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SYNOPSIS 
 
An experimental program was established to investigate boundaries in low-velocity slug-flow 
pneumatic conveying. A straight horizontal pipeline of L=21m and D=60.3mm ID was set up 
for actual conveying trials and a simple rig was designed and built specifically to simulate the 
boundaries of slug-flow. After running several tests in the simulation rig with a sample of the 
product, the slug-flow were able to be determined with good accuracy. Combined with the 
theoretical correlations developed to determine pressure drop in slug-flow, reliable operating 
conditions can be predicted. Good agreement was achieved after the predicted results were 
compared with the experimental results from the large-scale pipeline. 
 
 
1. NOMENCLATURE 
 
A Internal pipeline area, m2 
a, b Packed-bed model constants 
dp Particle diameter, m 
mf Air mass flowrate, kg s-1 
ms Product mass flow rate, kg s-1 
P Upstream pressure, Pag 
P1 Pressure at top of material bed, Pag 
Qa Volumetric flow rate of air, m3 s-1 
R Universal gas constant, Nm kg-1 K-1 
T Absolute temperature, K 
Ua Superficial air velocity, m s-1 
Ua,min Minimum superficial air 
 velocity, m s-1 

Up Slug velocity, m s-1 
Usp Superficial slip velocity, m s-1 
ΔP Pressure drop across material bed, Pa 
δp Pressure gradient in the slug, Pa m-1 
φw Wall friction angle, degree 
ρb Loose-poured bulk density, kg m-3 
ρf Air density, kg m-3 
ρs Particle density, kg m-3 

 
Subscript 
m  Mean conditions (based on air 
  density)

 



2. INTRODUCTION 
 
The pneumatic conveying of bulk solid materials through pipelines has been used for over one 
hundred years. Suspension flow, or dilute-phase, is used widely in industry due to its 
simplicity in design and operation. However, since a high air velocity (eg. 20 to 40 m/s) has to 
be used in suspension flow, there are often problems such as high power consumption, 
product degradation and pipeline wear. To overcome these problems, low-velocity slug-flow 
pneumatic conveying has received considerable attention over the past decade from both 
researchers and commercial suppliers of equipment. In slug-flow, bulk solids are transported 
in slugs and there is no relative motion between the particles within the slug. Power 
consumption, product degradation and pipeline wear are reduced dramatically during low-
velocity slug-flow. 
 
However, to achieve good and reliable low-velocity slug-flow, the air velocity along the 
pipeline should be controlled. As conveying air flows through the pipeline, the pressure 
reduces and the air velocity increases towards the end of the pipeline. If the air velocity is 
over a certain value at which the particles can be picked up or suspended from the stationary 
bed between the slugs, long slugs are formed and/or dilute-phase conveying is achieved in the 
pipeline. If the air velocity is below a certain value, the slug cannot be carried along the 
pipeline, thus the pipeline becomes blocked. Therefore, it is very important that the air 
velocity range required for achieving low-velocity slug-flow can be determined accurately. 
 
This paper will explain how an experimental program was established to determine the 
boundaries in low-velocity slug-flow pneumatic conveying. A simple and specific rig was 
used to simulate the boundaries in slug-flow. Combined with theoretical correlations, the 
results from the simulation rig were used to predict pressure drop and locate the boundaries in 
slug-flow. The predicted results were then compared directly to the experimental results 
obtained from the large-scale test program. Good agreement was achieved. 
 
 
3. TEST PROGRAM 
 
3.1 Full-scale test rig 
The full-scale test rig has a compressed air supply entering a bank of sonic nozzles allowing 
various air mass flowrates to be achieved. A 2m3 feed bin is located over a 250mm diameter 
drop-through rotary valve to feed product into the conveying line. This rotary valve is 
connected to a variable speed drive to allow different product mass flow rates to be achieved. 
A straight horizontal pipeline of L=21m constructed of 60.3mm ID stainless steel pipe is used, 
containing two sight-glasses along the pipeline. The sight-glasses are installed for the purpose 
of visualising the flow of particles through the pipeline. 
 
