
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1-1-2006 

Extraction and transport of metal ions and small organic com#163s using Extraction and transport of metal ions and small organic com#163s using 

polymer inclusion membranes (PIMs) polymer inclusion membranes (PIMs) 

Long Nghiem 
University of Wollongong, longn@uow.edu.au 

Patrick Mornane 
University of Melbourne 

Ian Potter 
La Trobe University 

Jilska Perera 
University of Melbourne 

Robert Cattral 
University of Melbourne 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/engpapers 

 Part of the Engineering Commons 

https://ro.uow.edu.au/engpapers/2592 

Recommended Citation Recommended Citation 
Nghiem, Long; Mornane, Patrick; Potter, Ian; Perera, Jilska; Cattral, Robert; and Kolev, Spas: Extraction and 
transport of metal ions and small organic com#163s using polymer inclusion membranes (PIMs) 2006, 
7-41. 
https://ro.uow.edu.au/engpapers/2592 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36983054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F2592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F2592&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Long Nghiem, Patrick Mornane, Ian Potter, Jilska Perera, Robert Cattral, and Spas Kolev 

This journal article is available at Research Online: https://ro.uow.edu.au/engpapers/2592 

https://ro.uow.edu.au/engpapers/2592


 
 
 
 
 

Extraction and transport of metal ions and small organic 
compounds using polymer inclusion membranes (PIMs) 

 
 

Submitted to 
 

Journal of Membrane Science 
 
 

Jan 2006 
 
 

Long D. Nghiem1,2, Patrick Mornane1,2, Ian D. Potter3, Jilska M. Perera2,  
Robert W. Cattrall2, 3 and Spas D. Kolev1,* 

 

 

 
1 School of Chemistry 

The University of Melbourne, VIC 3010, Australia 
 

2 Department of Chemical and Biomolecular Engineering 
The University of Melbourne, VIC 3010, Australia 

 
3 Department of Chemistry 

La Trobe University, VIC 3086, Australia 
 
 
 
 
 
 
 
_______________________ 
* Corresponding author: Spas Kolev, email: s.kolev@unimelb.edu.au, phone: +61 3 8344 7931.

 



 

ABSTRACT 

The stability of polymer inclusion membranes (PIMs) relative to other liquid membranes is 

amongst the major reasons for the recent rejuvenation of interest in carrier-mediated transport for 

selective separation and recovery of metal ions as well as numerous organic solutes.  This is 

reflected by an increasing number of PIM investigations reported in the literature over the last 

two decades.  Given the outstanding performance of PIMs compared to other types of liquid 

membranes particularly in terms of membrane lifetime, it has been predicted that practical 

industrial applications of PIMs will be realized in the near future.  This review provides a 

comprehensive summary of the current knowledge relevant to PIMs for the extraction and 

transport of various metal ions and small organic solutes.  PIM studies reported to date are 

systematically summarised and outlined accordingly to the type of carriers used, i.e. basic, acidic 

and chelating, neutral or solvating, and macrocyclic and macromolecular.  The paper reviews the 

various factors that control the transport rate, selectivity and stability of PIMs.  The transport 

phenomena observed by various authors are related to the membrane characteristics, 

physicochemical properties of the target solutes as well as the chemistry of the aqueous solutions 

making up the source and receiving phases.  The results from these studies reveal an intricate 

relationship between the above factors.  Furthermore, while the interfacial transport mechanisms 

in PIMs are thought to be similar to those in supported liquid membranes (SLMs), the bulk 

diffusion mechanisms in PIMs governing their permeability and selectivity requires better 

understanding.  This review also delineates two mathematical modeling approaches widely used 

in PIM literature: one uses a set of assumptions that allow the derivation of analytical solutions 

valid under steady state conditions only; the other takes into account the accumulation of the 

target species in the membrane during the initial transport state and therefore can also be applied 

under non-steady state conditions.  The latter is essential when the interfacial complexation 

reaction kinetics is slow.  It involves more complex mathematics and requires the application of 

numerical techniques.  The studies included in this review highlight the potential of PIMs for 

various niche applications on a practical scale.  The discussions provided, however, also 

emphasize the need for more fundamental research before any such practical applications of PIMs 

can be realised.  This is specifically important for small organic compounds because to date 

scientific investigation involving the extraction and transport of these compounds remains 



 

limited.  Transport mechanisms of small organic compounds are less well understood and are 

likely to be more complex than those observed with the transport of metal ions. 

Keywords: Polymer inclusion membranes (PIMs), extraction, liquid membranes, carrier-mediated 

transport, mineral processing, metal recovery. 
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1 INTRODUCTION 

In recent years, membrane-based processes have attracted considerable attention as a valuable 

technology for many industries.  This significant gain in momentum is driven in part by 

spectacular advances in membrane development, wider acceptance of the technology as opposed 

to conventional separation processes, increased environmental awareness and most of all stricter 

environmental regulations and legislation.  However, despite a recent market boom in all other 

membrane sectors including membrane filtration and electrodialysis, practical applications of 

liquid membranes remain largely limited.  This includes bulk liquid membranes (BLMs), 

emulsion liquid membranes (ELMs) and supported liquid membrane (SLMs).  BLMs have low 

interfacial surface areas and mass transfer rates while emulsion breakage is the main problem 

associated with ELMs.  A major drawback associated with SLMs is poor stability.  These factors 

have severely rendered liquid membranes mostly impractical for many large scale applications [1, 

2].     

Nevertheless, given the essential need for metal ion recovery as well as for the extraction of 

numerous small organic compounds over the last two decades in hydrometallurgy, biotechnology 

and in the treatment of industrial wastewater, significant scientific effort has been expended to 

understand [3] and improve [4] the stability of liquid membranes.  The number of scientific 

investigations devoted to this topic has been rising steadily [1].  Such dedicated works have 

resulted in a novel type of liquid membranes, commonly called polymer inclusion membranes 

(PIMs) [5], although a number of other names are also being used such as polymer liquid [6, 7], 

gelled liquid [8], polymeric plasticized [9-11], fixed site carrier [12-14] or solvent polymeric [15, 

16] membranes.  PIMs are formed by casting a solution containing an extractant, plasticizer and a 

base polymer such as cellulose triacetate (CTA) or poly(vinyl chloride) (PVC) to form a thin, 

flexible and stable film.  The resulting self-supporting membrane can be used to selectively 

separate the solutes of interest in a similar fashion to that of SLMs.  In several studies [8, 17, 18], 

PVC has been used to simply gel the liquid phase of an SLM to stabilize it within the pores of an 

inert support.  In these cases, the PVC concentration of the membrane was much lower than that 

used for a self-supporting membrane. 



3 

PIMs retain most of the advantages of SLMs while exhibiting excellent stability and versatility.  

The lower diffusion coefficients often encountered in PIMs can be easily offset by creating a 

much thinner membrane in comparison to its traditional SLM counterpart.  In several cases, PIMs 

with higher fluxes than those of SLMs have been reported [5, 19, 20].  In contrast to SLMs, it is 

possible to prepare a PIM with negligible carrier loss during the membrane extracting process [5, 

11, 19, 20].  In addition, the amount of carrier reagent can be greatly reduced, hence creating the 

possibility of using more expensive extractants, which in the past could only be used for high 

value metals or organics.  This will no doubt create a wider range of applications for PIMs.  It is 

also noteworthy that the mechanical properties of PIMs are quite similar to those of filtration 

membranes.  The technological advancements achieved with filtration membranes for 

manufacturing, module design and process configuration will be particularly useful for the large 

scale practical realization of PIMs [21].  Consequently, this will enable PIM based systems to 

exhibit many advantages such as ease of operation, minimum use of hazardous chemicals and 

flexibility in membrane composition to achieve the desired selectivity as well as separation 

efficiency.   

It is interesting to note that PIMs have been used in chemical sensing for more than 30 years in 

the form of polymer membrane ion-selective electrodes (ISEs) [22].  In 1970 [23], it was 

demonstrated that the organic liquid of a calcium selective liquid membrane ISE could be 

immobilized into PVC to produce a polymer film with identical calcium sensing properties and 

selectivity as the organic liquid itself.  Since that time there have been numerous PVC-based 

membranes developed for the potentiometric sensing of various cations and anions.  Such 

membranes for use in potentiometry have also been termed “gelled liquid membranes” and 

“entangled liquid membranes” [22]. 

About the same time as this first reported use in ISEs, Bloch et al. [21] demonstrated that PVC-

based membranes could also be used for metal ion separation although the requirements for the 

membrane characteristics were somewhat different for the two applications [21, 22].  In sensing, 

fast ion-exchange or metal ion complexation is required at the sample solution/membrane 

interface to rapidly establish the interfacial electrical potential difference but there should be 

negligible transport of the metal containing species through the membrane within the timescale of 

the measurement.  In separation, fast interfacial reactions are required but in this case, high 
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diffusion coefficients of the metal containing species within the membrane are also desirable in 

order to achieve mass transport from the source to the receiving phase within a reasonable 

timeframe. 

This review aims at providing a comprehensive summary of the current knowledge relevant to 

PIMs for the extraction of various metal ions and small organic solutes.  Membrane stability, 

selectivity and transport rates are discussed in relation to the physicochemical properties of the 

base polymers, carriers and plasticizers as well as the characteristics of the target metal ions or the 

organic solutes.  Transport mechanisms and their mathematical models are also delineated.  It 

should be emphasized that all the research on PIMs carried out so far has been conducted on a 

laboratory scale and the transition of this research to a pilot or full scale application presents a 

major challenge for the future. 

2 BASE POLYMERS FOR MEMBRANE PREPARATION 

The base polymers play a crucial role in providing mechanical strength to the membranes.  

Despite a vast number of polymers currently used for many engineering purposes, it is surprising 

that PVC and CTA have been the only two major polymers used for most of the PIM 

investigations conducted so far.  Although the feasibility of several cellulose derivatives (i.e. 

cellulose acetate propionate (CAP) and cellulose tributyrate (CTB)) as base polymers for PIMs 

has recently been studied [24], a large number of polymers that can possibly be used for PIMs 

remains unexplored.  To some extent, this is because both PVC and CTA can be used to prepare a 

thin film with a relatively simple procedure based on dissolution in an organic solvent.  Another 

factor is the dearth of information regarding the role of base polymers in mechanically supporting 

the membranes, enhancing the membrane stability and at the same time creating a minimal 

hindrance to the transport of metal ions and small organic compounds within the membranes. 

Polymers that make up the skeleton of a PIM are thermoplastic [25].  They consist of linear 

polymer strands and because there are no cross-links between these strands, they can be dissolved 

in a suitable organic solvent, where the polymer strands become separated.  The mechanical 

strength of a thermoplastic thin film membrane is a combination of intermolecular forces and the 

process of entanglement [26].  The former determines the flexibility of the material with high 

intermolecular forces resulting in a rigid membrane.  The latter is the result of random diffusion 
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of the flexible polymer strands in a sol as the solvent evaporates [26].  Consequently, a very 

stable thin film can be formed, despite the absence of any intermolecular covalent bonds even 

though it should be noted that there is a disentanglement process occurring over a very long time 

scale.  It is, however, essential that the molecular weight (MW) of the polymer used is larger than 

the critical entanglement molecular weight (MWc) of that polymer.  MWc values together with the 

glass transition temperature (Tg) or the melting temperature (Tm) of several base polymers which 

have been used in PIMs are presented in Table 1.  It is noteworthy that most, if not all, of the PIM 

studies available in the literature have used base polymers with a MW much higher than the 

corresponding MWc values.  Above these MWc values, variation in the base polymer MW is 

speculated to exert a negligible influence on the membrane mechanical strength and performance 

as experimentally illustrated by Rais et al. [27]. 

[TALBE 1] 

Although both PVC and CTA have been widely used to prepare PIMs, understanding the effect of 

the properties of these polymers on the performance of PIMs is still limited.  CTA is a polar 

polymer with a number of hydroxyl and acetyl groups that are capable of forming highly 

orientated hydrogen bonding.  In contrast, the C-Cl functional group in PVC is relatively polar 

and non-specific dispersion forces dominate the intermolecular interactions.  Consequently, PVC 

is an amorphorous polymer with a small degree of crystallinity whereas CTA is often highly 

crystalline [28].  Furthermore, while CTA can be slightly hydrated [29], PVC is virtually not.  

This hydration characteristic of CTA and other cellulose derivatives makes them prone to 

hydrolysis, particularly in an acidic environment [24, 30].  The polarity and crystalline nature of 

the CTA polymer may render it incompatible with high concentrations of hydrophobic non-polar 

carriers.  For example, Gherrou et al. [13] reported the formation of crystalline layers of crown 

ether within the CTA domain at a sufficiently high crown ether concentration.  As a result, metal 

ion transport at such a high carrier concentration becomes ineffective [13].  However, it is 

noteworthy that the excellent mechanical strength of CTA is mostly attributed to its crystalline 

domain [28].  In addition, cellulose-based polymers are highly infusible [28], which makes them 

particularly useful for PIM applications. 

While the base polymers merely provide mechanical support to the membrane, their bulk 

properties appear to be an important factor in governing metal ion transport through the 
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membrane.  To date, it is not possible to accurately predict the bulk properties of a polymer based 

on a finite set of physical parameters.  However, the glass transition temperature (Tg) for an 

amorphorous polymer or the melting temperature (Tm) for a crystalline polymer are often used to 

characterise the inherent polymer flexibility and its microstructural characteristics.  It should be 

pointed out that both amorphorous and crystalline domains exist in any thermoplastic polymer.  

Below the glass transition temperature (Tg), the polymer is rigid and glassy and individual 

polymer strands are unable to change their conformations.  Since this condition is thought to be 

unfavorable for metal ion transport in membranes, plasticizers are often added to the polymer to 

lower its Tg value and create more flexible and less brittle membranes.  In fact, in a pure polymer 

without a plasticizer, the Tg or Tm value is usually much higher then room temperature (Table 1).  

Consequently, all PIMs reported in the literature contain some form of plasticizer unless the 

carrier itself can also act as a plasticizer.  The significance of plasticizers in enhancing metal ion 

fluxes is discussed in Section 4. 

3 CARRIERS 

Transport in PIMs is accomplished by a carrier that is essentially a complexing agent or an ion-

exchanger.  The complex or ion pair formed between the metal ion and the carrier is solubilized in 

the membrane and facilitates metal ion transport across the membrane.  The well known classes 

of solvent extraction reagents namely basic, acidic and chelating, neutral or solvating, and 

macrocyclic and macromolecular have all been studied in PIMs. The types of carriers used in PIM 

research as reported in the literature along with the target metal ions or organic solutes are 

summarized in Table 2.  

[TABLE 2] 

Much of the research on PIMs has been conducted using commercially available solvent 

extraction reagents as carriers although some papers report on the use of newly synthesized 

reagents.  However, in most cases the physicochemical properties of these new compounds are 

not well documented.  The chemical reactions that are involved in the extraction and stripping of 

target solutes using PIMs are essentially the same as for the corresponding solvent extraction 

systems.  However, the essential difference between the two systems is associated with the 

transport of the target solutes through the membrane and it is this aspect that has formed the focus 
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of much of the research on PIMs.  The main objective of PIM research is to maximize the 

membrane fluxes whilst retaining the extraction efficiency and selectivity of the corresponding 

solvent extraction system. 

The actual transport phenomena in PIMs and SLMs are, however, quite complex and can be 

strongly influenced by both the physicochemical properties of the carrier and the target solute and 

to a lesser extent by the chemical composition of the membrane phase as well as the source and 

receiving solutions.  Although several dedicated investigations have discussed the significance of 

these physicochemical properties [31-34], more research is still needed to elucidate the intricate 

relationships between these factors and the membrane permeability and selectivity.  

Understanding these relationships is particularly important given the diversity of carriers being 

studied which have significant differences in their physicochemical properties and transport 

modes.  It is noteworthy that while there are a number of commercial carriers available, there are 

many more that are being synthesized and reported.  Basic, acidic and solvating carriers are 

common reagents in solvent extraction and have been extensively studied and used on a large 

industrial scale in many hydrometallurgy applications [35-37].  Macrocyclic and macromolecular 

compounds are also of particular interest to many PIM researchers due to their specific host-guest 

complexation regimes which often result in excellent separation selectivity [38].  They can, 

however, be quite expensive for large scale applications and their environmental implications as 

well as many other characteristics remain unknown at this stage.  Carriers in this group have been 

used in almost half of the PIM investigations reported to date in the literature (Table 2).  

Furthermore, macrocyclic and macromolecular compounds, unlike other carriers, have been 

shown to be useful for the separation of the alkali metals.   

In addition to membrane selectivity, transport efficiency is another critical consideration for 

PIMs.  It can be expected that the molecular structure of the carrier can markedly influence the 

rate of transport of the target solutes across the membrane.  Walkowiak et al. [33] studied the 

transport of alkali metal cations across PIMs containing a sym-(alkyl)-dibenzo-16-crown-5-

oxyacetic acid with side arms of different alkyl chain lengths geminally attached to the lariat ether 

as the carrier.  Maximal flux was found when the alkyl side arm contained 9 carbon atoms with 

considerably lower transport efficiency when the alkyl chain was longer or shorter [33].  In 

another study, Aguilar et al. [32] demonstrated that both membrane selectivity and transport 
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efficiency could be optimised by designing a macrocyclic carrier with a careful combination of 

ring size and substituent groups. 

Due to the lack of experimental data, it is currently not possible to correlate in a systematic way 

the selectivity and transport efficiency with the carrier properties, although some important 

observations have been established.  For example, basic carriers with a lower basicity constant 

have been reported to have a poorer selectivity but higher transport efficiency [39].  It is 

noteworthy that different types of carriers are expected to exhibit considerably different transport 

efficiencies because of differences in their complexation mechanisms.   

The carrier molecular structure and the chemistry involved in the complexation and transport 

processes are amongst the most important factors governing the membrane selectivity.  It has 

been shown that the carrier molecular structures can be tailored to achieve a specific selectivity.  

For example, hydrophilic diazadibenzocrown ether was reported to have a higher selectivity for 

Pb(II) over Cd(II) and Zn(II) than a more hydrophobic derivative [32].  Basic carriers with a 

higher basicity constant were also reported to have a better selectivity for Cr(VI) over Zn(II) and 

Cd(II) [39].  Basic and neutral carriers often exhibit low selectivity for metals.  The 

corresponding selectivity constants varies within only about two orders of magnitude [33, 39].  

The metal ion reacts with the former via an ion-pair mechanism and with the latter via a solvating 

mechanism [40].  Both of these mechanisms are governed by electrostatic interactions and are 

non-specific in nature.  The selectivity of acidic carriers is also relatively low and is normally 

controlled by pH [41, 42].  In contrast, certain chelating carriers can offer a much better 

selectivity due to their specific and conformational interactions with metal ions [42, 43].  PIMs 

using chelating agents as the carrier can selectively transport the target metal ions [41, 43] whilst 

the flux of other metal ions is virtually zero.  Generally, excellent selectivity can be achieved with 

macrocyclic and macromolecular carriers, although it may vary significantly depending on their 

chemical structures [38]. 

