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OrPTIMUM DESIGN OF ABSORBER FOR MDOF STRUCTURES

By Muhammad N. S. Hadi' and Yoyong Arfiadi’

ABSTRACT: This paper discusses the optimum design of tuned mass damper (TMD) for seismically excited
building structures. In the design process the multi degree of freedom structures are considered so that it makes
improvement to the available design procedures so far, where usually only single mode model is considered.
The H, norm of the transfer function from the external disturbance to a certain regulated output is taken as a
performance measure of the optimization criterion. The genetic algorithm, which has been successfully applied
in many applications, is used to find the optimum value of TMD parameters. The numerical examples for
optimum parameters of TMD for multi degree of freedom structures are presented to show the effectiveness of
this design procedure. It is shown that by using the proposed procedure, the optimum value of the mass damper
can be determined without specifying the modes to be controlled. A comparison is also made to the Den Hartog

and Warburton approaches.

INTRODUCTION

Although active vibration control nowadays has received
considerable attention from many researchers, a passive con-
trol technique is still considered due to its simplicity. More-
over, many passive control devices have been successfully in-
stalled in the real building. The passive control devices which
have been used are mainly base isolation, viscoelastic damper,
and mass damper (absorber) system.

The use of absorber (tuned mass damper) to reduce the
structural vibration has been studied because of its potential
use. Tuned mass dampers have been used in the real applica-
tion to reduce the lateral motion of high rise buildings (Mc-
Namara 1977; Wiesner 1986) as well as the vertical vibration
of flexible floors (Webster and Vaicaitis 1992; Setareh and
Hanson 1992a, 1992b).

In designing a TMD, several types of optimization proce-
dures have been considered. Den Hartog (1956) has derived
the formula for designing the optimum value of the absorber
parameters, where the harmonic loading is applied to an un-
damped single-degree-of-freedom (SDOF) structure. An exten-
sion has been done in Warburton and Ayorinde (1980), Tsai
(1993), and Tsai and Lin (1993), where a damping in the main
mass is considered and several types of harmonic excitation
are examined. Extensive research was also conducted by War-
burton (1982) where formulas for several types of excitation
were developed. In this case the harmonic and random exci-
tations are applied either in the main system or at the base of
the structure. In Warburton and Ayorinde (1980) and Warbur-
ton (1982), the analogy of multi-degree-of-freedom (MDOF)
structure to the SDOF structure, such that the MDOF structure
can be designed as an SDOF structure, was also outlined.

The study of the building utilizing mass damper under ran-
dom loading that simulates the system subject to wind (Mc-
Namara 1977) and earthquake loading (Kaynia et al. 1981)
has also been considered in the past. In this case, the building
is modeled as an SDOF structure by transforming the structure
into a modal coordinate of the dominant mode. Similarly, the
study was carried out by Sadek et al. (1997) where the work
of Villaverde (1985) was extended to find the tuning parameter
by making the first two modes of the modal damping ratio

'Lect., Dept. of Civ., Mining, and Envir. Engrg., Univ. of Wollongong,
Wollongong, NSW 2522, Australia. E-mail: m.hadi @uow.edu.au

2PhD Candidate, Dept. of Civ., Mining, and Envir. Engrg., Univ. of
Wollongong, Wollongong, NSW 2522, Australia.

Note. Associate Editor: Chia-Ming Uang. Discussion open until April
1, 1999. To extend the closing date one month, a written request must
be filed with the ASCE Manager of Journals. The manuscript for this
paper was submitted for review and possible publication on September
5, 1997. This paper is part of the Journal of Structural Engineering,
Vol. 124, No. 11, November, 1998. © ASCE, ISSN 0733-9445/98/0011-
1272-1280/$8.00 + $.50 per page. Paper No. 16596.

1272/ JOURNAL OF STRUCTURAL ENGINEERING / NOVEMBER 1998

equal. The extended procedure for MDOF structures is also
based on the fundamental mode by making a modal partici-
pation factor at that mode to be one unit.

Other extensions are made by Xu and Igusa (1992), Ya-
maguchi and Harnpornchai (1993), and Kareem and Kline
(1995), where the multituned mass damper is used to enhance
the single TMD such that it can be tuned to several frequencies
of interest. In those cases the SDOF structure is considered
with several tuned mass dampers installed in parallel.

