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Stability of Cementite Formed from Hematite
and Titanomagnetite Ore

RAYMOND JAMES LONGBOTTOM, OLEG OSTROVSKI, JIANQIANG ZHANG, and
DAVID YOUNG

The stability of cementite formed during the reduction of hematite and preoxidized titano-
magnetite ores in a methane-hydrogen gas mixture was examined in the temperature interval
500 �C to 900 �C for the hematite ore and 300 �C to 1100 �C for titanomagnetite. Cementite
formed from hematite ore was most stable at temperatures between 750 �C to 770 �C. Its
decomposition rate increased with decreasing temperature between 750 �C and 600 �C and with
increasing temperature above 770 �C. Cementite formed from preoxidized titanomagnetite was
most stable in the temperature range 700 �C to 900 �C. The rate of cementite decomposition
increased with decreasing temperature between 700 �C and 400 �C and with increasing tem-
perature above 900 �C. Cementite formed from titanomagnetite ore was more stable than
cementite formed from hematite under all conditions examined.

DOI: 10.1007/s11663-006-9005-2
� The Minerals, Metals & Materials Society and ASM International 2007

I. INTRODUCTION

CEMENTITE formed from iron ore by the reaction
of iron oxides with carbon supersaturated gases based
on methane or carbon monoxide is metastable and
decomposes to metallic iron and graphite, even under
strongly carburizing atmospheres.[1–8] The process of
decomposition of cementite in direct reduction is akin to
the metal dusting of iron-based alloys. The decomposi-
tion is thought to be triggered by deposition of carbon
on the cementite surface (due to slow carbon diffusion in
cementite).[3–8] This decreases the carbon activity at the
carbon-cementite interface from the supersaturated gas
value to aC = 1. At this level, cementite is thermody-
namically unstable and decomposes.

Nakagawa et al.[2] and Zhang[1] reported an unusual
temperature dependence of the stability: the rate of
cementite decomposition increased with decreasing tem-
perature within a certain range. According to Zhang
et al.,[3–8] in the range 500 �C to 925 �C, cementite was
most stable at temperatures close to 750 �C. The rate of
its decomposition increased with increasing temperature
to 925 �C, but also with decreasing temperature from
730 �C to 750 �C to 550 �C.

In the reduction of titanomagnetite ore reported
earlier,[9] the product cementite contains titanium. Tita-
nium stabilizes cementite,[9] but no information is avail-
able for its effect on cementite decomposition during
carbothermal reduction of titanomagnetite ore. The
purpose of the present study was to develop an under-
standing of the effect of temperature and titanium on

cementite decomposition and stability. The behavior of
cementite formed from titanomagnetite ore was compared
with that of cementite formed from hematite ore.

II. EXPERIMENTAL

Cementite was formed by reducing hematite and preox-
idized titanomagnetite ore in a flowing CH4-H2-Ar gas
mixture, as described earlier.[9] The compositions of the
hematite ore and titanomagnetite ironsand are given in
Table I. The titanomagnetite was preoxidized by heating in
air within a muffle furnace at 1000 �C for 4 days. This
converted theore to themore easily reduced titanohematite.
Reduction and cementation of the ore and cementite

decomposition were studied in a lab-scale fixed bed
reactor in a vertical tube furnace. A schematic of the
experimental reactor is shown in Figure 1. Mass flow
controllers were used to control the gas composition
used in the experiments, while the composition of the
off-gas could be measured using a mass spectrometer.
Cementite samples were prepared by passing the

reducing/carburizing gas with a composition of 35 vol
pct CH4, 55 pct H2, and 10 pct Ar through the sample
bed at 750 �C for 15 minutes for the hematite ore and
30 minutes for the preoxidized titanomagnetite ore. The
product was more than 98 wt pct cementite containing a
small amount of metallic iron. The temperature of the
sample was then changed to the experimental value for
cementite decomposition and the sample held for a
prescribed period of time. The time taken for the
temperature to change was about 15 minutes. After
decomposition, the sample was subsequently lifted to
the cold zone and quenched under argon. Decomposi-
tion of cementite formed from titanomagnetite was
studied under both the CH4-H2-Ar reducing/carburizing
atmosphere and an inert Ar atmosphere.
The extent of cementite decomposition was measured

by determining the phase constitution of quenched
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samples quantitatively by X-ray diffraction (XRD) using
a copper Ka source. The XRD measurements of the iron
and cementite phases were validated using Mössbauer
analysis, as described by Park et al.[10]

