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Consolidation analysis of a stratified soil with vertical and horizontal
drainage using the spectral method

R. WALKER* and B. INDRARATNAT

A novel use of the spectral method to determine excess
pore water pressure during vertical consolidation of
multi-layered soil with time constant material properties
is presented, considering a unit cell with combined verti-
cal and radial drainage. Equal strain conditions are
assumed in the analysis. The novel adoption of material
properties that vary in a linear fashion with depth allows
arbitrary distributions of properties to be modelled. By
incorporating surcharge and vacuum loading that vary
with both depth and time, a wide range of consolidation
problems can be analysed. The spectral method is a
meshless approach producing a series solution to the
consolidation problem based on matrix operations. Accu-
racy can be improved by increasing the number of terms
used in the series solution. The model is verified by the
analysis of selected case studies characterised by: analy-
tical free strain consolidation with thin sand layers (sur-
charge only); laboratory test and embankment trial with
surcharge and vacuum loading; and ground subsidence
caused by groundwater pumping.

KEYWORDS: clays; consolidation; drainage; soil stabilisation;
theoretical analysis

La présente communication présente une nouvelle appli-
cation de la méthode spectrale pour la détermination de
la pression interstitielle excessive au cours de la consoli-
dation verticale de terrains multicouches, avec propriétés
de matériaux a constante de temps, en examinant une
cellule unitaire a drainage mixte vertical et radial. Cette
analyse présuppose D’existence de conditions a déforma-
tions égales. ’adoption innovante de propriétés de maté-
riaux variant sur un plan linéaire en fonction de la
profondeur permet de modéliser des distributions arbi-
traires de propriétés. En incorporant des surcharges et
des charges sous vide variant en fonction de la profon-
deur et du temps, il est possible d’analyser une vaste
gamme de problémes de consolidation. La méthode spec-
trale est une approche sans maillage permettant de
produire une solution en série au probleme de la con-
solidation basé sur des opérations matricielles. Il est
possible d’accroitre la précision en augmentant le nombre
de termes utilisés dans la solution en série. Le modeéle est
vérifié avec I’analyse de certaines études de cas caractér-
isées par : la consolidation analytique a déformation libre
avec des couches de sable peu épaisses (surcharge seule-
ment) ; des essais en laboratoire et test sur talus, avec
surcharge et charge sous vide; et le tassement du sol
causé par le pompage de la nappe phréatique.

INTRODUCTION

Soil is rarely homogeneous and to predict consolidation
behaviour of a real soil successfully, heterogeneity must be
modelled. By introducing multiple soil layers the analytical
solution to consolidation problems is much more compli-
cated compared with the relatively straightforward solutions
available for single soil layers (Terzaghi, 1943; Barron,
1948; Yoshikuni & Nakanodo, 1974; Hansbo, 1981, 2001;
Tang & Onitsuka, 2000; Zhu & Yin, 2001; Han & Ye, 2002;
Leo 2004). The analytical solutions that have been devel-
oped for multi-layered soil consolidation consider flow in a
cylindrical cell. The solutions, usually using the separation
of variables technique, are quite lengthy and involve separate
general equations for each soil layer whose unknown coeffi-
cients are determined from the zeros of a transcendental
equation (i.e. eigenvalues) and the relationship between
boundary, interface and initial conditions.

A number of solutions exist for two layer systems. Zhu &
Yin (2005) presented design charts for vertical drainage with
two layers. Xie et al. (1999) solved the same problem with
partially drained boundaries, while Xie et al. (2002) incorpo-
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rated small strain theory and non-linear soil properties where
the decrease in permeability is proportional to the decrease
in compressibility. Double layered ground with radial and
vertical drainage was studied by Tang & Onitsuka (2001)
and Wang & Jiao (2004). The two layer solutions can be
used to study partially penetrating vertical drains. For more
than two layers, Schiffman & Stein (1970) presented equa-
tions for vertical drainage, and Horne (1964) presented
equations including radial drainage. More recent work has
developed newer techniques for modelling stratified soil.
Chen et al. (2005) introduced the differential quadrature
method to analyse one-dimensional (1D) consolidation of
multiple soil layers. The differential quadrature method
approximates the derivates in the continuity equation yield-
ing a series of matrix equations to be solved. Nogami & Li
(2002, 2003) used the matrix transfer method in considering
radial/horizontal and vertical flow in layered soil with thin
sand layers, greatly simplifying the determination of eigen-
values in the vertical direction.

The above methods have some disadvantages, whether it
be the restrictive geometry constraints of one and two layer
solutions, the cumbersome implementation of multi-layered
solutions or the limited loading choices of both. The current
paper presents a new approach to solving multi-layered soil
consolidation problems with greater ease than most of, and
with far more versatility than all of, the existing methods
mentioned above. Vertical and radial drainage is included as
is combined surcharge and vacuum loading. The powerful
spectral method (Boyd, 2000) is used to solve the governing
equation, producing a single expression, calculated with
common matrix operations, to give the pore pressure profile
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across all soil layers. The new model is verified against
selected case histories.

