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Abstract 12 

This study aimed at identifying the potential benefits of using a patient specific aperture in proton 13 

beam scanning. For this purpose an accurate Monte Carlo model of the pencil beam scanning (PBS) 14 

proton therapy (PT) treatment head at Massachusetts General Hospital (MGH) was developed based 15 

on an existing model of the passive double-scattering (DS) system. The Monte Carlo code specifies 16 

the treatment head at MGH with sub-millimeter accuracy. The code was configured based on the 17 

results of experimental measurements performed at MGH. This model was then used to compare out-18 

of-field doses in simulated double-scattering (DS) treatments and PBS treatments  19 

For the conditions explored, the penumbra in PBS is wider than in DS, leading to higher absorbed 20 

doses and equivalent doses adjacent to the primary field edge. For lateral distances greater than 10cm 21 

from the field edge, the doses in PBS appear to be lower than those observed for DS. 22 



We found that placing a patient-specific aperture at nozzle exit during PBS treatments can potentially 23 

reduce doses lateral to the primary radiation field by over an order of magnitude. In conclusion, using 24 

a patient-specific aperture has the potential to further improve the normal tissue sparing capabilities of 25 

PBS. 26 

 27 
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 29 

1. Introduction 30 

Pencil beam scanning (PBS) proton therapy (PT) has the potential to deliver highly conformal fields 31 

with reduced dose external to the primary field compared to double scattering (DS) PT. In PBS, 32 

magnets are used to scan the proton beam laterally and the energy of the proton beam is typically 33 

altered without beam modifying devices to achieve conformality in three dimensions. In contrast to 34 

DS, PBS has the ability to conform the dose to both the proximal and distal edges of the target 35 

(Lomax et al., 2004). PBS treatments can also be delivered without patient-specific hardware, which 36 

is required to achieve conformality to the lateral and distal edges of the target in DS (Kooy et al., 37 

2010). Not using patient-specific hardware reduces the amount of material in the path of the beam, 38 

which decreases the total number of proton interactions occurring in the treatment nozzle, leading to a 39 

lower neutron dose from PBS (Schneider et al., 2002). The definition of in-field used in this work is 40 

the region traversed by primary protons (including penumbra), while out-of-field is defined as the 41 

dose delivered by secondary particles in the region not traversed by primary particles. 42 

There are two principle methods of beam scanning used in PT, which we define as spot scanning and 43 

continuous scanning. Spot scanning involves delivering dose in a series of finite steps. After the 44 

delivery of each spot, the beam is turned off while the elements which steer the beam are reconfigured 45 

to deliver the next spot. This reconfiguration may require a change in the beam position, energy or 46 

both depending on the individual facility and the chosen scanning methodology. The primary 47 



difference between continuous scanning and spot scanning is that during continuous scanning, the 48 

beam remains on while the position is altered. Scanning fields at MGH are delivered via a series of 49 

two-dimensional layers of constant proton energy (and hence range). The distal layer is irradiated 50 

first, then the energy is reduced and the subsequent layer irradiated. This process continues until the 51 

entire field has been delivered. Other PT centers may use a different scanning method, depending on 52 

the hardware properties of the given facility. 53 

Previous work by Paganetti et al (2004) has demonstrated the ability to accurately simulate DS proton 54 

therapy treatments using the Geant4 Monte Carlo toolkit (Agostinelli et al., 2003). Modeling the DS 55 

treatment nozzle with sub-millimeter accuracy allowed the simulation of dose distributions from 56 

spread out Bragg peak (SOBP) fields with accuracy, in terms of range and modulation, on the order of 57 

a millimeter. Previous studies have also employed Monte Carlo for examination of the dose delivered 58 

by primary and secondary particles (Paganetti, 2002, Dowdell et al., 2009, Perez-Andujar et al., 2009, 59 

Zacharatou Jarlskog et al., 2008, Zacharatou Jarlskog and Paganetti, 2008b). There is also potential in 60 

the use of Monte Carlo simulations for patient specific dose calculation (Paganetti et al., 2008). 61 

The aim of this work was to study the feasibility and potential benefit of incorporating a patient-62 

specific aperture at nozzle exit during delivery of PBS fields. To achieve this we have implemented a 63 

model of the PBS treatment head at the Francis H Burr Proton Therapy Center, Massachusetts 64 