In this paper a TMD system is considered to be applied to
MDOF structures, but without specifying which mode should
be controlled. Therefore, there is no need to transfer the struc-
ture to a single-mode model as has been done in the available
research.

Several cost or objective functions have been developed to
meet a specified performance in the optimization process. In
practice, many performance indices can be chosen, as the ob-
jective functions resulted in a different result of the optimi-
zation. In the active vibration control area, there are also many
optimization criteria which have been used by researchers.
These include linear quadratic regulator (Chang and Soong
1980), H, (Suhardjo et al. 1992; Spencer et al. 1994) and H..
(Jabari et al. 1995) performance index, which minimize the
structural responses while maintaining the control energy to
be used in the practical range. While in the active control
optimization there is a trade off between the response to be
minimized and the expense of the control energy to be used,
the passive control optimization is free from balancing the two
parameters. In this case, the performance index used in the
active control area is utilized. In fact, the procedure is effective
for the passive control optimization as shown in Van de Vegte
and Hladun (1973), Posbergh et al. (1991), Stech (1994), and
Gluck et al. (1996).

In this paper, an H, performance index is used. Since the
disturbance in H, optimization is a white noise with zero
mean, consequently the external loading applied in the struc-
ture is considered as a white noise. Although according to Xu
et al. (1992) and Xu and Kwok (1994) this assumption might
not be appropriate for wind excitation, in practice H, perfor-
mance index has been utilized either for wind or earthquake
loading in the literature (see Suhardjo et al. 1992; Spencer et
al. 1994; Kareem and Kline 1995; Ankireddi and Yang 1997).

On the other hand, the use of genetic algorithm (GA) for
solving the optimization problem has also been widely used
by researchers and has been successfully applied to various
problems (Goldberg 1989; Michalewicz 1996). In civil engi-
neering applications, GA has been used to find the minimum
weight of the structures (Jenkins 1991, 1997; Rajeev and
Krishnamoorthy 1992) for static problems. In the area of ac-
tive control GA has been used to determine the optimal lo-
cation of the actuator for flexible structures (Rao et al. 1991).



Considering its potential capability, the GA is utilized in this
paper to find optimum parameters of the mass damper to be
placed in the structural system, where H, performance index
is used as a criterion of the optimization procedure. Two nu-
merical solutions were then carried out to the multistorey
building utilizing mass damper subject to earthquake loading.
Then, the response quantities were shown and comparisons
were made to the available procedure to show the versatility
of the Ga in solving the problem.

EQUATION OF MOTION

Consider an N-storey shear building structure with mass
damper installed at the top floor as shown in Fig. 1. The equa-
tions of motion of the structural system can be written as

MX + CX + KX =F + ex, )

where M, C, K are mass, damping, and stiffness matrices,
respectively; F, e, and %, are the external force vector, matrix
induced ground acceleration, and ground acceleration, respec-
tively. The dot (') in the equation indicates a derivative with
respect to time. The M, C, K matrices and X vector are sum-
marized in Appendix I for the detail.

The equations of motion can then be converted to a state-
space equation as

Z=AZ + HF + Ew )

where

0 1 o
A= [—M“K —M"C]’ H= [M-'] (3a.6)

e={yle} 2= {3} weu

Note that by transforming the equations of motion (1) to the
state-space equation we have transformed the second-order
differential equation to the first-order one. Note also that the
size of the matrices in the state-space equation is 2 times larger
than that of the ordinary equation of motion.

Since only earthquake loading is considered in this paper,
the equations of motion can be written as

Z = AZ + Ew 4)

The objective then is to find the optimum value of the mass
damper parameters (i.e., mass, damping, and stiffness) that in-
volve in A.

Usually this problem is converted to a problem of SDOF
structure where the parameter of the structure is at a specified
mode (usually the first mode) to be chosen. In view of seeking
a more realistic model, this paper used the MDOF model as a
structural model. By considering the structure as an MDOF
structure the optimization process becomes more difficult to
solve. In this case, there is no closed-form solution available
on such a case. Moreover, the closed-form solution to SDOF
structures is available only in case there is no damping in the
structure. In case of an inherent damping presence in the struc-
ture, the closed-form solution may not be available. Therefore,
only numerical solution could be possible to solve the problem
of MDOF structures with inherent damping.