CONTINUITY EQUATION

The derivation and solution of the governing partial
differential equation for consolidation with vertical and
radial drainage, including depth dependent soil properties
can be found, in full, in Walker (2006). The derivation is
summarised below. Fig. 1 shows a unit cell of height A, and
external radius .. The radius of the vertical drain and smear
zone are ry, and 7y, respectively. Horizontal permeability in
the smear and undisturbed zone are respectively &y and k.
The excess pore water pressure in the drain is designated w
and will be negative for vacuum loading. Drainage condi-
tions in the vertical direction are either, pervious top and
pervious bottom (PTPB), or pervious top and impervious
bottom (PTIB). k, is the vertical permeability (k, in smear
and undisturbed zone assumed equal). Soil properties vary in
a piecewise linear fashion with depth. Hansbo (1981) pro-
vides equal strain consolidation equations considering radial
flow only. In order to include flow in the vertical direction it
is assumed, as per Tang & Onitsuka (2000) and Wang &
Jiao (2004), that flow is governed by the average vertical
excess pore pressure gradient. That is, the excess pore
pressure is averaged in the radial direction and it is the
vertical gradient of this average value that determines the
flow vertically. With the above treatment of vertical drainage
the derivation of Hansbo (1981) can be modified to give the
average pore water pressure at normalised depth Z (equal to
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il = excess pore water pressure at a particular depth, y, =
unit weight of water, m, = coefficient of volume compressi-
bility (m, in smear and undisturbed zone assumed equal), &
= average total stress. The u parameter depends on the
smear zone and radial geometry of the problem. u para-
meters for various smear zone configurations (including
plane strain cases) can be found in Hansbo (1981), Walker
& Indraratna (2006), Walker & Indraratna (2007), Hird et
al. (1992), Indraratna & Redana (1997). k,, m, and 7 are
convenient reference values for the relevant parameters.
Pertinent points regarding equation (1) and these reference
values are discussed below.

Depth and time dependence of parameters

The soil properties my, ky, and 7 are all assumed to vary
with depth (independent of time), in a piecewise linear
fashion (Fig. 1) (note that parameters in equation (1) are not
written explicitly as k,(Z) etc.). Using a linear variation of
material properties is very useful when modelling arbitrary
property distributions. For multi-layer consolidation models
with constant material properties within a soil layer, model-
ling a large change in a particular parameter over a short
distance involves subdividing a region into many thin layers.
With a linear variation of properties, the approximation of
the property distribution can be accomplished with far fewer
layers. The surcharge and vacuum loading parameters, ¢ and
w, are assumed to vary with both depth and time in a
piecewise linear fashion. The explicit treatment of linearly
varying loads is better than many numerical approaches
where varying loads are discretised into a number of con-
stant step loads.

Treatment of n

The lumped parameter, 7, is linked to the contribution of
horizontal drainage. To prevent horizontal drainage within a
particular soil layer # is set equal to zero. This is useful for
analysing problems with partially penetrating vertical drains.
Soil layers below the penetration depth will have 7 =0
while still allowing vertical drainage. Other than purely
numerical methods, existing solutions for partially penetrat-
ing drains are only available for two layer systems. The
present method can also predict the effect of using both long
and short drains in unison. In the lower soil layers where
only the longer drains occur,  will be less than in the upper
layers where both long and short vertical drains provide
drainage. The treatment of » greatly increases the versatility
of the model. # is considered to vary linearly with depth
rather than its component parts (7., 4 and r.) primarily to
avoid the mathematical complications of having linear poly-
nomials in the denominator of expressions.

Normalisation of parameters

Parameters in equation (1) have been normalised with
respect to certain reference values. Depth z has been normal-
ised to the total depth of the entire soil profile H regardless
of the drainage conditions. For pervious top and pervious
bottom drainage conditions one might expect to consider
half the entire soil depth as a normalisation value (such as
Terzaghi, 1943). When non-uniform property and loading
variations are considered, however, the ‘boundary’ separating
upwards and downwards flow does not fall in the centre of
the soil profile and may move during consolidation such that
taking half the soil depth as the drainage path is invalid.
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The properties ky, m, and 7 are referenced to any convenient
value, such as the values in the first soil layer. The normal-
isation process yields the two parameters d7, and d7}, which
are analogous to Terzaghi’s vertical time factor, and the
exponential term in Hansbo’s radial consolidation equations.
In can indeed be seen that, for homogeneous soil properties,
if radial terms are ignored then equation (1) reduces to
Terzaghi 1D consolidation. If vertical terms in equation (1)
are ignored then Hansbo’s (1981) radial consolidation equa-
tion is produced. Normalising the soil properties reveals that
it is the relative values of parameters across layers that
govern the consolidation process and any deviations from
the classic 1D consolidation equations. Another advantage of
considering normalised parameters is that it is generally
easier to assess the relative magnitudes of a particular soil
property than the absolute magnitudes. Thus when predicting
or back-analysing consolidation problems, relative values of
ky, my and 7 might be determined with some certainty after
which d7, and d7}, can be varied to either give a sensitivity
analysis or fit the measured data.