General Hospital (MGH) using the Geant4 Monte Carlo toolkit. The model was used to simulate the 65 

doses in PBS PT. The results of these simulations were compared to simulations of the DS treatment 66 

head at MGH.  67 

 68 

2. Method  69 

2.1. Monte Carlo modeling of a PBS nozzle 70 



2.1.1. Nozzle Geometry. The components of the PBS nozzle jointly developed by MGH and IBA (Ion 71 

Beam Applications, Louvain La Neuve, Belgium) were modeled in the Geant4 code (version 72 

4.9.0.p01)). The geometry as implemented in the Monte Carlo code is shown in figure 1. 73 

 74 

Figure 1: The pencil beam scanning treatment head implemented in the Monte Carlo code, 75 

showing the incident beam direction, scanning magnets, ionization chambers (IC) and the snout. 76 

Protons are generated in the simulations at the entrance of the treatment head. Upon entering the 77 

treatment head, the beam passes through the first and second scanning magnets, which are used to 78 

scan the proton pencil beam horizontally and vertically respectively. The Monte Carlo code reads in 79 

the prescribed lateral spot positions and proton energy at the treatment head exit via an input file 80 

which is directly generated by the treatment planning system (TPS). These parameters are translated 81 

into magnetic field settings using an automated script which converts the prescribed lateral position to 82 

the required field strength in both scanning magnets based on the proton mass, the proton energy of 83 

the current layer and the required deviation from the central axis. Using the file generated by the TPS 84 

ensures that the beam moves throughout a single two-dimensional layer with the same scanning 85 

pattern in the simulation and the clinical delivery. The three-dimensional dose distribution is delivered 86 

in a series of two-dimensional layers of constant energy (and hence range). The layers are delivered 87 

sequentially, commencing with the distal layer (highest proton energy) and concluding with the most 88 



proximal (lowest proton energy) layer. The specification of the spot positions and the beam current 89 

delivered in the input file also determines whether spot scanning or continuous scanning is delivered.  90 

The magnetic fields generated by the scanning magnets are modeled as uniform fields inside the 91 

magnet volume and the magnetic field strength set to zero external to the magnet volume. The field 92 

centers are defined based on drawings provided by the manufacturer (Ion Beam Applications) and the 93 

field lengths are defined by the effective lengths of the two scanning magnets. This same 94 

methodology was also used for the specification of the magnetic fields in the study of Peterson et al 95 

(2009). 96 

As protons, or secondary particles, traverse the magnetic fields, their maximum step size in the Monte 97 

Carlo was restricted to 2mm. Monte Carlo simulations typically model particle trajectories as a series 98 

of straight lines and restricting the maximum step ensures more accurate modeling of the curved 99 

trajectory of charged particles through the magnetic fields. Elsewhere in the treatment head, the 100 

maximum step size was set to 100mm as high accuracy modeling of the trajectories was not important 101 

in these areas of the treatment head and reducing the maximum step size would increase simulation 102 

time. All particle interactions with different elements of the treatment head were still modeled, as the 103 

particles trajectory and information (energy, momentum etc) are recalculated by default in Geant4 104 

when crossing volume boundaries. It is thus unlikely that a particle travels up to the maximum step 105 

size without changing its direction or energy. 106 

After passing through the scanning magnets, the beam then passes through the ionization chambers, 107 

which are used to monitor spot position and particle fluence. It is imperative to include the ionization 108 

chambers in the model of a PBS nozzle as proton interactions with the chambers can result in wide-109 

angle scatter.  110 

Finally, the beam passes through the snout, which can be used to hold a patient-specific aperture. 111 

Each of the different snout sizes available in the clinic which were previously modeled in the Monte 112 

Carlo for the DS system (Paganetti et al., 2004) can also be included in the PBS simulation code. In 113 



the design of the treatment head it was suspected that there may be clinical PBS cases in which 114 

patient-specific apertures or compensators are required (Kooy et al., 2010). Examples of such cases 115 

would include treatments of tumors located in close proximity to critical structures (e.g. spinal 116 

column) where an aperture or range compensator could be used to sharpen the lateral or distal 117 

penumbrae respectively. The Monte Carlo code also has the capability of including these patient-118 

specific devices. 119 

2.1.2. Definition of the proton phase space at treatment head entrance. It has been shown previously 120 

that the phase space at nozzle entrance can be modeled using four parameters (energy, energy spread, 121 

geometrical sigma, and angular spread) and that these parameters can be treated independently for DS 122 

delivery simulations (Paganetti et al., 2004). It was also shown that the beam delivery was insensitive 123 

to small variations in these parameters. However, PBS delivery can be expected to be more sensitive 124 

due to the lack of a scattering system. In this work, Twiss parameters are used in the Monte Carlo to 125 

govern the emission of protons at nozzle entrance. The Twiss parameters (α, β, γ) are calculated from 126 

a solution to the first order equation of motion. For an equation of the form 127 
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The Twiss parameters govern the position and angular deviation of the protons generated in the Monte 135 

