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Central-cell corrections for Si and S in GaAs in a strong magnetic field
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C. R. Stanley
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The central-cell correction has been determined experimentally for the two donor impurities S and
Si in GaAs. Data have been obtained for magnetic fields to 39 T, corresponding tog'6. The
observed behavior is in good agreement with theory. The analysis permits accurate evaluation of
zero-field central-cell corrections, yielding 0.110 and 0.059 meV for S and Si, respectively.
© 1999 American Institute of Physics.@S0021-8979~98!02724-8#

I. INTRODUCTION

The electrical and optical properties of GaAs that lead to
its technological importance depend in a large part on the
impurities it contains, either deliberately or unintentionally
introduced. Shallow donors, especially Si, are of continuing
interest.1–3 The usual framework for understanding the en-
ergy states of shallow donors is the effective-mass approxi-
mation which leads to a hydrogen-like energy spectrum. This
article examines as a function of magnetic field one correc-
tion that needs to be applied to the hydrogenic model to fit
the observed spectra, that due to the chemical identity of the
donor.

In applying the hydrogenic model ton-GaAs, it is nec-
essary first to scale the hydrogen energy levels by the appro-
priate materials parameters. The dielectric constant of
GaAs,e512.56, and the effective mass of GaAs conduction
electrons,m* 50.0665me , yield an effective Rydberg of
Ry*55.72 meV. Likewise, the dimensionless magnetic field
g[ 1

2\vc /Ry* , wherevc5eB/m* , has a value of unity in
n-GaAs for magnetic fieldB56.57 T; this defines an ‘‘inter-
mediate’’ magnetic field. Second, additional factors, not ap-
plicable in the case of hydrogen, need to be introduced.
These include band nonparabolicity,4,5 band anisotropy,4,6

and polaron effects.7 These effects become more pronounced
as the energy of the states increases.

An unavoidable correction to the simple hydrogenic
model is the central-cell correction. This arises due to differ-
ing potentials at the impurity site. This perturbation is
present even in the absence of a magnetic field. Zero-field
central-cell corrections have been extensively studied with
a view to identifying the different chemical species
involved.8–14 Compared to this large amount of work on the
zero-field case, the magnetic-field dependence of the central-
cell correction has been subject to little study. An early re-
port gave the difference in chemical shift for two unidenti-
fied donors.15 Other works have used this data11 or simply a

B2 dependence16 to model the effect. These reports are lim-
ited to fields below 7 T. Even less data are available at high
magnetic fields. While measurements onn-GaAs have been
reported to 150 T, the analysis has revealed only nonparabo-
licity and anisotropy, and not central-cell effects.17 Uniden-
tified donors in InSb have been studied to 20 T~g'130!.18

In contrast to that study, the present article deals with the
behavior of two known donors in the technologically impor-
tant material GaAs. It might be noted that, apart from its
inherent interest, the magnetic-field dependence of the
central-cell correction permits a means for a more accurate
evaluation of the zero-field effect, in that a number of data,
taken at various fields, can be fitted by the theory to yield the
zero-field result.

Polaron effects, which become significant at energies ap-
proaching those of the optical phonons of the host lattice,
and band nonparabolicity, the effects of which increase with
energy, confuse the measurement of central-cell corrections
in higher-energy transitions, e.g., 1s→2p0 and 1s→2p11 .
To minimize these effects the hydrogenic transition of lowest
energy, 1s→2p21 , is studied here. Values for central-cell
corrections derived from this transition have not been re-
ported previously.

II. THEORY

The energy levels of the hydrogen atom in an arbitrary
magnetic field are of inherent theoretical interest as well as in
condensed matter physics. The area has been reviewed by
Garstang.19 Very accurate calculations have been reported by
Rösneret al.20 The results of Makado and McGill21 include
energies for a large number of states at a large number of
magnetic fields. The uncertainty in these calculated results is
much less than that in the experimental data.