Limitations

The unit-cell approach adopted in this paper assumes that
deformation occurs in the vertical direction only and that
such strains do not vary in the radial direction (equal strain).
Stresses and strains associated with shearing and variations
in vertical and lateral settlement that are expected with two-
(2D) or three-dimensional (3D) problems are not accounted
for. The model will thus give best results when analysing
problems where 1D deformation is expected (e.g. under the
centreline of an embankment) and horizontal drainage paths
are short (e.g. in vertical drain problems). Away from
embankment centrelines the model can still give approxi-
mate answers owing to the ability to model the strongly
depth-dependent loading expected in such areas. The soil
and geometry do not change with time so the model is only
valid for small strains. Reasonable results are obtained, how-
ever, if average soil properties over the consolidation period
are used as shown in the two field case studies shown below.
If time or stress dependence of properties must be consid-
ered then equation (1) can be solved numerically, which is
relatively easy to do (compared with 2D and 3D equations)
owing to the 1D nature of the equation.

SOLUTION OF GOVERNING EQUATION WITH THE
SPECTRAL METHOD

Equation (1) is a non-homogeneous partial differential
equation with source/sink terms. The source/sink terms are
functions of depth and time and arise from surcharge and
vacuum loading. Following Duhamel’s principle (Asmar,
2004) equation (1) is solved for an impulse load to obtain a
‘fundamental solution’. The general solution is then found
by integrating the fundamental solution across the entire
problem space using the actual loading terms. The solution
of equation (1) by the spectral method (Boyd, 2000) is
summarised below.

The spectral method involves expressing the excess pore
pressure distribution #(Z, ¢) as a truncated series of N terms

i(Z, t) ~ PA (©6)
where

©=[9,(2) ¢,(2) py(2)] (7
AT =[41(r) A1) An(1)] (8)

In the preceding, ¢ (Z) is a set of linearly independent basis
functions, and A;(f) are unknown coefficients. The basis

functions are chosen to satisfy the boundary conditions. In
the current analysis, for PTPB (0, 1) = 0 and #(H, 1) =0,
and for PTIB (0, ) =0 and Qu(H, t)/0z = 0. Suitable
basis functions are thus

¢,(Z) = sin(M;Z) (9a)
where
jr  PTPB
M= 725(2]' ~1) PTIB (ob)

Considering orthogonality of the basis functions it is found
that

1 1
J ¢;L(®A) dZ—J ¢, f(Z,t)dZ=0, fori=1,...,N

0 0
(10)

where, L is an operator involving partial derivatives asso-
ciated with equation (1). Substituting equation (6) and its
derivatives along with equation (6) into equation (10) yields
a set of coupled ordinary differential equations for A;(¢).
The integrations of equation (10) are performed across all
soil layers in a piecewise fashion (the explicit terms that
arise from equation (10) are described in the Appendix).
When step changes in soil properties occur an interface layer
is introduced. The contribution of an interface layer can be
found by taking the limit as layer thickness which reduces to
zero in the equations for layers of finite thickness (equations
(20) and (22) in the Appendix). It is this treatment of layer
interfaces that provides a large advantage over traditional
approaches. In previous methods, the addition of a new layer
required the inclusion of a new domain in the problem
space. For each new domain introduced, additional equations
for pore pressure with associated unknown coefficients are
needed. When many layers are analysed, the number of
unknown coefficients to solve for can become unwieldy. In
the current method, the number of unknown coefficients to
solve for, 4;(t) in equation (6), is fixed at the start of the
analysis, regardless of the number of layers used.

In solving equation (10) the distribution of material
properties, ky, m, and % contributes to a square matrix
I'"'W (see the Appendix). The most difficult part of the
analysis is calculating the eigenvalues and eigenvectors of
this matrix. There is, however, a comprehensive literature on
eigenvalue problems (Hoffman, 1992) and many software
programs exist to solve them. Eigenvalue problems can be
easily solved with freeware subroutines for Visual Basic for
Applications (Volpi, 2005) and FORTRAN (Anderson et al.
1999). Eigenvalues are also used when using previous solu-
tion methods to consolidation problems. These eigenvalues
are typically the roots of a non-standard transcendental
equation. Determining the equation roots can be more
difficult than performing the well-known operations of ma-
trix eigenvector and eigenvalue extraction used in the current
method. Particular advantage is gained when some existing
methods suggest finding roots by plotting the transcendental
equation and determining the roots visually (Nogami & Li,
2003).

The system of equations arising from equation (10) can
be solved for the fundamental solution from which the
general solution becomes

t el
(7, 1) = J J OVE(t — 7)(Tv) ' 0(8)”

0J0

X (@‘l"mnﬂ_w) dede
my, Ot 7
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where, the individual matrix terms are defined in the Appen-
dix. Equation (11) is valid for any depth and time variation
of ¢ and w. Using the linear variation of loading and
properties assumed above, the final solution of equation (1)
is found to be

iu(Z, t) = Ov(o +w) (12)

There is considerable advantage in having the entire pore
pressure distribution across all soil layers defined by a single
equation, i.e. equation (12). All previous methods involve
separate equations to describe the pore water pressure in
each soil layer. Such equations typically involve combina-
tions of sine and cosine terms, and Bessel functions for free-
strain radial drainage conditions (Horne, 1964; Nogami &
Li, 2003). Thus finding average pore pressure values by
integrating across multiple layers is tedious. Using the
current method it is equally straightforward to determine
average pore pressure (equation (33)) values within a soil
layer, across some layers, or across all layers. Equations (12)
and (33) are very concise, showing that soil consolidation
can be reduced to a series of matrix operations.

