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TIME-DEPENDENT PARTICLE TRANSPORT THROUGH

GRANULAR FILTERS

By Mark Locke,1 Buddhima Indraratna,2 Member, ASCE, and Gamini Adikari3

ABSTRACT: This paper describes an analytical model of filtration for granular media, based on the mechanics
of particle migration under hydraulic loads. A new equation to predict the probability of particle movement
through a 3D network model of the filter voids has been developed. Void constriction sizes are determined based
on the particle-size distribution and relative density of the filter. An important new development is the differ-
entiation between particles that form part of the filter structure and fine particles that are loose within the filter
voids, or coarse particles that are enmeshed in a matrix of fines. The rate of particle erosion and transport is
governed by the consideration of mass and momentum conservation. The model describes the time-dependent
change of flow rate and base and filter particle-size distribution, porosity, and permeability. The model has
application in the design of granular filters for noncohesive uniform, well-, and broadly graded base and filter
materials.

INTRODUCTION

Granular filters are used where it is necessary to protect a
soil from erosion due to seepage of water. A correctly designed
filter will retain any eroded soil particles while allowing seep-
age water to flow, thus preventing erosion of the protected soil.
Empirical methods based on particle-size ratios are commonly
used for the design of granular filters. These empirical guide-
lines are developed through extensive laboratory tests,
whereby the stability of various base-soil–filter combinations
is evaluated under different hydraulic gradients (Sherard et al.
1984; Delgado Ramos 2000). However, the mechanisms of
filtration, interface behavior, and time-dependent changes that
occur within the filter medium cannot be described by empir-
ical criteria. In contrast, mathematical models can be formu-
lated to explain the fundamental physics of particle erosion,
transport, and retention, within a framework of well-defined
geohydraulic constraints.

Silveira (1965) used probabilistic methods to examine mi-
gration of base-soil particles into filters, based on the obser-
vation that a particle can move from one pore to the next if
the particle is smaller than the opening between these pores,
called the pore constriction. A probabilistic comparison of the
base-soil particle sizes and filter constriction size distribution
lead to an estimate of the infiltration depth into clean filters.
Humes (1996) adapted the Silveira (1965) model to more ac-
curately describe broadly graded materials. Witt (1993) devel-
oped a 3D pore network model of spheres (pores) intercon-
nected by pipes (pore constrictions). This model assumes that,
for each pore, there are a number of possible exits through
pore constrictions and the largest pore constriction from each
pore determines whether a particle can move from the pore.
Schuler (1996) adopted a similar 3D void network model and
used a Monte Carlo simulation to examine the infiltration
depth of base-soil particles into the filter model. These models
do not incorporate the time-dependent changes in filter void
constriction sizes as particles are captured. Indraratna and Va-
fai (1997) considered a number of elements at the base-filter
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interface, where the movement of particles is modeled by a
finite-difference procedure based on conservation of mass and
momentum. The analysis predicts the gradual change in par-
ticle-size distribution, permeability, and porosity of the mate-
rials with time, hence, predicting the time-dependent changes
at the base-filter interface for the entire particle-size range dur-
ing the life of the filter. A more detailed discussion of analyt-
ical models for granular filters can be found in Indraratna and
Locke (2000). Reddi (1997) has reviewed other models de-
veloped to describe particle transport in soils and described
their applications in practice.

Existing analytical models of filtration have certain limita-
tions. Many adopt simplified pore models that are only appli-
cable to a limited range of filter materials. Very few models
consider the time rate of formation of a stable filter interface.
Instead, the models only determine the amount of particle in-
filtration into a clean filter while ignoring the change in filter
void sizes and permeability due to capture of base-soil parti-
cles. By considering the time-dependent changes, the gradual
development of a self-filtration zone is described, where re-
tained coarse particles are then able to retain finer particles.
Self-filtration cannot be described without considering these
time-dependent processes. These time-dependent predictions
are very useful to the designer, predicting the rate of internal
erosion will determine the potential warning time before fail-
ure of a structure or the expected time after construction before
a successful filter prevents further particle transport. This paper
describes a revised particle-transport model for filtration of
noncohesive soils, which significantly extends the previously
proposed analytical model by Indraratna and Vafai (1997) for
particle transport. The entire particle-transport model includes
a filter void model based on a 3D pore network model and
principles of conservation of mass and momentum describing
the movement of soil particles through the filter voids. The
filter void model incorporates a probabilistic analysis of base-
soil particle sizes and filter void sizes to determine the depth
a particle can infiltrate into the filter. The base soil and filter
are divided into a number of discrete elements in the direction
of flow at the base-soil–filter interface, and the time-dependent
changes occurring in these elements is modeled.

