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Evaluation of Silicon Detectors With Integrated
JFET for Biomedical Applications

M. Safavi-Naeini, Student Member, IEEE, D. R. Franklin, Member, IEEE, M. L. F. Lerch, Member, IEEE,
M. Petasecca, Member, IEEE, G. U. Pignatel, Member, IEEE, M. Reinhard, Member, IEEE,
G.-F. Dalla Betta, Senior Member, IEEE, N. Zorzi, and A. B. Rosenfeld, Senior Member, IEEE

Abstract—This paper presents initial results from electrical,
spectroscopic and ion beam induced charge (IBIC) characterisa-
tion of a novel silicon PIN detector, featuring an on-chip n-channel
JFET and matched feedback capacitor integrated on its p-side
(frontside). This structure reduces electronic noise by minimising
stray capacitance and enables highly efficient optical coupling be-
tween the detector back-side and scintillator, providing a fill factor
of close to 100%. The detector is specifically designed for use in
high resolution gamma cameras, where a pixellated scintillator
crystal is directly coupled to an array of silicon photodetectors.
The on-chip JFET is matched with the photodiode capacitance and
forms the input stage of an external charge sensitive preamplifier
(CSA). The integrated monolithic feedback capacitor eliminates
the need for an external feedback capacitor in the external elec-
tronic readout circuit, improving the system performance by
eliminating uncontrolled parasitic capacitances. An optimised
noise figure of 152 electrons RMS was obtained with a shaping
time of 2 us and a total detector capacitance of 2pF. The energy
resolution obtained at room temperature (21°C) at 27 keV (direct
interaction of I-125 gamma rays) was 5.09%, measured at full
width at half maximum (FWHM). The effectiveness of the guard
ring in minimising the detector leakage current and its influence
on the total charge collection volume is clearly demonstrated by
the IBIC images.

I. INTRODUCTION

OISE is one of the fundamental limiting factors in the
N performance of radiation detectors. In order to achieve
the best possible energy and timing resolution, it is essential
to eliminate as much noise as possible. Modern solid-state ra-
diation detectors and their associated readout electronics can
now be fabricated on a common high-resistivity silicon substrate
using a single manufacturing process [1]. This results in a re-
duction in the electronic noise, since the parasitic capacitance
associated with preamplifier-detector connection is minimised.
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Furthermore, it reduces the need for shielding against capaci-
tively-coupled pickup noise [1] and simplifies the circuit process
assembly [2], [3]. However, these benefits must be traded off
against the increased complexity (and potentially cost) of fab-
rication. Therefore, the monolithic approach is normally only
worth pursuing for detectors with a very low capacitance, such
as pixel detectors and silicon drift chambers [4], [5].

Silicon PIN detectors are normally coupled to a charge-sensi-
tive preamplifier circuit. In a standard detector preamplification
configuration, this takes the form of a low-noise junction field-
effect transistor (JFET) coupled to a specialised charge-sensi-
tive operational amplifier such as the Amptek A250 with a ca-
pacitive feedback network. The idea of fabricating this JFET on
high-resistivity silicon utilising detector-compatible processes
dates back to the late 1980s. Early works by Radeka et al. [2]
and Holland e al. [6] resulted in successful implementation of
Single Sided JFETs (SSJFETs) using the same technological
steps needed for producing Charge Coupled Devices (CCDs)
[7]. Another example of a detector with embedded electronics
(a Depleted Field Effect Transistor (DEPFET)) was proposed
by Kemmer and Lutz and successfully fabricated [8], [1].

The detectors used in this paper are the result of ten years
of research and development undertaken at FBK-irst (Trento,
Italy) [9]. The results of experimental characterisation of these
detectors, a selection of which are presented in this paper, will be
used in the further development and enhancement of the devices
and in the development of applications based on the device.