Care should be taken when including vacuum loading,
because owing to the formulation, pore pressure will always
be zero at Z=0. Thus vacuum loading is applied only
along the drain and not across the soil surface. The mathe-
matical problem arises where, if vertical flow is allowed and
vacuum is applied along the drain, pore water will flow from
the # = 0 boundary condition at Z =0 into the soil (with
negative pore pressure) and then into the drain. This restric-
tion can be overcome by using a thin layer with high
horizontal permeability at the soil surface. The mathematical
problem will still exist, but the unwanted flow into the soil
will quickly flow into the drain and not affect the pore
pressure at the bottom of the thin layer. The pore pressure at
the bottom of the thin layer will approach that of the applied
vacuum as required.

LI, 2003)",5,1,0,0,1pc,1pc,0pc,0pc>COMPARISON WITH
MULTI-LAYERED FREE-STRAIN APPROACH (NOGAMI
& LI, 2003)

Nogami & Li (2003) developed a free-strain approach for
calculating the excess pore pressure distribution for multi-
layered soil with both vertical and radial drainage. An
example problem is presented with a soil system consisting
of two identical thin sand layers (height /) separating three
identical clay layers (height 4.). Soil properties are de-
scribed by the ratios: ksnahshe/riky =5, n=20,
chhg / cvrg = 1. The average excess pore water pressure
calculated with the present approach and that of Nogami &
Li (2003) is compared in Fig. 2 (20 series terms are used).
Both methods are in close agreement except for slight
deviations in the thin sand layers at a low degree of
consolidation. The close agreement shows that, as for
homogenous ground (Hansbo, 1981; Barron, 1948), there is
little difference between free-strain and equal-strain formu-
lations. The current method does not use cumbersome
Bessel functions that are associated with free-strain solu-
tions. Also a wider range of problems can be solved with
the current method, as the approach of Nogami & Li
(2003) does not include vacuum loading or depth-dependent
surcharge loading.

VERTICAL DRAINAGE IN A SINGLE LAYER WITH
CONSTANT ¢,

By relaxing the assumption of soil homogeneity, the
proposed model can be used to investigate some deviations
from Terzaghi’s 1D consolidation theory. Consider a single

0-0 1
02 InaA
Cla
04 - Y
I
S Clay
06 T=04 Clay
08 r Present *
10 o+ Noge‘ami & Li (200?)
0 0-2 04 06 0-8 1-0
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Fig. 2. Pore pressure distribution: equal-strain plotted against
free-strain

layer of soil where k, and m, vary linearly with depth such
that ¢, remains constant throughout the soil. This restriction
is ensured when kyr/kyg = myr/myp, where the subscripts
T and B indicate the top and bottom of the soil layer,
respectively. The effect of the k,r/kyp ratio on consolidation
is assessed by calculating the average degree of consolida-
tion for PTIB and PTPB drainage conditions, under uniform
and triangular initial pressure distributions. Consolidation
curves are shown in Fig. 3 and Fig. 4 (20 series terms are
used). The curves for two-way drainage (PTPB), regardless
of initial pressure distribution, are very similar so only the
case of uniform initial pressure distribution is shown.

As k, and m, generally decrease with increasing effective
stress, it is expected that kyr/kyg > 1 for most soils. As
seen from Fig. 3 such cases exhibit a faster rate of con-
solidation compared with Terzaghi’s theory (kyr/kys = 1).
This is consistent with higher strains (higher m,) near the
drainage boundary causing faster consolidation as described
by Duncan (1993). Fig. 3(c) shows an initially slower
consolidation rate eventually ‘overtaking’ the Terzaghi rate.
This somewhat surprising result is caused by the inverted
triangle pressure distribution: for kyr/kyg > 1 there is ini-
tially greater flow downwards towards the impermeable
boundary (see Fig. 3(c)). The rate of consolidation for two-
way drainage is only marginally affected by the kyr/kys
ratio (Fig. 4). Once kyr/kyg > 2, however, any change in
linear distribution of k, and m, will give a slight decrease in
consolidation rate. Note that in Fig. 4, owing to symmetry
the case kyr/kyg = 20 is the same as k,r/k,g = 1/20.

The above findings are significant for thick clays with
PTIB drainage conditions. A change in kyr/kyg = myr/mp
may lead to significant changes in the rate of consolidation.
As, however, kyr/kyg > 1 leads ultimately to faster consoli-
dation, and is expected in the field, using Terzaghi’s analysis
(kyr/kys = 1) will simply underestimate the rate of consoli-
dation (a generally safe design approach). The rate of
consolidation will also be underestimated when determining
consolidation times by comparing the time factors
(Ty = et/ H?) of two similar soils with different drainage
lengths (sometimes called the model law of consolidation
(Craig, 1997)). Terzaghi’s theory depends only on the time
factor. The above analysis shows that consolidation depends
also on the parameter kyr/ky,s = myr/myp. Thus, comparing
the time factors, the rate of consolidation for a thin sample
such as an oedometer specimen, where kyr/kyg = 1, will be
different to a thicker specimen such as in the field, where

kVT/kVB 7é 1.
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COMPARISON WITH SELECTED CASE HISTORIES
Modelling of large-scale consolidation cell

Soil properties, testing procedures, settlement and pore
pressure data for the laboratory test described below are
described fully in Indraratna et al. (2004), Indraratna &
Redana (1998a) and Indraratna & Redana (1998b). The
relevant data (summarised below) from this test are reana-
lysed here with the proposed consolidation equations. Pre-
dicted and measured settlement data are compared.

