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ANALYTICAL AND NUMERICAL SOLUTIONS FOR A SINGLE VERTICAL 

DRAIN INCLUDING THE EFFECTS OF VACUUM PRELOADING 

 

Buddhima Indraratna, Cholachat Rujikiatkamjorn and Iyathurai Sathananthan
  

 

Abstract 

A system of vertical drains combined with vacuum preloading is an effective method to 

accelerate soil consolidation by promoting radial flow. This study presents the analytical 

modeling of vertical drains incorporating vacuum preloading in both axisymmetric and 

plane strain conditions. The effectiveness of the applied vacuum pressure along the 

drain length is considered. The exact solutions applied on the basis of the unit cell 

theory are supported by finite element analysis using ABAQUS software. Subsequently, 

the details of an appropriate matching procedure by transforming permeability and 

vacuum pressure between axisymmetric and equivalent plane strain conditions is 

described through analytical and numerical schemes. The effects of the magnitude and 

distribution of vacuum pressure on soft clay consolidation are examined through 

average excess pore pressure, consolidation settlement and time analyses. Finally, the 

practical implications of this study are discussed. 

Key words: consolidation, finite element method, soft clay, vacuum preloading, 

vertical drains  
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Introduction 

In recent years, the construction of highway and railway embankments over 

unconsolidated soft soil deposits has resulted in the advancement of soil improvement 

techniques. To avoid excessive total and differential settlement of highly compressible 

soil, the application of preloading is regarded as one of the classical and popular 

methods in practice. Preloading is the application of surcharge load on the site prior to 

the placement of the permanent structure until most of the primary consolidation is 

achieved. However, in the case of thick soil deposits with low permeability, the 

consolidation time by preloading alone is considerably long, hence, a system of vertical 

drains is often introduced to achieve accelerated radial drainage and consolidation 

(Nicholson and Jardine 1982).  The performance of various types of vertical drains 

including sand drains, sand compaction piles, prefabricated vertical drains 

(geosynthetic) and gravel piles have been studied in the past (Richart 1957; Cooper and  

Rose 1999;  Indraratna et al. 1999). The use of prefabricated vertical drains with 

vacuum application is cost-effective, and also the height of the surcharge embankment 

can be reduced to achieve the same consolidation settlement (Holtz  et al. 1991; Shang 

et al. 1998). The mechanism of vacuum-assisted consolidation is comparable to, but not 

the same as conventional surcharge. In earlier studies, vacuum preloading was often 

simulated with an equivalent surface load or by modifying the surface boundary 

condition. However, laboratory observations confirm that the vacuum pressure 

propagates downwards along the drains (trapezoidal distribution) in addition to the 

uniformly applied surface suction. Indraratna et al. (2004) have also explained this 

modeling approach in a recently accepted Canadian Geotechnical paper. The rate of 
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consolidation attributed to vacuum-assisted preloading is greater than the conventional 

method because of the increase in the lateral hydraulic gradient. 

 In order to analyse the behaviour of vertical drains, the unit cell theory 

representing a single drain surrounded by a soil annulus in axisymmetric condition (3D) 

was proposed by Barron
 
(1948) and Richart (1957). Subsequently, Hird et al. (1992) 

introduced a unit cell formulated for the plane strain condition (2D), which can be more 

conveniently simulated in numerical modeling. For multi-drain simulation, the plane 

strain finite element analysis can be readily adapted to most field situations (Hansbo 

1981; Hansbo 1997; Indraratna and Redana 1997; Indraratna and Redana 2000).  

Nevertheless, realistic field predictions require the axisymmetric properties to be 

converted to an equivalent 2D plane strain condition, especially with regard to the 

permeability coefficients and drain geometry (Indraratna and Redana 1997). The plane 

strain analysis can also accommodate vacuum preloading in conjunction with vertical 

drains (e.g. Gabr and Szabo 1997). Mohamedelhassan and Shang (2002) discussed the 

application of vacuum pressure and its benefits, but without any vertical drains. The 

simulation of vacuum pressure for the vertical drain system in analytical or numerical 

models requires further refinement to obtain better predictions in the field. 

 The main objective of this paper is to introduce comprehensive analytical 

solutions for vacuum preloading in conjunction with vertical drains, both in the 

axisymmetric and equivalent plane strain conditions.. The finite element model 

(ABAQUS, Hibbitt et al. 2004) incorporating these solutions is then validated for the 

single drain situation. This finite element simulation also gives confidence to the users 

that a FEM code such as ABAQUS capturing the authors’ theoretical formulations can 
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then be extended to analyze multi-drain case studies, given the convincing validation for 

a single drain condition. It is to be noted, however, that demonstrating the ABAQUS 

application for multi-drain field situations is not within the scope of this paper. 