Carlo simulations. The emittance is given by 136 

( ) ( ) ( ) 22 ''2 xsxxss βαγε ++=      (5) 137 

and thus it is related to the area covered by the x, x’ phase space ellipse shown in figure 2. Gaussian 138 

distributions ( εβσ = ) are assumed for the position and angular deviation.  139 

 140 

 141 

Figure 2: A two-dimensional ellipse of area πε based on the Twiss parameters α, β and γ. 142 

The Twiss parameters incorporated into the Monte Carlo code are functions of range, R (g/cm2), and 143 

vary quadratically in a drift space.  The variation in range arises from the increased lateral scattering 144 

as the proton energy (and momentum) is decreased. Additionally, lower energy beams have a wider 145 

momentum distribution, due to increased range straggling.  146 

Initial values of the Twiss parameters were obtained from a transport calculation on the clinical 147 

beamline (Rohrer, 2007, Brown et al., 1980). Manual optimization of width of the Gausssian 148 

distributions of position and angular distribution was performed such that the spot size obtained at 149 

isocenter in air in simulations of different proton beam energies matched the results obtained from 150 



measurements at the clinical PBS system at MGH using a Wellhofer MatriXX detector (IBA 151 

Dosimetry).  152 

The Twiss parameters (α,β,γ) together with the emittance (ε) describe the beam trajectory at the 153 

nozzle entrance. The initial energy of the proton is defined by the range required (specified in input 154 

file from TPS) and the calculated initial energy spread distribution at nozzle entrance. 155 

2.1.3. Geant4 physics models. The different physics models available in the Geant4 toolkit were 156 

compared in a previous study by Zacharatou Jarlskog and Paganetti (Zacharatou Jarlskog and 157 

Paganetti, 2008a) with the aim of finding the best models for use in Monte Carlo simulations of PT. 158 

The results of this previous study dictated the physics models used in the PBS Monte Carlo code.  159 

To model the electromagnetic interactions, the G4EmStandard (Agostinelli et al., 2003) model was 160 

used. This model governs the interactions of photons and all charged particles which have energy 161 

greater than 1keV. The Bethe-Bloch equation is used for specifying the energy loss of hadrons of 162 

energy greater than 2MeV. Inelastic hadronic interactions were modeled using a binary cascade 163 

(G4BinaryCascadeFolger et al., 2004) whilst the particle energy of is greater than 100MeV. Once the 164 

energy of the particle falls below 100MeV, the precompound model (G4PreCompoundModel) is 165 

invoked. Elastic interactions are governed by the UHElastic model (Ivanchenko, 2006). 166 

The DS code previously developed by Paganetti et al (Paganetti et al., 2004) has been shown to 167 

predict absolute doses in water within an accuracy of 1.5% compared to ionization chamber 168 

measurements (Paganetti, 2006). Since we have used the same physics models for the Monte Carlo 169 

simulations in this study, one could expect comparable agreement using the PBS code for absolute 170 

doses. The comparisons performed in this study only considered relative doses, which may lead to 171 

better agreement than 1.5%. 172 

In terms of secondary radiation, extensive validation of the nuclear models used in the Monte Carlo 173 

has been previously undertaken through comparisons with Faraday cup measurements (Zacharatou 174 

Jarlskog and Paganetti, 2008a). Direct comparison of the Monte Carlo doses with ionization chamber 175 



measurements external to the primary field in proton therapy demonstrated the suitability of the 176 

chosen physics models for simulation of out-of-field doses in PT  (Clasie et al., 2009). 177 

2.2. Calibration and validation of PBS Monte Carlo code 178 

Depth dose curves were measured using a plane-parallel chamber with an entrance window of 179 

diameter 84mm (PTW Freiburg GmbH). The depth dose curves were measured in a water tank for 180 

proton pencil beams at five different ranges, 8.92g/cm2, 12.64g/cm2, 15.92g/cm2, 21.1g/cm2 and 181 