II. DEVICE DESCRIPTION

The three-dimensional structure of the PIN and JFET detector
is shown in Fig. 1, while Fig. 2 shows the layout of the mono-
lithic circuit elements on the detector frontside. The device in-
cludes a PIN diode detector with a p™ implantation on the top
side of the chip (with an area of approximately of 2 x 0.4 mm?),
coupled to an integrated n-channel JFET.

The JFET is a based on a double-gate (tetrode) structure and is
fabricated on high resistivity (6 k{2cm) 300 zzm n-type substrate
[10]. The JFET has radial symmetry and is realised by triple im-
plants on the top side of the chip. The conducting n-channel is
a phosphorus n-implantation, in which the drain, source (n™)
and top-gate (p™) implants are embedded in successive concen-
tric annular regions. Surrounding the n-channel is a p-well with
an annular p* implantation which forms the back gate region.

The PIN diode’s pt cathode, which collects the hole com-
ponent of the event signal, is directly coupled to the JFET top

0018-9499/$25.00 © 2009 IEEE
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Fig. 1. PIN+JFET detector: cross-section (not to scale).
Fig. 2. Layout of the PIN+JFET structure.
gate through a metal strip [11]. A phosphorus-doped poly-sil- 08 FT . T . T *
icon layer is present on the back-side to provide the nT substrate 07k Cigunded guard fing = 3 f |
ohmic contact. 7{*’
The JFET gate-source junction is forward biased and the 06 i i
drain current is stabilised by a low frequency feedback path to 05 A
. A
the JFET p™ well contact (which serves as a secondary or back 2 04l el 1
gate for the JFET). JFET channel conductivity is modulated by sl - |
the bias voltages applied to the top gate and the p-well/back ’
gate [11]. A 100 ym wide pt implanted guard ring surrounds 02r 1
the entire diode and JFET structure, collecting the leakage 0.1 .
current and shaping the electric field. Since the detector is e = . T L oS

intended for spectroscopic applications which will require it to
be coupled to a charge sensitive preamplifier (CSP), a feedback
MOS capacitor of approximately 0.2 pF is incorporated in the
device structure. The proximity of the feedback capacitor to
the JFET minimises stray capacitance due to external wiring
which would otherwise be needed [11]. A circular opening
on the diode metal layer (300 pum diameter) is also present
in the prototype samples and is used for evaluation of the
electro-optical properties of the device.

The p-well allows the channel to be depleted simultaneously
from both above and below, by applying the same negative
voltage to the top gate and p-well contacts. Furthermore, it
provides good confinement of the electrons flowing through the
channel from source to drain, due to the high potential barrier
existing at the channel-well junction [9].

Fig. 3. JFET V,s — I, transfer characteristics. The bottom gate is grounded
(0 V), the drain voltage is +5 V and the substrate was biased at 32 V.

III. ELECTRICAL CHARACTERISATION

The relation between V4 (the potential between the top-gate
and the source electrode) and drain-source current I is shown
in Fig. 3 (the drain voltage is held at 32 V and the p-well (back
gate) is grounded). The curve exhibits the quadratic behaviour
typical of field-effect transistors. The superficial component of
the 145, contributed by the leakage current is removed when the
guard ring is grounded.
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Fig. 4. Simplified schematic of the preamplifier circuit with the monolithic de-
vice replaced by an equivalent discrete-component model [11].
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Fig. 5. Equivalent Noise Charge (ENC) measured for different shaping time
constants. The fitted dotted lines show the parallel and series components of the
ENC.

Fig. 4 shows the complete preamplifier circuit, which utilises
a ‘double feedback’ configuration [11]. The cathode (which col-
lects the holes) is connected to the top-gate of the JFET, pro-
viding a path to the grounded source via the p-n gate-source
JFET junction. The drain is coupled to the input of an A250
charge-sensitive preamplifier, whose output is capacitively cou-
pled back to the top-gate of the JFET to complete the charge-in-
tegrating feedback loop. The resistive feedback path connecting
the output of the A250 to the back-gate (BG) stabilises the drain
current (1), which is strongly affected by variations in the qui-
escent leakage current [11].