4 PLASTICIZERS 

4.1 The role of plasticizers 

Strong intermolecular forces between polar groups of the polymer molecules often result in a 

brittle and rigid thin film, unsuitable for membrane extraction applications.  This is because the 
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individual molecular chains are held together by a combination of various types of attractive 

forces.  Amongst them, van der Waals forces are abundant but are weak and non-specific, while 

polar interactions are much stronger but can only occur at polar centers of the molecule [44].  The 

latter often result in a rigid non-flexible thin film with a 3-dimensional structure within its 

polymeric matrix [28, 44].  This 3-dimensional structure rigidity is, however, unfavourable for a 

diffusive flux of material within the polymer matrix [28].  Consequently, plasticizers are often 

used to increase the metal species flux as well as the membrane softness and flexibility.  The role 

of a plasticizer is to penetrate between polymer molecules and “neutralize” the polar groups of the 

polymer with its own polar groups or to merely increase the distance between the polymer 

molecules and hence reduce the strength of the intermolecular forces [44].   

While there is a large number of commercially available plasticizers, few of them have been 

tested for applications in PIMs.  Amongst them, 2-nitrophenyl octyl ether (2-NPOE) and 2-

nitrophenyl pentyl ether (2-NPPE) have been used in the majority of successful PIM studies 

currently available.  The molecular structures of several examples of plasticizers commonly 

studied with PIMs are shown in Figure 1.  Most of these plasticizers seem to have been chosen 

because of their application in ISE membranes rather than because of their commercial 

availability at low cost or because of their potential industrial applications. 

[FIGURE 1] 

As can be seen in Figure 1, plasticizers are generally organic compounds containing a 

hydrophobic alkyl backbone with one or several highly solvating polar groups.  The former 

governs the compatibility of the plasticizer with the membrane while the latter interact with the 

polar groups of the base polymer and hence “neutralize” them.  Therefore, a balance between the 

polar and non-polar portions of the plasticizer molecule is an important factor as has been 

illustrated in an early study by Sugiura [45].  In this study, lanthanide ion flux was evaluated with 

membranes made with polyoxyethylene alkyl ethers of different alkyl chain length and different 

numbers of polar oxyethylene groups.  The results indicate that the optimum number of carbon 

atoms in the alkyl chain is 12 and that of the polar groups is 2 or 3 in this homologous series.  An 

increase in the length of the alkyl chain results in a more hydrophobic, viscous plasticizer that 

eventually suppresses the polar properties of the plasticizer.  In contrast, an increase in the 
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number of polar groups decreases the viscosity and increases the hydrophilicity of the plasticizer, 

which eventually renders it unusable.   

Given their vital role in the plastics industry, plasticizers have been the subject of extensive 

scientific investigations for many decades [44].  Although findings resulting from such 

investigations may also to some extent be applicable to PIMs, many aspects of the plasticization 

process remain poorly understood.  The relationship between the membrane performance and 

plasticizer concentration as well as the physicochemical characteristics of the plasticizers is 

complex and to a large part remains poorly understood.  This is further complicated by the large 

number of essential properties often required of a plasticizer.  Notable amongst these are a good 

compatibility with the base polymer, low volatility, low viscosity, high dielectric constant, good 

resistance to migration from the base polymer, low cost and low toxicity.  Nevertheless, 

considerable effort has been made to elucidate the influence of the plasticizer on the membrane 

performance.  Results reported in such studies underline the vital role of the plasticizer as a key 

ingredient of PIMs.  It is noteworthy that several carriers such as quaternary ammonium salts and 

phosphoric acid esters can also play the role of a plasticizer.  Consequently in such cases, no 

additional plasticizers may be necessary [6, 7, 21, 46, 47].  The influence of the plasticizer 

concentration and physicochemical characteristics on membrane performance is discussed below. 

4.2 Plasticizer concentration 

Low plasticizer concentration is undesirable since it may cause the membrane to become more 

rigid and brittle due to a phenomenon commonly referred to as the “anti-plasticizing” effect [44].  

The minimum plasticizer concentration varies widely depending on both the plasticizer and the 

base polymer.  For PVC, this concentration can be in a range of up to 20% (w/w).  In a pioneering 

paper, Barshtein and Kotlyarevskii [48, 49] suggested that it was possible to determine for a given 

plasticizer the amount necessary for all polar groups on the polymer backbone to be neutralized or 

shielded from each other by a monolayer of the plasticizer.  This later became a commonly used 

parameter in the plastics industry, often denoted as phrmin (parts of plasticizer per 100 parts of 

polymer by mass). The phrmin depends on the molecular weight (MW) of the plasticizer and the 

molecular weight of one helical unit of the polymer.  For a PVC membrane, the molecular weight 

of one helical unit is 875 g/mol and phrmin can be calculated as: 
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 100
875min ×=

rplasticizeofMWphr  (1) 

This expression is particularly useful to determine a suitable plasticizer concentration for ISE 

membranes using PVC as the base polymer.  In a series of investigations, where the mechanical 

properties and dielectric characteristics of plasticized PVC electrode membranes were 

systematically examined using several plasticizers, Gibbons and Kusy [50-52] demonstrated that 

membrane performance could indeed be improved by using a plasticizer concentration closer to 

its phrmin value.  This is much smaller than the empirical amount (2 parts plasticizer per one part 

polymer) commonly used in ISE membranes, which has been proven to be rather excessive.   

In fact, excessive plasticizer concentration is problematic because the excess plasticizer could 

migrate or exude to the membrane/aqueous interface and form a film on the membrane surface, 

which would create an additional barrier to the transport of metal ions across the membrane.  

Exudation depends on the compatibility between the plasticizer and the base polymer and above 

the compatible concentration level exudation becomes more severe [29].  Furthermore, excessive 

plasticizer can significantly reduce the thin film mechanical strength, hence rendering it unusable 

in a practical situation.  Several studies reported an increase in metal ion transport as the 

plasticizer concentration increased [10, 53, 54].  However, when considering a wider 

concentration range, it appears that there exists an optimum plasticizer concentration at which a 

maximum metal ion flux occurs and beyond that, the flux starts to decrease.  In an early 

investigation, Sugiura [45] observed that the lanthanide ion flux through a CTA membrane 

increased to an optimum value then decreased as the plasticizer concentration increased from 0 to 

2 M.  Although a plausible explanation for this observation was not given, it is consistent with 

similar observations in recent studies by Fontas et al. [9] and de Gyves et al. [43].  In the latter 

study, the permeability of Cu(II) as a function of the plasticizer tri-n-butoxyethyl phosphate 

(TBEP) concentration follows a similar trend (Figure 2) to the curve reported by Sugiura [45].  

The authors speculated that the decrease in Cu(II) permeability as the plasticizer concentration 

exceeded the optimum point was attributed to an increase in viscosity, which was unfavorable for 

the transport of Cu(II) [43].  This explanation, however, contradicts the fact that beyond the anti-

plasticizing range, plasticizer addition always results in a lower Tg and hence a less viscous 

medium.   
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[FIGURE 2] 

4.3 Plasticizer viscosity 

Metal ion transport through PIMs is accomplished by diffusion, which follows the Stokes-

Einstein relationship [55].  It is therefore not surprising that the viscosity of the plasticizer is an 

important parameter, governing the rate of transport in PIMs.  Kozlowski and Walkowiak [39] 

reported a linear correlation between the plasticizer viscosity and the chromium ion flux through 

both PVC and CTA membranes containing tri-n-octylamine (TOA) as the carrier.  This is 

consistent with the observation by Scindia et al. [55] who also investigated the chromium ion flux 

as a function of plasticizer viscosity.  These results are presented in Figure 3.  A similar 

correlation can also be inferred from a study by Sugiura [56], where the fluxes of zinc across 

CTA membranes prepared from twelve different plasticizers were reported.  However, it is 

notable from Figure 3b that the use of 2-NPOE results in a higher chromium flux than that of the 

other plasticizers even though one of them, tris(2-ethylhexyl)phosphate (T2EHP), has a similar 

viscosity.  On the basis of the Stokes-Einstein relationship alone this is an unexpected result and 

the authors point to the fact that these two plasticizers have a considerable difference in their 

dielectric constants.  The dielectric constants are 24 and 4.8 for 2-NPOE and T2EHP, 

respectively.  This argument is supported by an independent study by Mohapatra et al. [54] who 

also investigated the influence of these two plasticizers on Sr(II) transport through CTA 

membranes.  

[FIGURE 3] 

4.4 Dielectric constant 

It appears in addition to the viscosity that the dielectric constant of the plasticizer plays an 

important role in the diffusion process.  In fact, the dependence of copper ion transport on 

plasticizer concentration as reported in Figure 2 can possibly be explained by the dielectric 

constant effect.  In high dielectric constant media, ion pairs can dissociate more readily [57].  The 

individual ions have a higher diffusion coefficient than a neutral and bulky ion pair consisting of 

the target solute and the carrier [57].  In addition, this could also allow for ions to relocate more 

readily between active sites of the neighbouring fixed (or partially mobile) carriers.  The detail of 

this fixed site jumping mechanism is discussed in Section 7.2.  Kozlowski and Walkowiak [58] 
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have reported a characteristic correlation between the chromium ion flux and the dielectric 

constant of the plasticizer.  Furthermore, the curve reported previously in Figure 2 resembles very 

well the dependence of the thin film dielectric constant on the plasticizer concentration, which 

also takes the shape of a convex curve [29, 44].  Several other researchers have also attributed the 

success of nitrophenyl alkyl ether plasticizers in PIMs to their high dielectric constants in addition 

to their relatively low viscosities [9, 54, 56].     

5 MEMBRANE CHARACTERISTICS 

5.1 Morphology 

One important aspect of PIMs is the microstructure of the membrane materials, which determines 

the distribution of carriers in the polymer matrix and ultimately affects the membrane transport 

efficiency.  Consequently, considerable research effort has been devoted to clarifying this issue.  

While a variety of surface characterization techniques have been employed in these studies, 

scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been the most 

frequently used.  Results obtained from SEM and AFM studies consistently indicate a remarkable 

influence of the polymeric composition on the membrane morphology.   

Arous et al. [14] reported distinct differences between pure CTA membranes, plasticized CTA 

membranes without any carriers and plasticized CTA membranes with different macrocyclic 

carriers (Figure 4).  SEM pictures of a pure CTA membrane revealed a highly porous polymer 

matrix with a relatively uniform pore size in the sub-micrometer range, typical of that for 

filtration membranes made of cellulose acetate.  These pores vanished and a dense membrane was 

formed as the plasticizer 2-NPOE was added.  The addition of macrocyclic carriers resulted in a 

thin film with distinctive separate layers.   In the case of dibenzo 18-crown-6 (DB18C6) as the 

carrier, a well orientated fibrous structure of sub-micrometer size was clearly visible in the SEM 

image.  The formation of multilayers at high crown ether concentrations has also been reported by 

other researchers who have observed poor metal ion transport associated with this morphology 

[10, 13].  This effect was attributed to the discrete distribution of carriers within the membrane 

polymer matrix [10, 13, 14].  This possibly reflects the high degree of crystallization of both CTA 

and crown ethers as discussed previously in Section 2.     

[FIGURE 4] 



14 

Xu et al. [59] studied the morphology of PVC/Aliquat 336 membranes at various Aliquat 336 

concentrations.  In contrast to the phenomena reported above, PVC membranes with a low 

concentration of the Aliquat 336 carrier were characterized as dense thin films with no apparent 

porosity.  As the concentration of Aliquat 336 increased above 40% (w/w), the authors [59] 

reported a clear porous membrane structure with irregular shape pores and pore sizes of a few 

micrometers or less.  It was speculated that this transformation in the interior structure could 

explain the apparent increase in metal ion transport through the membranes reported by several 

other studies [6, 60] when the Aliquat 336 concentration reached 40% (w/w).  The authors, 

however, cautioned that these SEM results did not provide direct evidence as to whether these 

micro pores were previously filled with Aliquat 336 nor did they provide any evidence of the 

existence of micro channels of Aliquat 336 within the membrane polymer matrix [59].  It is 

noteworthy that membrane samples must be dry and coated with a thin layer of conductive 

material such as gold, chromium or carbon prior to SEM analysis.  Moreover, due to a relatively 

low resolution, it is often difficult to discern features at the nanometer scale or smaller.  For this 

reason, AFM is often employed in conjunction with SEM to improve resolution.   

Several studies using AFM have been reported and the results are in good agreement with those 

obtained in SEM studies.  Because PIMs are usually cast on a glass surface, the morphology of 

the membrane surface on the glass side can be quite different to that of the membrane surface 

exposed to air.  Wang et al. [6] reported a smoother surface at the glass interface when they 

examined the surface morphology of PVC/Aliquat 336 membranes.  This difference is however 

alleviated as the concentration of Aliquat 336 increases above 50% (w/w).  Given that Aliquat 

336 can play the role of a plasticizer and the fact that Aliquat 336 preferentially migrates to the 

membrane/air surface, results reported in their studies suggest a possible influence of the 

plasticizer on the membrane surface roughness.  This is consistent with studies by Walkowiak et 

al. [33] and Kozlowski and Walkowiak [58], in which a marked difference was shown in the 

surface roughness of CTA/TOA membranes with and without a plasticizer.  A combination of 

CTA and TOA resulted in a relatively smooth membrane surface while addition of the plasticizer 

2-NPPE dramatically increased the membrane surface roughness.  In another study, Wang and 

Shen [61] examined the surface topography of PVC/Aliquat 366 membranes before and after 

extraction experiments with Cu(II) as the target metal ion.  Based on AFM images, they reported 

a slight increase in the membrane surface roughness after a 2 week exposure to a Cu(II) solution.  
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The authors attributed this to the redistribution of the carrier within the membrane polymer 

matrix.  However, values of the surface roughness were not reported in this study. 

Although both SEM and AFM techniques are versatile and can provide good visual confirmation 

of the membrane surface and to some degree the membrane interior structure, to date, studies 

employing these techniques have not been able to clearly elucidate the distribution of carrier and 

plasticizer within the membrane.  Consequently, more advanced material characterization 

techniques have been attempted.  Tripathi et al. [62] examined the distribution of carrier within 

the membrane by pre-extracting Cs+ and Ag(I) into the membrane and then mapping the 

distribution of these high atomic mass metal ions using the Rutherford backscattering 

spectrometry (RBS) technique.  Their results suggested a uniform distribution of organic carrier at 

a microscopic scale.  Although this conclusion is in contradiction to the hypothesis about micro 

channels filled with carrier outlined above, it is prudent to note that evidence available to date 

remains too limited to conclusively eliminate this speculation.      

5.2 Permeability 

The rate of metal ion transport through PIMs is arguably a decisive factor influencing the 

commercialization of this technology.  Not surprisingly, most of the PIM studies available to date 

have reported on this crucial parameter, although often not in a consistent form.  While permeate 

fluxes up to several μmol m-2 s-1 can be commonly found in studies cited in this review, a 

permeate flux as high as 45 μmol m-2 s-1 for Cr(VI) through a CTA membrane containing TOA 

and plasticized with 2-NPPE ether has been reported [39].  In most cases, the permeate flux for 

PIMs is marginally lower than that for SLMs.  Although the actual transport mechanisms can be 

quite different, transport in both PIMs and SLMs is governed by a number of factors including the 

membrane morphology, membrane composition, solution chemistry in the source and receiving 

phases as well as the temperature.  Because many aspects of PIMs remain unclear at this stage, 

interpretation and comparison of the current literature data will require a careful consideration of 

the experimental conditions involved.  As we delineate in the section below, a comprehensive 

understanding of the influence of these factors on the membrane transport rate is particularly 

important for the design and implementation of PIMs.  
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PIMs and SLMs are distinctively different in their interior structures as well as in their surface 

morphologies.  Because SLMs consist of a porous supporting layer impregnated with carrier and 

diluent, metal ions can be transported through a network of fluid-filled micro channels.  

Consequently, transport is subject to the tortuosity of this network and is limited by the available 

surface area.  In contrast, PIMs can be viewed as non-porous and as discussed in the previous 

section, there is no convincing evidence of a micro channel network in which metal ion transport 

can take place.  As a result, the whole membrane is available for transport.  Although the 

diffusion coefficients of the target solutes in PIMs are generally one or two orders of magnitude 

lower than those in SLMs, several cases of comparable [9, 11, 55] or even higher diffusion 

coefficient values [5, 19, 20] in PIMs have been reported when both types of membranes have 

been investigated under similar extraction conditions.  Taking account of the fact that transport 

can be further improved by preparing a much thinner membrane, PIMs have the potential to offer 

a very competitive transport rates.   

Transport through PIMs can be strongly influenced by the membrane morphology.  In certain 

cases, a high concentration of a crown ether carrier may result in a crystalline thin film 

characterized by distinctively separate layers [10, 13, 14].  This morphology was found to be 

unfavourable for transport in PIMs and was often associated with poor target solute fluxes [10, 

13, 14].  The membrane surface roughness is also an important morphology parameter.  Wang et 

al. [6] reported a slight but discernible increase in metal ion transport when the rougher side of 

the PIMs was exposed to the source solution.  This is consistent with other studies, where a 

positive correlation between metal ion permeability and the membrane surface roughness was 

also observed [55, 58].  However, it should be noted that an increase in surface roughness can be 

attributed to the addition of a plasticizer and therefore the membrane surface roughness can also 

be related to the membrane composition.  

Results from several PIM studies indicate a considerable influence of the membrane composition 

on the transport rate of the target solutes.  However, the data remain quite scattered and the 

variation in permeate flux following any changes in the membrane composition depends quite 

substantially on the characteristics of each constituent involved.  As discussed previously, there 

exists an optimum concentration of plasticizer concentration at which a maximum rate of 

transport is achieved.  Similar observations for the carrier concentration have also been reported 
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for several macrocyclic carriers [10, 13, 14, 63], which is possibly due to their high 

hydrophobicity and crystallization capacity.  In contrast, other researchers reported an increase in 

the permeate flux with increasing concentration of TOA [64], lasalocid [11] and Aliquat 336 [9] 

in CTA-based membrane.   In the first two cases, the permeate flux approached a plateau value, 

while in the latter case, a linear increase in permeate flux was reported.  In another study, 

Kozlowski and Walkowiak [58] compared the transport efficiency between CTA-based and PVC-

based membranes containing a relatively high TOA concentration in the range from 0.9 to 1.45 M 

(based on plasticizer volume) and plasticized with 2-NPPE.  At 0.9 M TOA, the CTA-based 

membrane produced a higher permeate flux than that of PVC.  However, the Cr(VI) permeate 

flux of the PVC-based membrane increased at a considerably higher rate than that of CTA as the 

TOA concentration in the membrane increased.  Consequently, at a TOA concentration of 1.45 

M, the permeate flux of both membranes was quite comparable.  The authors attributed this to the 

hydrophobicity difference between CTA and PVC and argued that a high concentration of carrier 

was needed for a high degree of compatibility within the membrane polymer matrix.  The results 

summarized here emphasize the significance and complexity of this issue, which will remain an 

important topic for further research in the years to come.  

The driving force in a PIM system is principally the concentration gradient across the membrane 

of either the metallic species itself or another species known as the coupled-transport ion [12, 58, 

65-68].  Consequently, the ionic compositions of both the source and the stripping solutions play 

a vital role in governing the metal ion transport process.  Kozlowski and Walkowiak [58] studied 

the effect of the source solution pH on Cr(VI) transport across a CTA-based membrane 

containing TOA and 2-NPPE as plasticizer.  They observed that the Cr(VI) permeate flux 

increased as the pH of the source phase decreased.  In this particular case, the difference in pH 

between the source and receiving solutions produces a proton concentration gradient across the 

membrane and consequently, the transport of protons through the membrane results in an uphill 

transport of HCrO4
– in order to maintain electroneutrality in both liquid phases.   

