
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information
Sciences

1-2-2007

Weight distribution of turbo codes with convolutional interleavers Weight distribution of turbo codes with convolutional interleavers

S. Vafi
University of Wollongong, sina@uow.edu.au

T. Wysocki
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/engpapers

 Part of the Engineering Commons

https://ro.uow.edu.au/engpapers/436

Recommended Citation Recommended Citation
Vafi, S. and Wysocki, T.: Weight distribution of turbo codes with convolutional interleavers 2007.
https://ro.uow.edu.au/engpapers/436

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36982024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages

Weight distribution of turbo codes with
convolutional interleavers

S. Vafi and T. Wysocki

Abstract: A simple algorithm for the weight calculation of turbo codes with convolutional inter-
leavers is presented. For codes with short interleaver lengths, the weight distributions are computed
using conventionally proposed methods and then utilised together with the interleaver properties to
determine the weight specifications for the code with a longer desired length. Based on the calcu-
lated weights, a new upper bound for the code is computed. It agrees with simulation results of the
code performance in the error-floor region.

1 Introduction

Determining weight distribution is well-known as an
effective method to verify turbo code performance. The
main issue of its calculation is related to the interleaver
structure, which permutes the input bitstreams so as to
prohibit generation of low weights for the second recursive
systematic convolutional (RSC) codes. Fig. 1 shows a
simple structure of turbo codes.

Different algorithms have been proposed to estimate the
weight distribution of turbo codes based on different
applied interleaver types. In the work of Perez et al. [1],
an algorithm considers those input bitstreams that may
possibly generate low-weight codewords. It basically
computes a few terms of weight distribution and is useful
for a code that has free distance with high multiplicities
determining the code performance in the error-floor
region. The complexity of this method increases with
increasing interleaver lengths. A general algorithm was
proposed in Pierleoni et al. [2] to compute low-weight
terms of the code with a moderate length. This
algorithm defines the constrained subcode based on the
trellis structure of the code and computes the free distance
of the code on the basis of an obtained minimum distance
of a subcode relevant to the interleaved data. Some
improvements to this algorithm, which reduce computation
complexity are suggested by Rosnes and Yterhus [3], while
Yeh et al. [4] and Huebner and Costello [5] present other
algorithms for the given interleavers.

The best performance of turbo code is achieved by using
random interleavers, which randomly permute input bit-
streams to different memories of the interleaver. Due to the
existence of randomly interleaved data, determining an ade-
quate analysis for this implementation is a major obstacle.
In addition, to achieve synchronisation between random
interleavers and deinterleavers, which perform the reverse
function to interleavers, it is necessary to store interleaved
data in the memory. This is not desirable in some applications
when the length of input bitstream is large. Considering
these issues, finding good deterministic interleavers to

create similar performance to the random interleavers has
been widely investigated in previous research.

In contrast to block interleavers, nonblock interleavers are
designed with a lower number of memories and often with a
self-synchronisation property for the deinterleavers to
reduce the design complexity. This can be considered as
one of their advantages. Convolutional interleavers are
introduced as the most well-known nonblock interleavers.
These interleavers have more flexibility to adjust their speci-
fications according to the variable lengths of data block. This
property of the convolutional interleaver simplifies the
design of turbo codes with UEP application, which protect
different parts of data block at different rates [6]. However,
considering the application of these interleavers in turbo
codes, the performance of the code is accomplished by
using the continuous form at the expense of analysis
complexity at the decoder.

The advantage of convolutional interleavers in turbo
codes can be utilised when they emulate block operation.
This is easily achieved when some stuff bits are inserted
at the end of each data block forcing the interleaver mem-
ories into the known state, which is usually considered as
the zero state [7]. This operation simplifies the code analysis
and decoding procedure. The disadvantage of this procedure
is a reduction in the available channel bandwidth due to
insertion of stuff bits. Some optimisations can be performed
on the interleaver structure to decrease the number of stuff
bits at the encoder output.

For turbo codes with optimised convolutional interleavers,
a simple algorithm is presented here to effectively compute
the free distance of the code. The algorithm is implemented
based on input bitstreams that return the first RSC encoder
to the zero state. These patterns are known as self-terminating
patterns. The algorithm only considers those self-terminating
patterns whose weights, that is, bits having value 1, are fully
located in the end part of the interleaved data [8]. However, to
precisely verify the code behaviour, it is necessary to find
other input bitstreams with weight outside the mentioned
range, which produce code weights with high multiplicities
that affect the code performance.

Another similar algorithm is presented based on convolu-
tional interleaver properties. It starts by determining the
weight of the code with short interleaver lengths and then
extrapolates those results for the longer length. This
applied property dramatically simplifies the code analysis
used to calculate weight of the code for high interleaver
length, where processing of all input bitstreams is long or

The Institution of Engineering and Technology 2007

doi:10.1049/iet-com:20060007

Paper first received 30th September 2005 and in revised form 4th July 2006

The authors are with University of Wollongong, Northfields Ave., NSW 2522,
Australia

E-mail: sv39@uow.edu.au

IET Commun., 2007, 1, (1), pp. 71–78 71

even in some cases impossible. The calculated upper
bounds of the probability of error for turbo codes with
different interleavers confirm that the new algorithm gives
a good approximation of the code performance in the error-
floor region. Both algorithms are utilised for turbo codes
without the puncturing of parity bits.