The morphology of reacted samples was examined by
bothopticalmicroscopyand scanning electronmicroscopy
(SEM). Optical microscopy was carried out on specimens
of cementite after decomposition to different extents.
These samples were prepared by mounting in resin,
metallographically polishing, and etching in basic sodium
picrate, which selectively stains cementite a dark brown.

III. RESULTS

Analysis by XRD of decomposed cementite revealed
the presence of remnant Fe3C, metallic iron, and
graphite. No iron oxides were observed under the
reducing conditions used, and no titanium compounds
were detected. The weight fraction of remnant Fe3C
determined from the XRD analysis was used as a
measure of the extent of reaction.

The decomposition kinetics of hematite-derived
cementite in CH4-H2-Ar gas are shown in Figure 2 (a)

for temperatures below 750 �C and in Figure 2(b) for
temperature above 750 �C. The corresponding results for
the decomposition of cementite derived from preoxidized
titanomagnetite are shown in Figures 3(a) and (b).
Decomposition of the same material under pure argon
proceeded according to the kinetics shown in Figure 4.
The decomposition rates are compared in Figure 5,
where the fraction of Fe3C remaining after 1 hour of
decomposition is used as the comparison measure.

Cementite decomposition rates were calculated from
the slopes of the kinetic curves reported in Figures 1
through 3. Early stage rates (t = 15 minutes) are shown
in Figure 6.

Fig. 2—Mass fractions of cementite formed from hematite during
decomposition at different temperatures: (a) from 500 �C to 750 �C
and (b) from 750 �C to 850 �C.

Fig. 1—Schematic diagram showing the reactor used for experi-
ments.

Table I. Composition of Iron Ores (Weight Percent)

Ore Fe(Tot) SiO2 Al2O3 TiO2 P CaO K2O S MgO

Mt. Whaleback 62.7 5.35 3.61 0.09 0.087 0.016 0.03 0.028 —
NZ ironsand 57.2 2.17 3.59 7.43 — 0.67 — — 2.94

176—VOLUME 38B, APRIL 2007 METALLURGICAL AND MATERIALS TRANSACTIONS B



Etched cross sections of cementite particles formed
from the hematite ore and decomposed at different
temperatures are shown in Figure 7. Metallic iron
precipitated along the edges of the particles and along
the large pores, forming either blocks or seams of
metallic iron within the cementite. Metallic iron
exhibited some coarsening, in comparison to the
cementite, due to sintering after precipitation. The
amount of metallic iron found within the particles at
different times matched the XRD results. Thus, there
was more iron visible, for the same decomposition
time, at 600 �C than at 500 �C, while at 750 �C
(60 minutes) and 800 �C (30 minutes), metallic iron
was not observed.

Figure 8 shows cross sections of cementite formed
from the preoxidized titanomagnetite ore decomposed
at different temperatures. Iron was again observed
around the edges of the particles. Iron was also detected
within the cementite interior at lower temperatures, but

generally not at high temperatures. This morphological
change differed from that seen in the decomposition of
cementite formed from the hematite ore.

Fig. 4—Mass fractions of cementite formed from preoxidized titano-
magnetite during decomposition under an inert atmosphere at differ-
ent temperatures: (a) from 300 �C to 500 �C, (b) from 550 �C to
750 �C, and (c) from 750 �C to 1100 �C.

Fig. 3—Mass fractions of cementite formed from preoxidized titano-
magnetite during the process of decomposition under a carburizng
atmosphere at different temperatures: (a) from 450 �C to 750 �C and
(b) from 750 �C to 900 �C.
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At temperatures between 700 �C and 850 �C, when
the decomposition of cementite formed from the preox-
idized titanomagnetite was slow, iron nucleated around
the edges of the particle. As the temperature decreased,
and the decomposition of cementite became faster,
metallic iron nucleated throughout the sample.

