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The Evaluation of Smear Zone Surrounding Mandrel Driven Vertical Drains using the 

Cavity Expansion Theory  
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1
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2∗
 and Cholachat Rujikiatkamjorn

3 

 

Abstract: In this study, an attempt is made to analyse the extent of the smear zone caused by 

mandrel driven vertical drains, employing the cavity expansion theory for soft clay obeying 

the modified Cam-clay model. The predictions are verified by large-scale laboratory tests, 

where the extent of the smear zone was estimated based on the indications such as the pore 

pressure generated during mandrel driving, change in lateral permeability and the water 

content reduction. This study reveals that the radius of smear zone is about 4-6 times the 

equivalent vertical drain radius, and the lateral permeability (inside the smear zone) is 61-

92% of that of the outer undisturbed zone. Finally, the predicted size of the smear zone using 

the undrained cavity expansion solution is incorporated in the finite element code PLAXIS to 

study the performance of a test embankment selected from the Sunshine Motorway, 

Queensland, Australia. A good agreement between the predicted values and field 

measurements was found. 
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1. Introduction 

The rapid development and associated urbanization have compelled engineers to construct 

earth structures, including major highways, over soft clay deposits of low bearing capacity 

coupled with excessive settlement characteristics. Therefore, it is essential to stabilize the 

existing soft clay foundations prior to construction in order to avoid excessive and differential 

settlement. Even though there are a variety of soil improvement techniques available to 

stabilise the soft ground, the application of preloading with prefabricated vertical drains is 

still regarded as one of the classical and popular methods in practice. Nevertheless, the 

installation of vertical drains in the field causes significant remoulding of the subsoil with 

pore water pressures likely to build up during mandrel driving, especially in the immediate 

vicinity of the mandrel. The resulting smear zone will have reduced lateral permeability, 

which adversely affects soil consolidation.   

 In many classical theories (Barron, 1948; Hansbo 1981), the influence of the smear 

zone is considered with an idealized two-zone model, i.e., an undisturbed zone with natural 

permeability and a smear zone with reduced permeability. The accuracy of the predictions 

using the aforementioned classical theories depends on the correct assessment of the extent of 

smear zone and the horizontal permeability. 

  Both the smear zone diameter and its permeability are often difficult to quantify and 

determine from laboratory and field tests. So far, there is no comprehensive or standard 

method for measuring them. In the past, for example, Onoue (1988), Indraratna and Redana 

(1998) and Sharma and Xiao (2000) have conducted laboratory tests to evaluate the smear 

zone parameters using a specially designed large-scale consolidation test apparatus. Onoue 

(1988) recommended that the extent of the smear zone can be 4-6 times the equivalent drain 

radius. Indraratna and Redana (1998) proposed that the estimated smear zone could be as 

large as 4-5 times the equivalent drain radius and that the horizontal to vertical permeability 



 3 

ratio (kh/kv) is close to unity in the smear zone. Sharma and Xiao (2000) proposed that the 

radius of the smear zone is about four times the equivalent mandrel radius, and the horizontal 

permeability of the clay layer in the smear zone is approximately 1.3 times smaller than that 

in the outer (undisturbed) zone. 

In this paper, an attempt is made to estimate the extent of smear using the cavity 

expansion theory (CET) incorporating the Modified Cam-clay model. The theoretical 

predictions were verified using a fully instrumented large-scale consolidometer. The extent of 

smear zone in the laboratory was estimated using the variations of lateral permeability and 

water content, both of which normalized by the corresponding values in the undisturbed zone.  

2. Theoretical Approach to Predict the Extent of the Smear Zone 

Cavity expansion has attracted the attention of many researchers due to its numerous 

applications in the field of geotechnical engineering (e.g., Vesic, 1972; Atkinson and Potts, 

1977; Yu, 2000). Collins and Yu (1996) and Cao et al. (2001) proposed an analytical model 

of the cylindrical undrained cavity expansion assuming the yielding soil to obey the modified 

Cam-clay model. In this paper, the extent of the smear zone caused by mandrel driving into 

soft soil strata is determined on the basis of Cylindrical Cavity Expansion analysis. When a 

mandrel is driven into the ground, it displaces the soil predominantly outwards in a radial 

direction. This has led to the drain installation process being modelled as the expansion of a 

cylindrical cavity with a final radius equal to that of the mandrel (rm). In reality, the shapes of 

mandrel can be rectangular, circular or rhombic, hence the equivalent mandrel radius is 

evaluated by equating the area between the assumed circular cross-section and the actual 

shape of mandrel. It is also assumed that soil replaced by mandrel only moves radially in the 

horizontal direction.  