Analytical Solution for Vertical Drain without Vacuum Preloading 

The analytical solutions are based on the equal strain concept and are divided into  two 

categories, namely axisymmetric and plane strain conditions. For a single drain analysis, 

the effects of well resistance and smear zone are included. Figure 1 illustrates the unit 

cell adopted for analytical solutions for the axisymmetric and plane strain conditions, 

respectively. 

The main assumptions made in the writers’ analysis are summarised below: 

- The soil is fully saturated and homogeneous, and laminar flow  through the 

soil (Darcy’s law) is adopted. At the outer boundary of the unit cell, flow is 

not allowed to occur, and for relatively long vertical drains, only the radial 

(horizontal) flow is permitted to occur. 

- For relatively small increments of effective stress (dσ'), radial consolidation 

theory (Barron 1948) is followed by a vertical drain installed in saturated 

clay. 

- Based on the equal strain concept (Barron 1948), all vertical strains at any 

given depth z are assumed to be equal, and compressive strains are allowed 

to occur in the vertical direction only. The permeability of the soil is 

assumed to be constant during consolidation. 
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Axisymmetric condition 

The governing equation for radial consolidation (Barron 1948) can be expressed by: 

[1]  
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The definitions of all parameters are given in the list of the Notation. 

The solution for the above expression is given by (modified after Hansbo 1981): 
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[2c]  2

,, / eaxhaxh dtcT =     

In the above expressions, n = de/dw, s = ds/dw, and the equivalent diameter of the vertical 

drain can be calculated by dw= 2(a+b)/π,  where a and b are the width and the thickness 

of the prefabricated vertical drain (PVD), respectively (Hansbo 1981). 

Plane strain condition 

The governing equation for conventional radial consolidation  is as follows: 

[3]  
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The solution for this equation (modified after Indraratna and Redana 2000) is given by: 
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In the above expressions,  n = B/bw and s = bs/bw. For plane strain analysis, B. bs and bw 

are assumed to be equal to re, rs and rw, respectively (also refer to Figure 1).  

Analytical Model for Vertical Drain with Vacuum Preloading 

Experience has shown that when vacuum pressure is applied in the field through 

prefabricated vertical drains (PVDs), the suction head along the drain length may 

decrease with depth, thereby reducing the efficiency (Chu et al. 2000). In case of the 

short vertical drains, laboratory measurements at a few points along the drain in the 

large-scale consolidometer (Figure 2a) clearly indicated that the vacuum pressure not 

only propagates immediately but also decreases down the drain length. The rate of 

development of vacuum pressure within the drain may depend on the length and type of 

PVD (core and filter properties), but some field studies suggest that the vacuum 

pressure develops rapidly even if the PVD are long (Bo et al., 2003). In order to study 
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the effect of vacuum loss, the vacuum pressure distribution along the drain boundary is 

considered to vary linearly from - 0p  at top of the drain to - 01 pk  at the bottom of the 

drain, where 1k  is a ratio between vacuum pressure at the bottom and the top of the 

drain (Figure 2b)   

Solution for axisymmetric condition 

The flow rate in the radial direction in the unit cell can be expressed by Darcy’s law as: 
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where, Q is the flow in the soil mass, u is the excess pore pressure due to preloading, A 

is the cross sectional area of the flow at distance r which is equal to 2π r(dz). 

The rate of change in volume of the soil mass in the vertical direction is given by: 
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where, V is the volume of the soil mass, and ε is the  vertical strain.  

The radial flow rate in the unit cell is assumed to be equal to the rate of volume change 

of the soil mass in the vertical direction, therefore, 
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By rearranging Equation (7), the excess pore pressure gradient outside the smear zone 

can be derived as: 
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Similarly, in the smear zone, the corresponding pore pressure gradient is given by: 
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Considering the horizontal cross-sectional slice of thickness dz of a circular cylindrical 

drain with radius rw (Fig. 2c), the change of flow in the z direction of the drain from the 

entrance to the exit of the slice zdQ  is expressed by: 
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The flow term qw represents well resistance. Unless the drains are very large (>20 m), 

twisted or folded the well resistance of most PVD can generally be neglected (Holtz et 

al., 1991; Indraratna and Redana, 2000). 