A 1m3 receiving bin is used to collect product before being fed through a 200mm diameter 
drop-through rotary valve into a 78mm ID mild steel return line and back to the feeding bin. 
Pressure transmitters and load cells are used to record pipeline pressures and feed rates, 
respectively. These readings are collected and analysed using a data acquisition unit. 
 
The layout of full-scale test rig is shown in Figure 1. 
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Figure 1 Full-scale test rig layout 
 
3.2 Simulation rigs 
 
3.2.1 Vertical test chamber 
To predict total pipeline pressure, the following packed bed model is used [1, 2]. 
 
 δpm = aUa + bρfUa

2 
 
It is clear that constants a and b should be determined in advance. It has been observed that 
there is no relative motion between particles within the slug. A vertical test chamber, see 
Figure 2, was devised to determine the parameters 'a' and 'b' in the packed bed model by 
plotting the relationship between δpm/Ua and mf/A [1, 2]. 
 
Air supplied to the test chamber passes through a rotameter to provide a direct measurement 
of the volumetric flow rate of air running through it. The differential pressure across the 
material bed is measured using a manometer and the mean air velocity in the test chamber is 
calculated using a pressure transducer to record the air pressure in the material bed. 
 
The actual tests involve filling the test chamber to within a few millimetres of the top and 
fixing a porous plate in place. Air is then allowed to enter the test chamber until the material 
bed aerates and rises up against the porous plate. This is referred to as the critical point. At 
this time the air mass flow rate and rotameter readings are recorded. Once this critical point is 
located, several tests are performed on both the low and high sides. Only tests on the high side 
of the critical point are used to determine the values for a and b as this is the region where the 
material is transported in slugs. Below the critical point the material bed is static. 
 



 
Figure 2 Vertical test chamber for determining a and b [1, 2] 

 
3.2.2 Boundary simulation rig 
Based on the mechanisms involved at the boundaries, the simple test rig shown in Figure 3 
was designed and built [3]. The internal pipe diameter was 78 mm. The steel pipes were used 
to simulate the actual conveying pipelines where the bulk solids are transported in slugs. The 
glass section of pipe was for determining the pickup velocity of particles from the stationary 
bed and also observing whether the slug in the mild steel pipe was moving. 
 

 
Figure 3 Test rig for determining boundaries [3] 

 
To locate the lower dense phase boundary, a single slug was produced in the steel pipe as 
shown in Figure 4. 
 
The slug is produced by filling material between two porous plates held together by five thin 
supporting wires. The central wire is longer than the others so it protrudes into the glass 
section to observe when the slug begins moving. The rig was then reassembled and air was 
gradually added to the rig until the slug began to move. This air mass flow rate was then 
recorded. An empty slug, ie. the porous plates and wires only, was tested to check for any 
friction. On analysis, a pressure of 0.3kPa was recorded resulting in all tests being adjusted by 
this amount. 



 

Figure 4 Lower boundary simulation Figure 5 Upper boundary simulation 
 
The upper boundary is simulated by measuring the pickup velocity of the material from the 
stationary bed. This is performed by depositing a layer of material in the glass section of the 
pipeline and levelling it, as shown in Figure 5a. Air is supplied to the pipeline at a low mass 
flow rate and slowly increased until particles begin to be lifted from the layer into the air 
stream. The air mass flow rate is then left constant for the equilibrium condition to be 
achieved. As material lifts from the layer, see Figure 5b, the cross sectional area in which the 
air flows increases and thus the air velocity decreases to a point lower than the pickup 
velocity and no more material is picked up. Once equilibrium has been achieved, the air 
supply is turned off and the air mass flow rate and height of the bed are recorded. 
 
3.2.3 Test materials 
A range of products was used during the test programs. The material properties are displayed 
in Table 1. Of the products, the polythene pellets were the only product tested in the full-scale 
test rig to date, however all products have been tested in the simulation rig. 
 