 4 

2.1 Basic Assumptions and Definition of the Problem 

For the benefit of the readers, a summary of the theoretical background is given in this 

section (Cao et al., 2001). Fig. 1 shows a cavity with an initial radius a0 and an internal 

pressure 0σ . The cavity expands to a radius of a when the internal pressure increases from 

0σ  to aσ , while an element initially at a radial distance r0 from the centre of the cavity 

moves to a new radial position r from the centre. The soil on the cavity wall will yield when 

the cavity pressure is sufficiently large, while further increases in cavity pressure will lead to 

the formation of a plastic zone around the cavity. The radial distance of the plastic zone 

around the cavity is denoted by rp, while the soil beyond this would remain in a state of 

elastic equilibrium. Development of analytical framework for analysing cavity expansion is 

based on the assumption that the soil obeys Hooke’s elasticity until the onset of yielding 

(elastic zone)  and the yielding of soil (plastic zone) is described by the Modified Cam-clay 

model.  

The stress ratio 
'

p

q
=η  and the radial distance from the centre of cavity (r) can be related by: 
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In the above equations, q: deviator stress; 'p : effective mean pressure; ν : Poisson’s ratio; υ : 

specific volume; λκΛ −= 1 : plastic volumetric strain ratio; κ : slope of swelling line on 

'pln−υ  space; λ : gradient of virgin compression line on 'pln−υ  space; M: slope of the 

critical state line; and the isotropic overconsolidation ratio (R) can be related to the 

conventional overconsolidation ratio OCR as follows (derivation in Appendix 1):  
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The radius of plastic zone (rp) could be found by substituting 1R −= Μη  in Eqn.(1) and 

the stress ratio (η) and the effective mean pressure (p’) in the plastic zone can be by: 

[3] 
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where, '
p0  is the initial effective mean pressure. 

A series representation of effective mean pressure and the deviator stress with radius 

can be found using the Eqns. 1 and 3. The variation of pore water pressure (u) with the radial 

distance, when the cavity radius becomes equal to the equivalent mandrel radius, can be 

obtained from the following equation: 
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where, 0p  is the initial mean pressure. 

The authors arbitrarily propose that the extent of the smear zone can be considered as 

the region in which the pore pressure is greater than the initial overburden stress (total), based 

on the assumption that the soil is severely disturbed, although the plastic zone may extend 

beyond this point. The anisotropy with respect to its permeability coefficient is almost 

entirely destroyed at which 0vu σ= . A computer subroutine can be used to solve Eqns. (1)-

(4) in conjunction with the finite element analysis. 
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3. Large-Scale Testing 

3.1 Test Apparatus  

The large-scale radial drainage consolidometer consists of two cylindrical (stainless steel) 

half sections, each of which has a flange running the length of the cylinder so that they can be 

bolted together. The dimensions of the cell are: 650 mm (internal diameter) ×  1040 mm 

(height) ×  8 mm (thickness), and it has a 1.5 mm thick Teflon sleeve fitted around the 

internal cell boundary to reduce friction. The bolted cell (Fig. 2a) is mounted on a steel base. 

The loading can be applied by an air jack compressor system via a piston. An LVDT is 

placed on top of the piston to monitor surface settlement, and strain gauge type pore pressure 

transducers are also installed to measure the pore water pressures at various depths. In 

addition, an array of strain gauge type pore pressure transducers with saturated tips (T1-T5) 

are installed radially at a depth of 0.5 m from the top surface (Fig. 2b), to monitor the pore 

pressure development during mandrel driving.  

3.2 Testing Method 

The preparation of clay sample, installation of the prefabricated vertical drain and the 

collection of samples at the end of consolidation to measure the permeability and water 

content are the main steps involved in this test. Given the dimensions of the large cell (650 

mm diameter and 950mm height, it was almost impossible to obtain undisturbed samples of 

this size. Therefore, commercially available reconstituted alluvial Moruya clay was used to 

prepare the samples. The Moruya’s clay properties were described elsewhere by Indraratna 

and Redana (1998). First, the clay was thoroughly mixed with water and kept in a closed 

container for several days to ensure full saturation. Then the cell was filled with the soft 

reconstituted clay in 150 mm layers, with light vibration to expel any trapped air before 

adding the next layer to raise the total height to 950 mm. After specimen preparation, a layer 
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of filter cloth was placed on the clay surface followed by the top plate. Subsequently, the load 

cell was installed on top of the plate to measure the applied load from the pressure chamber 

and the pore pressure transducers were installed at the specific radial distances (Fig. 2b). 