The total change in flow from the entrance face to the exit face of the slice is given by: 
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If the water is assumed to be incompressible, the following equation should be satisfied: 

[12]  0=+ rz dQdQ     

At the drain boundary (r=rw), it is assumed that sudden drop in pore pressure does not 

take place, hence u=us. Substituting Equations (10) and (11) in Equation (12) and 

subsequent rearranging with the above boundary conditions yields: 
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Integrating Equation (13) in the z direction, after substituting Equation (9) into Equation 

(13), subjects to the following boundary conditions: at z=0, us= axp ,0−  (applied vacuum 

pressure), and at z=l, lkpzu axs /)1( 1,0 −=∂∂ , the excess pore pressure at r=rw, may be 

determined by: 
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Integrating Equations (8) and (9) in the r direction with the boundary conditions given 

in Equation (14), and by assuming uus =  at the interface r=rs (see Fig. 2c), u and 

su can be expressed by: 
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The mean excess pore pressure ( u ) is determined from: 
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Integrating Equation (17) after substituting Equations (15) and (16) into Equation (17), 

the average excess pore pressure is given by:  
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If the well resistance is ignored, axµ  becomes: 
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If the well resistance and smear effect are ignored, axµ  becomes: 
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Rearranging the above Equation (19) and then integrating by applying the boundary 

condition u  = 1σ  at t= 0 gives: 
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For the above equation, the vacuum pressure ratio (VPR) can be introduced by the value 

of 
0 1

p σ (i.e. applied vacuum pressure/preloading pressure). 

The average degree of consolidation can now be evaluated conveniently by the 

equation: 
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 can be calculated by Equation (20) when ∞→t      

For long drains, if the vacuum pressure at the bottom of the drain is assumed to be zero  

(i.e. 1k  = 0), Equation (20) becomes: 
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Solutions for plane strain condition 

Since the procedures for plane strain analysis are similar to the axisymmetric condition, 

the exact solution can be written as (details are given in Appendix A): 
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Neglecting the well resistance, psµ  becomes: 
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Neglecting both well resistance and smear effect, psµ  becomes: 
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When the vacuum pressure is zero at the bottom of the drain ( 1k =0), the exact solution 

can be expressed by: 

[24]   
1

,0,

1

,0

1 2

8
exp

2
1

σµσσ

ps

ps

pshps pTpu
−












 −








+=    

  



 14 

Numerical Modeling of Vertical Drain Incorporating Vacuum Preloading 

A finite element program (ABAQUS) was employed to simulate the unit cell of a 

vertical drain, where an elastic analysis was conducted with  mv=10
-3

 m
2
/kN and with 

ν = 0 to simulate the condition of zero lateral displacement. The consolidation analysis, 

based on Biot’s solution is used in ABAQUS. In the field, at the embankment centreline 

(exploiting symmetry), the condition of negligible lateral displacement can be justified.
 

A reconstituted clay from Sydney, Australia was used to conduct large-scale 

consolidation testing in order to measure the vacuum pressure distribution along the 

drain. The soil properties were examined using the same large-scale consolidation tests 

and have been described elsewhere by Indraratna and Redana (1997). The horizontal 

undisturbed soil permeability (kh,ax) was determined  from 1-D consolidation tests to be 

appoximately 10
-10

 m/s. According to Indraratna and Redana (2000), the ratio of the 

undisturbed permeability to the smear zone permeability (kh,ax/ ks,ax) was assumed to be 

3.0. The top, bottom and outer boundaries were set as impermeable (see Figure 3b). The 

vertical loading pressure ( 1σ =50 kPa) was applied at the top of the cell. The horizontal 

displacement boundary was fixed (i.e. no movement in the horizontal direction), while 

vertical displacement was permitted. A vacuum pressure ratio (VPR) of unity was 

employed (i.e. 10 σp  = 1.0). In order to avoid non-uniform settlement (equal strain 

condition), rigid elements were selected at the soil surface. For the analytical and 

numerical analysis, the following two cases were examined:  

Case A: short drain analysis The dimensions of the unit cell (see Fig. 3) were 450 mm 

(i.e. influence zone diameter or the width of  the unit cell) and 950 mm (height). The 

equivalent drain diameter (dw) or drain width (2bw) was taken to be   50 mm. The smear 
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diameter (ds) or smear zone width (2bs) was 170mm, based on laboratory teating by 

Indraratna and Redana (1997). A total of 160 elements (8-node bi-quadratic 

displacement and bilinear pore pressure) were used in the finite element analysis 

(Figures 3a and 3b). In the entire finite element mesh, the aspect ratio of elements was 

kept below 3. To simulate the drain boundary, the pore pressure was either set to zero 

for the conventional case (no vacuum pressure) or specified to be maximum (negative) 

at the top, reducing linearly to 75 percent of applied vacuum pressure at the bottom ( 1k = 

0.75) in agreement with the laboratory results shown in Figure 2a.  