25.15g/cm2. The energy spread of the beam at nozzle entrance was determined by minimizing the χ2 182 

of the Monte Carlo results against experimental data for different energies over the range of 183 

therapeutic energies deliverable at MGH. Combining the specification of the energy distribution at 184 

nozzle entrance with the Twiss parameters allows the specification of all properties of the proton 185 

beam required for Monte Carlo simulations. 186 

The lateral deviation of the proton beam from the central axis is directly related to the strength of the 187 

magnetic field in the scanning magnets. The script used to convert lateral position to scanning magnet 188 

field strength in the Monte Carlo code was verified to ensure that the lateral spot position observed in 189 

simulations matched the position prescribed by the input file within 1mm at five different ranges, 190 

8.92g/cm2, 12.64g/cm2, 15.92g/cm2, 21.1g/cm2 and 25.15g/cm2. 191 

The simulation of a complex two-dimensional test pattern was compared to measurements using a 192 

Beam Imaging System (BIS) (Ion Beam Applications Dosimetry) at isocenter in air. The BIS uses a 193 

30cm x 30cm scintillator and a CCD camera to capture the image. The energy deposition in the Monte 194 

Carlo simulation was obtained at isocenter in air using a 30cm x 30cm x 0.2cm volume of water with 195 

the front face placed at isocenter and the maximum step size restricted to 0.02mm. The lateral voxel 196 

size used in both the Monte Carlo simulation and experimental measurement was 0.73mm x 0.73mm. 197 

Monte Carlo simulations and experimental measurement where compared via gamma analysis (Low 198 

et al., 1998. The scanning pattern used in this comparison validates all aspects of the Monte Carlo 199 



simulations (other than range), by combining position, spot size and dose delivery checks into a single 200 

field.  201 

Table 1 shows the different parameters considered in the PBS Monte Carlo code and the method of 202 

calibration and/or validation.  203 

Table 1: Methods of calibration and validation of the different aspects of the PBS Monte Carlo 204 

code used in this study. (MC = Monte Carlo, BIS = Beam Imaging System) 205 

Parameter Configured and validated by 

Proton range Depth dose curves in water tank 

 

Energy spread at nozzle entrance Minimizing χ2 of MC results against 
experimental measurement in water tank 

 

Scanning magnet field strength Measurement of lateral spot positions for 
different ranges using the BIS 

Complex 2D irradiation 

 

Spot size Calibration of Twiss parameters (α,β,γ) 

Complex 2D irradiation 

 206 

 207 

2.3. Monte Carlo simulations of clinical prostate field 208 

A prostate field was chosen because of the typically large range used in these treatments. The lateral 209 

field size is defined in DS as the area contained within the projection of the patient-specific aperture 210 

upon the phantom. The PBS field was generated to match the lateral dimensions of the DS field. The 211 

PBS field had a range (R90) of 22.8g/cm2, a modulation (M90-90) of 10.4g/cm2 and a lateral field size of 212 

45.2cm2.  213 



All simulations of the clinical prostate field were performed in two separate parts. In the first step, the 214 

primary protons (and secondary particles) were transported through the treatment head (either DS or 215 

PBS), resulting in the generation of a phase space file at nozzle exit which contained the energy, 216 

position and direction of all particles which exited the treatment head. The properties phase space files 217 

were then used to define the initial conditions of the second step which transported the particles from 218 

nozzle exit into the phantom. The maximum step size was restricted to 0.2mm for all particles in the 219 

phantom. Using the phase space allowed the field to be simulated upon the phantom multiple times 220 

whilst requiring calculation of the particle transport through the treatment head only once, thereby 221 

making the simulation process more time efficient. Each full simulation (treatment head and phantom) 222 

took approximately 5 days to complete. This long simulation time was required to achieve acceptable 223 

statistics in the scoring volumes distal to and at large lateral distances from the primary field. 224 

In addition to conventional PBS, the aperture used in the DS simulations was placed at nozzle exit for 225 

a series of PBS simulations. The primary fields were incident upon a Lucite phantom of size 90cm x 226 

26cm x 37.76cm in all the simulations for all delivery techniques.  227 

In addition to scoring volumes along the central axis, distances from the lateral field edge of 2.5cm, 228 

5cm, 7.5cm, 10cm, 15cm, 20cm, 30cm, 40cm and 50cm were considered at depths of 4.72cm, 229 