IV. DISCUSSION

The decomposition behavior of hematite-derived
cementite was generally in agreement with that
reported by Zhang et al.[7,8] The cementite was most
stable at about 730 �C to 750 �C. At higher temper-
atures, the decomposition rate increased with increas-
ing temperature. From 600 �C to 650 �C, to 730 �C
to 750 �C, the decomposition rate increased with
decreasing temperature, until a maximum rate was
reached at 600 �C to 650 �C. Below this range, the
decomposition rate decreased with decreasing tem-
perature.

As seen in Figures 5 and 6, the behavior of titano-
magnetite (ironsand) derived cementite in CH4-H2-Ar
gas was qualitatively similar, although decomposition
rates were much slower. The titanium modified cement-
ite was most stable at around 750 �C to 770 �C
(Figure 3(b)), and its decomposition increased only
slightly at higher temperatures. Between 550 �C and
750 �C, the rate increased with decreasing temperature
to a maximum, below which decomposition slowed at
lower temperatures.

The behavior of the titanium modified cementite in
argon gas was rather similar to that in CH4-H2-Ar gas, as
seen in Figure 6(b). In this case, additional data were
obtained at higher temperatures and the decomposition
rate found to increase rapidly with temperature above
about 950 �C.

In order to understand the temperature effects on
Fe3C decomposition, it is necessary to consider both the
thermodynamics and the kinetics of the cementite
decomposition reaction. In principle, two possible reac-
tions are available:

Fe3C + 2H2 =3Fe + CH4 ½1�

and

Fe3C=Fe + C ½2�

where, in both cases, Fe is an iron-carbon saturated
solution, either austenite at T>727 �C or ferrite at
lower temperature.

A. Thermodynamics of Cementite Decomposition

The standard Gibbs free energies of Reactions [1]
and [2] differ according to whether the iron phase is
c-austenite (T>727 �C) or a-ferrite (T<727 �C)[11]
and are listed subsequently:

DGo
1;c = � 98,633 + 119.74 T (J) ½3a�

DGo
1;a = � 116,436 + 136.77 T (J) ½3b�

DGo
2;c = � 11,234 + 11.0 T (J) ½4a�

DGo
2;a = � 29,037 + 28.0 T (J) ½4b�

Fig. 5—Mass fractions of cementite formed from preoxidized titano-
magnetite and hematite ore after 60-min decomposition under both
carburizing and inert atmospheres.

Fig. 6—Rate of decomposition of cementite formed from (a) hema-
tite and preoxidized titanomagnetite ores in the carburizing atmo-
sphere and (b) preoxidized titanomagnetite ore in the carburizing
and inert gas atmospheres.
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Consider first Reaction [1] in the low-temperature
ferrite regime. If the small carbon solubility in iron is
neglected and the approximation aFe = 1 is adopted, it
is found that DG1,a = 0 at T = 571 �C for the gas
composition employed (35 vol pct CH4 and 55 vol pct
H2). Thus, cementite is predicted to decompose at lower
temperatures, but to be stable with respect to the
carburizing gas at T>571 �C. This is illustrated graph-
ically in Figure 9, where the value of aC, as calculated
from the supposed equilibrium

CH4 =C + 2H2 ½5�

for which

DGo =87,397� 108.7 T (J) ½6�

is compared with that calculated from Eqs. [4a]
and [4b].

In evaluating aC from Eq. [3a], the iron activity in
carbon saturated austenite can be calculated from the
thermodynamic model developed in Mogutnov et al.:[12]

log aFe;c =1/4 log ((1� 5xC)/(1 � xC))

� 158/T[xC2/(1� xC)
2]