Subsequently, a predetermined initial preconsolidation pressure (20-50 kPa) was applied 

prior to drain installation. 

 The prefabricated vertical band drain (100×4mm
2
) was installed at a rate of 0.5 m/min 

using a specially designed 125 mm × 25 mm rectangular mandrel. The mandrel radius based 

on the equivalent area (rm) is 31.5mm. The end of the drain was attached to a 135 mm × 35 

mm rectangular ‘shoe’ to ensure that the drain remained anchored in the predetermined depth 

when the mandrel was withdrawn. The consolidation pressure was applied in stages up to a 

maximum of 200 kPa. Finally, at the completion of consolidation, soil specimens (100 mm 

diameter and 50 mm thickness) were collected at different vertical and radial locations (Fig. 

2c) to carry out the permeability and water content determinations. The details of the 

permeability test method can be found elsewhere by Indraratna and Redana (1998) and 

Sharma and Xiao (2000). 

3.3 Verification of the Solution using Large-Scale Laboratory 

Comparison of pore water pressure variation during mandrel installation 

Pore pressure transducers, T1-T5 having a distance from the centre of 125, 135, 155, 185 and 

250 mm, respectively, were installed 0.5 m below the surface to measure the variation of the 

pore pressure during installation (Fig. 2b). The expected pore pressure variation during 

mandrel driving and withdrawal is shown in Fig. 3, while the measured pore pressure 

variation for each initial surcharge pressure is plotted in Fig. 4. The pore pressure response 

shows an increase in magnitude until the maximum value, which occurs when the mandrel tip 

just passes the depth at which the transducers are located. The pore pressure continues to 
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drop as the mandrel is driven deeper. Subsequently, the pore pressure drops rapidly and then 

converges to a small residual value when the mandrel is withdrawn. As expected, the 

magnitude of pore pressure decreases with the radial distance, the data measured by T1 

(closest to the mandrel) being the highest and T5 the lowest.  

In order to determine the extent of the smear zone, normalized pore pressure (i.e., pore 

pressure / initial overburden stress) was plotted against the normalized radial distance (i.e., 

radial distance / equivalent mandrel radius). In Fig. 5, the maximum normalized pore 

pressure at the location of each transducer is compared with the predicted normalized pore 

pressure based on the CET solution. The modified Cam-clay parameters used in this analysis 

are given in Table 1 (Indraratna et al., 2004). The predicted pore pressure ratios are very 

close to those measured, and the predicted extent of the smear zone is 2.41, 2.46, 2.61 and 

2.63 times the equivalent mandrel radius, corresponding to the four different initial surcharge 

pressures of 20, 30, 40 and 50 kPa, respectively. 

Sharma and Xiao (2000) employed a large-scale test consolidometer with 1m internal 

diameter and 0.4m high to examine the smear zone characteristics around circular vertical 

drain. In this study, the reconstituted clay was subjected to preloading pressure of 100 kPa. 

The predicted and measured normalised pore pressures are shown in Fig. 6a. The predicted 

smear zone radius is approximately 4.1 times the mandrel radius, whereas the observed smear 

zone radius estimated from the horizontal permeability variation by Sharma and Xiao (2000) 

is about 100mm or 3.7 times the mandrel radius. Based on the large-scale laboratory tests, for 

100kPa preloading pressure, Sharma and Xiao (2000) determined the extent of smear zone to 

be at least 3.7 times the mandrel radius. This suggests without doubt that the extent of smear 

zone depends on the surrounding soil properties and the loading history. 



