
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

2011

Contribution to signature and identification
schemes
Pairat Thorncharoensri
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact Manager
Repository Services: morgan@uow.edu.au.

Recommended Citation
Thorncharoensri, Pairat, Contribution to signature and identification schemes, Doctor of Philosophy thesis, School of Computer
Science and Software Engineering, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3240

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Contribution to Signature and
Identification Schemes

A thesis submitted in fulfillment of the

requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Pairat Thorncharoensri

School of Computer Science and Software Engineering

March 2011

c© Copyright 2011

by

Pairat Thorncharoensri

All Rights Reserved

ii

Dedicated to

My family

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Pairat Thorncharoensri
March 29, 2011

iv

Abstract

In this thesis, we provide contributions to signature schemes and identification

schemes in four different ways.

First, we make contributions to universal designated verifier signatures. We

propose the notion of a one-time universal designated verifier signature such that

the number of verifiers verifying the signature is controlled by the signer. We also

propose the notion of a universal designated verifier signature with threshold-signers

such that the privacy and anonymity of the signer can be achieved.

Second, we propose a new notion called “policy-controlled signatures”. In this

notion, a policy-controlled signature can be verified by a verifier that satisfies a policy

assigned by a signer. We provide two extensions to this notion, which are “univer-

sal policy-controlled signatures” and “multi-level controlled signatures”. Universal

policy-controlled signatures allow a party called “a policy signer” to apply a policy

on a signature on a particular message such that only a verifier that satisfies this

policy can verify this policy-controlled signature. In practice, some policies can be

simply represented by a level of the security, for example, “POLICY= more than

the fifth level of security”. From the above idea, a definition of multi-level controlled

signatures is introduced. It allows a signer to eliminate the unnecessary chain of

attributes in the policy and simply assign the level of security as a policy instead.

Hence, the size of the policy remains constant.

Next, a new notion called “fair multi-signatures” is proposed. A multi-signature

allows a group of parties to engage in an interactive protocol in order to generate a

joint signature on an agreement. If all the signers follow the protocol honestly, then

a multi-signature is generated and distributed fairly. However, if a dishonest signer

refuses to complete his part in the protocol, but he has already obtained the other

parties’ contributions, then the honest signers cannot obtain a multi-signature and

yet the dishonest signer can generate a multi-signature. Our notion of fair multi-

signatures ensures that if the protocol is completed, then every signer involved in

v

the signing protocol can output a multi-signature. Meanwhile, if the protocol is not

completed, then none of the signers involved in the signing protocol can output a

multi-signature.

Finally, in modern communications, the public becomes aware of privacy issues.

Some identification systems provide privacy for users, especially those that are based

on zero knowledge proof. However, a malicious user may take advantage of privacy to

deny his malicious acts. Hence, we propose a new notion called “escrowed deniable

identification schemes”. In this notion, a trusted party is introduced to act as a

transaction opener such that it can generate evidence of the conversation from the

deniable transcript generated during the interaction between a prover and a verifier.

In an identification scheme, the major concern about security is impersonation.

The strongest type of attack against identification schemes is the reset attack. In

this thesis, we provide an identity-based identification scheme secure against reset

attack. We also provide proof of our scheme which is secure against reset attack in

the standard model.

vi

Acknowledgement

I sincerely thank my supervisor, Professor Willy Susilo for his support and guidance

throughout this thesis. With his vast knowledge of the cryptography area, he has

guided me from the start of my research and has also provided invaluable suggestions

and encouragement. I also sincerely thank my co-supervisor, Associate Professor Yi

Mu, for his guidance and support during this research. From the beginning of my

research career, he has encouraged me and has provided valuable comments and

corrections. My thanks also go to Dr. Tianbing Xia for his advice and support

during the years of my Master degree by Research. During the course of my Ph.D.

studies, I had the opportunity to visit the City University of Hong Kong. I would like

to thank Associate Professor Duncan S. Wong, Dr. Qiong Huang and Dr. Guomin

Yang for their support and advice during my time there.

My life at the University of Wollongong has been joyful during my Ph.D. years

because I have some very good friends who have been so helpful in discussions

and in giving suggestions. These include Dr. Man Ho Au, Dr. Xinyi Huang, Dr.

Mohammad Reza Reyhanitabar, Dr. Siamak Fayyaz Shahandashti, Dr. Rungrat

Wiangsripanawan, Wei Wu, Jinguang Han, Fuchun Guo, Shekh Faisal Abdul Latip,

Angela Piper, Shams Ud Din Qazi, Tsz Hon Yuen, Yi Qun Chen, Stevanus Wibowo,

Shidi Xu, Ching Yu Ng and Juliet Richardson. I would like to thank Professor

Fangguo Zhang for his advice and discussions during his visit to the University of

Wollongong and during various conferences, as well as the anonymous referees who

have reviewed the papers that are included in this thesis. I have had a wonderful

experience and have enjoyed my study environment, so I would like to thank all

the staff at the Centre for Computer and Information Security Research and the

School of Computer Science and Software Engineering. For the financial support

that I have received, I sincerely thank the Australian Postgraduate Award Industry

scheme in helping me to achieve my goals. Finally, I would like to thank my family,

including my wife (Agnes) So Wah Ng, my parents, my parents-in-law, my brother

vii

and sister-in-law for all their love and encouragement. This work would not have

been possible without their support.

viii

Publications

During my PhD studies, the following presented or published papers are related to

this thesis.

1. Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au, Yi Mu, and

Duncan Wong. Escrowed deniable identification schemes. International Jour-

nal of Security and Its Applications, 4(1):49–67, January 2010.

2. Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au, Yi Mu, and

Duncan Wong. Escrowed deniable identification schemes. In Dominik Ślȩak,

Tai hoon Kim, Wai-Chi Fang, and Kirk P. Arnett, editors, Security Technology,

volume 58 of Communications in Computer and Information Science, pages

234–241. Springer, November 2009.

3. Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Identity-based identification

scheme secure against concurrent-reset attacks without random oracles. In

Heung Youl Youm and Moti Yung, editors, WISA, volume 5932 of Lecture

Notes in Computer Science, pages 94–108. Springer, 2009.

4. Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Policy-controlled signatures.

In Sihan Qing, Chris J. Mitchell, and Guilin Wang, editors, ICICS, volume

5927 of Lecture Notes in Computer Science, pages 91–106. Springer, 2009.

5. Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Universal designated veri-

fier signatures with threshold-signers. In Tsuyoshi Takagi and Masahiro Mambo,

editors, IWSEC, volume 5824 of Lecture Notes in Computer Science, pages

89–109. Springer, 2009.

6. Pairat Thorncharoensri, Willy Susilo, and Yi Mu. How to balance privacy with

authenticity. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC, volume

5461 of Lecture Notes in Computer Science, pages 184–201. Springer, 2008.

ix

Notation

Abc.Xyz(.) an algorithm Abc executes a sub-algorithm Xyz

ABC or ABC-DEF a security notion ABC or ABC-DEF

ABC an oracle ABC
ABC a list ABC

〈P1, ..., Pn〉 the execution of the n-party protocol, where Pn represents an

algorithm of the party n

d a decision d ∈ {0, 1} or d ∈ {Accept, Reject}
t a unit of computation time t

Pr a probability Pr

|| the concatenation of two strings (or integers)

|x| a bit length of a string x

{xi} a set of elements, where i is the index of elements in this set

PPT a probabilistic polynomial-time algorithm

FE(.)(.) a PPT algorithm F privately accesses and executes another

PPT algorithm E

` a security parameter

poly(.) a deterministic polynomial function

x
$← X the operation of picking x at random from a (finite) set X

x← y a value y is assigned to a variable x

X(a, b)→ x taken values a and b as input, an algorithm X assigns the

output to a variable x

X(a, b)→ (x, y) taken values a and b as input, an algorithm X assigns the

outputs to variables x and y

XX← XX(a, b) taken values a and b as input, a list XX updates itself with

the input and outputs an updated list XX.

x << y x is much less than y

x

Abbreviations and Acronyms

DDH Decisional Diffie-Hellman Problem

CDH Computational Diffie-Hellman Problem

SDH Strong Diffie-Hellman Problem

GDH Gap Diffie-Hellman problem

DBDH Decision Bilinear Diffie-Hellman

CR1 Concurrent-reset-1 Attack

CR2 Concurrent-reset-2 Attack

CR1+ Concurrent-reset-1-plus Attack

DVS Designated Verifier Signature

UDVS Universal Designated Verifier Signature

TC Trapdoor Commitment

KH-IBI Kurosawa-Heng Identity-based Identification

OT-UDVS One-time Universal Designated Verifier Signature

TS-UDVS Universal Designated Verifier Signature with Threshold-

Signers

UPCS Universal Policy-controlled Signature

PCS Policy-controlled Signature

MLCS Multi-level Controlled Signature

MS Multi-signature

FMS Fair Multi-signature

VES Verifiable Encrypted Signatures

AS Aggregate Signature

IBI-PA Identity-based Identification Schemes against Impersonation

under Passive Attack

IBI-CRA Identity-based Identification Scheme against Impersonation

under CR1+ Attack

EDID escrowed deniable identification

xi

Contents

Abstract v

Acknowledgement vii

Publications ix

Notation x

Abbreviations and Acronyms xi

List of Tables xviii

List of Figures xix

1 Introduction 1

1.1 Background and Problems . 2

1.2 Objectives of this Thesis . 5

1.3 Organisation of this Thesis . 5

2 Preliminaries: Mathematical Foundations 8

2.1 Number Theory and Basic Algebra Foundations 8

2.1.1 Group . 8

2.1.2 Bilinear Pairings . 9

2.2 Cryptographic Primitives and a Brief Review on Provable Security . . 10

2.2.1 Computational and Decisional Diffie-Hellman Problem 10

2.2.2 Variants of Diffie-Hellman Problem 11

2.2.3 Gap Diffie-Hellman problem 11

2.2.4 Bilinear Diffie-Hellman problem 12

2.2.5 One-Way Pairing problem . 12

xii

2.2.6 Reset Lemma . 13

2.2.7 Random Oracle Model and Standard Model 14

3 Background and Cryptographic Tools 16

3.1 Signature Schemes . 16

3.1.1 Security of Signature Scheme 17

3.1.2 BLS’s Short Signature Scheme from Bilinear Pairing 18

3.1.3 Boneh-Boyen Short Signature without Random Oracles 19

3.1.4 Waters’s Short Signatures without Random Oracles 20

3.2 Designated Verifier Signature Scheme 20

3.2.1 Security of Designated Verifier Signature Scheme 22

3.3 Universal Designated Verifier Signature Scheme 25

3.3.1 Security of Universal Designated Verifier Signature Scheme . . 27

3.4 Trapdoor Commitment Scheme . 30

3.4.1 A Concrete Scheme of a Trapdoor Commitment Scheme . . . 31

3.5 Identification Scheme . 32

3.5.1 Types of Attack . 34

3.5.2 Definition of Identification Scheme 35

3.5.3 Security of Identification Scheme 36

3.5.4 Schnorr’s Identification Scheme 37

3.6 Identity-based Identification Scheme 38

3.6.1 Definition of Identity-based Identification Scheme 38

3.6.2 Security of Identity-based Identification Scheme 39

3.6.3 Kurosawa-Heng Identity-based Identification without Random

Oracles Scheme . 41

4 Universal Designated Verifier Signature Schemes 44

4.1 Introduction . 44

4.1.1 Related Work . 46

4.1.2 Our Contributions . 48

4.2 Definition of One-Time Universal Designated Verifier Signatures . . . 49

4.2.1 Outline of OT-UDVS . 49

4.2.2 Completeness . 49

4.2.3 Unforgeability . 51

4.2.4 Non-transferability Privacy . 53

xiii

4.2.5 Single Designatability . 55

4.3 The Proposed OT-UDVS Scheme . 57

4.4 Security Analysis of OT-UDVS . 60

4.4.1 Completeness . 60

4.4.2 Unforgeability . 62

4.4.3 Non-transferability Privacy . 65

4.4.4 Single Designatability . 67

4.5 Definition of Universal Designated Verifier Signature with Threshold-

Signers Schemes (TS-UDVS) . 68

4.5.1 Outline of TS-UDVS . 68

4.5.2 Completeness . 69

4.5.3 Unforgeability . 70

4.5.4 Non-transferable Privacy . 72

4.5.5 Anonymity . 74

4.6 The Proposed TS-UDVS Scheme . 75

4.7 Security Analysis of TS-UDVS . 78

4.7.1 Completeness . 78

4.7.2 Unforgeability . 79

4.7.3 Non-transferable Privacy . 82

4.7.4 Anonymity . 84

4.8 Conclusion . 85

5 Policy-controlled Signatures Scheme and Its Applications 86

5.1 Introduction . 86

5.1.1 Related Work . 89

5.1.2 Our Contributions . 90

5.2 Definition of Policy-controlled Signature Scheme (PCS) 91

5.2.1 Outline of PCS . 91

5.2.2 Unforgeability . 93

5.2.3 Coalition-resistance . 94

5.2.4 Invisibility . 96

5.3 The Proposed PCS Scheme . 98

5.3.1 The General Construction . 99

5.4 Security Analysis . 101

5.4.1 Unforgeability . 101

xiv

5.4.2 Coalition-resistance . 103

5.5 Definition of Universal Policy-controlled Signature Scheme (UPCS) . 108

5.5.1 Outline of UPCS . 108

5.5.2 Unforgeability . 110

5.5.3 Coalition-resistance . 113

5.6 The Proposed UPCS Scheme . 115

5.7 Security Analysis of UPCS Scheme 117

5.7.1 Unforgeability: Policy Signer 117

5.7.2 Unforgeability: Signer . 120

5.7.3 Coalition-resistance . 122

5.8 Definition of Multi-level Controlled Signature Scheme (MLCS) 126

5.8.1 Outline of MLCS . 127

5.8.2 Unforgeability . 128

5.8.3 Coalition-resistance . 129

5.9 The First Proposed MLCS Scheme 131

5.10 Security Analysis of the First MLCS scheme 133

5.10.1 Unforgeability . 133

5.10.2 Coalition-resistance . 135

5.11 The Second Proposed MLCS Scheme 139

5.12 Security Analysis of the Second MLCS Scheme 140

5.12.1 Unforgeability . 140

5.12.2 Coalition-resistance . 142

5.13 Conclusion . 146

6 Fair Multi-Signature Scheme 147

6.1 Introduction . 147

6.1.1 Related Work . 148

6.1.2 Our Contributions . 150

6.2 Definition of Fair Multi-Signature Schemes 150

6.2.1 Outline of FMS . 150

6.2.2 Unforgeability . 152

6.2.3 Fairness . 154

6.2.4 Semi-trust . 155

6.3 Generic Construction of FMS scheme 157

xv

6.3.1 Verifiable Encrypted Signature Scheme from Aggregate Sig-

nature . 157

6.3.2 Aggregate Signature Scheme 159

6.3.3 Generic Construction Scheme 159

6.4 Security Analysis for The Generic Construction Scheme 161

6.4.1 Unforgeability . 161

6.4.2 Fairness . 161

6.4.3 Semi-trust . 162

6.5 An Instantiation . 163

6.5.1 BGLS’s Verifiably Encrypted Signatures 163

6.5.2 Instantiation from BGLS Scheme 164

6.6 Another Instantiation in the Standard Model 165

6.6.1 LOSSW’s Verifiably Encrypted Signatures 166

6.6.2 Instantiation from LOSSW Scheme 167

6.7 Conclusion . 168

7 Identification Schemes 169

7.1 Introduction . 169

7.1.1 Related Work . 171

7.1.2 Our Contribution . 172

7.2 Definition of Identity-based Identification Scheme 174

7.2.1 Outline of Identity-based Identification Schemes 174

7.2.2 Security of Identity-based Identification Schemes against Im-

personation under Passive Attack 175

7.2.3 Security of Identity-based Identification Schemes against Im-

personation under CR1+ Attack 176

7.3 Identity-based Identification Schemes against Impersonation under

Passive Attack (IBI-PA) . 177

7.3.1 An Experiment on Identity-based Identification Schemes against

Impersonation under Passive Attack 178

7.3.2 Proof of Security . 181

7.4 Identity-based Identification Scheme against Impersonation under CR1+ At-

tack (IBI-CRA) . 184

7.4.1 An Experiment on Identity-based Identification Schemes against

Impersonation under CR1+ Attack 185

xvi

7.4.2 Proof of Security . 188

7.5 Efficiency . 191

7.6 Definition of Escrowed Deniable Identification Schemes 192

7.6.1 Outline of Escrowed Deniable Identification Schemes 192

7.6.2 Deniability . 194

7.6.3 Impersonation . 195

7.6.4 Transferability . 196

7.7 Our Construction . 198

7.7.1 High Level Idea . 198

7.7.2 The Construction . 198

7.8 Security Analysis . 201

7.8.1 Deniability . 201

7.8.2 Security Analysis for Impersonation 204

7.8.3 Security Analysis for Transferability 207

7.9 Conclusion . 210

8 Conclusions and Further Works 211

8.1 Contribution to Signature schemes 211

8.1.1 Universal Designated Verifier Signature Schemes 211

8.1.2 Policy Controlled Signature Schemes 212

8.1.3 Fair Multi-Signature Schemes 213

8.2 Contribution to Identification Schemes 214

8.3 Further works . 214

Bibliography 216

Index 230

xvii

List of Tables

7.1 Table: Bandwidth and Computation Comparison. 192

xviii

List of Figures

7.1 Oracle for Adversary Attacking Transferability of Escrowed Deniabil-

ity Identification Scheme . 198

7.2 Open & Transfer Protocols . 202

xix

Chapter 1

Introduction

The development of advanced computers, smart phones and other digital devices

has freed us from the limitations of communication and computation on the Inter-

net. Online social networking is one of the major applications on the Internet that

changes the way of socialising from a real-life social world to the digitally social

world. With computers, smart phones or other digital devices, such as personal

digital assistant (PDA), users can easily connect with one another at all times.

They post messages and share files, photos or videos with one another through so-

cial networking sites. Information spreads faster through social networking sites

than through a real-life social network. This information might be unexpectedly

fallen into the wrong hands, since the digital information is easy to be copied,

shared, distributed or searched through the Internet. In online social networking

sites, many users usually disclose their identity or their relevant information via

their profile to others. However, the aggregation of large amounts of information on

the profiles of users poses new privacy risks. Hence, the awareness of user privacy

and the security of the social networking and the Internet have also risen. User’s

privacy is currently one of the major security concerns in the social networking

[AGH10, SPS10, KL10, DHP07]. In the topic of user’s privacy and the security of

the Internet towards the online social networking, there are many questions that have

yet to be completed such as how to provide or control the privacy and the anonymity

of users, how to revoke the identity of the malicious user when the dispute occurs

and how to provide a fairness when users agree to sign a message together. Our aim

is to address these questions.

1

1.1. Background and Problems 2

1.1 Background and Problems

Public Key Cryptography.

Prior the modern cryptography, a secure communication between two parties can be

obtained when both parties share a secret key. In the seminal paper “New Directions

in Cryptography” [DH76], Diffie and Hellman introduced the concept of public key

cryptography. In this concept, a secure communication between two parties can be

obtained without sharing the secret key prior to the communication. They proposed

that each user publishes a string called a “public key” while keeping the other related

string called a “private key”. In their scheme, a user A uses a public key of a user

B to encrypt a message and produce a ciphertext and send it to the user B. The

user B uses his private key associated with the public key to decrypt the ciphertext

and obtain the message. This concept is called an asymmetric-key cryptosystem.

Public key cryptography is a foundation of many cryptographic algorithms and

cryptosystems. It has also been widely implemented on modern technologies around

the world.

Signature Schemes.

From the concept of public key cryptography, the notion of digital signature has

also been introduced in [DH76] to function as a traditional handwritten signature.

A digital signature on a message is generated by a party called a “signer” to guar-

antee that it is the signer who signed the message such that the message cannot be

altered. A private key is used to sign a message. Hence, a signature is generated.

A public key, on the other hand, is used to verify the validity of the signature on a

message. The properties of digital signatures include integrity, authentication and

non-repudiation. Integrity protects a message from being modified by an unautho-

rised party. Authentication assures a verifier that a message originates from a signer.

Non-repudiation prevents a signer from denying the ownership of his message and

his signature.

Privacy and Anonymity of a Signer.

It is a fact that digital signatures are publicly verifiable and hence, non-repudiable.

The privacy of a signer and the anonymity of a signature holder are important, too.

The privacy of a signer is exposed whenever a signature on a message is generated

1.1. Background and Problems 3

by the signer and released to the public. The notion of designated verifier signatures

was proposed by Jakobsson, Sako and Impagliazzo [JSI96] to provide privacy for the

signer. In this notion, the verification of the signer’s signature is limited only to a

designated verifier. However, a designated verifier signature provides the one-to-one

privacy which is between a signer and a verifier. The question is how to provide the

one-to-many privacy which is between a signer and the designated verifiers. In other

words, how a signer assigns a set of verifiers such that only these verifiers can verify

the signature on a particular message signed by the signer while others cannot do

so.

Steinfeld, Bull, Wang and Pieprzyk [SBWP03] invented a new notion called a

universal designated verifier signature scheme that provides privacy for a signer. The

privacy of a signer is protected even though the signature is released to the public.

Universal designated verifier signatures preserve the signer’s authenticity, ensuring

the signer’s privacy, the message’s integrity and the anonymity of a signature holder.

The question on universal designated verifier signatures is how to provide the

anonymity and the privacy for a signer. The anonymity and privacy of a signer pro-

vide that a verifier is convinced only that a designated verifier signature is generated

by one (or more) out of n signers. However, a verifier does not know who actually

signed the message.

In universal designated verifier signatures, a signature holder is given a special

privilege such that he can generate a designated verifier signature from a signature

on a message signed by a signer and designate it to verifiers of his choice. However,

as long as a signature holder holds this signature, he can generate many designated

verifier signatures as he wants and designates to verifiers of his choice. Therefore,

it is interesting to control the ability of the signature holder to convince only one

verifier. Interestingly, there are real applications where this situation is desirable.

Fairness of Multi-signature.

One of the major applications of digital signatures is the notion of the multi-

signature, which enables many co-signers to authorise a document on behalf of them.

Multi-signature scheme was firstly proposed by Itakura and Nakamura [IN83]. How-

ever, a major impediment to the success of this notion relies on the need to have all

the signers behave correctly in accordance with the protocol. If one of the signers

does not release his signature, then all of the other signers will be disadvantaged,

1.1. Background and Problems 4

while the malicious signer can obtain a valid multi-signature on behalf of the others

with the knowledge that he has on his partial signature. The above problem raises

the question on how to provide fairness to all signers in multi-signatures.

Identification Scheme.

Fiat and Shamir [FS86] introduced the concept of an identification scheme. This

concept allows a user called the prover to prove his/her identity to another user

called the verifier. The basic requirement of an identification scheme is that the

other party cannot impersonate the prover. Shamir [Sha84] proposed the idea of

identity-based cryptosystems, which allows a prover to select a public key that

represents the identity of the prover, such as an email address. In the modern

Internet, signature schemes and identification schemes are components in many

Internet protocols, such as the Secure Shell (SSH) protocol. It is essential to consider

the security of identity-based identification schemes against active and concurrent

attacks. Many devices used in the Internet can be reset to their initial state; for

example, a smart card can be reset by disconnecting and reconnecting its power

source [BFGM01, CGGM00]. Based on the study by Canetti, Goldwasser, Goldreich

and Micali in [CGGM00] and the security analysis in [BFGM01], reset attacks play

an important part in the security of (identity-based) identification protocols. Bellare,

Fischlin, Goldwasser and Micali [BFGM01] gave a formal definition of concurrent-

reset attacks where an adversary has the power to reset the prover to the initial state

and obtains information that leads to the associated private key before attempting to

impersonate. The open question on identity-based identification schemes is how to

provide an identity-based identification scheme that is secure against reset attacks.

Privacy of a Prover.

Now, we discuss about the privacy of a prover in identification schemes. The erosion

of privacy in our society is increasing and hence, the issue of the preservation of

privacy has become essential. An identification scheme based on zero knowledge

protocol provides deniability and the privacy of a prover. However, a non-deniable

property is needed for cases where there is a dispute. A question is how to provide

both privacy and non-deniable property in identification scheme for the cases where

there is a dispute.

1.2. Objectives of this Thesis 5

1.2 Objectives of this Thesis

From the aforementioned problems in the previous section, this thesis focuses on

the answer to those problems related to designated verifier signatures, universal

designated verifier signatures, and their variants, multi-signatures and identification

schemes. The aims of this thesis address four aspects as follows.

1. Construct a universal designated verifier signature scheme that provides the

privacy and anonymity of signer. In addition, we also aim to construct a

universal designated verifier signature scheme that allows a signer to control

the ability of the signature holder to convince only one single verifier. Hence,

the privacy of signer can be limited by the signer.

2. Provide variants of designated verifier signatures that allows a signer to assign

a set of conditions or policies such that any verifier that satisfies the conditions

can verify the signature on a message signed by the signer.

3. Present a new multi-signature scheme that provides fairness to all signers in

multi-signatures.

4. For identification cryptosystems, our objectives are to provide an identity-

based identification scheme that is secure against the reset attack and to pro-

vide the revokable privacy to the identification scheme.

1.3 Organisation of this Thesis

We provide the background knowledge of number theory, basic algebra, bilinear pair-

ing and provable security in Chapter 2. In the same chapter, we present some basics

on group and bilinear pairings. We also present some number-theoretic problems,

which are commonly believed to be hard. The security of our proposed schemes is

based on their hardness.

In Chapter 3, we provide some background knowledge of signature schemes and

identification schemes. We briefly describe Boneh, Lynn and Shacham’s signature

scheme [BLS01], Boneh and Boyen’s signature scheme [BB04], Waters’ signature

scheme [Wat05], Schnorr’s identification scheme [Sch91] and a trapdoor commitment

scheme [BCC88, KH06] as basic building blocks for our schemes in the following

1.3. Organisation of this Thesis 6

chapters. We also provide a review of Kurosawa and Heng’s identification scheme

[KH04] as a comparison with our identity-based identification scheme in Chapter 7.

In Chapter 4, we introduce two new notions: “one-time universal designated veri-

fier signatures” and “universal designated verifier signatures with threshold-signers”.

We describe a definition of a one-time universal designated verifier signature scheme

and its security model. We present our concrete construction scheme of a one-time

universal designated verifier signature scheme and its security analysis. Universal

designated verifier signatures with threshold-signers provide privacy and anonymity

for the signer and the signature holder. They also ensure the authenticity of a mes-

sage and preserve the integrity of a message. In the same chapter, we also present

a definition of a universal designated verifier signature with threshold-signers and

its security model. We describe a concrete construction of a universal designated

verifier signature with threshold-signers together with its security analysis.

In Chapter 5, we introduce three new notions: a “policy-controlled signature”, a

“universal policy-controlled signature” and a “multi-level controlled signature”. We

present definitions of a policy-controlled signature scheme and a universal policy-

controlled signature scheme. Their security models are also provided. We pro-

pose a policy-controlled signature scheme and a universal policy-controlled signa-

ture scheme and present their security analysis. Next, we describe a definition of a

multi-level controlled signature scheme and its security model. Then, we give our

first proposed multi-level controlled signature scheme. In this scheme, the size of

the signer’s private key is constant. We also provide the security analysis of the first

proposed multi-level controlled signature scheme. We present our second proposed

multi-level controlled signature scheme. In this scheme, the size of the verifier’s

credentials is constant. We then give the security analysis of the second proposed

multi-level controlled signature scheme.

In Chapter 6, a new notion for multi-signature schemes called “fair multi-signatures”

is described. First, we introduce a definition of a fair multi-signature scheme and its

security model. Then, we illustrate our generic construction scheme of fair multi-

signatures and perform its security analysis. We present two instantiations of our

generic construction scheme with their security analysis. The first instantiation

scheme is constructed from Boneh et al.’s verifiable encrypted signature scheme

[BGLS03]. The second instantiation scheme is constructed from Lu et al.’s verifi-

able encrypted signature scheme [LOS+06].

In Chapter 7, we give a variant definition of the reset attacks proposed in

1.3. Organisation of this Thesis 7

[BFGM01] and we name it CR1+ attack. We present identity-based identification

schemes that are secure under passive attack and secure against CR1+ attack, and

we also present an escrowed identification scheme. First, we describe a definition

of an identity-based identification scheme and its security model. We then present

our identity-based identification scheme that is secure against passive attack and

CR1+ attack. We also give a comparison between our identity-based identification

scheme and the state-of-the-art identification scheme proposed by Kurosawa and

Heng [KH05]. Next, we propose an escrowed deniable identification scheme and

perform its security analysis.

Finally, in Chapter 8, we conclude this thesis.

Chapter 2

Preliminaries: Mathematical Foundations

In this chapter, we provide a background of number theory, basic algebra, bilinear

pairing and provable security for a better understanding of the following chapters.

The aim of this chapter is to make this thesis self-contained. Hence, in the following

sections, we give an explanation of some mathematic notations and problems. They

are generally useful to readers who are not familiar with these topics. They are

also to provide cryptographic foundations for understanding proofs of the security

of the proposed schemes in this thesis. Hence, readers who are familiar with theory

of cryptography may skip this chapter. We refer the reader to [MvOV97, Gol00,

Gol04, Gol05] for a more in-depth knowledge on the theory of cryptography. We

refer the reader to [BLS01, HMV03, BSSC05] for a more in-depth knowledge on the

topics of elliptic curves and bilinear paring.

2.1 Number Theory and Basic Algebra Founda-

tions

2.1.1 Group

In mathematics, a group is a set of objects with an operation that combines any two

of its elements to form a third element. The set and its operations must satisfy four

properties called group axioms, namely closure, associativity, existence of identity

element and existence of inverse element. Let G be a non-empty set and ∗ be an

operation such that ∗ : G×G→ G.

Definition 2.1 (Group) A group is a set G together with an operation ∗ satisfying

the following properties:

Closure: ∀a, b ∈ G : a ∗ b ∈ G.

8

2.1. Number Theory and Basic Algebra Foundations 9

Associativity: ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c).

Existence of identity element: There exists 1G ∈ G (called an identity element) :

∀a ∈ G, 1G ∗ a = a ∗ 1G = a.

Existence of inverse element: ∀a ∈ G,∃a−1 (called an inverse element) ∈ G :

a−1 ∗ a = a ∗ a−1 = 1G.