2 Convolutional interleavers structure

Convolutional interleavers are introduced as nonblock
deterministic interleavers that were investigated in some
communication systems due to applying less memories
in their structures compared with the block interleavers
[9, 10]. These interleavers are constructed by T parallel
lines, which define their period. Conventionally each inter-
leaver line has a different number of memories from other
lines. The difference in the numbers of memories between
two adjacent interleaver lines is generally considered as a
constant referred to as a space parameter of the interleaver.
Fig. 2a illustrates the general structure of convolutional
interleavers with period T ¼ 4 and space value M ¼ 1.
Based on the arithmetic sequence, the overall number of
memories for the interleaver (T, M) is given by [11]

S ¼
XT

i¼1

si ¼ M þ 2M þ � � � þ ðT � 1ÞM

¼
T ðT � 1ÞM

2
ð1Þ

A convolutional interleaver can be forced to operate as a
block interleaver by inserting number of zero stuff bits to
its memories, providing an interleaved data block which is
isolated from the other blocks. Initially, interleaver mem-
ories are set to the zero value. Based on the number of
applied memories in each line, bits distributed to the
relevant line appear at different times. The interleaved
data block of an input bitstream with the length L ¼ 24
from the interleaver (T ¼ 4, M ¼ 1) is shown in Fig. 2b.

Depending on the input sequence length and the inter-
leaver period, distributed data is terminated at one of the

interleaver lines, which is determined by the Rem(L, T)
value, where Rem(L, T) gives the remainder of the L/T
operation. Considering an interleaver (T ¼ 3, M ¼ 1), an
input bitstream with length L, can be interleaved as one of
the following schemes:

Rem(L, T) ¼ 0
fx0, 0, 0, x3, x1, 0, x6, . . . , xL27, 0, xL22, xL24, 0, 0, xL21g

Rem(L, T) ¼ 1
fx0, 0, 0, x3, x1, 0, x6, x4, . . . , xL23, xL25, 0, 0, xL22g

Rem(L, T) ¼ 2
fx0, 0, 0, x3, x1, 0, x6, . . . , xL24, xL26, 0, xL21, xL23g

When the convolutional interleaver is applied as a consti-
tuent of turbo codes, inserted stuff bits to the interleaver
memories reduce channel bandwidth usage. Therefore an
optimisation can be performed on the interleaver to
control the number of those bits, which can be equal to
the number of applied memories. For this purpose one
block is added after the interleaver controlling the data in
the interleaver output delete extra zero stuff bits that
appear in the end part of the interleaved data. In this case
the memory contents in the end of each block have zero
value that stay until the beginning of the next block.
Following the previous example, the optimised interleaver
outputs for different Rem(L, T) values are given by

Rem(L, T) ¼ 0
fx0, 0, 0, x3, x1, 0, x6, . . . , xL22, xL24, xL21g

Rem(L, T) ¼ 1
fx0, 0, 0, x3, x1, 0, x6, x4, . . . , xL23, xL25, xL22g

Rem(L, T) ¼ 2
fx0, 0, 0, x3, x1, 0, x6, . . . , xL24, xL26, xL21, xL23g

Fig. 2c shows the optimised interleaved data constructed
from the nonoptimised interleaver (T ¼ 4, M ¼ 1).

For every interleaver, input bitstreams can be categorised
to T different groups such that each group includes bit-
streams with different lengths having the same Rem(L, T)
value. In this case some parts of an interleaved data with
the shorter length appear in the interleaved data with
the higher lengths. Fig. 3 shows these mentioned parts
for two bitstreams with the length L ¼ 20 and L ¼ 24 con-
sidered as one group for the interleaver (T ¼ 4, M ¼ 1)
which gives the Rem(L, T) ¼ 0 value.

3 Weight distribution algorithm for turbo codes
with convolutional interleavers

The analysis of turbo codes based on weight-2 distribution
confirms that if interleavers increase the distance between
two adjacent bits of an input bitstream, higher weights

Fig. 3 Comparison of different parts of interleaved data in
output of interleaver with different lengths and similar period
and Rem(L, T) values, that is, T ¼ 4, Rem(20, 4) ¼ 0, Rem(24,
4) ¼ 0

Fig. 1 Structure of turbo codes

a b c

Fig. 2 Convolutional interleaver structure

a Interleaver with period T ¼ 4 and space value M ¼ 1
b Block interleaved data with length L ¼ 24
c Optimised interleaved data with length L ¼ 24

IET Commun., Vol. 1, No. 1, February 200772

for the code are achieved. This consequently improve
the code performance [12]. In optimised convolutional
interleavers the distance between two arbitrary adjacent
bits of the input bitstream located in the end part of inter-
leaved data is shorter than elsewhere due to the deletion
of the zero stuff bits in the end part of the interleaver. For
example, for the interleaved data illustrated in Fig. 2b and
c, the distance between x18 and x19 bits before and after
optimisation is equal to 4 and 2, respectively. Therefore in
a turbo code with an optimised interleaver, it is expected
that low weights of the second-parity codewords are gener-
ated from input bitstreams whose weights are located in the
end part of the interleaved data.