 9 

Prediction of smear zone based on the variation of normalized permeability  

At the end of large-scale consolidation test, horizontal and vertical specimens were collected 

at 0.5m below the surface to measure the coefficient of permeability. Variation of the 

normalized lateral permeability (kh/khu) for different mean applied consolidation pressures is 

plotted in Fig. 7a. The lateral permeability was determined as the average of the values 

measured along the short and long axes of the drain (see Fig. 2c). It clearly shows that close 

to the drain, the kh/khu ratio decreases rapidly (highly disturbed zone), whereas further away 

the effect of mandrel on soil disturbance becomes insignificant. From this data, it can be 

concluded that the minimum extent of smear zone is about 2.5 times the equivalent mandrel 

radius. Also, the lateral permeability within the smear zone varies from 61-92% (an average 

of 75%) of undisturbed zone permeability.  

Prediction of smear zone based on normalized water content reduction  

Past research confirms that permeability is dependent upon both void ratio and the water 

content of the soil (e.g. Taylor, 1948; Tavenas et al. 1983a,b; Babu et al. 1993). Therefore, it 

is logical to argue that the driving of mandrel not only affects the horizontal coefficient of 

permeability but also the water content. In this paper, an attempt is made to evaluate the 

extent of smear zone also from the variation of normalized water content reduction measured 

along the short and long axes of the PVD, i.e., (wmax-w)/wmax. Figure 7b shows that all 

average measurements are confined within a narrow band, and clearly demarcating the smear 

zone from the relatively undisturbed outer zone. Based on this plot, the extent of smear zone 

can be estimated to be around 2.5 times the equivalent mandrel radius. This agrees well with 

the estimated extent of smear zone based on kh/khu ratio discussed earlier (Fig. 7a). These 

results are also in agreement with the CET predicted smear zone as previously presented in 

Fig. 5.  
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4. Application of CET Solution to a Selected Case History 

The Sunshine Coast is one of Australia’s fastest growing regions and the continued economic 

and population growth has increased the pressure on the region’s main traffic corridor, the 

Sunshine Motorway. Site investigation at the proposed development route revealed that the 

subsoil consists of highly compressible, saturated marine clays of high sensitivity. In order to 

evaluate the effective ground improvement techniques, a fully instrumented trial embankment 

was constructed in 1992 and monitored by the Queensland Department of Main Roads 

(QDMR), Brisbane. 

The subsoil conditions are relatively uniform throughout the site, consisting of silty or 

sandy clay about 10-11m thick, overlying a layer of dense sand approximately 6m thick. The 

λ/(1+e0) of the subsoil varies from 0.19 to 0.63, and the κ/(1+e0) was found to be about 10 

times smaller than the compression index (QDMR, 1991). 

The base area of the trial embankment was approximately 90m×40m and incorporated 

3 separate sections (Fig. 8a), identified as Sections A, B, and C, respectively. Sections A and 

B (each 35m in long) represented the zones of prefabricated vertical drains (installed at 1m 

intervals) and ‘no drains’ respectively. Vertical prefabricated drains  were installed at a 

spacing of 2m in Section C. These prefabricated vertical drains (Nylex Flodrain,100×4mm
2
) 

in Sections A and C were installed in a triangular pattern.   

A working platform 0.65m thick (500mm thick drainage layer composed of 7mm size 

gravel, plus 150mm of selected fill) was placed on top for construction traffic access. 

Prefabricated vertical drains (PVD) were installed from the working platform to a depth of 

11m at Sections A and C. The embankment was constructed in stages using a loosely 

compacted granular material (γt ≈ 19 kN/m
3
) up to a height of 2.3m. Two berms, 5m in width 

on the instrumented side and 8m wide on the other side (Fig. 8) were constructed to increase 
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the stability of the embankment. Half of the cross-section was intensively instrumented to 

capture the foundation response upon loading. Typical cross-section of embankment with 

selected instrumentation points is shown in Fig. 8b. In this paper, the deformation and pore 

water pressure responses below Sections A, B and C were predicted using a plane strain finite 

element analysis and then compared with the available field data. 

The multi-drain plane strain analysis was carried out using the finite element code 

PLAXIS, where the soil layers were divided into many elements. The soft soil model based 

on Modified Cam-clay theory was used to analyse the behaviour of clay layers. The 

laboratory determined soil parameters used by the authors in the finite element analysis are 

given in Tables 2 and 3 (QDMR, 1991). In this paper, the soil layer close to the surface was 

modelled using the modified Cam-clay (MCC) properties determined by QDMR (1991). 

Given that the soil beneath the surface (up to 2.5m depth) is only lightly overconsolidated 

(OCR=1.6), the authors have assumed that the application of MCC parameters for this soil 

layer is valid. It is noted that for situations where the surface soil is heavily overconsolidated 

(compacted crust), the use of MCC parameters is inappropriate. 