(3c-e)

H, OPTIMIZATION

H, optimization procedure has been considered to civil en-
gineering application for the active control of buildings sub-
jected to wind loading (Suhardjo et al. 1992) and earthquake
excitation (Spencer et al. 1994). In this design strategy, the
aim is to minimize the H, norm of the transfer function of the
closed loop system from the external disturbances to a certain

FIG. 1. N-Storey Shear Building with TMD

controlled output. The external disturbance to be considered
in H, optimization is a unit intensity white noise with zero
mean, while the controlled output can be chosen by the de-
signer. The H, norm can be determined by

o0 12
1Tl = (= | @ Go)TA o) do) )
2w

where |||, = H, norm transfer function from external dis-
turbance w to the controlled output r; o = frequency; j = imag-
inary; * = complex conjugate transpose; and #r stands for the
trace.

For the system as in (2) with the regulated (controlled) out-
put

r= CWZ (6)

the H, norm transfer function from w to r can be computed
by (Lublin et al. 1996)

Tall: = [ (C L. C)I'* = [¢r(ETL, E)}'"* @

where L, and L, are the controllability and the observability
Gramians, respectively. L. and L, are the solutions of the Lya-
punov equations

AL, + L. A" + EE"=0 (8a)
AL, +LA + C.,C,=0 (8b)

Note that the regulated output in (6) can be taken as dis-
placement, velocity, or acceleration. If the regulated output is
taken as the relative displacement of floors with respect to the
ground with the X vector taken as relative displacement with
respect to the base, the matrix C, can be written as

C, = [INanNX(z(N-H)—N)] (9)

where I = identity matrix; 0 = matrix contains zero; and N =
total degree of freedom of the original structure. It is also
possible to choose the displacement, velocity, and acceleration
at a certain floor as the regulated output. In this case the ele-
ment matrix in C, can be chosen accordingly.

The optimization problem is then to find the optimum of
damper parameters that minimize (7) and the procedure of GA
is used in this paper as an efficient tool.

GENETIC ALGORITHM

Genetic algorithm (GA) was developed by Holland and has
been documented in his pioneering book in this area {Holland
1992 (first published 1975)]. The procedure of GA resembles
the way living organisms survive in nature. It is so simple that
GA has received a remarkable attention from researchers. GA
searches the possible solution from many different points, such
that it is easy to find a nearly global optimum solution. More-
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Start
Generation: g€ 0
Initialize Population(g)
Evaluate Population(g)
while (not termination condition do)
start
g€®g+1
Select Population(g) from Population(g -1)
Change Population(g)
Evaluate Population(g)
end
End

FIG. 2. Procedure of Genetic Algorithm

over, it does not need a gradient of the function to be opti-
mized. The procedure is depicted in Fig. 2.

From an initial population, the individuals are selected
based on a certain selection procedure. The selected individ-
uals (parents) are then chosen randomly through crossover to
produce offspring. The mutation procedure is then performed
to maintain variability in the population. At the final stage
(after performing selection, crossover, and mutation itera-
tively) the individual which has the best fitness is chosen as a
design point.

Since GA works at a population size, its optimization can
be considered as a stochastic optimization that starts from
many different points. It is simple and does not need a gradient
of the function. Every individual (chromosome) in the popu-
lation is usually represented by a binary bit with a certain
length. This chromosome can be converted to an integer value,
and later its value can be transformed into a real number.

GA has been used in many applications as a function opti-
mizer. Since GA is so efficacious in finding a nearly global
optimum, as well as easy to use, researchers have used it in a
variety of applications. In this paper GA was used for the
vibration control of structure, where the objective function is
the H; norm of the transfer function from the external distur-
bance to the controlled output. For completeness, the proce-
dure following Michalewicz (1996) is outlined in the follow-
ing sections.

Initial Population and Chromosome Representation

GA starts from an initial population of chromosomes as in-
itial design variables. The length of the bit (nbits) required to
represent each variable can be determined by

200i=D < (I — L) X 107 = 2"is (10)

where U = upper bound of a design variable, L = lower bound
of a design variable, and p = required decimal precision. If the
population is popsize, and the total number of bits (length of
chromosome) is /, then for each chromosome (individual) in
the population we must generate a random number (0 or 1) as
many as /. It is clear that the length of the chromosome de-
pends on the required precision of the design variable. If
higher precision is needed then the length of the chromosome
is increased accordingly. Also, it should be noted here that GA
searches the possible solution from several design points, such
that it is easy for the GA to reach global optimum solution
(Goldberg 1989).