Considering this structure for the optimised convolu-
tional interleaver, an algorithm can be presented that com-
putes the free distance and some low weights of the code.
It is assumed that only the first RSC encoder is terminated
to the zero state. Hence the effect of tail bits due to this
termination weight is considered in the algorithm. The
algorithm is implemented as follows [8].

First, among all input data block streams with the
minimum weight (i.e. 1) those self-terminating patterns of
the first RSC encoder are selected. Then their bit-1 positions
are compared with the bit positions that were located in the
end part of the interleaved data. If any pattern returns the
first RSC encoder to the zero state and positions of its bits
are in the end part of the interleaved data, the overall
weight of the corresponding codeword is computed and
stored as dfree value. A similar procedure is followed for
higher input data weights until the computed dfree is lower
than or equal to the weight of the input bitstream. The
final dfree is assumed to be the dfree of the turbo code.

Since bit-1 positions should be located in the end part of
the interleaved data, the pattern length consisting of all the
ones inside the bitstream should not exceed the number of
bits in the end part of the interleaver. In this case low-weight
patterns with a length equal to the number of bits in the end
part of the interleaver are encoded returning the RSC
encoder to the zero state.

For example, for the interleaver (T ¼ 4, M ¼ 1) illus-
trated in Fig. 3, the number of bits located in the end part
of interleaved data is six. Therefore the algorithm contrib-
utes self-terminating patterns with length six, whose
weights are located in the mentioned part. Table 2 rep-
resents self-terminating patterns of with weights two and
three for turbo codes (1, 5/7). The algorithm covers all pat-
terns shifted cyclically that satisfy the condition.

The computed dfree values of turbo codes (1, 5/7) and (1,
35/23) for convolutional interleavers with different lengths
were presented in Table 2, where Nfree and w̃free represent
the total number of multiplicities of the codewords with
weight dfree and the average input data weight related to
dfree, respectively. (The results were achieved by input self-
terminating patterns with weight no greater than four.) The
results show that for the four-state turbo code, increasing the
period and length does not affect the free distance specifica-
tions, while for the 16-state code the free distance has been
increased by five units and the multiplicity has been
preserved.

In comparison with most block interleavers the convolu-
tional interleaver generates dfree with fewer multiplicities,
which can be considered as an advantage. This result
expresses that it is necessary to determine other codewords
with low weights or codewords having relatively high mul-
tiplicities, which affect the code performance.

Depending on the period of the optimised interleaver, the
number of bits which are located in the end part of the inter-
leaved data changes. To calculate low weights of the code
for different interleaver periods the area of the end part of
the interleaver can be increased or decreased based on the
interleaver period. By increasing the area, more bits are
involved in the calculation. Thus the input bitstreams with
lower weights must be considered. Instead, shortening the
area makes it possible to involve input bitstreams with

Table 3: Weight distribution for turbo codes (1, 5/7) and
(1, 35/23) in end part of interleaver with (T 5 20, M 5 1,
L 5 1024) and Rem(L, T) 5 4

Weight Turbo code (1, 5/7) Turbo code (1, 35/23)

d Nd ~wd Nd ~wd

10 3 3.0 0 0

11 0 0 0 0

12 0 0 0 0

13 1 3 0 0

14 4 2.75 0 0

15 0 0 0 0

16 4 2.5 1 3

17 1 3.0 0 0

18 7 2.58 0 0

19 3 2.67 2 3

20 78 3.82 3 3

21 11 2.9 1 3

22 33 3.18 1 3

23 20 3 1 3

24 91 3.49 1 3

25 38 3.2 3 2.67

26 63 3.3 6 3

Table 1: Self-terminating patterns with weight-2 and 3
for 4-state turbo code (1, 5/7)

Input

weight

Pattern Output

weight

2 1 0 . . . 0|fflffl{zfflffl}
d¼3kþ2

1 2dþ 8/3

k¼0;1;2;...;bðL�4Þ=3c

3 11 0 . . . 0|fflffl{zfflffl}
d¼3k

1 2(d/3)þ 1

k¼0;1;2;...;bðL�3Þ=3c

3 1 0 . . . 0|fflffl{zfflffl}
d¼3k

11 2(d/3)þ 1

k¼0;1;2;...;bðL�3Þ=3c

3 1 0 . . . 0|fflffl{zfflffl}
d¼3kþ1

1 0 . . . 0|fflffl{zfflffl}
d 0¼3k 0þ1

1

k ¼ 0,1, . . .,b(L-4-d 0)/3ck0 ¼ 0,1, . . .,b(L-4-d)/3c
dþ d0 � L 2 3

2(d0 þ d3)þ 8/3

3 111 2

Table 2: Free-distance specifications for turbo codes
(1, 5/7) and (1, 35/23) with interleavers (T 5 10,
M 5 1, L 5 512) and (T 5 20, M 5 1, L 5 1024)