4.1 Variation of Extent of Smear Zone 

As there was no smear zone measurement in the field, the extent of the smear zone with 

depth was predicted using the CET solution, incorporating the Modified Cam-clay 

parameters given in Table 2. The predicted normalised pore water pressure (u/σv0) variation 

with radial distance for each soil layer is shown in Fig. 9a. The CET predicted extent of the 

smear zone (i.e., the distance from the centreline at which u/σv0=1) is illustrated in Fig. 9b, 

which shows that the smear zone decreases from 6.6rw to 4.9rw ( ≈ 230-170mm) when the 

depth increases from 0 to 11m.   
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4.2 Plane Strain Conversion 

For construction sites with a large number of PVDs, two-dimensional (2D) plane strain 

conversion is the most convenient with regards to computational efficiency. It is far less time 

consuming than a three-dimensional (3D) multi-drain analysis with each drain having its own 

axisymmetric zone, which substantially affects the mesh complexity and the corresponding 

overall convergence. Therefore, to employ a realistic 2D plane strain analysis, the appropriate 

equivalence between the plane strain and axisymmetric analysis needs to be established in 

terms of consolidation settlement. In the analysis described here, the equivalent plane strain 

permeability in the undisturbed zone (khp) was estimated using the following equation 

(Indraratna and Redana, 2000):  
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where, kh :axisymmetric permeability; and n = B/bw: spacing ratio. 

Indraratna and Redana (2000) assumed that the permeability within the smear zone is 

reduced but constant, however, laboratory results indicate that the permeability varies with 

the radial distance (Fig. 7a). In the analysis described here, the smear zone permeability ( '
hpk ) 

was assumed to vary in a parabolic manner that fits the laboratory test, as given below: 
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where, bw, bs, and B are equivalent half width of drain, smear zone and the plane strain cell, 

respectively; rk = 2 is the permeability ratio: ( ) ( )sw

''
bxkbxk hphp ==  in the smear zone. 

The equivalent plane strain permeabilities based on Eqns. (5) and (6) are given in Table 3.  
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4.3 Numerical Prediction and Comparison with Field Data  

The finite element (PLAXIS) mesh, which contains 15-node triangular elements, is shown in 

Fig. 10. The entire width of embankment had to be modelled because the loading was not 

symmetrical. The prefabricated vertical drains were modelled with zero thickness drain 

elements (the excess pore pressure along this element is zero). The smear zone was modelled 

with the same modified Cam-clay properties (λ/(1+e0), κ/(1+e0), Μ) as the adjacent zone 

except for the reduced coefficient of lateral permeability based on Eqn. 6. The locations of 

instruments were conveniently placed in the mesh in such a manner that the measuring points 

coincided with the mesh nodes. Only 11m depth of the foundation was considered due to the 

existence of the dense sand layer (below the overlying soft clay layer), which was stiff 

enough to assume a non-displacement boundary. Both the top (open boundary) and bottom 

surfaces of the subsoil foundation were assumed to be free draining and the water table 

coincided with the ground surface. Embankment loading history is shown Fig. 11. 

The settlement gauges under Sections A, B and C, namely, SCA1, SCB3 (both under 

the centreline) and SCC5 (1m to the left of centreline) were selected for the purpose of 

comparing the field data with the numerical results. The predicted and measured surface 

settlements are illustrated in Fig. 12, which shows that the predicted values are in good 

agreement with the field data for Sections B and C. As expected, the rate of settlement 

increases due to the PVDs, where the settlement at Section B (no drain) is only about 60% of 

that at Section A (drains at 1m spacing). This proves that the installation of vertical drains 

significantly decreases the consolidation time for a given settlement, improving the soil 

substantially within months rather than years. Generally, the settlement rate is expected to be 

sensitive to drain spacing, but in this study, the difference in settlement-time plots for 

Sections A and C is small. This is because, the installation of closely spaced drains at Section 

A causes greater smear compared to at Section C as well as possible lateral variation of soil 
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properties. In the finite element analysis, the soil properties are assumed constant along any 

lateral plane. For example, the total width of smear zone at Section A (drains @1m spacing) 

is about 18.9m compared to 9.7m at Section C (drains @2m spacing). This demonstrates that 

reducing the drain spacing excessively may only provide a marginal advantage due to 

increased smear.  