½7�

where xC is the carbon mole fraction estimated from the
Fe-C phase diagram. The carbon activity of a supersat-
urated CH4-H2-Ar gas exceeds that required to stabilize
Fe3C at T>571 �C. Nonetheless, cementite was found
to decompose at all temperatures in the experimental
range 500 �C to 900 �C. It is, therefore, concluded that
Eq. [1] does not reflect the reaction pathway, that gas-
solid equilibrium is not achieved, and that cementite
decomposition occurs via Eq. [2], despite the high
carburizing potential of the ambient gas. In this case,
the driving force for reaction is given by Eq. [4] at
aC = 1. This was confirmed by the XRD analysis
results, which showed that graphite was produced
during cementite decomposition.
Reaction [2] is a phase transformation. It can occur in

successive steps,

Fe3C=3 Fe(C) ½8�

Fig. 7—Cross sections of cementite formed from the hematite ore and decomposed at different temperatures: (a) 500 �C, 30 min, 100 times; (b)
500 �C, 60 min, 100 times; (c) 600 �C, 30 min, 100 times; (d) 750 �C, 60 min, 100 times; (e) 750 �C, 60 min, 300 times; and (f) 800 �C, 30 min,
100 times.
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Fe (C)=Fe + C ½9�

where Fe(C) represents carbon supersaturated iron, or
directly via the single step process represented by Eq. [2].
In either case, the process involves nucleation and
growth of the product iron phase within the cementite.
The kinetics of such processes are generally described by
the Avrami equation:[13]

F =1 � exp (� ktn) ½10�

where F is the fraction transformed in time t. Here, k
represents both nucleation and growth rates, and hence
is strongly temperature dependent. The value of the
index n reflects the nucleation mechanism. The log-log
plots in Figure 10 show that fFe3C= 1 – F decays with
time, in agreement with Eq. [10]. However, n varies with
temperature, being 2 to 3 at temperatures of 500 �C to
700 �C and 1 to 2 at higher temperatures. This indicates
a change in nucleation mechanism.

Fig. 9—Equilibrium carbon activity in cementite as a function of
temperature.

Fig. 8—Cementite formed from preoxidized titanomagnetite ore at 750 �C, decomposed at different temperatures: (a) 400 �C, 120 min,
100 times; (b) 400 �C, 120 min, 100 times; (c) 600 �C, 120 min, 100 times; (d) 600 �C, 120 min, 100 times; (e) 750 �C, 60 min, 200 times; and (f)
750 �C, 90 min, 500 times.
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The kinetic data in Figures 2–4 were used to construct
the temperature-time-transformation (TTT) curves
shown in Figure 11. It is seen that at temperatures
below 730 �C to 750 �C, the curves have the ‘‘C’’ shape
characteristic of many solid-state phase transforma-
tions. At temperatures above about 750 �C, the cement-
ite transformation rate increases with increasing
temperature. The TTT curves change their form at a
temperature near the austenite-ferrite transition temper-
ature of 727 �C. The Gibbs free energy change driving
the Fe3C decomposition becomes more negative as the
temperature decreases (Eqs. [4a] and [4b]). This tends to
increase the rate of both nucleation and growth.
However, growth kinetics are supported by diffusion,
which slows as the temperature is lowered.

Taking the example of carbon diffusion through
ferrite as the rate-controlling step, we can write for the
process illustrated in Figure 12

Rate ¼ DFe;aðCFe3C=Fe;a � CC=Fe;aÞ ½11�

where CFe3C=Fe;a and CC=Fe;a are carbon concentrations
at the cementite-ferrite and graphite-ferrite interface,
DFe,a is the carbon diffusion coefficient, and variation in
the diffusion path length is ignored. The concentration
of carbon is related to its activity by an activity
coefficient cC:

aC ¼ cCC ½12�

which will be approximated as constant. With aC = 1 at
the iron-graphite interface, Eqs. [11] and [12] yield

Rate=DFe;aðaFe3C=Fe;a
C � 1Þ=cC ¼ ½13�

Do exp (� Q/RT )[exp (� DGo
2;a/RT )� 1�=cC ½14�

where Q is the diffusion activation energy. Equation [14]
explains the form of the TTT curve in the ferrite temper-
ature regime. Indeed, using Eq. [15] from Wert[14] for

calculation ofDFe-a and Eq. [4b] for calculation of carbon
activity, the change in the rate of cementite decomposition
with temperature can be described by Eq. [16].

Fig. 10—Plot of ln (t) against ln ð�ln ðfFe3CÞÞ, showing behavior in
accordance with Eq. [10].

