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Determination of Prestressing Forces in
Statically Indeterminate Structures

Y. Arfiadi' and M.N.S. Hadi’
"Department of Civil Engineering

Atma Jaya Yogyakarta University, Indonesia
?Faculty of Engineering

University of Wollongong, Australia

Abstract

This paper discusses the determination of prestressing force in statically
indeterminate structures, where the prestressing force produces a secondary moment
in addition to the primary moment. This condition is different from statically
determinate ones as there is no secondary moment. In this paper the moment due to
prestressing force is assumed to be a direct function of the prestressing force
multiplied by a coefficient- thus the prestressing force is obtained from the stress

conditions of the bottom and top fibres under external loading. To show the
application of the proposed procedure, a three-storey building is taken as an
example.

Keywords: prestressed concrete, statically indeterminate structures, primary
moment, secondary moment, moment coefficient, prestressing force.

1 Introduction

Prestressed concrete structures have become an alternative way of design in order to
obtain sophisticated and economical structures particularly for long span concrete
structures. With the simple principles to give compression to the concrete so that
during the service load the tensile stress will be eliminated while limiting the
compressive stress within the prescribed value, prestressed concrete has become an
attractive approach in concrete structures design. However, some difficulties may
arise in designing prestressed concrete members for statically indeterminate
structures. This is due to the presence of secondary moment when the prestressing
force is applied [1]-[3]. The interaction between the secondary moment and the
magnitude of prestressing force produces more challenging tasks, because the
magnitude of the secondary moment might be significantly large enough and cannot
be neglected.
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Prestressed concrete structures in most cases have become an alternative way of design in order to obtain sophis-
ticated and economical structures. With the simple principlés to give compression to the concrete so that during
the service load the tensile stress will be eliminated while limiting the compressive stress within the prescribe
value, prestressed concrete has become an attractive strategy for the design of concrete structures. However, some
difficulties may arise in designing prestressed concrete members for statically indeterminate structures. This is
due to the presence of a secondary moment when the prestressing force is applied [1-3]. The interaction between
the secondary moment and the magnitude of prestressing force produces more challenging tasks, because the
magnitude of the secondary moment might be significantly large enough and cannot be neglected.

When Lin’s load balancing method [1] is used some conditions should be satistied. First, the cable profile is
assumed to be a curve or parabolic in each span of the member with no smooth transition. Therefore, the drastic
change in the cable profile in continuous support is neglected in the complitation so that the prestressing force can
balance a part of the external loading in cvery span of the member. Besides this we cannot have cable eccentricities
at the end supports as those eccentricities produce additional moments. This condition results in that when the
prestressing force is obtained by using load balancing method, we have to check the stress to account for those two
conditions. Another method to handle the secondary moment is by designing the cable profile so that the cable

is coincident, i.e., the C-line coincides with the T-line, for the case without external loading. However, obtaining
such profiles is not an easy task.

In this paper a simple procedure to obtain the magnitude of prestressing force in statically indeterminate concrete
elements is proposed. By assuming that the total moment due o the prestress as a linear function of the magnitude
of the prestressing force, as a moment coefficient, and employing the relationships between stress limitation, the
magnitude of prestressing force can be obtained. The inequality equations can then be solved by defining the
lower and upper bounds of the prestressing force so that when such prestressing force is applied to the members,
the stress will be in the prescribed limit with the secondary moment taken into account. With this procedure the
determination of the prestressing force will be simple. In addition, this method can be considered as a general

procedure that can be used either for statically determinate or indeterminate structures. In statically determinate
prestressed concrete structures the value of secondary moment would be zero. The economical design is achieved
when the difference between the lower and the upper magnitudes of the prestressing force is small. Thought in
a different way the difference between the lower and upper bound magnitudes of prestressing force defines the
degree of safety. Numerical examples are then carried out to show the simplicity of the proposed design procedure.
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When Lin’s load balancing method [1] is used some conditions should be
preserved. First, the cable profile is assumed curved or parabolic in each span of the
member with no smooth transition. Therefore, the drastic changes in the cable
profile in continuous support are neglected in the computation so that the
prestressing force can balance part of the external loading in every span of the
member. Besides that we cannot have cable eccentricities at the end supports as
those eccentricities produce additional moments. This condition results in that when
the prestressing force is obtained by using the load balancing method, we have to
check the stress to account for those two conditions.