The driving force in a PIM system can also be influenced by the mobility of the coupled transport 

ion within the organic phase of the membrane [68].  In general, the efficiency of the coupled 

transport ions increases in the opposite order of their hydrated radii as follows: 

F – < Cl –  <  Br – < NO3 
–  < SCN –  < I –  < IO4

–  < ClO4 
–  < picrate – 
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This is evidenced in several studies where transport experiments were carried out with several 

different coupled transport ions under a similar concentration gradient [12, 65-68].  In these 

studies, better transport of the target metal ion was consistently reported when lower hydrated 

energy ions were employed as the driving ion.  Ions are hydrated in aqueous solutions and 

because the membrane phase is hydrophobic, transport of such hydrated ions is thought to be 

restricted, depending on their hydration energy or the number of attached water molecules [12].  

Similarly, Levitskaia et al. [68] demonstrated that permeability can be predicted based on the 

Gibbs energy of ion partitioning between the source and membrane phases, which is essentially 

related to the hydrated energy of the ion.  However, it must be emphasized that most if not all of 

the coupled transport ions can act as complexing agents.  Consequently, the phenomena discussed 

here are further complicated by the fact that the types of metallic species present are often 

concentration dependent [69].  In addition, transport of the target metal ion may also be 

influenced by the competition with other ions present in the aqueous phase.  Wionczyk et al. [70] 

found that the effect of H2SO4 concentration in the source solution on Cr(VI) transport across a 

CTA-based membrane containing a basic carrier and plasticized with 2-NPOE can be described 

by a convex parabolic relationship.  This appears to contradict the observation reported by 

Kozlowski and Walkowiak [58] discussed previously because the driving force is also the proton 

concentration gradient.  However, according to Wionczyk et al. [70] the sulfate ion competed 

with the chromate ion for transport and as a result Cr(VI) transport started to decrease at a 

sufficiently high sulfate ion concentration. 

5.3 Selectivity 

Selectivity is undoubtedly an important issue in the implementation of PIMs for a number of 

reasons.  In environmental applications, the concentration of the target metal ions can be quite 

low and reasonably high selectivity is essential for an effective treatment.  In hydrometallurgical 

applications, purity is a key factor in determining the commodity price of a given metal, 

particularly for those of high value [71].  Impurities can also affect downstream processing such 

as electrowinning operations where only a certain level of impurity can be tolerated [72].   

In a solvent extraction process, because the selectivity between two metal ions depends almost 

entirely on the difference in lipophilicity of the metal complexes provided that complexation can 

be formed with both ions.  Consequently, the selectivity is usually low and numerous extraction 
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stages are often required to increase the selectivity [73].  This flexibility in process design is, 

however, not available in membrane extraction systems.  Fortunately, data available in the SLM 

and PIM literature consistently indicate that a membrane extraction process can achieve an 

appreciably higher selectivity than that encountered in solvent extraction although the underlying 

mechanisms for this phenomenon have not been adequately studied to date.  The discussion 

below is restricted to selectivity amongst metal ions involving the same complexation 

mechanisms with the carriers used. 

It is important to point out two fundamental differences between solvent extraction and PIMs as 

well as other liquid membranes used for separation [41, 69].  Firstly, while there can be an excess 

of extractant in solvent extraction, reactive sites or the availability of carrier in a PIM are 

restricted.  Secondly, extraction and back-extraction in PIMs occur simultaneously as opposed to 

their consecutive arrangement in solvent extraction.  In fact, it would be wrong to view the mass 

transfer phenomena in PIMs (or in fact membrane extraction in general) as analogs of those in 

solvent extraction [69].  In a recent study by Gyves et al. [43] only Cu(II) transport was observed 

with a PIM prepared with LIX® 84-I, CTA, and tris(2-n-butoxyethyl) phosphate when the source 

solution contained a tenfold excess of Fe(III) and Zn(II).  The source solution in this experiment 

was adjusted to pH 5.0, at which pH considerable extraction of Fe(III) and Zn(II) would occur 

based on the extraction isotherm for LIX® 84-I which can be found in the solvent extraction 

literature.  This is consistent with observations reported in two separate investigations by Ulewicz 

et al. [42] and Aquilar et al. [41].  In the former study, the selectivity for Pb(II) over Cd(II) was 

140 with PIMs using Kelex 100, significantly higher than the theoretical selectivity (c.a. 

threefold) obtained in a single stage solvent extraction process at the same extraction pH.  In the 

latter study [41], when employing PIMs consisting of CTA, 2-NPOE, and di(2-ethylhexyl) 

phosphoric acid (D2EHPA), the selectivity for Zn(II), Cu(II) and Co(II) was considerably 

different despite the fact that solvent extraction isotherms indicated that their extraction 

coefficients would be comparable at the same pH used in the PIM extraction experiments.  

Further data showing similar trends have also been reported, although it is not possible to make a 

direct comparison to a corresponding solvent extraction process in these studies [32, 33, 39, 74, 

75].  Such data underscore fundamental differences in transport mechanisms between solvent and 

membrane extraction processes.  Aquilar et al. [41] suggested a direct competition for active 

transport sites in PIMs due to their limited availability.  However, to date, no attempts have been 
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made to relate complexation stability constants and selectivities amongst competing metal ions.  

Furthermore, it has also been proposed that the high selectivity observed in PIMs could possibly 

be attributed to differences in complexation kinetics [69].  Given the difference in structure 

between PIMs and SLMs, they are expected to exhibit different selectivities under similar 

experimental conditions.  For example, PIMs were reported to have a better selectivity for Pt(IV) 

over Pd(II) than that of SLMs when exposed to identical source and receiving solution conditions 

[9].  Unfortunately, further data from the literature to substantiate this premise are not available at 

this stage.  It is prudent to note that the discussion presented here remains quite speculative 

because of the lack of comprehensive data related to these important issues.  However, this fact 

clearly highlights the need for further fundamental research to fully understand the transport 

phenomena observed with PIMs.   

5.4 Stability 

A major reason for the limited use of SLMs on a large industrial scale is the membrane stability 

or lifetime, which, in general, is far too low for commercial applications [1, 2, 76-78].  This is 

possibly a major motivation for the development of PIMs.  In SLMs, the capillary force or 

interfacial tension is responsible for the binding of the membrane liquid phase to the supporting 

pores [76, 77].  This form of adhesive force is, however, weak and membrane breakdown can 

easily occur via several destabilizing mechanisms including lateral shear forces, emulsion 

formation and leaching of the membrane liquid phase to the aqueous phase, which can be 

worsened by an osmotic flow [76, 77].  In contrast, in PIMs, as we have discussed previously, the 

carrier, plasticizer and base membrane are well integrated into a relatively homogeneous thin 

film.  Although several FTIR studies [10, 13, 14] have revealed no signs of covalent bond 

formation between the carrier, plasticizer and the base membrane skeleton, it is most likely that 

they are bound to one another by a form of secondary bonding such as hydrophobic, Van der 

Waals or hydrogen bonds.  These secondary bonds are much stronger than interfacial tension or 

capillary forces.  Consequently, PIMs are considerably more stable than SLMs as clearly 

evidenced in the PIM studies discussed in this review, where a comparison of the stability 

between these two types of membranes has been a focus of the work [11, 19, 20, 55].  Kim et al. 

[19, 20] have investigated the stability of PIMs and SLMs under similar experimental conditions.  

They reported no flux decline or evidence of material losses within 15 days of continuous 
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transport experiments with PIMs containing CTA, 2-NPOE and macrocyclic carriers.  In contrast, 

leakage of the organic material became clearly evident in the SLM counterparts after 48 hours 

agitation in aqueous solutions.  The superior stability of PIMs over SLMs has also been reported 

for membranes using Aliquat 336 as carrier [55].  Under similar experimental conditions, stable 

performance of PIMs for 30 days was recorded while organic material leakage from SLMs was 

reported after only 7 days.  Table 3 summarizes the results from several PIM studies, in which 

membrane lifetimes have been reported.  It is noteworthy that while leakage of the membrane 

liquid is usually used to assess the stability of a SLM, the membrane lifetime reported in Table 3 

for PIMs was evaluated using flux stability because no carrier or plasticizer losses could be 

observed in most of these studies.     

In general, PIMs are highly resistant to carrier and plasticizer leakage.  This has probably 

prompted a recent investigation focusing instead on the hydrolysis of base polymers under 

extreme conditions.  Gardner et al. [24] have studied the stability of PIMs prepared from a crown 

ether, 2-NPOE and various cellulose polymer derivatives including cellulose triacetate (CTA), 

cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and cellulose tributyrate 

(CTB).  The authors have consistently demonstrated that durability of the base polymer increases 

as longer alkyl chains are added to the cellulose glucoside backbone units.  However, the 

membrane permeability was found to decrease proportionally.  Furthermore, they reported that 

the membranes broke down quickly under caustic conditions (3 M KOH) while a much longer 

lifetime was reported under acidic conditions (3 M HNO3).  Hydrolysis of the CTA based 

membrane occurred within 2.9 days under caustic conditions.  Under acidic conditions, the CTA 

based membrane was stable for 12.3 days.  In another study [30], it has also been reported that the 

CTA based membranes quickly decomposed when the source phase contained 1 M LiOH.  

Stability of PVC-based PIMs has not been systematically studied.  However, on the basis of its 

polymeric structure, PVC based membranes are expected to be more resistant to hydrolysis under 

extreme caustic or acidic conditions.  

[TABLE 3] 

Nevertheless, it is necessary to emphasize that carrier loss from PIMs under certain conditions has 

been reported in several studies [7, 31, 79].  Although PIMs are typically solid thin films, the 

carriers remain in a quasi-liquid state and are in contact with the aqueous phase on both the 
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source and receiving sides.  Consequently, hydrophobicity and water solubility are probably 

amongst the most critical parameters governing the carrier leaching behavior [7, 30, 32].  

Nazarenko and Lamb [31] reported a noticeable loss of the DC18C6 carrier from their CTA/2-

NPOE-DNNS membranes.  However, this problem was resolved by using a more hydrophobic 

carrier (t-buDC18C6) and the membranes remained stable after several weeks of experimentation 

[31].  Similarly, while a CTA based membrane containing 2-NPOE and 1,3 calix[4]arene-

biscrown-6 became unstable after a few repetitive transport experiments, membrane lifetime 

under continuous operation of over a month was reported when the carrier was substituted with 

1,3 bis(dodecyloxy)calix[4]arene-crown-6, which is more hydrophobic due to the addition of two 

dodecyl chains [30].  In fact, most of the leaching problems are associated with hydrophilic 

carriers with an octanol-water partitioning coefficient (log Kow) of less than 5 [30, 32]. The 

hydrophobicity of the carrier and its water solubility can be strongly influenced by the solution 

chemistry of the aqueous phase.  For example, β-diketone loss at a high source solution pH has 

been reported [79].  This is because β-diketones can dissociate at high pH and therefore become 

much more soluble in water [79].  Similarly, Argiropoulos et al. [7] reported considerable Aliquat 

336 loss from a PVC-based membrane when the membrane was submerged in distilled water for 

10 days.  However, negligible Aliquat 336 loss (within 2.5% in 10 days) was observed when a 2.5 

M HCl solution was used.  The evidence reported in this study indicates a possible influence of 

the solution pH on the water solubility of Aliquat 336 and subsequently on the stability of the 

membranes using this carrier.     

Of particular note is that macrocyclic and macromolecular carriers were used in all but one of the 

studies reported in Table 3.  Further studies will be needed to evaluate the lifetime of membranes 

involving the use of other types of carriers, particularly those that are currently commercially 

available.  While there is no universal benchmark for a satisfactory membrane lifetime, it is clear 

that lifetimes of PIMs will continue to be extended as additional base polymers, carriers and 

plasticizers are being investigated and as the operating conditions and the membrane composition 

are being optimized.  Nevertheless, even with the current expected lifetime, it has been predicted 

that PIMs would be commercially useful in a range of niche applications in the near future [78].    
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6 EXTRACTION AND TRANSPORT STUDIES IN PIMs 

To date, all research on PIMs has been conducted on a laboratory scale.  For extraction studies, 

beaker experiments have been used where the PIM is immersed in a solution of the target species 

and samples of the solution are taken at various time intervals for analysis.  Some extraction 

experiments have also been carried out in a two-compartment transport cell of a similar design to 

that used in a typical SLM experiment (Figure 5).  However, this type of cell is more commonly 

used in transport studies.  The transport process across PIMs involves essentially the exchanging 

of ionic species between these two compartments via the membrane phase which separates them.  

The overall transport process is quite similar for all four types of carriers.  Uphill transport of the 

target solute across the membrane can be achieved with a suitable ionic composition in the source  

and receiving compartments.  However, because of different complexation mechanisms involved, 

the transport characteristics and choices of the ionic compositions for both the source and 

receiving phases with respect to each type of carriers are distinctively different.  This is evident in 

the following sections where the PIM studies reported to date are systematically reviewed and 

discussed on the basis of the carrier type. 

[FIGURE 5] 

6.1   Basic carriers 

Basic carriers include high molecular mass amines, e.g. tri-n-octylamine (TOA). In addition, 

some weakly basic compounds such as alkyl derivatives of pyridine N oxides also belong to this 

group e.g. 4-(1’-n-tridecyl)pyridine N-oxide (TDPNO).  A number of researchers [80-82] have 

classified fully substituted quaternary ammonium compounds (e.g. Aliquat 336) as basic carriers 

though they do not have a lone electron pair at the nitrogen atom.  The reason for this 

classification, which is also used in the current review, is based on the similarity in the extraction 

mechanism involving amines and fully substituted quaternary ammonium compounds.  Chemical 

structures of these basic carriers are shown in Figure 6. 

 [FIGURE 6] 

In the case of fully substituted quaternary ammonium compounds, which of course are not truly 

basic because there is not a lone pair of electrons on the nitrogen atom, the carrier in the PIM 
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reacts as an anion exchanger forming an ion-pair with a metal anion complex from the aqueous 

phase.  While in the case of amines and the weak bases mentioned above, the carrier must be 

protonated first to react with the metal anion complex or react directly with a protonated metal 

anion complex [40].  In addition, amines can be used to extract simple mineral and organic acids 

as well as small saccharides [83-85].  With the exception of the saccharides that can form 

hydrogen bonds with the carrier via their hydroxyl groups, the extraction of the other solutes with 

amines takes place at a source solution pH below the pKb value of the carrier.  

Basic carriers have been used quite extensively in PIMs studies for the extraction and transport of 

precious and heavy metals (Table 2).  The majority of these studies make use of the fact that such 

metals readily form anionic complexes with the chloride ion.  While no PIMs containing basic 

carriers have been reported to date for the separation of actinides such as uranium and plutonium, 

it is noteworthy that these carrier reagents have been used quite extensively in solvent extraction 

for the separation of these metals [86]. 

Argiropoulos et al. [7] have studied the extraction of Au(III) from hydrochloric acid solutions 

using a PVC membrane containing Aliquat 336 chloride (R4N+Cl–).  For a membrane containing 

50% (w/w) Aliquat 336, gold was completely extracted from a 2.5 M HCl solution containing 100 

µg/l of gold within 75 h.  The following reaction mechanism was proposed: 

 −−+ + aqmem AuClClNR 44  −−+ + aqmem ClAuClNR 44  (2) 

where mem and aq refer to the membrane and aqueous phases, respectively. 

Transport studies were carried out on this system using a two compartment cell with a solution of 

thiourea as the receiving phase.  However, it was found that thiourea was transported to the 

source phase thus stopping the gold transport after 50% had been transported.  The transport of 

thiourea using this membrane has been the subject of a separate study [87]. 

This system was aimed at the recovery of gold from electronic scrap and was tested on a sample 

of scrap containing 96% (w/w) copper, 0.13% (w/w) gold and a low concentration of iron.  This 

was dissolved in Aqua Regia and the resulting solution diluted to give a HCl concentration of 2.5 
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M.  It was found that all the gold could be extracted by the membrane with a selectivity factor of 

5×105 for gold over copper.  

The transport of platinum(IV) has been studied by Fontas et al. [9] using a CTA membrane 

containing Aliquat 336 and 2-NPOE as plasticizer.  The source phase consisted of Pt(IV) in 0.5 M 

NaCl at pH 2 and the receiving phase was 0.5 M NaClO4 at pH 2.  The authors proposed the 

following transport mechanism: 

Source phase: 

 memaq ClNRPtCl )(2 4
2
6

−+− + aqmem ClPtClNR −−+ + 2)( 2
624  (3) 

Receiving phase: 

 aqmem ClOPtClNR −−+ + 4
2
624 2)( aqmem PtClClONR −−+ + 2

6442  (4)   

A suggestion was made that the driving force for the transport of Pt(IV) was provided by the high 

ClO4
- concentration gradient.  However, this was not verified by analyzing the source solution for 

the perchlorate ion. 

The authors also conducted a comparison between the PIM and the corresponding SLM.  It was 

found that the flux of Pt(IV) for the PIM system exceeded that of the SLM when a certain 

threshold concentration (250 mM) of the carrier was reached in the PIM [9].  Further, in the case 

of the SLM there was no difference in selectivity between Pt(IV) and Pd(II) while the PIM 

showed higher selectivity for Pt(IV).  This was explained on the basis of the higher 

hydrophobicity of the Pt complex compared to the Pd complex making the transport faster for Pt 

than for Pd in the PIM. 

The extraction of Pd(II) from hydrochloric acid solutions has been studied by Kolev et al. [47] 

using  PVC membranes containing up to 50% (w/w) Aliquat 336.  It was found that the extraction 

equilibrium constant (Kex) values for 40 and 50% (w/w) Aliquat 336 membranes were of the same 

order of magnitude as for the corresponding solvent extraction systems.  Pd(II) was extracted 

faster than Au(III) and was preferentially extracted over Au(III), Cd(II) and Cu(II). At high Pd(II) 

loadings a brown precipitate formed at the membrane surface.  
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Wang et al. [6] have studied the extraction of Cd(II) and Cu(II) from 2 M hydrochloric acid 

solutions using a PVC-based membrane containing 30, 40 and 50% (w/w) Aliquat 336.  The 

extraction of Cd(II) was found to be much higher than that for Cu(II) and the authors suggested 

this was because the CdCl3
- species was involved, which was present in higher concentrations 

than the CuCl3- species.  In 2 M HCl solution Cu(II) exists mainly as CuCl4
2-.  An important 

observation the authors made for this system was that the Kex values for 30 and 40% (w/w) 

Aliquat 336 membranes were close to each other whereas for a 50% (w/w) membrane the Kex 

value was more than double. They suggested that the properties of the membrane had altered 

when the Aliquat 336 concentration exceeded 40% (w/w).  This effect is the subject of another 

paper by Xu et al. [59] and is discussed in Section 5.1 of this review.  Wang et al. [6] have also 

studied the transport of Cd(II) and Cu(II) from HCl solutions to a receiving phase containing a 

much lower HCl concentration using a two compartment cell and have found that transport is 

faster for Cd(II) than for Cu(II) in keeping with the higher extraction constant for Cd(II).  

