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1. Introduction 
 
Concrete-filled steel box columns offer excellent structural performance, such as high strength, high 
ductility and large energy absorption capacity and have been widely used as primary axial load-
carrying members in high rise buildings, bridges and offshore structures. Figure 1 shows the cross-
sections of concrete-filled steel box columns. Local buckling of concrete-filled thin-walled steel 
box columns under axial compression is characterized by the outward buckling mode of the steel 
box. The restraint provided by the concrete core increases the critical local buckling stress of the 
steel box. On the other hand, the steel box completely encases the concrete core so that the ductility 
of the encased concrete can be improved. The steel box also serves as longitudinal reinforcement 
and permanent formwork for the concrete core, which results in significant savings in materials and 
labor costs.  
 

 
 

                                      (a) Square section                   (b) Rectangular section 
 

Figure 1 Concrete-filled steel box columns 
 
Tests on concrete-filled steel tubular columns have been undertaken by many researchers. Furlong 
(1967) conducted tests on the ultimate loads of concrete-filled steel box columns and found that the 
axial load was resisted independently by the steel and concrete components and was not affected by 
concrete confinement. Knowles and Park (1969) studied the experimental behavior of circular and 
square concrete-filed steel tubular columns. Their results indicated that the circular steel tube 
offered confinement to the concrete core and the confinement increased the ultimate loads of short 
concrete-filled steel tubular columns. No confinement effect on the ultimate loads, however, was 
observed in concrete-filled square and rectangular steel box columns. Moreover, Tomii et al. (1977) 
investigated the effects of cross-sectional shapes on the concrete confinement of concrete-filled 
steel tubular columns. Furthermore, Shakir-Khalil and Mouli (1990) and Schneider (1998) have 
conducted tests on the experimental ultimate loads and behavior of concrete-filled steel tubular 
columns. 
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The ultimate loads and behavior of concrete-filled thin-walled steel box columns are influenced by 
the local buckling of the steel box walls. Ge and Usami (1992) presented experimental studies on 
the local buckling of concrete-filled steel box columns with and without internal stiffeners. Wright 
(1995) used an energy method to derive limiting width-to-thickness ratios for proportioning thin 
steel plates in contact with concrete. Experimental studies on the ultimate strengths of concrete-
filled steel box columns with local buckling effects have been conducted by Uy and Bradford 
(1995), Bridge et al. (1995) and Uy (2000). Moreover, Liang and Uy (1998, 2000) proposed 
effective width models for the analysis and design of steel plates in concrete-filled thin-walled steel 
box columns. Furthermore, Liang et al. (2003, 2004) proposed buckling and ultimate strength 
interaction equations for the design of steel plates in double skin composite panels under biaxial 
compression and shear. 
 
Nonlinear analysis methods for predicting the inelastic behavior of steel-concrete composite 
columns have been reported in the literature. El-Tawil et al. (1995) presented a fiber element 
analysis method for modeling the inelastic behavior of concrete-encased composite columns under 
axial load and biaxial bending. El-Tawil and Deierlein (1999) investigated the strength and ductility 
of concrete-encased composite columns using the nonlinear fiber element analysis. Lakshmi and 
Shanmugam (2002) presented a semi-analytical method for predicting the behavior of concrete-
filled steel box columns. The current state of the art of nonlinear analysis of steel-concrete 
composite structures was reviewed by Spacone and El-Tawil (2004). The effects of local buckling 
of steel plates in concrete-filled steel tubular columns, however, are not considered in most 
nonlinear analysis methods that lead to the overestimates of the ultimate loads of composite 
columns and frames (Liew et al. 2001). 
 
This paper presents a nonlinear fiber element analysis method for predicting the strength and 
behavior of concrete-filled thin-walled steel box columns with local buckling effects. By adopting 
the effective width models, the effects of local buckling on the strength and behavior of composite 
columns are taken into account in the nonlinear fiber element analysis. The progressive local and 
post-local buckling is simulated by gradually redistributing stresses within the steel box. The 
accuracy of the fiber element analysis method developed is established by comparisons with 
experimental results.   
 