Fitness Evaluation

Since an individual in the population for the next generation
is selected based on its fitness value, then the fitness for each
individual should be calculated, where the corresponding real
value of the binary string is calculated using

ro=L+ X*U — L@2"" - 1) (11)

in which r, and X are real value and integer value of particular
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design variable, respectively. The value of X can be obtained
from relation

Im
X= b2 (12
=0

where b, = binary bit [by,bym—1 -+ bibol; and I, = length of
chromosome to represent a particular design variable — 1. This
real value of design variables can then be substituted into the
fitness function. Note also that in GA, the problem of the op-
timization is to maximize the fitness value such that in case
of the problem of minimizing cost function the fitness value
can be modified accordingly.

Selection

The selection procedure used by GA is based on the fitness
of each chromosome. In this paper a roulette-wheel-based pro-
cedure is adopted as follows:

* Calculate the total fitness of the population using

popsize

F= D fitness(ry) (13)

kw1

where F = total fitness of individual, and fitness = fitness
value of each individual.

 Calculate the probability of selection p, for each chro-
mosome (k= 1, 2, ..., popsize) by

_ fitness ()

Pr F (14)
* Find the cumulative probabilities g, for each chromosome
using
popsize
%= 2 P as)
o=l

* Spin the roulette wheel popsize times, where in each time
select a single chromosome for a new population as follows:
1. generate popsize random numbers (0 or 1) s, k = 1, 2,

..., popsize.
2. if s, > q,-; and s, < g,, n = any number from 1 to popsize,
then g, is selected in the new population.

Crossover

The crossover operator is used to produce an offspring from
the selected parents. Suppose that from a population having
11 bits two parents are chosen for crossover. The crossover
site was decided randomly. If the crossover site is between bits
4 and 5, the first child will get the first four bits of chromo-
some from parent 1 and the last seven bits from parent 2, while
the second child will get the first four bits of chromosome
from parent 2 and the last seven bits of chromosome from
parent 1. This procedure is shown diagrammatically in Fig. 3.

Since only selected parents undergo crossover, then it is
necessary to build a procedure for crossover. For each chro-
mosome in the new population, then, we can generate a ran-
dom number 7, from the range (0-1). If n. < p., where p, is
the probability of crossover, select a given chromosome for
CTOSSOVeT.

Mutation

In order to maintain the variability of the population, a mu-
tation should be performed in certain individuals. In this case,
the mutation is performed on a bit-by-bit basis, with the prob-
ability of mutation = p,. Therefore, there will be a total of



Parent 1:

Parent 2:

CICCI T TTTITT0

Offspring 1:

Offspring 2:

FIG. 3. Crossover Procedure: One-Point Crossover Site be-
tween Bits 4 and 5

{pm X (nbits X popsize)} bits that undergo mutation. The mu-
tation procedure can be performed by generating a random
number 7, from the range (0-1). If n, < p,,, mutate the bit, by
changing 0 to 1 (or 1 to 0). The mutation procedure is shown
diagrammatically in Fig. 4, representing a chromosome that
undergoes mutation at bit positions 2 and 7.

APPLICATION
GA Parameters and Modification

The parameters of GA to be used in this paper are taken as
follows: population size = 30; number of generation = 200;
probability of crossover = 0.45; and probability of mutation =
0.01.

In this paper the standard procedure is slightly modified,
where after performing selection, crossover, and mutation a
number of new individuals are introduced, replacing older
ones in the population. This step can be considered as increas-
ing the variability in the population and exploring new can-
didates of the design points.

Moreover, an elitist strategy (Grefenstette 1986) is adopted
where the best individual, i.e., the individual which has the
highest fitness value, is always copied into the next generation.
By copying the best individual into the next generation it is
assured that the final generation will result in the best design
point.

Numerical Example 1

A ten-storey shear building with the mass damper attached
on the top floor is taken as an example. The building param-
eters are taken from Singh et al. (1997) with a slight modifi-
cation, where my =m, = -+- =my=360t, ky =k, =+ =k
= 650 MN/m, ¢, = ¢; =+ = ¢;p = 6.2 MN-s/m.