Similar results showing the preferential transport of Cd(II) over Zn(II) from acid chloride 

solutions have been reported by Walkowiak et al. [33] and Kozlowski et al. [34, 88] for CTA-

based PIMs containing TOA and the plasticizer 2-NPPE.  They have also shown that the 

selectivity coefficients decrease as the HCl concentration in the source phase is increased.  In 

these cases, ammonium or sodium acetate was used in the receiving phase.  In one of these papers 

mentioned above [34], the initial fluxes for Cd(II) and Zn(II) have been calculated using the 

membrane containing TOA and another membrane containing the carrier 4-(1’-n-

tridecyl)pyridine N-oxide (TDPNO).  It was shown that the initial fluxes for TDPNO were higher 

than for TOA whereas the selectivity coefficients were higher for TOA. 

The competitive transport of Cd(II) and Pb(II) using a CTA/NPOE–based PIM containing 

trioctylmethylammonium chloride (TOMAC) as carrier has been described by Hayashita [89].  

This work reported that the selectivity depended on the membrane surface area.  For a small 

surface area (0.8 cm2), Cd(II) was transported preferentially, however for a large surface area (15 

cm2) this was reversed.  Hayashita [89] explained this on the basis of accumulation of Cd(II) in 

the small surface area membrane that consumed most of the carrier thus inhibiting the transport of 

Pb(II).  For the large surface area membrane containing a much larger amount of carrier, this did 

not occur and preferential transport of Pb(II) was observed.       
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Extensive research has been reported on the use of PIMs for the extraction and transport of Cr(VI) 

which  is extremely toxic.  Consequently, new methods for its removal from natural waters and 

from industrial effluents arising from electroplating and mining are of considerable interest.  

Cr(VI) in aqueous solutions at pH 2 exists as HCrO4
- and as Cr2O7

2- at pH 8 and most papers on 

this subject involve the extraction and transport of  the HCrO4
- species using basic extractants as 

discussed below.  

Walkowiak et al. [33] have studied the transport of Cr(VI) through CTA-based membranes 

plasticized with 2-NPPE using a series of tertiary amines and Aliquat 336 as carriers.  The source 

phase for this work was HCl at pH 2 and the receiving phase 0.1 M NaOH.  It was found the flux 

decreased with an increase in the hydrocarbon chain length of the amines used with the highest 

flux being obtained for TOA.  This was further confirmed by Kozlowski and Walkowiak [58] 

who showed that the flux decreased linearly with an increase in the log Kow values of the tertiary 

amines.  They reported that the flux for a similar PVC-based PIM was lower than for the CTA-

based membrane and could be attributed to the fact that PVC was more hydrophobic than CTA.  

In their study, Walkowiak et al. [33] also investigated the competitive transport between Cr(VI) 

and Cr(III) using acidic chloride and sulfate solutions and the selectivity coefficient was found to 

be considerably higher for chloride than for sulfate.  

Kozlowski and Walkowiak [64] have also proposed a method based on the use of a PIM of 

composition 41% (w/w) CTA, 23% (w/w) TOA and 36% (w/w) 2-NPPE for the removal of 

Cr(VI) from acidic chloride solutions according to the following reaction: 

  aqaqmem HCrOHTOA −+ ++ 4 memHCrOTOAH −+
4  (5) 

 In another study Wionczyk et al. [70] have described the transport of Cr(VI) from a sulfuric acid  

solution into 0.1 M NaOH using a PIM similar to that used by Walkowiak et al. [33] but 

containing 4-(1’-n-tridecyl)pyridine N-oxide as the carrier.  The actual membrane composition 

was 20% (w/w) CTA, 70% (w/w) 2-NPPE and 10% (w/w) TDPNO (0.5 M based on the 

plasticizer volume).  It was found that the initial flux reached a maximum for 0.3 M sulfuric acid.  

They proposed the following transport mechanism, where both HCrO4
- and H+ were concurrently 

transported to the receiving phase: 
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Source phase: 

 +− ++ aqaqmem HHCrOTDPNO 4 memHCrOTDPNOH −+
4  (6) 

Receiving phase:  

 −−+ + aqmem OHHCrOTDPNOH 24 aqaqmem OHCrOTDPNO 2
2
4 2++ −  (7) 

Kozlowski et al. [34] have compared the Cr(VI) fluxes for CTA-based PIMs containing TOA and 

TDPNO with a source phase containing 0.5 M HCl and a receiving phase of 0.5 M sodium acetate 

(pH 8.0) and found a much larger flux for TDPNO (16.01 µmol m-2 s-1) than for TOA (6.62 µmol 

m-2 s-1).  However, selectivity coefficients for Cr(VI) with respect to species such as Cd(II) and 

Zn(II) tend to be higher for TOA.  The authors have suggested that the reason for this was 

associated with the higher basicity of TOA. 

A recent paper by Scindia et al. [55] examined three types of membranes for Cr(VI) transport, a 

SLM, a pore-filled membrane (PFM) and CTA-based PIMs. Aliquat 336 was used as the carrier 

and various plasticizers were studied for the PIM.  In this study, source phases at pH 2 (HCrO4
- 

transport) and pH 8 (Cr2O7
2- transport) with 1 M sodium nitrate as the receiving phase were 

investigated.  Coupled-diffusion with Cr(VI) being transported to the receiving phase and the 

nitrate ion to the source phase has been proposed as the transport mechanism.  The authors 

presented IR spectral evidence that the HCrO4
- ion dimerizes to Cr2O7

2- in the membrane phase.  

They suggested the PIM was effective for the recovery of Cr(VI) from municipal water and 

seawater.   

Promising results have also been reported on the use of PIMs for the extraction and transport of 

organic species.  Basic carriers were used in most of these studies.  Smith and co-workers [83, 84] 

have investigated the facilitated non-competitive transport of glucose, fructose and sucrose by 

PIMs containing 20% (w/w) CTA, 40% (w/w) plasticizer (2-NPOE or TBEP) and 40% (w/w) 

carrier (various tetraalkylammonium salts).  Permeate flux of the disaccharide sucrose was 

significantly lower than that of the monosaccharide glucose.  The PVC/2-NPOE/TOMAC 

membrane also exhibited a considerable selectivity for fructose over glucose.  When both the 

source and receiving solutions were buffered at pH 7.3 by using 100 mM sodium phosphate and 
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the source solution contained 300 mM saccharide, the permeate fluxes for fructose and glucose 

were reported to be  10 and 5.7  µmol m-2 s-1, respectively.  An improved fructose flux of 31.8 

µmol m-2 s-1 was noted when using TBEP as plasticizer.  Various anionic salts of TOMAC and 

other tetraalkylammonium salts were also investigated as likely carriers in alternate membranes 

[83].  Anion exchange was used to prepare the bromide, tetraphenylborate, 4-toluensulfonate, 

bis(2-ethylhexyl)phosphonate, 4-methylbenzoate and diphenylphosphinate salts of TOMAC [84].  

The authors reported that the bromide salt outperformed the others, but still only returned a 

fructose flux of two-thirds of that for TOMAC chloride indicating that the carrier size played an 

important role in the rate of mass transfer.  Of the other tetraalkylammonium salts tested, 

tetrahexylammonium chloride performed significantly better than tetrabutylammonium chloride, 

tridodecylmethylammonium chloride or tetraoctylphosphonium bromide, but, the fructose flux 

was still only one-third of that for TOMAC chloride.  Notably, all alternate membranes tested 

exhibited a significant decline in fructose flux.  Some combinations of carrier and plasticizer did 

not form a stable plastic membrane.  All the original and alternate membranes tested exhibited a 

markedly better flux when TBEP was used, compared to 2-NPOE, as plasticizer, although, no 

explanation was offered for this observation.  A fixed-site jumping mechanism was proposed for 

the facilitated membrane transport where the hydroxyl groups of the neutral carbohydrate were 

attracted to the “fixed” chloride ions of TOMAC [84].  This mechanism is explained in more 

detail in Section 7.2.  Evidence to support this mechanism came from experiments that showed 

negligible transport at a carrier concentration of less that 20% (w/w).  Transport rates increased 

exponentially above this value, referred to as the percolation threshold, as the carrier 

concentration was increased to a maximum of 50%.  Carrier percolation thresholds were 

consistently observed for all the saccharides and carriers tested [83].  The decrease in carrier 

percolation threshold from 20% to 17% (w/w) TOMAC for the transport of sucrose compared to 

fructose was explained on the basis of solute size.  Sucrose is the larger molecule it does not need 

the same extent of “close packing” of carrier molecules to initiate a solute jumping transport 

mechanism.   

White et al. [83] have also studied the effect of the carrier structure on the transport mechanism.  

The cation content of the carrier was varied by changing the length of the alkyl chain from C8H17 

in TOMAC to C12H25 in tridodecylmethylammonium chloride (TDMAC).  The anion content was 

further changed by preparing various phosphate and carboxylate analogues of TOMAC.  An order 
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of magnitude decrease in glucose diffusion and flux resulted when TDMAC was used rather than 

TOMAC, with diffusion coefficients of 6x10-12 and 0.6x10-12 m2 s-1 and flux values of 188 and 16 

µmol m-2 s-1, respectively [83].  These results indicate that saccharide diffusion is faster with a 

smaller carrier and imply that diffusion of the carrier is involved in the rate determining transport 

step [83].   

All carriers examined gave similar extraction constants but substantially different diffusion 

coefficients for glucose and sucrose [83].  For example, when using TOMAC, extraction 

constants of 0.2 and 0.5 M-1 and diffusion coefficients of 6x10-12 and 0.7x10-12 m2 s-1 for glucose 

and sucrose, respectively, were calculated [83].  The order of magnitude lower diffusion 

coefficients for the larger disaccharide sucrose compared to glucose, a monosaccharide, is 

consistent with diffusion of the saccharide being involved in the rate determining step in the 

membrane transport process.   

The effect on saccharide diffusion by varying the size of the saccharide and of the cation and 

anion of the carrier indicates that the ion-pair carrier is mobile throughout the membrane.  On the 

basis of these results, the authors proposed a mobile-site jumping transport mechanism [83].  A 

diffusion only transport mechanism of the saccharide-ion pair complex or of the saccharide ion 

does not take into account the observed percolation threshold at higher carrier concentration.  

Alternatively, a fixed-site transport mechanism involving the carrier ion-pair fixed and the 

saccharide jumping, or the carrier cation fixed and the saccharide-anion complex jumping would 

not be significantly affected by diffusion of either the anion or cation of the carrier.  The 

experiments did not indicate the form in which the saccharide was transported, that is, whether 

the saccharide jumped to a carrier anion, or if a saccharide-anion complex jumped to a carrier 

cation.  The authors proposed that saccharide molecules and carrier anions formed hydrogen 

bonded complexes that were then weakly associated with the carrier cations [83]. 

Using the same CTA/2-NPOE/TOMAC PIMs with 20, 40, and 40 % (w/w) carrier, respectively, 

Munro and Smith [85] have studied the facilitated non-competitive transport of several amino 

acids including L-phenylalanine, L-leucine, L-alanine and dopamine.  In this investigation, the 

source solution contained 100 mM of the individual target solute and both the source and 

receiving solutions were buffered at pH 7.3 using 100 mM sodium phosphate.  While negligible 
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transport occurred in the absence of carrier, at 40% TOMAC (w/w) the authors observed 

considerable selectivity amongst these amino acids and reported permeate fluxes for 

L-phenylalanine, L-leucine, L-alanine and dopamine to be 15.9, 5.2, 2.9 and 0.25 µmol m-2 s-1, 

respectively.  A fixed-site jumping transport mechanism was proposed as the flux was minimal at 

less than 20% (w/w) carrier and increased dramatically, in a non-linear manner, at values above 

this concentration.  The authors suggested that the 20% (w/w) carrier concentration represented a 

percolation threshold for this system.  Flux results were compared to those for similar SLM 

experiments using a microporous polypropylene support of Celgard 2500™ and a liquid 

membrane phase of TOMAC in NPOE [85].  The SLM results indicated a small, but linear L-

phenylalanine flux up to 40% (w/w) carrier concentration, and then a substantial non-linear 

increase in the flux as the carrier concentration was raised.  The 40% (w/w) carrier concentration 

represents a percolation threshold for the SLM system.  Below this value, transport is slow and 

linear and occurs by a carrier-diffusion mechanism that is favoured by the lower viscosity of the 

polymer free liquid membrane phase. Above the percolation threshold, the transport is 

significantly enhanced by contributions from a fixed-site jumping mechanism.  At pH 7.3 all the 

amino acids studied are significantly ionised and fixed-site jumping of the amino acid anions 

occurs by attraction to the “fixed” carrier cation.  Although not mentioned by the authors, the low 

dopamine flux observed could be due to its significantly higher pKa of 8.9 [90] that limits the 

amount of ionised dopamine available.  Further evidence to support the transport of ionised 

species came from L-phenylalanine flux studies at different pH.  The flux increased as the pH was 

raised from 5.5 to 10 and was five times greater at pH 10 than at pH 7.3.  Altering the carrier 

counter-anion also affected the flux.  Changing from chloride to phosphate reduced the flux by 

30%.  The lipophilic bis(2-ethylhexyl)phosphate anion resulted in a complete absence of L-

phenylalanine transport.   

Matsumoto et al. [91] have investigated the potential of PIMs for commercial applications using a 

20% (w/w) CTA, 40% (w/w) 2-NPOE and 40% (w/w) TOMAC membrane for the separation of 

lactic acid from a source solution containing some NaCl at pH 6 to a receiving solution of 3 M 

NaCl.  The authors reported permeabilities of the same order of magnitude as those for similar 

SLM experiments.  They proposed a carrier-diffusion transport mechanism where at pH 6 the 

lactic acid was ionised and transported as the trioctylmethylammonium/lactate ion pair [91].  

TOMAC leakage from the membrane was identified as an important criterion for accessing the 
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viability of further development of an in situ separation method.  TOMAC is known to be toxic to 

the microbe Lactobacillus rhamnosus used in the production of lactic acid by fermentation.  

Addition of free TOMAC to the fermentation mixture resulted in zero lactate production.  A 70% 

decline in lactate production was consistently observed for PIMs containing 6, 12, 40 and 57% 

(v/v) TOMAC.  This suggested that leakage of TOMAC from the membranes reached a steady 

state value independent of membrane composition.  Areas that were highlighted as requiring 

further investigation before a commercial PIM extraction system for lactate could be considered 

were the design of a membrane separator to improve diffusion of lactate from the source solution, 

and selectivity experiments to determine any co-extracted species.   

6.2    Acidic and chelating carriers 

There are several types of compounds in solvent extraction chemistry that are classified as acidic 

carriers.  These include phosphorus and thiophosphorus acid esters, carboxylic acids and sulfonic 

acids.  Examples of the phosphorus group are phosphoric, phosphonic and phosphinic acids such 

as di(2-ethylhexyl)phosphoric acid (D2EHPA), di(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 

272) and di(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302).  Examples of 

carboxylic acids are Naphthenic and Versatic acids while 5,8-dinonylnaphthalenesulfonic acid 

(DNNSA) is an example of a sulfonic acid carrier.  

In addition to the above acidic carriers, there is another group of compounds that are also acidic 

but, in addition, show strong chelating properties.  These are the α-hydroxyoximes and the β-

hydroxyaryloximes (LIX reagents), quinolines (Kelex 100) and β-diketones.  Of course, in many 

circumstances the phosphorus acids, particularly D2EHPA, can also act as bidentate chelating 

agents.  

Of the above list of acidic carriers, some of the commercial carriers that have been used in PIMs 

to date are LIX® 84-I, Kelex 100 and D2EHPA (Table 2).  This limited use is surprising as acidic 

reagents have proven to be of particular importance for the separation of a wide range of metals 

including transition metals, rare earth metals and the actinides in solvent extraction.  Molecular 

structures of these carriers are shown in Figure 7.  

[FIGURE 7] 
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Extraction and transport of a metal cation by an acidic carrier is governed by the exchange of the 

metal ion for protons of the carrier.  Consequently, counter-transport of protons is the driving 

force and is achieved by maintaining a suitable pH difference between the source and receiving 

solutions.  In addition, careful pH control in the source solution can result in good selectivity as is 

the case in solvent extraction systems using acidic reagents.  

Most studies with PIMs using acidic carriers have involved the transport of heavy metals such as 

Pb(II), Cd(II), Zn(II), Cu(II), Ag(I) and Hg(II) (Table 2) and the focus of much of the work has 

been on the clean-up of process effluent streams (e.g. the electroplating industry). 

Salazar-Alvarez et al. [92] have studied the transport of Pb(II) using a CTA-based membrane 

containing D2EHPA with a source phase containing 10 mM NaNO3 at a pH between 2.85 and 

3.45 and a 1.5 M nitric acid receiving phase.  This system produced a high Pb(II) flux of 3.5 µmol 

m-2 s-1 which was of the same order of magnitude as reported for the analogous SLM system by 

these authors.  The stoichiometry of the transported complex in the PIM system was reported to 

be PbR2.2HR.  The authors found that if the pH of the source phase was greater than pH 3.45, the 

permeability decreased and suggested that D2EHPA micelle formation was involved.  Membrane 

stability was a problem in this system and Pb(II) transport decreased by about 30% after 5 cycles 

of 3 hours each.  However, membrane stability improved after addition of ethanol to the 

membrane casting solution although no ethanol was found in the membrane by FT-IR.  The 

mechanism of how ethanol interacts with the CTA membrane is unclear.  

A highly selective PIM for the transport of Pb(II) in the presence of Cd(II) (separation factor of 

140) has been reported by Aguilar et al. [41] using Kelex 100 as the carrier.  Selectivity was 

achieved through pH control of the source solution.  Transport was studied using a source phase 

containing 0.1 M NaCl at pH 6.0 for Pb(II) and pH 8.5 for Cd(II) and a receiving phase of 0.1 M 

NaCl at pH 3.0.  The CTA-based membrane contained 17% (w/w) CTA, 48% (w/w) 2-NPOE and 

2.25 M Kelex 100.  Comparison of the PIM with the analogous SLM indicated a metal ion 

permeability about half of that for the SLM.  In the Pb(II) case, it is suggested the transport 

mechanism involves the formation of a single complex in the membrane (Eq. (8)) but for Cd(II), 

two complexes are involved Eqs. (9) and (10). 

 memaq HRPb 22 ++
aqmem HPbR ++ 22  (8) 
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 memaqaq HRClCd ++ −+2
aqmem HCdRCl ++  (9) 

 memaqaq HRClCd 22 ++ −+
aqmem HClCdHR ++2  (10)                                                         

The transport of Pb(II) has also been studied by Lee et al. [93] using a synthesized lipophilic 

acyclic polyether dicarboxylic acid as the carrier of structure similar to the antibiotic monensin.  

The membrane composition was 76% (w/w) 2-NPOE, 18% (w/w) CTA and 6% (w/w) carrier.  

Using a source phase at pH 4.5 to 5.5, 100% of the Pb(II) could be transported to a 0.1 M nitric 

acid receiving phase with little transport of Cu(II) and no transport of Zn(II), Co(II) and Ni(II).  