The energy levels of chemically distinct donors differ
slightly due to slightly different potentials present at the im-
purity site. The observed chemical shift in transition energiesa!Electronic mail: rjh@newt.phys.unsw.edu.au
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is attributed entirely to the even-parity ground state, the odd-
parity final states having no chemical shift since their wave
functions have zero amplitude at the impurity site. The
central-cell correction takes into account the probability of
finding the electron in a small volume near the impurity cen-
ter. With increasing magnetic field the electron is squeezed
into a smaller volume, increasing the effect. Fetterman
et al.15 have pointed out that, using lowest order perturbation
theory, the central-cell correction for a donor of speciesj
may be written as

DEj5k j uF~0!u2. ~1!

Herek j is a constant which depends on the particular donor
species andF~r ! is the appropriate envelope function appear-
ing in the effective-mass wave function of the hydrogenic
ground state. According to Eq.~1!, all donor species show
the same relative change inDEj as magnetic field, and so
uF(0)u2, varies. Values ofuF(0)u2 have been calculated and
tabulated for a wide range of magnetic fields by Cabib,
Fabri, and Fiorio.22

III. EXPERIMENT

The high magnetic fields employed in this investigation
were generated at the Australian National Pulsed Magnet
Laboratory, a full description of which is given elsewhere.23

In brief, a 32mF capacitor bank, charged to as much as 7 kV,
is discharged through a liquid nitrogen-cooled copper–silver
coil. The magnetic field rises to its peak in'10 ms. Fields in
excess of 60 T may be produced.

The far-infrared source is a molecular-gas cavity
pumped by a CO2 laser.24 The radiation is conducted via
light pipes and a top-loading probe25 to the magnet bore,
where the sample is located in a3He space. Sample tempera-
tures below 400 mK may be maintained in this cryostat dur-
ing laser irradiation. The sample mount incorporates a
pick-up coil to monitor the magnetic field rise and fall and a
ruthenium–oxide thermometer. Further details of the far-
infrared magnetospectroscopy methods are given
elsewhere.26

The high-purity sample~B54! used in this investigation
is a 15mm layer grown on semi-insulating~100! GaAs by
molecular-beam epitaxy, exhibiting peak mobility of.4
3105 cm2 V21 s21 in the temperature range 28–42 K. De-
tails of the growth conditions and electrical characterization
of the sample are given elsewhere.27 Electrical contacts to
the sample were made either by pressing indium dots onto
the sample surface and annealing in a reducing atmosphere
or by vacuum deposition of a Au/Ge/Ni alloy. Both types of
contact gave equally satisfactory photoconductivity data.

IV. RESULTS AND DISCUSSION

The low-temperature far-infrared photoconductivity
spectrum ofn-GaAs is very rich in detail. The transitions of
chief interest, 1s→2p21 , track through features of several
different origins as the photon energy increases—cyclotron
resonance, D2 transitions,28 and transitions from the 1s
ground state to metastable excited states.29

In Fig. 1 spectra taken at excitation wavelengths of
184.3 mm ~6.73 meV! and 196.1mm ~6.32 meV! are pre-
sented. The main features are transitions from the hydrogen-
like 1s ground state. Transitions from the 1s to the 2p11 ,
2p0 , and 2p21 states are seen at about 1.6, 6.5–7, and
31–37 T, respectively, in Fig. 1. While the wave vector of
the far-infrared radiation is nominally parallel to the mag-
netic field in our apparatus, reflection in the light pipe en-
sures that some component of the electric-field vector of the
radiation falling on the sample is parallel to the magnetic
field, allowing the observation of transitions, in particular
1s→2p0 , which are strictly forbidden in the Faraday con-
figuration. Cyclotron resonance is observed at about 4 T and
D2→N51 at about 3 T. Transitions from the 1s to (11̄0)
and~210! metastable states may be seen at about 1.4 and 0.6
T, respectively. At the shortest laser wavelength used, 70.5
mm ~17.58 meV!, transitions to states with index as high as
~710! are observed.

