149.1667 12365.8333 27462.5000 12992.2222

26133.3333 14500.0000

Table B1

Failure modes and probabilities in each subsystem (Gen and Cheng, 1999)

Subsystem i Failure modes Failure probabilities (qiu)

1 O 0.01

A 0.05

A 0.10

A 0.18

2 O 0.08

A 0.02

A 0.15

A 0.12

3 O 0.04

A 0.05

A 0.20

A 0.10

Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547546

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html


Ahn, Chang Wook, Ramakrishna, 2003. Elitism based compact genetic

algorithms. IEEE Transactions on Evolutionary Computation 7 (4).

Burke, E.K., Newall, J.P., 1999. A multistage evolutionary algorithm for

the timetable problem. IEEE Transactions on Evolutionary Computa-

tion 3 (1), 63–74.

Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W., 2004. Toward a theory

of generalization and learning in XCS. IEEE Transactions on

Evolutionary Computation 8 (1), 28–46.

Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G., 2003. Chaotic

sequences to improve the performance of evolutionary algorithms.

IEEE Transactions on Evolutionary Computation 7 (3), 289–304.

Choi, D.H., Oh, S.Y., 2000. A new mutation rule for evolutionary

programming motivated from backpropogation learning. IEEE

Transactions on Evolutionary Computation 4 (2), 188–191.

Clerc, M., Kennedy, J., 2002. The particle swarm—explosion, stability,

and convergence in a multidimensional complex space. IEEE

Transactions on Evolutionary Computation 6 (2), 58–73.

Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R., 2004.

Statistical exploratory analysis of genetic algorithms. IEEE Transac-

tions on Evolutionary Computation 8 (4), 405–421.

Dimopoulos, C., Zalzala, A.M.S., 2000. Recent developments in evolu-

tionary computation for manufacturing optimization: problems,

solutions and comparisons. IEEE Transactions on Evolutionary

Computation 4 (2), 93–113.

Eiben, A.E., Hinterding, R., Michalewicz, Z., 1999. Parameter control in

evolutionary algorithms. IEEE Transactions on Evolutionary Com-

putation 3 (2), 124–141.

Francois, O., 1998. An evolutionary strategy for global minimization and

its Markov chain analysis. IEEE Transactions on Evolutionary

Computation 2 (3), 77–90.

Franc-ois, Olivier, Lavergne, Christian, 2001. Design of evolutionary

algorithms—a statistical perspective. IEEE Transactions on Evolu-

tionary Computation 5 (2), 129–148.

Gen, M., 1975. Reliability optimization by 0–1 programming for a system with

several failure modes. IEEE Transactions on Reliability R-24, 206–210.

Gen, M., Cheng, R., 1999. Genetic Algorithms, first ed. Wiley, New York.

Gen, M., Ida, K., Sasaki, M., Lee, J., 1989. Algorithm for solving large

scale 0–1 goal programming and its applications to reliability

optimization problem. International Journal of Computers and

Industrial Engineering 17, 525–530.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, Reading, MA.

Hammel, U., Bäck, T., 1994. Evolution strategies on noisy functions. How

to improve convergence properties,. In: Davidor, Y., Schwefel, H.-P.,

M̈anner, R. (Eds.), Proceedings of the PPSN III—Third International

Conference on Parallel Problem Solving from Nature. Springer, Berlin,

Germany, pp. 159–168.

Harik, G.R., Lobo, F.G., Goldberg, D.E., 1999. The compact genetic algo-

rithm. IEEE Transactions on Evolutionary Computation 3 (4), 287–297.

Howell, M.N., Gordon, T.J., Brandao, F.V., 2002. Genetic learning

automata for function optimization. IEEE Transactions on System,

Man, and Cybernatics—Part B 32 (6), 804–815.

Hung, S.L., Adeli, H., 1994. A parallel genetic/neural network learning

algorithm for MIMD shared memory machines. IEEE Transactions

on Neural Networks 5 (6), 900–909.

Hunt, R.A., 1986. Calculus with Analytic Geometry. Harper & Row,

New York.

Kazarlis, S.A., Papadakis, S.E., Theocharis, J.B., Petridis, V., 2001.

Microgenetic algorithms as generalized hill-climbing operators for GA

optimization. IEEE Transactions on Evolutionary Computation 5 (3),

204–217.

Kim, J.H., Myung, H., 1997. Evolutionary programming techniques for

constrained optimization problems. IEEE Transactions on Evolu-

tionary Computation 1 (2), 129–140.

Michalewicz, Z., Deb, K., Schmidt, M., Stidsen, T., 2000. Test-case

generator for nonlinear continuous parameter optimization techni-

ques. IEEE Transactions on Evolutionary Computation 4 (3),

197–215.