Negligible decrease of the permeability properties of the membrane was observed over 10 

repeated experiments. 

Copper transport using a CTA membrane has been studied by de Gyves et al. [43].  The other 

components of the membrane were LIX® 84-I (optimum mass percentage of 50-60% (w/w)) and 

TBEP (optimum mass percentage of 30% (w/w)) as plasticizer.  The source phase contained 

copper(II) sulfate or chloride at pH 4-6 in acetate buffer with 1 M H2SO4 or 1 M HCl as the 

receiving phase.  Maximum permeability for Cu(II) was obtained at pH 5 with no difference 

between sulfate and chloride for the source phase.  However, higher permeability was obtained 

using H2SO4 in the receiving phase rather than HCl.  This is most likely due to the higher 

concentration of H+ in 1 M H2SO4 compared to 1 M HCl.  There was a considerable decrease in 

membrane permeability within only a few runs but some improvement was obtained by adding 

ethanol to the casting solution.  The authors used ‘slope analysis’ in membrane extraction 

experiments to determine the complex stoichiometry as CuR2.2HR.  They also obtained 

satisfactory separation of Cu(II) in the presence of a 10-fold excess of Zn(II) and Fe(III).  

A comparison between carrier-facilitated transport of Cu(II) in a CTA-based PIM and a SLM has 

been reported by Paugam and Buffle [94].  The carrier used was lauric acid with TBEP acting as 

plasticizer for the PIM and as the diluent for the SLM.  The source phase was buffered to pH 6.0 

using N-morpholinoethane and the receiving phase was 5x10-4 M cyclohexanediaminetetraacetic 

acid (CDTA) at pH 6.4.  The authors suggested a stoichiometry for the extracted complex of 

CuR2.  They found that after normalization by correcting for membrane porosity and tortuosity, 

the diffusion coefficient was 22 times lower for the PIM than for the SLM. 
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The transport of Cd(II) across a CTA-based membrane using Lasalocid A (Figure 8) as the carrier 

has been described by Tayeb et al. [11].  The chemical structure of this carrier is shown below. 

[FIGURE 8] 

The membrane also contained 2-NPOE as plasticizer and transport in this system was compared 

with the analogous SLM system.  The source phase was buffered to pH 8 and the receiving phase 

contained HCl at pH 2.  The authors found the PIM (or polymeric plasticized membrane, PPM, as 

they termed it) was more efficient for Cd(II) transport at high carrier concentration in the 

membrane than the SLM system and had good long term stability.  Again, as others have 

observed [13, 65, 83, 84], these authors found that transport in the PIM did not occur until the 

carrier concentration reached a threshold value (0.031 mg per 1 cm2 of membrane) which was 

close to the carrier concentration necessary to reach maximum Cd(II) flux for the SLM. 

The selective removal of Zn(II) from other transition metal ions such as Co(II), Ni(II), Cu(II) and 

Cd(II) using PIMs has been studied by Ulewicz et al. [42].  Their system used a CTA membrane 

containing D2EHPA and 2-NPOE as plasticizer.  Separation was achieved by pH control of the 

source phase with 1.0 M HCl as the receiving phase.   Best selectivity for Zn(II) was achieved 

using the source phase at pH < 2, which was in accordance with the solvent extraction properties 

of D2EHPA for these metal ions [95]. In another study Baba et al. [96] have also demonstrated 

that Cu(II) can be preferentially transported in the presence of Pd(II) across a PVC-based PIM 

using D2EHPA as the carrier and plasticizer from a source phase at pH 3-4 (acetate buffer) to a 

receiving phase of 1.0 M HCl. 

Some work on membrane transport used PVC as a gelling agent in an attempt to stabilize SLMs.  

For example, Bromberg et al. [8] used a tetrahydrofuran (THF) solution containing PVC (up to 

10% (w/w)), di(2-ethylhexyl)dithiophosphoric acid (D2EHDTPA) and 2-NPOE  to impregnate a 

Celgard 2400 support membrane.  On evaporation of the THF, a membrane film formed within 

the pores of the support phase.  This membrane was used to study the transport of Ag(I), Hg(II), 

Zn(II), Cd(II), Ni(II) and Fe(III).  For Ag(I) and Hg(II), thiourea in 1 M H2SO4 was used in the 

receiving phase, while stripping of Zn(II), Cd(II) and Ni(II) required 10 M HCl. Fe(III) could only 

be stripped using 1 M oxalic acid. 
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Sugiura et al. [79] have studied the transport of rare earth metal ions through CTA-based 

membranes containing a series of β-diketones as carriers and with 2-NPOE and TBEP as 

plasticizers.  Selectivity was controlled by the pH of the source phase and they found that Sc(III) 

was transported at a lower pH than both Y(III) and La(III) which was most likely due to the 

difference in ionic radii.  At pH values 5.1 and 6.1, high fluxes were obtained but there was no 

significant difference in transport amongst the rare earth metal ions except for Sc(III).  Also, the 

solubility of the β-diketones in the aqueous phase increased with increase in pH.  In general, 

fluxes were around 0.6 μmol m-2 s-1, which was of a similar order of magnitude to values reported 

for other CTA-based PIM studies as discussed previously in Section 5.2. 

Sigiura has published two further papers [45, 67] on the PIM transport of lanthanides using 

Hinokitiol and Flavonol as carriers.  The membranes were CTA-based and contained 2-NPOE 

and TBEP as plasticizers.  Hinokitiol (β-isotropolone, HIPT) is a derivative of the seven 

membered ring compound cyclohepta-2,4,6-trien-1-one with an isopropyl- group in the 4-position 

in the ring and a hydroxo- group in the 2-position.  In the first study, Sigiura [67] reported on the 

effect of the anion and pH of the source phase on the hydrogen ion-coupled transport. Fluxes for 

the series of lanthanides from Sm(III) to Lu(III) were higher than for La(III) to Nd(III). Also, the 

addition of perchlorate or thiocyanate ions to the source phase increased the lanthanide flux. In 

the second study, Sugiura [45] reported on the effect of adding polyoxyethylene n-alkyl ethers 

(POEs) of different alkyl chain lengths to the membrane mixture. In general, the POEs increased 

the fluxes of the lanthanides for the series from Sm(III) to Lu(III) but extremely low fluxes were 

obtained for the series from La(III) to Nd(III). 

In an extension to this research on Hinokitiol using POEs in the membrane, Sugiura [97] reported 

on the effect on the lanthanide flux when two pyrazolone derivatives were used as carriers instead 

of HIPT.  The two carriers were 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone (BMPP) and 4-

trifluoroacetyl-3-methyl-1-phenyl-5-pyrazolone (TMPP) and were used under the same 

conditions as HIPT.  The fluxes for the lanthanides were found to be higher for BMPP than for 

TMPP but there was no differentiation between the various lanthanides.  Sugiura [97] then 

replaced the POEs with a series of quaternary ammonium bromides with C12 to C6 alkyl chains 

and again found higher fluxes for BMPP than for TMPP and the fluxes were much higher for the 

quaternary ammonium bromides with higher MW.    
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Rais et al. [27] have studied the use of the chlorinated organoboron compound cobalt dicarbollide 

(bis(dicarbollyl)cobaltate) in a PVC-based membrane for the extraction of 137Cs and 90Sr from 

high ionic strength solutions containing nitric acid or sodium hydroxide. The plasticizer used was 

2-NPOE.  The authors claimed the use of this PIM was an improvement on the solvent extraction 

system for these radioactive elements, which used nitrobenzene as the diluent, even though the 

PIM extraction was slower. The PVC-based PIM also contained polyethylene glycol as an 

effective synergistic reagent. 

A very recent and novel development in PIM systems has been described by Resina et al. [98].  

These workers have developed a hybrid membrane using sol-gel technology combined with the 

procedure for making CTA-based membranes.  They have carried this out by mixing a CTA 

matrix with polysiloxanes containing plasticizers and extractants, mixing vigorously and curing 

the mixture at 80oC for 20 hours.  One aim of this work was to improve the stability of PIMs.  

Membranes made by this method have been studied for the transport of Zn(II), Cd(II) and Cu(II) 

with D2EHPA and D2EHDTPA as carriers.  The transport properties of the hybrid membranes 

were compared with normal PIMs and with Activated Composite Membranes (ACMs).  In all 

cases, the source phase was 0.5 M NaCl and the receiving phase was 0.5 M HCl.  Flux values of 

the order of 3.4 - 6.2 μmol m-2 s-1 were found for all three membrane types although slightly 

higher values were obtained for the hybrid membrane.  Using mixtures of Zn(II), Cd(II) and 

Cu(II), it was found that with D2EHPA Zn(II) was transported but the membrane was 

impermeable to Cd(II) and Cu(II).  With D2EHDTPA, Cu(II) was extracted preferentially but 

could not be stripped because of strong complexation within the membrane and this accumulation 

of Cu(II) within the membrane impeded the transport of Zn(II) and Cd(II).  The use of a 5:1 

mixture of D2EHPA and D2EHDTPA in the membrane resulted in high transport of Zn(II), no 

transport of Cd(II) and a limited transport of Cu(II).          

6.3  Neutral or solvating carriers 

Most commercially available neutral or solvating carriers are phosphorus based extraction 

reagents such as tri-n-butyl phosphate (TBP), tri-n-octyl phosphine oxide (TOPO), and dibutyl 

butyl phosphonate (DBBP) (Figure 9).  However, this group can include other neutral organic 

reagents with a strong solvating capacity due to Lewis acidic centers or hydrogen bonding (e.g. 

amides).  Solvating reagents such as TBP and TOPO have been used extensively in solvent 
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extraction for the processing of actinides such as uranium and lanthanides as well as for cerium 

and other metal ions commonly found in low radioactivity level wastewaters [86].  As mentioned 

in the introduction section of this review, the use of PIMs can be dated back to almost 40 years 

ago, when Bloch et al. [21] reported on a pioneering attempt to use PIMs containing TBP as a 

carrier for uranium recovery.  However, probably because the use of neutral carriers is largely 

restricted to radioactive metal ions, only a few PIM studies using this type of carrier have been 

reported since then.   

[FIGURE 9] 

The membranes used by Bloch et al. [21, 69] were prepared by casting a thin film consisting of 

25% (w/w) PVC and 75% (w/w) TBP on paper of high wet strength or on a glass plate.  

Cyclohexanone was used as the solvent and the membranes were cured at 140oC for 60 seconds.  

The thickness of the resulting thin film was reported to be 40 μm.  By varying the nitrate 

concentration in the source solution, the authors [21, 69] demonstrated that the permeate flux 

closely correlated with the distribution ratio of uranyl nitrate between the aqueous phase and the 

TBP/PVC membrane.  In these experiments, the receiving solution was pure water and the source 

solution contained 0.02 M UO2(NO3)2 with the concentration of HNO3 varying in the range from 

2 M to 8 M.  Bloch [69] observed that the use of an anion, which can permeate across the 

membrane such as nitrate might be an inherent disadvantage for PIMs using solvating carriers.  A 

rather unexpected phenomenon occurred where the uranyl ion was transported from the source to 

the receiving solution and then transported back to the source as nitrate continued to diffuse 

through the membrane until an equal concentration of nitrate and the uranyl ion in both 

compartments was attained.  This was explained by the fact that nitrate permeated through the 

membrane not only in association with UO2
2+ but also in association with a proton in the form of 

HNO3.  Because of the high initial concentration of nitrate in the source solution, the uranyl ion 

was transported to the receiving solution.  As long as the nitrate concentration in the receiving 

solution remained low, this transport process continued even when the uranyl ion concentration in 

the receiving solution was higher than in the source solution.  Then, when a sufficient amount of 

nitrate had been transported to the receiving solution, back diffusion of uranium occurred until the 

system reached equilibrium.  To confirm this explanation, Bloch et al. [21] showed that the 

permeation of nitrate through the membrane was insignificant when nitrate was introduced to the 
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source solution in the form of a suitable nitrate salt such as sodium nitrate instead of nitric acid.  

However, the authors also reported that a small but discernible passage of nitrate occurred when 

ferric or aluminum salts were used.  This was attributed to a decrease in pH in the source solution 

due to the hydrolysis of these salts [21].   

Bloch [69] also emphasized that the rate of complex formation and dissociation could, in certain 

circumstances, govern the membrane selectivity.  Using a membrane prepared with an 

immobilized chelating agent known to complex slowly with Fe(III), namely, thenoyl 

trifluoroacetone, the author demonstrated that there was a significant difference in permeability 

between Fe(III) and Cu(II).  The membrane selectivity factor was 200 times for Cu(II) over 

Fe(III), which was much higher than expected based purely on the distribution ratio differences 

between these two metals in solvent extraction.  Bloch [69] compared this result with 

observations often encountered in biological systems where the differences in dissociation rates 

when translated into membrane permeabilities yielded extraordinarily high selectivities.     

Matsuoka et al. [46] have studied the transport of uranyl nitrate using a CTA-based membrane 

containing 0.5 mL of TBB for every 0.3 g of the base polymer CTA.  The authors reported an 

uphill transport of uranyl nitrate from a source solution containing 3.5 mM of UO2
2+ and 1 M 

HNO3 to a receiving solution containing an initially equal concentration of UO2
2+ (i.e. 3.5 mM) 

and 1 M Na2CO3 [46].  The transport mechanism is represented by Eqs. (11) and (12).   

Source phase:  

memaqaq TBPNOUO 22 3
2
2 ++ −+

memTBPNOUO 2)( 232 ⋅  (11) 

Receiving phase:  

aqmem CONaTBPNOUO 32232 32)( +⋅ aqaqmemaq NONaTBPCOUONa −+ +++ 33324 222)(  (12) 

In contrast, they did not observe any uranyl transport when the source solution containing 3.5 mM 

UO2
2+ and 1 M of Na2CO3 and the receiving solution contained 1 M HNO3.  This was explained 

by the formation of the bulky sodium uranyl carbonate complex, which could not effectively be 

extracted into the membrane.  
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It should also be noted here that the authors observed a severe leakage of TBP from their 

membranes and the aqueous phases were saturated with TBP in all of their experiments to prevent 

carrier loss. 

Kusumocahyo et al. [53] have developed PIMs consisting of CTA as the base polymer, 2-NPOE 

as the plasticizer and two novel solvating carriers namely octyl(phenyl)-N,N-

diisobutylbarbamoylmethyl phosphine oxide and N,N,N,N-tetraoctyl-3-oxapentanediamide 

denoted as CMPO and TODGA, respectively, for the removal of Ce(NO3)3 from low radioactivity 

wastewater.  The source solution used in their experiments contained 200 mg/L Ce(NO3)3, 0.05 M 

HNO3, and 2.95 M NaNO3 and the receiving solution was pure water.    The distribution ratios for 

Ce(III) between an aqueous phase of the same composition as the source solution and the 

membrane containing CMPO or TODGA were reported to be 550 and 28, respectively.   By 

examining the variation of the distribution ratio as a function of the carrier concentration in the 

membrane, Kusumocahyo et al. [53] have successfully determined the stoichiometry of the 

carrier/cerium nitrate complex to be 2:1.  Complete transport of Ce(III) from the source to the 

receiving solution could be achieved within 60 minutes or more depending on the actual 

membrane composition and experimental conditions.  The authors also presented several sets of 

data relating to the diffusion of the cerium nitrate complex across the membrane.   The transport 

rate was reported to increase as the plasticizer or carrier concentration increased to certain levels.  

In addition, this transport rate was also found to correlate well with the membrane thickness and 

with the reciprocal of the temperature.   

Lamb and Nazarenko [66] have examined the influence of the counterion on the sorption and 

transport processes for Pb(II) using CTA-based PIMs containing TOPO and 2-NPOE.  Four 

different anions (i.e. I–, SCN–, Br– and NO3
–) were investigated.  They reported a correlation 

between the Pb(II) transport and the hydrophobicity or the hydration energy of the counterion.  

The permeability increased in the order NO3
– ≤ Br– < SCN– ≤ I–.  This also agrees well with the 

extraction constant of membranes containing TOPO when these anions have been used in the 

solution matrix [66].  The authors, however, did not report data relating to the transport of sodium 

or the counterions.     

The transport of the arsenate ion (AsO4
3–) by a solvating carrier has been investigated by Ballinas 

et al. [99] using a PIM based on CTA and dibutyl butyl phosphonate (DBBP) as the carrier.  
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Passive transport was almost complete after 6 hours when the source solution contained 2800 

mg/L AsO4
3– and the receiving solution contained 2 M LiCl.  The authors suggested that AsO4

3- 

was transported through the membrane in the form of H3AsO4[DBBP]2.  However, when the 

source solution also contained 2.2 M H2SO4, the arsenate transport rate was dramatically reduced 

and almost 27 hours were needed for the complete transport of AsO4
3– while complete transport 

of the HSO4
- ion was achieved within 6 hours in both cases.  The authors speculated that this was 

due to the formation of the additional complex, H3AsO4[DBBP]H2SO4, in a coupling 

phenomenon in the presence of a sufficient concentration of H2SO4 [99].  The same explanation 

was also used to describe the uphill  transport of 10% of the AsO4
3– observed after 5 hours when 

the source phase contained 2800 mg/L AsO4
3– and 2 M H2SO4 and the receiving solution 

contained an equal concentration of AsO4
3– and 2M LiCl [99].  The authors did not explain the 

mechanisms for the formation of the H3AsO4[DBBP]2 and H3AsO4[DBBP]H2SO4 species. 

6.4    Macrocyclic and macromolecular carriers  

A considerable amount of the research reported to date on PIMs has used macrocyclic and 

macromolecular carriers such as crown ethers as the extracting reagents in PIMs.  This is likely 

due to their high complexing selectivity for metal ions as a result of the presence of specifically 

tailored encapsulating coordination sites in their structures and their low solubility in aqueous 

solutions.  In addition, the use of expensive macrocyclic reagents in membranes is more feasible 

than in traditional solvent extraction because of the considerably smaller reagent inventory 

required.  The large number of macrocyclic carriers that has been studied are summarized in 

Table 4.   Even though crown ethers and similar macrocyclic ligands have traditionally been used 

in the complexation of the alkali and alkaline earth metal ions, a large number of PIM studies are 

related to the transport of heavy metal ions.  This is possibly due to the strong interest in the use 

of membrane separation in the treatment of nuclear wastes and contaminated waters and toxic 

sludge.  The potential to selectively extract and recover organic ions using macrocyclic carriers 

has also been demonstrated in an early PIM study [15].  In PIMs using macrocyclic and 

macromolecular carriers, transport is facilitated and the mechanism involves the co-transport of 

the target cation along with an associated anion and generally water is used as the receiving 

phase. 

[TABLE 4] 
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Lamb et al. [100] have studied the transport of Ag(I) through CTA/2-NPOE membranes 

containing a series of pyridino- and bipyridino- podands (A, Table 4).  These carriers have 

hydrophilic palmitoyl tails making them insoluble in aqueous solutions and highly soluble in the 

membranes thus conveying excellent homogeneity and stability.  These podands have three 

pyridine nitrogen atoms in tridentate coordinating positions and have strong binding properties for 

the Ag(I) ion.  Thus, only Ag(I) transport from a perchlorate solution in the presence of Cd(II), 

Zn(II), Co(II), Ni(II), Pb(II) and Cu(II) to a water receiving phase was observed. 