Suppose the mass of the damper is specified to be m, = 0.3
my, = 0.03 total mass of the building. The objective is to de-
termine the optimum value of the stiffness &, and the damping
¢, of the damper that minimizes the H, norm transfer function
from the external disturbance to the regulated output. Suppose
the regulated output that we want to minimize is the relative
displacement of the structure with respect to the ground. Ac-
cording to (9) the regulated output is

Cw = [Lioxio ‘blOXlZ] (16)

The GA procedure is then employed to optimize the TMD
parameters where the stiffness and the damper of the TMD
are chosen as design variables. The upper bound and the lower
bound value of the stiffness are 0 and 4,000 kN/m, while the
upper bound and the lower bound of the damping are 0 and
1,000 kN-s/m, respectively. The length of the bits (chromo-
some) for the stiffness is taken as 16, whereas the length of
the bits for the damping is taken as 10. In this case the binary

(a). Before mutation

I ToTo oefiTo 6 1)

(b). After mutation

FiG. 4. Mutation Procedure

bit represents the real value of one-digit precision for both
stiffness and damping. By choosing this value the total length
of the chromosome is to be 26. After performing the GA it is
found that the optimum value of stiffness and damping of the
TMD are k; = 3,750 kN/m, ¢, = 151.5 kN-s/m where the re-
sulting damping ratio of TMD is 11.9%. The evolving best-
fitness generation per generation can be seen in Fig. 5.

The top floor displacement of the building due to El Centro
1940 NS excitation is then plotted in Fig. 6. The peak re-
sponses of each floor are also presented in Table 1. From these
simulation results, it can be said that for the building under
consideration the reduction of about 30% can be achieved for
peak displacement responses.

Numerical Example 2

As the second example, the 10-storey building with a TMD
is taken from Sadek et al. (1997). The TMD has been opti-
mized by Sadek et al. with the stiffness and mass properties
as shown in Table 2, where the damping ratio of the first mode
is 2%. The mass of TMD is taken to be 0.05 X first-mode
modal mass, which gives a unit participation factor, i.e., m; =
0.05 X 1,109 t = 55.45 t. The normalized mode shape of the
first mode which gives the unit participation is as follows:
{d1}T = [0.175; 0.355; 0.534; 0.708; 0.871; 1.019; 1.146;
1.248; 1.321; and 1.359]—where {$;} = 1Ist mode shape of
the structure (Sadek et al. 1997). The optimization was carried
out by using a single-mode model, and the resulting optimum
parameters are £, = 0.3253, with the tuning frequency f =
Ormp/Ogryerre = 0.9302, where in this case ¢; = 104.4 kN-s/m,
ks = 464.1 kN/m.

Before performing GA the damping matrix of the structure
has to be determined. The damping in the structure is usuaily
assumed to be Rayleigh (Clough and Penzien 1975) where the
damping matrix is proportional to the stiffness and mass ma-
trices, i.e., C = aK + BM, in which a and B are constants.
Since the available information in the Sadek et al. (1997)
model is only related to the first mode, the damping matrix
could be assumed either proportional to the stiffness or mass
matrix. Therefore, two cases are considered, such that the pro-
cedure developed in this paper can be compared to the work
of Sadek et al. The first case (case A) is where the damping
matrix is in proportion to the stiffness matrix whereas the sec-
ond case (case B) is where the damping is assumed to be
proportional to the mass matrix. It is easy to show that C =
0.0129 K; and C = 0.1244 M for cases A and B respectively.

The procedure of GA as in example 1 was then used to find
the optimum parameters of TMD with no assumption on the
model of the structure to be a single-mode model. The param-
eters used in GA procedures were taken to be the same as in
numerical example 1, where the regulated output of the struc-
tures in this case was taken as the relative displacement of the
floors with respect to the ground. It was found that the TMD
parameters were c¢; = 47.9 kN-s/m and k; = 437.9 kN/m for
case A; and ¢, = 48.9 kN-s/m and k, = 437.4 kN/m for case
B. The evolving best fitness for these cases can be seen in
Figs. 7 and 8.