 
2. Fiber element discretization 
 
In the fiber element analysis, the composite section is discretized into many small regions (fibers), 
as shown in Figure 2. In the present fiber element program, the steel box wall is divided into 
layers through its thickness and the discretization of fibers along the width of the wall is 
automatically undertaken based on the layer size of the wall. The concrete core is divided into 
fibers in the x direction and the size of fibers in the y direction is automatically adjusted according 
to the size of fibers in the x direction. The discretization of the cross section results in square fiber 
elements. Steel fibers are grouped together as well as concrete fibers.  

sm  

cm  

 
 
3. Material models for structural steel 
 
In the fiber element analysis, it is assumed that steel and concrete fibers in a composite section 
under axial loads are subjected to the same longitudinal strain. The constitutive models are based on 
the uniaxial stress-strain relationships of materials. The steel section can be made of mild steel or 
high strength and cold-formed steels. For mild structural steels, an idealized trilinear stress-strain 
relationship is employed in the fiber element analysis (Liang et al. 2004). For high strength and cold 
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Figure 2 Fiber element discretization 
 
formed steels, the stress-strain behavior is characterized by a rounded stress-strain curve. The 
material model suggested by Ramberg-Osgood (1943) is adopted in the fiber element program to 
calculate fiber stresses for high strength and cold formed steels. The Ramberg-Osgood formula is 
expressed by 
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where sσ  is the longitudinal stress in steel, sε  is the longitudinal strain in steel,  is the Young’s 
modulus of steel, 

sE

7.0σ is the stress corresponding to sEE 7.07.0 = , and n is the knee factor that 
defines the sharpness of the stress-strain curve. The knee factor n = 25 is used in the fiber element 
analysis program to account for the isotropic strain hardening of steel sections (Liang and Uy 2000). 
For given fiber strains, fiber stresses are determined from Eq. (1) using a numerical procedure.  
 
 
4. Material models for concrete 
 
It is assumed that the confinement effect increases only the ductility of the concrete in concrete-
filled steel box columns but not its strength (Tomii and Sakino 1979). The general stress-strain 
curve for concrete in concrete-filled steel box columns is depicted in Figure 3. The part OA of the 
stress-strain curve is modeled using the equation suggested by Mander et al. (1988) as 
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where  is the Young’s modulus of concrete, which is given by (ACI-318, 2002) cE
 

69003320 ' += cc fE    (MPa)                                                                                                         (4)                   
 

The strain  is taken as 0.002 for concrete strength under 28 MPa and 0.003 for concrete strength 
over 82 MPa. When the concrete strength is between 28 and 82 MPa, the strain  is determined as 
a linear function of the concrete strength.   

'
cε

'
cε

 

 
 

Figure 3 General stress-strain curve for concrete in concrete-filled steel box columns 
 
The parts AB, BC, CD of the stress-strain curve for confined concrete are defined as follows: 
 

'
cc f=σ  for                                                                                                                (5) 005.0' ≤< cc εε

 
( )( )''' 015.0100 ccccc fff αεασ −−+=   for 015.0005.0 ≤< cε                                                              (6) 

 
'   for cc fασ = 015.0>cε                                                                                                                     (7) 

 
where α is taken as 1.0 when the width-to-thickness ratio (B/t) of the composite column is less than 
24 and is taken as 0.0 when the B/t ratio is greater than 64 (Tomii and Sakino 1979). For B/t ratios 
between 24 and 64, α is taken as 0.6 in the present fiber element program.  
 
 
5. Critical local buckling 
 
Local buckling reduces the strength and stiffness of concrete-filled thin-walled steel box columns 
and must be accounted for in the nonlinear analysis methods. Local buckling of steel plates is 
influenced by the width-to-thickness ratios, boundary conditions, initial geometric imperfections 
and residual stresses induced by welding or cold-formed process (Liang and Uy 2000). For perfect 
steel plates, the critical elastic buckling stress can be determined by the following equation (Bulson 
1970) 
 

( )( )22

2

/112 tb
Ek s

cr ν
πσ
−

=                                                                                                                         (8) 

 

 4



where b is the width of the plate, t is the thickness of the plate, ν is the Poisson’s ratio and k is the 
elastic buckling coefficient. The minimum elastic local buckling coefficient of 9.81 is used in Eq. 
(8) in the fiber element program for steel plates in concrete-filled thin-walled steel box columns as 
suggested by Liang (2005). 
 