Lateral deformation measured by the 3 inclinometers (IA2, IB4 and IC5) installed at the 

toe of the 5m wide berm at Sections A, B and C are compared with the numerical predictions 

in Fig. 12. As expected, the vertical drains significantly curtail the lateral deformation. For 

example, at 1m below the surface, the PVD’s installed at 1m spacing (Section A) reduced the 

lateral displacement by 21% compared to Section B (no drains) and by 6% compared to 

Section C (drains installed at 2m spacing). These results also indicate that the predicted 

lateral displacement represents an acceptable match with the field data, but in some plots, a 

noticeable discrepancy is found approaching the ground surface within the upper most, 

lightly overconsolidated silty clay (OCR=1.6). For Section A plots (after 100 days) near the 

surface, the observed field displacements are larger than the predictions, even though the soil 

is lightly overconsolidated. This may suggest that the closely spaced drains at 1m spacing 

may have caused excessive smear. This is also supported by the observed excess pore water 

pressure as discussed below. 

The predicted and observed variations of excess pore pressure at selected points 

beneath the middle of the berm are shown in Fig. 13.  The selected pneumatic piezometers 

PPA13, PPB31 and PPC43 were installed at a depth of 5.0m at Sections A, B and C, 

respectively. Fig. 13 shows that significant excess pore pressures were generated due to 

embankment loading, and the predictions are in very good agreement with the field data. As 

expected, the induced excess pore pressure at Section B (no drains) is significantly higher 

(approximately 30%) than the other sections. Surprisingly, it is observed that at Section A 
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where the drains are closely spaced, the excess pore water pressure is either slightly higher or 

nearly the same as at Section C. This can be attributed to excessive smear at Section A 

causing retarded pore pressure dissipation.  

5. Conclusions 

In this paper, an analytical solution based on the cavity expansion theory (CET) incorporating 

the modified Cam-clay model was employed to determine the size of the smear zone. It is 

postulated that within the smear zone the normalized pore pressure u/σv0, (i.e., pore pressure / 

initial overburden stress) exceeds unity. The predicted smear zone was verified using large-

scale consolidometer testing on the basis of pore water pressure development during mandrel 

installation, the variation of normalized permeability (kh/khu ratio), and the reduction of 

normalized water content. Generally a good agreement between the predictions and 

measurements was found. The results indicated that the extent of the smear zone was at least 

2.5 times the equivalent mandrel radius and the smear zone permeability varies from 61-92% 

(average of 75%) of the undisturbed zone permeability.  

The CET solution was applied to a trial embankment from Sunshine Coast, and it was 

found that the extent of smear zone varied from about 5.0-6.5 times the equivalent drain 

radius. The performance of the trial embankment was analysed using a 2D multi-drain (plane 

strain) finite element analysis employing PLAXIS. The effect of smear associated with the 

installation of PVD was considered, while the effect of well resistance was neglected because 

the discharge capacity of PVD was large enough, and also they were stiff enough to prevent 

‘kinking’ during installation. The smear zone permeability was assumed to vary with radial 

the distance in a parabolic manner (see Fig. 6a, and Eqn. 6) and incorporated in the finite 

element analysis.  



 16 

The predicted centreline settlement, excess pore water pressure beneath the berm, and 

the lateral movements at the embankment toe were compared with the available observed 

data. Good agreement between the predicted and measured data was generally found, except 

for the lateral displacements approaching the surface (lightly overconsolidated silty clay, 

OCR=1.6). The predicted and measured lateral movements showed that the installation of 

vertical drains curtailed the lateral displacement, thereby decreasing the risk of shear failure. 

The settlement response of the embankment sections indicated that the installation of vertical 

drains significantly decreased the consolidation time, whereas the benefits derived from 

installing vertical drains at closer spacing (1m) as compared to a greater spacing of 2m were 

marginal. Too close drain spacing invariably contributes to increased smear thereby 

decreasing the rate of pore pressure dissipation. Therefore, installing PVD’s too closely may 

not always provide a significant advantage in terms of consolidation achieved.  
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Appendix 1: Relationship between Isotropic and Conventional Overconsolidation Ratio 

