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Strategies to enhance the removal of the persistent pharmaceutically active 1 

compound carbamazepine by membrane bioreactors 2 

Xueqing Li, Faisal Ibney Hai*, Nichanan Tadkaew, Sara Gilbertson and Long Duc Nghiem 
3 

School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, 4 

Australia 5 

*Corresponding author: Faisal Hai. Tel: (+61 2) 4221 3054. Email: faisal@uow.edu.au. 6 

Abstract: Carbamazepine, which is an anti-epileptic drug, is ubiquitously present in municipal 7 

wastewater. Owing to its recalcitrant chemical structure, carbamazepine is not significantly 8 

removed during conventional biological treatment or even by membrane bioreactor (MBR). With 9 

the ultimate aim of providing insights into the strategies to enhance carbamazepine removal, the 10 

effect of key operational parameters, namely, loading rate (2-750 µg/L.d), pH (5-9), mixed liquor 11 

suspended solids (MLSS) concentration (1-15 g/L) and dissolved oxygen (DO) (<0.5-5 mg/L) on 12 

the removal of carabamazepine by MBR was systematically studied. Results obtained in this study 13 

revealed negligible influence of pH and of MLSS concentration (beyond 5 g/L) on the removal of 14 

carbamazepine. The removal rate, however, was significantly enhanced under a DO concentration 15 

of less than 0.5 mg/L, suggesting that an alternating anoxic-oxic environment in MBR would 16 

achieve high removal. Significantly enhanced (287 mg/gm vs. 0.02 mg/gm) adsorption of 17 

carbamazepine on powdered activated carbon (PAC) as compared to MBR sludge indicated that 18 

simultaneous PAC adsorption in MBR may achieve enhanced removal. 19 

 20 

Keywords: carbamazepine; enhanced removal; membrane bioreactor; pharmaceutically active 21 

compound; dissolved oxygen; wastewater.  22 

1. Introduction 23 

There is an increasing concern about the presence of pharmaceutical compounds in the environment 24 

due to the potential risk to the aquatic environment. A large volume of pharmaceuticals are used per 25 

year with different purposes such as prevention, diagnosis and treatment of diseases in humans and 26 

animals. Due to the incomplete human metabolism and discharge into the waste stream, 27 

pharmaceuticals are found in environment. In the last decade, researchers have detected numerous 28 

pharmaceuticals in the aquatic environment [1]. 29 

 30 

Effluents from wastewater treatment plants (WWTPs) can be considered to be one of the most 31 

important sources of pharmaceuticals in the environment [2]. Conventional WWTPs are not 32 

specifically designed to remove pharmaceuticals and other micropollutants. As a result of 33 

ineffective removal, they pass through WWTPs and are widely detected in downstream water 34 

bodies, with concentrations cascading from WWTP effluents, to surface waters, to groundwater. 35 

 36 

Carbamazepine, which is an anti-epileptic drug, is composed of two benzene rings fused to an 37 

azepine group, which in turn is connected to an amide group. It is ubiquitously present in municipal 38 

wastewater and due to its chemical stability it is not significantly removed during conventional 39 

biological treatment. Accordingly, this compound has been frequently detected in the effluents of 40 

wastewater treatment plants at concentration of up to tens of µg/L[3]. In a survey conducted by 41 

Ternes [1], carbamazepine was detected in all 30 WWTP effluents with a 90- percentile of 3700 42 

ng/L and in 24 of 26 samples from 20 rivers with a 90-percentile of 820 ng/L. The maximum 43 
concentration of carbamazepine in WWTP effluents was 6300 ng/L, which was also the maximum 44 

detected concentration of all 32 drugs in the survey. In surface waters, carbamazepine usually 45 
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occurs at relatively low concentrations (tens of ng/L). The highest detected concentration (1075 1 

ng/L) of carbamazepine in surface water was found in Berlin [4]. It has been also detected in sea 2 

water, although at a very low concentration (2 ng/L) [5]. Pharmaceutical residues can be introduced 3 

into groundwater through surface water filtration, leakage, and groundwater recharge. 4 

Carbamazepine has been detected in the groundwater at concentrations from few tens [6] up to 610 5 

ng/L [7]. 6 

 7 

Due to its persistence in WWTPs, carbamazepine has been proposed as an anthropogenic marker to 8 

assess effluent quality. Even the combination of conventional activated sludge treatment, sand 9 

filtration, and ozonation could not achieve more than 60% removal of carbamazepine [8]. In 10 

addition to chemical stability, their poor removal has been partly attributed to their hydrophilic 11 

nature (log D < 3). Membrane Bioreactor (MBR) is a proven technology to achieve better levels of 12 

typical water quality parameters like total organic carbon (TOC) and total nitrogen (TN). However, 13 

to date both laboratory scale and pilot scale MBR plant studies have reported negligible to moderate 14 

removal (usually less than 10%) of carbamazepine. Even the application of a sludge retention time 15 