A simplified schematic of the preamplifier circuit is shown in
Fig. 4, where the device is modelled by the discrete components
inside the dotted region.

A number of experiments were conducted to evaluate the
electrical characteristics of the new detector. Since noise in
semiconductor detectors is a major performance limitation, it is
necessary to evaluate those properties which contribute the most
to its noise performance [12], [13]. Equivalent noise charge
(ENC) is a measure of the electronic noise of the detector.
The two principal components of the ENC are leakage current
(modelled as a parallel-connected noise source), and the bulk
capacitance (modelled as a series-connected noise source) [14].

The asymptotic straight lines in Fig. 5 show the individual
contribution to the total noise from the series and parallel com-
ponents. Series noise is dominant for short shaping times, while
for long shaping times, the parallel component dominates. A
minimum ENC of 152 electron RMS is obtained with a shaping
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Fig. 6. Calibrated *2°1 spectrum obtained from the PIN diode detector biased
at 22 V with integrated JFET and capacitor. The frontside-illuminated gamma
spectra acquired at three different guard ring potentials are shown superimposed.
The best resolution was achieved when the guard ring is at zero volts.
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Fig. 7. Uncalibrated *2°1 spectrum obtained with at various guard ring bias
potentials. The progressive shift in the gain is due to the increase in the value
of monolithic feedback capacitance as the guard ring potential becomes more
positive.

time of 2 pus. This shaping time is therefore used for the spec-
troscopic characterisation in Section I'V.

IV. SPECTROSCOPIC CHARACTERISATION

The spectroscopic response of the detector to low energy
~y-rays via direct interaction was measured using an '2° source
(27.47 keV) at room temperature (21°C). The pulser noise
width was previously found to be 1.25 keV (4.55%, also at
27.47 keV) [15]. The resulting (calibrated) spectra are shown
in Fig. 6, with the guard ring potential set to —5 V, 0 V and
+5 V and the detector reverse biased at 22 V. The best energy
resolution achieved was 1.40 keV full width at half maximum
(FWHM) (or 5.09%) at 27.47 keV, which was obtained with a
grounded guard ring.

This is because the guard ring can only efficiently remove
surface leakage current when biased at the same potential as the
cathode. Therefore, when the guard ring is grounded, leakage
current (and noise) are minimised and energy resolution is max-
imised.

The same spectra are shown without calibration in Fig. 7. The
progressive right shift in the spectrum as the guard ring potential
becomes more positive shows that the gain of the charge-sensi-
tive preamplifier circuit has also increased. This is because the
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Fig. 8. IBIC images of the the photodetector biased at 10 V and 20 V. Black represents zero charge collection, while red, orange, yellow, green and blue in-
dicate areas with progressively greater levels of charge collection. The colourmap shows the charge calculated for each colour in coulomb. (a) Underdepleted
photodetector biased at 10 V-floating guard ring, (b) Underdepleted photodetector biased at 10 V-grounded guard ring, (c) Fully depleted photodetector biased at
20 V-floating guard ring, (d) Fully depleted photodetector biased at 20 V-grounded guard ring.

capacitance of the monolithic feedback capacitor Cr has effec-
tively decreased in value due to the modification of the deple-
tion under the p* region of the detector close to Cs, thereby
increasing gain (since the gain of a charge-sensitive amplifier is
proportional to 1/CY).

V. IBIC RESULTS

The charge collection pattern in the PIN/JFET detector struc-
ture was investigated using ion beam induced charge (IBIC)
imaging [16]. IBIC measurements were performed using the
Australian Nuclear Science and Technology (ANSTO) micro-
probe [17], where a 3 MeV He™t beam with a spot size of 12 ym
was scanned over the detector with a normal incident angle to
the detector frontside (cathode). A spectroscopic shaping ampli-
fier (CANBERRA 2025) was used for subsequent charge pulse
amplification. Spectroscopic calibration was performed using a

precision pulse generator and the low energy gamma peak from
an 24! Am source. The detector and its readout circuit was po-
sitioned in an evacuated chamber, reverse-biased at various po-
tentials between 0 and 50 V, and scanned in a 512 x 512 pixel
matrix.