Turbo code T L dfree Nfree ~wfree

(1, 5/7) 10 512 10 3 3

(1, 5/7) 20 1024 10 3 3

(1, 35/23) 10 512 11 1 3

(1, 35/23) 20 1024 16 1 3

IET Commun., Vol. 1, No. 1, February 2007 73

the higher weights [8]. Table 3 gives some low weights of
the 4-state (1, 5/7) and 16-state (1, 35/23) turbo code,
which have been calculated for (T ¼ 20, M ¼ 1,
L ¼ 1024) on the basis of 170 bits located in the end part
of the interleaved data.

3.1 Extrapolated weight distribution
computation algorithm

Apart from the end part of the interleaved data it is possible
to find other input bitstreams having weights outside the
mentioned area producing low weights that affect the code
performance.

Without considering the end part of the interleaved data,
the distance between distributed bits in adjacent interleaver
lines is always fixed by the product of T and M. Due to
the deterministic behaviour of the convolutional interleaver,
it is possible to obtain self-terminating patterns for
the second RSC encoder that have been interleaved from
other or similar input self-terminating patterns. As a
result, both RSC encoders simultaneously return to the
zero state and hence low weights for the code are expected.

In turbo codes with different interleaver lengths, when all
bits 1 of a self-terminating pattern are positioned in the
common part of two interleaved data categorised as one
group, increasing the length of patterns will not affect the
weight increment of the second RSC code. Therefore both
interleavers produce a weight with similar multiplicity.
Otherwise, i.e. when some or all weights of this self-
terminating pattern are positioned in the extra part of an
interleaver with a higher length, multiplicity of the weight
is progressively increased proportional to the length differ-
ence of two interleavers.

For example, in the interleaver (T ¼ 4, M ¼ 1) for
lengths L ¼ 20 and L ¼ 24, Rem(L, T) ¼ 0 value (see
Fig. 3), and bits 1 of the self-terminating pattern
(000100000000100 � � � 0)L¼L1,L2

, that is x3 and x12 are posi-
tioned in the common part of two interleavers. These inter-
leavers generate another self-terminating pattern
(00000000000010010 � � � 00)L¼L1,L2

for the second RSC
encoder. In this case both interleavers produce an identical
weight for the second parity data. This indicates that
increasing the interleaver length has no effect on the
weight of the code.

Additionally, in optimised interleavers, the distance of
bits located in the end part of the interleaved data with
the last bit of data block is constant. For example, for the
interleaver (T ¼ 4, M ¼ 1, L ¼ 24) illustrated in Fig. 3,
the distance between x21 ¼ xL23 and x23 ¼ xL21 would be
four, which is the same as the equivalent bits for the inter-
leaver with length (T ¼ 4, M ¼ 1, L ¼ 20), that is between
x17 ¼ xL23 and x19 ¼ xL21. Therefore the weights obtained
from the self-terminating patterns positioned in the end part
of the interleaver would be independent from the interleaver
length L. In this case weights obtained from the end part of
an interleaved data with the short length can be utilised as
weights of the code with the higher interleaver length [8].

Based on these properties of convolutional interleavers, it
is possible to estimate the weight distribution of a turbo
code with a desired length from an interleaver with the
shorter length. In this method, according to the interleaver
period, the minimum length of interleaved data is varied
and is equal to T(T 2 1)M value, that is when all the inter-
leaver memories have valid data. For the interleaver (T ¼ 4,
M ¼ 1) with the presented specifications in Fig. 2, the
minimum length is equal to 12.

Considering self-terminating patterns with the weight i,
the algorithm computes W(i)

L ¼ (w(i)
L1

, w(i)
L2

, . . . , w(i)
Lk

) with

the multiplicity N(i)
L ¼ (n(i)

L1
, n(i)

L2
, . . . , n(i)

Lk
) as weight speci-

fications for the turbo code using an interleaver (T, M) with
length L. This is accomplished as follows:

† Design an interleaver (T, M) with the shortest length L1

that satisfies

T ðT � 1ÞM � L1 , L� T and RemðL1;T Þ ¼ RemðL;T Þ:

† Compute the weight distribution of the code for the inter-
leaver (T, M, L1) from all self-terminating patterns with the
weight i, as

W
ðiÞ
L1
¼ ðw

ðiÞ
L11
;w
ðiÞ
L12
; . . . ;w

ðiÞ
L1k
Þ and

N
ðiÞ
L1
¼ ðn

ðiÞ
L11
; n
ðiÞ
L12
; . . . ; n

ðiÞ
L1k
Þ

† Increase the interleaver length T units (L2 ¼ L1þ T) and
compute the weight distribution specification of the code
for the new interleaver length as W(i)