The transitions from the 1s to the 2p11 , 2p0 , and 2p21

states all show a splitting, as may be seen in Fig. 1. The
splitting is due to the presence of two chemically distinct
donors, identified as S and Si,27 in the sample. The 1s
→2p21 transition will be analyzed in detail since, occurring
at lower energy than the 2p0 and 2p11 transitions, it is less
affected by nonparabolicity and polaron effects. Further-
more, it remains in the far-infrared to higher magnetic fields.

The difference in the experimental energy of the 1s
→2p21 transition and the generic energies obtained from
the hydrogen calculation is shown in Fig. 2. The theoretical
value of the hydrogenic energy is obtained by interpolating
data between the two fields from the given mesh of calcu-
lated values21 that bracket the experimental magnetic field.
The interpolation is done separately for each chemical
species.

FIG. 1. Detail of photoconductivity spectra forn-GaAs. The main figure
shows transitions associated with cyclotron resonance, D2, hydrogenic
bound states (1s→2p11,1s→2p0), and metastable states@1s→(210),
1s→(11̄0)]. Theinset shows 1s→2p21 transitions. The ordinate has been
offset. The two peaks seen on the (1s→2p61,2p0) transitions arise from
chemically distinct donors, identified~Ref. 27! as S and Si.
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It may be seen from Fig. 2 that, although each impurity
has a different magnitude of chemical shift, both behave in a
similar fashion as the magnetic field increases. The chemical
effect increases with magnetic field due to the increasing
magnetic confinement of the 1s ground state.

There is little detailed experimental data reported on the
field dependence of the chemical shift. While Michels
et al.30 show line positions to 15 T, they give no values for
chemical shift. Fettermanet al.15 give data for the difference
in chemical shift for two unidentified donors, one of which is
thought to have a negative central-cell correction. This data
cannot be directly compared with the present results. The
central-cell correction given by van Klarenboschet al.14 for
GaAs:Si of 0.08 meV at zero field and 0.13 meV at 6 T may
be compared with the present values of 0.06 and 0.09 meV,
respectively.

The inset to Fig. 2 shows the variation in central-cell
correction with magnetic field according to the theoretical
expression of Eq.~1! where the values ofuF(0)u2 employed
are those calculated by Cabib, Fabri, and Fiorio22 ratioed
with the zero-field value ofuF(0)uB50

2 . These authors give
data at 16 further fields up tog55. These are plotted and
joined to give the solid line shown.

The chemical shifts determined here by experiment are
now compared directly with Eq.~1!. This is accomplished by
dividing the experimental fields and energies by appropriate
scaling factors. The experimental magnetic fields are divided
by 6.57 T to convert to units ofg. The experimental chemi-
cal shifts are divided by the central-cell correction at zero
field. Rather than determine this quantity from a single, low-
field measurement, the experimental data over a wide range
of fields are employed. For each donor, the experimental
chemical shifts are least-squares fitted to the theory values
~interpolated to the experimental magnetic fields! with the
zero-field central-cell correction being the fitting parameter.
The zero-field central-cell corrections determined in this way
are 0.110 meV for S and 0.059 meV for Si. The difference in

central-cell correction between the two species presumably
reflects the difference in atomic volume, although we have
not made and do not know of a detailed calculation of the
size of the effect. Thus the magnetic-field dependence of the
central-cell correction permits a reliable evaluation of the
zero-field correction since a number of data, taken at various
fields, are fitted to yield the zero-field result. Moreover, the
shifts at high field are greater than the small zero-field cor-
rection, again contributing to a more reliable estimate of the
latter quantity than might be made in the absence of mag-
netic field.

It may be seen from the inset of Fig. 2 that the field
dependence of the central-cell correction as expressed in Eq.
~1! following Fettermanet al.15 is in good agreement with
the present experimental data.

V. CONCLUSION

Experimentally determined chemical shifts deduced
from the 1s→2p21 transition for two donors in GaAs have
been given over the range 0,g,6.
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