A group G is said to be Abelian group (or commutative group) if ∀a, b ∈ G : a ∗ b =

b ∗ a. If |G| is finite then G is finite. A group G is cyclic if there exists g ∈ G
(called a generator), ∀a ∈ G : a = gi for some integer i. Throughout this thesis,

the multiplicative group notation is used. It means that for any positive integer n,

an means a is multiplied n-times. It is also defined in the same way for the inverse

element denoted as (a−1)n = a−n.

2.1.2 Bilinear Pairings

The following notation is defined in [BB04, BLS01].

• G1 and G2 are two (multiplicative) cyclic groups of prime order p.

• g1 (g is used where some scheme G1 equivalents to G2) is a generator of G1

and g2 is a generator of G2.

• ψ is an existing isomorphism from G2 to G1, with ψ(g2) = g1 (or from G2 to

G1, with ψ(g1) = g2).

• ê is a bilinear map ê : G1 × G2 → GT (or, ê : G1 × G1 → GT where G1 is

equivalent to G2).

Let G1 and G2 be two cyclic groups as defined above and let GT be a (multi-

plicative) cyclic group with the same order p such that |G1| = |G2| = |GT | = p. Let

ê : G1 ×G2 → GT be a bilinear map with the following properties:

1. Bilinearity: ê(ga1 , g
b
2) = ê(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ ZZ.

2. Non-degeneracy: There exists g1 ∈ G1 and g2 ∈ G2 such that ê(g1, g2) 6= 1.

3. Computability: There exists an efficient algorithm to compute ê(g1, g2) for all

g1 ∈ G1 and g2 ∈ G2.

2.2. Cryptographic Primitives and a Brief Review on Provable Security 10

A bilinear pairing instance generator is defined as a probabilistic polynomial time

algorithm IG that takes as input a security parameter ` and returns a uniformly

random tuple param = (p,G1,G2, ê, g1, g2) of bilinear parameters, including a prime

number p of size 1`, cyclic groups G1 and G2 of order p, a multiplicative group GT

of order p, a bilinear map ê : G1 × G2 → GT , a generator g1 ∈ G1 and a generator

g2 ∈ G2. Note that there exists a ψ(.) function mapping G1 to G2 or vice versa in

one time unit. For simplicity, we assume that G1 = G2, and then a bilinear pairing

is ê : G1 ×G1 → GT where g is a generator of G1. For a group G of prime order p,

we denote the set G∗ = G \ {1G} where 1G is the identity element of the group.

2.2 Cryptographic Primitives and a Brief Review

on Provable Security

In this section, we provide some number-theoretic problems and useful definition,

which will be used throughout this thesis. In cryptography, the security of most

cryptographic primitives relies on the intractability of some problems that believed

to be hard to solve. The following mathematical problems and assumptions will be

used in the rest of thesis. We will provide a brief review of the reset lemma proposed

by Bellare and Palacio in [BP02]. This lemma was shown to be useful for proving

the security of many cryptographic primitives including the primitives presented in

this thesis. Throughout this thesis, we often refer to the random oracle model and

the standard model. Hence, we will give a brief explanation of these models. Let

G1,GT be two cyclic (multiplicative) groups order p. Let ê : G1 × G1 → GT be a

bilinear pairing. The generator of G1 is g and |G1| = |GT | = p for some large prime

p. Assume that multiplication and inversion in G1 can be computed in a unit time.

2.2.1 Computational and Decisional Diffie-Hellman Prob-

lem

Let a, b, c ∈ ZZ∗p be integers.

Definition 2.2 (Computational Diffie-Hellman (CDH) Problem.) Given

(g, ga, gb) as input, then the adversary attempts to output gab ∈ G1. An algorithm

A can solve CDH with at least an ε advantage if

Pr
[
A(g, ga, gb) = (gab)

]
≥ ε

2.2. Cryptographic Primitives and a Brief Review on Provable Security 11

where the probability is over the randomly chosen a, b and the random bits consumed

by A.

Assumption 2.1 (Computational Diffie-Hellman Assumption.) We say that

the computational (t, ε)-CDH assumption holds if no PPT algorithm with time com-

plexity t(.) has advantage at least ε in solving the CDH problem.

Definition 2.3 (Decisional Diffie-Hellman (DDH) Problem.) Given a ran-

domly chosen g ∈ G1, as well as ga, gb, gc, for some a, b, c ∈ ZZ∗p, decide whether

c
?
= ab holds with equality.

It is well-known that DDH problem in ZZ∗p is easy, by performing Menezes, Okamoto

and Vanstone’s (MOV) reduction in [MOV93], which states the discrete logarithm

problem (DLP) in G1 is no harder than the DLP in ZZ∗p.

2.2.2 Variants of Diffie-Hellman Problem

Definition 2.4 (q-Strong Diffie-Hellman (q-SDH) Problem.) Given a (q+1)-

tuple (g, gx, gx
2
, ..., gx

q
) as input, output a pair (c, g

1
x+c) where c ∈ ZZ∗p. An algorithm

A has advantage ε in solving q-SDH if Pr
[
A(g, gx, gx

2
, ..., gx

q
) = (c, g

1
x+c)

]
≥ ε,

where the probability is over the random choice of x ∈ ZZ∗p and the random bits

consumed by A.

Assumption 2.2 ((q, t, ε)-Strong Diffie-Hellman Assumption [BB04].) We

say that the (q, t, ε)-SDH assumption holds if no PPT algorithm with time complexity

t(.) has advantage at least ε in solving the q-SDH problem.

2.2.3 Gap Diffie-Hellman problem

The Gap Diffie-Hellman (GDH) problem was first proposed by Okamoto and Pointcheval

[OP01]. The problem is described as follows. The generator of G1 and G2 are g1

and g2, respectively. Assume that multiplication and inversion in G1 and G2 can

be computed in a unit time. An efficiently computable isomorphism ψ : G2 → G1

is required for GDH group. When G1 = G2 and g1 = g2 one could take to be

the identity map. When G1 6= G2 we will need to describe explicitly an efficiently

computable isomorphism ψ : G2 → G1. Such a ψ function is essential for security

of GDH.

2.2. Cryptographic Primitives and a Brief Review on Provable Security 12

Definition 2.5 (Computational co-Diffie-Hellman (co-CDH) Problem on

(G1,G2).) Let a ∈ ZZ∗p. Given (g2 ∈ G2, A = ga2 ∈ G2, B ∈ G1) as input, then the

adversary attempts to output Ba ∈ G1.

Definition 2.6 (Decisional Diffie-Hellman (co-DDH) Problem on (G1,G2).)

Given g2 ∈ G2, h ∈ G1, g
a
2 ∈ G2, h

b ∈ G1, for some a, b ∈ ZZ∗p, decide whether a
?
= b

holds with equality.

The above problems are reduced to standard CDH and DDH when G1 = G2.

2.2.4 Bilinear Diffie-Hellman problem

Definition 2.7 (Decision Bilinear Diffie-Hellman (DBDH) Problem.) Given

a 4-tuple (g, ga, gb, gc ∈ G1) and a random integer Z ∈ GT as input, decide whether

or not Z = ê(g, g)abc. An algorithm A is said to (t, ε′) solves the DBDH problem in

G1,GT if A runs in time t and

|Pr[A(g, ga, gb, gc, Z = ê(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, Z = ê(g, g)d) = 1]| ≥ ε′,

where the probability is taken over the random choices of a, b, c, d ∈ ZZp, g ∈ G1, and

the random bits consumed by A.

Assumption 2.3 (Decision Bilinear Diffie-Hellman Assumption.) We say

that the (t, ε)-DBDH assumption in G1,GT holds if no PPT algorithm with time

complexity t(.) has advantage at least ε in solving the DBDH problem.

2.2.5 One-Way Pairing problem

The inverting pairing problem is when the pairing function ê : G1 × G1 → GT is a

one-way bilinear function. A pairing is a one-way function when, given g ∈ G1 and

y ∈ GT , it is hard to invert the pairing; that is, to find an element h ∈ G1 such that

ê(g, h) = y.

Definition 2.8 ((t, ε)-One-Way Pairing (OWP).) Given (g ∈ G1, Z = ê(g, g)a ∈
GT) as input, then the adversary attempts to output ga ∈ G1 with at most running

time t. An algorithm A can solve (t, ε)-OWP with at least an ε advantage if

Pr [ê(g,A(g, Z)) = Z] ≥ ε

where the probability is over the randomly chosen a and the random bits consumed

by A.

2.2. Cryptographic Primitives and a Brief Review on Provable Security 13

Assumption 2.4 ((t, ε)-One-Way Pairing Assumption.) We say that the com-

putational (t, ε)-CDH assumption holds if no t-algorithm has advantage at least ε

in solving the One-Way Pairing problem.

2.2.6 Reset Lemma

Reset lemma is a lemma proposed by Bellare and Palacio [BP02]. This lemma is

used in security proof of many schemes and it is used later at the time of exploiting

proof in Chapter 7. More precisely, this lemma provides an upper bound of the

probability that a cheating prover P̃ can convince the verifier V to accept a certain

experiment that resets the prover to obtain two accepting conversation transcripts.

The conversation transcripts refer to a canonical (three-move) protocol. Let V

be the verifier in a canonical protocol and given η as input. V executes the pair

of algorithm (ChSetV , DECV), which defines the challenge set algorithm and the

deterministic decision predicate algorithm. Let P be the prover in a canonical pro-

tocol. P inputs with (ξ, $). P executes the pair of algorithm (CMTP , RSPP), which

defines the commitment generator algorithm and the response generator algorithm.

Let St be some state of information. Let $ be a random tape. The prover’s first

message called a commitment is Cmt which is generated by executing CMTP (St).

The verifier selects a challenge Ch uniformly at random from ChSetV and send it to

the prover. Upon receiving a response Rsp from the prover P generated by execut-

ing RSPP (Ch, St), the verifier applies DECV (Cmt, Ch,Rsp) to compute a decision

d ∈ {Accept, Reject}.

Lemma 2.1 (Reset Lemma [BP02].)

Let acc(ξ, η) be the probability that V accepts (ξ, η) in its interaction with P and

returns Accept in the following experiment.

Choose random tape $ for P ; St← (ξ, $); (Cmt, St)← CMTP (St).

Ch
$← ChSetV ; (Rsp, St)← RSPP (Ch, St); d← DECV (Cmt, Ch,Rsp).

Return d.

Let res(ξ, η) be the probability that V accepts (ξ, η) in its interaction with P and the

following reset experiment return 1.

Choose random tape $ for P ; St← (ξ, $); (Cmt, St)← CMTP (St).

Ch1
$← ChSetV ; (Rsp1 , St)← RSPP (Ch1, St); d1 ← DECV (Cmt, Ch1, Rsp1).

2.2. Cryptographic Primitives and a Brief Review on Provable Security 14

Ch2
$← ChSetV ; (Rsp2 , St)← RSPP (Ch2, St); d2 ← DECV (Cmt, Ch2, Rsp2).

If (d1 = Accept
∧

d2 = Accept
∧

Ch1 6= Ch2) then return 1 else return

0.

Then

acc(ξ, η) ≤ 1

|ChsetV |
+
√
res(ξ, η).

2.2.7 Random Oracle Model and Standard Model

The random oracle model in cryptography is the model of computation in which

there is an oracle that maps every possible query to a random response from its

output domain [BR93]. Random oracles have been long discussed in cryptography

research. The inspiration of random oracles was from Goldreich, Goldwasser and

Micali’s works [GGM86, GGM84] and Fiat and Shamir’s work [FS86]. The random

oracle methodology was proposed and formalised by Bellare and Rogaway [BR93]

and revisited by Canetti, Goldreich and Halevi [CGH98, CGH04].

In fact, a random oracle works in the same ways as a theoretical black box

or an ideal hash function. It takes any certain type of input and looks up its

internal database to see whether this query has been answered before outputting

the response. If it is in its internal database then it outputs the corresponding

value. Otherwise, it randomly obtains an answer from its source of randomness. It

is assumed that each answer from the source of randomness of the random oracle

is uniquely and uniformly distributed. A random oracle is a powerful tool but

unrealistic[CGH04]. In practice, we provide a proof under the random oracle model

and, in implementation, we replace the random oracle by conventional cryptographic

hash functions. A proof in the random oracle model generally shows that a system or

a protocol is secure by showing that, in order to break the protocol or the system,

an adversary has to solve some mathematical problem believed to be hard or it

must make an impossible query such that the oracle cannot answer. Nevertheless,

a cryptographic scheme that is secure in the random oracle model does not implied

that it is secure when it is instantiated with real-world implementation of hash

function [CGH04]. Canetti, Goldreich and Halevi [CGH04] given some constructions

of those cryptographic schemes that are not secure when implementation. Some

argued that the those constructions were not practical systems and were intentionally

designed such that they are not secure in the random oracle model [DP06, Sti06]. In

addition, there are artificially constructed which is intended to show that the random

2.2. Cryptographic Primitives and a Brief Review on Provable Security 15

oracle model is not always secure in the real-world implementation. A practical

scheme that is secure in the random oracle model with a heuristically-secure hash

function, such as SHA-1, seems to provide a sufficient security guarantee [DP06].

However, it is interesting to design systems that are provably secure without

relying on the random oracle model even through the random oracle model is still

widely accepted in the cryptographic community. In order to achieve the secu-

rity of a system in the standard model, some cryptographic protocols or systems

require only cryptographic hash functions with some properties such as collision

resistance, preimage resistance and second preimage resistance [JLO97, GHR99,

CKW04, BB04, Wat05]. In the standard model, an adversary is only limited by the

amount of time and computational power available and hence, a proof with a stan-

dard cryptographic hash function (which at least has a property such as collision

resistance, preimage resistance and second preimage resistance) is sufficient [BB04].

Nevertheless, it is well known that security proofs in the standard model are difficult

to achieve. Therefore many proofs in the cryptographic primitives are provided only

in the random oracle model.

Chapter 3

Background and Cryptographic Tools

In this chapter, we provide the background knowledge required in this thesis. Some

identification schemes, some signature schemes and a trapdoor scheme are presented

in this chapter as basic cryptographic tools for constructing our primitives.

3.1 Signature Schemes

Proposed by Diffie and Hellman in [DH76], and formalised by Goldwasser, Micali

and Rivest in [GMR88], a digital signature scheme allows a signer to preserve the in-

tegrity of a message, as well as the authenticity and non-repudiation of the signer. A

digital signature scheme Σ is a triple (SKeyGen, Sign, V erify), which is described

as follows.

Key Generation (KeyGen):

This is a probabilistic algorithm that, given a security parameter ` as input,

outputs strings (skS, pkS), which denote a private key and a public key of a

signer, respectively. That is,

KeyGen(1`)→ {pkS, skS}.

Signature Signing (Sign):

This is a probabilistic algorithm that, given a signer’s private key skS, a signer’s

public key pkS and a message M as input, outputs a signer’s signature σ. That

is,

Sign(M, skS, pkS)→ σ.

Signature Verification (V erify):

This is a deterministic algorithm that, given a signer’s public key pkS, a

16

3.1. Signature Schemes 17

message M and a signature σ as input, outputs a verification decision d ∈
{Accept, Reject}. That is,

V erify(M,σ, pkS)→ d.

3.1.1 Security of Signature Scheme

Unforgeability

Formalised by Goldwasser, Micali and Rivest in [GMR88], the existential unforge-

ability property of signature schemes aims to provide assurance that, with access to

a signer’s public key and a signing oracle, an adversary should be unable to produce

a signature on a new message chosen by himself/herself.

The following game describes the existential unforgeability of a signature scheme.

Let CMA be an adaptively chosen message attack and let EUF be the existential

unforgeability of a signature scheme. We denote by A the adaptively chosen message

adversary. We also denote by F the simulator. First, F runs KeyGen to obtain a

private key (skS) and a public key (pkS) of a signer. Then F constructs the signing

oracle SSO, which is defined as follows.

SSO oracle: At most qSS times, A can make a query for a signature σ on its choice

of a message M . As a response, SSO runs the Sign algorithm to generate a

signature σ on a message M corresponding to a signer’s public key pkS. SSO
then returns σ,M to A.

Then we begin the experiment ExptA
CMA
EUF (`) as follows: given a choice of messages

M , and access to the SSO oracle, A arbitrarily makes queries to the oracle in an

adaptive way. At the end of the above queries, we assume that A outputs a forged

signature σ∗ on a new message M∗ with respect to the signer’s public key pkS. We

say that A wins the game if:

1. A never made any requests for a signature on input M∗, pkS to the SSO
oracle.

2. Accept← V erify(M∗, σ∗, pkS).

The success probability that A wins the above game is defined as SuccCMA
EUF (.).

Definition 3.1 A signature scheme is said to be (t,qSS,ε)-secure existential un-

forgeable under an adaptive chosen message attack if there is no PPT adversary A

3.1. Signature Schemes 18

such that the success probability SuccCMA
EUF (`) = ε is non-negligible in `, where ACMA

EUF

runs in time at most t, and makes at most qSS queries to the SSO oracle.

Strong Existential Unforgeability and Weak Chosen Message Attack

In 2004, Boneh and Boyen [BB04] gave other two security definitions for signature

schemes named strong existential unforgeability and existential unforgeability under

weak chosen message attack.

The existential unforgeability property under weak chosen message attack is

similar to the existential unforgeability property described earlier. However, in the

existential unforgeability under a weak chosen message attack, an adversary must

submit the qSS messages that he wishes to make a request of signatures to the SSO
oracle. Hence, the adversary ability is limited to the non-adaptive chosen message.

On the other hand, an adversary breaks the strong existential unforgeability

property if the adversary can only output the message-signature pair that is differ-

ent from the queried message-signature pair. The security definition of the strong

existential unforgeability and the existential unforgeability under a weak chosen

message attack are as follows.

Definition 3.2 A signature scheme is said to be (t,qSS,ε)-secure existential un-

forgeable under a weak chosen message attack if there is no PPT adversary A such

that the success probability ε is non-negligible in `, where A runs in time at most t,

and makes at most qSS queries to the SSO oracle.

Definition 3.3 A signature scheme is said to be (t,qSS,ε)-secure strong existential

unforgeable under an adaptive chosen message attack if there is no PPT adversary

A such that the success probability ε is non-negligible in `, where A runs in time at

most t, and makes at most qSS queries to the SSO oracle.

In the following, we will review several signature schemes in the literature that

are related to this thesis.

3.1.2 BLS’s Short Signature Scheme from Bilinear Pairing

Introduced by Boneh, Lynn and Shacham [BLS01], a (BLS) short signature scheme

Σ is a triple (KeyGen, Sign, V erify). The definition of this signature scheme can

be found in [BLS01]. Let p be a prime and H be a hash function onto the group

G1. We elaborate the BLS signature scheme as follows.

3.1. Signature Schemes 19

Key Generation (KeyGen):

Let param = (p, ê, g ∈ G1, H, ê : G1 × G1 → GT) be a system parameter.

Choose a random private key x ∈ ZZp. Let us denote by X = gx a public key

of a signer. Hence, KeyGen returns pkS = X and skS = x as a public key and

a private key of a signer, respectively.

Signing (Sign):

Given a message M , pkS and skS, S computes σ = H(M)x as a signature on

message M .

Verification (V erify):

Given pkS, σ and a messageM , a verifier V checks whether ê(σ, g)
?
= ê(H(M), X)

holds or not. If not, then it outputs reject. Otherwise, it outputs accept.

3.1.3 Boneh-Boyen Short Signature without Random Ora-

cles

In this section, we briefly describe the Boneh-Boyen signature scheme [BB04], which

we will incorporate to construct our escrowed deniable identification in the standard

model in Chapter 7. The Boneh-Boyen signature scheme is described as follows.

Key Generation (KeyGen):

KeyGen randomly selects ga ∈ G1; gb ∈ G2; α, η ∈ ZZp and computes U =

gα2 , V = gη2 ,Z = ê(g1, g2). The public key is pkS = (g1, g2,U ,V ,Z) and the

private key is skS = (α, η).

Signing (Sign):

Given a private key skS, a public key pkS and a message M ∈ ZZp, Sign

randomly selects r ∈ zp and computes σ ← g
1/(α+r·η+M)
1 . The signature on

message M is (σ, r).

Verification (V erify):

Given a signature, a public key pkS and a message M ∈ ZZp, V erify checks

whether ê(σ,U · Vr · gM2) = Z. If it holds, then a verifier outputs Accept.

Otherwise it outputs Reject.

Theorem 3.1 If the (t′, q, ε′)-SDH assumption holds in (G1,G2), then the Boneh-

Boyen signature scheme is (t, qS, ε)-secure against strong existential forgery under an

3.2. Designated Verifier Signature Scheme 20

adaptive chosen message attack where T is the maximum time for an exponentiation

in G1,G2,ZZp, qs ≤ q, ε ≈ 2ε′ and t ≤ t′ −Θ(q2T) [BB04].

Note that, for simplicity, we define G1 = G2 in our scheme. We also note that the

weakly secure Boneh-Boyen short signature denoted as BB04 is different from the

full Boneh-Boyen signature. The difference is V , η from the public key and private

key are removed in BB04 and hence, a very short signature as σ ← g
1/(α+M)
1 is

obtained.

3.1.4 Waters’s Short Signatures without Random Oracles

We describe the Waters’s signature scheme presented in [Wat05] as follows.

System Parameters Generation (Setup):

Setup sets param = (p, ê, g ∈ G1, u0, u1, ..., uk ∈ G2, ψ : G1 → G2, H :

{0, 1}∗ → {0, 1}k, ê : G1 ×G2 → GT) be a system parameter.

Key Generation (KeyGen):

On input a system parameter param, KeyGen chooses a random private key

x ∈ ZZp. Then, KeyGen returns pkS = X = ê(g, g)x and skS = x as a public

key and a private key of a signer, respectively.

Signing (Sign):

Given a message M as a bit string (M1, ...,Mk) ∈ {0, 1}k, pkS and skS, S

randomly chooses r ∈ ZZp and computes σ = (θ1 = gx(u0

∏k
i=1 u

Mi
i)r, θ2 = gr)

as a signature on message M .

Verification (V erify):

Given pkS, σ and a message M , a verifier V checks whether

ê(θ1, g)ê(θ2, u0

k∏
i=1

uMi
i)−1 ?

= X

holds or not. If not, then it outputs reject. Otherwise, it outputs accept.

3.2 Designated Verifier Signature Scheme

In 1996, Jakobsson, Sako and Impagliazzo [JSI96] proposed the notion of designated

verifier signatures (DVS). In this notion, a signer is allowed to limit the verification

3.2. Designated Verifier Signature Scheme 21

of his/her signature to a designated verifier. The designated verifier is convinced

that the signature is indeed created by the original signer. It is ensured by the

authenticity of this signature. However, the designated verifier is not allowed to

pass or convey this conviction to another party. In other words, the verifier cannot

convince the other party of the validity of this signature. Hence, the designated

verifier signature ensures authenticity and privacy of signer’s identity properties at

the same time. We give the description of designated verifier signature schemes as

follows.

A designated verifier signature scheme is a 5-tuple (Setup, SKeyGen, V KeyGen,

Sign, V erify), which is described as follows.

System Parameter Generation (Setup):

This is a probabilistic algorithm that, given a security parameter ` as input,

outputs the system parameter param. That is,

Setup(1`)→ param.

Signer’s Public Parameter and Secret Key Generator (SKeyGen):

This is a probabilistic algorithm that, given a system parameter param as

input, outputs the private key (skS) and the public parameter (pkS) of the

signer. That is,

SKeyGen(param)→ (pkS, skS).

Verifier’s Public Parameter and Secret Key Generator (V KeyGen):

This is a probabilistic algorithm that, given a system parameter param as

input, outputs strings (skV , pkV) where they denote the private key and the

public parameter of signer, respectively. That is,

V KeyGen(param)→ (pkV , skV).

Designated Verifier Signature Signing (DSign):

This is a probabilistic algorithm that, given a signer’s private key skS, a signer’s

public parameter pkS, a verifier’s public parameter pkV , a message M as input,

DSign outputs a signer’s designated verifier signature ρ. That is,

DSign(M, skS, pkS, pkV)→ ρ.

3.2. Designated Verifier Signature Scheme 22

Designated Verifier Signature Verification (DV erify):

This is a deterministic algorithm that, given a signer’s public parameter pkS,

a verifier’s private key skV , a message M and a signature ρ as input, outputs

a verification decision d ∈ {Accept, Reject}. That is,

DV erify(M, ρ, skV , pkS)→ d.

Simulation of a Delegated Signature (DSimulate): This is a probabilistic al-

gorithm that, given verifier’s public parameter pkV , verifier’s private key skV ,

signer’s public parameter pkS, and a message M as input, outputs a designated

verifier signature % such that

DV erify(M,%, skV , pkS)→ Accept.

That is,

DSimulate(M, pkV , skV , pkS)→ %.

3.2.1 Security of Designated Verifier Signature Scheme

Unforgeability

There are actually two different types of unforgeability properties that we should

consider and they are mentioned in [SBWP03, HSMW06]. They are “standard signa-

ture unforgeability” and “designated verifier unforgeability”. Huang et al. [HSMW06]

concluded that “designated verifier unforgeability” always implies “standard signa-

ture unforgeability”. We refer the reader to [SBWP03] and [HSMW06] for the formal

proof of this equivalence. Hence, from now on, when we discuss unforgeability prop-

erty of DVS (and UDVS) schemes, we refer to “designated verifier unforgeability”

property. A security model against existential unforgeability under adaptively cho-

sen message attack of designated verifier scheme is formally given as follows: let

denote by EUF -DV S, the existential unforgeability of DVS scheme. Let F be a

simulator. We then define A as the adaptively chosen message adversary. Next, F
constructs the designated verifier signing oracle DDO and the random oracle HO
as follows.

HO oracle: A can make queries at most qH times for a hash value on a string

M . F responds each query by first, search its database for the duplicate. If

it outputs yes, then F returns the match hash value. Otherwise, F randomly

3.2. Designated Verifier Signature Scheme 23

selects an integer i from its random domain and outputs i as a hash value for

the string M . Then, F updates i to its database.

DDO oracle: First, A can make queries at most qDD times for a designated verifier

signature ρ on its choice of message M under the signer’s public parameter

pkS. Then, in return, F runs the DSign algorithm to generate a designated

verifier signature ρ on a message M corresponding with pkS. After that, F
returns ρ,M to A.

The game between F and A that describes the existential unforgeability of DVS

scheme can be defined as follows. A is given a choice of message M and the signer’s

public parameter pkS, the verifier’s public key pkV and an access to the designated

verifier signing oracle and the hash oracle as input. Then, we assume that A returns

a forged signature ρ∗ on its choice of message M∗. We say that A wins the game if

1. Accept← DV erify(M∗, ρ∗, pkV , skV , pkS).

2. With M∗ as input, A never made a request for a designated verifier signature

to the DDO oracle.

Let SuccCM−AEUF−DV S(.) be defined as the success probability of that A wins the above

game.

Definition 3.4 A designated verifier signature scheme is (t,qH ,qDD,ε)-secure against

existential unforgeability under adaptively chosen message attack if there is no PPT

CM-A adversary A such that the success probability SuccCM−AEUF−DV S(`) = ε is non-

negligible in `, where A runs in time at most t, make at most qH and qDD queries

to the random oracle HO and the DDO oracle, respectively.

Privacy of Signer’s Identity

Laguillaumie and Vergnaud [LV04] formalised the privacy of signer’s identity prop-

erty of a designated verifier signature scheme. This property prevents the other party

that does not know a verifier’s private key to verify a designated verifier signature.

Let A be the adaptively chosen message distinguisher. Let F be a simulator.

Let PSI-DV S be the existential privacy of signer’s identity of designated verifier

signature scheme. The game between F and A is defined to describe the existential

privacy of signer’s identity of designated verifier signature scheme defined as follows.

3.2. Designated Verifier Signature Scheme 24

The game is separated into two phases. F starts with generation of public keys

as follows.

SKeyGen(param) → (pkS0 , skS0),

SKeyGen(param) → (pkS1 , skS1),

V KeyGen(param) → (pkV , skV).

Next, F constructs the designated verifier signing oracle DDO and the designated

verifier verification oracle DVO, which are defined as follows.

DDO oracle: First, A can make queries at most qDD times for a designated verifier

signature ρ on its choice of message M under the signer’s public parameter

pkS0 (or pkS1). Then, in return, F runs the DSign algorithm to generate a

designated verifier signature ρ on a message M corresponding with pkS0 (or

pkS1). After that, F returns ρ,M to A.

DVO oracle: A can make queries at most qDV times for the verification of a des-

ignated verifier signature ρ on its chosen message M with its corresponding

public parameter pkV and pkS0 (or pkS1). Next, F runs the DV erify algo-

rithm to verify a designated verifier signature ρ on a message M corresponding

with pkV and pkS0 (or pkS1). Finally, F returns Accept if a designated veri-

fier signature ρ on a message M is valid regarding to pkV and pkS0 (or pkS1),

otherwise, it returns Reject.

The game is then run as follows.

1. Phase 1: A is allowed to make a request to DVO and DDO oracles. The

oracles answer as their design.

2. Challenge: When A is ready to challenge F , it outputs M∗ with the con-

straints that with M∗ as input, A never submitted a request for a designated

verifier signature to the DDO oracle and a request for a validation of des-

ignated verifier signature to the DVO oracle. In response, F selects a bit

b
$← {0, 1}. If b = 0 then F outputs ρ ← DSign(M∗, skS0 , pkS0 , pkV) to A.

Otherwise, F outputs ρ← DSign(M∗, skS1 , pkS1 , pkV) to A.

3. Phase 2: A is allowed to return arbitrarily to Phase 1 or Challenge as many

times as it wants. However, there are conditions that

3.3. Universal Designated Verifier Signature Scheme 25

a. with M∗ as input, A never submitted a request for a designated verifier

signature to the DDO oracle.

b. with M∗ and ρ as input, A never submitted a request for a validation of

the designated verifier signature ρ to the DVO oracle.

4. Guessing: Finally, A responds with a guess b′, which is corresponding to the

challenge M∗. The distinguisher wins the game if b = b′.

Let SuccCM−APSI−DV S(.) be the success probability of that A wins the above game.

Definition 3.5 A designated verifier signature scheme is (t,qDD,qDV ,ε)-secure against

existential privacy of signer’s identity under adaptively chosen message attacks if

there is no PPT CM-A distinguisher A such that the success probability SuccCM−APSI−DV S(`)

= |Pr[b = b′]−Pr[b 6= b′]| = ε is non-negligible in `, where A runs in time at most

t, make at qDD and qDV queries to the DDO oracle and DVO oracle, respectively.