FILTER VOID MODEL

A granular soil is a 3D collection of particles that form pores
of different sizes and shapes having constrictions between the
pores, which may be of different sizes, shapes, and orienta-
tions. A model of these voids is required for the analysis.
Schuler (1996) developed a regular cubic network model of
pores and constrictions, shown in Fig. 1(a). Each pore void
has six exits or constrictions [Fig. 1(b)]. A particle that has
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FIG. 1. (a) Cubic Network Pore Model [after Schuler (1996)]; (b) Sin-
gle Pore with Six Constrictions

FIG. 2. Pore Constriction Size for (a) Most-Dense State; (b) Least-
Dense State [after Terzaghi (1922)]

FIG. 3. Ideal Curve and Stable and Unstable Gradings for Broadly
Graded Filters

entered a pore through a constriction may exit the pore through
any of the other five constrictions, provided the particle is
smaller than the constriction diameter. This void model will
be adopted in the current analysis.

Constriction Size Distribution (CSD)

In the filter void model, the pore constrictions form the
smallest link between pores, capturing moving particles.
Hence, the important geometric factor for modeling nonuni-
form granular filters is the pore CSD. An assumption made
here is that the CSD is dependent on the particle-size distri-
bution (PSD) of the filter determined by the surface area of
the particles, as proposed by Humes (1996). Constriction sizes
can be estimated by considering one of the two geometric
conditions shown in Fig. 2. These two geometric conditions
represent, in two dimensions, the most-dense and the least-
dense packing condition of the filter particles. The diameter of
a circle that can fit between the three or four filter particles
represents the size of the constriction formed by these parti-
cles. A method to find the least-dense CSD [Fig. 2(b)] is de-
scribed by Silveira et al. (1975). This method is also outlined
by Indraratna and Locke (2000) and will not be repeated here.

Considering the most-dense particle packing, where the con-
striction is formed by three tangent spheres of diameters Di,
Dj, and Dk [Fig. 2(a)], the theory of standard mean error can
be used to estimate the constriction diameter Dv, as given by

2 2 2 2
2 2 2 2 2 2

� � � � 0.5 �� � � � � � � � �� � � �D D D D D Di j k v i j

2
2 2

� �� � � ��D Dk v (1)

Humes (1996) considered the frequency of the three filter par-
ticle sizes (from the filter PSD by surface area), to determine
the frequency of different constriction sizes, leading to the
CSD. The frequency Pv of the constriction size Dv is a function
of the frequency of the three particle diameters (Pi, Pj, and Pk)
taken from the PSD. The value of Pv is calculated with (2),
where ri, rj, and rk represent the number of times the particle
diameters Di, Dj, and Dk appear in the combination of three
particles being considered. Hence ri, rj, and rk = 0, 1, 2, or 3
and ri � rj � rk = 3. The CSD that is most dense CSDMD is
then a cumulative distribution of constriction sizes Dv and the
corresponding frequency Pv

3! ri rj rkP = (P ) � (P ) � (P ) (2)v i j k
r !r !r !i j k

The two geometric cases shown in Fig. 2 represent the ex-
tremes of relative density. Real filters are unlikely to exist
either in the most-dense or least-dense states but rather at some
intermediate state. Hence, a more representative model would

consider the filter void sizes based on the filter PSD and rel-
ative density. Schuler (1996) has examined the CSD of a soil
at varying relative density and proposed that all the CSD
curves have the same shape. However, Giroud (1996) sug-
gested that, in certain locations within a medium dense to
dense granular material, a number of particles will group to-
gether to form a maximum density arrangement. The assump-
tion is made that the coarser pore constrictions increase in size
proportionally with a decrease in relative density Rd between
the most-dense and least-dense packing models and the small-
est constrictions are equal in size to the most-dense packing
arrangement, as shown in (3). The CSD is divided into n dis-
crete portions. The integer i represents these discrete portions
of the CSD such that i/n is the fraction of constrictions finer
than constriction diameter Dv, i

i
D = D � (1 � R )(D � D ), i = 1, 2, . . . , nv, i VMD, i d VLD, i VMD, i

n
(3)

where and = i/n% coarsest constrictions from theD DVMD, i VLD, i

most-dense and least-dense CSDs, respectively.

Constriction Sizes of Broadly Graded Materials

Broadly graded base and filter materials present a further
problem in modeling, particularly for the determination of the
CSD. In some cases, the fine particles may not contribute to
the stable structure of the granular material but may be loose
within the pores formed by the stable skeleton of larger par-
ticles. In the opposite case, the coarse particles may be en-
meshed in a matrix of fines. The fines fill the voids between
coarse particles and large constrictions are filled. In either case,
the filter PSD should be truncated to discount particles that do
not contribute to the CSD.