A similarly high transport selectivity for Ag(I) compared to Pb(II) and Cd(II) has been observed 

by Kim et al. [101] for a series of calix[4]azacrown ether derivatives (B, Table 4) immobilized in 

a CTA-based PIM  plasticized with 2-NPOE and TBEP.  In another study, Kim et al. [20] also 

investigated the transport of Ag(I) in PIMs and SLMs using acyclic polyether ligands having 

diamide and diamine end-groups (C, Table 4). They found again highly selective transport of 

Ag(I) in the presence of Cd(II), Zn(II), Co(II), Ni(II), Pb(II), and Cu(II).  In addition, the transport 

of Ag(I) was considerably faster in PIMs than in SLMs.  Only one carrier (the amide where R=H 

(C, Table 4)) showed some transport of a metal ion (i.e. Pb(II)) other than Ag(I). 

A study [102] has been reported on the complexation of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), 

Ag(I) and Pb(II) with a series of N-benzylated macrocycles incorporating O2N2-, O3N2- and 

O2N3- donor sets.  Part of this work has involved testing these macrocycles in solvent extraction 

and membrane systems.   One macrocycle (D, Table 4) showed high selectivity for Ag(I) in a 

CTA/2-NPOE based PIM. 

A comparison of Ag(I) and Cu(II) facilitated transport has been reported by Arous et al. [14] 

using a series of macrocyclic polyether cryptands (E, Table 4) in CTA/2-NPOE based PIMs.  

Transport experiments showed a seven-fold higher flux for the PIMs compared to analogous 

SLMs. The main focus of the study was on the structure of the PIMs using FTIR, X-ray 

diffraction, differential scanning calorimetry and SEM.  The term used by the authors for these 

polymer membranes was “fixed sites membranes (FSMs)” although they are PIMs according to 

the definition used in this review.  Similar studies [10, 13] were reported on the use of 18-crown-

6 ether derivatives (F, G, Table 4) in CTA/2-NPOE based membranes for the transport of Ag(I), 

Cu(II), and Au(III).  These studies were aimed at providing an understanding of the factors that 

controlled the membrane properties. 
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The transport of Pb(II) has been studied by Aguilar et al. [32].  They synthesized a series of 

diazadibenzocrown ethers and found two of these (H, Table 4) had high selectivity for Pb(II) over 

Cd(II) and Zn(II) using a CTA/2-NPOE membrane of composition (w/w) 22.0% CTA, 71.6% 2-

NPOE and 6.4% carrier.  

Ulewicz et al. [103] have reported on the transport of Zn(II), Cd(II) and Cu(II) using CTA-based 

membranes containing complex diphosphaza-16-crown-6 derivatives as carriers (I, Table 4).  In 

this work they studied the effect of the acidity of the source phase on the selectivity. 

A new type of macrocyclic carriers has been reported by Kozlowski et al. [104].  This was based 

on the polymerization of β-cyclodextrin with alkenyl(nonenyl and dodecenyl)succinic anhydride 

derivatives (J, Table 4).  Several cyclic oligomers were synthesized and studied in CTA/2-NPPE 

membranes for the competitive transport of Cu(II), Co(II), Ni(II) and Zn(II) and gave a transport 

order that increased from Cu(II) to Zn(II).  The authors suggested that transport involved the 

formation of ion-pairs between hydroxyl groups on the polymer and the metal ion.  The addition 

of 3,7-dinonyl-naphthalene-1-sulfonic acid to the membrane produced a synergistic effect that 

was used effectively for the removal of Cr(VI), Cu(II) and Cd(II) from industrial wastewaters and 

municipal sludge. 

Sugiura [15] has studied the transport Zn(II) and Cu(II) using CTA membranes plasticized with p-

nitrophenyl-n-heptyl ether (NPHE) that contained the carriers bathophenanthroline (for Zn(II)) or 

bathocuproine (for Cu(II)) (K, Table 4).  Transport of Zn(II) against its concentration gradient 

was observed for solutions containing nitrate and chloride whereas Cu(II) transported in the 

presence of chloride but not nitrate.  An additional study in this paper involved the transport of 

the picrate ion using dibenzo-18-crown-6 as carrier.     

The transport of Sr(II) has been studied by Mohapatra et al. [54] using several cyclohexano-18-

crown-6 derivatives in CTA/2-NPOE PIMs.  They found that t-BuDC18C6 (L, Table 4) provided 

selective transport of Sr(II) from synthetic nuclear waste solutions containing 1 M and 2 M nitric 

acid and a large number of other metal ions.  At 3 M nitric acid hydrolysis of CTA was observed.  

Nazarenko and Lamb [31] have studied the transport of Sr(II) along with Pb(II) from synthetic 

nuclear waste solutions using DC18C6 and t-BuDC18C6 in CTA/2-NPOE membranes.  In their 
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initial experiments, they added dialkyl-naphthalene-sulfonic acid to the membrane containing 

DC18C6 and obtained excellent recovery of Sr(II), however, the membrane performance 

deteriorated due to loss of the carrier to the aqueous phase.  This problem was solved by using the 

more hydrophobic carrier t-BuDC18C6.  In this mixed carrier system, the mechanism involved 

counter-transport as illustrated by the following equations and the receiving phase had to be 

acidic. 

Source phase 

memmemaq CBuDCtHDNNSM 61822 −+++ [ ] ++− aqmem HDNNSCBuDCtM 2))(618( 2  (13) 

Receiving phase 

[ ] ++− aqmem HDNNSCBuDCtM 2))(618( 2 memmemaq CBuDCtHDNNSM 61822 −+++  (14) 

Nazarenko and Lamb [31] also found that the use of t-BuDC18C6 on its own in the membrane 

gave excellent selectivity for Pb(II).  In this case, the mechanism was facilitated transport and 

water could be used as the receiving phase. 

Elshani et al. [105] synthesized some di-[N-(X)sulfonyl carbamoyl] polyethers (M, Table 4) and 

studied them in CTA/PVC/2-NPOE membranes as carriers for the alkaline earth metal ions.  They 

also studied the solvent extraction properties of these new carriers in chloroform.  The 

competitive PIM transport experiments showed high Ba(II) transport compared to the other 

alkaline earth metal ions with an order for the carriers (compound 1 > 2 > 4 > 3, (see M, Table 4)) 

that was associated with the type of the X group  attached to the compound backbone molecule. 

Kim et al. [106] have also reported on a new carrier with high transport selectivity for Ba(II).  

Amongst several calix[6]arenes having both carboxylic acid and carboxamide groups studied by 

these authors, 1,3,5-tricarboxylic acid-2,4,6-tricarboxamide-p-tert-butylcalix[6]arene (N, Table 4) 

exhibit the highest selectivity ratio for Ba(II) over Mg(II) (i.e. 40:1).  Much lower selectivities 

ration for Ba(II) over Mg(II) were reported for the other compounds. 

Levitskaia et al. [30] have employed some synthesized calix[4]arene-crown-6 carriers (O, Table 

4) in CTA/2-NPOE membranes and have reported highly efficient and selective transport of Cs+.  
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Of the 17 different metal ions present in a synthetic nuclear wastewater sample containing a high 

nitric acid concentration only K+ and UO2
2+ were transported along with Cs+.  In a separate study, 

Levitskaia et al. [68] have examined the fundamental thermodynamic parameters that underpin 

transport in PIMs using these Cs+ selective carriers. 

PIMs transport of Cs+ has also been investigated by Kim et al. [19] using calix[4]arene-crown-6, 

calix[4]arene-crown-7 and calix[4]arene-crown-8 in CTA/2-NPOE/TBEP membranes.  They 

found that the calix[4]arene-crown-6 compound gave an excellent selectivity and transport rate 

for Cs+ compared to the other alkali metal ions and attributed this to the close matching of the 

sizes of the crown ring cavity and the Cs+ ion.  The authors suggested this PIM system might be 

useful for separating Cs+ from radioactive wastewaters [19]. 

In another report on the use of PIMs for selective Cs+ transport, Lee et al. [63] have demonstrated 

that a self-assembled isoguanosine structure can be used in a CTA/2-NPOE membrane to separate 

Cs+ from Na+ which is also present in most nuclear waste solutions.  The authors have shown that 

IsoG 1 (5’-(tert-butyldimethylsilyl)-2’,3’-O-isopropylene  isoguanosine, see P, Table 4) self 

assembles into a decamer sandwich in the presence of Cs+.  The Cs+/IsoG 1 decamer dissociates 

at the receiving phase/membrane interface in the presence of acid and, accordingly, the transport 

of Cs+ has been found to increase with decreasing pH of the receiving phase.  In the absence of 

Cs+ in the solution, the membrane produced high selectivity for Ba(II). 

Walkowiak et al. [33] have studied a series of sym-(alkyl)dibenzo-16-crown-5-oxyacetic acid 

carriers (Q, Table 4) in the competitive transport of alkali metal ions.  The membranes used were 

CTA-based and were plasticized by either 2-NPOE or 2-NPPE.  The source phase contained 0.2 

M of the alkali metal ion studied and the receiving phase was 0.1 M HCl.  Due to the presence of 

the acetic acid functionality in these carriers, the mechanism involved proton-coupled metal ion 

transport and the flux depended on the chain length of the alkyl chain.  These workers found that 

maximum flux was obtained for the C9 alkyl chain and that this carrier was very selective for Na+ 

with practically no transport of the other alkali metal ions. 

An important study of alkali metal ion transport using PIMs has been reported by Lacan et al. 

[65].  They used a hybrid organic-inorganic membrane derived from a sol-gel process.  Such 

heteropolysiloxane membranes are relatively easy to prepare and can contain a covalently bound 
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carrier.  In this paper the carrier was 4’-N-butylcarboxamidobenzo-15-crown-5 (R, Table 4) and 

the membrane gave good selectivity for Na+ over Li+ and high diffusion rates.  The presence of 

the picrate ion in the membrane was found to increase the transport rate and the authors suggested 

that the transport mechanism involved cation exchange between the picrate ion and carrier sites. 

The extraction of the organic picrate ion was studied in an early work by Sugiura [15].  In this 

study, the membranes consisted of PVC as the base polymer, NPHE as the plasticizer and 

DC18C6 as the carrier.  A concentration gradient of potassium ions across the membrane was 

used to transport picrate against its concentration gradient with an initial flux of 5.7×10-2 μmol m-

2 s-1.  Optimum transport was reported when both the source and receiving solutions contained 10-

4 M potassium picrate and buffered at pH 8.3 using 0.01 M Tris-H2SO4.  Additionally, the source 

and receiving solutions contained 0.5 M potassium sulfate and 0.5 M lithium sulfate, respectively.  

The author postulated that an ion-pair was transported through the membrane and in this case 

potassium acted as a counter-ion for the transport of picrate anion across the membrane [15].   

A most recent paper [107] that appeared just as this review was in the final stages of completion 

describes the application of PIMs containing some macrocyclic metal complexes and various 

plasticizers for the transport of anions.  The carriers were essentially bis(pyridylmethyl)amine 

compounds coordinated to the transition metals ions Fe(III), Cu(II) and Zn(II).  One carrier was 

based on a resorcinarene bonded to four bis(pyridylmethyl)amines.  Because of the presence of 

the metals in the carrier complex, some deviation from the ‘Hofmeister’ sequence of anions was 

observed.  The PIMs showed excellent selectivity for the ReO4
- ion and the suggestion was made 

that they might also show high selectivity for the TcO4
- ion [107]. 

7   TRANSPORT MECHANISMS 

7.1  Interfacial transport mechanisms 

Both SLMs and PIMs involve the selective transport of a target solute from one aqueous solution 

to another via the membrane that separates them as can be seen in Figure 5 [1].  This overall 

transport consists of two processes, namely the transfer of the target solute across the two 

interfaces and diffusion through the membrane.  The former process is similar for both types of 

membranes, however, because PIMs are distinctively different from SLMs in their composition 

and morphology, the actual bulk diffusion mechanisms within the membrane phase can be quite 
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different.  Consequently, the overall transport mechanisms of SLMs and PIMs are not identical.  

Nevertheless, fundamental findings obtained from SLM studies, which have been 

comprehensively reviewed by several authors [1, 2, 108], can be particularly useful to elucidate 

the transport mechanisms observed with PIMs.  This section discusses the interfacial transport 

mechanisms with a focus on the chemistry of the aqueous phase and phenomena observed at the 

membrane-aqueous interface.  The bulk diffusion mechanisms occurring within the membrane 

phase are delineated in the next section (Section 7.2).   

Danesi [108] describes the permeation of the target solute through an SLM as a single-stage 

extraction in simultaneous combination with a back extraction stage.  The transport, therefore, 

occurs under non-equilibrium conditions.  Gyves and de San Miguel [2] provide a more detailed 

analysis taking into account the diffusion of the target solute through a stagnant layer at the 

membrane/aqueous solution interface and also consider for the transport of co- or counter- ions.  

However, these authors note that when suitable hydrodynamic conditions are maintained near the 

membrane/aqueous solution interface by constant agitation or tangential flow, the diffusion 

process through this aqueous stagnant layer is relatively fast and can be ignored.  Consequently, 

the interfacial transport description proposed by Gyves and de San Miguel [2] for a typical 

membrane extraction system is quite similar to that described by Danesi [108].  On the basis of 

these reviews, the three major steps which characterize the transport of a target solute from the 

source to the receiving solution in PIMs are schematically illustrated in Figures 10a-d.  These 

figures depict uphill metal transport which will occur in the final stages of the separation process.  

In the first step, the target solute after diffusing through the aqueous stagnant layer at the source 

solution/membrane interface, reacts with the carrier at this interface to form a complex, which is 

then transported across this interface and replaced by another molecule of the carrier.  In the 

second step, the target solute diffuses across the membrane toward the receiving solution.  The 

detailed nature of this bulk diffusion process is discussed in the next section.  Finally, at the 

membrane/receiving solution interface, the target solute is released into the receiving solution, 

which is essentially the reverse of the process occurring at the source solution/membrane 

interface.  While Figures 10a-d are representative of most PIM systems encountered in the 

literature, they do not provide any information about the speciation processes occurring in the 

aqueous phases.  Consequently, the aqueous phase metal ion concentration is its total analytical 
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concentration which is the sum of the concentrations of all metal ions containing chemical 

species.  

[FIGURE 10] 

It is obvious that the distribution ratio (often referred to as the partition constant or coefficient, 

Kp) of the target solute/carrier complex between the organic phase of the membrane and the 

aqueous solution, Ks
p (superscript s representing the source solution), must be as high as possible 

to favor the extraction process.  In contrast, Kr
p (superscript r representing the receiving solution) 

at the receiving site must be sufficiently low to favor back extraction of the target solute from the 

membrane phase.  Consequently, within the membrane phase, there is a concentration gradient of 

the target solute/carrier complex or ion pair acting as a driving force for its transport across the 

membrane, despite the fact that the total analytical concentration of the target solute in the source 

solution can be substantially lower than in the receiving solution.  In other words, uphill transport 

only takes place with respect to the total analytical concentration of the solute, while in the 

membrane phase it is actually downhill transport regarding the actual chemical species diffusing 

across the membrane.  In practice, such a difference in Kp between the source and receiving 

solutions can be maintained with a suitable chemical composition of these solutions.  For 

example, a strong complexing reagent is often used in the receiving solution to strip the target ion 

from the membrane.  Amongst several studies in which observations in support of this interfacial 

transport mechanism have been reported, those by Bloch et al. [21] and Matsuoka et al. [46] can 

be used as examples.  The former argued that permeate flow continues until Ks
p·Cs

i = Kr
p·Cr

i 

(where Ci is concentration of the target solute in the aqueous solution), that is until the 

concentration gradients within the membrane have vanished.  This is also consistent with the 

work of the latter authors [46], who examined the transport of the uranyl ion through a CTA/TPB 

membrane and reported a Ks
p/Kr

p ratio of 104 between the source and receiving solutions 

containing 1 M NaNO3 and 1 M Na2CO3, respectively.  Consequently, a nearly complete uphill 

transport of the uranyl ion has been observed with this system. 

Another driving force for the uphill transport phenomenon is the potential gradient of a coupled 

transport ion across the membrane.  In a typical PIM process, the target solute is transported in 

association with this ion to maintain electroneutrality.  This is known as the coupled transport 

phenomenon, which can be counter-transport (Figures 10 b&c) or co-transport (Figures 10 a&d), 
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depending on the transport direction of the coupled transport ion with respect to that of the target 

solute.  Typical examples for this can be seen by considering PIM systems using acidic or 

chelating carriers [41, 42, 92].  In such cases, the potential gradient of protons maintained by 

adjusting the solution pH can be seen as the driving force for the uphill transport of a metal cation 

across the membrane.  In fact, studies involving the use of acidic and chelating carriers have 

consistently revealed a characteristic correlation between permeability and the pH difference 

between the source and receiving solutions [41, 42, 92].  However, it should be noted that the 

distribution ratio of the target solute between the aqueous solution and the membrane phase is 

also related to the solution pH.  While Kp values at various pH values are not usually reported in 

PIM literature, it is well known in solvent extraction that the distribution ratio by an acidic or 

chelating extractant is strongly pH dependent.     

In practice, these two driving forces outlined above cannot be distinguished.  This is partly due to 

the complexity of the speciation involved at both sides of the membrane as well as within the 

membrane itself.  In essence, usually they are both integral parts of a complex interfacial transport 

mechanism.  One emphasizes the distribution ratio (KP) difference and the other emphasizes the 

potential gradient of the coupled transport ion across the membrane.  It is probably more 

convenient to use the former to describe the interfacial transport process in PIMs using solvating 

carriers such as TBP.  The latter presents a more suitable description for membranes carrying 

fixed charged groups within the polymer matrix, in other words, PIMs prepared with basic, acidic 

or chelating carriers.  Some authors have related such Donnan behavior to a characteristic 

correlation between permeability and the dielectric constant of the carriers and plasticizers, which 

has been widely observed by several researchers [9, 58]. 

7.2  Bulk transport mechanisms 

As discussed in the previous section, facilitated transport across a membrane from a source to a 

receiving phase involves also diffusion of the carrier/target complex through the bulk membrane 

in addition to transport across the two solution/membrane interfaces [1, 2, 78, 109].  In the case of 

a bulk liquid membrane, the carrier, which is assumed to be able to move freely within the 

membrane, plays the role of a shuttle [78].  However, facilitated transport can also occur in ion–

exchange and other types of membranes, in which the reactive functional group (or carrier) is 

covalently bound to the polymeric backbone structure [55].  In this case, the carrier is 
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immobilized and it is assumed that the bulk diffusion of the target solute takes place via 

successive relocations from one reactive site to another [78, 109].  For a typical PIM, as discussed 

in Section 5.1, although the carrier is not covalently bound to the base polymer, the membrane is 

essentially a quasi-solid homogeneous thin film and it is not a true liquid phase [110].  Because, 

the carriers are often bulky (Figures 6-9 and Table 4), their mobilities in PIMs are much more 

restricted compared to SLMs.  Consequently, although the actual mechanisms are still a subject of 

stimulating discussion in the literature, the bulk diffusion processes in PIMs are thought to be 

different from those in SLMs and other types of liquid membranes [78, 109].  