Case B: long drain analysis The dimensions of the unit cell and vertical drain were kept 

the same as Case A. To simulate a long vertical drain, the height of soil was taken to be 

10 m, and the vacuum pressure at the bottom of the drain was assumed to be zero. The 

pore pressure at the drain boundary was set to maximum ( 0p− ) at the top, reducing 

linearly to zero at the bottom (Figure 3c). 

Validation of Finite Element Model Incorporating the Analytical Solutions  

The analytical solutions developed by the authors including the equivalent plane strain 

parameters can be readily input via appropriate subroutines in commercial software such 

as ABAQUS. The results of a finite element (ABAQUS) analysis  with and without 

smear effects are plotted together with  the analytical predictions   in the form of 

average excess pore pressure ratios and time. Negligible error between these plots 

verifies the validity of the finite element model capturing the authors’ solution. The 

predicted average excess pore pressure is calculated using the excess pore pressure 

values obtained from the finite element analysis. In the following analysis, the discharge 

capacity (qw) of the drain is assumed to be high enough for well resistance to be 
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neglected. Indraratna and Redana (2000) described that well resistance becomes 

significant for PVD with  qw less than 40-60  m
3
/year.  First, the results of numerical 

modeling of a vertical drain without vacuum pressure are validated with the analytical 

model. Secondly, the analytical and numerical solutions with vacuum pressure are 

validated. 

Vertical drain without vacuum preloading 

The comparison of average excess pore water pressure ratio ( )1
u / σ between 

the analytical model  [Equation (2)] and numerical predictions for the axisymmetric 

condition is shown in Figure 4. For this study, ch value of 0.32 m
2
/yr obtained from 1D 

consolidation test and re of 225 mm were used for the relationship between time factor 

(Th) and time (t), and a good agreement was found. Very small deviations are noted for 

the range 30<t<200 days (0.13<Th<0.84), with a maximum error of about 4%. Figure 5 

illustrates the comparison of average excess pore pressure ratio between the analytical 

model (Equation (4)) and the numerical solution for the plane strain condition. Again, 

good agreement between the two models could be found, with the difference in results 

becoming insignificant for t>10 days (Th>0.04). 

 Vertical drain with vacuum preloading 

Figures 6 and 7 represent the comparison of average excess pore pressure ratio 

between Cases A and B for axisymmetric and plane strain conditions, respectively. For 

axisymmetric conditions, the results between the finite element and analytical models 

(Equation (20) for Case A and Equation (22) for Case B) are in good agreement (Figure 

6). For plane strain conditions (Figure 7), the results from the analytical solution (i.e. 



 17 

Equation (23) for Case A and Equation (24) for Case B) agree well with those from the 

numerical solutions for the entire range of time with the maximum deviation observed 

around 10 days for smear effect (i.e. Th ≈  0.04). For axisymmetric conditions (Figure 

6), the difference in average excess pore pressure ratio between Case A (25% vacuum 

loss with depth) and Case B (vacuum pressure linearly decreasing with depth to zero at 

the bottom of the drain) becomes considerable after about 90 days and 30 days for drain 

with and without smear, respectively, when the average excess pore pressures of Case A 

start to become negative. For the plane strain condition (Figure 7), the deviation 

between Case A and Case B is significant after 30days (with smear) and 20 days (ideal 

drain), where the average excess pore pressure ratio for Case B is less negative in 

contrast to Case A. Both Figures 6 and 7 confirm that the ultimate negative average 

excess pore pressure ratios for Case A (approximately 0.90) are markedly different to 

that of Case B (0.50). As discussed later, this also corresponds to a greater ultimate 

settlement associated with Case A as compared to Case B. 

Comparison between Axisymmetric and Equivalent Plane Strain Analyses 

In general, the conversion procedure used in vertical drain modeling (Hird et al. 1992, 

Indraratna and Redana 1997, Indraratna and Redana 2000) is useful in transforming 

parameters from the true axisymmetric condition (3D) to the equivalent plane strain 

condition conveniently employed in 2D finite element analyses. In this section, only 

smear effect is considered in the analysis. The differences between the axisymmetric 

and plane strain conditions (prior to conversion) with and without vacuum preloading 

are shown in Figures 8 and 9, respectively. For the conventional surcharge loading with 

no vacuum pressure (Figure 8), the comparison between the axisymmetric and plane 
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strain conditions confirms that the dissipation of average excess pore pressure for the 

former is slower than the latter. This is because in the unit cell, the flow contact area of 

a drain wall is greater than a drain well as shown in Figure 1. Figure 8 also shows that 

the final average excess pore pressure becomes zero after 200 days (Th ≈ 0.8) for plane 

strain, but for time approaching 500 days in the axisymmetric condition (Th ≈ 2.14). 