For the sake of comparison, the approaches of Den Hartog
(1956) and Warburton (1982) were also presented. The for-
mula of Den Hartog was based on the SDOF undamped struc-
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...... Run-1
— Run-2
Run-3
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Best Fitness

0 50 100 150 200
Generation
FIG. 5. Evolving Best Fitness of Example 1

= with TMD
........ without TMD

(] 5 10 15 20
Time (second)

FIG. 6. Displacement of 10th Floor with Respect to Ground of
Example 1

TABLE 1. Peak Responses of Example 1
With TMD Without TMD
Relative Absolute Relative Absolute
displacement | acceleration | displacement| acceleration
Floor (m) (m/s?) (m) (m/s?)
©) @ (3 (@) (5)
1 0.019 2.698 0.031 2.903
2 0.037 3.025 0.060 3.968
3 0.058 3.528 0.087 4.950
4 0.068 3.944 0.112 5.666
5 0.082 4.079 0.133 6.155
6 0.094 3.826 0.151 6.595
7 0.104 4.390 0.166 6.735
8 0.113 5.051 0.177 7.018
9 0.119 5.534 0.184 7.834
10 0.122 5.812 0.188 8.298
TMD 0.358 13.942 — —

TABLE 2. Mass and Stiffness of Example 2

m Kk x 10°
Floor (4] (kN/m)
(1) (2) ®)

10 98 34.31
9 107 3743
8 116 40.55
7 125 43.67
6 134 46.79
5 143 4991
4 152 53.02
3 161 56.14
2 170 52.26
1 179 62.47
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ture with harmonic external load. According to Den Hartog
the optimum tuning frequency (fopt = ®Wrvp/Wymcre) 1N terms
of mass ratio i can be expressed as

1

f;pt = m (17)

whereas the optimum damping ratio of the damper &, is

- 3
Esope = \/8(1 s (18)

The MDOF structure is then converted to SDOF structure fol-
lowing the procedure in Rana and Soong (1998) by normal-
izing the mode shape at the location of TMD to be 1 unit.
Utilizing (17) and (18) we found that the optimum parameters
are ¢, = 56.2 kN-s/m and k, = 449.5 kN/m.

Another approach to be compared here is according to War-
burton (1982) where several design formulas have been de-
rived for the optimum design of the absorber attached on
SDOF undamped structures due to various types of external
excitation. To facilitate comparison, the formula based on the
white-noise excitation was taken. Based on this design, the
optimum tuning frequency of the damper is

1
fm=m V1= p/2 (19)
and the optimum damping ratio of the damper is

_ p(l — i)
Lor = \20 + w1 — 972) 20)

Similar to the previous approach, the equivalent SDOF model
was then determined and used to find the optimum parameters

11
1.05}
i |
(SR )
§ —— Run-1
09 ........ Run_z
ses=  Run-3
0.85 —— Run4
0.8
) 50 100 150 200
QGeneration

FIG. 7. Evolving Best Fitness of Example 2 Case A

11
1.05
1 B
g 0.95
2 ) J ........ Run-1 4
° — RUN-2
= Run-3
0.85 —— Run4
0.8
0.75 ] 50 100 150 200
Generation

