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The importance of scattering, surface potential, and vanguard
counter-potential in terahertz emission from gallium arsenide

D. L. Cortiea) and R. A. Lewisb)

Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong,
New South Wales 2522, Australia

(Received 27 April 2012; accepted 9 June 2012; published online 25 June 2012)

It is well established that under excitation by short (<1 ps), above-band-gap optical pulses,

semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier

diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our

three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary

over wide ranges and provide unique direct insight into the factors controlling terahertz emission.

We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We

further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of

varying dielectric constant, band-gap, and effective mass are similar in both emitter types. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4730954]

The generation, detection, and utilization of terahertz-

frequency electromagnetic radiation has burgeoned this last

decade, as seen in the publication of recent reviews1–3 and

books.4–9 A key development has been time-domain spec-

troscopy, which relies on the coherent detection of ultrashort

pulses of terahertz radiation.10 This in turn has spurred a

renewed interest in the mechanisms by which terahertz

pulses are produced. Transient current flow at a semiconduc-

tor surface is one principal mechanism.11–14

Critical insights into terahertz radiation from semicon-

ductor surfaces come from Monte Carlo simulations.15–26

Johnston et al. established that in-built surface depletion

field and photo-Dember emitters may be distinguished,15

that magnetic fields increase emission by re-orientating

rather than strengthening the radiating dipole,15,16 and that

power-limiting mechanisms in photoconductive switches

depend on pump pulse length.17 Malevich highlighted the

roles of the cold and hot carriers18 and of the pump photon

energy.19 Liu and co-workers reported the effect of large

electric fields,20 the contrasting behaviors of InSb and

InAs,21 as well as the dependence of emission on pump pho-

ton energy.22 Reklaitis modeled emission from GaAs p–i–n
structures23 and bulk InAs (Ref. 25), proposed d-doped het-

erostructures as superior emitters,24 and found that the cross-

over from surface field to photo-Dember emission depends

on pump photon energy.26

The previous work attempts in the main to reproduce

extant experimental results. Here we extend the project. To

determine the path to better emitters, we vary parameters in

ways experimentally difficult. We first investigated the effect

of many parameters on emission from InAs.27 We now turn

from that diffusion-dominated narrow-gap case to the

drift-dominated wide-gap case of GaAs to determine which

physical parameters most strongly influence the emission of

terahertz radiation.

Our method has been set out in detail previously.27 It

follows the usual, well-documented Monte Carlo

approach28–30 as applied to the problem of terahertz genera-

tion at semiconductor surfaces.15–21 The GaAs materials pa-

rameters we adopt are set out in Table I. Our calculated

scattering rates for several scattering mechanisms are given

in Fig. 1. As for InAs (see Fig. 1 of Ref. 27), polar optical

phonon scattering is the main scattering mechanism in the

relevant energy range for surface-accelerated electrons. The

effect of scattering on the terahertz emission is given in Fig.

2. It is seen that the inclusion of optical polar scattering has a

dramatic effect on the terahertz emission. The terahertz field

is reduced to approximately two-thirds of its value without

scattering. This corresponds to the terahertz amplitude being

approximately half that of the fictional idealized case of no

scattering. In this respect, GaAs differs significantly from

InAs, in which transport may be considered to be almost col-

lisionless on ps timescales.27 However, as for InAs, the addi-

tional mechanisms of carrier-carrier, intervalley, and

impurity scattering play little role (Fig. 2). So means to

reduce optical polar scattering, such as lower temperature,

TABLE I. GaAs physical parameters used in the model. These are identical

to Ref. 15, with the speed of sound added.

Parameter Value

Doping density, n ¼ ni ¼ pi (m�3) 2� 1021

Bandgap, Eg (eV) 1.5

Low-frequency dielectric constant, �ð0Þ=�0 12.95

High-frequency dielectric constant, �ð1Þ=�0 10.9

Effective electron mass in C valley, me=m0 0.067

Effective hole mass, mh=m0 0.5

Effective electron mass in L valley, me=m0 0.35

L–C valley energy offset, EL�C (eV) 0.29

Mass density, q (kg m�3) 5360

Photon absorption coefficient, a (m�1) 1.2� 106

LO phonon energy, �hxLO (eV) 0.035

Speed of sound, (100) direction, vs (m/s) 4739

Deformation potential, DLC ¼ DtK (eV/m) 0.6� 1010

Laser photon energy, Ephoton (eV) 1.55

a)Present address: The Bragg Institute, Australian Nuclear Science and Tech-

nology Organisation, Lucas Heights, New South Wales 2234, Australia.
b)Electronic mail: roger@uow.edu.au. URL: http://uow.edu.au/�roger.

0003-6951/2012/100(26)/261601/3/$30.00 VC 2012 American Institute of Physics100, 261601-1
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would be efficacious in GaAs terahertz emitters but not in

InAs. The vertical scale of Fig. 2 (and of all subsequent fig-

ures) is normalized to the case of InAs under identical exci-

tation. The terahertz field is approximately ten times less

from GaAs (and so the field amplitude approximately 100

times less) than from InAs. The width is about double and so

the terahertz bandwidth about half.