Figures 9a and 9b illustrate the effect of different vacuum pressure distributions (Case A 

and Case B), where the plane strain model gives the greater dissipation of average 

excess pore pressure in comparison with the axisymmetric condition at any given time. 

As expected, the 25 % vacuum loss along the drain (Case A) shows a greater average 

excess pore pressure dissipation rate than the 100 % vacuum loss along the drain (Case 

B).  

Figures 8 and 9 demonstrate that the axisymmetric and plane strain solutions can 

not produce the same consolidation response. Therefore, in order to use a plane strain 

solution for vertical drains and still obtain the same consolidation as the true 

axisymmetric condition, one must employ a conversion procedure to derive an 

equivalent plane strain solution that provides a very good match to the axisymmetric 

consolidation curve. An equivalent plane strain solution can be obtained either by 

geometric transformation or permeability transformation or both to minimise the 

disparity between the two methods (Hird et al. 1992; Indraratna and Redana 1997; 

Indraratna and Redana 2000). For vacuum preloading, the proposed ‘conversion’ 

procedures can be based on the equivalent average excess pore pressure and the 

equivalent vacuum pressure by still maintaining the geometric equivalence (i.e. dw=2bw,  

ds=2bs, de=2B, in Figure 1). In this study, permeability and vacuum pressure 

relationships between the axisymmetric and equivalent plane strain conditions have 
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been derived by extending the previous theory developed by Indraratna and Redana 

(1997) and are explained below. 

At a given stress level and at each time step, the average excess pore pressure for 

both axisymmetric and plane strain conditions are made equal by equating Equation 

(20) with Equation (23). The equivalent permeability and equivalent applied vacuum 

pressure for the equivalent plane strain condition can now be expressed below: 

The equivalent permeability under plane strain is given by: 
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Neglecting the well resistance in Equation (25),  the ratio of the smear zone 

permeability to the undisturbed zone permeability is as follows:  
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Ignoring, both smear and well resistance effects, the simplified ratio of equivalent plane 

strain permeability to axisymmetric permeability in the undisturbed zone can be 

obtained: 

[27]  
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The equivalent vacuum pressure can be determined by: 
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 [28]  axps pp ,0,0 =   

 In order to examine the validity of the above conversion procedure, the 

analytical and numerical models were employed to compare the deviations between the 

axisymmetric and equivalent plane strain conditions. Based on Equations. (26) to (28), 

Table 1 shows the parameters used in the axisymmetric and equivalent plane strain 

conditions for both short and long drain analyses (i.e. Case A and Case B).  

 After conversion of the original plane strain condition to the equivalent plane 

strain condition, the results are identical as shown in Figures 10(a) and 10(b). Figure 

10(b) illustrates the corresponding finite element simulations which also indicate very 

similar results. Comparison of Figures 10(a) and 10(b) confirms that the results of finite 

element and analytical models almost coincide, hence, for the purpose of clarity, the 

analytical results and finite element results are plotted separately. Figure 11 compares 

the results of the analytical and numerical models after application of the permeability 

and vacuum pressure conversions for both Cases A and B. The analytical plane strain 

and analytical axisymmetric models give identical results, while the finite element 

models show a very small discrepancy. In general, the above matching procedure 

confirms the reliability of the equivalent plane strain model for both Cases A and B. 

Effect of Magnitude and Distribution of Vacuum Pressure 

In this section, the effects of the magnitude of vacuum pressure and the distribution of 

vacuum pressure along the vertical drain are discussed, based on the equivalent plane 

strain condition. The comparison of settlement between analytical and numerical models 

with variation of VPR for both Cases A and B is shown in Figures 12(a) and 12(b), 
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respectively (Equation (23) to (28)). Almost identical results between the two 

approaches were found. As expected, the rate of settlement with applied vacuum 

pressure was faster than conventional loading (surcharge only) without vacuum 

pressure.  