Reconstituted alluvial clay from Moruya (40 to 50% clay
sized particles (<2 um), saturated water content = 40%,
liquid limit = 70%, plastic limit =30%, saturated unit
weight = 18-1 kN/m?) was thoroughly mixed and placed in
the steel consolidation cell, which is a stainless steel cylin-
der (height = 950 mm, diameter = 450 mm), where drainage
is provided at the top of the soil. The height of the sample
can be shortened by using an internal ‘riser’. The ring
friction expected with a large height/diameter ratio (1-5-2)
is almost eliminated by using an ultra-smooth Teflon mem-
brane around the cell boundary (friction coefficient less than
0-03). The soil was subjected to an initial preconsolidation
pressure, 0, = 20 kPa until the settlement rate became neg-
ligible. The load was then removed and a single prefabri-
cated vertical drain (PVD) (100 mm X 3 mm) was installed
using a rectangular steel mandrel. After drain installation, a
—100 kPa vacuum was applied at the top of the cell and the
surcharge pressure was increased in two stages to 50 kPa
and 100 kPa. The vacuum pressure was subsequently re-
moved and reapplied. Pore pressure measurements indicate
that the vacuum pressure along the drain decreases approxi-
mately linearly with depth to -70 kPa at the bottom of the
cell.

The measured soil properties are as follows: compression
index C, =0-34, recompression index C;=0-12, vertical
coefficient of permeability k, = 1-1 X 107! m/s, and undis-
turbed horizontal permeability k, =2-5 X 107" m/s. The
equivalent radius of the band drain (after Rixner et al,
1986) is ry = (100 + 3)/4 =26 mm. The extent of smear
zone is a function of soil disturbance surrounding the PVD,
and is dependent on the ratio of &, inside the smear zone to
the undisturbed value of &,. For instance, outside the smear
zone the ky/k, ratio may be 3—4, but within the smear zone
this ratio drops significantly to values approaching unity in
the near vicinity of the drain location where the mandrel has
totally remoulded the soil (Indraratna & Redana, 2000,
Sathananthan & Indraratna, 2006). The radius of smear zone
was assumed to be four times the equivalent drain radius,
with a constant horizontal permeability equal to the vertical
permeability (Indraratna & Redana, 1998a). Given the above
parameters, 4 = 3-06 and the vertical and horizontal coeffi-
cients of consolidation are taken as ¢, =57 X 107°
m?%/s and ¢, = 13-2 X 10~° m?/s.

Average excess pore pressure for the whole soil mass was
calculated using equation (33). For an initial void ratio of
eo = 1-1, the settlement, p, was then calculated using

HC, o o’
1+ e g ol

HC, o op n HC, o o' o' > o
1+ e & ol 1+ e J o) P

The calculated and measured settlements are shown in Fig. 5
(20 series terms are used). The settlements calculated show
an appropriate response to vacuum removal and reloading
illustrating the applicability of the proposed consolidations
equations in modelling such phenomena.

! !
o <0y

(13)

Second Bangkok International Airport

As part of the Second Bangkok International Airport
(30 km east of Bangkok, Thailand) a series of test embank-
ments was constructed to assess the behaviour of the thick
compressible subsoil. The surface settlements at the middle
of two embankments, TV1 and TV2, incorporating vacuum
loading and vertical drains are analysed here. Both embank-
ments have previously been analysed using the finite element
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method (Bergado et al., 1998; Indraratna et al., 2004;
Indraratna et al., 2005).

The subsoil can be divided into five sublayers: weathered
clay (0-2m), very soft clay (2—8-5m), soft clay (85—
10-5 m), medium clay (10-5-13 m) and stiff to hard clay
(13—-15m). The Cam-clay properties of each layer used in
previous finite element analyses are given in Table 1. Each
embankment covers an area of 40 m X 40 m. For TV1, PVD
(rw =0-05m, 15m long at 1m triangular spacing) were
installed from a working platform comprising 0-3 m of sand.
Drainage at the surface was provided by a hypernet drainage
system. To facilitate vacuum application, a geomembrane
liner was placed above the drainage layer and sealed by a
bentonite trench surrounding the embankment. A —60 kPa
vacuum was applied and the embankment height was subse-
quently raised in stages to a height of 2-5 m (the unit weight
of surcharge fill was 18 kN/m®). TV2 was similarly con-
structed but with a 0-8 m working platform, 12 m long PVD,
and a drainage system of geotextiles and perforated pipes.