Table 1 Physical properties of test products 
 

Product dp
#  (μm) ρb  (kg m-3) φw

*  (°) 
Polythene pellets 4473 578 12 
Plastic pellets 2493 535 16 
Milo 3005 783 12 
Corn 6010 778 19.5 
Wheat 3176 833 19 

# Equivalent volume diameter * Wall material 304 stainless steel 
 
 
4. TEST RESULTS 
 
4.1 Full-scale tests 
On completion of the full-scale testing program, the data are analysed and plotted, as shown 
in Figure 6. Although this paper is focused on the dense phase region, both dilute phase and 
dense phase tests have been performed for completeness. Based on the observation in each 
test, the approximate boundaries for both dilute and dense phase are displayed appropriately 
on Figure 6. 
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Figure 6 Pneumatic conveying characteristics for the polythene pellets in a 60.3mm ID 
horizontal stainless steel pipeline, L=21m 

 
4.2 Constants a and b 
Once testing is completed, the data are collected and entered into a spreadsheet and the 
required parameters determined. 
 
The air mass flow rate is found by: 
 
 mf = Qa ρf 
 
where ρf = P / RT 
 
The mean pressure in the chamber is found by: 
 
 Pm = P1 + ΔP/2 
 
The mean air velocity is found by: 
 
 Ua = mf / ρmA 
 
The pressure gradient, δpm, is found by dividing the measured differential pressure by the 
distance between the pressure tappings. From these calculations δpm/Ua can be plotted against 
mf/A to yield a linear relationship and develop the equation δpm/Ua = a + bmf/A. The gradient 
of the line being the 'a' value and the y-intercept being the 'b' value. Refer to Figure 7. 
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Figure 7 Determining packed bed model constants for the polythene pellets 

 
A trend line is placed through the points on the high side of the critical point and the equation 
is given as shown in Figure 7, giving the packed bed model parameters as a=11550 and 
b=16849. These values are then used in the packed-bed model to predict the total pipeline 
pressure drop, see Section 5.1. 
 
4.3 Lower boundary 
Testing requires that the slug of material is extremely close to incipient motion to simulate the 
point at which blocking will occur. This sometimes results in the air supply being finely 
adjusted if the slug started moving too quickly in the pipeline. Once a slug of product is found 
to be moving, the air supply is left running for an adequate time to allow steady state to occur. 
The tests are recorded using a computer and the results analysed. The results obtained from 
testing the polythene pellets in the simulation rig are mf = 0.0039 kg/s and P = 3.711 kPa. 
These values are then used to determine the location of the lower dense phase boundary, see 
Section 5.2 
 
4.4 Upper boundary 
Some uncertainty as to the actual bed height was observed due to particles at the front of the 
bed being entrained then dislodging particles further along. This resulted in the bed having 
more depth at the beginning and less at the end. An average bed height was finally decided 
upon and from the height of the material bed, the cross sectional area of the airflow can be 
determined and using atmospheric conditions the air velocity can be calculated. 
 
The air velocity is found by: 
 
 Ua = mf / ρfA 
 
where ρf = Patm / RT 
 
From the data recorded and analysed, the average pickup velocity, Ua = 9.7 m/s. This value is 
then used to locate the upper dense phase boundary, see Section 5.3. 
 
 
 
 
 



5. THEORETICAL PREDICTION 
 
5.1 Pressure drop prediction 
The packed-bed model [1,2] is used to predict the total pipeline pressure drop. Starting with 
an initial 'guess' of the mean air density in the pipeline, the total pipeline pressure drop is 
calculated, after which the mean air density is recalculated and if the values vary an iterative 
approach is used until the mean air density converges. Once a full set of results has been 
produced for different solids mass flow rates, the pneumatic conveying characteristics can be 
produced, as shown in Figure 8. 
 
5.2 Location of lower boundary 
From the pressure determined experimentally to overcome the friction between the pipe and 
the slug, the mean air density can be calculated by the equation: 
 
 ρfm = (Patm + Δp/2) / RT 
 
Followed by the minimum superficial air velocity: 
 
 Ua,min = mf / (ρfmA) 
 
The theoretical pressure gradient across the slug in the test rig can the be calculated: 
 
 δpm = aUsp + bρfmUsp

2 
 
where  Usp = Ua,min

  

 
The determined pressure drop is compared with the pressure obtained from the lower 
boundary tests and if the two pressure values differ, the air mass flowrate is adjusted and the 
process repeated in an iterative approach. The boundary point is therefore determined for a 
certain solids mass flow rate. 
 