Fig. 11—TTT diagrams for the decomposition of cementite formed
from iron ore under different atmospheres, for 10 pct decomposition
on the left (diamonds) and 50 pct decomposition on the right
(squares). (a) Hematite ore, carburizing atmosphere; (b) preoxidized
titanomagnetite, carburizing; and (c) preoxidized titanomagnetite, in-
ert atmosphere.
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Da�Fe ¼ 0:02 exp � 10; 115

T

� �
½15�

Rate ¼ 0:02Ra exp
�10; 115

T

� �

exp
�29; 037þ 28T

RT

� �
� 1

� � ½16�

where Ra is a temperature-independent constant.
The rate of cementite decomposition calculated in this

way has a maximum at 600 �C to 650 �C, as shown in
Figure 13, in very good agreement with experimental
observation.

Equation [13] also explains the change in the TTT
curve at the austenite-ferrite transition temperature: it
results from differences in the diffusion coefficient and
the Gibbs free energy for austenite and ferrite.

A similar calculation for the austenite phase yields a
different result. The carbon diffusion coefficient in
austenite is described by Eq. [17] from Tibbets:[15]

Dc�Fe ¼ 0:47 exp ð�1:6cÞ exp � 37; 000� 6600c
RT

� �

½17�

where c is carbon concentration in weight percent. The
rate of cementite decomposition in the austenite region
can be calculated from Eq. [18], which is similar to Eq.
[13]:

Rate=RcDFe;cðaFe3C=Fe;c
C � 1Þ ½18�

where Rc is a temperature-independent coefficient.
In this case, the rate of cementite decomposition

increases with increasing temperature, shown in
Figure 14.

The carbon activity at the cementite/austenite inter-
face changes relatively slowly, from 1.15 at the eutectoid
temperature 727 �C to 1.02 at the eutectic temperature
1147 �C, while the diffusion coefficient increases from
0.141 · 10)7 cm2 s-1 to 46.1 · 10)7 cm2 s)1 in the same

temperature interval. This change in D determines the
change in the rate of cementite decomposition with
temperature.

It is seen from Figure 11 that the rate at which Fe3C
produced from titanomagnetite decomposes is insensi-
tive to the gas phase carbon activity. This confirms that
Reaction [2] describes the process rather than Reaction
[1].

The C shape of the TTT curve can again be explained
on the basis of the mechanism illustrated in Figure 12.
More generally, it can be attributed to the nucleation
and growth kinetics of phase transformation. The effect
of temperature on phase transformation can be de-
scribed in the case of heterogeneous nucleation by the
following equation:[13]

Fig. 12—Possible mechanism for cementite decomposition: (a) Fe3C
fi 3Fe + C and (b) C fi C(gr).

Fig. 14—Changes with temperature of the diffusion coefficient of
carbon in austenite, DC,c, the activity of carbon at equilibrium be-
tween cementite and austenite, aC, and the product ðaC � 1Þ � DC;c.

Fig. 13—Changes with temperature of the diffusion coefficient of
carbon in ferrite, DC,a, the activity of carbon at equilibrium between
cementite and ferrite, aC, and the product ðaC � 1Þ � DC;a.
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Rate ¼ xCo exp �Qm

kT

� �
exp �DG*

kT

� �

where x is a factor that takes into account the vibration
frequency of the atoms, the shape, and the surface area
of the critical nucleus; Co is the number of nucleation
sites per unit volume; Qm is the activation energy for
atomic migration; and DG* is the total Gibbs free energy
change corresponding to the nucleus with a critical
radius r*, or the activation energy for the nucleation
reaction.

For a nucleus with a critical radius r*, DG* becomes[13]

DG� ¼ 16pc3

3ðDGV � DGSÞ2
: S ½20�

where S is a shape factor appropriate to the nucleus
geometry, c is the surface Gibbs free energy, DGV is the

Gibbs free energy of the reaction, and DGS is the misfit
strain energy. The change in c and DGS with temperature
is relatively small.
The Gibbs free energy change of cementite decompo-

sition increases with decreasing temperature, while the
change in DGm can be neglected. Therefore, the change
in the cementite decomposition rate with temperature
depends on the relationship between the ‘‘thermody-
namic’’ and ‘‘diffusive’’ terms in Equation [19].