(SRT) of as long as 500 days did not improve carbamazepine removal in a study conducted by 16 

Clara et al [9]. Studies have heavily reported the limited extent of carbamazepine removal, but to 17 

date fewer studies have attempted to investigate the governing reasons. Consequently no definitive 18 

strategy to solve this problem has been reported to date.  19 

In this study, we investigated the effect of different operational parameters namely carbamazepine 20 

loading, pH, dissolved oxygen (DO) and mixed liquor suspended solid (MLSS) concentration on 21 

the removal of carbamazepine in laboratory scale MBRs. Based on the results from our study 22 

coupled with a comprehensive literature review we provide insights into the strategies to enhance 23 

the removal of carbamazepine in MBR. According to our knowledge, this is the first study which 24 

comprises investigation into a set of important factors, rather than a single factor. 25 

2. Materials and methods 26 

2.1. Synthetic wastewater 27 

A synthetic wastewater simulating municipal sewage was used to ensure a stable feeding rate 28 

throughout the experiment. Concentrated stock solution was prepared and stored in a refrigerator at 29 

4 oC. It was then diluted with MilliQ water on a daily basis to make up a feed solution containing 30 

glucose (400 mg/L), peptone (75 mg/L), KH2PO4 (17.5 mg/L), MgSO4 (17.5 mg/L), FeSO4 (10 31 

mg/L), and sodium acetate (225 mg/L). This composition was based on a previous study [10]. A 32 

concentrated stock solution of carbamazepine was prepared in pure methanol. The trace organic 33 

stock solution was kept in a freezer and was used within less than a month. A specific amount of 34 

stock solution was mixed with the synthetic wastewater to achieve the required influent 35 

carbamazepine concentration. All chemicals used were of analytical grade.  36 

2.2. Laboratory scale MBR system 37 

A laboratory-scale MBR system was used in this study. Detailed description of this MBR system is 38 

available elsewhere[11]. The system consisted of a glass reactor, a continuous mixer, two air 39 

pumps, a pressure sensor, and influent and effluent pumps. Two ZeeWeed-1 (ZW-1) submerged 40 

hollow fibre ultrafiltration membrane modules supplied by Zenon Environmental (Ontario, Canada) 41 

were used in this set-up. The membrane has a nominal pore size of 0.04 µm. Each module has an 42 

effective membrane surface area of 0.047 m2. The hydraulic retention time was set at 24 hours, 43 

corresponding to a permeate flux of 4.3 L/m2h. The MBR pH, temperature and dissolved oxygen 44 

(DO) content were kept constant at 7, 20.0±0.1oC and 2±1 mg/L, respectively. The MBR was 45 

seeded with activated sludge from the Wollongong sewage treatment plant, NSW, Australia. After 46 
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the initial start-up process, which lasted about 2 months, a small amount of sludge was regularly 1 

extracted from the reactor to keep the sludge age at approximately 70 days. Performance of the 2 

MBR system with regard to basic water quality parameters was then monitored for an extended 3 

period of more than four weeks, after which the investigation on the effect of carbamazepine 4 

loading (2-6 µg/L.d) and pH (5-9) of the reactor, respectively on removal were conducted. The 5 

MLSS concentration in the reactor during this part of the investigation was around 15 g/L. A similar 6 

MBR system was then inoculated by the sludge taken from the first MBR. The second MBR was 7 

subject to high carbamazepine loading (750 µg/L.d) and was operated under a DO of less than 0.5 8 

mg/L from the beginning. The effect of MLSS of this MBR on removal was studied as the MLSS 9 

increased from the initial level of only 1 g/L to 11 g/L. The MLSS concentration remained fairly 10 

stable beyond this period. The effect of DO concentration on removal was subsequently studied by 11 

operating the MBR under a DO of 0.5 mg/L for further 30 days and then under higher DO levels (2-12 

5 mg/L). 13 

2.3. Analytical techniques 14 

The analysis of the model trace organic was based on a previously reported method [11-12]. The 15 

target compound was extracted using 5 mL, 500 mg hydrophilic/lipophilic balance (HLB) 16 

cartridges (Waters, Millford, MA, USA). After elution the analyte was separated using an Agilent 17 

(Palo Alto, CA, USA) 1200 series high performance liquid chromatography (HPLC) system 18 

equipped with a 150 x 4.6 mm, 5 µm particle size, Luna C18 (2) column (Phenomenex, Torrence 19 