L2
and N(i)

L2
, where

W
ðiÞ
L2
¼ ðw

ðiÞ
L21
;w
ðiÞ
L22
; . . . ;w

ðiÞ
L2k
Þ and

N
ðiÞ
L2
¼ ðn

ðiÞ
L21
; n
ðiÞ
L22
; . . . ; n

ðiÞ
L2k
Þ

† If n
ðiÞ
L1j
¼ n

ðiÞ
L2j

, then n
ðiÞ
Lj
¼ n

ðiÞ
L1j
ð j ¼ 1; 2; . . . ; kÞ else

n
ðiÞ
Lj
¼ n

ðiÞ
L1j
þ

L� L1

T
ðn
ðiÞ
L2j
� n
ðiÞ
L1j
Þ

† W
ðiÞ
L ¼ W

ðiÞ
L1
¼ W

ðiÞ
L2
¼ ðw

ðiÞ
L1
;w
ðiÞ
L2
; . . . ;w

ðiÞ
Lk
Þ

N
ðiÞ
L ¼ ðn

ðiÞ
L1
; n
ðiÞ
L2
; . . . ; n

ðiÞ
Lk
Þ

Table 4: Weight distribution of 4-state turbo code for
two input bitstreams (100100 � � � 0)L, (11100. . .0)L and
their cyclical shifts for the interleaver (T 5 10, M 5 1)
with different lengths and identical Rem(L, T) value

Pattern (100100 � � �0)L (11100 � � �0)L

L 92 102 512 92 102 512

v Nv Nv Nv Nv Nv Nv

10 0 0 0 3 3 3

11 1 1 1 0 0 0

12 0 0 0 0 0 0

13 2 2 2 1 1 1

14 1 1 1 2 2 2

15 2 2 2 0 0 0

16 3 3 3 1 1 1

17 2 2 2 1 1 1

18 5 5 5 2 2 2

19 2 2 2 0 0 0

20 5 5 5 2 2 2

21 6 6 6 37 45 373

22 7 7 7 2 2 2

23 4 4 4 0 0 0

24 1 1 1 0 0 0

25 9 9 9 1 1 1

26 46 53 340 2 2 2

27 2 2 2 1 1 1

28 5 5 5 2 2 2

29 9 9 9 0 0 0

30 46 53 340 2 2 2

IET Commun., Vol. 1, No. 1, February 200774

Table 4 gives the calculated low weights of the four-state turbo
code (1, 5/7) for the specified input bitstreams and the interlea-
ver (T ¼ 10, M ¼ 1) with minimum lengths L ¼ 92 and
L ¼ 102. The weights obtained from these lengths have
been utilised to determine the weight of the code for the inter-
leaver length L ¼ 512. The results show that the code for
weights v ¼ 26, v ¼ 30 and v ¼ 21 has high multiplicities.
These specifications are achieved from an input bitstream
that simultaneously return both RSC encoders to the zero state.

These calculations indicate that multiplicities of some
weights will remain constant for different interleaver lengths.
These weights are mainly produced by input bitstreams with
weights located in the end part of the interleaved data.

3.2 Weight distribution from higher input
bitstreams weights

It is possible to combine low-weight self-terminating pat-
terns with each other making other self-terminating patterns
with a higher weight. This is accomplished by separating
the original self-terminating patterns from each other with

a number of zero bits. Due to increasing the weight of
input bitstream, the number of new self-terminating patterns
is increased in such a way that makes it impossible to con-
sider all of them in the weight distribution of the code, even
for the short interleaver lengths.

To get a codeword with a low weight, those self-
terminating patterns that generate lower weights are com-
bined. This leads to apply self-terminating patterns with the
minimum acceptable number of zeros between 1s. The
weight distribution of the code from these combined patterns
can be calculated by the algorithm presented in the previous
Section. Table 5 gives combinations of the (100011) pattern
with other presented patterns of Table 2. The weight of the
four-state turbo code (1, 5/7) applying the combined patterns
with weights four, five and six has been calculated and illus-
trated in Fig. 4. Fig. 4a to e show combinations of identical
self-terminating patterns, while Fig. 4f gives weight distri-
butions of the code due to combining different self-
terminating patterns from Table 2. The results indicate that
the weight with high multiplicities is created by identical pat-
terns, while combination of different patterns give similar
weights with low multiplicities. In conducted calculations,
the distance between two basic patterns in every combined
pattern d00 does not exceed 145.