To properly account for the effect of initial stress condition, one needs to differentiate 

between the overconsolidation ratio defined in terms of either the vertical effective stress or 

the mean effective stress. The isotropic overconsolidation ratio (R) is defined as the ratio of 

maximum stress on yield locus ( '
pc0 ) and the in situ mean effective stress ( '

p0 ), hence, 

[A1] 
'

p

'
p

R c

0

0=   

The conventional overconsolidation ratio, OCR, is defined in the one-dimensional condition 

as the ratio of the vertical preconsolidation stress '
xvmaσ  and the in situ effective vertical 

stress '
v0σ , hence, 

[A2] 
'

'

v0

vmaxOCR
σ

σ
=   

The in situ mean effective stress is usually related to the in situ effective vertical stress by: 

[A3] ( ) '
K

'
p v000 21

3

1
σ+=   

where, K0 is the coefficient of earth pressure at rest, that can be approximated by (Mayne and 

Kulhawy, 1982) 

[A4] 
'

KK
φsin

0nc0 OCR=   

where, 'φ : effective friction angle;  K0nc : the value of K0  for a normally consolidated soil 

that can be estimated from the well known expression (Jaky, 1944): 

[A5] '
K φsin10nc −=   
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When '
v0σ  reaches '

xvmaσ , the maximum past mean effective stress 'pm  becomes: 

[A6] ( ) '
K

'
p vmax0ncm 21

3

1
σ+=   

The corresponding deviator stress qm is given by:  

[A7] ( ) '''
Kq vmaxvmax0ncm sin1 σφσ =−=   

Substituting Eqns. (A6) and (A7) into the MCC equation, the '
pc0  can be found as: 

[A8] 
( ) ( )

( )
'

K

KK'
p

onc

onc
c vmax2

222
onc

0
213

2119
σ

Μ

Μ













+

++−
=   

where, M : slope of critical state line that can be related to the effective friction angle by: 

[A9] 
Μ

Μ
φ

φ

φ
Μ

+
=

−
=

6

3
sinor       

sin3

6sin '
'

'
  

Substituting Eqns. (A3) and (A8) into Eqn. (A1) and rearranging with Eqns. (A2), (A5), and 

(A9), the isotropic overconsolidation ratio can be found as: 

[A10] 
( )

( ) ( )















−++−

+−
=










+Μ

Μ

ΜΜΜ

ΜΜ

6

3

2

OCR 6266

OCR12453
R   

Figure A1 shows the relationship between the isotropic overconsolidation ratio and the 

conventional overconsolidation ratio for different values of M (slope of critical state line). It 

shows that assuming R to be equal to OCR may produce errors up to a 20%, and there is a 

need to differentiate R from OCR. 
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Appendix 2: Notation 

a Radius of cavity at instant time (m) 

a0  Initial radius of cavity (m) 

B Equivalent half width of the plane strain cell (m) 

bs Equivalent half width of smear zone in plane strain (m) 

bw Equivalent half width of drain (well) in plane strain (m) 

dw Equivalent diameter of vertical drain (m) 

K0 Coefficient of earth pressure at rest 

K0nc K0 value for normally consolidated clay 

kh Horizontal coefficient of permeability for axisymmetry in undisturbed zone (m/s) 

khu maximum undisturbed zone horizontal permeability (m/s) 

′kh  Horizontal coefficient of permeability for axisymmetry in smear zone (m/s) 

khp  Equivalent horizontal coefficient of permeability for plane strain in undisturbed zone 

(m/s) 

′khp  Equivalent horizontal coefficient of permeability for plane strain in smear zone (m/s) 

kv Vertical coefficient of permeability (m/s) 

n Spacing ratio, R/rw or B/bw 

p Total mean pressure (kPa) 

p0 Total mean pressure (kPa) 

'p  Effective mean pressure (kPa) 

'
0p  Initial effective mean pressure (kPa) 

'
cp  Preconsolidation pressure (kPa) 

'
cop  Initial preconsolidation pressure (kPa) 
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'pm  Maximum past mean effective stress (kPa) 

q Deviator stress (kPa) 

mq  Deviator stress corresponding to 'pm   (kPa) 

R Radius of axisymmetric unit cell (m) 

 Isotropic overconsolidation ratio 

r Final radius of selected soil particle from cavity centre (m) 

r0 Initial radius of selected soil particle from cavity centre (m) 

rm Radius of mandrel (m) 

rp Radius of plastic zone (m) 

rk  Smear zone permeability ratio 

rs Radius of smear zone (m) 

rw Equivalent radius of vertical drain (m) 

s Smear ratio, rs/rw or bs/bw 

u Pore water pressure (kPa) 

w Water content (%) 

wmax Water content (%) 