Another method to handle the secondary moment is by designing the cable profile
so that the cable is concordant, i.e., the C-line coincides with the T-line, in the case
without external loading [2][3]. However, obtaining such profiles is cumbersome.

In this paper a simple procedure to obtain the magnitude of prestressing force in
statically indeterminate concrete elements is proposed. By assuming that the total
moment due to prestress as a linear function of the magnitude of prestressing force,
and employing the relationships between stress limitation, the magnitude of the
prestressing force can be obtained. The inequality equations can then be solved by
defining the lower and upper bounds of the prestressing force so that when such a
prestressing force is applied to the members, the stress will be in the prescribed limit
with the secondary moment has been taken into account. With this procedure the
determination of the prestressing force will be simple. In addition, this method can
be considered as a general procedure that can be used either for statically
determinate or indeterminate structures. In statically determinate prestressed
concrete structures, the value of the secondary moment would be zero. It is to be
noted that the economical design will be accomplished when the difference between
the lower and the upper magnitudes of prestressing force is small. Thought in a
different way the difference between the lower and upper bound magnitudes of
prestressing force defines the “degree of safety”.

2 The Effect of Prestressing Force

The effect of prestressing force on the statically determinate structures can be
explained with reference to Figure 1. In Figure 1 the trajectory of tendon is assumed
parabolic with no eccentricity at both end. If the curvature of the trajectory is
assumed to be small then:

the vertical component of the prestressing force equals to Fsin6 =F0,

the horizontal component of the prestressing force equals to Fcos6 =F,

where 0 = angle between tendon’s trajectory and centre gravity of section at end.



Moment due to the eccentricity of the tendon to the centre of gravity of the
section at any point
M, =Fxe ()
The moment diagram can be seen in Figure 1c. The transverse equivalent load
due to prestressing is generated due to the eccentricity along the beam’s span. If the
tendon’s trajectory is curved it produces an equivalent uniform load = q to the beam.
The total load should be the same as the vertical component of prestressing at ends
of beam. The equilibrium of vertical forces results in qx L =2xF8 so that

q=" @

(a) Simple beam with
prestressing force = F

N
Th—
T \<ﬁ ;g
VYL,

(b) Forces in beam

e ;9;;
(¢) Moment due to force in
®)
Ml = Fxe
q=8Fe/L?
(EAREEERERRRRRRRERRRARRREREEREE, (d) Equivalent uniform load
due to prestressing
¥
(e) Moment due to
equivalent uniform load
in (d)
M2= Fxe

Figure 1: Effect of prestressing force in statically determinate structures



If the tendon trajectory is assumed parabolic, the ordinate of the tendon can be
expressed as

dex(L —x
y= 2 ()
The angle 6 becomes
0= (filj _de (4)
dx /..o L
The uniform load in Equation (2) becomes
8Fe
T ®)
Moment due to equivalent uniform load in the middle span is
2
M, = ﬂ%— =Fe 6)

It can be seen that the effect of prestressing force produces the same results as
whether it is considered as uniform load or horizontal force. There is no difference
between M, and M;.

These results will be different for a statically indeterminate structure. Consider
for example a beam with fixity at both ends against rotation, but, allowed to move in
the horizontal direction as shown in Figure 2. The tendon trajectory is assumed
parabolic as in the case for a simple beam. The moment due to the prestressing and
eccentricity are as follows:

At beam end:

M; =0 (7a)
At midspan
M, =Fxe (7b)

The moment diagram is shown in Figure 2(b). The moment due to an equivalent
load is as follows:
At beam ends:
2
gl® 2
=——="Fe 8a
2712 73 (8a)



At midspan:

ql? 1
M, =3 Fe (8b)

The moment diagram is shown in Figure 2(c). From Figures 2(b) and 2(c) it can
be seen that the moment produces by prestressing force multiplied by eccentricity is
different from the moment due to the equivalent load. As usually the stresses in
beams are computed based on the moment due to the eccentricity, there is an
additional moment that should be added to the computation. This moment is called
the secondary moment which is obtained by subtracting the moment M, from M;:

MS=AM=M2—M1 (9)

(a) Fixed beam with
prestressing force =F

(b) Moment due to
prestressing force and
eccentricity

Fxe

1/3Fe

' (c) Moment due to

equivalent uniform load
2/3F e 2/13F e

Figure 2: Effect of prestressing force in statically indeterminate structures

By considering the C-line (the line of action of the compression concrete) and T-
line (line of action of the tension force in prestressing steel) concepts, it means that
in the statically indeterminate structures in general the C-line does not coincidence
with the T-line. The shift of C-line and T-line can be calculated by



M, AM
a=—
F

=== (10)

where M;= the secondary moment.