5.3 Location of upper boundary 
The criterion to locate the upper boundary on the PCC is when the air velocity equals the 
pickup velocity of the material: 
 
 Ua = Vp 
 
Due to the compressibility of air, the maximum air velocity occurs at the end of the pipeline 
and the air velocity can be calculated as: 
 
 Ua = mfRT / (patmA) 
 
If the maximum air velocity is found to be less than the re-entrainment velocity, it is certain 
that the material can be transported in slugs along the entire pipeline. Therefore, the 
maximum air mass flowrate for the slug can be calculated by: 
 
 mf = VppatmA / RT 
 



Since relative parameters (eg. ρb, 'a', 'b') for a given material are constant, the maximum air 
mass flowrate used to locate the upper boundary is also constant. In practice, the predicted 
boundary point at lower material mass flow rates is slightly higher than the actual boundary 
location determined experimentally. However, when designing a low-velocity slug-flow 
pneumatic conveying system, a point midway between the two theoretical boundaries is 
suggested for suitable operating conditions. It is for this reason that the theoretical upper 
dense phase boundary location is considered safe. 
 
Plotting the data obtained from the packed-bed model for various material mass flow rates, a 
PCC can be produced, as shown in Figure 8 by the solid curves. Also plotted on this figure are 
the lower and upper boundaries as predicted using the previously explained methods, 
represented as dashed lines. The data recorded from the full-scale pneumatic conveying tests 
for the polythene pellets are superimposed onto the theoretical predictions, as indicated by the 
numbers overlaid on the theoretical curves. These experimental results compare well with the 
theoretical predictions. 
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Figure 8 Theoretical PCC showing lower and upper boundaries as well as 

full-scale experimental data 
 
 
6. RELATIONSHIPS BETWEEN MATERIAL PROPERTIES AND BOUNDARY 

LOCATIONS 
 
A brief investigation was carried out to determine whether there is any relationship between 
the material properties and the location of the lower dense phase boundary. Five material 
properties were plotted against air velocity, they being, loose-poured bulk density, wall 
friction angle, mean particle size and packed bed model constants 'a' and 'b'. Of the five 
products tested in the simulation rigs, there seems to be no relationship for loose-poured bulk 
density and mean particle size to the location of the lower dense phase boundary. There seems 
to be a distinct linear relationship for the wall friction angle and possible curved relationships 
for both packed bed model constants.  
 
For the upper dense phase boundary, the relationship between mean particle size and air 
velocity at the boundary point was investigated. For the five products tested there is a possible 
trend present, that being as mean particle size increases the air velocity at the boundary 
decreases before rising again. 
 



These observations are extremely preliminary and testing on more products should be 
performed to verify these initial findings. 
 
 
7. CONCLUSION 
 
To reliably design a low-velocity slug-flow pneumatic conveying system, the total pipeline 
pressure drop as well as the lower and upper dense phase boundaries must be predicted for a 
given material. The prediction of the pipeline pressure drop has already been found to be 
accurate [2], so the purpose of current research is to accurately predict the lower and upper 
boundaries. 
 
The total pipeline pressure drop and lower and upper dense phase boundaries have been 
predicted for five products, however, at present only the predictions for the polythene pellets 
have been compared to full-scale test results, showing good accuracy. Work is to continue 
with various other full-scale pipeline materials such as aluminium and mild steel, as well as 
other pipeline diameters and also performing other full-scale test programs with other 
products such as those used in the simulation test rigs to verify the results obtained. 
 
Preliminary investigation into the relationship between particle properties and the location of 
the dense phase boundaries has been performed with mixed results and testing on a wider 
range of products should be continued for further verification. 
 
The final objectives of this research are to give a better understanding as well as a more 
accurate method of determining the location of both the upper and lower boundaries of low-
velocity slug-flow pneumatic conveying. 
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