 

Greek letters 

α Geometric parameter representing smear in plane strain 

η  Stress ratio 

κ  Slope of recompression line on 'pln−υ  space 

Λ  Plastic volumetric strain ratio 

λ  Slope of virgin compression line on 'pln−υ  space 

Μ  Slope of critical state line 
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ν  Poison’s ratio 

0σ  Initial internal pressure of cavity (kPa) 

aσ  Internal pressure of cavity at instant time (kPa) 

rσ  Radial stress (kPa) 

rpσ  Radial stress at elastic-plastic boundary (kPa) 

'

v0σ  Initial effective overburden stress (kPa) 

'

vmaxσ  Preconsolidation pressure (kPa) 

θσ  Circumferential stress (kPa) 

υ  Specific volume of soil 
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Table 1 Cam-clay parameters of clay specimen used in large-scale consolidation test  

Clay type λ κ Μ υο v γs 

Moruya clay 

(Indraratna et al., 2004) 
0.15 0.05 1.1 2.8 0.25 18 

Kaolin clay 

(Sharma and Xiao, 2000) 
0.24 0.02 1.03 2.8 0.23 16 

 

 

 

Table 2 Modified Cam-clay parameters used in the finite element analysis 

 

 

 

 

 

 

 

 

Depth (m) Soil type Μ  λ /(1+e0) κ /(1+e0) ν  0e  γs 

kN/m
3
 

Average '
cp  

(kPa) 

0.0-2.5 
Silty clay 

(OCR=1.6) 
1.20 0.19 0.019 0.30 1.6 16.4 20 

2.5-5.0 Soft silty clay 1.20 0.63 0.063 0.30 2.2 13.7 31 

5.0-11 Silty clay 1.18 0.19 0.019 0.3 1.8 15.9 66 
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Table 3 Equivalent Plane Strain permeabilities of embankment sections 

Section B (10
-9

 m/s) 

(No drains) 

Section A (10
-9

 m/s) 

(Drains @1m spacing) 

Section C (10
-9

 m/s) 

(Drains @2m spacing) 
Depth 

(m) 
hk  

hpk  

(Eq. 5) 

( )w

'
bxkhp =  

(Eq. 6) 

hpk  

(Eq. 5) 

( )w

'
bxkhp =  

(Eq. 6) 

0.0-2.5 

(Silty clay) 
9.72 3.29 1.65 2.43 1.21 

2.5-5.0 

(Soft silty clay) 
0.34 0.11 0.06 0.09 0.05 

5.0-11 

(Silty clay) 
0.42 0.14 0.07 0.11 0.06 
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Figure 1 Expansion of a Cavity (Yu, 2000) 
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Figure 2  (a) Large-scale radial drainage consolidometer, (b) Location of pore pressure 

transducers, and (c) Location of cored samples 
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Figure 3 Typical pore pressure variation during mandrel installation 
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Figure 4 Pore pressure variations during mandrel installation for different initial surcharge 

pressure 
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Figure 5 Comparison of normalized pore water pressure variation  
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Figure 6 (a) Comparison of normalized pore water pressure variation and (b) radial 

permeability variation 
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Figure 7 Variation of (a) normalized lateral permeability, and (b) normalized water content 

reduction, with radial distance 
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Figure 8 (a) Plan view of trial embankment, and (b) Typical cross-section of embankment 

with selected instrumentation points (QDMR, 1992) 
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Figure 9 (a) Normalised pore water pressure variation with radial distance, and (b) Variation 

of the extent of the smear zone with depth 
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Figure 10 Finite element mesh used to analyse Section B (Note: this figure shows only the 

embankment region. The outer boundaries of the FEM analysis are 150m away from the 

centreline) 
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Figure 11 Construction history of the trial embankment 
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Figure 12 Centreline settlement of Sections A, B and C 
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Figure 13 Lateral displacement profiles at the toe 5m berm of the embankment sections 
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Figure 14 Excess pore pressure variation with time beneath the middle of the berm 5m 
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Figure A1 Variation of the isotropic and conventional overconsolidation ratio with slope of 

critical state line 


	Evaluation of smear zone extent surrounding mandrel driven vertical drains using the cavity expansion theory
	Recommended Citation

	Microsoft Word - THE EVALUATION .doc