Due to the presence of the secondary moment in statically indeterminate
structures, the design becomes more complex. One of the methods to avoid this is by
using load balancing method [1]. However, there are some limitations on using this
method. One limitation is that there is no smooth transition in the support for the
case of continuous support. In addition in order to cancel the secondary moment
there should be no eccentricity at the beam ends. Therefore, the load balancing
method is more appropriate to be used for statically determinate structures. Another
method to avoid of calculating the secondary moment is by designing a concordant
cable, where the C-line is designed to coincide with the T-line in the case of zero
external loading. However, the design process becomes more complex.

3 Coefficient-3 Method

In this paper the determination of prestressing force in statically indeterminate
structures is obtained through the introduction of the moment coefficient due to
prestressing force as f3, i.e., the moment due to prestressing force is

Mg =BF (11)
Assuming that the structure is linear elastic we can obtain

MFi = BFI (12)
where My, = moment due to prestresssing force at initial (transfer), F,=

prestressing force at transfer where the effective force.
At the final condition after loss of prestress
F =oF (13)

o= effective prestress coefficient after loss of prestress.
To obtain the moment due to prestressing some assumptions are taken as follows:

(a) Cable eccentricity is small compared to the beam span;
(b) Loss of prestress due to cable friction is neglected;
(¢) The number of cables is the same through the span length.
The determination of the equivalent load due to prestresing can be made with
reference to Figure 3.

End A:



Horizontal load = Fcos6, ~ F,
Vertical load = Fsin 0, = F0,.

Span AB:
Vertical load point load = F8,,

Vertical uniform load = F05.

Span BC:
Vertical uniform load 1= F05,

Vertical uniform load 2 = F6,.

End C:
Horizontal load = FcosO5 ~ F,

Vertical load = Fsin65 ~ FO5,
Moment = Fe.

With the equivalent load on beam due to prestressing, internal forces in beam can
be obtained. The secondary moment can be computed by subtracting the moment
due to the equivalent load by the primary moment.

By assuming that:
(a) compression stress in the concrete is negative (-);
(b) positive moment when the bottom fibre is in tension;
(c) prestressing force F and F; is assigned to be positive in the equation;
the stress in beam shall satisfy the provision provided in the building code as
follows. At transfer (initial condition):

At the top fibre:
If the stress results in tension:
F My M
M Fi Yt _ DL Yt < oy (143)
AC IC IC

If the result is compression:

5 _Mgy: MpLys

14b
A I I (196)

Gi

C c (v

where A .= area of section, I; = second moment area, y; = neutral axis distance to
top fibre, Mpr. = moment due to dead load, ¢, = allowable tension stress in concrete

at transfer, o, = allowable compression stress in concrete at transfer,



(@)

) B ;
T S—— ~d Fe
1 T L\
F [ treteetteettetttteees / ©

Figure 3: Computation of equivalent load and primary moment in beam: (a) beam
with cable profile, (b) primary moment, (c) equivalent load due to prestressing

At bottom fibre:
If the stress results in tension:

___F_i_+MFiyb _I_MDL Yb <oy (153.)
AC IQ IC
If the result is compression:
K i Mg v, n Mp, ¥y >0, (15b)
AC IC IC

where yy, = neutral axis distance to bottom fibre.

At the final stage (after loss of prestress) the following conditions shall be
satisfied.

At top fibre:
If the result is tension:



F _MFYt_MTLYt <o

A I I '

Cc c c

[f the result is compression:

F My, Myy

A 1 I ¢

< C [

(16a)

(16b)

o, = allowable tension stress at the final condition, and o = allowable compression

test at the final condition.