9.44cm, 14.16cm, 18.88cm, 23.6cm, 28.32cm and 33.04cm in Lucite. To increase statistics, larger 230 

volumes were used out-of-field where the dose gradient is not as steep. The volume sizes varied based 231 

on the lateral distance (x) from the field edge. The sizes used were 3.8 x 3.8 x 1.1 mm3 (x < 5cm), 7.6 232 

x 7.6 x 1.1 mm3 (5cm < x < 20cm) and 15 x 15 x 1.1 mm3 (x > 20cm) (see figure 3). A similar 233 

methodology was adopted in the previous work of Clasie et al (2009).  234 

 235 



 236 

Figure 3: Diagram of the scoring volume positions simulated. The black rectangles show the 237 

position, orientation and relative size of the detector volumes. The size of the scoring volumes 238 

used varied based on the distance from the field edge (x) and were 1.1 x 3.8 x 3.8 mm3 (x < 5cm), 239 

1.1 x 7.6 x 7.6 mm3 (5cm < x < 20cm) and 1.1 x 15 x 15 mm3 (x > 20cm). The detectors at the 240 

phantom entrance and along the central axis were rotated by 90o so the majority of particles 241 

passed through the largest face of the scoring volumes. The colored area shows the section of the 242 

phantom irradiated by the primary field and a depth-dose curve demonstrates the modulation 243 

width of the SOBP. 244 

The absorbed dose was obtained in each of the scoring volumes and separated based on particle type. 245 

This allowed application of particle specific weighting factors for low dose radiations. The absorbed 246 

dose due to protons (Dp), neutrons (Dn) and photons (Dγ) was tallied separately. Neutron energy 247 

spectra were also collected in 1MeV bins during the Monte Carlo simulations which allowed 248 

calculation of the average radiation weighting factor, wR, based on the ICRP definition (ICRP 2003).  249 

The average neutron weighting factors were then used to convert the absorbed dose (D) to equivalent 250 

dose (H) using equation 6. Photons are given a factor of 1, whilst protons are assigned a factor of 2 to 251 

account for secondary particles which deposit dose locally such as δ-electrons and charged nuclear 252 

fragments (ICRP, 2003). 253 

γDDwDH nRp ++= 2     (6) 254 

 255 



3. Results 256 

3.1. Monte Carlo calibration and validation 257 

3.1.1. Depth dose characteristics. Depth dose curves were measured using a plane-parallel chamber 258 

with an entrance window of diameter 84mm (PTW Freiburg GmbH) in a water tank for proton pencil 259 

beams of range, 8.92g/cm2, 12.64g/cm2, 15.92g/cm2, 21.1g/cm2 and 25.15g/cm2 (see figure 4). The 260 

dose was scored in the Monte Carlo using cylindrical voxels of diameter 84mm and thickness 0.2mm 261 

to give high depth resolution and to match the lateral dimensions of the plane-parallel chamber. The 262 

results shown in figure 4 are the mean of 10 independent simulations which each cycled through their 263 

respective phase space files 5 times (total ~34 million particles transported into the phantom in each 264 

simulation). The uncertainty in the depth-dose curves was defined as the standard deviation of the 10 265 

simulations and is less than 1% at all depths for all simulations. Emphasis was placed on taking 266 

measurements close to the Bragg peak and on the distal edge for range verification and calibration of 267 

the initial energy spread at nozzle entrance. The initial energy spread (∆E) in terms of proton energy 268 

(E) was determined by comparigin experimental and simulated pristine Bragg curves and is given in 269 

equation 7. 270 

( ) 60.2021.0107.4% 25 +−×=
∆ − EE
E
E

    (7) 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 



 279 

Figure 4: Depth dose curves for (a) 8.92g/cm2, (b) 12.64g/cm2, (c) 15.92g/cm2, (d) 21.1g/cm2 and 280 