FIG. 8. Evolving Best Fitness of Example 2 Case B



TABLE 3. Comparison Result of Example 2 Case A (Stiffness Proportional Damping)
Den Hartog 1956 Warburton 1982 Sadek et al. 1997 Present Approach Uncontrolled
Relative Relative Relative Relative Relative
displace- | Absolute | displace- | Absolute | displace- | Absolute | displace- | Absolute | displace- | Absolute
ment acceleration ment  |acceleration ment  jacceleration ment  |acceleration ment  |acceleration
Floor (m) (m/s?) (m) (m/s?) (m) (m/s?) (m) (m/s?) (m) (m/s?)
(1) () (3 ) (5) (6) @ (8) 9 (10) (11)
1 0.034 3.049 0.036 3.077 0.036 3.060 0.034 3.048 0.041 3.056
2 0.074 2.636 0.079 2.695 0.077 2.659 0.072 2.632 0.088 2.766
3 0.106 2.764 0.114 2.750 0.113 2.713 0.105 2.778 0.129 2977
4 0.136 2.707 0.147 2.727 0.145 2717 0.134 2.704 0.166 2,755
5 0.163 2.678 0.177 2.671 0.172 2.693 0.160 2.673 0.197 2933
6 0.187 2.878 0.206 2.921 0.194 2953 0.184 2.853 0.222 3.136
7 0.213 2,365 0.236 2426 0.219 2454 0.210 2.336 0.252 2.922
8 0.239 2711 0.267 2913 0.245 2.713 0.236 2.696 0.286 3.675
9 2.612 3222 0.292 3.443 0.266 3.251 0.258 3.199 0.313 4.697
10 0.276 3.876 0.310 4.129 0.281 3.989 0.272 3.855 0.327 5.363
TMD 0.602 4.792 0.751 5.707 0.456 3.744 0.635 5.003 —_— —_
TABLE 4. Comparison Result of Example 2 Case B (Mass Proportional Damping)
Den Hartog 1956 Warburton 1982 Sadek et al. 1997 Present Approach Uncontrolled
Relative Relative Relative Relative Relative
displace- | Absolute | displace- | Absolute | displace- | Absolute | displace- | Absolute | displace- | Absolute
ment acceleration ment  |acceleration ment [acceleration ment  |acceleration ment acceleration
Floor (m) (m/s?) (m) (m/s?) (m) (m/s?) (m) (m/s?) (m) (m/s?)
(1) (2 3 4) (5) 6 7 8) ) (10) (11)
1 0.040 5.476 0.043 5.609 0.039 4938 0.040 5.613 0.052 6.369
2 0.077 5.938 0.083 6.026 0.078 5.568 0.076 6.007 0.010 6.825
3 0.106 5.490 0.115 5.627 0.109 5.330 0.104 5.525 0.130 6.367
4 0.131 4.570 0.142 4.609 0.144 4.500 0.128 4.586 0.168 4.860
5 0.166 5.725 0.179 5.707 0.181 5.708 0.162 5.719 0.207 6.782
6 0.195 7.435 0.210 7.577 0.210 7.225 0.190 7.459 0.242 8.461
7 0.207 5.904 0.226 6.096 0.224 5.738 0.201 5.924 0.254 6.597
8 0.233 6.242 0.259 6.292 0.242 6.131 0.230 6.253 0.279 6.557
9 0.272 6.809 0.302 7.071 0.278 6.638 0.269 6.825 0316 7.339
10 0.298 8.804 0.332 9.263 0.302 8.546 0.294 8.844 0.343 9.741
TMD 0.605 5.099 0.753 5.793 0.461 4.279 0.632 5.199 — —_
0.4 From these simulation results it can be seen that the ap-
03 proach developed in this paper agrees well with Den Hartog’s
approximation, while the result of the Warburton approxima-
02} tion is slightly different from the present paper. It is to be
noted also that, although the response of the structure by Sadek
.o et al. approximation agrees well with the proposed procedure,
& 0 the optimized damper parameters are slightly greater than in
o the present approach. Comparing the simulation results it can
0.4 be seen that the response using the approach developed in this
paper results in a smaller response compared to other ap-
-0.2
0.3 1 R
. . , 9
049 5 10 15 20 8
Time (second) 77
FIG. 9. Displacement of 10th Floor with respect to Ground of 6]
Example 2 Case A: P = Present Work; U = Uncontrolled; S = Sa- § 5
dek et al.; H = Den Hartog, W = Warburton
4
of TMD. The results are ¢, = 45.5 kN-s/m and k, = 428.7 3
kN/m. 2 '3
The numerical comparison was then carried out subject to
El Centro 1940 NS excitation. Peak responses are presented 1o 005 01 015 02 025 03 035

in Tables 3 and 4 for case A and B, respectively. The responses
are also plotted as shown in Figs. 9—12 comparing the results
of different approaches. Note also in this case that in the be-
ginning the response of the structure is almost similar for all
cases.

JO

X, (M)

FIG. 10. Peak Response of 10th Displacement with respect to
Ground Case A: P = Present Work; U = Uncontrolled; S = Sadek
et al.; H = Den Hartog; W = Warburton
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FiIG. 11. Displacement of 10th Floor with respect to Ground of

Example 2 Case B: P = Present Work; U = Uncontrolled; S = Sa-
dek et al.; H = Den Hartog; W = Warburton

-
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FIG. 12. Peak Response of 10th Displacement with respect to
Ground Case B: P = Present Work; U = Uncontrolled; S = Sadek
et al.; H = Den Hartog; W = Warburton

proaches with the reduction of displacement response of about
15%.

CONCLUSIONS

The optimum parameters of the TMD have been discussed
in this paper. It should be noted that no assumption is made
to reduce the MDOF model to a single-mode model. There-
fore, the procedure used in this paper can be said to be more
general than the available numerical models so far.

In this paper, GA has been used to optimize the parameters
of mass damper for MDOF structures. The procedures of GA
are modified, where after performing selection, mutation, and
crossover, a number of new individuals is introduced, replac-
ing some individuals in the population. This procedure can be
considered for increasing the variability of the population and
avoiding the convergence into local optima. Moreover, an elit-
ist strategy is also used in this paper, where the best-fitness
individual is always copied into the next generation.