3.3 Universal Designated Verifier Signature Scheme

In Asiacrypt 2003, Steinfeld, Bull, Wang and Pieprzyk [SBWP03] proposed the

notion of universal designated verifier signature (UDVS) schemes. This is a novel

extension of the designated verifier signature scheme. A universal designated verifier

signature is an ordinary designated verifier signature with an additional function

that represents the authenticity of the possession of a signature on a message. A

signature holder is introduced as a party who is given the privilege of designating the

signature to any verifier that is chosen by him/her. In other words, a signature holder

obtains a signature from the original signer and then designates this signature to a

designated verifier. A universal designated verifier signature is provided, and hence

the privacy of the original signer is protected and the anonymity of the signature

holder is ensured. We give the description of universal designated verifier signature

schemes as follows: first of all, it must be assumed that all parties must comply with

a registration protocol with a certificate authority (CA) to prove the knowledge of

their private key and to obtain a certificate on their public parameters. A universal

designated verifier signature scheme is a 8-tuple (Setup, SKeyGen, Sign, V erify,

V KeyGen, Delegate, DV erify, DSimulate), which is described as follows.

System Parameter Generation (Setup):

This is a probabilistic algorithm that, given a security parameter ` as input,

3.3. Universal Designated Verifier Signature Scheme 26

outputs the system parameter param. That is,

Setup(1`)→ param.

Signer’s Public Parameter and Secret Key Generator (SKeyGen):

This is a probabilistic algorithm that, given a system parameter param as

input, outputs the private key (skS) and the public parameter (pkS) of the

signer. That is,

SKeyGen(param)→ (pkS, skS).

Signature Signing (Sign):

This is a probabilistic algorithm that, given a private key skS, a public pa-

rameter pkS, a message M as input, Sign outputs signer’s signature σ. That

is,

Sign(M, skS, pkS)→ σ.

Signature Verification (V erify):

This is a deterministic algorithm that, given a signer’s public parameter pkS,

a message M and a signature σ as input, outputs a verification decision d ∈
{Accept, Reject}. That is,

V erify(M,σ, pkS)→ d.

Verifier’s Public Parameter and Secret Key Generator (V KeyGen):

This is a probabilistic algorithm that, given a system parameter param as

input, outputs strings (skV , pkV) where they denote the private key and the

public parameter of the verifier, respectively. That is,

V KeyGen(param)→ (pkV , skV).

Signature Delegation (Delegate):

This is a probabilistic algorithm that, given a verifier’s public parameter pkV ,

a signer’s public parameter pkS, a signer’s signature σ, and a message M as

input, outputs a designated verifier signature ρ. That is,

Delegate(M,σ, pkV , pkS)→ ρ.

3.3. Universal Designated Verifier Signature Scheme 27

Designated Verifier Signature Verification (DV erify):

This is a deterministic algorithm that, given a verifier’s private key skV , a

signer’s public parameter pkS, a message M and a designated verifier signature

ρ as input, outputs a verification decision d ∈ {Accept, Reject}. That is,

DV erify(M, ρ, skV , pkS)→ d.

Simulation of a Delegated Signature (DSimulate): This is a probabilistic al-

gorithm that, given a verifier’s public parameter pkV , a verifier’s private key

skV , a signer’s public parameter pkS, and a message M as input, outputs a

designated verifier signature % such that

DV erify(M,%, skV , pkS)→ Accept.

That is,

DSimulate(M, pkV , skV , pkS)→ %.

3.3.1 Security of Universal Designated Verifier Signature

Scheme

Unforgeability

Unforgeability under adaptively chosen message attack of universal designated ver-

ifier scheme is formally given as follows.

Denote EUF -UDV S the existential unforgeability of UDVS scheme and denote

by CM -A the adaptively chosen message attack. Let F be a simulator. We then

define A as the adaptively chosen message and chosen public key adversary. Next,

F constructs the signing oracle SSO, the signature delegation oracle DSO and

the random oracle HO as follows.

HO oracle: A can make queries at most qH times for a hash value on a string

M . F responds each query by first, search its database for the duplicate. If

it outputs yes, then F returns the match hash value. Otherwise, F randomly

selects an integer i from its random domain and outputs i as a hash value for

the string M . Then, F updates i to its database.

SSO oracle: First, A can make queries at most qSS times for a signature σ on

its choice of message M under the signer’s public parameter pkS. Then, in

3.3. Universal Designated Verifier Signature Scheme 28

return, F runs the Sign algorithm to generate a signature σ on a message M

corresponding with pkS. After that, F returns σ,M to A.

DSO oracle: First, A can make queries at most qDS times for a designated verifier

signature ρ on its choice of message M under the signer’s public parameter pkS

and the verifier’s public parameter pkV . Next, F runs the Delegate algorithm

to generate a designated verifier signature ρ on a message M corresponding

with pkS, pkV . Finally, F outputs ρ,M and returns them to A.

The game between F and A that describes the existential unforgeability of UDVS

scheme can be defined as follows. A is given a choice of message M and the signer’s

public parameter pkS, the verifier’s public key pkV and an access to the designated

verifier signing oracle and the hash oracle as input. Then, we assume that A returns

a forged signature ρ∗ on its choice of message M∗ corresponding with the signer’s

public parameter pkS∗ and the verifier’s public parameter pkV ∗ . We say that A wins

the game if

1. Accept← DV erify(M∗, ρ∗, pkV ∗ , skV ∗ , pkS∗).

2. With M∗, pkV ∗ and pkS∗ as input, A never made a request for a signature to

the SSO oracle.

3. With M∗ and pk∗V as input, A never made a request for a designated verifier

signature to the DSO oracle.

Let SuccCM−AEUF−UDV S(.) be defined as the success probability of that A wins the above

game.

Definition 3.6 A universal designated verifier signature scheme is (t,qH ,qSS,qDS,ε)-

secure against existential unforgeability under adaptively chosen message attack if

there is no PPT CM-A adversary A such that the success probability SuccCM−AEUF−UDV S(`) =

ε is non-negligible in `, where A runs in time at most t, make at most qH , qSS and

qDD queries to the random oracle HO, the SSO oracle and the DSO oracle,

respectively.

Non-transferability Privacy

Introduced in [SBWP03] by Steinfeld et al., the non-transferability privacy property

of a universal designated verifier signature scheme prevents a designated verifier to

3.3. Universal Designated Verifier Signature Scheme 29

generate evidence, which convinces a third-party the validity of a designated verifier

signature ρ.

Let A be the adaptively chosen message distinguisher. Let F be a simulator.

Let ENT -UDV S be the existential non-transferable privacy of universal designated

verifier signature scheme. The game between F and A is defined to describe the

existential non-transferable privacy of universal designated verifier signature scheme

defined as follows.

The game is separated into two phases. Start with F to construct the hash

oracle HO, the verifier’s key generator oracle VKO, the signature signing oracle

SSO and the signature delegation oracle DSO, which are defined as follows.

HO oracle: A can make queries at most qH times for a hash value on a string

M . F responds each query by first, search its database for the duplicate. If

it outputs yes, then F returns the match hash value. Otherwise, F randomly

selects an integer i from its random domain and outputs i as a hash value for

the string M . Then, F updates i to its database.

VKO oracle: First, A can make queries at most qV P times for the public parameter

pkV and the private key of the verifier. Then, in return, F runs the V KeyGen

algorithm to generate a private key skV and a public parameter pkV of a

verifier. F outputs pkV , skV and returns to A.

SSO oracle: First, A can make queries at most qSS times for a signature σ on

its choice of message M under the signer’s public parameter pkS. Then, in

return, F runs the Sign algorithm to generate a signature σ on a message M

corresponding with pkS. After that, F returns σ,M to A.

DSO oracle: First, A can make queries at most qDS times for a designated verifier

signature ρ on its choice of message M under the signer’s public parameter pkS

and the verifier’s public parameter pkV . Next, F runs the Delegate algorithm

to generate a designated verifier signature ρ on a message M corresponding

with pkS, pkV . Finally, F outputs ρ,M and returns them to A.

The game is then run as follows.

1. Phase 1: A is allowed to make a request to VKO, SSO and DSO oracles.

The oracles answer as their design.

3.4. Trapdoor Commitment Scheme 30

2. Challenge: When A is ready to challenge F , it outputs M∗, pkS∗ and pkV ∗

with the constraints that

a. with M∗ and pkS∗ as input, A never made a request for a signature to the

SSO oracle.

b. with M∗, pkS∗ and pkV ∗ as input, A never submitted a request for a

designated verifier signature to the DSO oracle.

In response, F selects a bit b
$← {0, 1}. If b = 1 then F computes σ ←

Sign(M∗, skS, pkS) to A and outputs ρ ← Delegate(M∗, σ, pkV , pkS) to A.

Otherwise, F outputs %← DSimulate(M∗, pkV , skV , pkS) to A.

3. Phase 2: A is allowed to return arbitrarily to Phase 1 or Challenge as many

times as it wants. However, there is a condition that A must have at least one

set of challenge M∗ such that

a. with M∗ and pkS∗ as input, A never made a request for a signature to the

SSO oracle.

b. with M∗, pkS∗ and pkV ∗ as input, A never submitted a request for a

designated verifier signature to the DSO oracle.

4. Guessing: Finally, A responds with a guess b′, which is corresponding to the

challenge M∗, pkS∗ and pkV ∗ . The distinguisher wins the game if b = b′.

Let SuccCM−AENT−UDV S(.) be the success probability of that A wins the above game.

Definition 3.7 A universal designated verifier signature scheme is (t,qH ,qSS,qDS,qV P ,ε)-

secure against existential non-transferable privacy under adaptively chosen message

attack chosen message attacks if there is no PPT CM-A distinguisher A such that

the success probability SuccCM−AENT−UDV S(`) = |Pr[b = b′] − Pr[b 6= b′]| = ε is non-

negligible in `, where A runs in time at most t, make at most qH , qSS, qDS and

qV P queries to the random oracle HO, the SSO oracle, the DSO oracle and the

VKO oracle, respectively.

3.4 Trapdoor Commitment Scheme

Introduced by Brassard, Chaum and Crépeau in [BCC88], a trapdoor commit-

ment scheme allows a prover to generate some commitment bits that involve him-

self/herself such that a verifier learns nothing from these bits without his/her help.

3.4. Trapdoor Commitment Scheme 31

A trapdoor commitment scheme TC is a triple (Setup, Tcom, Topen), which is

described as follows.

Key Generation (KeyGen):

This is a probabilistic algorithm that, given a security parameter ` as input,

generates a public parameter pkD and a trapdoor key skD. That is,

KeyGen(1`)→ {pkD, skD}.

Trapdoor Commitment Generation (Tcom):

This is a probabilistic algorithm that, given a public key pkD, a message M

and a random integer r as input, outputs a commitment value T . That is,

Tcom(pkD,M, r)→ T.

Trapdoor Commitment Opening (Topen):

This is a probabilistic algorithm that, given a trapdoor key skD, a public

parameter pkD, a message M , a new message M ′, an integer r, outputs an

integer r′ such that T = Tcom(pkD,M, r) = Tcom(pkD,M
′, r′). That is,

Topen(skD, pkD, T,M,M ′, r)→ r′.

3.4.1 A Concrete Scheme of a Trapdoor Commitment Scheme

The idea of transforming an identification scheme into a trapdoor commitment

scheme was presented by Kurosawa and Heng in PKC 2006 [KH06]. We elaborate

the Schnorr trapdoor commitment scheme transformed from the Schnorr identifica-

tion scheme [Sch91] as follows.

Key Generation (KeyGen):

On input a security parameter `, KeyGen randomly selects a prime α such

that α = poly(1`). Next, let Gα be a multiplicative group order α and then

choose a random generator gα ∈ Gα and a random number y ∈ ZZ∗α. Let us

denote by param = (α, gα) the system parameter and by Y = gyα a public key.

Finally, KeyGen outputs public parameter pkD = (param, Y) and a secret

trapdoor key skD = y.

Trapdoor Commitment Generation (Tcom):

On input public parameter pkD and two integers M, r ∈ ZZ∗α, Tcom computes

an output T = grαY
M . Then, Tcom responds with T .

3.5. Identification Scheme 32

Trapdoor Commitment Opening (Topen):

On input public parameter pkD, a private key skD and three integersM ′,M, r ∈
ZZ∗α, Topen computes r′ such that T = grαY

M = gr
′
α Y

M ′ . Then, Topen returns

r′.

We supply the security of the above trapdoor commitment scheme as follows.

Definition 3.8 We say that a trapdoor commitment scheme TC is secure if, on

input pkD, it is computationally infeasible to compute (M, r) and (M ′, r′) such that

Tcom(pkD,M, r) = Tcom(pkD,M
′, r′) where M 6= M ′. [KH06]

Theorem 3.2 ([KH06]) The above trapdoor commitment scheme is secure if the

discrete logarithm assumption holds.

3.5 Identification Scheme

The fundamental study of identification schemes was undertaken by Fiat and Shamir

[FS86]. Following this work, other important identification schemes such as [Sch89,

OO88, Oka92, GQ88, FFS88] have been proposed. In 1988, Feige, Fiat, and Shamir

[FFS88] introduced an identification scheme, which is based on the difficulty of

inverting RSA. Subsequently, Guillou and Quisquarter [GQ88] provided an identi-

fication scheme based on RSA (we refer this scheme as the GQ scheme from now

on). Later, Schnorr [Sch89] introduced his identification scheme based on a discrete

logarithm problem. Both GQ and Schnorr’s schemes are still the most efficient and

well-studied identification schemes in the literature, and their security has been anal-

ysed and proven by Bellare and Palacio [BP02]. The security of their schemes has

been reduced to a standard computational problem such as, factoring or discrete

logarithms for a passive attack setting and one-more RSA and one-more discrete

logarithm for a concurrent attack. There are several other identification schemes

based on a similar problem to the above schemes, such as the Ohta and Okamoto

identification scheme [OO88], which is a variant of the Feige, Fiat, and Shamir iden-

tification scheme, and the Ong and Schnorr identification scheme [OS90], which is

a variant of the Fiat and Shamir identification scheme based on a factorisation of

2m-th root.

Since the introduction of bilinear maps in cryptography, many new problems

such as the Gap Diffie-Hellman problem, the Bilinear Diffie-Hellman problem and

3.5. Identification Scheme 33

others have been studied. Based on these new problems, many new identification

schemes have been proposed in the literature. Kim and Kim [KK02a] introduced

the first identification scheme based on the Bilinear Diffie-Hellman problem. Their

scheme was later broken and improved by Yao, Wang and Wang [YWW04].

The security of identification schemes under active attack was first formalised

by Shoup [Sho99]. Shoup also provided an analysis of several identification schemes

that are based on the square root or 2m-th root problem, such as the Guillou and

Quisquarter (GQ) identification scheme [GQ88]. In Crypto’02 [BP02], Bellare and

Palacio formalised the security for both identification schemes and signature schemes

(together with their identity-based variants). They also added a formal definition

for all impersonation attacks of identification schemes, including passive, active and

concurrent attacks. Later, a summary of the security proof for identity-based identi-

fication schemes and signature schemes was proposed by Bellare, Namprempre and

Neven in [BNN04]. They also formalised the definition of attacks, standard identifi-

cation schemes, identity-based identification schemes and the security properties of

those schemes.

The strongest security model for identification schemes is impersonation against

reset attack. In reset attacks, an adversary is given the power to reset the initial

state of the honest prover in the concurrent setting. The first identification scheme

secure under reset attack was proposed by Canetti, Goldwasser, Goldreich and Micali

[CGGM00]. However, their scheme in the public key model is inefficient in practice.

Later, in Eurocrypt’01 [BFGM01], Bellare, Fischlin, Goldwasser and Micali de-

fined two types of reset attack, namely the concurrent-reset-1 (CR1) attack and the

concurrent-reset-2 (CR2) attack. An adversary A in the CR1 setting is allowed to

execute many identification protocols concurrently with a prover P . While interact-

ing with the prover P (or its clones), A can reset P (or its clones) to the initial state.

Finally, after A obtains sufficient information, it then attempts to impersonate P .

Similar to the CR1 setting, the adversary A in CR2 setting still can go back to

execute many identification protocols concurrently with the honest prover P during

the impersonation stage. Moreover, during the executions after impersonation, A
still can reset P to the initial state. The above setting can be viewed as a man in

the middle plus reset attack setting. Hence, a CR1 attack is a special case of CR2

attack from the above point of view. Therefore, an identification protocol secured

under a CR2 attack implies that it is also secure under a CR1 attack.

3.5. Identification Scheme 34

3.5.1 Types of Attack

In general, an identification scheme is said to be compromised if an adversary suc-

ceeds in an impersonation attempt (making the verifier accept with non-negligible

probability) [FS86]. We can classify the types of attack according to the interac-

tion allowed to the adversary before an impersonation attempt [Sho99]. There are

several types of attack that an adversary, trying to impersonate a prover, may

attempt. However, we will describe only three basic types of attack for back-

ground to this thesis. These three types of attack are introduced and formalised

in [FS86, Sho99, BFGM01]. For CR1+ attack that we have introduced in [TSM09a],

we will give full details in Chapter 7.

Passive Attack (PA)

The weakest form of attack is the passive attack in which adversary is an eavesdrop-

per that attempts an impersonation using only his knowledge of the public key of the

prover and eavesdropped transcripts. Furthermore, the adversary is not allowed to

interact with the system at all before attempting an impersonation. Other attacks

at an intermediate level, such as an eavesdropping attack or honest-verifier attack,

are essentially equivalent to a passive attack.

Active Attack (AA)

A stronger form of attack is the active attack, in which an adversary is allowed to

interact with P several times, posing as V. In this sense, the adversary is a cheating

prover and a cheating verifier. We may consider active attacks as adaptive chosen

cipher text attacks. We should note that active attacks are quite feasible in many

practical situations. For example, the man-in-the-middle-attack is equivalent to the

active attack where the adversary pretends to be a verifier and interacts with a

prover to obtain some information prior the impersonation. Security against active

attacks is hence clearly preferable to security against only passive attacks.

Concurrent Attack (CA) and Concurrent Reset Attack (CR)

Another stronger form of passive attack is the concurrent-active attack. In this sce-

nario, an adversary is allowed to interact with an honest prover several times prior

to impersonation, acting as a cheating verifier. Furthermore, he could interact with

3.5. Identification Scheme 35

many different provers (clones) concurrently. All clones have the same private key.

However, they maintain their own independent states. Security against imperson-

ation under a concurrent attack implies security against impersonation under an

active attack [BNN04]. In [BFGM01], Bellare et al. provided a formal definition of

the concurrent reset attack and further divided it into two different classes, namely

CR1 and CR2, depending on whether the adversary is still allowed to execute iden-

tification protocols with the honest prover during the impersonation stage or not.

CR1 can be viewed as a special case of CR2.

CR1+ Attack

In [TSM09a], we defined a strong type of concurrent reset attack, namely CR1+.

This attack is stronger than CR1 in the sense that the adversary is allowed to reset

the prover (or clones) to any state, instead of just the initial state as defined in

CR1. This means that the adversary can still play the role of a cheating verifier

prior to impersonation as in the concurrent attack, CR1. However, these states of

the prover (clones) can be reset to the initial state or to any other state. Security

against impersonation under the CR1+ thus implies security against impersonation

under an active and concurrent attacks, as well as a CR1 attack.

The Properties of Identification Scheme

The primary objectives of an identification protocol are

• Completeness in the case of honest parties, the prover is successfully able to

authenticate itself to the verifier;

• Soundness a dishonest prover has a negligible probability of convincing a verifier.

3.5.2 Definition of Identification Scheme

In an identity-based identification scheme (ID-scheme), the algorithms can be clas-

sified into one PPT algorithm and one protocol as follows.

1. Key Generation (KeyGen):

Given a security parameter `, KeyGen takes 1` as input and generates a

pair of public instance (pkP) and witness instance (skP). The equation is

KeyGen(1`)→ (pkP , skP).

3.5. Identification Scheme 36

2. Identification Protocol (〈P, V 〉):
A canonical protocol of an ID-scheme can be formalised by CID = (Commit,

Response,Check). Commit, Response and Check are PPT algorithms used

in the following protocol, where P is the prover and V is the verifier.

• Step 1. P chooses r at random from a certain domain and computes

x← Commit(r). P then sends x to V .

• Step 2. V chooses a challenge c at random from a certain set and sends

it to P .

• Step 3. P computes a response y ← Response(skP , r, c) and sends y to

V .

• Step 4. V computes d ← Check(pkP , x, c, y), where d is a decision d ∈
{Accept, Reject}. V accepts P if and only if d = Accept.

3.5.3 Security of Identification Scheme

The following security notations of a secure identification scheme are formally de-

fined using the same notations as in [SMP88, KK02b, Sho99]. We use the similar

conventions as in [FFS88]:

1. P represents an honest prover that follows its designated protocol, P̃ is a

polynomial-time cheater, and P acts as P or P̃ .

2. V represents a valid verifier that follows the designated protocol, Ṽ is an

arbitrary polynomial-time algorithm, which may try to extract additional in-

formation from P , and V acts as V or Ṽ .

3. 〈P, V 〉 represents the execution of the two party protocol, where P is the prover

and V is the verifier.

An adversary (P̃ , Ṽ) is a pair of probabilistic polynomial-time interactive algorithms.

Given the key pair pkP , an adversary Ṽ allows to interact with a prover P several

times and output a string h. The string h (called a “help string”) is used as input

to the adversary P̃ who attempts to convince V . We denote by 〈P̃ (h), V (pkP)〉 the

execution of protocol between V and P̃ where P̃ takes h as input and V takes pkP

as input. We adopt the definition of security against active attacks with respect to

such adversaries as described by [Sho99] as follows.

3.5. Identification Scheme 37

Definition 3.9 An identification scheme (KeyGen, P, V) is secure against active

attacks if for all adversaries (P̃ , Ṽ), for all constants c > 0, and for all sufficiently

large `,

Pr

string = 1

∣∣∣∣∣∣∣∣
(pkP ; skP)← KeyGen(1`);

h← 〈P (pkP , skP), Ṽ (pkP)〉;
string ← 〈P̃ (h), V (pkP)〉.

 < `−c.

3.5.4 Schnorr’s Identification Scheme

Schnorr proposed the first identification scheme based on a discrete logarithm prob-

lem [Sch89]. Later, Bellare and Palacio provided the security proof for Schnorr’s

identification scheme [BP02].

The security of Schnorr’s identification scheme relies on discrete logarithm as-

sumption for passive attacks and one-more discrete logarithm assumption for con-

current attacks. This scheme is still the most efficient and well-studied identification

scheme in the literature and hence, many cryptography primitives construction are

based on Schnorr’s identification scheme. We briefly describe Schnorr’s identification

scheme as follows.

Protocol Description

1. Key Generation (KeyGen):

Given a security parameter `, which is a positive integer, key generation works

as follows.

(a) Take the security parameter 1` as input and select primes p and q, such

that q|p− 1 and |q| = l. (Note: e.g. q ≥ 2160, and p ≥ 21024.)

(b) Select an element g ∈ ZZ∗p with order q and a security parameter t, such

that t = O(|p|) (e.g., t ≥ 20).

(c) Select a random integer s ∈ ZZ∗q and compute v = g−s mod p.

Here, a pair of private key and public parameter is generated where a public

parameter pkP is (p, q, g, t, v) and a private key skP is (s).

2. Identification protocol (〈P, V 〉):
A canonical protocol of an identification scheme can be formalised by CID =

(Commit, Response, Check). Commit, Response and Check are PPT algo-

rithms used in the following protocol, where P is the prover and V is the

verifier.

3.6. Identity-based Identification Scheme 38

• Step 1. P chooses a random integer r ∈ ZZ∗q and, with the public param-

eter pkP = (p, q, g, t, v), computes Commit(p, g, r) = Y = gr (mod p). P

then sends Y to V .

• Step 2. V chooses a random challenge integer c ∈ ZZ2t and sends it to P .

• Step 3. P computes a response Response(skP , r, c) = z where z = r+ c ·
s (mod q) and sends z to V .

• Step 4. V checks if Y ≡ gzvc (mod p) then Check(pkP , Y, c, z)→ Accept,

otherwise Check(pkP , Y, c, z) → Reject. V accepts P if and only if,

d = Accept.

3.6 Identity-based Identification Scheme

The idea of an identity-based cryptosystem was first introduced in 1984 by Shamir

[Sha84]. The first identity-based identification scheme was introduced by Feige,

Fiat, and Shamir [FFS88] in 1988. Since then, many identity-based identification

schemes have been proposed [KH05, KH04, KH06, Fre05].

3.6.1 Definition of Identity-based Identification Scheme

In an identity-based identification scheme (ID-scheme), the algorithms can be clas-

sified into two PPT algorithms and one protocol as follows.

1. Key Generation (KeyGen):

Given a security parameter `, KeyGen takes 1` as input and generates a

public parameter (pkK) and a master private key (skK). The equation is

KeyGen(1`)→ (pkK , skK).

2. Key Extraction (Extract):

Given the identity of the prover (ID) and skK , Extract takes (ID) and skK

as input and computes a witness instance (a prover’s private key) skP then

gives it to the prover. The equation is Extract(ID, skK)→ skP .

3. Identification Protocol (〈P, V 〉):
A canonical protocol of ID-scheme can be formalised by CID = (Commit,

Response, Check), where Commit, Response and Check are PPT algorithms

used in the following protocol where P is the prover and V is the verifier.

3.6. Identity-based Identification Scheme 39

• Step 1. P chooses r at random from a certain domain and computes

x← Commit(r). P then sends x to V .

• Step 2. V chooses a challenge c at random from a certain set and sends

it to P .

• Step 3. P computes a response y ← Response(skP , x, c) and sends y to

V .

• Step 4. V computes d ← Check(pkK , ID, x, c, y), where d is a decision

d ∈ {Accept, Reject}. V accepts P if and only if, d = Accept.

The above protocol (P, V) in both general and identity-based identification schemes

is often called a canonical protocol. We say that (x, c, y) is a valid transcript corre-

sponding to pkK and ID if it satisfies the equation above in Step 4. Note that most

identification schemes are transformable to or from digital signature schemes. This

is a quick way to construct an identification scheme; however, the security in these

schemes is not intended to provide security against active and concurrent attacks.

3.6.2 Security of Identity-based Identification Scheme

We consider a security notion as those defined in [BNN04, KH04], which was an

adaptation of the notion first proposed by Feige, Fiat and Shamir [FFS88] for an

ID-based setting. That is, we consider three types of attack on an honest, private

key equipped prover, namely, passive attack, active attack and concurrent attack.

Generally, a two-phase game is considered between a challenger and an adversary.

In a standard identification model, the above attacks should take place and be

completed before an impersonation attempt, i.e. the attacks should be completed in

Phase 1. However, in an identity-based setting, it is natural to allow an adversary

to interact with real provers with identities other than the challenge identity ID∗

even in Phase 2. In passive attacks, an adversary can eavesdrop and is in possession

of transcripts of conversations between the provers and verifiers. In active and

concurrent attacks, the adversary first plays the role of a cheating verifier, interacting

with the provers several times before an impersonation attempt, even in Phase 2

(for provers with identities 6= ID∗).

A two-phase attack game between a passive or active/concurrent impersonator

A and a challenger is described below.

3.6. Identity-based Identification Scheme 40

Key Generation:

The challenger takes as input ` and runs the setup algorithm S. It gives A
the resulting public parameter pkK and keeps the master-key to itself.

Phase 1:

1. A issues some key extraction queries ID1, ID2, The challenger re-

sponds by running the extraction algorithm Extract to generate the pri-

vate key di corresponding to the public identity IDi. It returns di to

A. Let ID be the list that keep the extraction queries. The challenger

updates for every query for (IDi, di) to ID.

2. A issues some transcript queries (in a passive attack) or some identifica-

tion queries on IDj (in an active/concurrent attack).

3. The queries in Step 1 and Step 2 above can be interleaved and asked

adaptively. Without loss of generality, we may assume that A will not

query the same IDi that has been issued in the key extraction queries,

the transcript queries or identification queries again.

Phase 2:

1. A outputs a challenge identity ID∗ 6∈ ID, which it wishes to impersonate.

Next, A plays the role of a cheating prover (an impersonation attempt

on the prover holding the public identity ID∗), trying to convince the

verifier.

2. A can still issue some key extraction queries as well as transcript queries

or identification queries in Phase 2, with the restriction that no queries

on the challenged identity ID∗ are allowed.

We say that A succeeds in impersonating if it can make the verifier accept it.

Definition 3.10 We say that an identity-based identification scheme IBI is (t, q, ε)-

secure under passive (active and concurrent) attacks if for any passive (active and

concurrent) impersonator A who runs in time t,

Pr[A can impersonate] < ε,

where A can make at most q key extraction queries.

3.6. Identity-based Identification Scheme 41

3.6.3 Kurosawa-Heng Identity-based Identification without

Random Oracles Scheme

The Kurosawa-Heng identity-based identification scheme (KH-IBI) [KH05] is the

first identity-based identification scheme, which is provably secure against imperson-

ation under active and concurrent attacks in the standard model. KH-IBI schemes

are derived from the Boneh- Boyen signature scheme [BB04], a scheme that is se-

cure against existential unforgeability under adaptive chosen message attack in the

standard model, based on the Strong Diffie-Hellman (SDH) assumption.

Identity-Based Identification Scheme Secure against Passive Attack (KH-

IBI-P)

Protocol Description

1. Key Generation (KeyGen):

Given a security parameter `, which is a positive integer, KeyGen works as

follows.

(a) Take a security parameter 1` as input and select a collision-resistant hash

function H : {0, 1}∗ → ZZ∗p. Then run the GDH Parameters Generator to

obtain the system parameter {G1,G2,GT , g1, g2, H}.

(b) Randomly choose integers x, y ∈ ZZ∗q such that u = gx2 ∈ G2 and v = gy2 ∈
G2.

Here, a pair of secret and public parameter is generated where pkK = (G1,G2,

GT , g1, g2, u, v,H) is the public parameter and skK = (x, y) is the master

private key of the key generator centre (KGC).

2. Key Extraction (Extract):

Given the identity of the prover (ID ∈ {0, 1}∗), the public parameter pkK

and the master private key skK , Extract takes (ID) and (x, y) as input and

computes a witness instance skP as follows.

• Randomly choose s ∈ ZZ∗q and compute W1 = g
1/(x+H(ID)+ys)
1 ∈ G1.

• If (x+H(ID) + ys) mod p = 0, which is unlikely, then randomly reselect

s ∈ ZZ∗q and computes W1 again, as in the previous step.

3.6. Identity-based Identification Scheme 42

After this, the user’s public key pkP = ID and user’s private keys skP =

(W1, s) are given to prover.