3.3 Effect of tail bits on weight distribution of code

The algorithm should consider the effect of tail bits gener-
ated on the basis of the trellis termination of the first RSC
encoder. Tail bits are always located in the last part of
every systematic data block and they will be located near
to or in the end part of the interleaved data. With this
assumption, the number of patterns that can make low-
weight codewords will be increased by increasing the
length of the interleaver and constraint length of RSC
codes. This may take place when bits 1 of the pattern are
close to each other and positioned near to the end part of
the input bitstream. If this condition is not satisfied, at
least one RSC encoder provides higher weight, which

20 30 40
0

200

400

600

800

1000

Weight

M
ul

tip
lic

iti
es

100100..01001

15 20 25 30
0

200

400

600

800

1000

Weight

11100..0111

20 30 40
0

200

400

600

800

Weight

1001100..010011

25

d e f

a b c

30 35 40
0

200

400

600

800

Weight

M
ul

tip
lic

iti
es

1100100..011001

20 30 40
0

200

400

600

800

Weight

1010100..010101

15 20 25 30
0

20

40

60

80

100

120

Weight

weight=5
weight=6

Fig. 4 Weight distribution of turbo code (1, 5/7) using length L ¼ 1024 and combined input bitstreams of Table 2

Table 5: Combined 100011 pattern with other
low-weight patterns of Table 2

Weight Pattern

5 100011 00 � � � 0|fflfflfflffl{zfflfflfflffl}
d 00

1001

d 00¼0;...;L�10

6 100011 00 � � � 0|fflfflfflffl{zfflfflfflffl}
d 00

100011

d 00¼0;...;L�12

6 100011 00 � � � 0|fflfflfflffl{zfflfflfflffl}
d 00

110001

d 00¼0;...;L�12

6 100011 00 � � � 0|fflfflfflffl{zfflfflfflffl}
d 00

101010

d 00¼0;...;L�12

6 100011 00 � � � 0|fflfflfflffl{zfflfflfflffl}
d 00

111

d 00¼0;...;L�9

IET Commun., Vol. 1, No. 1, February 2007 75

consequently increases the weight of the code. Table 6
shows the effect of tail bits and bits 1 position on the
weights computed for the 16-state turbo code (1, 35/23).

4 Simulation results

The proposed algorithm is applied for determination of their
BER upper bound values, which give significant results of
the code performance in the error floor region [13]. For a
maximum-likelihood (ML) decoding of this code in the
presence of additive white gaussian noise (AWGN), its
probability of error (BER) is upper bounded by:

BER �
X

d

Nd ~wd

L
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2REb

N0

s !
ð2Þ

where R, Eb/N0, Nd and w̃d denote the code rate,
signal-to-noise ratio per information bit, number of multi-
plicities and average weight of information of weight d,
respectively.

In the weight calculation, input self-terminating patterns
with weight no greater than four have been considered.
Trellis termination and truncation are applied for the first
and second RSC encoders, respectively. Insertion of stuff
bits to the interleaver memories is conducted after trellis ter-
mination of the first RSC encoders. Thus stuff bits have no
effect on the weight of the systematic and first parity data
and can be deleted from the mentioned data parts. For sim-
plicity, stuff bits are considered to make the systematic and
the first parity data with a length as long as the length of the
second parity data. This leads the code rate 1/3 for the
simulation and analysis. At the decoder, the decoding
process of the first parity data is only accomplished for
the original bitstreams minus stuff bits [7]. In simulations,
the information received from AWGN channel is decoded
by the soft output Viterbi algorithm (SOVA) [14]. Ten iter-
ations for the first and third examples and 15 iterations for
the second example have been considered. Again, the
maximum distance between two low weight patterns in a
combined pattern is set to 145.

Fig. 5 shows performance of the four-state turbo code
(1, 5/7) with the interleaver (T ¼ 10, M ¼ 1) and length
L ¼ 512. For different interleaver lengths with identical
Rem(L, T) ¼ 2 value the algorithm computes the weight
of the code. In this example the codeword weights for inter-
leaver lengths L ¼ 92 and L ¼ 102 have been computed and
then their results have been extrapolated for the desired
length, i.e. L ¼ 512. The algorithm gives the minimum
distance dfree ¼ 10 with wfree¼3 and Nfree ¼ 3. The
new upper bound gives more accuracy for the code
performance for all signal-to-noise ratios. Among

different combined low-weight patterns, the pattern
(0 � � � 00100100 � � � 01110 � � � 0)L produces the minimum
weight with the following specifications: d ¼ 16, Nd ¼ 2,
vd ¼ 6. In this code, other combined patterns generate
weights with high multiplicities far from the free distance
and other low weights, and are not affecting the code per-
formance in the error-floor region.