At bottom fibre:

If the result is tension:

F M M
_— FYb+ TL}’b<Gt
A I I

c C C

If the result is compression:

F_+MFyb+MTLYb oo
A I 1

c

Y C c

(172)

(17b)

In order to obtain the magnitude of prestressing force that satisfies all conditions

and by noting that

I
r=.,—
A
7,k
Yi
2=t
Yb

Equations (14) — (17) are rearranged as follows:

(18)
(19)

(20)

By considering Equations (12), (18) and (19) the stress condition at the top fibre

in Equation (14a) may be written as

2

r

Fi(_B'";"]<Gci Zi +Mpy,
t

21



so that we have the following conditions:

2
If [— B- —r—J > 0 the inequality in Equation (21) becomes

Yt
Finax = %4 21 +N21D'L' (22a)
r
-p-——
( Yt
2
If | =B—— | < 0, the inequality in Equation (21) becomes
Yt
; M
Eimin =-§1Lgi?t—glﬂi (22b)
r
Yt
Similarly from Equation (14b) we can obtain
2
If|-p-1-1>0:
Yt
Py = 2o VIDL (23a)
r
Yt
2
If|-B-1—|<0:
Yt
F _ O¢i Zt + MDL (23b)

1max — (_B_iJ
Yi

On the other hand, from the condition of stress at the bottom fibre at transfer in
Equation (15a) and by using Equations (18) and (20) we can obtain:

2
H(s—i—]>0:
Yb

g _0iZy—Mpy
1max 2

r

b

10

(24a)



2
If (B—LJ<0:
Yb

642y, —-M
Fimin =~ 0 (24b)
r
Yb
Similarly, from Equation (15b) we can obtain
2
It [p--—|>0:
Yo
2y —M
Fimin =~ 2Dk (25a)
r
Yo
2
If | p--—|<0:
Yo
F... = SeiZy ~Mpy (25b)

Equations (22)-(25) may be used to define the range of prestressing force F; to
satisfy the stress condition at the initial stage (at transfer).

Similar results will be obtained from the stress condition at the final condition (at
effective prestressing force) as follows:

From the stress condition at the top fibre at the final stage in Equation (16a) and
by considering Equations (11), (13), (18) and (19) we can obtain:

If (—B—ﬁ]>0:
Yt

If (—B—r—z-j< 0:
Yt

F._ = S1Zi +My, (262)

1max 2
o —B—r—
Y

11



_0¢Zi+Mqy

Fimin = 5 (26b)
r
ol -B-——
Yt
Similarly from Equation (16b) we can obtain:
2
If | -p-L-|>0:
Yt
Fippin = ST it MZTL (27a)
ol -B- L
Yt
2
If| -p-1-|<0:
Yt
g _OcZi+My 27b)

1max 2
o —B—r—
Yt

On the other hand from the stress condition at the bottom fibre at the final stage
in Equation (17a) we can obtain:

2
If [B—r—}o:
Yb

c. 2, -M
Fimax = Lo .ZTL (28a)
o B-—l—
Yb
2
If[p--—|<o0:
Yo
By = 120 "ML (28b)

imin — 9
o B—r—
Yo

Similarly from Equation (17b) we can obtain:

12



2
H{B—E—J>o:
Yo

E 0 Zy =My

imin = 2
o B——r_
Yb

(292)

)
1f]p-2—|<0
Yb
E 0o Zy —Mp

imax = 2
o B—L
Yo

Equations (26)-(29) may be used to define the range of prestressing force F; to
satisfy the stress condition at the final stage (after loss of prestress). Combining
Equations (22)-(25) and Equations (26)-(29) the prestressing force F; can be
computed.

(29b)

It is to be noted that the resulting prestressing force will satisfy the stress
conditions in Equations (14)-(17) and alleviate the use of trial and error for
designing concordant cable due to the presence of secondary moment in statically
indeterminate structures. It is to be noted also that the equations derived in this paper
can also be used for statically determinate structures where the coefficient § in
Equations (11) and (12) equals to the cable eccentricity since the secondary moment
is equal to zero. The coefficient 3 here can be viewed as ‘indeterminate
eccentricity’ because in statically determinate structures the moment due to
prestressing equals the force times eccentricity; or 3 can be viewed as moment

coefficient (influence) because when F or F; equals to unity the moment in
Equations (11) and (12) equals to 3.