3. Identification Protocol (〈P, V 〉):
A canonical protocol of an identity-based identification scheme can be for-

malised by CID = (Commit,Response, Check). Commit, Response and

Check are PPT algorithms used in the following protocol, where P is the

prover and V is the verifier.

• Step 1. P chooses a random generator r ∈ G1 and computes Commit(r, s1) =

(R, s) such that R = ê(r, u · gH(ID)
2 · vs). P then sends (R, s) to V .

• Step 2. V chooses a random challenge integer c, c ∈ ZZ∗p and sends it to

P .

• Step 3. P computes a response Response(skP , y, c) = Z = r +W1
c ∈ G2

and sends Z to V .

• Step 4. V checks if R · ê(g1, g2)c ≡ ê(Z, u · gH(ID)
2 · vs) then Check(pkK ,

R, ID, c, Z) → Accept, otherwise Check(pkK , R, ID, c, Z) → Reject. V

accepts P if and only if, d = Accept.

Identity-Based Identification Scheme Secure against Active and Concur-

rent Attack (KH-IBI-AC)

1. Key Generation (KeyGen):

Given a security parameter `, which is a positive integer,KeyGen works as

follows.

(a) Take the security parameter 1` as input and select a collision-resistant

hash function H : {0, 1}∗ → ZZ∗p. Then run the GDH Parameters Gener-

ator to obtain the system parameter {G1,G2,GT , g1, g2, H}.

(b) Randomly choose integers x1, x2, y1, y2 ∈ ZZ∗q such that u1 = gx1
2 , u2 =

gx2
2 ∈ G2 and v1 = gy1

2 , v2 = gy2

2 ∈ G2.

Here, a pair of secret and public parameter is generated where pkK = (G1,G2,

GT , g1, g2, u1, u2, v1, v2, H) is the public parameter and skK = (x1, x2, y1, y2) is

the master private key of key generator centre (KGC).

3.6. Identity-based Identification Scheme 43

2. Key Extraction (Extract):

Given the identity of the prover (ID ∈ {0, 1}∗), the public parameter pkK

and the master private key skK , Extract takes ID and (x, y) as input and

computes a witness instance skP as follows.

• Randomly choose s1, s2 ∈ ZZ∗q and compute W1 = g
1/(x1+H(ID)+y1·s1)
1 ,W2 =

g
1/(x2+H(ID)+y2·s2))
1 ∈ G1.

• If (x1 +H(ID) + y1 · s1) mod p or (x2 +H(ID) + y2 · s2) mod p are equal

to 0, which is unlikely, then randomly reselect s1 or (and) s2 ∈ ZZ∗q and

computes W1 or (and) W2 again as in the previous step.

After this, the user’s public key (ID) and user’s private keys (W1,W2, s1, s2)

are given to the prover.

3. Identification Protocol (〈P, V 〉):
A canonical protocol of an identity-based identification scheme can be for-

malised by CID = (Commit,Response, Check), where Commit, Response

and Check are PPT algorithms used in the following protocol where P is the

prover and V is the verifier. Assume that P uses W1, s1 as witnesses in the

following protocol:

• Step 1. P chooses random generators r, Z2 ∈ G1 and a random integer

c2 ∈ ZZ∗p and computes Commit(r, l, s1, s2) = (R1, R2, s1, s2), where R1 =

ê(r, u1 ·gH(ID)
2 ·vs11) ∈ GT and R2 = ê(Z2, u2 ·gH(ID)

2 ·vs22)/ê(g1, g2)c2 ∈ GT .

P then sends (R1, R2, s1, s2) to V .

• Step 2. V chooses a random challenge integer c, c ∈ ZZ∗p and sends it to

P .

• Step 3. P first computes c1 = c − c2 mod p and then computes a re-

sponse Response(W1, r, Z2, c, c1, c2) = Z1 = r +W c1
1 ∈ G2. It then sends

(Z1, Z2, c1, c2) to V .

• Step 4. V checks if c = c1 +c2 mod p, R1 · ê(g1, g2)c1 ≡ ê(Z, u1 ·gH(ID)
2 ·vs11)

and R2 · ê(g1, g2)c2 ≡ ê(Z, u2 ·gH(ID)
2 ·vs22) then Check(pkK , R, ID, c, Z)→

Accept, otherwise Check(pkK , R, ID, c, Z)→ Reject. V accepts P if and

only if, d = Accept.

Chapter 4

Universal Designated Verifier Signature
Schemes

In this chapter, two variants of universal designated verifier signature schemes called

“one-time universal designated verifier signature” and “universal designated verifier

signature with threshold-signers” are described. Part of this chapter appeared in

ICISC 2008 [TSM08] and IWSEC 2009 [TSM09c].

4.1 Introduction

Invented by Jakobsson, Sako and Impagliazzo in [JSI96], a designated verifier sig-

nature is a signature that provides not only authentication of a message but also

provides the deniability property allowing the signer to deny the signature. Besides,

the (designated) verifier can also generate such a signature all by himself/herself. In

other words, the only person who will be convinced of the authenticity of the signa-

ture on the message is the designated verifier since this signature can be constructed

either by the signer or by himself/herself.

Extended from the above signature scheme, a universal designated-verifier sig-

nature proposed by Steinfeld, Bull, Wang and Pieprzyk in [SBWP03] is a signature

that allows a party called “a signature holder” to generate a designated verifier

signature from a regular signature given by the signer. Basically, the properties of

this signature are identical to the designated verifier signature. The only additional

functionality of this signature is a signature holder’s privilege to designate the signa-

ture to any verifier arbitrarily chosen by him. Since then, there are many studies in

the security research that extends the above notion, including the works presented

in this Chapter. The first contribution of our work in this chapter is the notion of

one-time universal designated verifier signature. In this notion, the signer is allowed

to limit his/her signature to be used to generate a designated verifier signature only

44

4.1. Introduction 45

one time. A signature holder is permitted to compute only one designated veri-

fier signature from the signer’s signature, otherwise, the signer’s signature can be

revealed. In the following, we provide a scenario describing our notion in the real

life.

A doctor, Susan informs her patient, Henry that he is positive for some sensitive

disease such as cancers or AIDS. Since Henry may not want to reveal his identity

when he brings the prescription to get medication or when he needs to see the

specialist for special treatment, Susan may provide a statement for Henry such that

Henry can show it to pharmacy or a specialist. However, this statement should be

used only one time due to the medical restriction. These are three properties required

for the above scenario. There are the privacy of the patient, the authenticity provided

by Susan and the restriction of signature usage. Henry wants to protect his privacy.

Susan wants the authenticity and the restriction of signature usage to provide an

authenticated statement to Henry such that this authenticated statement can be

used only once or, otherwise, the information about the signature is revealed and

hence, Henry’s privacy will not be protected any longer. The above scenario cannot

be solved by a universal designated verifier signature but the one-time universal

designated verifier signature is the solution. We note that the above scenario can be

converted to its associated digital scenario counterpart, where the signatures refer

to digital signatures instead.

The second contribution of our work in this chapter is the notion of universal

designated verifier signature with threshold signer. In this notion, privacy is pro-

vided for both the signer and the signature holder. The signature holder is allowed

to provide anonymity for the signer(s) and the signature(s) that he has in his pos-

session. In other words, a designated verifier is convinced that a designated verifier

signature is constructed by the signature(s) from a signer (or t signers) in the list of

n signers. In the following, a scenario describing our notion in real life is provided.

This scenario is motivating from the law-suit. The jurors want to confirm a convic-

tion statement to a judge. Information of the jurors’ identity and their convictions

stating guilty or not guilty must be protected. The only information that can be

revealed is the statement that at least t out of n jurors voted along with this convic-

tion statement. This statement may be designated to a judge so that only he/she

can know and can be convinced that it is voted by at least t out of n jurors. Another

scenario in the law-suit is when a witness(es) wants to give a statement of the crime

that he/she (they) witnessed. In this case, a lawyer or district attorney will act as

4.1. Introduction 46

a middle man to deliver the statement to a judge. However, the privacy between

witness(es) and judge, the anonymity of witness(es), and authenticity of witness(es)

cannot be guaranteed in the traditional method. The notion of universal designated

verifier signature with threshold signer provides the privacy between witnesses (as

signers) and a judge (as a verifier), and the anonymity and authenticity of witness

in the above scenario.

4.1.1 Related Work

Since the novel invention of designated verifier signatures proposed by Jakobsson,

Sako and Impagliazzo in [JSI96] and the novel extension of universal designated

verifier signatures proposed by Steinfeld, Bull, Wang and Pieprzyk in [SBWP03], the

topics of designated verifier signatures and universal designated verifier signatures

areas have been extensively studied. These include [LV07a, LV04, LLP05, LWB05,

HMSZ05, SZM04].

In ACNS’05, Zhang, Furukawa and Imai [ZFI05] were the first to propose a uni-

versal designated verifier signature scheme in the standard model. Later, two univer-

sal designated verifier signature schemes were proposed by Laguillaumie, Libert and

Quisquater in [LLQ06]. Their schemes have been proven in the standard model and

they claimed that their schemes are more efficient than previous works[LLQ06]. In

UIC’06, the restricted universal designated verifier signature scheme was proposed

by Huang et al. [HSMZ06]. This restricted universal designated verifier signature

scheme limits power of a signature holder so that a signature holder can generate a

designated verifier signature from a signer’s signature for only k times. If designated

verifier signatures were generated more than k times, then these k designated verifier

signatures can be used to deduce a standard signature. However, in their scheme

setting, the party who has a privilege to assign the limited number (k), is a signature

holder himself/herself. Hence, by possessing the power to the limited number (k)

of designated verifier, a signature holder does not need to process with the scheme

requirement. Therefore, this scheme is not practical compared with our notion,

which a signer is a party to assign the limited number (k) of designated verifier

where k = 1. However, in ISC’07, Laguillaumie and Vergnaud [LV07b] pointed out

that the restricted universal designated verifier signature scheme in [HSMZ06] has

failed to achieve the restriction property as it should be. They demonstrated that

the restricted designated verifier signature is no longer restricted since the signature

4.1. Introduction 47

holder can provided a proof of possession of signature by using zero knowledge proof.

The attack of universal designated verifier signature, which is widely discussed,

is delegatability attack. This was originally inspired by Lipmaa et al. in [LWB05].

This attack is a case when the signer or verifier reveals some information without

uncovering his/her private key such that a signature holder can compute a designated

verifier signature on any message of choice. They claim that non-delegatability

property is needed for universal designated verifier signature and some examples

of applications that needed this notion were given. This includes hypothetical e-

voting protocol. They also provide the claim proposed by Steinfeld, Bull, Wang and

Pieprzyk in [SBWP03] is delegatable.

Compared to the notion of ring signatures introduced and formalised by Rivest,

Shamir and Tauman in [RST01], the notion of universal designated verifier sig-

nature with threshold signers provides not only the integrity of the message, and

the authenticity, non-repudiation and anonymity of the signer, but the privacy.

In this notion, a key to achieve the anonymity of the signer is signer-ambiguity.

Without cooperating with other signers, a signer alone can compute a signature

that has been signed by one of the signers in a set of signers (a ring of signers).

Therefore, a verifier can be convinced that the authentication of a message is gen-

erated by one signer in the ring. Hence, the signer remains anonymous to everyone.

The ring signatures topic has been widely studied by many researchers, including

[BSS02, TWC+04, HS03, ZK02, BKM06, SW07, FS07, LW04, LWW03]. The no-

tion of threshold ring signatures introduced and formalised by Bresson, Stern and

Szydlo in [BSS02] is the closest feature to the notion of ring signature. In this notion,

multi signers allow constructing a signature with multi signers-ambiguity property.

The threshold ring signatures topics have been widely studied by many researchers,

including [TWC+04, LW04, LWW03, IT05, CHY04].

The closest feature to our notion of universal designated verifier signature with

threshold signers is the primitive notion called universal designated verifier ring

signature proposed by Li and Wang [LW06]. In this notion, the signature holder

can designate a ring signature to a specific verifier. It seems that this scheme has

met the requirement of our notion where t = 1, nevertheless, it is argued that the

goals are different. In their scheme, a ring signature on a message is provided by

a signer, but not by a signature holder. Hence, a signature holder does not know

exactly who signed the message. Compared to our notion of universal designated

verifier signature with threshold signers, a signature holder knows who signs the

4.1. Introduction 48

message. Moreover, the signature holder should be the one who does not want to

reveal which signer’s signature he possessed and hence, he may just want to prove

that he possessed some signatures.

From the above, it is stated that none of the existing primitives achieve the

requirements needed as stated in the above motivating scenarios. Therefore, we

are the first to propose and formalise new notions called “one-time universal desig-

nated verifier signature” and “universal designated verifier signature with threshold

signers”.

4.1.2 Our Contributions

In this chapter, the notion of the one-time universal designated verifier signature

(OT-UDVS) scheme and universal designated verifier signature with threshold-

signers (TS-UDVS) schemes are introduced. A model of the OT-UDVS scheme

is provided together with its security notions. We present a concrete construction

scheme of the OT-UDVS scheme and its security analysis. The notion of threshold-

signers universal designated verifier signature (TS-UDVS) schemes to capture the

above requirements is provided. A model of the TS-UDVS scheme and its security

notions to capture the integrity of a message, the authenticity, non-repudiation,

privacy and anonymity of the signers is also provided. A concrete scheme is also

presented, together with its security proof to show that our scheme is secure in our

model. This is the first time this kind of primitive scheme has been introduced into

the literature.

Chapter Organisation

This chapter is organised as follows. In Section 4.2, the definition of OT-UDVS

and its security model will be presented. In Section 4.3, the OT-UDVS scheme is

presented. Then, the security proof of our concrete scheme is presented in Section

4.4. The definition of TS-UDVS and its security notations will be described in

Section 4.5. Next, our TS-UDVS scheme will be given in Section 4.6. Proof of the

security of our concrete scheme is described in Section 4.7 followed by the chapter

conclusion.

4.2. Definition of One-Time Universal Designated Verifier Signatures 49

4.2 Definition of One-Time Universal Designated

Verifier Signatures

In this section, a definition of a one-time universal designated verifier signature (OT-

UDVS) scheme, which allows a signer to limit the usage of his/her signature used

by a signature holder is given.

4.2.1 Outline of OT-UDVS

First of all, it must be assumed that all parties must comply with a registration

protocol with a certificate authority (CA) to obtain a certificate on their public

parameters. A one-time universal designated verifier signature scheme Σ is a 8-tuple

(SKeyGen, Sign, V erify, V KeyGen, Delegate, DV erify, DSimulate, Open).

The definition of SKeyGen, Sign, V erify, V KeyGen, Delegate, DV erify and

DSimulate can be found in Section 3.3 where param is 1`. The Open algorithm is

described as follows.

Opening a Delegated Signature (Open): This is a probabilistic algorithm that,

given two designated verifier signatures ρ̂, ρ̃ and their designated verifiers’

public parameters pkV̂ , pkṼ , signer’s public parameter pkS and a message M

as input, outputs a signer signature σ. That is,

Open(ρ̂, ρ̃, pkV̂ , pkṼ , pkS,M)→ σ.

4.2.2 Completeness

Remark: For all ` ∈ N, all (pkS, skS) ∈ SKeyGen(1`), all (pkV , skV) ∈ V KeyGen(1`)

and all messages M , a one-time universal designated verifier signature must satisfy

the following properties:

Completeness of a Signature:

∀σ ∈ Sign(M, skS, pkS),Pr[V erify(M,σ, pkS) = Accept] = 1. (4.1)

Completeness of a Designated Verifier Signature:

∀ρ ∈ Delegate(M,σ, pkV , pkS),

Pr[DV erify(M, ρ, pkV , skV , pkS) = Accept] = 1. (4.2)

4.2. Definition of One-Time Universal Designated Verifier Signatures 50

Completeness of a Simulated Designated Verifier Signature:

∀% ∈ DSimulate(M, pkV , skV , pkS),

Pr[DV erify(M,%, pkV , skV , pkS) = Accept] = 1. (4.3)

Completeness of an Opened Signature:

∀ρ̂ ∈ Delegate(M,σ, pkV̂ , pkS);∀ρ̃ ∈ Delegate(M,σ, pkṼ , pkS) :

DV erify(M, ρ̂, pkV̂ , skV̂ , pkS) = Accept;

DV erify(M, ρ̃, pkṼ , skṼ , pkS) = Accept;

σ ← Open(ρ̂, ρ̃, pkV̂ , pkṼ , pkS,M),

Pr[V erify(M,σ, pkS) = Accept] = 1. (4.4)

A signature is referred to as ‘open’ if there are two valid designated signatures

dedicated to two different designated verifiers issued by the signature holder.

Source Hiding:

∀ρ ∈ Delegate(M,σ, pkV , pkS);∀% ∈ DSimulate(M, pkV , skV , pkS) :

DV erify(M, ρ, pkV , skV , pkS) = Accept;

DV erify(M,%, pkV , skV , pkS) = Accept;

φ
$← {ρ, %}, |Pr[φ = ρ]−Pr[φ = %]| is negligible,

when taken all possible choice of ρ and %. (4.5)

In the following subsections, the other security properties of one-time universal

designated verifier signatures will be discussed in detail. These include the unforge-

ability, the single designatability and the non-transferability privacy (which implies

the source hiding property). The unforgeability and the non-transferability privacy

are introduced in [SBWP03]. The single designatability is introduced in [TSM08]

to capture the requirement of the OT-UDVS scheme. The single designatability

property captures the sense that no signature holder can convince more than one

designated verifier or produce more than one designated verifier signature. The

original signature will be revealed, as a proof of this misbehaviour, if the signature

holder did anything against the above condition.

4.2. Definition of One-Time Universal Designated Verifier Signatures 51

4.2.3 Unforgeability

A chosen public key attack plays an important role that captures a collusion attack

launched by a malicious signature holder, malicious signers and malicious verifiers.

The chosen public key attack is to simulate a situation that, in addition to the target

signer and the target verifier, an adversary possesses the knowledge of secret keys of

other signers or verifiers, and designated verifier signatures prior to the attack. This

reflects the collusion attack where collusion happens among a malicious signature

holder, malicious signers and malicious verifiers.

Unforgeability under adaptive chosen message and chosen public key attack are

formally given as follows. The unforgeability property is intentionally to prevent an

adversary corrupted with signature holder to generate an (OT-U)DVS signature ρ∗

on a new message M∗. Given an access with its arbitrary choice of the verifier’s

public parameter pkV to signing oracle, delegation oracle, and (designated verifier)

verification oracle, a choice of message M and the signer’s public parameter pkS

as input, the unforgeability provides an assurance that no adversary can produce

a designated verifier signature on a new message. Denote EUF -OT -UDV S, the

existential unforgeability of OT-UDVS scheme and CM -CPK-A, the adaptively

chosen message and chosen public key attack. Then we define ACM−CPK−AEUF−OT−UDV S as

the adaptively chosen message and chosen public key adversary and let F be a

simulator. The game between F and A that describes the existential unforgeability

of OT-UDVS scheme can be defined as follows.

SPO oracle: First, A can make queries at most qSP times for a public key of

signer. Then, F runs the SPO algorithm to generate a private key skS and

a public parameter pkS of signer. After that, F returns pkS to A.

VSO oracle: First, A can make queries at most qV S times for the verification of

a signature σ on a message M with its corresponding public parameter pkS.

Then, in return, F runs the V erify algorithm to verify a signature σ on a

message M corresponding with pkS. Finally, F returns Accept if a signature

σ on a message M is valid regarding to pkS, otherwise, it outputs Reject.

VPO oracle: First, A can make queries at most qV P times for a verifier’s public

parameter pkV . Then, in return, F runs the V KeyGen algorithm to generate

a private key skV and a public parameter pkV of a verifier. F outputs pkV

and returns it to A.

4.2. Definition of One-Time Universal Designated Verifier Signatures 52

DVO oracle: A can make queries at most qDV times for the verification of a desig-

nated verifier signature ρ (or %) on its chosen messageM with its corresponding

public parameters pkS, pkV . Next, F runs the DV erify algorithm to verify

a designated verifier signature ρ (or %) on a message M corresponding with

pkS, pkV . Finally, F returns Accept if a designated verifier signature ρ (or %)

on a message M is valid regarding to pkS, pkV , otherwise, it returns Reject.

SDO oracle: Given choices of a signer’s public parameter pkS and a verifier’s

public parameter pkV , A can make queries at most qSD times for a (simulated)

designated verifier signature % on its choice of message M , which % must indeed

generated by verifier. Next, F runs the DSimulate algorithm to generate a

(simulated) designated verifier signature % on a message M corresponding with

pkS, pkV . Finally, F outputs %,M and returns them to A.

OPO oracle: Given choices of a signer’s public parameter pkS and verifiers’ public

parameters pkV̂ , pkṼ , A can make queries at most qOP times to open a signa-

ture σ on a message M from two designated verifier signatures ρ̂, ρ̃. In return,

F runs the Open algorithm to open a signature σ on a message M from ρ̂, ρ̃

and its corresponding pkS, pkV̂ , pkṼ . Finally, F returns σ if ρ̂, ρ̃ signatures on

a message M is valid regarding to pkS, pkV̂ , pkṼ , otherwise, it returns Reject.

SKO oracle: A can make queries at most qSK times for a private key skS (or skV)

corresponding to a public parameter pkS (or pkV) of the signer (or the verifier).

Then, F returns a corresponding private key skS (or skV) to A.

Note that, for the definition of the SSO and DSO oracles, the reader may refer

to Section 3.3.1. Then, we assume that, given the public parameters pk∗S, pk
∗
V as

input, A returns a forged signature ρ∗ on a message M∗. We say that A wins the

game if

1. Accept← DV erify(M∗, ρ∗, pk
∗
V , sk

∗
V , pk

∗
S).

2. Neither pk∗S nor pk∗V has been submitted as input of a query for a private key

to the SKO oracle.

3. With M∗, pk∗S as input, A never made a request for a signature to the SSO
oracle.

4.2. Definition of One-Time Universal Designated Verifier Signatures 53

4. With M∗, pk∗S as input, A never made any request for a designated verifier

signature to the DSO oracle.

5. With M∗, pk∗V as input, A never made any request for a designated verifier

signature to the SDO oracle.

Let SuccCM−CPK−AEUF−OT−UDV S(.) be defined as the success probability of thatACM−CPK−AEUF−OT−UDV S

wins the above game.

Definition 4.1 One-time universal designated verifier signature scheme is (t,qH ,

qSP ,qSS,qV S,qV P ,qDS,qDV ,qSD,qOP ,qSK,ε)-secure against existential unforgeability un-

der a chosen message and chosen public key attack if there is no PPT CM-CPK-A

adversary ACM−CPK−AEUF−OT−UDV S such that the success probability SuccCM−CPK−AEUF−OT−UDV S(`) =

ε is non-negligible in `, where ACM−CPK−AEUF−OT−UDV S runs in time at most t, make at most

qH , qSP , qSS, qV S, qV P , qDS, qDV , qSD, qOP , and qSK queries to the random oracle

HO, the SPO oracle, the SSO oracle, the VSO oracle, the VPO oracle, the

DSO oracle, the DVO oracle, the SDO oracle, the OPO oracle, and the SKO
oracle, respectively.

4.2.4 Non-transferability Privacy

The source hiding property is provided that, given the verifier’s public parame-

ter pkV , the verifier’s private key skV , the signer’s public parameter pkS, and a

message M , one can compute a (simulated) designated verifier signature indistin-

guishable from a designated verifier signature generated by a signature holder. The

above property does not imply the non-transferability privacy property introduced

in [SBWP03] and elaborated in [HSMW06].

The non-transferability privacy property is different from the source hiding prop-

erty where even one can obtain or review many designated verifier signatures ρ1, ..., ρq

on the same message M designated to either same or different verifiers. In addition,

the designated verifier signatures ρ1, ..., ρq are also generated by the same signature

holder using the same signature σ. However, the non-transferability privacy prop-

erty for one-time universal designated verifier signature schemes is different from

above description. A signature holder can generate only one designated verifier sig-

nature ρ per message per verifier or else the original signature σ is revealed when

one obtains two or more designated verifier signatures generated from the same sig-

nature σ. Therefore, the non-transferability privacy property for one-time universal

4.2. Definition of One-Time Universal Designated Verifier Signatures 54

designated verifier signature schemes claims that (1) it is implies the source hiding

property and, (2) even if an adversary obtains or investigates many designated ver-

ifier signatures ρ1, ..., ρq on its choices of message M1, ...,Mq designated to either

same or different verifiers, he/she cannot convince other party that a signer is the

one who is responsible for generating a signature σ related to a designated verifier

signature ρ ∈ {ρ1, ..., ρq} on a message M ∈ {M1, ...,Mq}.
Let ENT -OT -UDV S be the existential non-transferable privacy of a one-time

universal designated verifier signature scheme. Let ACM−CPK−AENT−OT−UDV S be the adap-

tively chosen message and chosen public key distinguisher. Let F be a simulator.

The game between F and A is defined to describe the existential non-transferable

privacy of one-time universal designated verifier signature scheme defined as follows.

The game is separated into two phases. Start with F constructs the SPO,

SSO, VSO, VPO, DSO, DVO, SDO, OPO and SKO oracles, which are

defined in Section 4.2.3.

The game is then run as follows.

1. Phase 1: A is allowed to make a request to the SPO, SSO, VSO, VPO,

DSO, DVO, SDO, OPO and SKO oracles. The oracles answer as their

design.

2. Challenge: When A is ready to challenge F , it outputs M∗, pk∗S, pk
∗
V with

the constraints that

a. With M∗, pk∗S as input, A never made a request for a signature to the

SSO oracle.

b. With M∗, pk∗S as input, A never submitted a request for a designated

verifier signature to the DSO oracle.

c. With M∗, pk∗V as input, A never submitted a request for a designated

verifier signature to the SDO oracle.

d. With pk∗S as input, A never submitted a request for a private key to the

SKO oracle.

In response, F selects a bit b
$← {0, 1}. If b = 1 then F outputs

ρ ← Delegate(M∗, σ, pk∗V , pk
∗
S) from the DSO oracle to A. Otherwise, F

outputs %← DSimulate(M∗, pk∗V , sk
∗
V , pk

∗
S) from the SDO oracle to A.

4.2. Definition of One-Time Universal Designated Verifier Signatures 55

3. Phase 2: A is allowed to return arbitrarily to Phase 1 or Challenge as many

times as it wants. However, there is a condition that A must have at least one

set of challenges M∗, pk∗S, pk
∗
V such that

a. With M∗, pk∗S as input, A never submitted a request for a signature to

the SSO oracle.

b. With M∗, pk∗S as input, A never submitted a request for a designated

verifier signature to the DSO oracle.

c. With M∗, pk∗V as input, A never submitted a request for a designated

verifier signature to the SDO oracle.

d. With pk∗S as input, A never submitted a request for a corresponding pri-

vate key sk∗S to the SKO oracle.

4. Guessing: Finally, A responds with a guess b′, which is corresponding to the

challenge M∗, pk∗S, pk
∗
V . The distinguisher wins the game if b = b′.

Let SuccCM−CPK−AENT−OT−UDV S(.) be the success probability of that ACM−CPK−AENT−OT−UDV S wins

the above game.

Definition 4.2 One-time universal designated verifier signature scheme is (t,qH ,

qSP ,qSS,qV S,qV P ,qDS,qDV ,qSD,qOP ,qSK,ε)-secure against existential non-transferable

privacy under a chosen message and chosen public key attack if there is no PPT

CM-CPK-A distinguisher ACM−CPK−AENT−OT−UDV S such that the success probability

SuccCM−CPK−AENT−OT−UDV S(`) = |Pr[b = b′] − Pr[b 6= b′]| = ε is non-negligible in `, where

ACM−CPK−AENT−OT−UDV S runs in time at most t, make at most qH , qSP , qSS, qV S, qV P ,

qDS, qDV , qSD, qOP , and qSK queries to the random oracle HO, the SPO oracle,

the SSO oracle, the VSO oracle, the VPO oracle, the DSO oracle, the DVO
oracle, the SDO oracle, the OPO oracle, and the SKO oracle, respectively.

4.2.5 Single Designatability

The single designatability property is similar to the opening property introduced

in [HSMW06] and analysed by Laguillaumie and Vergnaud in [LV07b]. The multi-

time restricted delegation was mainly discussed in the above works. Nevertheless,

Laguillaumie and Vergnaud claimed that there is always proof for the restricted

UDVS scheme in [HSMW06], which a signature holder can generate a designated

4.2. Definition of One-Time Universal Designated Verifier Signatures 56

verifier signature from a signature without getting a penalty for over spending. For

one-time universal designated verifier signature schemes, the single designatability

property restricts the signature holder such that he/she can only convince one verifier

with one designated verifier signature without being penalised.

The single designatability property provides security against existential single

designatability’s adversary under adaptive chosen message and chosen public key

attack. Generally, it prevents an adversary corrupted with signature holder to gen-

erate two (one-time universal) designated verifier signatures ρ̂, ρ̃ on a message M

such that both signatures are valid on the same message generated by the same

signature holder. However, both designated verifier signatures could not be opened

to reveal an original signature σ generated by the signer.

Let ESD-OT -UDV S be the existential single designatability of one-time univer-

sal designated verifier signature scheme. We also denote by A the adaptively chosen

message and chosen public key adversary and denote by F a simulator. The game

between F and A that describes the existential single designatability of one-time

universal designated verifier signature scheme is illustrated as follows.

In the following descriptions, the SPO, SSO, VSO, VPO, DSO, DVO,

SDO, OPO and SKO oracles are illustrated in Section 4.2.3. A is allowed to

access arbitrarily to these oracles. Finally after the queries, with public parameters

pk∗S, pkV̂ , pkṼ as input, A outputs two designated verifier signatures ρ̂, ρ̃ on a message

M∗. We denote by σ a signature produced by the SSO oracle on input M∗, pk∗S.

It is said that A wins the above game if:

1. (Accept← DV erify(M∗, ρ̂, pkV̂ , skV̂ , pk
∗
S))

∧
(Accept← DV erify(M∗, ρ̃, pkṼ , skṼ , pk

∗
S))
∧
σ 8 Open(ρ̂, ρ̃, pkV̂ , pkṼ , pk

∗
S,M

∗).

2. With pk∗S as input, A never submitted a request for a corresponding private

key sk∗S to the SKO oracle.

3. With M∗, pk∗S, pkV̂ as input, A can make only one request for a designated

verifier signature to the DSO oracle or, with M∗, pk∗S, pkṼ as input, to the

SDO oracle.