Fig. 6 illustrates analysis of the code for the interleaver
(T ¼ 20, M ¼ 1) and length L ¼ 1024. In this example the
code weight distribution is determined by the interleaver
lengths L ¼ 382 and L ¼ 402. The result gives dfree ¼ 10
with wfree¼3 and Nfree¼3 as free distance specifications
of the code. In the considered example, almost all of the
low-weight codewords affecting the code performance are
located in the end part of the interleaved data. However,
many combined low-weight patterns were found that are
not located in this part. This effect has been verified by
the analysis of the code with and without the combined pat-
terns. The relevant graphs illustrate about 0.2 dB difference
in the error-floor region between the results obtained when
these two approaches are taken. In addition, analysis of the
code considering the combined patterns in the end of the
interleaved data shows performance closer to the simulation
results than the upper bound obtained without considering

Table 6: Effect of tail bits and bits 1 position of patterns
on codeword weight of turbo code (1, 35/23)

Bit 1 position of input

bitstream

Tail bits

pattern

Codeword

weight

(1016, 1017, 1018, 1019) 0010 26

(1015, 1016, 1017, 1018) 0010 29

(1014, 1015, 1016, 1017) 0010 31

(1019, 1020) 0111 22

(1020) 0011 16

(1010) 1001 57

(995) 1001 41

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0

Old Analysis
New Analysis
Simulation

Fig. 5 Analysis and simulation results of 4- state turbo code
(1, 5/7) with interleaver (T ¼ 10, M ¼ 1) and length L ¼ 512

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0

Analysis without combined patterns
Approximate Analysis
Analysis with combined patterns
Simulation

Fig. 6 Analysis and simulation results of the 4-state turbo code
(1, 5/7) with interleaver (T ¼ 20, M ¼ 1) and length L ¼ 1024

IET Commun., Vol. 1, No. 1, February 200776

the effect of combined patterns. The tail bits weight effect
on the code performance has been confirmed in these
above examples. The specifications of the minimum
weight of the code is given by (d, Nd, vd) ¼ (22, 1, 3)
and (d, Nd, vd) ¼ (26, 1, 2) values for the interleavers
(T ¼ 10, M ¼ 1) and (T ¼ 20, M ¼ 1), respectively.

More verification has been conducted for the 16-state
turbo code (1, 35/23) with the interleaver (T ¼ 35,
M ¼ 1) and length L ¼ 4096. For this purpose, low-weights
of the relevant code are calculated from interleaver lengths
L ¼ 1226 and L ¼ 1261. The algorithm gives some low
weights from the combined low-weight input bitstreams
that return both RSC encoders to the zero state. For the
combined two 10011 patterns, that is (00 � � � 01001100 � � �
0001001100 � � � 0)L, the calculated minimum weight is 27
with two multiplicities. As expected, only a few low
weights contribute to the code performance. In comparison
with two previous examples the weight of the tail bits sig-
nificantly affects the performance of these codes. Based
on this assumption, the free-distance specifications of the
code is calculated by dfree ¼ 16, Nfree¼1 and wfree ¼ 3.
This effect on the upper bound has been illustrated as a
separate graph in Fig. 7, which gives better approximation
to the code performance in the error-floor region.

5 Summary and conclusions

A new and simple algorithm for the calculation of free-
distance and low-weight distribution of the turbo code
with optimised convolutional interleavers was presented.
The algorithm computes the weight of the code with short
interleaver lengths and then, based on the interleaver
properties, the results are extrapolated to the desired
length. For turbo codes with different interleavers,
simulation results confirm the analysis of the code in the
error-floor region.

The proposed weight distribution algorithm was utilised
further to compare the performance of optimised convolu-
tional interleavers with nonoptimised convolutional inter-
leavers. It was confirmed that in the case of similar
numbers of stuff bits for both interleavers, optimised
interleavers outperform the nonoptimised interleavers [15].

Fig. 8 and 9 show the performance of different convolu-
tional interleavers and their comparisons with pseudoran-
dom interleavers for the four-state turbo code (1, 5/7)

with the rate 1/3. For a short bitstream length L ¼ 169,
the pseudorandom interleaver requires 169 memory units,
while better performance has been achieved applying con-
volutional interleavers with only 55 to 78 memory units.

However, for the bitstream length L ¼ 1024, the
performance is weaker than the pseudorandom interleaver
in the error-floor region. This is due to the existence of a
low free-distance value for the code. Although for the
code with the longer bitstream lengths an interleaver with
the higher period is applied, the distance between adjacent
bits is not increased proportionally to the interleaver
constituent parameters, that is period and space values,
due to deletion of stuff bits in the end part of the interleaved
data. In fact in this part, the distance between adjacent bits
of the original bitstreams is almost constant for convolu-
tional interleavers with different periods. Therefore for a
code designed with different interleaver lengths, similar
low-weight specifications are expected. For example, the
four-state turbo code (1, 5/7) has a free distance value 10
with the multiplicity three, when constructed using
convolutional interleavers (T ¼ 11, M ¼ 1, L ¼ 169) and
(T ¼ 20, M ¼ 1, L ¼ 1024). Calculating the upper bound
value from (3) for the code with the convolutional
interleaver (T ¼ 20, M ¼ 1, L ¼ 1024), gives higher BER

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Analysis without tail bits effect
Analysis with tail bits effect
Simulation

Fig. 7 Analysis and simulation results of 16-state turbo code
(1, 35/23) with interleaver (T ¼ 35, M ¼ 1) and length L ¼ 4096