B. Decomposition of Cementite Formed from
Preoxidized Titanomagnetite Ore

Cementite formed from preoxidized titanomagnetite
ore is more stable than hematite-derived cementite,
particularly at temperatures above 750 �C. It was
also observed that the temperature interval in which
the decomposition rate increased with decreasing

Fig. 15—The SEM/EDS analysis of cementite formed from preoxidized titanomagnetite ore decomposed at 500 �C. (a) Low-magnification SEM
image of cementite particle; (b) medium-magnification SEM image of edge of cementite particle; (c) high-magnification SEM image of interior of
cementite particle, decomposed for 60 min; (d) low-magnification SEM image of cementite particle; (e) medium-magnification SEM image of
interior of cementite particle; and (f) high-magnification SEM image of interior of cementite particle, decomposed for 120 min.
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temperature was 750 �C to 400 �C for the titanomag-
netite-derived cementite and 750 �C to 600 �C for the
‘‘hematite’’ cementite.

The SEM and EDS analysis of cementite formed from
preoxidized titanomagnetite ore in the process of
decomposition at 500 �C under the carburizing atmo-
sphere is presented in Figure 15. The EDS analysis of
cementite formed from preoxidized titanomagnetite is
shown in Table II. Titanium in reduced/carburized
titanomagnetite ore was detected in three main phases:
(1) the dense oxide phase, consisting of gangue materi-
als; (2) the gray phase, identified as titanium-rich iron-
titanium oxide dispersed in cementite with a relatively
high titanium concentration compared to the bulk
material; and (3) the bright phase, which is either
cementite or metallic iron formed in the process of
cementite decomposition, with a titanium content of 7 to
9 at. pct, which is the average for the particle. No
titanium carbide phase was observed, although its

formation has been reported in the literature.[16,17,18]

Titanium is known to be a strong carbide former, and
even a small amount of titanium in the alloy may have a
significant impact on the thermodynamic properties of
the carbide formed. Titanium would reduce the activity
of carbon in cementite, thereby decreasing the decom-
position rate (Eq. [13]) and stabilizing cementite.

V. CONCLUSIONS

The decomposition of cementite formed from hema-
tite and preoxidized titanomagnetite ores was investi-
gated in the temperature range from 500 �C to 925 �C
for hematite under a carburizing atmosphere, and from
300 �C to 1100 �C for titanomagnetite ore under inert
and carburizing atmospheres.

Cementite formed from hematite was most stable at
730 �C to 750 �C. At temperatures between 750 �C and
600 �C, the rate of cementite decomposition increased
with decreasing temperature. Decomposition occurred

with the highest rate at 600 �C to 650 �C. At temper-
atures higher than 750 �C and lower than 600 �C, the
rate of cementite decomposition increased with temper-
ature.

Titanium in the titanomagnetite cementite was found
in three main phases: in a dense oxide (gangue) phase; in
a titanium-iron oxide phase finely dispersed within the
cementite, which was enriched with titanium; and in the
cementite/metallic iron itself. Decomposition rates of
titanomagnetite derived cementite were much slower.
This cementite was most stable at 750 �C to 770 �C and
its decomposition increased only slightly at higher
temperatures. Between 550 �C and 750 �C, the rate
decreased with decreasing temperature to a maximum,
below which decomposition slowed at lower tempera-
tures.

The cementite decomposition rate was qualitatively
described by kinetics of carbon transfer through
austenite or ferrite formed in the decomposition
reaction. This mechanism explains the C shape of the
TTT curves in the ferrite region and increasing
decomposition rate with increasing temperature in the
austenite region.

The higher stability of cementite formed in the
reduction of titanomagnetite ore was attributed to
titanium in cementite, which decreases carbon activity
in this phase, and consequently its decomposition rate.
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Table II. Titanium-Iron Ratio of Phases within Cementite

Formed from Preoxidized Titanomagnetite Ore (EDS

Analysis)

Sample Point
Fe:Ti

(At. Pct)

0-min decomposition, 750 �C bright phase 10.36
13.71

gray phase 4.49
7.00

60-min decomposition, 500 �C bright phase 6.75
11.82

gray phase 1.65
120-min decomposition, 500 �C bright phase 11.66

10.49
gray phase 2.11
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