In a pioneering work, Cussler et al. [109] proposed the “chained carrier” theory to describe the 

facilitated transport process in a solid membrane where mobility of the carrier is restricted.  The 

authors developed a mathematical model to compare the mobile carrier diffusion and the chained 

carrier mechanisms.  Their model explicitly indicates that there are several circumstances where 

the permeate flux of an immobilized carrier membrane can be comparable to that of a mobile 

carrier membrane.  This is consistent with the results reported in several studies [9, 11, 55] where 

the permeate fluxes between PIMs and SLMs have been found to be comparable, although such 

observations are uncommon and it is unclear whether the conditions described by Cussler et al. 

[109] and those of the studies mentioned above were indeed similar.  More importantly, the 

model demonstrates that membranes with immobilized carriers may show a percolation threshold, 

i.e. the carrier concentration must be sufficiently high so that a continuous chain across the 

membranes can be formed.  It is noteworthy that this concept of a percolation threshold has later 

become the foundation for other PIM studies on the bulk diffusion mechanism within the 

membrane phase [13, 65, 83, 84, 110, 111].  The model also indicates that facilitated transport can 

occur only when the carriers themselves have some local mobility.  On the basis of their model, 

Cussler et al. [109] have postulated that the apparent diffusion coefficient (or the apparent rate of 

transport of the target solute) in immobilized carrier membranes does not reflect the diffusion 

process but rather the chemical kinetics of the complexation reaction.  This is consistent with the 

theory by Bloch [69] discussed earlier in Section 6.3 that selectivity in PIMs may also be 

governed by the rate of complex formation and dissociation. 

Although the model of Cussler et al. [109] provides a clear mechanistic insight for the 

understanding of the diffusion process in PIMs, later experimental results appear to deviate from 
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this model [83, 110, 111].  In fact, as has been carefully discussed by Cussler et al. [109], a 

limitation of their model is the assumption that free uncomplexed solute cannot enter the 

membrane and the carrier sites must be within reach of one another so that the transfer of the 

target solute can take place.  Plate et al. [110] investigated the transport of Co(II) using TOA as 

the carrier and  found that the percolation threshold also depended on the initial concentration of 

the target solute.    In another study, White et al. [83] reported a higher percolation threshold for 

fructose as compared to the disaccharide sucrose in a PIM investigation using CTA and TOA as 

the base polymer and carrier, respectively.  It was concluded that the larger disaccharide species 

did not require the carrier molecules to be as close together for transport to occur as in the case of 

smaller monosaccharides.  The authors also proposed an extended bulk diffusion model, which 

was essentially an improvement of the model by Cussler et al. [109].  In addition to the 

requirement for locally mobile carrier species, this new model assumed that the target solute can 

jump from one carrier to another [83].  However, physical conditions for this model were not 

clearly postulated and a mathematical derivation was not provided. 

Unlike the mobile carrier diffusion mechanism, which assumes that complexation formation and 

dissociation occur only at the solution/membrane interface, the fixed site jumping mechanism 

explicitly includes the complexation reaction between the carrier and target solute as an integral 

part of the bulk membrane transport.  Both of these mechanisms follow a Fickian diffusion 

pattern and therefore the overall transport process is similar.  However, knowledge of the actual 

bulk transport mechanism kinetics underlines the significance of the complexation kinetics, which 

in addition to the complexation thermodynamic, may also be a crucial factor governing both 

permeability and selectivity in PIMs.  Nevertheless, experimental results to support this premise 

remain limited in the PIM literature.  This is partly due to experimental difficulties in 

distinguishing between the two mechanisms outlined above.  To date, the fixed site jumping 

mechanism was postulated almost exclusively on the basis of a percolation threshold [13, 65, 83, 

84].  However, an increase in the carrier concentration can lead to a variation in the membrane 

morphology as pointed out by some researchers [6, 59, 60], which may ultimately influence the 

nature of the diffusion process.  In fact, because the carrier is not covalently bound to the base 

polymer, it may be assumed that the actual diffusion mechanism is intermediate between mobile 

carrier diffusion and fixed site jumping.   
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8  MATHEMATICAL MODELING 

The development of mathematical models to adequately describe the extraction and transport 

processes is fundamental for PIM investigations.  Mathematical modeling is a vital tool for an in-

depth understanding of the relevant physicochemical and transport processes, determining their 

thermodynamic and kinetic constants as well as optimizing the corresponding membrane 

separation systems (e.g. membrane and solution composition and system dimensions).  Not 

surprisingly, a considerable number of PIM studies have addressed this subject. 

The stoichiometry of the transported complex across PIMs has been determined in a number of 

studies [43, 53, 92] following the standard approach used in solvent extraction.  Kusumocahyo et 

al. [53] fitted Eq. 15a to experimental distribution data to determine the stoichiometry of 

complexation between Ce(NO3)3 and the carrier N,N,N’,N’-tetraoctyl-3-oxapentanediamide 

(TOGA) immobilized in CTA-based PIMs (Eq. 15b). 

 aqmemexP NOLaKK ]log[3]log[loglog 3
−++=  (15a) 

 aqmemaq NOaLCe −+ ++ 3
3 3 mema NOCeL 33 )(  (15b) 

where Kex is the extraction equilibrium constant, Kp is the partition constant (Kp =[CeLa(NO3
-

)3]PIM / [Ce3+]) and L represents the carrier. 

Using a similar approach, Salazar-Alvarez et al. (Eq. 16a) [92] and de Gyves et al. (Eq. 17a) [43] 

determined the stoichiometry of the extraction of Pb(II) (Eq. 16b) and Cu(II) (Eq. 17b) into CTA 

PIMs incorporating the carriers D2EHPA or LIX® 84-I, respectively. 

 pHHLaKK memexP 2])log[()2(½loglog 2 +++=  (16a) 

 memaq HLaPb })){(2(½ 2
2 +++ ++ aqmem HaHLPbL 2}{ 2  (16b) 

 pHHLaKK memexP 2])log[(loglog 2 ++=  (17a) 

 memaq HLaCu }){( 2
2 ++ ++− aqmem HHLaCuL 2})22({ 2  (17b) 
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where (HL)2 is the dimeric form of D2EHPA or LIX® 84-I. 

There have been a number of attempts to mathematically model PIM extraction and transport 

behaviour [6, 30, 41, 43, 47, 60, 66, 68, 87, 92, 94].  The mathematical models developed can be 

divided into two main groups according to the simplifying assumptions used.  The first group 

incorporates simple steady-state transport (permeation) models involving metal ions (e.g. Cs+, 

Rb+, K+, Na+, Cu(II), Cd(II) and Pb(II)).  The majority of these models are based on the following 

six simplifying assumptions [30, 41, 43, 66, 68, 92, 94]:  

(i) Interfacial and bulk phase reactions are very fast leading to instantaneous establishment of 

chemical equilibria in the system studied. 

(ii) The metal concentration in the membrane phase is negligible with regard to the carrier 

concentration in the membrane, thus resulting in constant free carrier concentration within the 

membrane. 

(iii) The concentration of the metal-carrier complex at the membrane/receiving phase interface 

is negligible relative to its concentration at the membrane/source phase interface.  This 

assumption will be valid if the concentration of the metal in the receiving phase remains virtually 

zero. 

(iv) Mass transport within the membrane is the result of Fickian diffusion only and the 

concentration gradient of the metal-carrier complex is linear. 

(v) The diffusion in the aqueous stagnant layer at the membrane/source phase interface is either 

much faster than the diffusion of the metal-carrier complex across the membrane or is 

characterized by a linear concentration gradient. 

(vi) Both the source and receiving phases are ideally mixed. 

According to assumptions (ii)-(vi) the depletion of the metal ion in the source phase can be 

described by differential equation (18) with initial condition (18a) while its transport across the 

membrane can be described by Eq. (19). 
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dt
Md

VAJ s
ss

][
−=  (18) 

 [M]s = [M]s
0 at t = 0 (18a) 

 Js = Ps [M]s (19) 

where A is the membrane area, V is the phase volume, t is the time, J is the flux, and [M] and 

[M]0 refer to the transient and initial concentrations of the metal ion in the source phase, 

respectively.  P is the cation permeability coefficient which can be used to characterize PIM 

transport efficiency.  Subscript s refers to the source phase. 

The simultaneous solution of Eqs. (18) and (19) gives: 

 ln([M]s/[M]s
0) = - (A/Vs) Ps t (20) 

Lamb and Nazarenko [66] applied Eq. (20) to describe Pb(II) transport through a CTA PIM 

incorporating TOPO as the carrier.  After substituting Ps with Eq. (21) they were able to estimate 

the diffusion coefficients of the PbX2.nTOPO complexes (X=I–, SCN–, Br– or NO3
–) in the PIMs 

studied. All values were of the order of 10-12 m2 s-1. 

 Ps = (D/δ) KP (21) 

where D is the apparent diffusion coefficient of PbX2.nTOPO, δ is the membrane thickness and 

KP =[PbX2.nTOPO]PIM/[PbX2]s. 

The plot of logP vs log[TOPO]PIM revealed that n in the PbX2.nTOPO complexes was at least 2. 

Paugam and Buffle [94] compared the transport of Cu(II) through SLMs and PIMs containing 

various concentrations of lauric acid as the carrier.  The polymeric supports used were Celgard 

2500 polypropylene for the SLMs and CTA for the PIMs.  Assuming a linear concentration 

gradient in the source phase stagnant layer and 1:2 complexation between Cu(II) and lauric acid 

(Eq. (22)), the authors derived an equation for the flux (Eq. (19)) which was subsequently fitted to 

both SLM and PIM experimental flux data calculated by Eq. (18).  The PIM apparent diffusion 
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coefficient was found to be an order of magnitude lower than the SLM apparent diffusion 

coefficient under the assumption that the PIM and SLM extraction constants were similar. 

 memaq HLCu 22 ++ ++ aqmem
HCuL 22  (22) 

Aguilar et al. [41] described mathematically the extraction and transport of Cd(II) and Pb(II) in 

SLM and PIM systems based on Eq. 20. Solvent extraction data regarding the stoichiometry of 

the corresponding extraction equilibria involving Kelex 100 in Kerosene as the carrier (Eqs. (23)-

(25)) were also used [41].  

 memaqaq HLClCd ++ −+2 +−+ + aqmem HClCdL  (23) 

 memaqaq HLClCd 22 ++ −+ +−+ + aqmem HClCdHL2
 (24) 

 memaq HLPb 22 ++ ++ aqmem HPbL 22  (25) 

Polyvinylidene fluoride (PVDF) was the polymeric support for the SLMs studied while CTA was 

used for the PIMs [41].  The model takes into account the transport of the metal species across the 

aqueous boundary layer at the membrane/source phase interface.  Expressions for the 

permeability coefficients for both Cd(II) and Pb(II) were derived and the model was fitted to 

experimental data to determine the numerical values of the corresponding apparent membrane 

diffusion coefficients.  The diffusion coefficients of the Cd(II) and Pb(II) complexes within the 

PIMs studied were determined to be of the order of 10-12 m2s-1 similar to those obtained by Lamb 

and Nazarenko [66] while the corresponding SLM values were three orders of magnitude higher.  

Salazar-Alvarez et al. [92] followed the modeling approach of Aguilar et al. [41] to describe the 

transport characteristics (i.e., maximum flux, thickness and resistance of the boundary layers, the 

apparent activation energy for the facilitated diffusion of Pb(II) across the membrane) of a CTA-

based PIM system used for the extraction of Pb(II) with D2EHPA.  The diffusion coefficient 

found for the transport of the Pb(II)-D2EHPA complex across the PIMs studied (1.5×10-11 m2s-1) 

was similar to the diffusion coefficient values reported earlier for other Pb(II)/PIM systems [41, 

92]. 
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de Gyves et al. [43] evaluated both the source phase (Eq. (20)) and receiving phase (Eq. (26)) 

permeability of CTA-based PIMs incorporating LIX® 84-I during the transport of Cu(II) from 

chloride and sulfate containing source phases. 

 ln{1-[M]r/[M]r
∞} = - (A/Vr) Pr t (26) 

where [M]r
∞ is the equilibrium metal ion concentration in the receiving phase at t→∞.  

The results obtained showed evidence of metal accumulation in the membrane in the case of the 

chloride containing source phase.  An expression for the permeability coefficient based on 

Assumptions (i) – (vi) was derived and fitted to experimental data obtained for PIMs with 

different LIX® 84-I concentrations.  The value of the apparent diffusion coefficient of the copper 

LIX® 84-I complex was estimated as 10-12.2 m2 s-1.  This value is in good agreement with those 

reported for the other PIM systems mentioned earlier [43, 66, 92]. 

Levitskaia et al. [30, 68] developed a model for the transport of monovalent metal ions, denoted 

here as M(I), across CTA membranes incorporating calixarene-crown ethers (B) as carriers which 

formed 1:1 metal-carrier complexes (MB+, Eq. (27)) in the membrane.  

 memaqaq BXM ++ −+ −+ + memmem XMB  (27) 

where X- is the anion in the metal salt dissolved in the source phase. 

When a single salt (MX) was present in the source phase, the equation for the transient source 

phase metal concentration was identical to Eq. (20) where the cation permeability coefficient was 

defined by Eq. (28). 

 Pf = (K’
ex[B]PIM)½ D/δ (28) 

where K’
ex is the formal equilibrium constant of the complexation reaction described by Eq. (27). 

The equation for the transient metal concentration derived (Eq. (29)) when the anion 

concentration was constant differed substantially from Eq. (20) [66].  

 -[M+]s
½ = - ([M+]s

o)½ + ½(A/Vs) Ps [X-]s
½ t (29) 
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where Ps is defined by Eq. (28). 

Eq. (29) is also valid when more than one cation is simultaneously transported across the 

membrane with one of these ions being preferentially transported. 

The validity of the model outlined above (i.e. Eqs. (20), (28) and (29)) was successfully verified 

using experimental transport data [68].  This model for the case of constant anion concentration 

(Eq. (29)) was subsequently applied by the same authors [30] to characterize the performance of 

PIMs in the processing of complex acidic nuclear wastes when different calixarene-crown ether 

carriers were used and the composition of the source phase was varied. 

The steady-state models outlined above are generally valid only for the initial stages of most 

membrane transport processes when the ratio between the free carrier concentration and the 

concentration of the metal-carrier complex in the PIM is sufficiently high.  These models are, 

however, not applicable in the cases of slow interfacial kinetics or when metal accumulation in 

the membrane takes place. 

A more general modeling approach overcoming most of the disadvantages of the steady-state 

PIM models mentioned above was proposed by Kolev et al. [60].  The models based on this 

approach and developed by the same research group [6, 47, 60, 87] involve more complex 

mathematics requiring the application of numerical techniques.  They were successfully used to 

describe mathematically the extraction and transport of Au(III) [60], Pd(II) [47], Cd(II) [6] and 

Cu(II) [6] across PVC membranes incorporating Aliquat 336 chloride as the carrier.  These 

models are based on assumptions (iv) – (vi) regarding the Fickian nature of the membrane mass 

transfer and the rapid mass transport in both the bulk and the stagnant layers of the source and 

receiving phases.  The latter assumption is justified in the case of efficient stirring when the bulk 

and interface concentrations are almost identical.  These models, unlike the steady-state models 

outlined above, can be used to describe membrane extraction and transport involving metal 

accumulation in the membrane and slow interfacial complexation reactions.  In those cases the 

diffusion of both the metal-carrier complex and the free complex within the membrane must be 

taken into account.  To simplify the mathematical description in such cases, it has been assumed 

that the diffusion coefficients of the complexed and uncomplexed carrier are equal.  This means 

that the total concentration of the carrier in the membrane is uniform and constant and it is 
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sufficient to describe the diffusion of either the uncomplexed or the complexed carrier only.  

These models have been applied to PIM systems operating in ‘extraction mode’ only, i.e. both 

sides of the membrane are in contact with the same source solution only.  If the two 

compartments of the transport cell are identical, the transport cell can be considered as 

symmetrical with respect to the membrane. This simplifies the development of the mathematical 

model as only half the transport cell (Figure 11), consisting of one compartment and half of the 

membrane adjacent to it, must be considered.  If the source phase contains a negatively charged 

metal chloride complex the following interfacial ion-pair formation process can take place: 

 memaq
n
m nRClMCl +− −+ aqmemnm nClRMCl )(  (30) 

where k+1 and k-1 are the forward and the backward kinetic rate constants and RCl represents the 

Aliquat 336 chloride.  

Due to steric and viscosity related restrictions n is usually 1 [6, 47, 60].  If the chloride ion is in 

excess, which is usually the case, the transient interfacial concentration of MClm
n- (x = δ, Figure 

11) can be described by Eq. (31). 

 { }memnmaq
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+

−

−−=  (31) 

This concentration is identical to the bulk concentration of this chemical species under the 

assumption of ideal mixing in the aqueous phases. 

[FIGURE 11] 

The mass transfer of the free Aliquat 336 chloride within the membrane can be described by the 

Fick’s second law (Eq. (32)) with initial and boundary conditions expressed by Eqs. (32a)-(32d), 

respectively. 
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where x is the axial distance and D is the diffusion coefficient of RClmem which was assumed to 

be equal to that of {MClmRn}mem. 

The concentration of the ion-pair {MClmRn}mem can be determined as: 

 
n

RClRCl
RMCl memmem

memnm
][][

][
0 −

=  (33) 

Eqs (31)-(33) cannot be solved analytically because of the non-linearity of Eq. (31) with respect 

to the dependent variables [RCl]mem and [MClmn-]aq. The implicit finite-difference method [60] 

was used for the simultaneous solution of Eqs. (31)-(33).  

After converting Eqs. (31) and (32) at n = 1 into equations in dimensionless quantities and 

variables it was shown that the overall membrane extraction process can be characterized by two 

dimensionless groups (Eqs. (34) and (35)) [60].  
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 0][ aqmex MClK −=β  (35) 

where L = V/A is the characteristic length of the aqueous (source) phase. 

The numerical values of these two dimensionless groups determine whether the extraction process 

is under diffusion, kinetic or mixed diffusion-kinetic control (Figure 12) [60].  It is possible to 

estimate whether for a particular extraction system, variations in the value of the diffusion 

coefficient and the kinetic constants will influence its performance. 
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[FIGURE 12] 

The model outlined above was fitted to experimental extraction data using a simplex optimization 

algorithm to determine the values of the kinetic rate constants, the extraction constant and the 

diffusion coefficient in the extraction of Au(III) [60], Pd(II) [47] and Cd(II) [6] from their 

hydrochloric acid solutions into PVC/Aliquat 336 chloride membranes of different thickness and 

containing 20 – 50% (w/w) Aliquat 336 chloride.  The diffusion coefficient values obtained were 

of the order of 10-13 m2s-1, similar to the values obtained by fitting the steady-state transport 

models outlined above to the initial stages of PIM transport experiments [41, 43, 66, 92].  As 

expected, the diffusion coefficients increased with increasing Aliquat 336 chloride concentration 

in the PIMs studied.  An order of magnitude higher diffusion coefficient values for 50% 

membranes compared to lower concentration membranes indicated possible structural changes in 

the membrane occurring at Aliquat 336 chloride concentrations higher than 40%. 