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Pseudo−random
Optimised Conv.(T=11)
Optimized Conv.(T=12)
Optimized Conv.(T=13)

Fig. 8 Performance of 4-state turbo codes (1, 5/7) with different
interleavers and length L ¼ 169

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Pseudo−rand
Conv.(T=14,M=2)
Conv.(T=20,M=1)
Mod.Conv.(T=20,M=1)
Mod.Conv.(T=14,M=2)

Fig. 9 Performance of 4-state turbo codes (1, 5/7) with different
interleavers and length L ¼ 1024

IET Commun., Vol. 1, No. 1, February 2007 77

values compared with the code constructed with the
pseudorandom interleaver. In simulation results illustrated
in Fig. 9 it is clearly observed that for BER . 1024, convol-
utional interleavers (T ¼ 20 , M ¼ 1) and (T ¼ 14, M ¼ 2)
have better performance than the pseudorandom interleaver,
while at BER � 1024, that is where the error floor is
presented their performance is degraded [6].

Some modifications were accomplished improving the
code performance in this region. In the proposed example
the modified convolutional interleaver (T ¼ 14, M ¼ 2)
performs similarly to the pseudorandom interleaver in the
error floor region. With careful modification it is possible
to construct convolutional interleavers having close or
even better performance to most of the conventional block
interleavers. In this comparison, convolutional interleavers
were designed with the number of stuff bits, not exceeding
5% of the overall number of bits.

References

1 Perez, L.C., Seghers, J., and Costello, D.J.: ‘A distance spectrum
interpretation of turbo codes’, IEEE Trans. Inf. Theory, 1996, 42,
(1), pp. 1698–1709

2 Pierleoni, P., Garello, R., and Benedetto, S.: ‘Computing the free
distance of turbo codes and serially concatenated codes with
interleavers: algorithms and applications’, IEEE J. Sel. Areas
Commun., 2001, 19, pp. 800–812

3 Rosnes, E., and Ytrehus, Ø.: ‘Improved algorithms for high rate turbo
code weight distribution calculation’. Proc. 10th Int. Conf. on
Telecommunications (ICT), March 2003, vol. 1, pp. 104–110

4 Yeh, P., Yilmaz, A., and Stark, W.: ‘On the error analysis of turbo
codes: Weight Spectrum Estimation (WSE) scheme’. Proc. IEEE
Int. Symp. on Information Theory (ISIT), June 2003, p. 439

5 Huebner, D.J., and Costello, A.: ‘A simple method of approximating
the error floor of turbo codes with S-type permutors’. Proc. Int.
Symp. on Information Theory (ISIT), 27 June–2 July 2004, p. 473

6 Vafi, S.: ‘On the turbo codes design with convolutional interleavers’,
A dissertation of PhD thesis, University of Wollongong, 2005

7 Vafi, S., and Wysocki, T.: ‘Iterative turbo decoder design with
convolutional interleavers’. Proc. 4th int. Symp. on Communication
Systems, Networks and Digital Signal Processing, Newcastle
(CSNDSP), UK, 2004, pp. 124–127

8 Vafi, S., and Wysocki, T.: ‘Computation of the free-distance and
low-weight distribution of turbo codes with convolutional
interleavers’. Proc. 15th IEEE Int. Symp. on Personal, Indoor and
Mobile Radio Communications (PIMRC), September 2004,
pp. 1356–1359

9 Forney, G.D.: ‘Burst-correcting codes for the classic bursty channel’,
IEEE Trans. Commun., 1971, COM-19, pp. 772–781

10 Hall, E.K., and Wilson, G.: ‘Stream-oriented turbo codes’, IEEE
Trans. Inf. Theory, 2001, 47, (5), pp. 1813–1831

11 Vafi, S., and Wysocki, T.: ‘Performance of convolutional interleavers
with different spacing parameters in turbo codes’. Proc. 6th Australian
Workshop on Communications Theory, 2005, pp. 8–12

12 Dolinar, S., and Divsalar, D.: ‘Weight distributions for turbo codes
using random and nonrandom permutations’. TDA Progress Report
15 August 1995, pp. 56–65,

13 Takeshita, O., Collins, O.M., Massey, P.C., and Costello, D.J.: ‘On the
frame-error rate of concatenated turbo codes’, IEEE Trans. Commun.,
April 2001, 49, (4), pp. 602–608

14 Hagenauer, J., Offer, E., and Papke, L.: ‘Iterative decoding of binary
block and convolutional codes’, IEEE Trans. Inf. Theory, 1996, 42,
(2), pp. 429–445

15 Vafi, S., and Wysocki, T.: ‘On the performance of turbo codes with
convolutional interleavers’. Proc. Asia-Pasific Conf. on
Communications (APCC), October 2005, pp. 222–226

IET Commun., Vol. 1, No. 1, February 200778

	Weight distribution of turbo codes with convolutional interleavers
	Recommended Citation

	untitled