Fig. 8 shows four IBIC images in which the detector was bi-
ased below and above the full depletion voltage and the guard
ring was either floating (Figs. 8(a) or (c)) or grounded (Figs. 8(b)
and (d)). The IBIC maps clearly show the effect of the guard
ring on the charge transport properties of the detector: when the
guard ring is grounded, no charge is collected around the edge
of the detector. The circular area visible within the p™ region is
caused by a fabricated gap in the aluminium metallisation, pro-
viding an optical window for electro-optical testing. The lack of
aluminium layer results in a higher deposited energy (dark blue)
in the photodetector.
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The square region in the upper right-hand corner of the de-
tector frontside (shown in Figs. 2 and 8) is the monolithic JFET.
The bonding pads (ohmic contacts) are visible as small dark re-
gions in the IBIC images due to their total lack of charge collec-
tion. As the bias voltage increases, the collected charge from the
area under the JFET (p-well) decreases, reaching zero at 20 V.
As shown in Fig. 1, the back gate contact (which is another p™
region) surrounds the JFET’s main electrodes. Therefore, the
back gate contact behaves as a pseudo-guard ring around the
JFET.

There are three separate P-N junctions in this device, each
of which should be considered in order to fully understand the
charge collection profile seen in the IBIC images. Specifically,
these are the junctions between the cathode and anode, the guard
ring and anode, and the pseudo-guard ring (p-well) and anode.
When the bias potential is less than that required for full deple-
tion, some of the electron hole pairs generated under the latter
two junctions are collected by the cathode/anode junction (dif-
fusion), and read out through the charge sensitive preamplifier
circuitry. This is clearly seen across the partly illuminated JFET
structure in Figs. 8(a) and (b): charge collection is greatest at
the corner of the JFET which is closest to the p* detector re-
gion (the upper-left corner of the square area), and zero at the
opposite corner.

As the bias potential increases, all three p-n junctions ap-
proach full depletion. Therefore, the electron-hole pairs which
are generated within the substrate drift to the closest respec-
tive p* regions, and only those collected by the p* detector re-
gion are read out by the charge sensitive preamplifier. This lack
of collected charge from underneath the JFET region is seen
in Figs. 8(c) and (d), where the square area corresponding to
the JFET is uniformly black. However, since the detector is de-
signed to be illuminated from the backside, this apparent dead
region will not significantly impede the collection of charge car-
riers at the detector frontside.

VI. CONCLUSION

The PIN photodiode with monolithic n-type JFET and MOS
capacitor presented in this paper is a scalable design which is
ideally suited for use in both low energy X-ray and high energy
gamma-ray imaging (the latter requiring the device to be used
in conjunction with a scintillator crystal).

The integration of a JFET and monolithic capacitor results in
an excellent low energy gamma resolution, mainly due to the re-
duction of the electronic noise. The IBIC images show a uniform
charge collection in the pT detector region, while grounding
the guard ring removes the collected charge around the detector
edge. The noise level of a single pixel (152 e ™) is comparable to
systems with non-integrated readout electronics. However, the
ultimate objective is to extend this design to a pixellated de-
tector array (of 8 x 8 or 16 x 16 pixels) for medical and spectro-
scopic applications in which the use of fully-external electronics
is undesirable due to the variability of parasitic capacitances in
the external feedback path. The use of an integrated JFET and
monolithic feedback capacitor therefore will provide improved
uniformity of gain across all pixels.

The effect of guard ring biasing on the MOS capacitance
and therefore the detector resolution can be easily reduced by
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moving the capacitor away from the guard ring. The JFET could
be surrounded by a low resistivity n ™1 pocket to effectively iso-
late it from the rest of the device.
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