(e) 25.15g/cm2. The solid line is the Monte Carlo data and the squares represent experimental 281 

data points. The uncertainty in the Monte Carlo is <1% at all points.  282 

 283 

The results of the depth dose curves demonstrate good agreement between the measurement and 284 

simulation data.  285 

3.1.2. Scanning magnet field strength. The magnetic field calibration was performed for beams of 286 

range 8.92g/cm2, 12.64g/cm2, 15.92g/cm2, 21.1g/cm2 and 25.15g/cm2. These ranges correspond to 287 

nominal energies of 95.69MeV, 112.53MeV, 138.08MeV, 156.67MeV and 174.74MeV at nozzle 288 

entrance for the MGH PBS system, respectively. Five distinct spots were irradiated for each of the 289 

energies at different lateral positions (Figure 5). The results shown in Figure 5 are averages of 10 290 



independent simulations, each containing ~34 million primary protons. The results shown in Figure 5 291 

are a superposition of the 5 spots for the 5 different energies considered (i.e. total of 25 spots). The 292 

lateral spot positions in the Monte Carlo matched those measured using the BIS within 1mm for each 293 

considered energy, demonstrating that the conversion of lateral position to magnetic field strength 294 

varies correctly with proton energy (and hence range).  295 

 296 

Figure 5: Calibration of magnetic fields to control lateral position of the proton beam in the 297 

Monte Carlo simulations. The units on the color scale are relative to the maximum observed 298 

value. The data in the figure contains the 5 considered ranges (8.92g/cm2, 12.64g/cm2, 299 

15.92g/cm2, 21.1g/cm2 and 25.15g/cm2).  300 

3.1.3. Complex two-dimensional irradiation. Figure 6 shows the results of the Monte Carlo simulation 301 

(a) and experimental delivery (b) of the test pattern. 302 



 303 

Figure 6: Simulated (a) and measured (b) complex 2 dimensional irradiation containing areas of 304 

variable dose, continuous scanning and spot scanning. 305 

The Monte Carlo simulation plot is an average of 10 independent simulations, each containing ~34 306 

million primary protons. The uncertainty in the Monte Carlo data was less than 1% at all points 307 

considered. The dose was normalized to the maximum dose observed in both the simulated and 308 

experimental data. Relative doses were used rather than absolute as the BIS is not capable of 309 

measuring absolute dose. The simulated and measured results were compared via gamma analysis 310 

(Low et al., 1998), with 100% of the points passing the 2mm/2% criteria. 311 

 312 

3.2. The impact of apertures in beam scanning on the example of a prostate treatment field 313 

3.2.1. Doses at depths proximal to the SOBP. At a depth of 4.72cm in Lucite, the absorbed dose at 314 

2.5cm out-of-field was found to be approximately 3 times higher for PBS than DS. The reason lies in 315 

the relatively large spot size used in PBS at the MGH (~12mm at isocenter). At a depth of 9.44cm, DS 316 

shows close to 5 times higher doses than PBS. The latter is caused by secondary doses created in the 317 

aperture when using DS. 318 

Including an aperture at nozzle exit reduces the penumbral width by preventing wide-angle scatter 319 

from reaching the phantom (or patient). At larger lateral distances from the field edge, the difference 320 



in the doses between the considered delivery techniques increases. The absorbed dose from PBS with 321 

an aperture is an order of magnitude lower than for the other techniques at 2.5cm from the field edge 322 

at a depth of 4.72cm in water (see figure 7). For lateral distances less than 10cm from the field edge in 323 

PBS, primary protons dominate the total equivalent dose. At greater lateral distances, the contribution 324 

of scattered primary protons is not significant and the absorbed dose from PBS becomes less than DS. 325 

As the absorbed dose at lateral distances from the field edge greater than 20cm is dominated by 326 

internally produced secondary particles, the benefit of using an aperture is somewhat diminished in 327 

such regions. 328 

 329 

Figure 7: Simulated absorbed dose (a) and equivalent dose (b) at different lateral distances from 330 

the field edge at entrance depth of 4.72cm. The doses are relative to the absorbed dose delivered 331 

in the SOBP. The data shown is for the double scattering (squares), pencil beam scanning 332 

(circles) and pencil beam scanning with an aperture (triangles). The error bars represent two 333 

standard deviations. 334 

 335 

3.2.2. Doses at depths corresponding to the SOBP. Figure 8 shows the absorbed dose and equivalent 336 

dose at a depth of 18.88cm. The absorbed dose close to the field edge is again clearly higher in PBS 337 

than the other considered delivery techniques. The absorbed dose from DS is higher than PBS at all 338 

lateral distances greater than 10cm from the field edge.  339 



 340 

Figure 8: Simulated absorbed dose (a) and equivalent dose (b) for the double scattering 341 