The studies conducted by Liang and Uy (2000) show that the critical local buckling stress )( cbσ of 
steel plates with initial geometric imperfections and residual stresses is much less than that of 
perfect plates. In the proposed fiber element analysis method, the critical local buckling stresses of 
thin steel plates with the initial out-of-plane deflection of 0.1t and residual compressive stress of 

 are approximately evaluated based on the results obtained from the nonlinear finite element 
analyses by Liang and Uy (2000). It is assumed that very stocky steel plates can attain the full 
plastic strength without local buckling effects. 

yf25.0

 
 
6. Post-local buckling 
 
Post-local buckling is characterized by the stress redistribution within the buckled steel plate under 
axial compression. The effective width concept can be used to express the post-local buckling 
strength of thin steel plates as illustrated in Figure 4. This concept assumes that at the ultimate state, 
effective steel fibers are stressed to the yield strength of the steel material while the stresses of 
ineffective steel fibers are zero. Effective width formulas proposed by Liang and Uy (2000) are 
employed in the proposed fiber element analysis program and are expressed by 
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10) 

here  is the effective width of a steel plate and is the yield strength of the steel plate. The w eb yf
above effective width formulas account for the initial out-of-plane defection of 0.1t and residual 
compressive stress of yf25.0 .  
 

 
 

Figure 4 Effective width of steel plates in concrete-filled steel box columns 
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In the propo ing of steel 

−=max,                                                                                                                                   (11) 
 

neffective width of the steel plate between zero to can be approximately evaluated using 
linear interpolation based on the stress levels of steel fibers as  

sed fiber element analysis method, the progressive local and post-local buckl
plates in concrete-filled steel box columns is simulated by gradually redistributing stresses within 
the steel plates. After the critical local buckling, the ineffective width of a steel plate increases from 
zero to a maximum value when the applied load is increased to the ultimate load of the steel plate as 
shown in Figure 4. The maximum ineffective width of a steel plate at its ultimate load can be 
calculated by 
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cbσ  is the critical local buckling stress of a steel plate with initial geometric imperfections 

and residual stresses. It is noted that the effective width determined by Eq. (9) or Eq. (10) is an 
ultimate strength criterion that governs the ultimate strength of a steel plate. The ultimate load 
calculated for the steel plate at any loading stage must not be greater than that determined using the 
effective width formulas. As a result, if ( ) tbbftbb neynes )( max,−>−σ , the steel fiber stresses must 
be reduced using linear interpolation to satisfy the effective width criterion as  
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In the fiber element analysis, fib
trains. The fiber element analysis program then checks for the critical local buckling of steel plates. 

. Stress resultants 

 composite column due to an axial strain deformation is determined as 
stre posite section, which is expressed by 

ji 11
                                             (14) 

 
where P is the axial load, 

er stresses are firstly calculated using material models from fiber 
s
If steel fiber stresses are greater than the critical buckling stress, the effective width of the steel box 
walls is calculated and the stresses of steel fiber elements located within the ineffective width 

)( neb of the steel box walls are assigned to a zero value. Steel fiber stresses are updated to satisfy the 
effective width criterion. After the initial local buckling, the ineffective width grows with an 

se in the applied load until it reaches the maximum value ( max,neb ).  
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el fiber i, jc,σ is longitudinal stress at the centroid of concrete fiber j, is the area of 
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concrete fiber j, ns is the tota ber of steel fiber elements and nc is the total number of concrete
fiber elements. The ultimate strength of a short concrete-filled steel box column is dete ined as the 
maximum load in the axial load-strain curve of the composite column.  
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8. Comparisons with experimental results 
 
8.1 Load-axial strain curves 
 
The axial load-strain curves of concrete-filled steel box columns predicted by the proposed fiber 

en ared with experimental results presented by Schneider (1998) in 
is section. All steel boxes of the specimens were cold-formed carbon steel and were welded and 

mum 

 wel

he ultimate strengths of concrete-filled steel box columns predicted by the proposed fiber element 
red with corresponding experimental results presented by Shakir-Khalil 

nd Mouli (1990), Bridge et al. (1995) and Uy (1998) in Table 1. The load was applied to the steel 

 nonlinear fiber element analysis method has been presented in this paper for predicting the 
ate strengths and behavior of short concrete-filled thin-walled steel box columns with local 

klin onfinement effects on the ductility of the encased concrete in concrete-filled 