The modeling approach outlined above was also applied to the ‘non-facilitated’ transport of 

thiourea across PVC/Aliquat 336 chloride PIMs separating acidic source and receiving phases 

where thiourea was partially protonated [87].  It was assumed that molecular thiourea was only 

transported across the PIMs and that its interfacial PIM concentration was determined by the 

corresponding partition constant.  By fitting the model to the experimental PIM extraction data an 

empirical expression for calculating the diffusion coefficient of thiourea in PVC/Aliquat 336 

chloride membranes was derived (Eq. (36)) [87]. 

 627.3181043.2 CD −×=  (36) 

where C is the percentage membrane concentration of Aliquat 336 chloride. Eq. 36 is valid for C 

between 30% and 50% (w/w). 

9 THE FUTURE OF PIM RESEARCH 

One of the main goals of this review is to provide deeper insight into the factors that control the 

transport rate, selectivity and stability of PIMs by collating the transport phenomena observed by 

various authors and relating these to the membrane properties.  As discussed in the various 

sections, a number of factors have been found to influence the performance of PIMs with the 

most important amongst them being: (1) the membrane composition, (2) the properties of the base 
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polymers, the carriers and the plasticizers, (3) the morphology of the membrane and (4) the 

chemistry of the aqueous solutions making up the source and receiving phases.  It has been 

observed that there is an intricate relationship between these factors and so it is essential to take 

them into account in any holistic approach to the transport mechanisms in PIMs. 

As we have documented, there is a respectable number of published papers on PIMs and this 

number is increasing steadily.  One factor stands out in the majority of these papers and this is the 

need to achieve a balance in membrane composition with respect to the three major constituents 

of the membrane, namely, the base polymer, the carrier and the plasticizer.  While the carrier is 

essential for the transport of the target solute in PIMs, excessive amounts of carrier can result in 

carrier aggregation in some cases and exudation in others.  Also, excessive amount of plasticizer 

can lead to “bleeding” from the membrane, whereas insufficient plasticizer can lead to very low 

permeabilities.  

The base polymers have often been thought to merely provide mechanical support for the other 

constituents in order to give stability to the membrane, however, research has indicated that the 

bulk properties of the polymers can be important factors governing the transport of target solutes.  

Thus the optimum composition for a PIM depends quite strongly on the physicochemical 

properties of each constituent of the membrane as well as on their compatibilities.  At the present 

time, the rule of thumb for a PIM composition appears to be 40% (w/w) base polymer, 40% 

(w/w) carrier and 20% (w/w) plasticizer although not all researchers have used this composition.  

There is also some evidence that this composition may not result in the best PIM performance in 

all cases.  Considerable effort can be expected in future PIMs research to study these effects and 

to develop a model that can be used in the prediction of the optimum composition for a given set 

of constituents.  Although a large number of carriers has been studied in PIMs so far, there is an 

apparent lack of focus on carriers with high practicality.  As we have shown in this review, the 

number of PIM investigations using commercially available carriers remains limited.  

Furthermore, only a handful of plasticizers have been investigated to date.  Most of these 

plasticizers seem to have been chosen not because of their commercial availability at low cost or 

clear industrial application but rather because of their application in ISE membranes.  It is also 

interesting to note that CTA and PVC have been used as the base polymers in most if not all of 

the PIMs studied so far with CTA predominating.  It can be expected that future research will 
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expand the number of commercially available carriers, plasticizers as well as base polymers that 

can be used.   

Given the demonstrated superior stability of PIMs over the various other types of liquid 

membranes (e.g. SLMs) and the adequate permeability in practical sense and selectivity of PIMs 

for industrial applications, Cussler [78] has predicted (with caution about speculation with regard 

the timeline) a decline in fundamental research on SLMs and an increased interest in PIMs 

research in the near future and as a result of this, practical applications will emerge (see Figure 

13).  In fact, this prediction is already becoming reality if one considers the increasing number of 

papers being published on PIMs.  However, we do not believe PIM systems will replace 

traditional solvent extraction systems, and certainly not in the near future, but will find a role in 

niche areas such as amino acid separation in biotechnology, fructose enrichment in food 

processing technology, precious metal recovery from electronic scrap and catalytic converters, the 

treatment of radioactive waste streams and in environmental cleanup of contaminated waters. 

[FIGURE 13] 
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11 GLOSSARY  
 
2-NPOE  2-nitrophenyl octyl ether 
2-NPPE  2-nitrophenyl pentyl ether 
ACMs  Activated composite membranes 
AFM  Atomic force microscopy 
BLMs  Bulk liquid membranes 
BMPP  4-benzoyl-3-methyl-1-phenyl-5-pyrazolone 
t-BuDC18C6 Di-tert-butylcyclohexano-18-crown-6 
CAP  Cellulose acetate propionate 
CMPO  Octyl(phenyl)-N,N-diisobutyl carbamoylmethyl phosphine oxide 
CTA  Cellulose triacetate 
CTB  Cellulose tributyrate 
D2EHDTPA Di(2-ethylhexyl) dithiophosphoric acid 
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D2EHPA  Di(2-ethylhexyl) phosphoric acid 
DBBP  Dibutyl butyl phosphonate 
DC18C6  Dicyclohexano-18-crown-6 
DNNS  Dinonylnaphthalenesulfonic acid 
DOA  Bis(2-ethylhexyl) adipate 
DOP  Dioctylphthalate 
DOS  Dioctylsecacate 
DOTP  Bis(2-ethylhexyl)terephthalate 
ELMs  Emulsion liquid membranes 
FSMs  Fixed site membranes 
FTIR  Fourier transform infrared spectrometry 
ISE Ion selective electrode 
Kelex 100 7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline  
LIX® 84-I 2-hydro-5-nonylacetophenone oxime 
MWc  Critical entanglement molecular weight 
NPHE  p-nitrophenyl-n-heptyl ether 
PIMs  Polymer inclusion membranes 
POEs  Polyoxyethylene n-alkyl ethers 
PVC  Poly(vinyl chloride) 
RBS  Rutherford backscattering spectrometry 
SEM  Scanning electron microscopy 
SLMs  Supported liquid membranes 
T2EHP  Tris(2-ethylhexyl)phosphate 
TBEP  Tri(butoxyethyl)phosphate 
TBP  Tri-n-butyl phosphate 
TCP  Tricresyl phosphate  
TDMAC  Tridodecylmethylammonium chloride 
TDPNO  4-(1’-n-tridecyl)pyridine N-oxide 
Tg  Glass transition temperature 
THF  Tetrahydrofuran 
Tm  Melting temperature 
TMPP  4-trifluoroacetyl-3-methyl-1-phenyl-5-pyrazolone 
TOA  Tri-n-octyl amine 
TODGA  N,N,N,N-tetraoctyl-3-oxapentanediamide 
TOMAC  Trioctylmethylammonium chloride 
TOPO  Tri-n-octyl phosphine oxide 
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Table 1: Physical properties of three polymers most frequently used in PIMs. 

Polymer MW used in 
PIMs (kDa) 

MWc 
(kDa) 

Tg 
(oC) 

Tm 
(oC) 

Polymeric 
characteristics 

Poly(vinyl chloride) (PVC) 90-180 a 12.7 c 80 d na Slightly crystalline, 
mostly amorphorous d 

Cellulose triacetate (CTA) 72-74 b 17.3 c na 302 e 
Infusible, high degree of 
crystallinity, excellent 
strength d 

Cellulose tributyrate (CTB) 120 b 47.4 c na 207 d 
Infusible, high degree of 
crystallinity, excellent 
strength d 

a Ref [59]. 
b Ref [24]. 
c Ref [112]. 
d Ref [28]. 
e Ref [25]. 
na: not available. 
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Table 2:  Examples of PIM carriers reported in the literature and their typical target solutes (All 

abbreviations are explained in the Glossary). 

 Type of carriers Examples Target solutes Refs 

B
as

ic
 

Quaternary amines Aliquat 336 

As(V), Au(III), Cd(II), 
Cr(VI), Cu(II), Pd(II), 
Pt(IV) , small 
saccharides, amino acids, 
lactic acid 

[6, 7, 9, 
33, 47, 
55, 59, 
83-85, 
91, 99] 

Tertiary amines TOA  
Other tri-alkyl amines 

Cr(VI), Zn(II), Cd(II), 
Pb(II) 

[33, 39, 
58, 64, 
88, 89] 

Pyridine & derivatives TDPNO Ag(I), Cr(VI), Zn(II), 
Cd(II) 

[34, 70, 
100] 

A
ci

di
c 

an
d 

ch
el

at
in

g 
 

Hydroxyoximes LIX® 84-I Cu(II) [43] 

Hydroxyquinoline Kelex 100 Cd(II), Pb(II) [41] 

β-diketones 
Benzoylacetone 
Dibenzoylacetone 
Benzoyltrifluoracetone 

Sc(III), Y(III), La(III), 
Pr(III), Sm(III), Tb(III), 
Er(III), Lu(III) 

[79] 

Alkyl phosphoric acids D2EHPA 
D2EHDTPA 

Pb(II), Ag(I), Hg(II), 
Cd(II), Zn(II), Ni(II), 
Fe(III), Cu(II) 

[8, 42, 
92, 98] 

Carboxylic acids Lauric acid 
Lasalocid A Pb(II), Cu(II), Cd(II) [11, 93, 

94] 

N
eu

tra
l o

r 
so

lv
at

in
g 

Phosphoric acid esters  TBP U(VI) [21, 46, 
69] 

Phosphonic acid esters  DBBP As(V) [99] 

Others 
CMPO, TODGA, 
TOPO, Polyethylene 
glycol 

Pb(II), Cd(III), Cs+, Sr(II) [27, 53, 
66] 

M
ac

ro
cy

cl
ic

 a
nd

 
m

ac
ro

m
ol

ec
ul

ar
 

Crown ethers and Calix 
arenes 

DC18C6 
BuDC18C6 

Na+, K+, Li+, Cs+, Ba(II), 
Sr(II), Pb(II), Sr(II), 
Cu(II), Co(II), Ni(II), 
Zn(II), Ag(I), Au(III), 
Cd(II), Zn(II), picrate 

[10, 13-
15, 19, 
20, 30-
33, 54, 
65, 68, 
93, 101, 
103-106, 
113] 

Others Bathophenanthroline 
Bathocuproine Lanthanides 

[15, 45, 
67, 97, 
114] 
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Table 3: Reported PIM lifetimes under continuous operation. 

Membranes Reported lifetime and membrane performance Refs 

CTA/Calix[6]arene/2-NPOE Small flux decline after 30 days [106] 

CTA/Lasalocid A/2-NPOE 

No sign of flux decline or carrier and plasticizer 

losses after 10 days.  Stable after 10 months storage 

in air 

[11] 

CTA/Acyclic polyether bearing 

amide/2-NPOE-TBEP 

Small flux decline after 15 days but no evidence of 

carrier and plasticizer loss 
[20] 

CTA/Calix[4]arene/2-NPOE 
Small flux decline after 20 days but no evidence of 

carrier and plasticizer loss 
[19] 

CTA/Calix[4]arene/2-NPOE Stable flux after one month [30] 

CTA/DC18C6/2-NPOE, TBEP 
Flux decline began slowly after 100 days but no 

evidence of carrier and plasticizer loss 
[5] 

CTA/Aliquat 336/2-NPOE, DOS, 

DOTP, or DOP 

Flux decline and carrier/plasticizer loss began after 

30 days 
[55] 

CTA/Aliquat 336/T2EHP Flux decline began after 18 days [55] 

CTA/t-buDC18C6/2-NPOE-DNNS Stable for several weeks [31] 
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Table 4: Reported PIM studies using macrocyclic and macromolecular carriers. 

 
Macrocyclic Carriers Target species Base 

polymer/Plasticizer Refs 

A 

N
OO

NN

O O
CH3(CH2)14CO CH3(CH2)14CO

OO

 
Pyridino- and bipyridino-podands 

Ag(I) CTA/2-NPOE [100] 

B 

N
O

O O

O

H

O O

 
Calix[4]arene 

Ag(I) CTA/2-NPOE and 
TBEP [101] 

C        Ag(I) CTA/2-NPOE-
TBEP [20] 
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O
N

O

N

O

O
O

O

RR

O

 

N

O

N

O

O
O

O

 
Acyclic polyether diamide  

(R = H or C14H29) 
Acyclic polyether diamine 

 

D N
N

N

OO

 
N-benzylated macrocyclic 

 

Ag(I) CTA/2-NPOE [102] 

E 

O

N
OO

O
N

O

O

 

O
O

N
O

O
N

O

 
4, 7, 13, 16, 21, 24 hexaoxa 1, 10 
diazabicyclo [8.8.8] Hexacosane 

4, 7, 13, 16, 21 pentaoxa 1, 10 
diazabicyclo [8.8.5] Tricosane 

Dibenzo 18-crown-6 (DB18C6) 
 

Ag(I), Cu(II) CTA/2-NPOE [14] 
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F Dibenzo-18-crown-6 (DB18C6) Cu(II) CTA/2-NPOE [10] 

G 

Dibenzo-18-crown-6 (DB18C6) 
Hexathiol-18-crown-6 (HT18C6) 

Diaza-18-crown-6 (DA18C6) 
Hexaza-18-crown-6 (HA18C6) 

Ag(I), Cu(II), 
Au(III) CTA/2-NPOE [13] 

H 

 

O
O

O

N
O

N
RR R'R'

 
Diazadibenzocrown ethers 

 1 2 

R’ t-Bu H 

R H CH2CO2C2H5 

Pb(II) CTA/2-NPOE [32] 

I 
(CH2)7CH3

O
O

O

O

P
N

O

N
P

N
P

N
H

N
H (CH2)7(CH2)7CH3

(CH2)7 CH3

CH3

 

Zn(II), Cd(II), 
Cu(II) CTA/2-NPOE [103] 
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O
O

O

O

P
N

O

N
P

N
P

O

N
H

O

O

O
O

O

O

P
N

O

N
P

N
P

O O

O N
H

(CH2)7

 
Diphosphaza-16-Crown-6 Derivatives 

J β  -cyclodextrin (β -CD) polymers 
Cu(II), Co(II), 
Ni(II), Zn(II) CTA/2-NPPE [104] 

K 

N
N

R

R

 
Bathophenanthroline: R = H 

Bathocuproine: R = CH3 

Zn(II), Cu(II), 
picrate 

CTA/Various 
plasticizers 

[15, 
56] 

L O
O

O

O
O

O

 
di-tert-butylcyclohexano-18-crown-6 (BuDC18C6) 

Sr(II) CTA/2-NPOE [31, 
54] 
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M 

O NH

O

O

C8H17

S
X

OO

NH

O

O

C18H17

O
S OO

X  
acyclic polyether di[N-(X)sulfonyl carboxamides] 

Ligand X 
1 CF3 
2 C6H4-4-NO2 
3 C6H5 
4 CH3 Ba(II) CTA/PVC/NPOE [105] 

N 
OO O OO O

R R' R' R R R'  
1,3,5-Trimethyl-2,4,6-tricarboxamide-p-tert-butylcalix[6]arene 

(R=CH2CO2H and R’=CH2CONEt2) 

Ba(II) CTA/NPOE-TBEP [106] 

O  O
O

O

O
O

O

OR
OR

 

O
OO

O
O

O

O
O

O

O
O

O

 
1,3-bis(dodecyloxy) 

calix[4]arene-crown-6 1,3-calix[4]-arene-biscrown-6 
 

Cs+ CTA/2-NPOE [30, 
68] 
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P 

Si O N

N

N

O O

O

N
HH

H

O

 
5’-(Tert-butyldimethylsilyl)-2’,3’-O-isopropylidene isoguanosine  

(isoG 1) 
 

Cs+, Pb(II) CTA/2-NPOE [63] 

Q 
O

O

O

O

O

OR CH2 C OH

O

 
R = C3 – C16 alkyl chains 

Sym-(alkyl)dibenzo-16-crown-5-oxyacetic acids 

Na+ CTA/2-NPOE or 2-
NPPE [33] 

R 

 

O

O

O

O

O

N
H

(CH2)3 CH3

O

 
4'-N-butylcarboxamidobenzo- 15-crown-5 

K+, Li+ Sol-gel [65] 
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FIGURE CAPTIONS 

Figure 1: Chemical structures of plasticizers commonly used in PIMs. 

Figure 2: Permeability of Cu(II) as a function of the plasticizer TBEP concentration in 

CTA membranes containing LIX® 84-I as the carrier.  Source phase: 20 mg/L Cu(II), 

0.025 M AcH/AcNa, pH 5.0; receiving phase: 1 M H2SO4.  (Reproduced with permission 

from ref [43].  Copyright 2005 Elsevier Science.) 

Figure 3: The effect of plasticizer viscosity on Cr(VI) transport through CTA and PVC 

membranes. (a) The membranes contained 1.0 M TOA (based on plasticizer volume). 

Source phase: 2 × 10-2 M Cr(VI), 1.0 M HCl; receiving phase: 0.1 M NaOH. (b) The 

membranes contained 20% (w/w) Aliquat 336, 40% (w/w) plasticizer.  Source phase: 1.8 

x 10-6 M Cr(VI), pH 2; receiving phase: 1 M NaNO3.  See the glossary list for the 

plasticizer names.  (Reproduced with permission from ref [55], copyright 2005 Elsevier 

Science and from ref [39], copyright 2004 Taylor & Francis.) 

Figure 4: Morphology of the thin films with various membrane constituents. The thin 

films consist of A: pure CTA; B: CTA and 2-NPOE; and C: CTA, 2-NPOE, and 

DB18C6. (Reproduced with permission from ref [14].  Copyright 2004 Elsevier Science.) 

Figure 5: A typical PIM or SLM experimental set up. 

Figure 6: Chemical structures of several basic carriers.  Note: Aliquat 336 consists of a 

mixture of up to 5 quaternary ammonium compounds with alkyl chains (R) varying from 

C8 to C10 [115].  In the following discussion, we are using R4N+Cl– to represent Aliquat 

336 for simplicity.  It should be noted that some researchers refer to Aliquat 336 simply 

as tri-n-octylmethyl ammonium chloride (TOMAC). 

Figure 7: Chemical structures of some acidic carriers.  Note: In the discussion in the text 

HR and R are used to represent the neutral and deprotonated forms of the carrier, 

respectively. 

Figure 8: Chemical structure of Lasalocid A. 
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Figure 9: Chemical structures of several neutral carriers. 

Figure 10: Schematic description of coupled transport of a positively charged (M+) or 

negatively charged (M–) species through a PIM.  C represents the carrier and X is an 

aqueous soluble coupled transport ion.  [M+], [M–], [X–] and [X+] represent the total 

analytical concentrations of the respective solute in the bulk aqueous phases.  (a): The 

target solute is a cation and is concurrently transported with a coupled transport anion; 

(b): the target solute is a cation and is counter-currently transported with a coupled 

transport cation; (c): the target solute is an anion and is counter-currently transported with 

a coupled transport anion; (d): the target solute is an anion and is concurrently transported 

with a couple transport cation. 

Figure 11: Schematic diagram of the membrane extraction system where only half of the 

transport cell is considered. (δ is half the membrane thickness). 

Figure 12: Influence of the kinetic and diffusion parameters on the character of the 

extraction process. (Reproduced with permission from ref [60].  Copyright 1997 Elsevier 

Science.) 

Figure 13: Historical and future development of liquid membranes and PIMs.  The width 

of the bars represents the amount of effort merited.  (Adapted from Cussler [78].) 
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