Figure 12 also shows that, at the higher VPR, the rate of settlement and the final 

settlement are increased. Clearly, the application of vacuum pressure increases the 

lateral pore pressure gradient, thus promoting radial flow. The accelerated  

consolidation increases the rate of settlement as well as the ultimate settlement, which is 

analogous to increasing the applied surcharge load. The consideration of varying 

vacuum pressure along the length of drain is more realistic, as the effect of vacuum 

usually diminishes with depth. In other words, for long vertical drains, it is possible that 

the applied vacuum pressure at the drain top may not be propagated towards the bottom 

part of the drain. The results plotted in Figure 12 show that the rate of consolidation for 

25%  vacuum loss (Case A) is more rapid in comparison with Case B. Also, it is clear 

that the greater the magnitude of vacuum pressure ratio, the higher the rate of 

consolidation, but unless the magnitude of vacuum pressure is large enough (e.g. VPR > 

0.25), the effect on excess pore pressure dissipation may not be significant in practice.  

Practical Implications 

The effectiveness of a vertical drain incorporating vacuum pressure does not only 

depend on the magnitude of the applied vacuum pressure but also on the vacuum 

pressure ratio. As mentioned previously, if the VPR is small (less than 0.25), the effect 

of vacuum preloading may not be significant. In the successful field applications, the 

applied vacuum pressure ratio has been as high as 1 to 2 (e.g. in Tianjin project (Chu et 

al. 2000) and Yaoqiang Airport (Tang and Shang 2000)). With regard to the distribution 
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of applied vacuum pressure, the almost constant vacuum pressure with depth may be 

used to predict the field behavior of short vertical drains (say less than 10 m). In the 

case of long vertical drains (exceeding 10 m), Chu et al. (2000) demonstrated that by 

applying a vacuum pressure, the reduction in the excess pore water pressure decreases 

with depth. This indicates that the diminishing vacuum pressure with depth (assumed 

linear) is a simplified and useful approach for predicting the performance of long 

vertical drains.  

Most finite element analyses on soft clay embankments are conducted based on the 2D 

plane strain assumption. Although the consolidation around vertical drains is 

axisymmetric, in the case of multi-drain analysis of large projects, plane strain analysis 

is certainly more efficient in a computational point of view when even the most 

sophisticated powerful finite element codes fail to handle a large number of vertical 

drains each having its own independent axisymmetric zone. Various researchers have 

described the advantages of such 2-D plane strain solutions for field studies where a 

large number of drains are installed, for which a 3D analysis becomes cumbersome and 

often impractical (e.g. Hird et al. 1992; Chai et al. 1995; Indraratna et al., 1997; Bo et al. 

2003). 

 Figure 13 illustrates the variation of the normalized settlement (Svac/Snovac) vs 

time factor (Th,ps) relationships with increasing VPR and n values for both Cases A and 

B (equivalent plane strain) for an ideal drain. The smear effect with a typical value of 

s=3 and kh/ks=3-5 is included in Figs. 14 and 15 based on the authors experience. 

Normalized settlement is defined as the ratio of settlement with vacuum pressure (Svac) 

divided by the settlement without vacuum pressure (Snovac). Axisymmetric results are 
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not plotted in Figures 13-15, because they provide almost identical results to the 

equivalent plane strain condition. It is shown that unless the VPR values exceed 0.25, 

the additional consolidation due to vacuum preloading application may not be 

significant. In the field, VPR>1.0 and n<20 will give considerably enhanced settlement 

(Tang and Shang 2000) as also supported by analytical results shown in Figures 13-15. 

In summary, useful curves for normalized settlement for a given soil can be developed 

for an array of VPR and n values similar to the above analysis, which will be most 

beneficial for design engineers. 

Conclusions 

A system of vertical drains combined with vacuum preloading is an effective method for 

accelerating soil consolidation. In this study, an analytical model for a  vertical drain 

(unit cell) incorporating vacuum preloading as well as smear and well resistance was 

developed for both axisymmetric and equivalent plane strain conditions. A finite 

element code (ABAQUS) was employed to analyse the unit cell and to compare the 

numerical results with the writers’ analytical approach. These comparisons confirmed 

the accuracy of the analytical formulations. A conversion procedure based on the 

transformation of permeability and vacuum pressure was also introduced to establish the 

relationships between the axisymmetric (3D) and equivalent plane strain (2D) 

conditions. Analytical and numerical schemes verified that the equivalent plane strain 

adaptation is as accurate as the conventional axisymmetric case, hence its adoption in 

practice  can be justified.  

In this paper, two different vacuum pressure distributions along a single drain 

were compared and discussed (i.e. for short drain and long drain). The simulation of 

varying vacuum pressure along the length of drain is considered to be realistic because 
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the applied vacuum pressure at the drain top may not always propagate towards the 

bottom part of the drain. In the field, this is probably true for the majority of long 

prefabricated vertical drains installed in soft clay as indicated by past field studies. 