Skempton and Brogan (1994) defined an ideal grading
curve, represented by (4), where Sn is the mass fraction passing
diameter Dn and Dmax is the largest particle diameter. The ideal
curve is shown in Fig. 3. This curve describes the PSD of the
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FIG. 5. Comparison of Calculated CSD with Measured CSD of Soria
et al. (1993)

FIG. 4. Infiltration Model—Probability of Forward Movement and
Predicted Depth of Infiltration

most-dense possible particle arrangement, where fine particles
exactly fit between the voids formed by coarser particles. It is
assumed that, if there are more fine particles than predicted
by this ideal curve (i.e., the fine fraction of the ‘‘unstable’’
curve in Fig. 3), some fine particles will be loose within the
soil skeleton and do not contribute to the CSD. If the coarse
particles are larger than predicted by the ideal curve (i.e., the
coarse fraction of the ‘‘unstable’’ curve in Fig. 3), the voids
formed by these coarse particles will be filled by finer particles

Dn
S = (4)n �Dmax

Eq. (4) can be rewritten to relate different particle sizes within
the ideal grading curve, eliminating Dmax

2
Sn

D = D (5)n m � �Sm

where Sm = fraction passing diameter Dm. As described above,
fine particles are loose within the soil skeleton if Dn is finer
than predicted by (5). By substituting m = 2n, particles finer
than Dn are loose if

D2n
D < (6)n 4

Eq. (6) can also be used to describe the upper portion of the
PSD curve; i.e., particles coarser than D2n will float in a matrix
of fines if D2n is coarser than 4Dn. Therefore, the voids be-
tween particles coarser than D2n are filled by fine particles
forming smaller voids. The truncated PSD determined in this
fashion is then used to calculate the CSD as described in the
‘‘Constriction Size Distribution (CSD)’’ section.

Particle Infiltration Depth

A method will be described to estimate the distance a base
soil particle of diameter d can infiltrate into the 3D pore net-
work model [Fig. 1(a)]. This particle infiltration depth is pre-
dicted by a probabilistic analysis of the particle sizes, from
the base-soil PSD, and filter CSD. If a particle is smaller than
a constriction, it can move through to the next pore. The prob-
ability that a base particle of diameter d can pass a single,
random constriction can be denoted by p, which is the cu-
mulative probability of pore constrictions >d (the fraction
coarser than d from the CSD). In the cubic pore model, if the
particle does not move forward, there are four possible per-
pendicular exits (a sideways step). The probability of perpen-
dicular (sideways) movement P(1S ) is

4P(1S ) = [1 � (1 � p) ](1 � p) (7)

After this sideways movement, the particle again has a prob-
ability p of moving forward in the direction of flow. Hence
the conditional probability of a forward step, within the first
pore or any of the neighboring four pores, P(F �1S ), is

4P(F �1S ) = p � [1 � (1 � p) ](1 � p)p (8)

Eq. (8) can be extended to consider the probability of any
number of sideways steps before a forward step, recognizing
that there are now only three possible sideways exits from the
pore. Continuing this process leads to (9), describing the over-
all probability of one forward step P(F) in the direction of
flow through the network model

�

4 3P(F ) = p � [1 � (1 � p) ](1 � p)p{[1 � (1 � p) ]�
i=0

i� (1 � p)} (9)

where i � 1 = number of perpendicular (sideways) steps be-
fore a forward step. Noting that the series term of (9) tends to
zero as i increases, it is possible to neglect higher-order terms
beyond the first 3 or 4 terms. Silveira (1965) proposed a
method to determine the number of confrontations with ran-
domly generated pore constrictions, required to stop a particle
moving forward through the filter, with a level of confidence
P̄. This equation can be adapted to consider the number of
layers a particle can move through the pore network model n,
based on the probability of passing one layer P(F). Therefore

¯ln(1 � P)
n = (10)

ln P(F )

The infiltration depth model requires a certainty level P̄.
Soria et al. (1993) have adopted a value of 98% in their anal-
ysis. Fig. 4 shows the probability of forward movement P(F)
from (9) against the probability of passing one constriction p.
Also shown, on the right-hand y-axis, is the predicted number
of layers n a particle can infiltrate the filter [(10)] for various
values of P̄. The trend of the predicted infiltration depth is
similar for each value of P̄, tending to increase rapidly at some
critical probability. Figs. 5 and 6 show that the CSD curve is
more uniform than the PSD curve. Hence, the constriction di-
ameter corresponding to the critical probability for various val-
ues of P̄ should not vary greatly and the chosen value of cer-
tainty P̄ would not be critical. A value of P̄ = 95% has been
adopted in current modeling, as this gives a reasonable cor-
relation with other models (Fig. 7). The predictions of Fig. 4
could be used to estimate the infiltration depth of particles into
clean filters, based on the probability of a particle passing a
single constriction p and the predicted infiltration depth n.

The spacing of the void network is described as a ‘‘unit
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FIG. 6. Comparison of CSD Model with Measured Pore Sizes of Wit-
mann (1979)

FIG. 7. Comparison of Base Particle Infiltration Models into Well-
Graded Filter, Cu = 6, D15 = 1.3 mm

step’’ in many previous models [Fig. 1(a)]. It is assumed that
the distance between pores is constant, regardless of the pore
size. Because constrictions form near the center of a filter par-
ticle and the next constriction will form near the center of the
next particle, it seems reasonable to adopt the mean filter par-
ticle size by number as the unit step. The expectedDf, mean

length of infiltration L of a base-soil particle into the filter is

¯ln(1 � P)
L = �D (11)f, meanln P(F )