CA, USA). Mass spectrometry was performed using an API 4000 triple quadrupole mass 20 

spectrometer (Applied Biosystems, Foster City, CA, USA) equipped with a turbo-V ion source 21 

employed in both positive and negative electro-spray modes. When high concentration of 22 

carbamazepine (750 µg/L) was used in the feed solution, a Shimadzu HPLC system equipped with 23 

an UV-Vis detector was used for the analysis.  24 

Conductivity and pH were measured using an Orion 4-Star Plus pH/conductivity meter. Total 25 

organic carbon (TOC) and total nitrogen (TN) were analysed using a Shimadzu TOC/TN-VCSH 26 

analyser (Tokyo, Japan). TOC analysis was conducted in non-purgeable organic carbon (NPOC) 27 

mode. Samples were kept at 4°C until analysed and calibrations were performed in the range 28 

between 0 and 1000 mg/L and 0 to 100 mg/L for TOC and TN, respectively. MLSS and MVLSS 29 

contents in the MBR were measured in accordance to the Standard Methods for the Examination of 30 

Water and Wastewater [13]. 31 

3. Results and discussion 32 

3.1. Effect of loading rate 33 

The basic water quality parameters such as TOC and TN were continuously monitored to confirm 34 

biological stability. Apart from the trial on the effect of pH (section 3.2) the TOC and TN removal 35 

rates were stable throughout the operation period (data not shown). Carbamazepine removal rate in 36 

our study ranged from 3-22% depending on the loading rate (Table 1). The low % removal in 37 

general is in line with the literature reports and demonstrates once again the hardly biodegradable 38 

nature of carbamazepine. Löffler et al. [14]  found that carbamazepine was highly recalcitrant to 39 

elimination in a water/sediment system at laboratory scale. The time required for a 50% reduction 40 

of its initial concentrations (100g/ L) was 328 days, as calculated by first-order elimination 41 

kinetics. Stamatelatou et al. [15] conducted a biodegradability test of carbamazepine in sodium 42 

acetate cultured activated sludge in both sea and fresh water. They observed no biodegradation of 43 

carbamazepine at an initial concentration of 0.5 mg/L in either sea or freshwater. Carbamazepine 44 

was classified in biodegradability group of below 0.1 L/kgss/d when considering a first order 45 

degradation constant (kbiol) in WWTPs [16]. Apart from the batch studies, to date both laboratory 46 
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and pilot scale MBR plant studies have reported negligible [17-19] to moderate [20-23] removal, 1 

usually less than 10%.  The low removal rate observed in our study is, hence, in close agreement 2 

with the prior reports. 3 

In our study, although the % removal rate was larger in case of the lower loading rate (2-6 µg/L.d) 4 

operation as compared to the higher loading rate (750 µg/L.d) operation, the removal rate (in 5 

µg/L.d) was in fact lower in case of the lower loading rate (2-6  µg/L.d). This can be explained by 6 

the fact that if the concentration of a pollutant decrease below a certain threshold level, 7 

biodegradation may be hindered due to lack of enzyme induction [24-25]. The results here indicate 8 

that carbamazepine is extraordinarily persistent to biodegradation at low concentrations. 9 

Table 1: Carbamazepine removal rare under different loading 10 

Loading rate 
(µg/L.d) 

Removal rate 
In percentage (%) In mass (µg/L.d) 

2-6 22 0.44-1.32 
750 3 22.5 

3.2. Effect of bioreactor pH 11 
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Figure 1: Effect of bioreactor pH on TOC and carbamazepine removal. Error bars show the 13 

standard deviation of 4 measurements. 14 

As can be seen in Figure 1, a small decrease in biological performance with regard to TOC removal 15 

efficiency was observed as the mixed liquor pH was reduced to 5. A sharp decline in TOC removal 16 

efficiency was also observed when the mixed liquor pH was increased beyond 8. While 17 

investigations explicitly studying the effects of pH on the treatment efficiency of an MBR system 18 

remains very limited [22, 26-27], results reported here are in fact consistent with previous studies 19 

on conventional activated sludge treatment processes. Lower biological performance at either acidic 20 

or basic condition can be attributed to complex changes in the micro-organism fauna of the reactor 21 

in response to the mixed liquor pH. In contrast to the TOC removal rate, negligible effect of mixed 22 

liquor pH on carbamazepine removal was observed. An apparent improvement in removal 23 

efficiency of certain acidic trace organics such as ibuprofen, ketoprofen, and diclofenac was 24 

observed in case of MBRs operated under acidic conditions [11, 22]. This phenomenon was 25 

explained by the speciation of the compounds from hydrophilic ionic forms to much more 26 

hydrophobic forms at pH lower than their pKa values which allowed them to adsorb to the activated 27 
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sludge quite readily. However, carbamazepine used in this study did not speciate as the mixed 1 

liquor pH varied from pH 5 to pH 9. Consequently, its removal efficiency remained relatively 2 

constant and independent of the mixed liquor pH. Carbamazepine contributed a negligible portion 3 

of the TOC; hence, mismatch between TOC and carbamazpeine removal profile is not surprising.  4 