elem t analysis method are comp
th
annealed to relieve residual stresses. The Ramberg-Osgood material model was employed in the 
fiber element analysis for cold-formed steel sections. Experiments conducted by Cusson and Paultre 
(1994) indicated that the maximum compressive stress of concrete in columns varies from '85.0 cf  
to '0.1 cf . This is due to the difference between concrete in a test cylinder and a column, the variation 
in the concrete compaction, water-cement ratio and curing conditions and the differences in l  
rates between cylinder and column tests. In the present fiber element analysis, the maxi
co e compressive stress in the constitutive model was taken as '0.1 cf  for columns S1, S3, R1, R2 
and R3 and '85.0 cf  for specimen S2. Figure 5 shows the comparisons of the axial load-strain curves 
predicted by the proposed fiber element analysis method with experimental results. It appears from 
Figure 5 that the proposed computational technique predicted very l the axial stiffness, ultimate 
strengths and post-peak behavior of the test specimens. The mean predicted ultimate load for all 
specimens is 97% of the experimental results. It can be concluded that the fiber element analysis 
program developed is capable of capturing the complete axial load-strain behavior of concrete-filled 
steel box columns with local buckling effects. 
 
 
8.2 Ultimate strength 

oading

ncret

 
T
analysis method are compa

 a
plates only in the test of specimens B5-B29, NS5, NS11 and NS17. In the fiber element analysis, 
the maximum concrete compressive stress was taken as '85.0 cf in the constitutive model. It can be 
seen from the table that the mean ultimate strength of all specimens predicted using the fiber 
element analysis program is 95.6% of the experimental value. It can be concluded that the proposed 
fiber element analysis method is reliable and conservative in predicting the ultimate strengths of 
concrete-filled thin-walled steel box columns with local buckling effects.  
 
 
9. Conclusions 
 
A
ultim

uc g effects. The cb
steel box columns are considered in the method. Effective width models proposed for steel plates in 
concrete-filled steel box columns with geometric imperfections and residual stresses are 
incorporated in the fiber element analysis method to account for local bucking effects. The fiber 
element analysis program simulates the progressive local and post-local buckling by gradually 
redistributing stresses within the steel box. It is demonstrated that the fiber element analysis 
program developed predicts well the ultimate strengths and behavior of concrete-filled steel box 
columns with local buckling effects. The fiber element analysis method presented can also be 
employed in the advanced analysis of composite frames.  
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                                     (e) Specimen R2                                              (f) Specimen R3 
 

Figure 5 Comparisons of fiber element analysis with experimental results 
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Table 1 Comparisons of fiber element analysis with experimental results 
 
Specimen B×D t 

(mm) (mm) (MPa) 
s

(GPa) (MPa) 
.fibu

(kN) (kN) 
yf  E  '

cf  P  .expuP  

.exp

.fib

u

u

P
P

 

B29 282.1 .14 2.14 282 199.4 - 332 364.2 0.912 4×282
B5 202.14×202.14 2.14 

2.14 
282 - 295.9 311.8 0.949 

B20 162.14×162.14 1.079 
2  

 

 
 596.8 622.3 

33.6 
40.6 
4

 
 

3 35.7 
38.8 
40.5 

3
3 2

2 1  
2 38.7 

n 

199.4 
199.4 

 
282 - 290.3 269 

B17 122.14×122.14 2.14 282 199.4 - 33.8 265.5 0.881 
B16 82.14×82.14 2.14 282 199.4 - 167 185 0.903 
NS5 186×186 3.0 281 200 - 485.6 517 0.939 
NS11 246×246 3.0 292 200 - 567.6 563 1.008 
NS17 306×306 3.0 281 200 - 0.959 
NS1 186×186 3.0 294 200 1433.4 1555 0.922 
NS7 246×246 3.0 292 200 2555.3 3095 0.826 
NS13 306×306 3.0 281 200 4 3962.3 4003 0.99 
NS14 306×306 3.0 281 200 47 4192 4253 0.986 
NS15 306×306 3.0 281 200 47 4192 4495 0.933 
NS16 306×306 3.0 281 200 47 4192 4658 0.90 
C1 120×80 5.0 57.5 205 916.4 850 1.078 
C2 120×80 5.0 341 205 905.8 900 1.006 
C3 120×80 5.0 341 205 916.9 920 0.997 
C4 120×80 5.0 362.5 205 39.1 948 950 0.998 
C5 120×80 5.0 62.5 205 36 927.7 955 0.971 
C6 150×100 5.0 46.7 09.6 38.5 1251.9 1370 0.914 
C7 150×100 5.0 346.7 09.6 38.3 249.7 1340 0.933 
C8 150×100 5.0 340 08.6 1238 1300 0.952 
C9 150×100 5.0 340 208.6 39.6 1247.7 1320 0.945 
Mea        0.956 
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