Verification of Filter Void Model

The proposed void model is compared with the published
results of two experiments, which determined the constriction
and void size distributions. The first is the data of Soria et al.
(1993). These experiments used an indirect approach, passing
uniform-sized particles through filters of varying length to find
what particle size could pass different filtration lengths, then
back-calculating the CSD. The PSD and measured CSD, along
with the CSD calculated here, are shown in Fig. 5. The pre-
dicted CSD corresponds closely with that measured by Soria
et al. (1993). The second experiment is that of Wittmann
(1979), who filled a gravel with resin and cut slices through
the solid material. Pore sizes on the revealed surface were
measured using a planimeter. Because the slice is a plane
through the filter material, the measured pore sizes include
both the constrictions and the pores. Therefore, the calculated

CSD is expected to be more uniform, with sizes equal to the
smaller measured pores, as shown in Fig. 6. The predicted
CSD of the most-dense model of Silveira (1965) is also shown
for comparison; the shape of the two CSD curves is similar,
but the current model predicts slightly larger pores because the
filter is not at its maximum density. In both cases, the relative
density of the filter was estimated at 80%.

The infiltration length model [(11)] can be compared to a
number of other models for particle infiltration into a granular
filter. The models of Schuler (1996) and Humes (1996) and
the current model are able to predict the depth of infiltration
of base particles of different diameters. Witt (1993) determined
a controlling constriction size, which is a single constriction
diameter that defines the smallest constriction that a particle
is likely to encounter on any flow path. In other words, the
controlling constriction size estimates a boundary between
finer particles that will pass through the filter and coarser par-
ticles that are retained.

Most infiltration models give similar predictions for uniform
materials (CU < 3), but predictions become increasingly scat-
tered for more broadly graded filters. The prediction of each
of these models for the infiltration of particles into a well-
graded, gravelly sand, with a uniformity coefficient CU of 6,
is shown in Fig. 7. This graph describes the predicted depth
of infiltration of particles of different diameters into the gran-
ular filter. As expected, all models predict that increasingly
finer base-soil particles will infiltrate further into the filter. The
model of Schuler (1996) tends to become asymptotic to the
controlling constriction size of Witt (1993), thereby implying
that no base particles finer than the controlling constriction
size are retained. The model of Humes (1996) predicted that
much finer particles are required for the same infiltration
depth. As indicated in Fig. 7, the current model predicts infil-
tration depths similar to those of both Schuler (1996) and
Humes (1996) for base particles exceeding the controlling con-
striction size of Witt (1993). For finer particles, the rapid in-
crease of infiltration thickness (log scale) implies the potential
risk of washout.

PARTICLE TRANSPORT MODEL

The maximum distance a particle of a certain diameter can
infiltrate into the filter has been defined by (11). To describe
the rate of movement of particles, a particle transport model
is required, which must define the velocity and concentration
of loose soil particles.

Rate of Particle Transport

Indraratna and Vafai (1997) developed a comprehensive par-
ticle transport model to simulate particle movement within
granular media for noncohesive soils. Loose soil particles are
assumed to be in suspension in a homogeneous slurry. The
rate of movement of this slurry is controlled by governing
differential equations of conservation of mass [(12)] and mo-
mentum [(13)]. The current model extends these concepts by
incorporating the infiltration depth based on the cubic network
structure, as explained earlier

d(� u) d�m m= (12)
dz dt

du du
F = � V � u (13)m m� � �dt dz

In (12) and (13), �m, Vm, and u = slurry density, volume, and
velocity, respectively; and � F represents the external forces
acting on the slurry, including the external hydraulic gradient
and fluid drag. The Indraratna and Vafai (1997) model assumes
that the pore water and loose particles move at the same speed
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and ignores the additional friction and energy loss due to par-
ticles in the flow. Because the slurry contains suspended par-
ticles, its viscosity � is higher than that of clear water �0. A
relation developed by Happel and Brenner (1965) is adopted
to determine the increase in viscosity due to interaction effects
between the particles and pore walls, based on the slurry vol-
umetric concentration C, as given by

� 5dD
= 1 � 2.5C 1 � (14)� �2� 8(2D � d )0

where d may be taken as the mean particle diameter; and Dv

may be taken as the mean pore constriction diameter. This
increase in viscosity causes an increased energy loss in the
flow by decreasing the effective media permeability, hence

�0
k = k (15)w

�

where kw = media permeability to flow of pure water.

Complete Transport Model

By considering a number of elements at the base-filter in-
terface, the movement of loose particles can be modeled by a
finite-difference or finite-element analysis. The rate of particle
erosion and movement is governed by (12) and (13). The ge-
ometric constraint to movement is modeled by the length of
infiltration into the cubic network, incorporating (11). To use
(11) to consider whether particles can move from one element
to the next, it is necessary to define three base particle-size
ranges:

• Fine particles that have an infiltration distance L greater
than the distance from the filter interface to the end of the
element can pass through the element.