From the numerical results of the building subjected to El-
Centro 1940 NS excitation, it can be said that the TMD system
is quite effective in reducing the vibration response. From nu-
merical example 1, it was found that the peak building re-
sponse is reduced with the reduction of about 30%. In nu-
merical example 2 the result of the proposed procedure is
compared to the one of Den Hartog (1956), Warburton (1982),
and Sadek et al. (1997). It was found that the response using
the proposed procedure is smaller than other approximation
procedures, with the possible reduction of about 15%. It is
noted that the result of the proposed procedure agrees well
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with Den Hartog’s approach. Also, that in the beginning ex-
citation the responses of the structure are very similar. This is
because the TMD needs time before it can react effectively to
external load (see Kobori et al. 1991). To enhance the TMD
effectiveness, active control may be introduced to the struc-
tural system.

APPENDIX|. MATRICES IN EQUATIONS OF MOTION

If the X in (1) is taken as the relative displacement with
respect to the ground, then the matrices to be used in (1) are
as follows:

M = diag[m; m, --- my m, @1
F(Q + c) G ]
) (2t ) —a
C=
~cy (vt c)) —cy
L. —Ca Ca
(22)
[k, + k) _kz T
—k, (ky + k) —ks
K=
—kn (kn + k) —ks
L ~ky ks
(23)
X=[x X xy xJ (24)
F=[fi i~ fv S (25)
e=[—m -—my " —my _md]r (26)
where m, = mass of ith floor (i = 1, 2, ..., N); m; = mass of

damper; ¢; = damping of ith floor (i = 1, 2, ..., N); ¢4 =
damping of the damper; k; = stiffness of ith storey (i = 1, 2,
..., N); k; = stiffness of the damper; x; = displacement of ith
floor relative to ground (i = 1, 2, ..., N); x, = displacement
of damper relative to ground; f; = external force applied at
ith floor; f, = external force applied at the absorber; and x, =
ground displacement due to earthquake.
If X is defined as the storey drift vector then

m O O - - - 0
m, m; o 0 - ’ 0
M= . . . e . . @7
my my + + - my O
me omg - - myg
¢ —¢ O O - - 0
0 ¢ —-¢ O - - 0
CcC=]| - . . e . (28)
0 0 : c o+ oy —Cg
0o o 0 ¢



k] _kz 0 o - : 0
0 k, —ks O . 0
K=| - . . .. s . 29)
0 o . s ky —ky
0 0 N M . 0 kd
X=[n Y2 w yd' (30)

where y, = ith storey drift, y, = relative displacement of TMD
with respect to Nth floor.
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APPENDIX Ill. NOTATION

The following symbols are used in this paper:

A = state matrix of system;

C = damping matrix;
C,, = matrix relates regulated output and state vector;
¢; = damping of absorber;

c; = damping of ith storey (i=1, 2, ..., N);

E = induced disturbance to state system;

e = influence matrix of earthquake to structure;

F = total fitness of individual;

F = extemnal load vector;

f = frequency tuning ratio;

fa = external load applied at absorber;

Jfi = external load applied at ith floor i =1, 2, ..., N);
H = location matrix of external load;

I = matrix identity;

K = stiffness matrix;

k; = stiffness of absorber;

k, = stiffness of ith storey i =1, 2, ..., N);

L = lower bound of design variable;

L. = controllability Gramian matrix;
L, = observability Gramian matrix;
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length of chromosome;

length of chromosome to represent particular design
variable —1;

mass matrix;

mass of absorber;

mass of ith floor i=1, 2, ..., N);

total number degree of freedom of main structure;
length of chromosome;

decimal precision;

probability of selection of each chromosome;
population size;

cumulative probability of selection for each chromo-
some;

regulated output;

real value of variable;

transfer function from w to r;

upper bound of design variable;

&

2(hk

mEFOCWR N

I [ O 1 Y 1

integer value of design variable;

displacement vector or storey drift vector defined in
Appendix I;

relative displacement of absorber with respect to
ground;

ground displacement due to earthquake;

relative displacement of ith floor with respect to
ground (i=1,2,..., N);

ith storey drift;

state variable;

damping proportional to stiffness;

stiffness constant proportional to mass;

mode shape;

mass ratio;

natural frequency; and

damping ratio.
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