3.3. Effect of DO 5 

In this study, the effect of DO was studied under the higher loading (750 µg/L.d) condition. A 6 

dramatic effect of operating DO on removal rate was observed (Table 2). In a short-term study 7 

conducted by Zwiener and Frimmel [28] diclofenac was better degraded in an anoxic biofilm 8 

reactor (62–66% of its initial concentration). While previous studies have demonstrated relationship 9 

of nitrifying condition with carbamazepine removal [29], no literature report could be found which 10 

mentions the effect of denitrifying (anoxic) condition on its removal. Our result suggests that anoxic 11 

environment promotes carbamazepine degradation. In addition to the possible enhanced 12 

biodegradation under anoxic condition, abiotic (chemical conversion) degradation may also be 13 

responsible for the observed high removal rate. Further investigation is underway to ascertain the 14 

governing reason.  15 

 16 

Table 2: Effect of DO on carbamazepine removal 17 

DO, mg/L Removal efficiency (%) 
<0.5 67 
2-5 3 

3.4. Effect of MLSS concentration 18 

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

R
e

m
o

v
a

l e
ff

ic
ie

n
c

y
 (

%
)

MLSS concentration, g/L
 19 

Figure 2: Effect of MLSS concentration on carbamazepine removal (under anoxic condition with 20 

DO < 0.5 mg/L). 21 

The effect of MLSS concentration was studied under near-anoxic (DO< 0.5 mg/L) condition when 22 

the loading rate was 750 µg/L.d. The % removal rate of carbamazepine did not increase much 23 

beyond a MLSS concentration of 5 g/L or so. This indicates that due to the insignificant affinity of 24 

carbamazepine towards adsorption onto sludge, biodegradation, in contrast to biosorption, played 25 

the main role in carbamazepine removal in the MBR. In our study, however, under a low MLSS 26 
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concentration of approximately 1 g/L the removal rate of carbamazepine was the lowest. This 1 

underscores the importance of maintenance of adequate amount of biomass in the reactor to achieve 2 

satisfactory degree of recalcitrant pollutant degradation. 3 

3.5. Adsorption on to activated carbon 4 

Adsorption onto sludge may facilitate enhanced biodegradation in MBR due to complete sludge 5 

retention [30]. The data from our MBR study, however, suggested limited sorption of 6 

carbamazepine onto sludge. Accordingly the intrinsic biodegradation rate governed the overall 7 

removal of carbamazepine, and due to the hardly biodegradable nature of carbamazepine the extent 8 

of removal was rather limited. In an attempt to promote adsorption of carbamazepine and 9 

subsequently reap enhanced biodegradation, a strategy of direct addition of adsorbent (e.g., 10 

powdered activated carbon, PAC) into MBR may be proposed. In fact, a preliminary batch test 11 

demonstrated many fold higher adsorption of carbamazepine onto PAC as compared to MBR 12 

sludge (Table 3). Hai et al. [31]  previously demonstrated enhanced removal of recalcitrant dyes in a 13 

PAC-enhanced MBR.  The efficiency of a PAC-enhanced MBR in carbamazepine removal is 14 

currently under investigation. Preliminary results indicate that facilitated adsorption can indeed 15 

substantially improve the overall carbamazepine removal in MBR (negligible and around 90% 16 

removal without and with PAC addition in MBR).  17 

Table 3: Comparative adsorption of carbamazepine on MBR sludge and PAC 18 

Media Unit adsorption of CBZ (mg/gm) 
MBR sludge 0.02 

PAC 287 

4. Conclusions 19 

Our results indicate that carbamazepine is extraordinarily persistent to biodegradation at low 20 

concentrations. Application of slightly acidic pH may facilitate removal of certain ionizable trace 21 

organics which transform to more hydrophobic species under such pH; however, carbamazepine, 22 

being a non-ionizable compound, such strategy would be of little significance. In contrast, 23 

manipulation of reactor DO appears to be an effective means to achieve high carbamazepine 24 

removal. An MBR with alternating anoxic-oxic environment may achieve high removal. On the 25 

other hand, negligible sorption of carbamazepine onto sludge implies that maintenance of high 26 

MLSS concentration in MBR would not yield significant improvement in overall removal. 27 

However, our batch test indicates that enhanced adsorption achieved by powdered activated carbon 28 

dosing directly into the MBR may result in enhanced overall removal. 29 
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