• Larger particles that have an infiltration distance smaller
than above but can pass one unit step into the filter ele-
ment [i.e., n = 1 in (10)] are considered as moving into
the next element and are then retained within the element.
Once a particle is retained, it cannot be moved further.
The coarsest particle within this range (corresponding to
n = 1) is defined as the retained particle diameter dr.

• Coarse particles that cannot pass one unit step into the
filter remain in their current location.

As particles are captured within the filter, the diameter dr

reduces and the filter is able to retain finer particles. This leads
to a time-dependent description of the self-filtration process.
To solve the governing differential equations [(12) and (13)],
initial conditions are required for the flow velocity and slurry
density. It is assumed that all particles finer than dr can erode
and there is no selective erosion of finer particles. The maxi-
mum density of the slurry may be limited by the volume frac-
tion of particles finer than dr. However, very high flow con-
centrations have not been observed in laboratory testing.
Calibration against laboratory observations suggests that the
initial maximum slurry concentration be limited to 20–25%
solids by volume. The initial flow velocity is determined by
the Darcy equation, based on the applied head and base and
filter permeabilities.

A finite-difference solution to the equations of motion will
predict the changes in flow rate of the particulate slurry
through the base soil and filter system. The volume of particles
moving between elements is defined by the slurry density and
velocity, and the size distribution of these loose particles is
governed by a fraction of the base-soil PSD finer than diameter
dr. The base and filter particle-size distributions can be recal-
culated at each time step, based on the inflow and outflow
slurry densities for each element (Indraratna and Vafai 1997)

t�1Pjt t(V ) = (V ) (16)s�out j s�out
Sr

t�1 t(V ) � (V )s j s�out jtP = (17)j tV s

In the above equations, Pj = percentage of soil by total volume
Vs corresponding to a specific diameter j ; Sr = percentage of
particles finer than the retained diameter dr; and = totalVs�out

volume of solid particles in the slurry leaving the element. The
superscript denotes the time step in the finite-difference pro-
cedure. This analysis predicts the gradual change in particle-
size distribution of the base and filter elements; hence, it de-
scribes what is occurring at the base-filter interface with time
for the entire particle-size range.

Koenders and Williams (1992) presented (18) to determine
the permeability of a granular soil, based on the mean particle
diameter and porosity ne. This equation has been in-Df, mean

corporated in the current particle-transport model, to determine
the base-soil and filter permeability

2
1 ne2k = D n � (18)f, mean e � �� 1 � ne

where � = 0.0035 � 0.0005. The time-dependent change in
porosity and relative density of each element can be estimated
based on the original porosity and the volume of particles
eroded from and retained in each element.

APPLICATION OF MODEL

To describe and test the validity of the model predictions,
a comparison with a series of laboratory tests is described. In
addition, the time-dependent predictions of the model are out-
lined, determining the time-dependent change in base and filter
flow rate, mass transfer, permeability, and porosity. A method
to apply the filtration model to a 2D flow net is described.

Comparison with Laboratory Tests

A large-scale filtration apparatus (500-mm diameter and
1,000-mm high) was constructed to investigate the filtration of
coarse and noncohesive materials typical of the filter and
drainage zones within embankment dams. The tests described
here employed a series of well-graded sands as the 150-mm-
thick base soil and a well-graded gravel as the 800-mm-thick
filter. The filter was placed and compacted in 200-mm layers.
A finer gravel was placed, approximately 5 cm deep, around
the circumference of the filter interface to act as a ‘‘side ma-
terial’’ to prevent the formation of preferential flow paths at
the edge of the cylinder (Sherard et al. 1984). The base soil
was placed and lightly compacted in a single layer of 150 mm.
A layer of geofabric was placed, and a small surcharge load
of 2 kPa was applied to the base soil to prevent heave. Erosion
was induced by a uniform downward flow of 2.5 L/s. The
flow was frequently interrupted (every minute) to avoid par-
ticle bridging and facilitate particle movement. After a 2-h test,
the filter was sampled at increasing depths to determine the
change in PSD due to infiltration of base-soil particles. The
experiment was repeated for different base-filter combinations
with varying filter retention ratios, D15 /d85. In this paper, filter
and base-soil particle sizes are denoted by D and d, respec-
tively.

The analytical model predicts the change in PSD of the base
and filter soils during filtration. For effective filters, the PSD
of the base and filter soils eventually reaches a stable distri-
bution, where no further erosion occurs. The stable PSD of
various filter elements, as predicted by the analytical model,
can be compared with the measured PSD at the end of labo-
ratory tests. Samples of filter material were carefully taken
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FIG. 10. Predicted and Measured Mass Loss during Filtration

