

University of Wollongong Research Online

Faculty of Engineering - Papers (Archive)

Faculty of Engineering and Information Sciences

1-1-2007

Ambient intelligence through Wireless Ad-hoc Control Networks

Antoine Desmet University of Wollongong, ad011@uow.edu.au

Fazel Naghdy University of Wollongong, fazel@uow.edu.au

Montserrat Ros University of Wollongong, montse@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/engpapers

Part of the Engineering Commons https://ro.uow.edu.au/engpapers/600

Recommended Citation

Desmet, Antoine; Naghdy, Fazel; and Ros, Montserrat: Ambient intelligence through Wireless Ad-hoc Control Networks 2007, 1-15. https://ro.uow.edu.au/engpapers/600

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Ambient Intelligence through Wireless Ad-hoc Control Networks

Antoine Desmet, Fazel Naghdy, Montserrat Ros

University of Wollongong 🛗

Origin of concept

- Observation: All nodes in a control network are fitted with microcontrollers which manage communications.
- Question: Can we use the free time of these many microcontrollers to control the whole process ?
- What for: cost reduction, decentralisation, modularity, distribution.

introduction

- framework for highly distributed, intelligent wireless control networks
- The nodes in WACNets locally execute many tasks such as: sensor/actuator control, data conditioning and processing while constantly communicating with each other
- The overall network structure is ad-hoc.

Overview

WACNet description

WACNet case study

- \rightarrow Description
- →Results
- →Analysis
- Conclusion
- Current and future work

WACNet Topology

- In cluster : Star topology
- Cluster heads : mesh network
- Coordinator : Network setup and WACNet-to-Ethernet bridge

Node Structure

Hardware

- RF Module: Maxstream Xbee
- Microcontroller: ATMEL Mega32
- Memory, speed and connection issues.

Case Study

Home Ambient Intelligence system

- Totally Autonomous, no setup.
- Reduce the consumption of electricity & water in a non-intrusive way.

Approach Multi agent system

Learning agents

learn how resources are consumed : what are the triggers and amounts consumed.

Policy agent

Knows general rules which save ressources (policies). Collaborates with the learning agents to create rules which apply policies.

Method for knowledge building

- Poll the whole network, periodically or event-driven.
- Run a fuzzy learning algorithm
- Progressively eliminate unrelated sensors
- →Acquire knowledge on when an appliance will consume, and how much.

Challenges

High-peak network traffic

At each polling, every single node replies the query

Lack of memory

Lots of memory available all over the network, but relatively few in a given node

Synchronisation

The data must be acquire at the same time across the whole network

Outcomes Learning algorithm

- Learning algorithm validated
- \rightarrow precision depends on memory allocated
- Uses a lot of memory
- \rightarrow For rule storage and redundancy
- Badly handles unrelated inputs
- \rightarrow Redundant rules
- Requires optimisation...

Outcomes Learning algorithm

Rule table in memory

- → Using a single format for all the rules saves space, but lacks flexibility : all sensors are involved
- \rightarrow Redundant rules

O _{ccur}	Wheight	S ₁	S ₂	S_3	S ₄	S_5
3200	95%	1	3	1	1	1
356	75%	1	3	1	1	2
1750	40%	1	3	1	2	1

Outcomes Learning algorithm

Rule table in memory

→ Creation of variable rules adds flexibility at the cost of memory (name of the sensor and address

O _{ccur}	Wheight	Ru	ıle						
3200	95%	@S ₁	1	@S ₄	9	@s ₇	3	@S ₄	2
356	75%	@S ₆	4	@S ₃	7	@S ₁	4	@S ₉	1
1750	40%	@S ₄	1	@S ₅	2				

Outcomes

Communications

ZigBee standards adds large headers.

Sending small messages achieve better latency, but increases overhead/data ratio

Synchronisation

distributing the polling process adds delay but increases synchronisation

Distributed polling

Current work

- Based on the small-scale tests, a simulator is being built.
- \rightarrow Amount of memory consumed
- \rightarrow Maximal frequency of polling
- \rightarrow Delays expected
- \rightarrow Large number of cluster
- \rightarrow Node failure

Conclusions

- Basic function of the task successful
- Microcontrollers' limitations
- ZigBee Standard and modules

Future work

Intelligent network self-organisation

- \rightarrow Use the outcomes of the learning agents
- \rightarrow Regroup "functionally close" nodes in the same cluster.
- \rightarrow Change network configuration dynamically

Limitations

- → How far in complexity can we go before reaching the limits of the hardware ?
- → Efficiency of the learning algorithm and optimiser on complex environments

Questions