Let SuccCM−CPK−AESD−OT−UDV S(.) be the success probability of that ACM−CPK−AESD−OT−UDV S wins

the above game.

4.3. The Proposed OT-UDVS Scheme 57

Definition 4.3 One-time universal designated verifier signature scheme is (t,qH ,

qSP ,qSS,qV S,qV P ,qDS,qDV , qSD,qOP ,qSK,ε)-secure against existential single designata-

bility adversary under a chosen message and chosen public key attack if there is no

PPT adversary A such that the success probability SuccCM−CPK−AESD−OT−UDV S(`) = ε is non-

negligible in `, where A runs in time at most t, make at most qH , qSP , qSS, qV S,

qV P , qDS, qDV , qSD, qOP , and qSK queries to the random oracle HO, the SPO or-

acle, SSO oracle, the VSO oracle, the DSO oracle, the DVO oracle, the SDO
oracle, the OPO oracle, and the SKO oracle, respectively.

4.3 The Proposed OT-UDVS Scheme

We denote by H : {0, 1}∗ → G1 a hash function that maps any string to group

G1 and denote by h : {0, 1}∗ → ZZ∗p a collision-resistant hash function. Let G1,GT

be two groups of prime order p. Let ê be an efficient computationally bilinear

mapping function that map G1 to GT . The above mapping function is defined as

ê : G1 ×G1 → GT . The proposed scheme is described as follows.

SKeyGen: Given a security parameter ` as input, a signer S randomly selects a

prime p = poly(1`) and a random generator g ∈ G1. Let param = (p, ê, g,H, h)

be the system parameter. A private key and a public parameter are generated

as follows. Select a random integer x ∈ ZZp and set X = gx. Then, SKeyGen

outputs pkS = (param, X) as the public parameter of a signer and skS = x as

the private key of the signer.

V KeyGen: Given a security parameter ` as input, a verifier V runs a trapdoor com-

mitment scheme’s setup function Setup(1`) in Section 3.4 to obtain l, gl, Y =

gyl , skV = y. Denote h̄ : {0, 1}∗ → ZZ∗l a collision-resistant hash function se-

lected by V . V then publishes pkV = (param = (l, gl, h̄), Y) as his public key

and keeps skV private.

Sign: Given skS, pkS and a message M as input, S generates a signature σ on

4.3. The Proposed OT-UDVS Scheme 58

message M as follows.

r1
$← ZZp,

σ1 = gr1 ,

M ′ = M ||σ1||pkS,

σ2 = H(M ′)x,

σ3 = H(M ′)r1 .

The signature on message M is σ = (σ1, σ2, σ3).

V erify: Given pkS, σ and a message M as input, a signature holder SH computes

M ′ = M ||σ1||pkS at first and then checks whether

ê(σ2, g)
?
= ê(H(M ′), X)

∧
ê(σ3, g)

?
= ê(H(M ′), σ1)

holds or not. If it is not, then it returns reject. Otherwise, it returns accept.

Delegate: Select a random integer r2 ∈ ZZp. With pkV , σ and a message M as input,

a signature holder SH generates a designate verifier signature ρ on message

M as follows.

M ′ = M ||σ1||pkS,

TV = h(gr2l Y
h̄(M ′) mod l),

hV = h(pkS||pkV ||M ||TV),

R′ = σ2 · σhV3 ,

ρ1 = σ1,

ρ2 = σTV2 ·R′.

The designated verifier signature on message M is ρ = (ρ1,ρ2, r2).

DV erify: With pkS, pkV , skV , ρ and a message M as input, the designated verifier

V computes M ′ = M ||ρ1||pkS, TV = h(gr2l Y
h̄(M ′)), hV = h(pkS|| pkV ||M ||TV),

and R = X · ρ1
hV . Next, V checks whether

ê(ρ2, g)
?
= ê(H(M ′), XTV)ê(H(M ′), R)

holds or not. If not, then output reject. Otherwise, output accept.

4.3. The Proposed OT-UDVS Scheme 59

DSimulate: With skV , pkV , pkS and a message M as input, V first randomly selects

a generator K ∈ G1 and integers k, r̄2 ∈ ZZp. Next, V computes as follows.

M̄ = M ||K||pkS,

TV = h(gr̄2l Y
h̄(M̄)),

hV = h(pkS||pkV ||M ||TV),

ρ1 = (gk ·X−TV ·X−1)
1
hV ,

M ′ = M ||σ(1,SH)||pkS,

r2 = r̄2 + y · h̄(M̄)− y · h̄(M ′),

ρ2 = H(M ′)k.

The designated verifier signature on message M is ρ = (ρ1,ρ2, r2).

Open: With pkV̂ , pkṼ , pkS and two valid designated verifier signatures where the

first signature ρ̂ = (σ̂1, σ̂2, r̂2) is designated to a verifier V̂ and the other

signature ρ̃ = (σ̃1, σ̃2, r̃2) is designated to another verifier Ṽ as input, Open

processes the necessary parameters as follows.

M ′ = M ||σ̂1||pkS = M ||σ̃1||pkS,

TV̂ = h(ĝr̂2
l̂
Ŷ ĥ(M ′)),

hV̂ = h(pkS||pkV̂ ||M ||TV̂),

TṼ = h(g̃r̃2
l̃
Ỹ h̃(M ′)),

hṼ = h(pkS||pkṼ ||M ||TṼ).

Let (ĝl̂, l̂, Ŷ , ĥ) and (g̃l̃, l̃, Ỹ , h̃) be the public parameter of V̂ and Ṽ , respec-

tively. If ρ̂ and ρ̃ are generated from the same signature, then σ̂1 = σ̃1 always

holds.

Hence, for two (or more) simulated designated verifier signatures or a pair

of both simulated designated verifier signature and valid designated verifier

signature, the probability that a designated verifier signature shares the first

part of signature with other designated verifier signatures is negligible. From

the Lagrange interpolating polynomial where the degree of the polynomial

P (hV) is 2, P (hV) = Σ2
j=1Pj(hV), Pj(hV) = Π2

k=1,k 6=jyj(hV − hVk)/(hVj − hVk)
and y = f(hV) = x+r1 ·hV , we can calculate the Lagrange coefficient of PV̂ (0)

4.4. Security Analysis of OT-UDVS 60

and PṼ (0) from hV̂ and hṼ as follows.

cV̂ =
−hṼ

hV̂ − hṼ
,

cṼ =
−hV̂

hṼ − hV̂
.

Therefore, Open processes a signature from two valid UDVS signatures as

follows.

σ1 = ρ̂1 = ρ̃1 = gr1 ,

σ2 = (ρ̂2
c
V̂ · ρ̃2

c
Ṽ)

1
T
V̂
·c
V̂

+T
Ṽ
·c
Ṽ

+1 = H(M ′)x,

σ3 = ρ̂2 · σ
T
V̂

2 = ρ̃2 · σ
T
Ṽ

2 = H(M ′)r1 .

Finally, Open outputs a signature on M as σ = (σ1, σ2, σ3).

4.4 Security Analysis of OT-UDVS

4.4.1 Completeness

Completeness of a Signature: The first part of the signature verification is as

follows.

ê(σ2, g)
?
= ê(H(M ′), X)

ê(H(M ′)x, g)
?
= ê(H(M ′), X)

ê(H(M ′), gx)
?
= ê(H(M ′), gx)

The last part of the signature verification is as follows.

ê(σ3, g)
?
= ê(H(M ′), σ1)

ê(H(M ′)r1 , g)
?
= ê(H(M ′), gr1)

ê(H(M ′), gr1)
?
= ê(H(M ′), gr1)

4.4. Security Analysis of OT-UDVS 61

Completeness of a Designated Verifier Signature:

ê(ρ2, g)
?
= ê(H(M ′), XTV)ê(H(M ′), R)

ê(ρ2, g)
?
= ê(H(M ′), XTV)ê(H(M ′), X · ρ1

hV)

ê(σTV2 · σ2 · σhV3 , g)
?
= ê(H(M ′), XTV)ê(H(M ′), X · σhV1)

ê(H(M ′)x·TV ·H(M ′)x ·H(M ′)r1·hV , g)
?
= ê(H(M ′), gx·TV)ê(H(M ′), gx · gr1·hV)

ê(H(M ′)x·TV ·H(M ′)x+r1·hV , g)
?
= ê(H(M ′), gx·TV)ê(H(M ′), gx+r1·hV)

ê(H(M ′)x·TV +x+r1·hV , g)
?
= ê(H(M ′), gx·TV +x+r1·hV)

Completeness of a Simulated Signature: Given a public parameter of a signer

pkS, a public parameter of designated verifier pkV , a private key of designated

verifier skV , a message M and a designate verifier signature ρ as input, first

computeM ′ = M ||ρ1||pkS, TV = h(gr2l Y
h̄(M ′) mod l), hV = h(pkS||pkV ||M ||TV)

, and R = X · ρ1
hV . Then check

ê(ρ2, g)
?
= ê(H(M ′), XTV)ê(H(M ′), R)

ê(H(M ′)k, g)
?
= ê(H(M ′), XTV)ê(H(M ′), X · ρ1

hV)

ê(H(M ′)k, g)
?
= ê(H(M ′), XTV)ê(H(M ′), X · ((gk ·X−TV ·X−1)

1
hV)hV)

ê(H(M ′)k, g)
?
= ê(H(M ′), XTV)ê(H(M ′), gk ·X−TV)

ê(H(M ′)k, g)
?
= ê(H(M ′), gk).

Therefore, the above statements show that the simulated signature indeed

holds.

4.4. Security Analysis of OT-UDVS 62

Completeness of an Opened Signature:

ê(H(M ′), X)
?
= ê(σ2, g)

ê(H(M ′), X)
?
= ê((σ̂2

c
V̂ · σ̃2

c
Ṽ)

1
T
V̂
·c
V̂

+T
Ṽ
·c
Ṽ

+1 , g)

ê(H(M ′), X)
?
= ê((H(M ′)TV̂ ·x ·H(M ′)x ·H(M ′)r1·hV̂)

−h
Ṽ

h
V̂
−h

Ṽ

·(H(M ′)TṼ ·x ·H(M ′)x ·H(M ′)r1·hṼ)
−h

V̂
h
Ṽ
−h

V̂ , g)
1

T
V̂
·c
V̂

+T
Ṽ
·c
Ṽ

+1

ê(H(M ′), X)
?
= ê((H(M ′)

(T
V̂
·(
−h

Ṽ
h
V̂
−h

Ṽ
)+T

Ṽ
·(
−h

V̂
h
Ṽ
−h

V̂
))·x

) ·

(H(M ′)
(
−h

Ṽ
h
V̂
−h

Ṽ
+
−h

V̂
h
Ṽ
−h

V̂
)·x

) ·

(H(M ′)
r1·(hV̂ ·

−h
Ṽ

h
V̂
−h

Ṽ
+h

Ṽ
·
−h

V̂
h
Ṽ
−h

V̂
)
), g)

1

T
V̂
·(
−h

Ṽ
h
V̂
−h

Ṽ
)+T

Ṽ
·(
−h

V̂
h
Ṽ
−h

V̂
)+1

ê(H(M ′), X)
?
= ê(H(M ′)

x·(T
V̂
·(
−h

Ṽ
h
V̂
−h

Ṽ
)+T

Ṽ
·(
−h

V̂
h
Ṽ
−h

V̂
))

·H(M ′)x, g)

1

T
V̂
·(
−h

Ṽ
h
V̂
−h

Ṽ
)+T

Ṽ
·(
−h

V̂
h
Ṽ
−h

V̂
)+1

ê(H(M ′), gx)
?
= ê(H(M ′)x, g).

The above statements show that an opened signature is complete. �

4.4.2 Unforgeability

Theorem 4.1 In the random oracle model, our one-time universal designated veri-

fier scheme is existential unforgeability under an adaptive chosen message and cho-

sen public key attack if the CDH assumption holds.

Proof: The existential unforgeability under an adaptive chosen message and chosen

public key attack of our OT-UDVS scheme will be proved by assuming if there exists

a forger A, which runs the game defined in Section 4.2.3, then there will exist an

adversary F solving the CDH problem by using A. First, the oracles defined in

Section 4.2.3 will be constructed. Next, F is constructed and run over A with the

existential unforgeability game defined in Section 4.2.3. The success probability of

the existential unforgeability game under an adaptive chosen message and chosen

public key attack is then concluded. Finally, it is shown that, from the existential

unforgeability game and its success probability, the success probability of solving

the CDH problem is non-negligible if the success probability of the above game is

non-negligible.

The oracles are constructed and the existential unforgeability game is run as

follows. On input an instance of the CDH problem g, ga and gb, F sets gb as one

4.4. Security Analysis of OT-UDVS 63

of the answers for hash query to random oracle HO. F then sets X = ga in one

of the signers’ public parameters defined as pk∗S. It is assumed that there exists an

algorithm tracking a member on the list of each oracle. Hence, such algorithms will

be omitted. Then M ′ = M ||σ1||pkS and M̆ = M∗||σ1||pkS are parsed. From the

above setting, it is easy for F to construct the HO, SPO, SSO, VSO, VPO,

DSO, DVO, SDO, OPO and SKO oracles as follows.

HO: Select d
$← {0, 1} such that the probability of d = 1 is 1

qH
. If d = 1 then

set H(M̆) = gb return H(M̆). Otherwise, k
$← ZZp;H(M ′) = gk and return

H(M ′).

SPO oracle: Let param = (p, ê, h, OH , g) and choose d̆
$← {0, 1} such that the

probability of d̆ = 1 is 1
qSP

. If d̆ = 1 then set X = ga and return pk∗S =

(param, X∗). Otherwise, t
$← ZZp;X = gt and then return pkS = (param, X)

and keep t as a private key.

SKO oracle: the SKO oracle responses every query on input pkS and pkV with

its corresponding private key expected for pk∗S, which the SKO oracle outputs

⊥.

SSO oracle: Let r1
$← ZZp. On input pkS,M , the SSO oracle outputs σ =(σ1 =

gr1 ,σ2 = H(M ′)t = gt·k,σ3 = H(M ′)r1 = gk·r1) for every query excepted when

pkS = pk∗S and M = M∗. In a case of (pk∗S,M
∗), the SSO oracle outputs ⊥.

DSO oracle: Let r1, r2
$← ZZp. Compute M ′, TV and hV as described in Section

4.3. On input pkS, pkV ,M , the DSO oracle outputs ρ =(ρ1 = gr1 ,ρ2 =

(H(M ′)t)TV · (H(M ′)t · (H(M ′)r1)hV = gt·k·(TV +1)+k·r1·hV ,r2) for every query

excepted when pkS = pk∗S and M = M∗. In a case of (pk∗S,M
∗), the DSO

oracle outputs ⊥.

VSO, VPO, DVO, SDO, and OPO oracles: These oracles are straightfor-

ward as described in Section 4.3.

F then gives an access of these oracles to A. It is assumed that A always makes a

request for a hash of message M to the random oracle HO before it makes a query

to the SSO, VSO, DSO, DVO, SDO or OPO oracles, or before it outputs a

potential forgery, denoted by (M∗, ρ∗, pk
∗
S, pk

∗
V). We also denote by q a polynomial

4.4. Security Analysis of OT-UDVS 64

upper bound on the number of queries that A makes to the random oracle HO and

the SKO oracle.

Finally, A outputs a forged designated verifier signature ρ∗ on a message M∗

with respect to pk∗S, pk
∗
V . It is noted that a message M∗ may be submitted to the

random oracle HO before F outputs the forgery, however, a message M∗ must never

be submitted to the SSO, DSO and SDO oracles.

Let e denote the base of the natural logarithm. Now the probability of the

following events that F does not abort during the simulation is considered.

• E1: F does not abort during the queries to the SKO oracle.

The probability of this event is greater than (1− 1
qSP

)qSP−1 ≈ qSP
e·(qSP−1)

.

• E2: F does not abort during the queries to the SSO oracle.

The fact is that A needs at least one hash value and one signer secret to

output a forgery, and hence, qSS ≤ (qH − 1) · (qSP − 1). Therefore, the proba-

bility of this event is greater than (1− 1
qH ·qSP

)qSS = (1− 1
qH ·qSP

)(qH−1)·(qSP−1) ≈
1
e
· (qH ·qSP

qH ·qSP−1
)(qH + qSP − 1).

• E3: F does not abort during the queries to the DSO oracle.

Similar to the E2 event, which qDS ≤ (qH − 1) · (qSP − 1), the probability

of this event is greater than (1 − 1
qH ·qSP

)qDS = (1 − 1
qH ·qSP

)(qH−1)·(qSP−1) ≈
1
e
· (qH ·qSP

qH ·qSP−1
)(qH + qSP − 1).

Let SuccCM−CPK−AEUF−OT−UDV S = ε be the probability that A wins the game. The

probability that A wins the above game and outputs with a message M∗ and a

signer’s public parameter pk∗S is ε
qH ·qSP−max(qD,qSS)

≤ ε
qH+qSP−1

where qSS ≤ (qH −
1) · (qSP − 1) and qDS ≤ (qH − 1) · (qSP − 1). Note that qH and qSP are the

maximum numbers of queries that A made to the random oracle HO and the

SPO oracle, respectively. Putting the above probabilities together, the probability

is resolved such that F does not abort during the simulation and A wins the game

with M∗, pk∗S is about ε
qH+qSP−1

· qSP
e·(qSP−1)

· (1
e
· (qH ·qSP

qH ·qSP−1
)qH+qSP−1)2= ε

qH+qSP−1
·

qSP
e3·(qSP−1)

· (qH ·qSP
qH ·qSP−1

)2(qH+qSP−1) > ε
e3(qH+qSP−1)

.

From the above probability, it is obvious that the probability, which F suc-

cessfully runs the above simulation and A wins the game with M∗ and pk∗S, is

4.4. Security Analysis of OT-UDVS 65

non-negligible compared with the probability that A wins the game where q >

(qH + qSP − 1).

Hence, within non-negligible running time due to the forking lemma [PS00], F
also obtains another set of forgery by rerunning the experiment with A working as

follows.

• First, reset A to the initial state.

• Secondly, provide the same setting as same as the previous experiment except

a new set of verifiers’ public parameters is given.

• Finally, rerun the experiment with the same random tape as the first experi-

ment.

At the end of the second experiment, F , with non-negligible probability, outputs

a forgery (M∗, ρ∗∗, pk
∗
S, pk

∗∗
V). Since the setting is same as the first experiment, A

outputs M∗, pk∗S with the same probability as in the first experiment. However, in

the second experiment, A given with a new set of verifiers’ public parameters; hence,

A outputs ρ∗∗, pk
∗∗
V , which are different from those in the first experiment.

Finally, F runsOpen to obtain σ, which is σ ← Open(ρ∗, ρ∗∗, pk
∗
V , pk

∗∗
V , pk

∗
S,M

∗).

Since X = ga in pk∗S and H(M̆) = gb, F then outputs σ = H(M̆)a = gb·a as an

answer to the CDH problem with non-negligible probability as mentioned above.

The above simulation shows that a probability of success on attacking our OT-

UDVS scheme by existential unforgeability under an adaptive chosen message and

chosen public key attack is negligible since a probability of solving CDH problem is

negligible. �

4.4.3 Non-transferability Privacy

Theorem 4.2 In the random oracle model, the purposed one-time universal desig-

nated verifier scheme is existential non-transferable privacy against adaptively cho-

sen message and chosen public key distinguisher ACM−CPK−AENT−OT−UDV S.

Proof: To prove Theorem 4.2, it will be shown that the success probability of

distinguisher A attacking our OT-UDVS scheme by running the existential non-

transferable privacy game defined in Section 4.2.4 is non-negligible. The oracle and

the existential non-transferable privacy game defined in Section 4.2.3 will first be

constructed. Then it will be shown that both probabilities of the distribution of DVS

4.4. Security Analysis of OT-UDVS 66

signature generated by a signature holder and a designated verifier are indeed equal.

Finally, it will be concluded the indistinguishability of valid or simulated designated

verifier signatures of the OT-UDVS scheme under the existential non-transferable

privacy game.

In the following, it will be shown that there exists a simulator that runs on both

signer and verifier and generates a designated verifier signature, which is indistin-

guishable whether a signer or a verifier indeed generated it.

First, the simulation will be constructed as follows. F constructs the oracles

in the same way as the proof in Theorem 4.1 except that the random oracle is no

longer required and F can arbitrarily generated a public-private key pair for A. F
gives an access to those oracles to A. Note that for every private key corresponding

to its queried public parameters, F keeps them secretly to itself.

Secondly, the distribution of the DSO oracle is analysed. There are two uni-

formly random integers r1, r2 ∈ ZZp involved in the production of designated verifier

signature beside the private key of the signer. With random integers r1, r2 ∈ ZZp and

a private key of the signer skS, F randomly produces the designated verifier signa-

ture as follows. Let ρDV denote a designated verifier signature in the distribution of

the DSO oracle.

ρ1 = gr1 ,

M ′ = M ||ρ1||pkS,

TV = h(gr2l Y
h̄(M ′)),

hV = h(pkS||pkV ||M ||TV),

R′ = H(M ′)x ·H(M ′)r1·hV ,

ρ2 = H(M ′)x·TV ·R′,

ρDV = (ρ1,ρ2, r2).

Hence, if a designated verifier signature ρ∗ is randomly chosen, then the probability

that ρ∗ is in the distribution of the DSO oracle is Pr[ρDV = ρ∗] = 1
p2 .

Finally, the distribution of the SDO oracle is analysed. There are also two

uniformly random integers k, r̄2 ∈ ZZp involved in the production of the designated

verifier signature in addition to the private key of the verifier. With these random

integers k, r̄2 and a private key of a verifier skV , F randomly produces the designated

verifier signature as follows, with ρDS denoted a designated verifier signature in the

4.4. Security Analysis of OT-UDVS 67

distribution of the SDO oracle.

M̄ = M ||K||pkS,

TV = h(gr̄2l Y
h̄(M̄)),

hV = h(pkS||pkV ||M ||TV),

ρ1 = (gk ·X−TV ·X−1)
1
hV ,

M ′ = M ||σ(1,SH)||pkS,

r2 = r̄2 + y · h̄(M̄)− y · h̄(M ′),

ρ2 = H(M ′)k,

ρDS = (ρ1,ρ2, r2).

Therefore, if a designated verifier signature ρ∗ is randomly chosen, then the proba-

bility that ρ∗ is in the distribution of the SDO oracle is Pr[ρDS = ρ∗] = 1
p2 .

To conclude, due to the above probabilities, one cannot distinguish whether

a randomly given valid universal designated verifier signature is produced by the

DSO oracle or the SDO oracle. Thus, our OT-UDVS scheme satisfies the non-

transferable privacy property. �

4.4.4 Single Designatability

Theorem 4.3 Our one-time universal designated verifier scheme is existential sin-

gle designatable under an adaptive chosen message and chosen public key attack if

the hash function is collision resistant.

Proof: Assume that the hash function h of our OT-UDVS scheme is a collision

resistant hash function. We denote by A a forger and let F denote an adversary

searching for a collision message-pair for hash function h through A. Due to the

completeness of an opened signature, the only designated verifier signatures pair

(ρ̂, ρ̃) that can open is when σ̂1 = σ̃2, σ̂2 = σ̃2 and r̂2 6= r̂2 or pkV̂ 6= pkṼ . The

collision of hash function h will occur if such an event happens.

From the above statement, the simulation can be constructed as follows. First,

since F can arbitrarily generate a public-private key pair for A, F constructs

straightforwardly oracles as described in Section 4.2.5. A is given access to those

oracles. At the end of the above queries, it is assumed that A outputs two des-

ignated verifier signatures ρ̂, ρ̃ on a message M∗ regarding to public parameters

pk∗S, pkV̂ , pkṼ . F pronounces that A wins the game if both signatures are accepted

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 68

by the DVO oracle, and a private key corresponding to pk∗S has never been revealed

by the SKO oracle and only one designated verifier signature on message M∗ can

be queried. F then computes TV̂ = h(ĝr̂2
l̂
Ŷ ĥ(M∗||σ̂1||pk∗S)); TṼ = h(g̃r̃2

l̃
Ỹ h̃(M∗||σ̃1||pk∗S)).

Next, F sets M̂ = pk∗S||pkV̂ ||M∗||TV̂ ; M̃ = pk∗S||pkṼ ||M∗||TṼ and computes hV̂ =

hṼ = h(M̂) = h(M̃).

It is noted that both TV̂ and hV̂ are required to be equal to TṼ and hṼ , respec-

tively. This is because of σ̂1 = σ̃1 and σ̂2 = σ̃2 as we mentioned earlier. However,

TV̂ = TṼ is easy to achieve since A possessed the verifier secret keys and can arbi-

trarily compute h(ĝr̂2
l̂
Ŷ ĥ(M∗||σ̂1||pk∗S)) = h(g̃r̃2

l̃
Ỹ h̃(M∗||σ̃1||pk∗S)). On the other hand, hV̂

is hard to make itself equivalent to hṼ since M̂ 6= M̃ in every case.

Hence, F outputs M̂ and M̃ as messages that lead to a collision of hash value

h(M̂) = h(M̃). This completes the proof. �

4.5 Definition of Universal Designated Verifier Sig-

nature with Threshold-Signers Schemes (TS-

UDVS)

4.5.1 Outline of TS-UDVS

Assume that every party does the registration with a certificate of authority CA to

obtain certificates on their public parameters prior to communications with other

parties. We denote LS with a list of the entire signers such that LS = {pkSi} where

i is an index of the signer.

A threshold-signers universal designated verifier signature scheme Σ is a seven-

tuple (SKeyGen, Sign, V erify, V KeyGen, TDesignate, DV erify, DSimulate).

The definition of SKeyGen, Sign, V erify and V KeyGen is same as the definition

in Section 3.3 where param is 1`. The definition of TDesignate, DV erify and

DSimulate is described as follows.

Signature Threshold-Signers Designation (TDesignate): Denote by t a num-

ber of signers who a signature holder possessed their signatures and denote by

n the total number of signers. This is a probabilistic algorithm that, given a

verifier’s public parameter pkV , signers’ public parameters pkS1 , ..., pkSn , the

signers’ signatures σ1, ..., σt, and a message M as input, TDesignate returns

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 69

a designated verifier signature ρ. That is,

TDesignate(M,σ1, ..., σt, pkV , pkS1 , ..., pkSn)→ ρ.

Designated Verifier Signature Verification (DV erify): This is a determinis-

tic algorithm that, given a verifier’s public parameter pkV , signers’ public

parameters pkS1 , ..., pkSn , a message M and a designated verifier signature ρ

as input, DV erify returns a verification decision d ∈ {Accept, Reject}. That

is,

DV erify(M, ρ, pkV , pkS1 , ..., pkSn)→ d.

Simulation of a Designated Verifier Signature (DSimulate): This is a prob-

abilistic algorithm that, given a verifier’s public parameter pkV , a verifier’s

private key skV , signers’ public parameters pkS1 , ..., pkSn , and a message M as

input, DSimulate outputs a designated verifier signature % such that

DV erify(M,%, pkV , skV , pkS1 , ..., pkSn)→ Accept.

That is,

DSimulate(M, pkV , skV , pkS1 , ..., pkSn)→ %.

Security notions for universal designated verifier signature with threshold-signers

(TS-UDVS) schemes are described in the following subsections. They include com-

pleteness, unforgeability, non-transferable privacy and anonymity.

4.5.2 Completeness

For all ` ∈ N, all (pkS, skS) ∈ SKeyGen(1`), all (pkV , skV) ∈ V KeyGen(1`) and all

messages M , a universal designated verifier signature with threshold-signers scheme

must comply with the following properties:

Completeness of a Signature:

∀σ ∈ Sign(M, skS, pkS),Pr[V erify(M,σ, pkS) = Accept] = 1. (4.6)

Completeness of a TS-UDVS:

∀ρ ∈ TDesignate(M,σ1, ..., σt, pkV , pkS1 , ..., pkSn),

Pr[DV erify(M, ρ, pkV , pkS1 , ..., pkSn) = Accept] = 1. (4.7)

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 70

Completeness of a Simulated TS-UDVS:

∀% ∈ DSimulate(M, pkV , skV , pkS1 , ..., pkSn),

Pr[DV erify(M,%, pkV , pkS1 , ..., pkSn) = Accept] = 1. (4.8)

4.5.3 Unforgeability

In this chapter, when discussing the unforgeability property, we are referring to

the “designated verifier unforgeability” in [SBWP03, HSMW06]. The unforgeability

property in [HSMW06] provides security against existential unforgeability under an

adaptive chosen message and chosen public key attack. It intentionally prevents

an attacker corrupted with a signature holder from generating a designated verifier

signature ρ∗ on a new message M∗. Formally, this unforgeability provides an assur-

ance that one with access to a signing oracle, designation oracle, simulated signature

oracle, and verification oracles, and with the signer’s public parameter pkS, should

be unable to produce a designated verifier signature on a new message even when

arbitrarily choosing the verifier’s public parameter pkV and message M as input.

However, for TS-UDVS schemes, unforgeability has a slightly different notion

from that in [SBWP03, HSMW06]. To provide security of unforgeability against

insider corruption (up to t − 1 signers) for TS-UDVS schemes, our unforgeability

notion has adapted the notion of unforgeability in the ring signature schemes in

[RST01, BKM06, LW04, SW07, TWC+04, LWW03, BSS02]. Intuitively, the un-

forgeability property of a TS-UDVS scheme provides security against existential un-

forgeability under an adaptive chosen message, chosen public key attack and insider

corruption. It intentionally prevents an attacker corrupted with (t− 1) signers and

a signature holder from generating a threshold-signers designated verifier signature

ρ∗ on a new M∗.

Here, our unforgeability provides assurance that, with access to a signing oracle,

threshold-signers designation oracle, and simulated designated verifier signature or-

acle, and with signers’ public parameters pkS1 , ...pkSn , arbitrarily chosen verifier’s

public parameter pk∗V and the knowledge of t′-signer secret keys skS∗1 , ..., skS∗t′ , one

should not able to produce a designated verifier signature on a new arbitrarily cho-

sen message M∗. Note that t is the threshold, t′ is the number of colluded signers

and t′ < t. The unforgeability of TS-UDVS is formally modelled as follows.

First, the oracles are provided in order to model the ability of adversaries break-

ing the unforgeability of TS-UDVS schemes as follows. The definition of the SPO,

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 71

VPO and SKO oracles can be found in Section 4.2.3. The definition of the SSO
oracle can be found in Section 3.3.1. For the definition of the T DO and SDO
oracles, there are described as follows.