In multi-storey buildings when the magnitude of the prestressing force in the
beam may be different from one floor to another (or event might be different from
beam to beam in a particular floor), the resulting equations may still be used to
obtain the prestressing force provided that the ratio of prestressing force are known
for every beam. In this case the ratio of prestressing force can be decided based on
the external load to be carried by each beam in the structures.

4 Application

A three-storey building is taken as the example. The dead load and live load carried
by the structure are shown in Figure 4 along with the cross section of the beam. The

13



size of the beam is 400 x 600 (mm) and the column is 400 x 400 (mm), £ = 30
MPa, and f,;> = 25 MPa. The allowable stresses in concrete are as follows:

At the initial stage: ¢, =-0.6f,, o, =O.25\/a; at the final stage: ¢ =-0.45f;

and o, = 0.5\/E . For simplicity, the cable profile is assumed to be parabola as in

Figure 5. It is assumed also that the magnitude of prestressing force of the beam at
the top floor is equal to 0.9 magnitude of prestressing force given in other floors.

Considering the cable profile in Figure 5, the value of equivalent load acting on
the structure at transfer is plotted in Figure 6. From structural analysis, the bending
moment of the beam is shown in Figure 7 for dead load, and in Figure 8 for dead
plus live load. Figure 9 shows the value of moments of the beam due to prestressing
force in Figure 6 with the prestressing force is taken as unity. Therefore, Figure 9
represents the value of 3 in each beam.

Having obtained the value of moments due to dead load, live load and
prestressing force, the magnitude of force at transfer F; can be determine by utilising
Equations (22) — (29) and by assuming that the loss of prestress is 20%, i.e., a= 0.8
in Equation (13). When Equations (22) — (29) are employed, the resulting F; from
each beam is depicted in Figure 10 with the assumption that the magnitude of force
is constant along the whole span of the beam. Therefore, from the results in Figure
10, the magnitude of prestressing force at transfer that satisfy all conditions can be
taken within the largest of Fipin and the smallest of Fimax of each beam. In this case F;
can be taken as:

1138.9kN <F, <2501.9kN

It can be seen here that the range of F; is quite large. When optimum design is
desired, the range should be taken as minimum.

It can be seen also from this example that the value of prestressing force can be
obtained by using the procedure proposed in the previous section and eliminates the
computation of secondary moment that would occur in statically indeterminate
structures. The method presented here can also be used to determine the prestressing
force in statically determinate structures as in this case the value of B= 0 in

Equations (22) — (29).

14



DL = 18 kN/m, LL- 4 kN/m

3.8 m

3.8 m

4.5 m

14 m

(a)

1.55

0.212

0.388

0.40

section at midspan (m)

(b)
Figure 4. Three storey frame : (a) dead and live load., (b). cross section of the beam
at midspan
; T[
———
] ﬂ 0,08

Figure 5. Cable profile
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Figure 6. Load due to the prestressing force at transfer

-177.820 -177.820
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Figure 7. Beam moment due to dead load Mpy, (kNm)
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Figure 8. Beam moment to the total load Mt (Mpr + My1) in kNm
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H
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Figure 9. Prestressed moment coefficient (influence) or ‘indeterminate eccentricity’
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% H
g
Max.: || 2676.3 2562 2676.3
PN
Min: 1\ 614.6 1009.1 614.6
F !
?
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Figure 10. The results of F; from each floor. (kN)
S  Conclusions

The determination of the magnitude of prestressing force in statically indeterminate
structures is discussed in this paper. Equations are derived so that the magnitude of
the prestressing force can be obtained directly from those equations. This is achieved
by assuming that the value of moment is represented by a coefficient 3 first so that

the structural analysis can be done. Viewed in another way, the coefficient [3is the

moment coefficient (influence) in statically indeterminate structures when the
prestressing force is taken as unity. Similarly, f can be viewed also as the
‘indeterminate eccentricity’, i.e., the ‘eccentricity’ in statically indeterminate
structures. An example on how to apply the procedure is presented to a three storey
building, where the magnitude of prestressing force at the roof beam is taken as 0.9
times the prestressing force of other beams. When optimum design is desired the
range of prestressing force obtain from Equation (22)-(29) should be minimum.
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