FIG. 9. Comparison of Predicted PSD and Laboratory Results—
D15 /d85 = 7

FIG. 8. Comparison of Predicted PSD and Laboratory Results—
D15 /d85 = 4

from the filtration apparatus at various depths from the filter
interface to determine the laboratory PSD. The final predicted
PSD of filter elements located at 5 and 20 cm from the base-
filter interface is compared with the measured results for re-
tention ratios D15 /d85 of 4 and 7, as shown in Figs. 8 and 9,
respectively. The model predicts similar trends to those ob-
served in the laboratory. As expected, the content of fines in
the filter increases dramatically near the filter interface (at 5-
cm depth) as a self-filtration zone is formed. This long tail of
fine particles indicates the retention of base-soil particles
within the filter. At 20-cm depth, there are fewer retained fines,
indicating that the majority of particle retention occurs near
the filter interface. In general, the model predicts a lesser
amount of retained particles near the interface than measured;
i.e., the laboratory curve at 5-cm depth plots to the left of the
model curve. This may be due to the bridging of soil particles
over the filter voids or incomplete filtration. In addition, the
assumption was made in the model that any particle with an
infiltration distance L [(11)] >1 unit step will pass through to
the next element. However, in reality, it is unlikely that all of
these coarser particles will be located over a large pore con-
striction. In reality, small constrictions will retain some fine
particles, which according to the probabilistic particle infiltra-
tion model, could move further.

Most important in the success or failure of filtration of
broadly graded soils is the mass of base soil eroded before a
self-filtration zone is formed. For the same experiment as out-
lined above, Fig. 10 shows both the predicted and the mea-
sured mass of base soil eroded and transported into and pos-
sibly through the filter, for three retention ratios (D15 /d85 = 4,
7, and 10). The mass of base soil passing the filter, as plotted
in Fig. 10, is defined as the total amount of mass passing a
particular depth within the filter, from the base-filter interface.
Hence, a sharp decrease in mass passing indicates particle re-
tention whereas a constant mass passing suggests that the fine
particles continue to move through the filter. The correlation
between the model predictions and measured results is en-
couraging. The model overestimates the amount of mass pass-
ing entirely through the filter, for the reasons mentioned ear-
lier. The model predicts that mass loss from the base soil
occurs almost entirely within 5–10 cm of the filter interface.
Within the filter, the eroded base soil is quickly retained in the
self-filtering zone, which forms in the first 5–10 unit steps (or
15–30 cm) of the filter. Each unit step of the filter void model
is defined as the mean filter particle diameter (usuallyDf, mean

in the range D5–D10). Beyond the self-filtering zone, the fine
particles pass entirely through the filter. Therefore, the mini-
mum filter thickness for effective filtration can be considered
as 10 times the mean filter particle diameter .Df, mean

Model Prediction of Time-Dependent Filter Behavior

An important feature of the model proposed in this paper is
the ability to predict time-dependent changes in flow rate, per-
meability, and porosity of the base and filter soils. The model
predictions of the laboratory experiments, described in the
‘‘Comparison with Laboratory Tests’’ section, are discussed
here. The analysis uses the same filter material as described
above (D15 = 10.1 mm and Cu = 2.5), with four different base
soils, graded such that Cu = 3, and d85 is selected to obtain
filtration ratios of D15 /d85 = 4, 7, 10, and 12. The initial po-
rosity of all the base soils was assumed constant at 35% for
ease of comparison, and the initial filter porosity was estimated
at 40%. The hydraulic gradient in each simulation was varied
to ensure an initial flow rate of 0.2 L/s/m2 for each base-filter
combination.

The analytical model predicts the time-dependent erosion
and retention within the base-soil–filter system. The final pre-
dicted base-soil erosion and mass capture within the filter has
been described in Fig. 10 for effective filter retention ratios
(D15 /d85 = 4, 7, and 10). Fig. 11 shows the time-dependent
mass of base soil passing out of the second filter element (10
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FIG. 11. Mass Passing 10 cm from Filter Interface with Time

FIG. 14. Change in Permeability and Porosity of Filter with Time

FIG. 13. Change in Permeability and Porosity of Base Soil with Time

FIG. 12. Predicted Change in Flow Rate with Time

cm from the filter interface). This depth was chosen to exclude
the majority of mass retained within the self-filtration zone.
For a low retention ratio (D15 /d85 = 4), the self-filtration zone
stabilizes quickly and little mass passes through the filter. For
increasingly finer base soils, the time taken for the self-filtra-
tion zone to prevent particle movement and the quantity of
particles passing into the filter increases greatly. The finest
base soil (D15 /d85 = 12) is too fine to be retained by the filter;
hence, the filter is ineffective. This material exhibits continu-
ous erosion, and the cumulative mass passing through the filter
increases until complete erosion.

Fig. 12 shows the predicted change in flow rate through the
four base-soil and filter combinations. The coarsest base soil
(D15 /d85 = 4) initially exhibits an increase in flow rate as the
fines of the base soil wash out through the filter. Following
this initial increase, the filter permeability decreases as base-
soil particles are retained and the flow rate diminishes again.
The flow rate stabilizes at a value only slightly greater than
the initial flow rate. A finer base soil (D15 /d85 = 7) shows un-
stable flow for a longer period and a greater increase in flow.
As the filter stabilizes, the flow rate becomes constant at a
significantly higher value than that of the D15 /d85 = 4 case,
which is due to a greater loss of base soil, therefore resulting
in a greater increase in the base-soil permeability. The base
soil with D15 /d85 = 10 does eventually stabilize but indicates
a fivefold increase in flow rate and a large loss of mass. Al-
though eventually effective, this is an example of a borderline
filter. The finest base soil (D15 /d85 = 12) is not retained by the
filter. The flow rate increases continually throughout the sim-
ulation, indicating that particle erosion will accelerate until
complete washout as the porosity of the base soil increases.