T DO oracle: Let LS = {pkS1 , ..., pkSn} and TS = {pkSj}, where j is an index

of each signer in a threshold t and TS ⊂ LS. At most qTD times, A can

make a query for a designated verifier signature ρ on its choice of message

M under its choice of a group of signers’ public parameters LS, a group of

threshold signers’ public parameters TS and a verifier’s public parameter pkV .

In response, T DO runs the TDesignate algorithm to generate a designated

verifier signature ρ on a message M corresponding with LS,TS, pkV . T DO
then returns ρ,M to A.

SDO oracle: At most qSD times, under its choice of signers’ public parameters

pkS1 , ..., pkSn and a verifier’s public parameter pkV , A can make a query for a

(simulated) designated verifier signature % on its choice of message M , where

% must indeed be generated by the verifier. In response, SDO runs the

DSimulate algorithm to generate a (simulated) designated verifier signature

% on a message M corresponding with pkS1 , ..., pkSn , pkV . SDO then returns

%,M to A.

Let CM -CPK-A be the adaptively chosen message, chosen public key attack and

insider corruption. Let EUF -TS-UDV S be the existential unforgeability of the TS-

UDVS scheme. Let ACM−CPK−AEUF−TS−UDV S be the adaptively chosen message and chosen

public key adversary and allow F to be a simulator. The following game between F
and A is defined to describe the existential unforgeability of the TS-UDVS scheme:

given a choice of messages M and an access to the SPO, SSO, VPO, T DO,

SDO and SKO oracles, A arbitrarily makes queries to the oracles. At the end of

these queries, it is assumed that A outputs a forged signature ρ∗ on a new message

M∗ with respect to the public parameters pk∗S1
, ..., pk∗Sn , pk

∗
V . A wins the game if:

1. Accept← DV erify(M∗, ρ∗, pk
∗
V , pk

∗
S1
, ..., pk∗Sn).

2. pk∗V has never been submitted as the input of a query for a private key to the

SKO oracle.

3. At least n − t′ of the challenge signers’ public parameters have never been

submitted as the input of a query for a private key to the SKO oracle.

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 72

4. For each signer’s public parameter, A never makes a request for a signature on

input M∗, pk∗Si to the SSO oracle, where i is an index of submitted signer’s

public parameter.

5. A never makes a request for a designated verifier signature on input M∗,

pk∗S1
, ..., pk∗Sn to the T DO oracle.

6. A never makes a request for a simulated designated verifier signature on input

M∗, pk∗V to the SDO oracle.

Let SuccCM−CPK−AEUF−TS−UDV S(.) be a success probability that ACM−CPK−AEUF−TS−UDV S wins the

above game.

Definition 4.4 The TS-UDVS scheme is (t,qH ,qSP ,qSS,qV P ,qTD,qSD, qSK,ε)-secure

existential unforgeable under an adaptive chosen message, chosen public key attack

and insider corruption if there is no PPT CM-CPK-A adversary ACM−CPK−AEUF−TS−UDV S

such that the success probability SuccCM−CPK−AEUF−TS−UDV S(`) = ε is non-negligible in `,

where ACM−CPK−AEUF−TS−UDV S runs in time at most t, makes at most qH , qSP , qSS, qV P , qTD,

qSD, and qSK queries to the random oracles, the SPO oracle, the SSO oracle, the

VPO oracle, the T DO oracle, the SDO oracle, and the SKO oracle, respectively.

4.5.4 Non-transferable Privacy

Building on the non-transferable privacy property in [SBWP03, HSMW08, HSMW06],

the non-transferable privacy property for TS-UDVS schemes requires that even one

obtains many threshold-signers designated verifier signatures ρ1, ..., ρq on its choice

of messages M ∈ {M1, ...,Mq} designated to the same or different verifiers, where

ρ1, ..., ρq are generated by the same signature holder using the same set of signatures

σ1, ..., σt, it is hard to convince other party that a signer indeed generated a signa-

ture ρ ∈ {ρ1, ..., ρq} on a message M ∈ {M1, ...,Mq}. This intentionally prevents a

distinguisher from distinguishing a signer from a (simulated) threshold-signers des-

ignated verifier signature ρ∗ on any new message M∗. The non-transferable privacy

of TS-UDVS is defined as follows.

First, the oracles provided in order to model the ability of adversaries breaking

the non-transferable privacy of TS-UDVS schemes are described in Section 4.5.3.

Let ENT -TS-UDV S denote the existential non-transferable privacy of TS-UDVS

scheme. Let ACM−CPK−AENT−TS−UDV S be the adaptively chosen message and chosen public

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 73

key distinguisher and let F be a simulator. The following experiment between F
and A is prescribed to demonstrate the existential non-transferable privacy of the

TS-UDVS scheme. The experiment is divided into two phases, as described as

follows.

1. Phase 1: With any adaptive strategies, A arbitrarily sends queries to the

SPO, SSO, VPO, T DO, SDO and SKO oracles. The oracles respond

as their design.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗, pk∗S1
, ..., pk∗Sn , pk

∗
V such that:

a. Given pk∗S1
, ..., pk∗Sn and M∗ as input, A never issues a request for a sig-

nature to the SSO oracle.

b. Given pk∗S1
, ..., pk∗Sn and M∗ as input, A never issues a request for a des-

ignated verifier signature to the T DO oracle.

c. Given pk∗V and M∗ as input, A never issues a request for a designated

verifier signature to the SDO oracle.

d. Given pk∗S1
, ..., pk∗Sn as input, A never issues a request for a private key to

the SKO oracle.

After this, F chooses a random bit b
$← {0, 1}. If b = 1 then, on input

pk∗S1
, ..., pk∗Sn , pk∗V and M∗, F makes a request for a designated verifier sig-

nature to the T DO oracle and responds to A with ρ as an output from the

T DO oracle. Otherwise, on input pk∗S1
, ..., pk∗Sn , pk∗V and M∗, F makes a

request for a simulated designated verifier signature to the SDO oracle and

responds to A with ρ as an output from the SDO oracle.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it wants. One condition must be met that A must have at least one set of

the challenge M∗, pk∗S1
, ..., pk∗Sn , pk

∗
V such that

a. A never submits a request for a signature on input M∗, pk∗S1
, ..., pk∗Sn to

the SSO oracle.

b. A never submits a request for a designated verifier signature on input

M∗, pk∗S1
, ...,pk∗Sn , pk

∗
V to the T DO oracle.

4.5. Definition of Universal Designated Verifier Signature with Threshold-Signers

Schemes (TS-UDVS) 74

c. A never submits a request for a designated verifier signature on input

M∗, pk∗V to the SDO oracle.

d. A never submits any request for a private key sk∗Si corresponding with

pk∗Si to the SKO oracle, where i is the index and i ∈ {1, ..., n}.

4. Guessing: On the challenge M∗, pk∗S1
, ..., pk∗Sn , pk

∗
V , A finally outputs a guess

b′. The distinguisher wins the game if b = b′.

Let SuccCM−CPK−AENT−TS−UDV S(.) be the success probability that ACM−CPK−AENT−TS−UDV S wins the

above game.

Definition 4.5 We say that the TS-UDVS scheme is (t,qH ,qSP ,qSS,qV P ,qTD,qSD,

qSK,ε)-secure existential non-transferable private under a chosen message and cho-

sen public key attack if there is no PPT CM-CPK-A distinguisher ACM−CPK−AENT−TS−UDV S

such that the success probability SuccCM−CPK−AENT−TS−UDV S(`) = |Pr[b = b′] − Pr[b 6= b′]|
= ε is non-negligible in `, where ACM−CPK−AENT−TS−UDV S runs in time at most t, makes at

most qH , qSP , qSS, qV P , qTD, qSD, and qSK queries to the random oracles, the SPO
oracle, the SSO oracle, the VPO oracle, the T DO oracle, the SDO oracle, and

the SKO oracle, respectively.

4.5.5 Anonymity

The motivation of the anonymity property from ring signature schemes [RST01,

BKM06, LW04, SW07] and threshold ring signature schemes [TWC+04, LWW03,

BSS02], is adopted and their notations is adapted to realize the security of anonymity

against full key exposure for TS-UDVS schemes. The anonymity property for TS-

UDVS schemes requires that even if one obtains all secret keys of both signers

and verifiers, and reviews a polynomial number of designated verifier signatures

ρ1, ..., ρq on its choice of a message M designated to the same or different verifiers,

where ρ1, ..., ρq are generated by the same signature holder using the same set of

signatures σ1, ..., σt, it is hard to persuade the other party, which signers are in the

list of the threshold signers who generated a designated signature ρ ∈ {ρ1, ..., ρq}
on a message M ∈ {M1, ...,Mq}. The anonymity of TS-UDVS is defined as follows.

The oracles constructed in order to model the ability of adversaries breaking

the anonymity of TS-UDVS schemes are described in Section 4.5.3. We denote by

EA-TS-UDV S the existential anonymity against a full key exposure of a TS-UDVS

4.6. The Proposed TS-UDVS Scheme 75

scheme. Let ACM−CPK−AEA−TS−UDV S be the adaptively chosen message and chosen public key

distinguisher and let F be a simulator. The following experiment between F and

A is prescribed to show the existential anonymity against a full key exposure of a

TS-UDVS scheme.

1. Learning: With any adaptive strategies, A arbitrarily sends queries to the

SPO, SSO, VPO, T DO and SDO oracles. The oracles respond according

to their design.

2. Challenge: Let LS∗ = {pk∗S1
, ..., pk∗Sn} and TS∗ = {pk∗Sj1 , ..., pk

∗
Sjt
}, where

j1, ..., jt are indexes of signers in a threshold t and TS ⊂ LS. When A decides

to challenge F , it outputs i0, i1,M
∗,LS∗, pk∗V . In return, F chooses a random

bit b
$← {0, 1}. Given TS∗ : pk∗Sib

∈ TS∗; pk∗Si∼b
6∈ TS∗, LS∗, pk∗V and M∗

as input, F makes a request for a designated verifier signature to the T DO
oracle and responds to A with ρ as an output from the T DO oracle.

3. Guessing: Now, A is given an access to the SKO oracle. After this, A finally

outputs a guess b′. The distinguisher wins the game if b = b′.

Let SuccCM−CPK−AEA−TS−UDV S(.) be the success probability that ACM−CPK−AEA−TS−UDV S wins the

above game.

Definition 4.6 We say that the TS-UDVS scheme is (t,qH ,qSP ,qSS,qV P ,qTD,qSD,

qSK,ε)-secure existential anonymous against a full key exposure attack if there is no

PPT CM-CPK-A distinguisher ACM−CPK−AEA−TS−UDV S such that the success probability

SuccCM−CPK−AEA−TS−UDV S(`) = |Pr[b = b′]−Pr[b 6= b′]| = ε−t/n is non-negligible in `, where

t is a threshold of n signers and t/n is a probability that ACM−CPK−AEA−TS−UDV S can guess

correctly without any advantage, ACM−CPK−AEA−TS−UDV S runs in time at most t, makes at

most qH , qSP , qSS, qV P , qTD, qSD, and qSK queries to the random oracles, the SPO
oracle, the SSO oracle, the VPO oracle, the T DO oracle, the SDO oracle, and

the SKO oracle, respectively.

4.6 The Proposed TS-UDVS Scheme

In this section, our scheme is presented based on the concept outlined in the previous

section. First, some notations are defined. Let G1,GT be multiplicative groups of

prime order p. This is denoted by ê : G1 × G1 → GT a computationally efficient

4.6. The Proposed TS-UDVS Scheme 76

bilinear mapping function ê, which maps G1 to GT . Let us denote by H : {0, 1}∗ →
G1 a random one-way function that maps any string to group G1 and by h : {0, 1}∗ →
ZZ∗p a collision-resistant hash function. The scheme then works as follows.

SKeyGen: Given a security parameter ` as input, a signer S randomly chooses a

prime p = poly(1`) and a random generator g ∈ G1. Let param = (p, ê, g,H, h)

denote the system parameter. A private key and a public parameter of the

signer are generated as follows. Choose a random integer x ∈ ZZp. Let us

denote by X = gx the public key of the signer. Hence, SKeyGen returns

pkS = (param, X) and skS = x as a public parameter and a private key of the

signer, respectively.

V KeyGen: Given a security parameter ` as input, a verifier V complies with a

trapdoor commitment scheme’s setup function Setup(1`) to generate α, gα,

Y = gyα, skV = y. Let h̄ : {0, 1}∗ → ZZ∗α denote a collision-resistant hash

function selected by V . V keeps skV as a private key and then publishes

pkV = (param = (α, gα, h̄), Y) as its public parameter. Note that the reader

should be reminded that both signer and verifier key generation uses the same

security parameter ` and hence, |α| = |p| and α ≈ p.

Sign: Given a message M , pkS and skS, S computes σ = H(M)x as a BLS short

signature on message M .

V erify: Given pkS, σ and a message M , a signature holder SH checks whether

ê(σ, g)
?
= ê(H(M), X) holds or not. If not, then it outputs reject. Otherwise,

it outputs accept.

TDesignate: Let TS be a set of signers where the signature holder holds their

signatures and t be a threshold where t = |TS|. Let i represent the index of

the signer in LS where TS ⊂ LS. Given pkV , σ1, ..., σt, pkS1 , ..., pkSn and a

message M , SH computes a designated verifier signature ρ on message M as

follows.

• First, provide the simulated signature of the signers pkSi ∈ LS \ TS as

follows. Select random integers zi, ci ∈ ZZ∗p and compute

Zi = H(M)zi , Ri = ê(Zi, g)ê(H(M), Xi)
ci .

4.6. The Proposed TS-UDVS Scheme 77

• Secondly, for the signers pkSi ∈ TS, compute as follows. Select a random

integer ri ∈ ZZ∗p and compute Ri = ê(H(M), g)ri .

• Next, let ω
def
= R1||...||Rn. Then compute the first part of the designated

verifier signature with a verifier’s public parameter as follows. Select a

random integer rV ∈ ZZα and compute

Ψ
def
= M ||ω||pkS1||...||pkSn

c0 = TV = h(grVα Y h̄(Ψ)).

• Finally, from the Shamir’s secret sharing technique [Sha79], let f be a

polynomial such that it satisfies the following conditions:

deg(f) = n− t
∧

f(0) = c0

∧
∀i ∈ LS \ TS : f(i) = ci.

Then, for every signer i ∈ TS, compute the rest of the designated verifier

signature as follows.

ci = f(i), Zi = H(M)ri · σ−cii .

Therefore, a designated verifier signature ρ is (LS, f, Z1, ..., Zn, rV). Output

ρ as a designated verifier signature on message M .

DV erify: Given pkS1 , ..., pkSn , pkV , ρ and a message M as input, the designated

verifier V first computes as follows.

∀i ∈ LS
⋃
{0}, ci = f(i).

ω = ê(Z1, g)ê(H(M), X1)c1||...||ê(Zn, g)ê(H(M), Xn)cn .

Ψ = M ||ω||pkS1||...||pkSn .

Then V checks whether c0
?
= h(grVα Y h̄(Ψ)) holds or not. If not, then it outputs

reject. Otherwise, it outputs accept.

DSimulate: Given skV , pkV , pkS1 , ..., pkSn and a message M as input, V computes

as follows.

• First, randomly generate c0 as follows: select a random integer k′, r′V ∈
ZZα and compute c0 = h(g

r′V
α Y k′).

4.7. Security Analysis of TS-UDVS 78

• Second, randomly select a polynomial f such that

deg(f) = n− t
∧

f(0) = c0.

Then, for every signer i ∈ LS, compute ci = f(i).

• Next, for each signer pkSi ∈ LS, compute the first part of the designated

verifier signature as follows.

Zi
$← G1, Ri = ê(Zi, g)ê(H(M), Xi)

ci .

• Finally, recompute rV with the verifier private key as follows.

Ψ = M ||ω||pkS1 ||...||pkSn , rV = r′V + y · k′ − y · h̄(Ψ).

Therefore, a simulated designated verifier signature by the verifier is

ρ = (LS, f, Z1, ..., Zn, rV).

4.7 Security Analysis of TS-UDVS

4.7.1 Completeness

Completeness of a Signature: The signature verification is as follows.

ê(σ, g)
?
= ê(H(M), X)

ê(H(M)x, g)
?
= ê(H(M), gx)

ê(H(M),)
?
= ê(H(M), gx)

Completeness of a (Simulated) Designate Verifier Signature: Given a pub-

lic parameter of the signers LS, a public parameter of the designated verifier

pkV , a private key of the designated verifier skV , a message M and a designated

verifier signature ρ, one first computes as follows.

∀i ∈ LS
⋃
{0}, ci = f(i).

ω = ê(Z1, g)ê(H(M), X1)c1||...||ê(Zn, g)ê(H(M), Xn)cn .

Ψ = M ||ω||pkS1||...||pkSn .

Check c0 = h(g
r′V
α Y k′)

?
= h(grVα Y h̄(Ψ))

h(g
r′V
α gy·k

′

α)
?
= h(g

r′V +y·k′−y·h̄(Ψ)
α gy·h̄(Ψ)

α)

h(g
r′V +y·k′
α)

?
= h(g

r′V +y·k′
α).

4.7. Security Analysis of TS-UDVS 79

Hence, the above statements show that the simulated threshold-signers desig-

nated verifier signature does indeed hold. �

4.7.2 Unforgeability

Theorem 4.4 Our universal designated verifier signature with threshold-signers

scheme is existential unforgeability under an adaptive chosen message, chosen public

key attack and insider corruption if the CDH assumption holds in the random oracle

model.

Proof: Suppose that there exists a forger A, which runs the existential unforgeabil-

ity game defined in Section 4.5.3, then we will show that there exists an adversary

F that solves the CDH problem by using A. Start with the construction of oracles

as they are designed in Section 4.5.3. Then construct F and run it over A with

the existential unforgeability game defined in Section 4.5.3. Next, summarise the

success probability of the existential unforgeability game under an adaptive chosen

message, chosen public key attack and insider corruption. Finally, from the existen-

tial unforgeability game and its success probability, a conclusion can be drawn that

the success probability of solving the CDH problem is non-negligible if the success

probability of the above game is non-negligible.

The oracles can be constructed and the existential unforgeability game can be

run as follows. Given g, ga and gb as an instance of the CDH problem, F sets

gb as one of the answers for the hash query to the random oracle. Next, F sets

X∗ = gx
∗

= ga in one of the signer’s public parameter defined as pkS∗ . The aim is to

obtain gab from running the existential unforgeability experiment. Assuming that

there exists an algorithm managing the list of each query and such algorithm will

be omitted. Let Ψ = M ||σ1||pkS and Ω = M∗||σ∗1||pkS. From the above setting, it

is easy for F to construct the SPO, SSO, VPO, T DO, SDO, SKO and the

random oracles HO as follows.

HO oracle: Select d
$← {0, 1} such that the probability of d = 1 is 1

qH
. If d =

1 then set M = Ω and H(M) = gb and return H(M). Otherwise, k
$←

ZZp; H(M) = gk and return H(M). Then HO keeps a pair of H(M) and k in

the list, which it is accessible only by F . For a query for h(Ψ), HO randomly

selects k1
$← ZZp; h(Ψ) = k1 and return h(Ψ).

SPO oracle: Let param = (p, ê, h,H, g) be the system parameter for each signer.

4.7. Security Analysis of TS-UDVS 80

SPO chooses ḋ
$← {0, 1} such that the probability of ḋ = 1 is 1

qSP
. If ḋ = 1

then set X∗ = ga and return pk∗S = (param∗, X∗). Otherwise, t
$← ZZp; X = gt

and then return pkS = (param, X) and keep t as a private key.

SKO oracle: the SKO oracle responds to every query on input pkS and pkV

with its corresponding private key. Expect for pk∗S, SKO outputs ⊥.

SSO oracle: Let r1
$← ZZp. Given pkS and M as input, SSO outputs σ = H(M)t

for every query except when pkS = pk∗S and M = M∗. In the case of (pk∗S,M
∗),

it outputs ⊥.

T DO oracle: Let ti be a secret of i-th signer in LS. Given LS, TS, pkV and

M as input, where pk∗S 6∈ TS and M 6= Ω, T DO obtains each signer’s

private key ti of the public parameter in TS from SPO. Then T DO com-

putes a threshold-signers designated verifier signature as described in Sign and

TDesignate in Section 4.6. In the case of pk∗S ∈ TS and M 6= Ω, F obtains

a random integer k associated with H(M) from a list of H(M) and k main-

tained by HO. F then gives it to T DO. T DO computes σi = Xk
i , where

i is an index of each signer in TS. Then T DO computes a threshold-signers

designated verifier signature as described in TDesignate in Section 4.6. In the

case of pk∗S ∈ TS and M = Ω, T DO outputs ⊥.

VPO and SDO oracles: These oracles are straightforward as described in Sec-

tion 4.5.3.

An access to the above oracles is provided to A. Assume that a hash of message

M from the random oracle HO is always queried before A makes queries to the

SSO, T DO and SDO oracles, or before it outputs a potential forgery, denoted

by (M∗, ρ∗,LS
∗, pk∗V).

In the end, after processing an adaptive strategy with the above oracles, A
outputs a forged threshold-signers designated verifier signature ρ∗ on a message M∗

with respect to LS∗, pk∗V . A wins the game if a message M∗ is never submitted to

the SSO, T DO and SDO oracles and at least n + 1 − t signers’ secret keys in

LS have never been queried to the SKO oracle. After the above experiment, we

obtain a valid threshold-signers designated verifier signature ρ∗ on a message M∗

with respect to LS∗, pk∗V . From the above signature, the probability of success will

be shown in the next paragraph and then, after running the second experiment, how

4.7. Security Analysis of TS-UDVS 81

to obtain the original signature σ∗ = H(Ω)x
∗

= (gb)a = gab will be demonstrated,

which is also an answer for the CDH problem.

Let e denote the base of the natural logarithm and q be a polynomial upper bound

on the number of queries that A makes to the HO and SKO oracles. Now the

probability of events such that F does not abort during the simulation is analysed

as follows.

• E1: F does not abort during the issuing of queries to the SKO.

The probability of this event is greater than (1− 1
qSP

)qSP−1 ≈ qSP
e·(qSP−1)

.

• E2: F does not abort when issuing queries to the SSO.

The fact is that A needs at least one hash value and one signer secret to output

a forgery, and hence, qSS ≤ (qH − 1) · (qSP − 1). Therefore, the probability

of this event is greater than (1 − 1
qH ·qSP

)qSS = (1 − 1
qH ·qSP

)(qH−1)·(qSP−1) ≈
1
e
· (qH ·qSP

qH ·qSP−1
)(qH+qSP−1).

• E3: F does not abort during the issuing of queries to the T DO.

Similar to the E2 event, where qTD ≤ (qH − 1) · (qSP − 1), the probability

of this event is greater than (1 − 1
qH ·qSP

)qTD = (1 − 1
qH ·qSP

)(qH−1)·(qSP−1) ≈
1
e
· (qH ·qSP

qH ·qSP−1
)(qH+qSP−1).

Let SuccCM−CPK−AEUF−TS−UDV S = ε be the success probability that A wins the game.

The probability that A wins the above game and outputs a message M∗ and a

signer’s public parameter pk∗S is ε
qH ·qSP−max(qTD,qSS)

≤ ε
qH+qSP−1

where qSS ≤ (qH −
1) · (qSP − 1), qTD ≤ (qH − 1) · (qSP − 1), and qH and qSP are the maximum number

of queries that A made to the random oracle and the SPO oracle, respectively.

Putting the above probabilities together, the probability can be resolved such that

F does not abort during the simulation and A wins the game with M∗, pk∗S is about
ε

qH+qSP−1
· qSP
e·(qSP−1)

·(1
e
·(qH ·qSP
qH ·qSP−1

)qH+qSP−1)2= ε
qH+qSP−1

· qSP
e3·(qSP−1)

·(qH ·qSP
qH ·qSP−1

)2(qH+qSP−1)

> ε
e3(qH+qSP−1)

.

From the above probability, it is obvious that the probability, where F suc-

cessfully runs the above simulation and A wins the game with M∗ = Ω and

pk∗S ∈ LS∗, is non-negligible compared with the probability that A wins the game

where q > (qH + qSp − 1).

Hence, with a non-negligible running time due to the forking lemma [PS00,

BN06], F also obtains another set of forgeries by rerunning the experiment with A
as follows.

4.7. Security Analysis of TS-UDVS 82

• First, reset A to the initial state.

• Second, provide the same setting as in the previous experiment but with a

new set of verifiers’ public parameters.

• Finally, rerun the experiment with the same random tape as the first experi-

ment.

At the end of the second experiment, F , with non-negligible probability, outputs a

forgery (M∗, ρ∗∗,LS
∗, pk∗∗V). Since the setting is the same as the first experiment,

A outputs M∗,LS∗ such that pk∗S ∈ LS∗ with the same probability as in the

first experiment. However, in the second experiment, A is given with a new set of

verifiers’ public parameters hence, A outputs ρ∗∗, pk
∗∗
V , which are different outputs

from those in the first experiment.

From the above outputs by A, F obtains Z∗ = H(Ω)r
∗ ·σ−c∗∗ and Z∗∗ = H(Ω)r

∗∗ ·
σ−c

∗∗
∗∗ from ρ∗, ρ∗∗, where both Z∗ and Z∗∗ are associated with pk∗S and H(Ω). Since

r∗ = r∗∗, F computes σ∗ = (Z∗/Z∗∗)1/(c∗∗−c∗). In fact, σ∗ = H(Ω)x
∗

= (gb)a = gab.

Therefore, F outputs σ∗ as an output for the CDH problem with non-negligible

probability as mentioned above. The above simulation shows that the probability

of success in attacking our TS-UDVS scheme by existential unforgeability under

an adaptive chosen message, chosen public key attack and insider corruption is

negligible since the probability of solving the CDH problem is negligible.

4.7.3 Non-transferable Privacy

Theorem 4.5 In the random oracle model, the proposed universal designated ver-

ifier signature with threshold-signers scheme offers existential non-transferable pri-

vacy against adaptively chosen message and chosen public key distinguisher

ACM−CPK−AENT−TS−UDV S.

Proof: Theorem 4.5 is proved by running the existential non-transferable privacy

game defined in Section 4.5.4 and showing that the success probability of distin-

guisher A in that game attacking our TS-UDVS scheme is negligible. This is begun

with the construction of oracles and the existential non-transferable privacy game

defined in Section 4.5.4. Then we show that both probabilities of the distribution

of the DVS signature generated by the signature holder and designated verifier are

equal. Finally, the indistinguishability of both valid and simulated designated veri-

fier signatures in our TS-UDVS scheme will be concluded.

4.7. Security Analysis of TS-UDVS 83

The following simulation shows that, running on both the signer and the verifier,

a simulator F generates a designated verifier signature, which is indistinguishable

whether a signer or a verifier generated it. In the first step, since F can arbitrarily

generate a public-private key pair for A, F constructs straightforward oracles as

described in Section 4.5.4. A is given access to those oracles. Note that for every

private key corresponding to its queried public parameters, F keeps them secretly

to itself.

The distribution of the T DO oracle is then analysed. There is one random

integer involved in the production of the signature for each signer, n − t random

integers involved in the production of a polynomial function and one random integer

involved in the production of the designated verifier signature related to the verifier.

Therefore, there are in total 2n − t + 1 uniformly random numbers used in the

generation of the designated verifier signature besides the secret keys of the signers.

Let ρDV denote a designated verifier signature in the distribution of the T DO
oracle. With the above random integers and secret keys of the signer skS1 , ..., skSt , F
randomly produces the designated verifier signature as described in the TDesignate

algorithm in Section 4.6. Hence, since each random integer is selected from ZZ∗p or

G1, if a designated verifier signature ρ∗ is randomly chosen, then the probability

that ρ∗ is in the distribution of the T DO oracle is Pr[ρDV = ρ∗] = 1
p(2n−t+1) .

Next, the distribution of the SDO oracle is analysed. There is one random

integer involved in the production of the signature for each signer, n − t random

integers involved in the production of a polynomial function. There are also other

two random integers (k′, r′V) involved in the production of the designated verifier

signature related to the verifier; however, these two integers work to achieve one

output, which is rV . Hence, these are viewed together as one random variable.

Therefore, there are in total 2n − t + 1 uniformly random numbers used in the

generation of the simulated designated verifier signature, in addition to the private

key of the verifier. Let ρDS denote a designated verifier signature in the distribution

of the SDO oracle. With the above random integers and secret keys of the signer

skS1 , ..., skSt , F randomly produces the designated verifier signature as described in

the DSimulate algorithm in Section 4.6.

More precisely, since each random integer is selected from ZZ∗p or G1, if a desig-

nated verifier signature ρ∗ is randomly chosen, then the probability that ρ∗ is in the

distribution of the SDO oracle is Pr[ρDS = ρ∗] = 1
p(2n−t+1) .

4.7. Security Analysis of TS-UDVS 84

Finally, the above probabilities claim that one cannot distinguish whether a

randomly given valid universal designated verifier signature is generated by the

T DO or SDO oracles. Hence, our TS-UDVS scheme satisfies the non-transferable

privacy property. �

4.7.4 Anonymity

Theorem 4.6 With probability at most t/n+ ε, where ε is negligible, our universal

designated verifier signature with threshold-signers scheme offers anonymity against

a full key exposure.

Proof: Theorem 4.6 is proven by showing that the success probability of distin-

guisher A attacking the TS-UDVS scheme when running anonymity against the

full key exposure game defined in Section 4.5.5 is negligible, when it excludes t/n.

The following simulation shows that, running on signers, a simulator F generates a

designated verifier signature that is indistinguishable in which signer is in a list of

threshold signers. In the first step, since F can arbitrarily generate a public-private

key pair for A, F constructs straightforward oracles as described in Section 4.5.5.

Except for the VPO oracle, since A has taken over control of the verifier, A can

arbitrarily run V KeyGen to generate a public-private key pair for the verifier by

itself. Then, A is given access to those oracles and is run with anonymity against

the full key exposure game defined in Section 4.5.5. Note that for every private key

corresponding to its queried public parameters, A can arbitrarily issue a request for

the signer’s private key to the SKO oracle.

Discussion:

First, the polynomial f in the TDesignate algorithm in Section 4.6 uniquely outputs

c0 and ci, where i ∈ TS. c0 and ci are uniquely generated by the random oracle and

random tapes consumed by F . Therefore, the polynomial f can be considered as a

random function selected from the entire polynomials over GF (p) with degree n− t.
Hence, the distribution of ci, where i ∈ TS, is also uniform over GF (p). Second, for

each Zj, where j ∈ LS, a random variable (either zj or rj) is independently chosen

and uniformly distributed over GF (p). Therefore, Zj is uniformly distributed over

GF (p). Finally, it can be seen that, for a fixed message M and a fixed set of signers’

public keys LS, there are pn possible solutions for F to output (Z1, ..., Zn). The

possible solutions above are uniformly and independently distributed; hence, it does

not matter whether A possesses unbounded computing resources and all the secret

4.8. Conclusion 85

keys, and how many participanting signers (t) there are to generate signatures.