To model the effects of PVD, a smear zone with radius
six times the effective drain radius was assumed, resulting in
7s=03m and a u value of approximately 3-95 for all
layers. The properties at the top of the very soft clay were
used as reference values with ¢, =0-005 mz/day,

Table 1. Soil parameters for SBIA test embankments
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én = 0-01 m?*/day and 77 = 0-02. The relevant parameters for
the other layers used in the analysis are shown in Table 2. In
calculating the k,/k, parameter the permeability coefficients
in each layer, are taken from Table 1. As the vertical drain
configuration and smear zone properties are assumed to be
identical in each layer, the relative value of the vertical drain
parameter /7 will depend only on the permeability values,
and thus have the same value as the k,/k, parameter. The
compressibility parameter m,/m, chosen is based on the
void ratio change expected from an effective stress increase
of 50 kPa using the Cam-clay compressibility properties in
Table 1). The initial effective stress and overconsolidation
ratio required for such a void ratio change calculation are
interpolated from Fig. 6. For TV2, the displacement of soil
below a depth of 12 m was ignored (i.e. non-displacement
boundary).

To calculate surface settlements, the excess pore pressure
at 30 equally spaced points (see Walker (2006) for full
details) in the soil system was calculated using the proposed
consolidation equations (equation (12)). The compression of
each of these sublayers was calculated by equation (13) and
then summed to give the total surface settlement with time.
The calculated and measured surface settlements for the two
embankments, along with the surcharge and assumed vac-
uum loading stages, are shown in Fig. 7 (43 series terms are
used). Piezometer readings indicate that the constant total
vacuum pressure applied by the vacuum pump does not fully
transfer to the soil, hence the assumed vacuum variation
over time in Fig. 7. Loss of vacuum may be caused by air
leaks in the system. Also Indraratna et al. (2005) suggest
that the vacuum pressure can vary linearly with depth within
the PVD. In this analysis, the vacuum pressure was assumed
to vary from the value given in Fig. 7 at the soil surface, to
zero at the bottom of the drain.

The calculated surface settlements are in close agreement
with the measured values verifying that the proposed model
can be used to analyse multi-layer problems with complex

Depth: m A K v ey y: ky: kn:
KN/m? [107° m/s|10~2 m/s
0-2 03 | 0:03 |03 1-8 16 15-1 30-1
2-85 0-7 | 0-08 | 0-3 2-8 15 6-4 127
8:5-10-5 05 | 005|025 24 15 3-0 6-0
10:5-13 03 |1003]025]| 18 16 1-3 2:6
13—-15 0-1 | 0-01 | 025 12 18 0-3 0-6

Table 2. Layer properties for modelling of SBIA test embank-

ments
Depth: m ky/ky n/1q my /iy,
0 2:36 236 0-37
2 236 236 0-41
2 1-00 1-00 1-00
85 1-00 1-00 0-49
85 0-47 0-47 0-34
10-5 0-47 0-47 0-59
10-5 0-20 0-20 0-35
13 0-20 0-20 0-25
13 0-05 0-05 0-08
15 0-05 0-05 0-09

Consistency: % Stress: kPa Void ratio
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Fig. 6. Soil properties for the SBIA test embankments
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Fig. 7. Surface settlement plots for SBIA test embankments

loading sequences. A better match might be achieved if the
assumed vacuum loading is corrected to account for air
leaks, although it would be difficult to predict the actual loss
of vacuum pressure in the field before construction.

Land subsidence owing to seasonal pumping of groundwater
in Saga Plain, Japan

The Saga Plain on the Japanese island of Kyushu suffers
from subsidence owing to seasonal changes in groundwater
level. Groundwater pumping in summer for agriculture, and
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winter recharge causes changes in effective stress, resulting
in consolidation. Sakai (2001) describes the monitoring of
land subsidence in Saga Plain. The area is reclaimed from
the Ariake Sea, consisting of 10-30 m of compressible
marine clay underlain by a sandy aquifer. A series of
observation wells was installed in the Shiroishi district in
1996 to investigate the changes in groundwater level and the
associated subsidence settlements at various depths down to
90 m (Sakai, 2001). The changing groundwater level in one
of the observation wells (27-5m depth) is converted to
excess pore water pressure and used with the proposed
consolidation model to match the compression of the over-
lying 26 m of clay.

By using a dummy layer with high horizontal permeability
at the bottom of the soil system, the changes in excess pore
pressure caused by groundwater pumping can be simulated
with the proposed consolidation model. An appropriate
vacuum load is specified at this dummy layer, while not
allowing horizontal drainage in the clay layer. The soil
properties in the Shiroishi district are shown in Fig. 8. For
pore pressure calculations, a single layer with uniform per-
meability and compressibility properties was used to model
the 26 m of marine clay (the sandy aquifer below 26 m was
not modelled). The groundwater level recorded at the 27-5 m
deep observation well was converted to excess pore pressure
values (see Fig. 9) and applied to the bottom of the clay by
way of a dummy layer. To establish an initial pore pressure
distribution, it was assumed that for 4 months prior to the
start of observations, the applied modelled vacuum was
equal to the first measured value of excess pore pressure. As
for the Second Bangkok International Airport example,
settlements are calculated after pore pressure values have
been determined. The marine clay is divided into 30 sub-
layers (see Walker (2006) for full details), and the total
settlement is found by summing the settlements of each