Fig. 13 shows the predicted, time-dependent change in per-
meability and porosity of the base soil during filtration. In all
three simulations where a stable interface results (D15 /d85 = 4,
7, and 10), the base-soil permeability increases, attaining a
constant value as the filter interface stabilizes. The permeabil-
ity of the coarsest base soil (D15 /d85 = 4) increases from 0.075
to 0.46 mm/s during filtration. The permeability of the bor-
derline base soil (D15 /d85 = 10) increases from 0.02 to 0.25
mm/s, and this increase is almost 100% more than the coarsest
base soil. The permeability of the unsuccessful base soil
(D15 /d85 = 12) increases steadily until failure, indicating con-
tinued erosion and limited particle capture in the filter to resist
erosion. The time-dependent change in base-soil porosity is
also shown in Fig. 13. For the effective base-soil–filter com-
binations, the base-soil porosity initially increases steadily as
mass is lost, approaching a constant value as the self-filtration

zone is formed. The coarsest base soil (D15 /d85 = 4) shows the
greatest resistance to erosion and is characterized by the lowest
increase in porosity with time. As expected, the rate of erosion
(indicated by the change in porosity) increases as the size of
base soil decreases, in relation to the same filter material. In
the case of unsuccessful filtration, the porosity increases stead-
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FIG. 15. (a) Seepage through Embankment Dam; (b) Discrete Ele-
ments along Flow Path [after Vafai (1996)]

ily until a value of 0.6 is reached (i.e., the definition of failure
in the model).

The permeability of the filter interface (Fig. 14) initially
decreases as some base-soil particles are captured. However,
the filter material is internally unstable, containing approxi-
mately 5% loose fines. The rate of wash out of these filter
fines becomes larger than the mass rate of base soil retained
by the filter; hence, the filter permeability increases again. In
successful filter combinations, after this initial fluctuation, the
loose filter fines have almost completely been washed out of
the filter element and the permeability again decreases as more
base-soil particles are captured. The borderline base soil
(D15 /d85 = 10) leads to a significantly lower final filter per-
meability than the two coarser base soils, because a larger
mass of finer particles is eventually captured in the filter. The
permeability of the filter element for the unsuccessful combi-
nation (D15 /d85 = 12) exhibits similar trends initially to the
successful filters as base-soil particles within the filter reduce
the permeability. However, failure is predicted before the in-
terface can stabilize.

The time-dependent porosity of the filter at the interface
(Fig. 14) initially decreases as base-soil particles migrate into
the filter. For the three effective filtration cases, D15 /d85 = 4,
7, and 10, the filter porosity stabilizes at a value lower than
the initial as the retained mass prevents further erosion. The
reduction in the filter porosity indicates the amount of base
soil retained within the filter. The filter porosity of the unsuc-
cessful case increases to a value greater than the initial poros-
ity of 40%. This is because, as previously mentioned, the filter
material is internally unstable. This leads to an increase in the
filter porosity as the filter fines are washed out.

The model predictions show that, irrespective of the initial
retention rates of base soil in the filter, an effective filter is
characterized by a stable (constant) permeability and porosity
with time. This prediction describes what occurs within a gran-
ular filter when water first starts flowing through the base soil
(e.g., first filling of a dam reservoir). If a further perturbation
occurs (such as cracking of the core, changes in seepage pat-
terns, and change in the reservoir water chemistry), a subse-
quent load of base soil may reach the filter. The model could
then be used to consider the effect of this new flow of base-
soil particles into the filter material that has already been mod-
ified by previous infiltration. If a filter is predicted to be ef-
fective in the first instance, the model may predict a further
decrease in filter porosity and permeability until steady-state
conditions are reached once again. In this way, the full life of
the filter can be simulated. The base soils and filter described
here are coarse, noncohesive sands and gravels. Similar trends
in experimental results and model predictions have been ob-
tained for several finer, noncohesive materials.

Practical Applications

The model described in this paper predicts the time-depen-
dent transport and capture of noncohesive base soils, within
granular filters. Analytical models can have an important ap-
plication in the design and construction of granular filters for
large projects such as embankment dams. Modeling predic-
tions can give a designer a detailed picture of what may occur
during the design life of the structure, rather than relying en-
tirely on empirical grain-size criteria. Model predictions can
be compared with the actual behavior to verify that the filter
is performing as expected. The model developed in this paper
describes filtration of noncohesive base soils. The rate of par-
ticle capture could be modified to consider progressive accu-
mulation of fine, cohesive particles by physicochemical effects
(Reddi and Bonala 1997).