To identify any one of the participant signers, advantage over random guessing is

negligible. �

4.8 Conclusion

In this chapter, the notion of one-time universal designated verifier signatures (OT-

UDVS) and the notion of universal designated verifier signatures with threshold-

signers (TS-UDVS) were introduced. The notion of one-time universal designated

verifier signatures allows a signer to limit his/her signature to be used only one time

to compute a designated verifier signature. If a signature holder computes more than

one designated verifier signature from the signer’s signature then the signer’s signa-

ture will be revealed. A definition of one-time universal designated verifier signature

scheme and its security model were presented. A concrete construction of one-time

universal designated verifier signature scheme that is secure in our model was given.

The notion of universal designated verifier signatures with threshold-signers allow a

signature holder to provide the anonymity for the signer(s) and the signature(s) that

he has in his possession. Moreover, the privacy between the signer(s) and the des-

ignated verifier is also provided in this notion. In other words, a designated verifier

signature constructed by the signature(s) from a signer (or t signers) in the list of n

signers convinces only the designated verifier and the designated verifier only know

that at least one signature (or t signatures) of n possible signatures is (are) valid. A

definition of universal designated verifier signatures with threshold-signers schemes

and its security model were given. A concrete construction of universal designated

verifier signatures with threshold-signers scheme that is secure in our model is also

presented.

Chapter 5

Policy-controlled Signatures Scheme and
Its Applications

In this chapter, a new primitive algorithm called a “policy-controlled signature” is

described. Part of this chapter appeared in ICICS 2009 [TSM09b]. Its applications,

which are the “universal policy-controlled signature” and the “multi-level controlled

signature”, are also provided in this chapter.

5.1 Introduction

The principle of policy-based cryptography was introduced by Bagga and Molva in

[BM05]. In the policy-based signature scheme in [BM05], a signer is allowed to sign

a message correctly if and only if, the signer satisfies an assigned policy. However,

what if the situations were reversed? So a signer is allowed to assign the policy

such that only a verifier satisfying the signer’s policy can verifier a signature. In a

policy-controlled signature scheme, a verifier is allowed to verify a policy-controlled

signature if and only if, the verifier satisfies an assigned policy. For instance, we are

dealing with some sensitive resources or messages that need to specify limiting mul-

tiple verifiers to gain access to the authenticity of the message. Moreover, in some

cases, the authenticity of these messages requires privacy, which means it must be

kept between the signer and the verifiers. In other words, only a verifier that satisfies

the necessary condition or policy can verify the authenticity of these messages. The

other parties should not be convinced about the authenticity of these messages. Let

us describe more about the applications in the following scenario. Alice is a CEO

of a company. She would like to inform the board members about issues regarding

the future of the company. However, this message should not be revealed as an offi-

cial document created by herself for the public. Hence, a signature on this message

should be verifiable only by the board members. In the above case, a designated

86

5.1. Introduction 87

verifier signature scheme could be applied where the number of board members is

small. Alice could generate signatures on a message for each board member. How-

ever, this solution is not efficient, and what if Alice also wants to inform the major

share holders and directors? In this case a designated verifier signature is not an

appropriate solution. By limiting the group of people who can verify authentication

of a message, a signature on a message should not be verifiable by any other people

outside this authorised group. Furthermore, the right of verification of the message

by the authorised group is limited, so the authorised verifier should not be able to

relay this conviction or convince any other third party outside the authorised group.

Another example is a single sign-on system. A single sign-on system is an access

control system for multiple web service systems or application service systems. Gen-

erally, a user log onto the identity identification server and can access web services

or application services that are registered with the identity identification server ac-

cording to the user’s privileges. A single sign-on system provides the advantage

that a user can access many resources once his/her identity is authenticated. There

are many ways to construct a single sign-on system. However, when the number

of services and users is huge, the problem of the size of tokens or credentials also

increases linearly. To cater for such a system, a policy-based cryptography is a good

choice to consider. The policy-based cryptography can be applied to group services

with the similar requirements. Consider the following scenario. Let SIIS be a single

sign-on identity identification server. Alice would like to obtain a token for these

services, so she identifies herself to SIIS. After SIIS successfully identifies Alice, it

produces a token (it can be a signature on the time stamp) and gives it to Alice.

Alice runs an interactive proof to the service with this token. Finally, Alice can

access the service. If we apply this policy to control access, then a token is supposed

to be verifiable only by a service that possesses the right credential for the policy.

The above is a typical scenario where policy-controlled signature schemes are use-

ful primitive schemes. It can be argued that we can achieve the above solution by

signing a message with a regular signature scheme, and then encrypt it with policy-

based encryption scheme introduced in [BM05]. However, a verifier can decrypt the

ciphertext and then distribute the signature; hence, the signature is publicly veri-

fiable. Therefore the solution above violates the requirements as stated above. To

extend the application of policy-controlled signatures, we propose using universal

policy-controlled signature schemes (UPCS). Now, a signer signs on a message and

5.1. Introduction 88

gives a signature to a policy signer. Then the policy signer computes a (univer-

sal) policy-controlled signature from a signature generated by a signer. With the

policy assigned by the policy signer, this (universal) policy-controlled signature can

be verified only by a verifier who obtains sufficient credentials to satisfy the policy.

In addition, this (universal) policy-controlled signature also represents a proof that

the policy signer has obtained a signature on a message that has been generated by

a signer. Let us extend the first scenario as follows. Alice, a CEO of a company,

assigns Peter as an internal auditor to audit the financial account of each depart-

ment in her company. Alice may want this matter to be private so only the involved

parties can verify that Alice authorises Peter to do the account audition. Alice signs

a message that authorised Peter as the internal auditor and give it to Peter. Since

the company contains many departments, Peter may want show this message and

signature to each department one at a time. A policy-controlled signature scheme

can be applied to the above case. However, Alice may not know which policy she

should apply first in order to let Peter correctly auditing every department since the

management structure of each department may be different. Hence, this solution

cannot be resolved efficiently and correctly. The simple solution is allowing Peter to

assign the policy for each department where it is appropriated. The above scenario

can be simply solved with universal policy-controlled signature schemes.

Another extension of the policy-controlled signature described in this chapter is

the multi-level controlled signature. Multi-level controlled signatures allow a signer

to assign the level of security in order to verify the signer’s signature. Let us extend

the first scenario as follows. Alice is a CEO of an organisation with n subbranch.

She wants to send a message about a change of management in the company to

all the employees who hold a position higher than or equal to manager of each

subbranch. Since the organisation may contain many levels of management, if Alice

applies this with policy controlled signatures then she needs to assign the following

policy: “POLICY= board members of the main branch or board members of the first

subbranch or or manager of the n-th subbranch”. With multi-level controlled

signature schemes, Alice can limit the level of position of the verifiers who are able

to verify her signature on a message. Hence, other employees in positions lower than

manager should not be able to verify her signature. Let the security level define as

the level of the security that is assigned in the system and let the i-security level

be the i-th level of the security in the system. For instance, there are 13 levels of

the security assigned by the system. The 11-security level is the security at the

5.1. Introduction 89

eleventh level from 13 levels of the security. In policy-controlled signature, a signer

can assigned the policy such that it works in the same way as multi-level controlled

signature. For example, a signer assigns the 11-security level to be the minimum

security level from 13 security levels. A signer can assign the policy “POLICY=(11-

security level or 12-security level or 13-security level)” for policy-controlled signature

to work as multi-level controlled signature. However, what if the number of level is

increased? Let say the assigned minimum security is at the 11-security level from 100

security levels. Then, the policy for this security level will be “POL=(11-security

level or 12-security level,..., or 100-security level)”, which is very long compared to a

multi-level policy assigned in the multi-level controlled signatures that is “POLICY=

more than or equal 11-security level”. The notion of multi-level controlled signatures

eliminates the unnecessary chain of attributes in the policy when it can be assign

as the security level.

5.1.1 Related Work

In Financial Cryptography Conference 2005, Bagga and Molva [BM05] proposed

a novel notion called “Policy-based Cryptography”. The notion of policy-based

cryptography includes policy-based encryption schemes and policy-based signature

schemes. Now, a signer (or a receiver, respectively) can sign on a message (or decrypt

the ciphertext, respectively) if he/she satisfies the assigned policy. The notion of

policy-based encryption provides the authorisation and the integrity of the message.

The notion of policy-based signature ensures the message’s integrity, authenticity

and the non-repudiation of the signer. In [BM06], an improved construction of

policy-based encryption was proposed by Bagga and Molva. In this improved policy-

based encryption scheme, a user’s public key is involved in the process of generating a

user’s credentials. This improvement is designed to prevent a collision attack, where

attackers can obtain multiple sets of credentials that satisfy the assigned policies in

order to create a new set of credentials. Hence, both a set of credentials and a user’s

public key are needed in order to decrypt the ciphertext.

Another related notion is the notion of Hierarchical Identity based Encryp-

tion/Signature. The Hierarchical Identity based Encryption (HIBE) system [GS02,

HL02, BBG05, BW06] is a concept that unites between a Hierarchy system and an

Identity-based Encryption (IBE) system [Sha84, BF01], where an identity at level k

of the hierarchical system can issue a private key for its descendant identity, but it

5.1. Introduction 90

cannot decrypt a message on behalf of other identities except its descendants. The

Hierarchical Identity based Signature (HIBS) scheme [GS02, CHYC04, HL02] is a

natural conversion from the HIBE scheme. Similar to the HIBE, the ancestor iden-

tity of the hierarchical system can issue a private key for its descendant identities.

However, it cannot sign a message on behalf of other identities except its descen-

dants. The purpose of HIBE systems is to reduce the bottleneck in a large network,

where the PKG of the IBE system is applied, and to limit the scope of key escrow.

The HIBS, however, is similar to policy-based signature schemes in that it only pro-

vides the integrity of message as well as the authenticity and non-repudiation of a

signer, but it does not provide the authorisation for the verifier.

5.1.2 Our Contributions

In this chapter, we introduce the notion of policy-controlled signature (PCS) schemes.

Our notion allows a receiver to verify the authenticity of a signed message if and only

if, the receiver satisfies the policy specified by the sender (or signer). We formalise

this notion and define its security model and requirements. Furthermore, we provide

a concrete construction that is proven secure in our model. We also extend the no-

tion of policy-controlled signature to universal policy-controlled signature (UPCS)

and multi-level controlled signature (MLCS).

Chapter Organisation

This chapter is organised as follows. In the next section, we will review some pre-

liminaries that will be used throughout this Chapter. The definition of PCS and its

security notions will be presented in Section 5.2. Next, our concrete scheme of PCS

and its security proof will be provided in Section 5.3 and 5.4. In Section 5.5, we give

a definition of universal policy controlled signature (UPCS). Next, in Section 5.6

and 5.7, we present our concrete scheme of UPCS and its security proof. In Section

5.8, we introduce the definition of MLCS and its security notions. Next, the first

concrete scheme, together with its security proof will be provided in Section 5.9 and

5.10. Then, in the Section 5.11 and 5.12, we will provide the second concrete scheme

and its security proof. Finally, the conclusion of the chapter will be presented in the

last section.

5.2. Definition of Policy-controlled Signature Scheme (PCS) 91

5.2 Definition of Policy-controlled Signature Scheme

(PCS)

In this section, we give a definition of policy-controlled signature (PCS) schemes

that allow a signer to limit the verification of his/her signature by using a policy.

In other words, only a verifier that satisfies the policy specified by the signer can

verify the policy-controlled signature. We provide an outline of our PCS scheme as

follows.

5.2.1 Outline of PCS

Let TA denote a trusted authority that issues credentials associated with policies.

Let CA denote a certificate authority that generates system parameter and certifies

public keys for all parties. There are two main players in a policy-controlled signature

scheme, namely, a signer and a verifier. A signer S generates a signature that can

be verified only when a verifier V holds a credential satisfying the policy. V holds

credentials issued by TA.

Let A denote an assertion issued by TA. Each assertion A may be a hash value

of some certain statements, such as “CIA agent”. We define P to be a policy that

contains a set of assertions P =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]] where i, j, k are indexes. In

general, a policy P can be represented in the disjunctive normal form (DNF) or

the conjunctive normal form (CNF), or any combination of both forms. The policy

P is in the DNF when a = 1 and in CNF when ∀i, ∀j : ai,j = 1. For example,

a policy in DNF is as follows: P = “(A1,1,1

∧
A1,1,2)

∨
(A1,2,1

∧
A1,2,2)

∨
A1,3,1∨

(A1,4,1

∧
A1,4,2)”. For simplicity, let Ci,j,k be a credential for an assertion and

let B = [{C1,1,1, ..., Ca,1,ai,1}, ..., {C1,ai,1, ..., Ca,ai,ai,j}] be a set of the entire possible set

of credentials that satisfy the policy P. Note that i, j, k are indexes for assertions

associated with the credentials. Let {Ci,j,k} = C1,j,1, ..., Ca,j,ai,j be a set of credentials,

which it may or may not be a set of credentials in B. Let {C} = C1,1,1, ..., Ca,ai,ai,j be

the entire credentials, where i, j are indexes.

Without losing generality, we assume that all parties must comply with the

registration protocol with a certificate authority CA to obtain a certificate on their

respective public keys. A policy-controlled signature scheme Σ is a 6-tuple (Setup,

TKeyGen, SKeyGen, CreGen, PSign, PV erify), which is described as follows.

System Parameter Generation (Setup):

5.2. Definition of Policy-controlled Signature Scheme (PCS) 92

This is a probabilistic algorithm that, given a security parameter ` as input,

outputs the system parameter param. That is,

Setup(1`)→ param.

TA Key Generator (TKeyGen):

This is a probabilistic algorithm that, given the system parameter param as

input, outputs the private key (skTA) and the public parameter (pkTA) of a

trusted authority. That is,

TKeyGen(param)→ (pkTA, skTA).

Signer Key Generator (SKeyGen):

This is a probabilistic algorithm that, given a system parameter param and

a public key of the trusted authority pkTA as input, outputs the private key

(skS) and the public parameter (pkS) of the signer. That is,

SKeyGen(param, pkTA)→ (pkS, skS).

Verifier Credential Generator (CreGen):

This is a probabilistic algorithm that, given the system parameter param, the

TA’s private key and the policy P as input, outputs verifier credential strings

{Ci,j,k} where i, j, k are indexes of credential strings. That is,

CreGen(param, skTA, P)→ {Ci,j,k}.

Policy-controlled Signature Signing (PSign):

This is a probabilistic algorithm that, given the system parameter param, the

trust authority’s public key pkTA, the signer’s private key skS, the signer’s

public key pkS, a message M and the policy P as input, outputs the signer’s

signature δ. That is,

PSign(param,M, skS, pkS, pkTA, P)→ δ.

Policy-controlled Signature Verification (PV erify):

This is a deterministic algorithm that, given the system parameter param, the

trust authority’s public key pkTA, the signer’s public key pkS, the policy P, a

set of credentials {Ci,j,k} ∈ B, a message M and a signature δ as input, outputs

a verification decision d ∈ {Accept, Reject}. That is,

PV erify(param,M, δ, pkTA, pkS, P, {Ci,j,k})→ d.

5.2. Definition of Policy-controlled Signature Scheme (PCS) 93

5.2.2 Unforgeability

The unforgeability property in our model aims to provide security against exis-

tential unforgeability under an adaptive chosen message and credentials exposure

attack. It intentionally prevents an attacker, who accesses to credential queries,

to generate a policy-controlled signature δ∗ on a new message M∗. Formally, this

unforgeability provides assurance that someone with an access to the signing oracle,

the credential oracle and the signer’s public key pkS, should be unable to produce

a policy-controlled signature on a new message M∗, even if it arbitrarily chooses a

policy P, a message M and the entire credentials {C} as input.

We denote by CM -A the adaptively chosen message and credentials exposure.

We also denote by EUF -PCS the existential unforgeable of a PCS scheme. Let

ACM−AEUF−PCS be the adaptively chosen message and credentials exposure adversary

and let F be a simulator. We denote that B∗ is the entire possible set of credentials

of a policy P∗. Let st be the state of information that A obtains during the learning

phase. The following game between F and A is defined to describe the existential

unforgeability of a PCS scheme.

Let PS be an algorithm that maintains the list of queried policy-controlled

signatures and QS be an algorithm that maintains the list of queried credentials.

The oracles are provided in order to model the ability of adversaries to break the

unforgeability of a PCS scheme as shown below.

SSO oracle: At most qSS times, A can make a query for a signature δ on its choice

of a message M . As a response, SSO runs the PSign algorithm to generate

a signature δ on a message M corresponding with pkTA, pkS and P. SSO
then returns δ,M to A. After that, SSO keeps a record in the PS, which is

PS← PS(δ,M, P).

VCO oracle: At most qV C times, A can make a query for the credential Ci corre-

sponding to the assertion Ai in the policy P. As a response, VCO replies to

A with corresponding credentials {Ci,j,k}. After that, VCO keeps a record in

the QS, which is QS← QS({Ci,j,k}).

VSO oracle: At most qV S times, A can make a query for the verification of a

signature δ to VSO with a signature δ as input. As a response, VSO returns

with a decision d, which is Accept or Reject corresponding to a validation of

signature δ.

5.2. Definition of Policy-controlled Signature Scheme (PCS) 94

We begin the experiment ExptA
CMA
EUF-PCS(`) as follows: given a choice of messages

M and access to the SSO, VCO and VSO oracles, A arbitrarily makes queries

to the oracles in an adaptive way. At the end of these queries, we assume that A
outputs a forged signature δ∗ on a new message M∗ with respect to the public key

pkS and a policy P∗. We denote that B∗ is the entire possible set of credentials of a

policy P∗. We say that A wins the game if:

1. Accept← PV erify(M∗, δ∗, pkS, P
∗, {Ci,j,k} ∈ B∗).

2. M∗, P∗ 6∈ PS.

Let SuccCM−AEUF−PCS(.) be the success probability of that ACM−AEUF−PCS wins the above

game.

Definition 5.1 We say that a PCS scheme is (t,qH ,qSS,qV C,ε)-secure existential

unforgeability under a chosen message and credentials exposure attack if there is no

PPT adversary ACM−AEUF−PCS such that the success probability SuccCM−AEUF−PCS(`) = ε

is non-negligible in `, where ACM−AEUF−PCS runs in time at most t, makes at most qH

queries to the random oracle, and at most qSS and qV C queries to queries SSO and

VCO, respectively.

5.2.3 Coalition-resistance

In this section, we will discuss the coalition-resistance property of PCS schemes. This

coalition-resistance property aims to prevent an attacker as a group of corrupted

credential holders (verifiers) from verifying a policy-controlled signature δ∗ on a

message M∗ with a policy P where the attacker does not have enough credentials

to satisfy the policy P. The condition “verifier does not have enough credentials to

satisfy the policy P” is elaborated as follows.

At least one set of credentials of assertionsA in the policy P =
∧a
i=1[
∨ai
j=1 [

∧ai,j
k=1 Ai,j,k]]

is not given to the verifier, such that the verifier does not have sufficient creden-

tials to verify a policy-controlled signature on a message M with the policy P. For

example:

1. In the case of a = 1; ai = 1; ai,j > 1, the verifier does not have one (or more)

credential Cl of assertions A1, ..., Aai,j .

5.2. Definition of Policy-controlled Signature Scheme (PCS) 95

2. In the case of a = 1; ai > 1; ai,j > 1, the verifier does not have one set of

credential Cl,1, ...,Cl,ai of assertions [A1,j,1, ..., A1,j,ai,j]1≤j≤ai that satisfies the

first case.

3. In the case of a > 1; ai > 1; ai,j > 1, the verifier has one set of credential (e.g.,

[Cl,j,1, ..., Cl,j,ai,j]1≤j≤ai) of assertions [Ai,j,1, ..., Ai,j,ai,j]1≤i≤a,1≤j≤ai that does not

satisfy the second case.

Formally, the coalition-resistance property provides assurance that someone with

access to the signing oracle, the credential oracle, and the signer’s public parameter

pkS should be unable to distinguish a valid signature out of two policy-controlled

signatures on a message M∗ even by arbitrarily choosing a policy P∗, a message M∗

and the entire credentials {C} except one set of credentials that does not satisfy the

policy P∗ as input. This intentionally prevents a distinguisher from distinguishing a

valid signature from a (simulated) invalid signature on any message M with a new

policy P∗.

Let CRI-PCS denote the existential coalition-resistance property of a PCS

scheme. Let ACMP−A
CRI−PCS be an adaptively chosen message and chosen policy at-

tack and let F be a simulator. The experiment between F and A describes the

existential coalition-resistance property of a PCS scheme as follows.

First, the oracles provided in order to model the abilities of adversary to break

the coalition-resistance property of a PCS scheme are described in Section 5.2.2.

The experiment is divided into two phases. We run them as follows.

1. Phase 1: With any adaptive strategies, A arbitrarily sends a request for query

to the SSO and VCO oracles. The oracles respond as per their design.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗ and P∗ =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]] such that:

a. Given P∗ and M∗ as input, A never issues a request for a policy-controlled

signature to the SSO oracle.

b. Given P∗ as input, A can issue a request for credentials to the VCO oracle,

however, A does not make sufficient requests for credentials to satisfy the

policy P∗, as mentioned clearly above.

Next, F chooses a random bit b
$← {0, 1}. If b = 1 then, given a policy P∗, a

signer’s public key pkS and a message M∗ as input, F makes a request for a

5.2. Definition of Policy-controlled Signature Scheme (PCS) 96

policy-controlled signature to the SSO oracle and responds to A with δ∗ as an

output from the SSO oracle. Otherwise, given a policy P∗, a signer’s public

key pkS, a message M∗, a valid policy-controlled signature δ∗ on a message

M∗ with a policy P∗ and a set of credentials {Ci,j,k} ∈ B∗ as input, F computes

a (simulated) invalid policy-controlled signature δ∗ and responds to A with δ∗.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it wants, on one condition, that A must have at least one set of challenges

M∗, P∗, δ∗ such that

a. Given P∗ and M∗ as input, A never issues a request for a policy-controlled

signature to the SSO oracle.

b. Given P∗ as input, A can issue a request of credentials to the VCO oracle;

however, A must not have enough credentials to satisfy the policy P∗ and

to verify δ∗, as mentioned clearly above.

4. Guessing: On the challenge M∗, P∗, δ∗, A finally outputs a guess b′. The

distinguisher wins the game if b = b′.

Let SuccCMP−A
CRI−PCS(.) be the success probability of ACMP−A

CRI−PCS winning the above

game.

Definition 5.2 We say that PCS scheme is (t,qH ,qSS,qV C,ε)-secure existential coalition-

resistant under a chosen message and chosen policy attack if there is no PPT dis-

tinguisher ACMP−A
CRI−PCS such that the success probability SuccCMP−A

CRI−PCS(`)= |Pr[b =

b′]−Pr[b 6= b′]| = ε is non-negligible in `, where ACMP−A
CRI−PCS runs in time at most t,

make at most qH queries to the random oracle, and at most qSS, and qV C queries to

the SSO and VCO oracles, respectively.

5.2.4 Invisibility

In this section, we will elaborate the invisibility property of PCS schemes. Intu-

itionally, the invisibility property aims to prevent an attacker who does not have

any credentials to satisfy a policy P from verifying a policy-controlled signature δ

on a message M with respect to a policy P. Formally, the invisibility property

provides assurance that someone, with an access to the signing oracle, the verifica-

tion oracle and the signer’s public key pkS, should be unable to distinguish a valid

5.2. Definition of Policy-controlled Signature Scheme (PCS) 97

policy-controlled signature on a message M∗ from an invalid one, even if it arbitrary

chooses a policy P∗ and a message M∗ as input.

Let INV -PCS denote the existential invisibility privacy of a PCS scheme. Let

ACMP−A
INV−PCS be an adaptively chosen message and chosen policy distinguisher and let

F be a simulator. The experiment between F and A describes as the existential

invisibility privacy of a PCS scheme as follows.

First, the oracles provided in order to model the ability of adversaries to break

the invisibility privacy of a PCS scheme are described in Section 5.2.2.

The experiment is divided into two phases. We run them as follows.

1. Phase 1: With any adaptive strategies, A arbitrarily sends query requests to

the SSO and VSO oracles. The oracles respond as per their design.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗ and P∗ =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]] such that, given P∗ and M∗ as

input, A never issues a request for a policy-controlled signature to the SSO
oracle. Next, F chooses a random bit b

$← {0, 1}. If b = 1 then, given a policy

P∗ as input, a signer’s public key pkS and a message M∗ as input, F makes a

request for a policy-controlled signature to the SSO oracle and responds to

A with δ∗ as an output from the SSO oracle. Otherwise, given a policy P∗, a

signer’s public key pkS, a message M∗ and a valid policy-controlled signature

δ∗ on message M∗ with a policy P∗ as input, F computes a (simulated) invalid

policy-controlled signature δ∗ and responds to A with δ∗.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it want. On one condition, that A must have at least one set of challenges

M∗, P∗, δ∗ such that:

a. Given P∗ and M∗ as input, A never issues a request for a policy-controlled

signature to the SSO oracle.

b. Given P∗, M∗ and δ∗ as input, A never issues a request for the verification

of the policy-controlled signature δ∗ to the VSO oracle.

4. Guessing: On the challenge M∗, P∗, δ∗, A finally outputs a guess b′. The

distinguisher wins the game if b = b′.

Let SuccCMP−A
INV−PCS(.) be the success probability of ACMP−A

INV−PCS winning the above

game.

5.3. The Proposed PCS Scheme 98

Definition 5.3 We say that a PCS scheme is (t,qH ,qSS,qV S,ε)-secure existential

invisible under a chosen message and chosen policy attack if there is no PPT dis-

tinguisher ACMP−A
INV−PCS such that the success probability

SuccCMP−A
INV−PCS(`)= |Pr[b = b′]−Pr[b 6= b′]| = ε is non-negligible in `, where ACMP−A

INV−PCS

runs in time at most t, makes at most qH queries to the random oracle, and at most

qSS, and qV S queries to the SSO and VSO oracles, respectively.

Theorem 5.1 The invisibility of policy-controlled signature schemes implies the

coalition-resistance property of policy-controlled signature schemes.

Proof: Assuming that an invisibility adversary AI solves the invisibility of a PCS

scheme, we will show that an adversary ACR can solve the coalition-resistance prop-

erty of a PCS scheme by using AI . Let S be a simulator and then let S run the

existential coalition-resistance game defined earlier with ACR. Meanwhile, ACR runs

the existential invisibility game defined earlier with AI . On accessing the SSO and

VCO oracles constructed by S, ACR passes the SSO oracle from S to AI . Then,

by using the VCO oracle from S, ACR constructs the VSO oracle for AI by making

queries to the VCO oracle for credentials to verify a signature queried by AI . At

the end of phase 2, AI outputs for a challenge with M∗ and P∗ to ACR. ACR then

relays this challenge to S. S responds with δ∗. ACR returns δ∗ to AI . Finally, AI
outputs a decision b′ and gives it to ACR. Then ACR returns b′ to S.

From the above experiment, it is clearly shown that ifAI can solve the invisibility

property of a PCS scheme, then ACR can solve the coalition-resistance property of

a PCS scheme via AI . Hence, the coalition-resistance property is a stronger model

of the invisibility property in the notion of PCS scheme. �

5.3 The Proposed PCS Scheme

Prior to presenting our concrete construction of policy-controlled signature schemes,

we will first describe the idea and intuition behind our construction as clarification.

Intuitively, we can achieve a policy-controlled signature scheme by combining the

idea of policy-based encryption schemes [BM05], a general signature scheme and a

designated verifier signature scheme. First, we combine a designated verifier signa-

ture on a message into a policy-based ciphertext such that only a verifier who has

satisfied the policy can verify the authenticity of the signature. This will constitute

the part of policy-controlled signatures that we refer to as “the encrypted designated

5.3. The Proposed PCS Scheme 99

verifier signature”. Then, a signature scheme is used to sign the concatenation of

the policy and the encrypted designated verifier signature. The encrypted desig-

nated verifier signature and the signature from the above construction constitute a

policy-controlled signature. The purpose of the above construction is to ensure the

authentication of the signer such that the verifier is convinced that the signer has

actually generated this policy-controlled signature. The signature can be publicly

verifiable; however, one cannot be convinced that the signature is indeed associ-

ated with a message unless one has the credentials satisfying the policy to verify

the encrypted designated verifier signature. Hence, without revealing the verifier’s

private information (the credentials associated with the policy), the verifier should

not be able to convince another party that a signer generated the policy-controlled

signature.

5.3.1 The General Construction

In this section, we present our concrete construction of PCS schemes. Let H0 :

{0, 1}∗ → G1; H1 : {0, 1}∗ → G1; H2 : {0, 1}∗ → G1 be three distinct random

one-way functions that map any string to group G1 and let h : {0, 1}∗ → ZZ∗p be a

collision-resistant hash function. We denote by G1 and GT groups of prime order p.

Assume that there exists an efficient computationally bilinear mapping function ê,

which maps G1 to GT . The above mapping function is defined as ê : G1×G1 → GT .

The scheme is described as follows.

Setup: Given a security parameter ` as input, a trusted third party randomly

chooses a prime p ≈ poly(1`). Select a random generator g ∈ G1 and a bilinear

mapping function ê. Select hash functions H0(.), H1(.), H2(.), h(.). We denote

by param = (p, ê, g,H0, H1, H2, h) the system parameter. Then, Setup returns

param.

TKeyGen: Given a system parameter param as input, a trusted authority TA ran-

domly generates a private key skTA and a public key pkTA as follows: select

two random integers µ, γ ∈ ZZp. Let U = gµ;W = gγ denote a public key.

Therefore, TKeyGen returns skTA = (µ, γ) as a private key of the trusted

authority and pkTA = (U,W) as a public key of the trusted authority.

SKeyGen: Given a system parameter param and a public key of the trusted author-

ity pkTA as input, a signer S randomly generates a private key skS and a public

5.3. The Proposed PCS Scheme 100

key pkS as follows: select a random integer x ∈ ZZp. Let X = gx; X̂ = W x

denote a public key. Therefore, SKeyGen returns skS = x as a private key of

the signer and pkS = (X, X̂) as a public key of the signer.