Consistency: % o, kPa Void ratio C, C. c,: cm?/day
ew, ow, xw eOEDoCRS e OED > CRS e OED > CRS
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Fig. 8. Soil properties at Shiroisi (after Sakai, 2001)
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sublayer using equation (13). The relative settlement be-
tween the ground level and the observation well at 27-5m
depth is shown in Fig. 9 (20 series terms are used). Also
shown are the measured pore pressure and settlement values
in the 54 m deep observation well which is in the sandy
aquifer. With a laboratory c, value of 280 cm?/day
(2 X 1078 m?/s), as shown in Fig. 8, the settlements are
under-predicted. Clearly, a better match is found using
¢y = 670 cm?/day (5 X 10~% m?/s), which is about 2-4 times
higher than the laboratory c,. In the field, it is not unusual
to obtain values of ¢, several factors larger than the values
obtained for small laboratory specimens. Even though a
higher ¢, gives a better match there remains a discrepancy
during the early months of analysis between the predicted
and measured settlements of the top 26 m of clay. During
this time the predicted settlements show a better match with
those at 52 m depth. The otherwise good match between
predicted and measured values suggests that in the initial
stages movement occurs that is not reflected in the pore
water measurements at 27-5 m depth. The discrepancy may
also be owing to the largely unknown initial pore pressure
distribution in the soil. Following this initial period, the
calculated settlements match well with those measured. This
example illustrates that consolidation caused by arbitrary
changes in excess pore water pressure can be modelled with
the proposed consolidation equations.

CONCLUSION

A new approach to analysing the pore pressure response
of multi-layered soil systems has been presented. Based on
equal-strain one-dimensional deformation theory, vertical
and radial drainage is included. The powerful spectral meth-
od is used to solve the governing equation, producing a
single expression, calculated with common matrix opera-
tions, to give the pore pressure profile across all soil layers.
Accuracy is improved by increasing the number of terms in
the series solution. With a single expression describing the
pore pressure distribution calculating average pore pressure
values within or across soil layers is far easier than with
models where a separate equation is required for each layer.
Combined vacuum and surcharge loading vary with both
depth and time. No other analytical model includes vacuum
loading of multiple soil layers. The spectral method allows
for the novel treatment of multiple soil layers where per-
meability, compressibility, and vertical drain parameter vary
in a linear fashion with depth in each layer. Owing to the
linear variation, fewer layers are needed to model arbitrary
spatial property distributions compared with existing analy-
tical multi-layer analyses where properties are constant
within a layer. By varying the vertical drain parameter 7,
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multi-layer partially penetrating vertical drains or drain
patterns with different length drains can be analysed.

The use of soil properties that vary in a linear fashion
allows for, not only existing problems to be analysed but
also new behaviour to be investigated. In this way 1D
consolidation with constant coefficient of consolidation is
found to vary with the variation of permeability and com-
pressibility within the soil (see Fig. 3). This is significant for
thick soil deposits with pervious top and impervious bottom
drainage conditions. Ratios of top permeability to bottom
permeability greater than one, kyr/kys > 1, lead to faster
consolidation, and this is expected in the field.

The versatility and general nature of the spectral method
model is demonstrated by accurate simulation of

(a) an existing multi-layered analytical model

(b) settlements from a large-scale consolidation cell under
surcharge and vacuum loading

(¢) surface settlements of two trial embankments of
vacuum and surcharge loading at the Second Bangkok
International Airport

(d) ground subsidence from groundwater pumping in the
Saga Plain, Japan.

The case histories show that accurate prediction of pore
water pressure dissipation and subsequent settlement calcula-
tion requires consideration of time- and depth-dependent
surcharge and vacuum loading. The spectral method model
presented herein can incorporate such loading changes,
providing flexibility in analysis of multi-layered consolida-
tion problems usually associated with purely numerical
methods such as finite element analysis.

APPENDIX: EXPLICIT MATRIX ELEMENT
EXPRESSIONS

This Appendix presents the matrix terms used in solution
of the problem. General integral forms, valid for any dis-
tribution of soil properties and loading, are given and then
solved for the piecewise linear distributions assumed in this
paper. For brevity the normalising factor for material proper-
ties has been omitted. For example, k,; represents the value
of ky/k, at normalised depth Z;. This varies linearly to a
value of ky;.; at the bottom of the /th layer. The vacuum
and surcharge loads vary linearly with both depth and time
such that at time ¢,, the vacuum at the depth Z; is designated
Wy, 1. This varies linearly with time to w,,; ; at the end of
the mth loading stage (time 7,,;1).