(squares), pencil beam scanning (circles) and pencil beam scanning with an aperture (triangles) 342 

at a depth of 18.88cm. The doses are relative to the dose delivered in the SOBP. The error bars 343 

represent two standard deviations. 344 

Using an aperture significantly reduces the absorbed dose from PBS for lateral distances up to 20cm 345 

from the field edge at depths within in the SOBP. At 2.5cm from the field edge, the absorbed dose is 346 

reduced by more than an order of magnitude when the aperture is used. For larger distances, the 347 

benefit of an aperture is not as pronounced due to the higher contribution of internally produced 348 

secondary and scattered particles to the total dose.  349 

The equivalent dose curves agree within the uncertainty limits for the PBS and PBS with an aperture 350 

data for lateral distances greater than 20cm. The higher equivalent dose values observed for the DS 351 

data highlights the significant contribution of neutrons generated in the treatment head (in particular 352 

the aperture) for this delivery technique. The equivalent dose from DS is significantly higher than all 353 

other techniques for all lateral distances greater than 5cm from the field edge. Note that when using an 354 

aperture in PBS only a small portion of the field is restricted by the aperture while in DS typically the 355 

majority of the incident proton therapy field will be blocked by the aperture. 356 

3.2.3. Doses at depths distal to the SOBP. The contribution of primary protons to the total absorbed 357 

dose and equivalent dose distal to the SOBP is zero due to their finite range. The absorbed dose and 358 



equivalent dose values obtained distal to the SOBP (see figure 9) is entirely due to secondary 359 

particles. The higher doses observed distal to the SOBP in DS are due to the higher number of 360 

secondary particles generated in the treatment head compared to the other delivery techniques. As the 361 

depth in the phantom increases, the relative contribution from internally generated secondary particles 362 

to the total dose increases. The increased neutron fluence from DS contributes to a higher neutron 363 

absorbed dose and equivalent dose compared to the other considered techniques. The increased 364 

number of secondary particles, especially neutrons, incident upon the phantom in DS leads to an 365 

increased production of secondary particles, the effect of which can still be observed distal to the 366 

SOBP.  367 

 368 

Figure 9: Simulated absorbed dose (a) and equivalent dose (b) for the double scattering 369 

(squares), pencil beam scanning (circles) and scanning with an aperture (triangles) at a depth of 370 

28.32cm. The dose values are relative to the dose delivered in the SOBP. The error bars 371 

represent two standard deviations. 372 

 373 

4. Discussion and Conclusion 374 

Placing a patient-specific aperture at nozzle exit reduces the out-of-field doses from PBS. Proton 375 

interactions occurring in the brass of the aperture lead to a higher neutron fluence compared to PBS 376 

with no aperture. The neutron component of the total dose out-of-field increases when using an 377 



aperture in PBS, however the total doses are still reduced. The reduction in the dose from primary 378 

protons, due to the large angle scatter not reaching the phantom leads to a reduction in the total 379 

absorbed dose and equivalent dose when an aperture is placed at nozzle exit. The number of proton 380 

interactions in the aperture is much lower in PBS than in DS. In DS, a large proportion of the primary 381 

beam interacts with the aperture, leading to a high neutron and secondary particle fluence. In PBS, a 382 

comparatively small amount of interactions occur in the aperture, as the majority of the primary 383 

protons pass through the aperture without undergoing an interaction. The aperture only interacts with 384 

particles which have been scattered through large angles.  385 

The benefit of incorporating an aperture in PBS is diminished distal to the SOBP. Some benefit can 386 

still be observed distal to the SOBP, demonstrated by the reduced absorbed doses and equivalent 387 

doses in this region compared to PBS with no aperture. The reduction in the penumbral width reduces 388 

the proton fluence and dose lateral to the primary field in PBS. This reduction in proton fluence leads 389 

to a decrease in secondary particle production, the effect of which can be seen in the lower out-of-390 

field doses throughout the phantom compared to PBS with no aperture. 391 

One of the reasons for moving to PBS in preference to DS is the removal of the dependency upon 392 

patient-specific hardware, which adds to the cost of operating a clinical proton facility. However, one 393 

of the issues with scanning is the wider penumbra when the pencil beam width is large and/or the 394 

proton energy is small, which is demonstrated in the simulation results presented here. The use of a 395 

patient-specific aperture may be required to decrease the penumbral width for certain clinical cases, 396 

but the other advantages of PBS compared to DS will still be largely maintained. The results of the 397 

simulations in this work show that using an aperture can potentially reduce the absorbed dose and 398 

equivalent dose lateral to the primary field in PBS by an order of magnitude. 399 
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