Najim, K., Poznyak, A.S., 1994. Learning Automata: Theory and

Applications. Pergamon, New York.

Narendra, K.S., Tathachar, M.A.L., 1989. Learning Automata. Prentice

Hall, Englewood Cliffs, NJ.

Nijssen, S., Bäck, T., 2003. An analysis of the behavior of simplified

evolutionary algorithms on trap functions. IEEE Transactions on

Evolutionary Computation 7 (1), 11–22.

Nissen, V., Propach, J., 1998. On the robustness of population-based

versus point-based optimization in the presence of noise. IEEE

Transactions on Evolutionary Computation 2 (3), 107–119.

Ong, Yew Soon, Keane, A.J., 2004. Meta-Lamarckian learning in memetic

algorithms. IEEE Transactions on Evolutionary Computation 8 (2),

99–110.

Papadimitriou, G.I., 1994. Hierarchical discretized pursuit nonlinear

learning automata with rapid convergence and high accuracy. IEEE

Transactions on Knowledge Data Engineering 6, 654–659.

Phadke, S.M., 1989. Quality Engineering Using Robust Design. Prentice

Hall, Englewood Cliffs, NJ.

Rana, S., Whitley, D., Cogswell, R., 1996. Searching in the presence of

noise. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P.

(Eds.), Proceedings of PPSN IV—Fourth International Conference

on Parallel Problem Solving from Nature. Springer, Berlin, Germany,

pp. 198–207.

Runarsson, T.P., Yao, X., 2000. Stochastic ranking for constrained

evolutionary optimization. IEEE Transactions on Evolutionary

Computation 4 (3), 284–294.

Salomon, R., 1998. Evolutionary algorithms and gradient search:

similarities and differences. IEEE Transactions on Evolutionary

Computation 2 (2), 45–55.

Sinha, N., Chakrabarti, R., Chattopadhyay, P.K., 2003. Evolutionary

programming techniques for economic load dispatch. IEEE Transac-

tions on Evolutionary Computation 7 (1), 83–94.

Storn, R., 1999. System design by constraint adaptation and differential

evolution. IEEE Transactions on Evolutionary Computation 3 (1),

22–34.

Tathachar, M.A.L., Sastry, P.S., 1986. Estimator algorithms for learning

automata. In: Proceedings of the Platinum Jubilee Conference on

system Signal Processing, Department of Electrical Engineering,

Indian Institute of Science, Bangalore, India, December 1986.

Tiwari, M.K., Kumar, S., Kumar, S., Prakash, A., Shankar, R., 2005.

Solving part type selection and operation allocation problems in an

FMS: an approach using constraints based fast simulated annealing

algorithm. IEEE Transactions on System Man and Cybernetics, Part

A 36 (6), 1170–1184.

Tsai, Jinn-Tsong, Liu, Tung-Kuan, Chou, Jyh-Horng, 2004. Hybrid

Taguchi-genetic algorithm for global numerical optimization. IEEE

Transactions on Evolutionary Computation 8 (4), 365–377.

van den Bergh, F., Engelbrecht, A.P., 2004. A cooperative approach to

particle swarm optimization. IEEE Transactions on Evolutionary

Computation 8 (3), 225–239.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation 1 (1).

Yao, X., Liu, Y., Lin, G., 1999. Evolutionary programming made faster.

IEEE Transactions on Evolutionary Computation 3 (2), 82–102.

Yoon, H.S., Moon, B.R., 2002. An empirical study on the synergy of

multiple crossover operators. IEEE Transactions on Evolutionary

Computation 6 (2), 212–223.

Zhang, Qingfu, Leung, Yiu-Wing, 1999. An orthogonal genetic algorithm

for multimedia multicast routing. IEEE Transactions on Evolutionary

Computation 3 (1), 53–62.

ARTICLE IN PRESS
Y. Dashora et al. / Engineering Applications of Artificial Intelligence 21 (2008) 525–547 547


	Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms
	Recommended Citation

	Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms
	Introduction
	An insight to intricacies in defining general-purpose algorithms
	The generalized dynamically fast EAs
	The generalized EA exemplification
	Improved general-purpose learning strategies
	Guided adaptive mutation rule
	The generalized EAs for various formulations
	Type A problems
	Type B problems
	Type C problems
	Type D problems


	Mathematical aspects of the proposed strategies
	Can the learning rule converge?
	Why new tradeoff function?
	Are the mean-square displacements promising?
	Generation of distinct values from mutation

	Classification of the test problems
	Test functions pertaining to type A and type B
	Test problem pertaining to type C formulations
	Test problem related to type D formulation

	Experimental design for parameter tuning
	Computational results and inferences
	Parameter tuning
	Comparative performance evaluation

	Concluding remarks and future scope
	References