However, in the case of relatively short vertical drains (say less than 10 m), the 

approximation of constant vacuum pressure with depth may be justified. In practice, the 

effectiveness of vacuum preloading in soft clay depends on the magnitude of the applied 

vacuum pressure ratio as well as its actual distribution along the drain length. It is noted 

from the findings of this study that, if the vacuum pressure ratio (VPR) is less than 0.25, 

the effect of vacuum preloading on the excess pore pressure dissipation hence additional 

settlement is not significant. Moreover, for the same VPR, the rate of settlement in the 

case of short drains case is greater than that of long drains. Finally, a typical chart for 

normalized settlement against time factor for various VPR and n values was plotted, 

which provides a useful preliminary design guide for practicing engineers. Such charts 

may be produced for an array of VPR and n values, for either constant or varying 

vacuum pressure distributions with depth. 
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Appendix A. Complete details of analytical formulation of vacuum preloading for 

plane strain condition  

The horizontal flow rate in unit cell can be expressed by Darcy’s law as: 

[A.1]  dz
x
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t

Q

w ∂

∂
=

∂

∂

γ
,        

where A is cross sectional area of the flow at distance x which is equal to dz (the 

thickness of the unit cell for plane strain conditions is unity) 

The rate of changing volume of soil mass is: 
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The radial flow rate in the unit cell is equal to the rate of volume change of soil mass in 

the vertical direction therefore, 
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Rearranging Equation (A.3), the excess pore pressure gradient outside the smear zone 

can be given by: 
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The corresponding pore pressure gradient in the smear zone is derived as: 
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Considering the horizontal cross-sectional slice of thickness dz (Fig. 2c), the change of 

flow in the z direction of the drain from the entrance to the exit of the slice zdQ  is 

expressed by: 
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The horizontal inflow to the drain from each slide dQx is given by: 
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If the water is assumed to be incompressible, the following equation should be satisfied: 
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[A.8]  02 =+ xz dQdQ     

At the drain boundary (x=bw), the sudden drop in pore pressure does not take place, 

hence u=us. Substituting Equations (A.6) and (A.7) in Equation (A.8) and following by 

rearranging with the above boundary condition yields: 
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Integrating Equation (A.9) in the z direction subjects to the following boundary 

conditions: at z=0, us= plp ,0−  (applied vacuum pressure), and at z=l, 

lkpzu pls /)1( 1,0 −=∂∂ , the excess pore pressure at x=bw after substituting Equation 

(A.5) into Equation (A.9), may be determined by: 
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Integrating Equations (A.4) and (A.5) in the x direction with the boundary conditions 

given in Equation (A.10), and by assuming uus =  at the interface x=bs (see Fig. 2c), u 

and su can be expressed by: 
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The mean excess pore pressure ( u ) is determined from: 
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After substituting Equations (A.11) and (A.12) into Equation (A.13), integrating 

Equation (A.13), the average excess pore pressure is given by:  
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Combining Eqaution (A.14) with the well known compressibility relationship 

(
v

t m u tε∂ ∂ = − ∂ ∂ ) gives: 

[A.15]  
( )








 +
−

∂

∂
−=

2

1

2

1
,0

2

,

k
pB

t

u
m

k
u pspsv

psh

w µ
γ

               

Rearranging Equation (A.15) and then integrating by applying the boundary condition 

u  = 1σ  at t= 0 gives: 
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Notation 

A   cross-sectional area corresponding to flow (m
2
) 

a  width of the prefabricated vertical drain (m) 

B  half width of plane strain unit cell (m) 

b  thickness of the prefabricated vertical drain (m) 

bw   half width of drain wall (m) 

ch   coefficient of consolidation for horizontal drainage, vwhh mkc γ=  (m
2
/s) 

d  drain spacing (m) 

de  diameter of influence zone (m) 

h  hydraulic head (m) 

i.   dimensionless hydraulic gradient 

k   permeability coefficient of soil (m/s) 

kh   horizontal permeability coefficient in undisturbed zone (m/s) 

ks   horizontal permeability coefficient in smear zone (m/s) 

1k  ratio between vacuum pressure at the bottom and at the top of vertical 

drain 

l   length of drain (m) 

mv  coefficient of volume compressibility for one-dimensional compression 

(m
2
/kN) 

n     ratio re/rw in axisymmetric condition or B/bw in plane strain condition 

0p   applied vacuum pressure at the top of the drain (kN/m
2
) 

qw well discharge capacity (m
3
/s) 

Q   flow in unit cell (m
3
) 

r   distance from center of the drain in axisymmetric unit cell (m) 

re   radius of influence zone (m) 

rw  radius of drain well (m) 
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S  Settlement (m) 