In performing the integrations in equations (10) and (11)
many expressions of similar form arise. This is attributable
to repeatedly integrating the product of trigonometric and
linear polynomial functions. To present the equations for I',
Y, ¢, and w in a concise manner, a shorthand notation is
adopted as described below

(AN sin(ﬂZl+1) —ay sin(ﬁZ;)

SNla, ] = T (14)
VA — VA
csla. gy = 1< H}J))k arcos ) (15)
M"=M;+ M, (16)
M =M;—-M,; (17)
and A is an operator in the Z direction such that
Aa = a1 —a (18)

The I' matrix depends solely on the compressibility of the
soil. It is found by performing the integrations in equation
(11) with the left-hand side of equation (1). Thus, the /th
soil layer’s contribution to I'; is
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Ziy1
r,-,:[ @gﬁ ¢, dZ (19)

Z

where m, /i, is a linear function of Z. Equation (19) gives
different expressions for the diagonal (i = j) and the off
diagonal (i # j) elements of I'. The diagonal elements are
calculated with

Am,

AZ
Ty = 5 ( (myr+ mypyr) — A7

2

x cs1, ()] - sn|m, (M*)l]), i=j

(20a)
The off diagonal elements are given by
1, (M~ 1, (M)
r,_![az 2 (CS[1, ()] = CS[1, (7))
2 b
+SN[my, (M7)'] = SN[m,, (M*)']
i#]
(20b)

In interface layers, Z; = Z;y;, so the limit of equation (20)
is taken as Z;;1 — Z;. This limit is zero for both diagonal
and off diagonal elements.

The same approach used to find I' is also used to
determine W. The W matrix depends on the drainage proper-
ties of the soil (right-hand side of equation (1)). The / th
soil layer’s contribution to Wy is

w,— [ar s ¢ az
ij = hﬁ¢j¢i

Z
Zi41 a ,
_Jz, a7, (az< )¢¢l+ ¢,¢)

where ¢’ and ¢"” are the first and second derivatives of ¢.
The contribution of vertical and horizontal drainage to the
diagonal elements of W are given respectively by

@n

dTvM§
X (E(kvl"'k [1,(M+)2]—SN[kv,(M+)‘]>,
i=j
(22a)
w, - B
2

AZ
(7(’71 +141) — CS[I (M*)*] = SN[, (M*)! ]),

i=j
(22b)

The off diagonal terms are

a7,
M(CS[1 (MY 1+ CS[1, (M)
X AZ ,
+M3(SN[ky, (M™)'] = SN[ky, (M*)"])
i
(22¢)
An —\2 +32
w _ 4T [ a7 (CSUL (M7= CS[L (M7Y])
gy 2 ’
+SN[n, (M™)']— SN[, (M™)']
i
(22d)

For interface layers there is no contribution from horizontal
drainage. The contribution of vertical drainage is the same
for diagonal and off diagonal terms, and is described as

(23)

The final values for I' and W are found by summing the
contribution of each soil layer.

It is now possible to determine E and v. The diagonal
matrix E (square matrix with non-diagonal terms equal to
zero) has diagonal elements

Wi = —dTyM Ak, cos(M;Z,)sin(M;Z;)

El‘,' = eXp [—lif] (24)

where 1; are the N eigenvalues of I'W. v is the matrix of
N eigenvectors of T~ 1W.

The loading terms ¢ and w are found by considering
equation (11). The surcharge loading term is defined by the
following integral

T rl
o =[] B- 0 e@ 20 agar es)
JoJo
The vacuum loading term is determined from
Tl
W= J J E(t— r)(rv)*%p(g)TdTh%w dzdr 26)
0Jo

Performing the integrations in equations (25) and (26) for
the mth ramp load gives the ith element of ¢ and w as

Aimi & -1
o, :éZ(FV)U

Tl — U =1

#1
X (E Ej(O-m-HJ — Om,l, A0-m+1 - AOm, mv)

=1

@7n
N L E
Al,m,iZ(rv)[j ZEj(Wm,la Awma ’7)
=1 I=1
Aomi -
w; =dTy _mi (FV)ijl
Il = Im =1
#1
ZE‘ (Wi 1,1 = W1, AWy — Awy,, 17)
(28)
where #/ is the number of soil layers. A and = are further

shorthand notation defined by
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1

Ej(a, B, 0) = M,

A0
a (E SN[1, M}] - CS[6, M‘}])

200 .1
(st v+ (29)
X
(SN[H M ]+&SIH(M Zl+1)>
M;
- 0 COS(MjZI+1))
exp [—1Ai] (exp [td,] — exp [t:4.])
- 01
Aomi =3 &xXP [t ((1+ (tm — ts)4;) exp [t:A)]
—(1+ (tm — tfz)li) exp [t¢4:]) P
ii
(30)
ts = min[t, t] €1V
ty = minlt, ] (32)

By formulating each ramp loading step with #; and ¢, it is
not necessary to determine which is the current loading
step, the formulation will make the contribution of loading
steps that start after time ¢ equal to zero. For interface
layers both ¢ and w are equal to zero. The start and end
times of surcharge and vacuum loading stages need not be
the same. The final values for ¢ and w are found by
summing the contribution of each ramp load. For greatest
computational efficiency only the A functions in equation
(30) need be computed at each time step. All other
parameters depend only on material properties and loading
magnitudes and can thus be initialised at the start of the
analysis.

The average excess pore pressure between any two depths
Z;and Z;.; is given by:

(1) = JZ ®v(o +w)/AZ dZ

Z (33)
= Dv(o + w)

where

@ = [ﬁgl b, (EN} (34)
and

— 1

¢:—ECS(1 M) (35)
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