The effect of varying the dark surface potential is given

in Fig. 3. A large surface potential of either polarity results

in a large terahertz field; the polarity of the field reflects the

polarity of the potential, as the dominant mechanism of

charge carrier transport is drift induced by the surface field.

Even so, the effect of diffusion (the photo-Dember effect)

cannot be dismissed entirely. It may be noted that the mini-

mum in terahertz field does not occur at exactly zero surface

potential but at approximately þ0.2 V. It may also be noted

that at positive surface potentials, for example, at þ1 V, the

terahertz field is less than at the corresponding negative sur-

face potential, in this case �1 V. This asymmetry is related

to the interplay between the drift and diffusion mechanisms.

For negative surface potentials, the two effects add, and a

stronger emission results. For positive surface potentials, the

diffusion mechanism is in competition with the drift mecha-

nism, and a weaker emission results. These effects are in

stark contrast to the case of InAs, where varying the surface

potential over the same range has very little effect on tera-

hertz output (see Fig. 5 of Ref. 27), as might be expected for

a narrow-gap semiconductor.

The role of the pump laser pulse length is given in Fig.

4. As for InAs, reducing the pulse width increases the emis-

sion. (In contrast, reducing the pulse width below 40 fs in

GaAs photoconductive switches was found to diminish the

terahertz emission.17) Due to the smaller absorption coeffi-

cient, the effect of the vanguard counter-potential is not as

strong as in InAs.27 The Dember effect is reduced, so a lower

proportion of electrons escape the surface region to form the

counter-potential on these time scales. Artificially increasing

the absorption coefficient (inset to Fig. 4) shows an enhance-

ment, as is expected.

FIG. 1. Calculated electron scattering rates in GaAs as a function of

electron kinetic energy. (a) Polar optical phonon emission. (b) Polar optical

phonon absorption. (c) Upper limit for carrier-carrier scattering. (d) Ionized-

impurity scattering. (e) Intervalley scattering.

FIG. 2. The major role played by polar optical phonon scattering in reduc-

ing terahertz emission from GaAs. The full curve represents the electrody-

namic simulation without scattering. The dotted curve includes only

polar optical phonon scattering. This reduces the peak terahertz field by

approximately one third. Little further change results when carrier-carrier,

intervalley, and ionized-impurity scattering are included in the simulation,

represented by the dashed curve.

FIG. 3. The effect of surface potential on terahertz emission from GaAs.

Red (black) traces correspond to positive (negative) potentials. A positive

(negative) potential attracts (repels) electrons to (from) the surface to form

an electron accumulation (depletion) layer, or downward (upward) conduc-

tion band bending. At large potentials of opposite polarities, the sign of the

terahertz field is reversed. There is a slight asymmetry; negative potentials

assist the photo-Dember effect whereas positive potentials compete with it.

FIG. 4. Role of laser pulse length on terahertz radiation from GaAs. (Inset)

The peak-to-peak intensity for usual photon absorption coefficient

(1.2� 106 m�1; triangles) and a large absorption coefficient (10� 106 m�1;

circles).
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In practice, it is not simple to systematically vary the

absorption coefficient, bandgap, or the effective mass, but we

have calculated these effects (Fig. 5). We find as the absorp-

tion coefficient increases, so does the terahertz emission, as

expected. The effect begins to saturate for longer pulses, a con-

sequence of the vanguard counter-potential. As the bandgap is

reduced, terahertz emission is increased. This is a consequence

of more energy being available from the pump photons after

producing the photoelectron-hole pair and this energy excess is

taken up in the photocarrier motion. As the effective mass is

reduced, the terahertz emission is increased. This is directly

related to the increase in differential carrier mobility.

In summary, our study has identified the distinctive

character of terahertz emission from GaAs, which is

delineated against the background InAs, the subject of previ-

ous study.27 First, the terahertz field generated from GaAs

is an order of magnitude less than from InAs. Second, it is

strongly reduced by polar optical phonon scattering, which is

not the case with InAs (Fig. 2). Improved performance from

GaAs could be realized by reducing this main scattering

source, for example, by cooling the GaAs, while less advant-

age would be gained in InAs. Third, in direct contrast to

InAs, the surface field plays a central role in the terahertz

emission from GaAs (Fig. 3). Increasing the surface field

greatly assists terahertz emission, more so if the potential is

negative than positive, as then the potential works with,

rather than against, the photo-Dember effect. Hence, surface

field engineering has greater scope to improve further the

emission from GaAs than from InAs. Fourth, the vanguard

counter-potential, though present, is weaker than in the case

of InAs. Hence the advantage of using ultrashort pump

pulses is not so great for GaAs. It follows that simpler and

less expensive sources of longer laser pulses, for example,

fiber lasers rather than Ti:sapphire lasers, are relatively better

suited to pumping GaAs than InAs.

This work was supported by the Australian Research

Council, the University of Wollongong, and the Chinese
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