Svac  Settlement due to surcharge with vacuum preloading (m) 

Snovac  Final settlement due to surcharge preloading only (m) 

Th   dimensionless time factor for horizontal drainage, , 2

h
h ax

e

c t
T

d
=  or , 24

h
h ps

c t
T

B
=  

t    time (s, days) 

Uh  average degree of consolidation 

u    excess pore water pressure (kN/m
2
) 

u     average excess pore water pressure for the unit cell (kN/m
2
) 

∞u   average applied vacuum pressure for the unit cell (kN/m
2
) 

VPR  vacuum pressure ratio, VPR= 
0 1

p σ  

V  volume of soil mass (m
3
) 

vr   velocity of flow (at radius r) (m/s) 

vx   velocity of flow (at distance x) (m/s) 

x   distance from center of the drain in plane strain unit cell (m) 

z   depth (m) 

Greek Letters 

γw   unit weight of water (kN/m
3
) 

ε   vertical strain 

µax a group of parameters representing the geometry of the vertical drain 

system including well resistance and smear effect in the axisymmetric 

condition   

µps a group of parameters representing the geometry of the vertical drain 

system including well resistance and smear effect in the plane strain 

condition 

ν  Poisson’s ratio in terms of effective stress 

1σ    initial overburden pressure due to preloading (kN/m
2
) 

'σ   effective stress (kN/m
2
) 
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Subscripts 

ax   axisymmetric condition 

ps   plane strain condition 

s   smear zone 
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Table 1. Permeability coefficient and vacuum pressure values for axisymmetric 

and equivalent plane strain conditions 

Conversion parameters Axisymmetric  Equivalent plane strain  

Undisturbed horizontal 

permeability (kh×10
-10

 m/s) 

 

1.00 

 

0.36 

(Eq. 27) 

Smear permeability (ks×10
-10

 

m/s) 
0.33 

0.10 

(Eq. 26) 

Vacuum pressure (×100 kPa) 

 

0.50 

 

0.50 

(Eq. 28) 
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Figure 1. Conversion of axisymmetry radial flow adopted for analytical solutions, 

(a) vertical drain installation layout, (b) vertical drain in plane strain model, (c) 

axisymmetric unit cell, (d) plane strain unit cell. 
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Figure 2. (a) Distributions of measured negative pore water pressure along drain 

boundary in laboratory testing, (b) Distributions of vacuum pressure in analytical 

model, (c) Vertical cross section of unit cell showing flow condition in vertical 

drain. 
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Figure 3.   Finite element discretization for axisymmetric and plane strain analyses 

of soil in unit cell, (a) Nodes and integration points for a single 8-node biquadratic 

displacement, bilinear pore pressure element; (b) Mesh discretization and vacuum 

pressure distribution for short drain analysis (Case A), (c) mesh discretization and 

vacuum pressure distribution for long drain analysis (Case B) 
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Figure 4. Finite element and analytical model results for axisymmetric condition. 
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Figure 5. Finite element and analytical model results for plane strain condition.   
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Figure 6. Finite element and analytical model results (axisymmetric with vacuum 

preloading), (a) Case A: short drain analysis, (b) Case B: long drain analysis. 
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Figure 7. Finite element and analytical model results (plane strain with vacuum 

preloading), (a) Case A: short drain analysis, (b) Case B: long drain analysis. 
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Figure 8. Difference between original axisymmetric and plane strain analyses prior 

to establishing the equivalent plane strain conversion with smear effect. 
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Figure 9. Difference between axisymmetric and plane strain analyses prior to 

establishing the equivalent plane strain conversion, (a) Case A: short drain, (b) 

Case B: long drain. 
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Figure 10. Comparison of axisymmetric model with the equivalent plane strain 

model including smear effect (a) analytical method, (b) FEM. 
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Figure 11. Comparison of analytical and FEM solutions after conversion to 

equivalent plane strain condition including smear effect, (a) Case A, analytical 

method, (b) Case A, FEM; (c) Case B, analytical method; (d) Case B, FEM. 
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Figure 12. Settlement results from analytical and FEM solutions after conversion 

to equivalent plane strain condition, (a) Case A, short drain, (b) Case B, long 

drain. 
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Figure 13. Normalized settlement-time factor curves for varying n and VPR values 

based on the equivalent plane strain solution for ideal condition. 
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Figure 14. Normalized settlement-time factor curves for varying n and VPR values 

based on the equivalent plane strain solution for s=3 kh/ks=3. 
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Figure 15. Normalized settlement-time factor curves for varying n and VPR values 

based on the equivalent plane strain solution for s=3 kh/ks=5. 
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