The model can be applied to describe filtration within a
geotechnical structure. A seepage analysis will define the ini-

tial flow paths, flow rates, and hydraulic gradients expected
within the structure [Fig. 15(a)]. Flow occurs only along flow
paths; hence, it is possible to apply the filtration model to this
pseudo-1D flow. A number of elements can be considered at
the base-soil–filter interface for each flow path [Fig. 15(b)],
and the time-dependent changes within these materials ex-
amined. After a reasonable period, the seepage analysis can be
repeated to determine the changes to the flow paths and hy-
draulic gradients within the structure and the new parameters
updated in the filtration model. The model has been success-
fully used to examine the behavior of filter zones in embank-
ment dams and predict the internal stability of broadly graded
granular materials.

CONCLUSIONS

A revised analytical model for the movement of noncohe-
sive base-soil particles into granular filters, extending the par-
ticle transport concept of Indraratna and Vafai (1997), has been
described. The model consists of three important sections:

• A filter void model based on a 3D cubic network proposed
by Schuler (1996)—the size of pore constrictions linking
the pores is determined from the filter particle-size distri-
bution (by surface area) and relative density.

• A deterministic equation for particle infiltration into the
filter model based on the probability of movement of a
particle through the filter void constrictions—this equa-
tion defines the retention of particles within the filter.

• Particle transport equations of conservation of mass and
momentum, proposed earlier by Indraratna and Vafai
(1997), which have been modified to consider the in-
creased flow viscosity due to suspended particles in the
pore water—the particle transport model defines the ero-
sion and transport of base-soil particles.

Within broadly graded soils, some fine particles may not
contribute to the skeleton of fixed particles, which form the
structure of the soil, but are loose within the pores of this
skeleton and do not contribute to particle capture during fil-
tration. These particles should not be considered when deter-
mining the size of constrictions in the filter voids. At the other
extreme, some coarse particles may be enmeshed in a matrix
of fines. In this case, the fines fill the voids formed by these
coarse particles. A method has been described to determine
which particle sizes should be excluded from the PSD when
determining the CSD of a broadly graded material.

The model predicts the time-dependent rate of erosion of
base-soil particles and retention within a granular filter and
predicts, for a suitable base-soil–filter combination, the for-
mation of a self-filtering layer at the filter interface. As base-
soil particles are captured within the filter, void sizes will de-
crease and finer base-soil particles will be retained. This
process can only be modeled by a time-dependent analysis.
This leads to the formation of a stable, self-filtering layer ap-
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proximately 5–10 ‘‘unit steps’’ (or 15–30 cm) in thickness,
where each unit step corresponds to the mean filter particle
diameter by number (usually between D5–D10). BeyondDf, mean

this self-filtering layer, there is limited retention of particles,
suggesting that increasing the filter thickness does not greatly
affect the capture of particles. Time-dependent particle capture
and changes in flow rate, permeability, and porosity are cal-
culated by the model, leading to a full description of the fil-
tration process.

Comparison with laboratory results and previously pub-
lished experimental findings has shown that the current model
predicts particle movement and capture similar to the mea-
sured data for noncohesive, uniform, and well-graded base and
filter materials. The model is able to predict particle movement
and changes in flow rate, permeability, and porosity for non-
cohesive, uniform, and broadly graded base and filter materials
and is a significant extension of the original Indraratna and
Vafai (1997) analytical method. In addition, this revised model
has been shown to predict internal stability to some extent,
based on fine filter particle washout.
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NOTATION

The following symbols are used in this paper:

C = volume concentration of slurry flow;
DVLD = constriction diameter from least-dense packing model

of four particles;
DVMD = constriction diameter from most-dense packing

model of three particles;
Df, mean = mean filter particle diameter (calculated from PSD by

number rather than mass);
Di = diameter of i% coarsest filter particle (e.g., D15);

Dmax = largest particle diameter;
Dv = void constriction diameter;
di = diameter of i% coarsest base-soil particle (e.g., d85);
dr = maximum particle diameter entering element and

then retained;
k = permeability;
L = length particle can infiltrate 3D pore model;
n = number of layers (or forward steps) particle will in-

filtrate 3D pore model;
ne = porosity;
P̄ = certainty in probabilistic infiltration depth model;

P(F ) = probability of forward step (movement of particle
from one void to another in direction of flow) in 3D
pore model;

P(F �1S ) = probability of forward step from either initial void or
after one perpendicular (sideways) step, in 3D pore
model;

Pi = probability of occurrence (frequency) of particles of
diameter i (from PSD);

Pv = probability of occurrence (frequency) of void con-
strictions of diameter Dv;

p = probability that particle of diameter d can pass
through random pore constriction;

RD = relative density;
ri = number of times particles of diameter Di appear in

combination of particles forming constriction;
Sn = mass fraction passing diameter Dn from PSD;
u = slurry velocity;

Vm = volume of slurry within element;
(Vs)j = volume of solid particles in slurry in element j;

(V )s�out j = volume of solid particles in slurry leaving element j;
� = viscosity;

�m = slurry density;
� F = sum of forces on seepage flow within element; and

� = nondimensional permeability coefficient.
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