CreGen: Let P be a statement in the policy, e.g., P =‘CIA agent’. An assertion A

of P is computed as follows: A = H2(P). Given a system parameter param as

input, the trusted authority’s public key pkTA, the trusted authority’s private

key skTA and a set of assertions A1, ..., An that the verifier is allowed to obtain,

a trusted authority TA randomly generates each verifier’s credential string Ci =

(Vi, Ri, Gi) where i is an index of credentials as follows. TA randomly selects

νi ∈ ZZ∗p and computes each credential Vi = U1/νi ; Ri = g(µγ)/νiAµi ; Gi = gνi

and then returns Ci = (Vi, Ri, Gi) to the verifier as a credential of assertion Ai.

The verifier checks the validity of Ci as follows.

ê(Ri, g)
?
= ê(Ai, U)ê(W, Vi),

ê(Vi, Gi)
?
= ê(U, g).

PSign: Given param, pkTA, skS, pkS, P =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]] and a message M ,

S computes a policy-controlled signature δ on a message M as follows.

r, t1, ..., ta
$← ZZp, t = ⊕ai=1ti, δ1 = gr,

δ2 = Xr, δ3 = X̂r,

Ψ = M ||δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P,

for i = 1 to a, for j = 1 to ai:

Ri,j = ti ⊕ h(H0(Ψ)||i||j||ê((
ai,j∏
k=1

Ai,j,k)
r·x, U)).

Then compute

Ω = δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a,

δ4 = H1(Ω)x.

The policy-controlled signature on a message M is

δ = (H0(Ψ),δ1,δ2,δ3,δ4, [Ri,1, ..., Ri,ai]1≤i≤a).

5.4. Security Analysis 101

PV erify: Let {Ci,j,k} = C1,j,1, ..., Ca,j,ai,j be a set of credentials in B that the verifier

possesses. Given pkS, pkTA, pkV , {Ci,j,k} ⊂ B, P, δ and a message M , a verifier

V first checks whether

ê(δ2, g)
?
= ê(δ1, X), ê(δ3, g)

?
= ê(δ2,W)

holds or not. If not, then V outputs Reject. Otherwise, V computes as follows:

for i = 1 to a:

t̂i = Ri,j ⊕ h(H0(Ψ)||i||j||(
ai,j∏
k=1

(ê(Ri,j,k,δ2)ê(Vi,j,k,δ3)−1))).

Next, compute

t̂ = ⊕ai=1t̂i, Λ = M ||δ1||δ2||δ3||t̂||t̂1||...||t̂a||pkS||pkTA||P.

Then, V checks whether H0(Λ)
?
= H0(Ψ), ê(δ4, g)

?
= ê(H1(δ1||δ2||δ3||t̂||

t̂1||...||t̂a||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a), X) holds or not. If not, then it

outputs Reject. Otherwise, it outputs Accept.

5.4 Security Analysis

5.4.1 Unforgeability

Theorem 5.2 Our policy-controlled signature scheme is existential unforgeable un-

der an adaptive chosen message and credentials exposure attack if the CDH assump-

tion holds in the random oracle model.

Proof: Suppose that there exists a forger A, which runs the existential unforge-

ability game defined in Section 5.2.2, then we will show there exists an adversary

F that solves the CDH problem by using A. Intuitively, the proof begins with the

construction of oracles defined in Section 5.2.2. We then construct a simulator F
and run the existential unforgeability game defined in Section 5.2.2 with a forgery

A. Finally, we analyse the success probability of the existential unforgeability game

under an adaptive chosen message and credentials exposure attack and show that

this success probability is reducible to the CDH problem in the random oracle model.

We begin with the construction of oracles and run the existential unforgeability

game as follows. Given g, ga and gb as an instance of the CDH problem, F sets gb

as one of the answers for the hash query to the random oracle. Next, F chooses

5.4. Security Analysis 102

a random integer µ, γ ∈ ZZp and sets U = gµ;W = gγ as a public key of TA.

Then, F sets X = ga; X̂ = Xγ as the signer’s public key pkS. We note that the

algorithms managing the lists of each query are simple to construct, and therefore

such algorithms will be omitted. From the above setting, it is easy for F to construct

the SSO, VCO and the random oracle HO as follows.

HO oracle: Let M be a message that is an input for the hash value to the HO
oracle. If it is a request for a hash value of H1(M), HO selects d

$← {0, 1}
such that the probability of d = 1 is 1

qH
. If d = 1 then set H1(M) = gb and

return H1(M). Otherwise, l̄
$← ZZp; H1(M) = g l̄ and return H1(M). For

H0(M), HO chooses l1
$← ZZp and then returns H0(M) = gl1 . For H2(M),

HO chooses l2
$← ZZp and then returns H2(M) = gl2 . For h(M), HO chooses

l3
$← ZZp and then returns h(M) = l3. Then HO keeps l̄, l1, l2, l3 in the list and

this list can be accessed only by F . Note that HO manages the duplicated

hash value of the list by repeating the process such that the output of HO
behaves like a result from the random oracle.

VCO oracle: VCO runs CreGen to generate the credential Ci of assertion Ai and

then returns Ci

SSO oracle: Given P =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1 Ai,j,k]] and message M as input, SSO

computes a policy-controlled signature as follows.

r, t1, ..., ta
$← ZZp, t = ⊕ai=1ti, δ1 = gr, δ2 = Xr, δ3 = X̂r,

Ψ = M ||δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P,

for i = 1 to a, for j = 1 to ai:

Ri,j = t̂i ⊕ h(H0(Ψ)||i||j||(
ai,j∏
k=1

(ê(Ri,j,k,δ2)ê(Vi,j,k,δ3)−1))).

Then, having access to the list of l̄, l1, l2, l3, F checks whether H1(δ1||δ2||δ3

||t̂||t̂1||...||t̂a||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a)
?
= gb) , if not, then F gives l̄ to

SSO and SSO computes δ4 = X l̄. Otherwise, output ⊥. Finally, SSO re-

turns a policy-controlled signature on message M , which is δ = (H0(Ψ),δ1,δ2,

δ3,δ4, [Ri,1, ..., Ri,ai]1≤i≤a).

A is given an access to these oracles. Assume that a hash of a string or a message

from the random oracle HO is always queried before A makes a query to the SSO
and VCO oracles, or before it outputs a potential forgery, denoted by M∗, δ∗, P∗.

5.4. Security Analysis 103

After executing an adaptive strategy with these oracles, A outputs a forgery δ∗

on a message M∗ with respect to P∗. A wins the game if a policy-controlled signature

δ∗ on message M∗ is valid and is not an output from the SSO oracle.

Let SuccCM−AEUF−PCS = ε be the probability that A wins the game. We denote by

e the base of the natural logarithm and let q ≥ qH be a polynomial upper bound

on the number of queries that A makes to the HO oracle. As mentioned above,

A always make a query request to HO before making any requests to the SSO
oracle; hence, qH ≥ qSS. Therefore, we can analyse the success probability that A
outputs a signature δ∗ on message M∗, where δ∗4 = H1(Ω)x = (gb)x, and wins the

above game as follows.

• E1: F does not abort during the issuing of queries to the SSO oracles. The

probability of this event is (1 − 1
qH

)qSS . The fact is that A needs to reserve

at least one request for a hash value to output δ∗4, which is part of the

forgery. Therefore, the upper bound for the SSO oracle is qH − 1 and then

the probability of this event is greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after A output δ∗. A needs to reserve at least one request

for a hash value to output δ∗4, which is a part of forgery. However, if

H1(δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a)

= H1(Ω) 6= gb

for δ∗4, then F aborts the simulation. Hence, the probability of this event is

greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

The probability thatA wins the above game and outputs a signature δ∗ on a message

M∗, where δ∗4 = H1(Ω)x = (gb)x, is Pr[SuccCM−AEUF−PCS] · Pr[SuccCM−AEUF−PCS|E1|E2] ≥
ε(qH
e·(qH−1)

)2. From the above outputs byA, F obtains δ∗4 = H1(Ω)x. SinceH1(Ω) =

gb and x = a, F returns δ∗4 = gab as an output for the CDH problem with non-

negligible probability as mentioned above. �

5.4.2 Coalition-resistance

Theorem 5.3 In the random oracle model, the proposed policy-controlled signature

scheme is existential coalition-resistant against adaptively chosen message and cho-

sen policy attack ACMP−A
CRI−PCS attack if the DBDH assumption is hold.

5.4. Security Analysis 104

Proof: Suppose that there exists a forger A, which runs the existential coalition-

resistance game defined in Section 5.2.3, then we will show that there exists an

adversary F that answers the DBDH problem by using A as a tool. We shall start

with the construction oracles as they are designed in Section 5.2.3. Then we con-

struct F and run it over A with the existential coalition-resistance game defined in

Section 5.2.3. Next, we summarise the success probability of the existential coalition-

resistance game under an adaptive chosen message and chosen policy attack. Fi-

nally, from the existential coalition-resistance game and its success probability, we

can draw the conclusion that the success probability of solving the DBDH problem

is non-negligible if the success probability of the above game is non-negligible.

We construct the oracles and run the existential unforgeability game as follows.

Given g, ga, gb, gc and Z as an instance of the DBDH problem, F sets ga as one of

the answers for the hash query to the random oracle. Next, F randomly selects x, γ

and sets U = gb;W = gγ as the TA public key. Then, F sets X = gx; X̂ = gx·γ as

the signer’s public key. Assume that there are algorithms managing the lists of each

query and that such algorithms are easy to construct and will be omitted. From the

above setting, it is easy for F to construct the SSO, VCO and the random oracle

HO as follows.

HO oracle: Let M be a message that is an input for the hash value to the HO
oracle. If it is a request for a hash value of H2(M), HO selects d

$← {0, 1}
such that the probability of d = 1 is 1

qH
. If d = 1 then set H2(M) = ga and

return H2(M). Otherwise, l̄
$← ZZp; H1(M) = g l̄ and return H2(M). For

H0(M), HO chooses l1
$← ZZp and then returns H0(M) = gl1 . For H1(M),

HO chooses l2
$← ZZp and then returns H2(M) = gl2 . For h(M), HO chooses

l3
$← ZZp and then returns h(M) = l3. Then HO keeps l̄, l1, l2, l3 in a list and

this list can be accessed only by F . Note that HO manages the duplicated

hash value of the list by repeating the process such that the output of HO
behaves like a result from the random oracle.

VCO oracle: Given Ai as input, VCO accesses to the HO oracle for a matching

pair of Pi, Ai = H2(Pi); if HO returns Ai = H2(Pi) = ga then output ⊥.

Otherwise, F accesses the list in HO and returns l̄i : Ai = g l̄i to VCO.

Then VCO selects a random integer ν ∈ ZZp and computes Vi = U1/νi ; Ri =

Uγ/νiU l̄i ; Gi = gνi as a credential of Ai. VCO returns Ci = (Vi, Ri, Gi).

5.4. Security Analysis 105

SSO oracle: Given P =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]] and a message M as input, SSO

computes a policy-controlled signature as follows.

r, t1, ..., ta
$← ZZp, t = ⊕ai=1ti, δ1 = gr, δ2 = Xr, δ3 = X̂r,

Ψ = M ||δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P,

for i = 1 to a, for j = 1 to ai:

Ri,j = ti ⊕ h(H0(Ψ)||i||j||((
ai,j∏
k=1

Ai,j,k)
r·x, U)).

Next, SSO computes

δ4 = H1(δ1||δ2||δ3||t||t1||...||ta||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a)
x.

Then SSO returns a policy-controlled signature on message M , which is

δ = (H0(Ψ),δ1,δ2,δ3,δ4, [Ri,1, ..., Ri,ai]1≤i≤a).

Access to these oracles is given to A. Let us presume that a hash of message M

from the HO oracle is always queried before A makes a query request to the SSO
and VCO oracles, or before it outputs a decision bit b. Now, we run an experiment

as defined in Section 5.2.3 as follows.

1. Phase 1: A arbitrarily sends queries to the SSO and VCO oracles. The

oracles respond as above.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗ and P∗ =
∧a
i=1[
∨ai
j=1[
∧ai,j
k=1Ai,j,k]]. F aborts the game if

1. Given P∗ and M∗ as input, A issued a request for a policy-controlled sig-

nature to the SSO oracle.

2. A does not have sufficient credentials to satisfy the policy P∗.

Next, F computes a response as follows.

r, t1, ..., ta
$← ZZp, t = ⊕ai=1ti, δ

∗
1 = gc·r, δ∗2 = gc·x·r, δ∗3 = gc·γ·x·r,

Ψ = M∗||δ∗1||δ∗2||δ∗3||t||t1||...||ta||pkS||pkTA||P,

For i = 1 to a, for j = 1 to ai: if Ai∗,j∗,k∗ = ga then compute as follows.

Ri,j = ti ⊕ h(H0(Ψ)||i||j||ê((
ai,j∏

k=1,k 6=k∗
gc·l̄i,j,k)r·x, U)Zr·x).

5.4. Security Analysis 106

Otherwise, compute as follows.

Ri,j = ti ⊕ h(H0(Ψ)||i||j||ê((
ai,j∏
k=1

gc·l̄i,j,k)r·x, U)).

Then F computes

δ∗4 = H1(δ∗1||δ∗2||δ∗3||t||t1||...||ta||pkS||pkTA||P||[Ri,1||...||Ri,ai]1≤i≤a)
x.

Next, F returns a policy-controlled signature on a message M , which is δ∗ =

(H0(Ψ),δ∗1,δ
∗
2,δ
∗
3,δ
∗
4, [Ri,1, ..., Ri,ai]1≤i≤a).

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it requests, on one condition, that A must have at least one set of challenges

M∗, P∗, δ∗ such that

a. Given P∗ and M∗ as input, A never issues a request for a policy-controlled

signature to the SSO oracle.

b. Given P∗ as input, A can issued a request for credentials to the VCO
oracle; however, A does not have sufficient credentials to satisfy the policy

P∗.

4. Guessing: On the challenge M∗, P∗, A finally outputs a guess b′.

From the above experiment, we can solve the DBDH problem when A wins or

aborts the experiment with the condition that A picks the challenge M∗, P∗, δ∗,

which is inserted with Z and gc, and a credential for Ai,j,k∗ = ga is never queried.

Since Ai,j,k∗ = ga contained in αi,j, A can use it to check whether

ê((

ai,j∏
k=1,k 6=k∗

gc·l̄i,j,k)r·x, U)Zr·x ?
=

ai,j∏
k=1

(ê(Ri,j,k,δ2)ê(Vi,j,k,δ3)−1)

ê((

ai,j∏
k=1,k 6=k∗

gc·l̄i,j,k)r·x, U)Zr·x ?
=

ai,j∏
k=1,k 6=k∗

(ê(Ri,j,k,δ2)ê(Vi,j,k,δ3)−1) ·

ê(Ri,j,k∗ ,δ2) · ê(Vi,j,k∗ ,δ3)−1

Zr·x ?
= ê(Ri,j,k∗ ,δ2) · ê(Vi,j,k∗ ,δ3)−1

Zr·x ?
= ê(Uγ/νi,j,k∗Abi,j,k∗ , g

c·x·r) · ê(U1/νi,j,k∗ , gc·γ·x·r)−1

Zr·x ?
= ê(Abi,j,k∗ , g

c·x·r)

Zr·x ?
= ê((ga)b, gc·x·r)

Zr·x ?
= ê(g, g)a·b·c·x·r

5.4. Security Analysis 107

holds or not. A will not abort the game if the above holds.

Let A win the game with an advantage SuccCM−ACRI−PCS = ε. We denote by e the

base of the natural logarithm and let q ≥ qH be a polynomial upper bound of queries

that A makes to the HO oracle. Note that q << p. As mentioned above, A always

makes a query request to HO before it makes any requests to the SSO and VCO
oracles; hence, qH ≥ qV C and qH ≥ qSS. Therefore, we can analyse the probability

that A’s guess is correct and wins the above game as follows.

• E1: F does not abort during the issuing of queries to the VCO oracles. The

probability of this event is (1− 1
qH

)qV C . The fact is that A needs to reserve at

least one request for a credential of A∗i,j,k and one request for a hash value of

A∗i,j,k = H2(P ∗i,j,k), which is part of the policy P∗. Therefore, the upper bound

for the VCO oracle is qH − 1 and then the probability of this event is greater

than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after Phase 1 and Phase 2. Since we have assumed

that A follows the experiment and outputs a guess with a valid challenge

(M∗, P∗, δ∗), then the probability of this event is 1.

The probability that A wins the above game and it outputs a correct guess b′ = b

is Pr[SuccCM−ACRI−PCS] · Pr[SuccCM−ACRI−PCS|E1|E2] ≥ ε qH
e·(qH−1)

.

Let ε′ be an advantage in solving the DBDH problem. From the above game,

F outputs a guess for the DBDH problem with A’s guess. However, we note that

A can choose a challenge policy P. Hence, A can try to guess from one of the

credentials that A does not make a request for a credential to the VCO oracle.

Thus, there is a event where A’s guess is not a correct guess for the DBDH problem,

which is when Ai∗,j∗,k∗ is not chosen by A. The probability for this event is 1
a·ai .

Therefore, the advantage that F can output a correct guess for the DBDH problem

by using A is ε′ ≥ 1
a·ai ε

qH
e·(qH−1)

. Hence, the probability that A breaks the existential

coalition-resistance property of a PCS scheme against adaptively chosen message

and chosen policy attack is ε ≤ ε′a · ai · e · (qH − 1)/qH . Since a · ai ≤ qH << q, the

analysis of the above advantages shows that the success of breaking the existential

coalition-resistance property of a PCS scheme is non-negligible if the probability of

breaking the DBDH problem is non-negligible. �

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 108

5.5 Definition of Universal Policy-controlled Sig-

nature Scheme (UPCS)

In this section, we give a definition of universal policy-controlled signature (UPCS)

schemes that allow a policy signer (as a signature holder) using a policy to limit the

verification of the signature generated by a signer. In other words, only a verifier

that satisfies the policy specified by the policy signer can verify the policy-controlled

signature that generated from a signature signed by a signer. We mentioned the

practical scenario of universal policy-controlled signature schemes in Section 5.1.

We provide an outline of our UPCS scheme as follows.

5.5.1 Outline of UPCS

Let TA denote a trusted authority that issues credentials associated with policies.

Let CA denote a certificate authority that generates system parameter and certifies

public keys for all parties. There are three major players in a universal policy-

controlled signature scheme, namely a signer(s), a policy signer (who also acts as

signature holder) and a verifier. The role of the signer S is to generate an ordinary

signature for a policy signer. The policy signer is a party that generates a policy-

controlled signature. This (universal) policy-controlled signature is used to prove

that (1) a signature holder holds an ordinary signature generated by the signer, and

(2) the policy-controlled signature is indeed generated by the signature holder. In

addition, only a verifier V , who holds a credential satisfying the policy directed by a

signature holder, can verify the (universal) policy-controlled signature. Credentials

held by a verifier V are issued by TA.

We denote by A an assertion issued by TA. Each assertion A may be a hash value

of certain statements, such as “Priority Club Platinum Member”. Without loss of

generality, we redefine P for UPCS to be a policy only in the disjunctive normal

form (DNF), which contains a set of assertions P =
∨a
i=1[
∧ai
j=1Ai,j] where i, j are

indexes. Let Ci,j denote a credential for an assertion and let B = [{C1,1, ..., Ca,1,}, ...,
{C1,ai , ..., Ca,ai}] denote a set of the entire possible set of credentials that satisfy the

policy P where i, j are indexes for assertions associated with the credentials. For

simplicity, let {Ci} = Ci,1, ..., Ci,ai denote a set of credentials, which may or may

not be a set of credentials in B. Let {C} = C1,1, ..., Ca,ai be the entire credentials,

where i is an index. Let us assume that all parties will comply with the registration

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 109

protocol with a certificate authority CA to obtain a certificate on their respective

public keys.

A universal policy-controlled signature scheme Σ is a 8-tuple (Setup, TKeyGen,

SKeyGen, PKeyGen, CreGen, Sign, V erify, PSign,PV erify). The definition of

Setup, TKeyGen, SKeyGen and CreGen is same as the definition in Section 5.2.

The definition of PKeyGen, Sign, V erify, PSign and PV erify is described as

follows.

Policy Signer Key Generator (PKeyGen):

This is a probabilistic algorithm that, given the system parameter param

and the public key of the trusted authority pkTA as input, outputs strings

(skP , pkP) where they denote the private key and the public key of a signer,

respectively. That is,

PKeyGen(param, pkTA)→ (pkP , skP).

Signature Signing (Sign):

This is a probabilistic algorithm that, given the system parameter param, the

signer’s private key skS, the signer’s public key pkS and a message M as input,

outputs a signer’s signature σ. That is,

Sign(param,M, skS, pkS)→ σ.

Signature Verification (V erify):

This is a deterministic algorithm that, given the system parameter param, the

signer’s public key pkS, a message M and a signature σ as input, outputs a

verification decision d ∈ {Accept, Reject}. That is,

V erify(param,M, σ, pkS)→ d.

Policy-controlled Signature Signing (PSign):

This is a probabilistic algorithm that, given the system parameter param,

the trust authority’s public key pkTA, the signer’s public key pkS, the policy

signer’s private key skP , the policy signer’s public key pkP , a signer’s signature

σ on a message M and the policy P as input, outputs a universal policy-

controlled signature δ. That is,

PSign(param,M, σ, skP , pkS, pkP , pkTA, P)→ δ.

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 110

Policy-controlled Signature Verification (PV erify):

This is a deterministic algorithm that, given the system parameter param,

the trust authority’s public key pkTA, the signer’s public key pkS, the policy

signer’s public key pkP , the policy P, a set of credentials {Ci,j,k} ∈ B, a message

M and a universal policy-controlled signature δ as input, outputs a verification

decision d ∈ {Accept, Reject}. That is,

V erify(param,M, δ, pkTA, pkS, pkP , P, {Ci,j,k})→ d.

5.5.2 Unforgeability

The unforgeability property of UPCS is divided into two parts. The first model aims

to ensure security against existential unforgeability under adaptive chosen message,

signer’s private key exposure and credentials exposure attack. It intentionally pre-

vents an attacker, who accesses the credential oracle and the signer’s private key,

from generating a policy-controlled signature σ∗ on a new message M∗. The sec-

ond model aims to provide security against existential unforgeability under adaptive

chosen message, chosen policy signer’s private key exposure and credentials expo-

sure attack. The second model intentionally prevents an attacker, who accesses to

the credential oracle and the policy signer’s private key, from generating a policy-

controlled signature σ∗ on a new message M∗. The purpose of the above models is

to provide a fair unforgeability property of UPCS for both the original signer and

the policy signer.

First, the oracles are provided in order to model the ability of adversaries to break

the unforgeability of a UPCS scheme as described below. Let SL, PL, QK, SS,

PS and QS be algorithms that maintain the list of the signer’s public-private key

pair, the list of the policy signer’s public-private key pairs, the list of queried public-

private key pairs, the list of queried signatures, the list of queried policy-controlled

signatures and the list of queried credentials, respectively.

SPO oracle: At most qSP times, A can make a query for a new public key of the

signer to SPO. As a response, given the security parameter param, SPO
runs the SKeyGen algorithm to generate a public-private key of the signer

(pkS, pkS). SPO then returns pkS to A. After that, SPO keeps a record in

the SL, which is SL← SL(pkS, skS).

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 111

SKO oracle: At most qSK times, A can make a query for the signer’s private key

skS of the chosen the signer’s public key pkS to SKO. As a response, SKO
matches the signer’s public key pkS in the list SL to obtain the signer’s private

key skS Then, SKO returns skS to A. After that, SKO keeps a record of

this query in the QK, which is QK← QK(pkS, skS).

PPO oracle: At most qPP times, A can make a query for a new public key of the

signer to PPO. As a response, given the security parameter param, PPO
runs the PKeyGen algorithm to generate a public-private key of the signer

(pkP , pkP). PPO then returns pkP to A. After that, PPO keeps a record

in the PL, which is PL← PL(pkP , skP).

PKO oracle: At most qPK times, A can make a query for the policy signer’s

private key skP to PKO. As a response, PKO matches the signer’s public

key pkP in the list PL to obtain the signer’s private key skP Then, PKO
returns skP to A. After that, PKO keeps a record of this query in the QK,

which is QK← QK(pkP , skP).

SSO oracle: At most qSS times, A can make a query for a signature σ on its choice

of a message M . As a response, SSO runs the Sign algorithm to generate a

signature σ on a message M corresponding with pkTA, pkS and P. SSO then

returns σ,M to A. After that, SSO keeps the record in the SS, which is

SS← SS(σ,M, P).

PSO oracle: At most qPS times, A can make a query for a policy-controlled sig-

nature δ on its choice of a message M , a policy signer’s public key pkP , a

signer’s public key pkP , a signature σ and a policy P as input to PSO. As

a response, PSO runs the PSign algorithm to generate a policy-controlled

signature δ on a message M corresponding with pkTA, pkS, pkP and P. PSO
then returns the policy-controlled signature δ to A. After that, PSO keeps

a record in the PS, which is PS← PS(δ, σ,M, P, pkS, pkP).

Note that, for the definition of the VCO oracle, the reader may refer to Sec-

tion 5.2.2. Next, we discuss the existential unforgeability of UPCS on the policy

signer’s side. Let CM -SK-A be the adaptively chosen message, signer’s private key

exposure and credentials exposure. We also denote by EUF -UPCS the existential

unforgeability of UPCS schemes. Let ACM−SK−AEUF−UPCS be the adaptively chosen message,

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 112

the signer’s private key exposure and credentials exposure adversary and let F be a

simulator. We denote that B∗ is the entire possible set of credentials of a policy P∗.

Let st be the state of information that A obtains during the learning phase. The

following game between F and A is defined to describe the existential unforgeability

ExptA
CM-SK-A
EUF-UPCS(`) of UPCS on the policy signer’s side: given a choice of messages

M and access to the SPO, SKO, SSO, PSO and VCO oracles, A arbitrarily

makes queries to the oracles in an adaptive way. At the end of the above queries,

we assume that A outputs a forged policy-controlled signature δ∗ on a new message

M∗ with respect to the signer’s public key pkS, the policy signer’s public key pkP

and a policy P∗. We denote that B∗ is the entire possible set of credentials of a policy

P∗. We say that A wins the game if:

1. Accept← V erify(M∗, δ∗, pkS, pkP , pkTA, P
∗, {Ci,j,k} ∈ B∗).

2. σ∗,M∗, P∗ 6∈ SS.

Let SuccCM−SK−AEUF−UPCS(.) be the success probability of ACM−SK−AEUF−UPCS winning the above

game.

Definition 5.4 We say that a UPCS scheme is (t,qH ,qSS,qPS,qV C,ε)-secure exis-

tential unforgeable under an adaptive chosen message, a signer’s private key ex-

posure and credentials exposure attack if there is no PPT adversary ACM−SK−AEUF−UPCS

such that the success probability SuccCM−SK−AEUF−UPCS(`) = ε is non-negligible in `, where

ACM−SK−AEUF−UPCS runs in time at most t, makes at most qH queries to the random ora-

cle, and at most qSS, qPS, and qV C queries to the SSO, PSO and VCO oracles,

respectively.

Finally, we discuss the existential unforgeability of UPCS on the signer’s side.

We denote by CM -PSK-A the adaptively chosen message, policy signer’s private

key exposure and credentials exposure. Let ACM−PSK−AEUF−UPCS be the adaptively chosen

message, the policy signer’s private key exposure and credentials exposure adver-

sary. The following game between F and A is defined to describe the existential

unforgeability ExptA
CM-SK-A
EUF-UPCS(`) of UPCS on the signer’s side: given a choice of mes-

sages M and access to the PPO, PKO, SSO and VCO oracles, A arbitrarily

makes queries to the oracles in an adaptive way. At the end of the above queries,

we assume that A outputs a forged policy-controlled signature δ∗ on a new message

M∗ with respect to the signer’s public key pkS, the policy signer’s public key pkP

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 113

and a policy P∗. We denote that B∗ is the entire possible set of credentials of a policy

P∗. We say that A wins the game if:

1. Accept← V erify(M∗, δ∗, pkS, pkP , pkTA, P
∗, {Ci,j,k} ∈ B∗).

2. σ∗,M∗, P∗ 6∈ PS.

Let SuccCM−PSK−AEUF−UPCS (.) be the success probability of ACM−PSK−AEUF−UPCS winning the above

game.

Definition 5.5 We say that a UPCS scheme is (t,qH ,qSS,qPS,qV C,ε)-secure exis-

tential unforgeable under an adaptive chosen message, a policy signer’s private key

exposure and credentials exposure attack if there is no PPT adversary ACM−PSK−AEUF−UPCS

such that the success probability SuccCM−PSK−AEUF−UPCS (`) = ε is non-negligible in `, where

ACM−PSK−AEUF−UPCS runs in time at most t, makes at most qH queries to the random oracle,

and at most qSS and qV C queries to the SSO and VCO oracles, respectively.

5.5.3 Coalition-resistance

In this section, we will discuss the coalition-resistance property of UPCS schemes.

The coalition-resistance property of UPCS schemes aims to prevent an attacker as

a group of corrupted credential holders (verifiers) from verifying a policy-controlled

signature σ∗ on a message M∗ with a policy P, where an attacker does not have

sufficient credentials to satisfy the policy P. In fact, the coalition-resistance property

of UPCS schemes is the same as the coalition-resistance property of PCS schemes.

However, the security model is different. We describe the security model for the

coalition-resistance property of UPCS schemes as follows. Let CRI-UPCS denote

the existential coalition-resistance property of UPCS schemes. Let ACMP−A
CRI−UPCS be

the adaptively chosen message and chosen policy attack. Let F be a simulator.

Let SS and PS be algorithms that maintain the list of queried signatures and the

list of queried policy-controlled signatures, respectively. Let QS be an algorithm

that maintains the list of queried credentials. The following experiment between

F and A describes the existential coalition-resistance property of UPCS schemes.

First, the oracles are provided in order to model the ability of adversaries breaking

the coalition-resistance property of UPCS schemes which are the VCO, PSO and

SSO oracles The definition of the VCO oracle may refer to Section 5.2.2. For the

definition of the PSO and SSO oracle, the reader may refer to Section 5.5.2.

The experiment is divided into two phases. We run them as follows.

5.5. Definition of Universal Policy-controlled Signature Scheme (UPCS) 114

1. Phase 1: With any adaptive strategies, A arbitrarily sends query requests to

the SSO, PSO and VCO oracles. The oracles respond as per their design.

2. Challenge: A decides to challenge and outputs σ∗, M∗ and P∗ such that:

a. Given σ∗, P∗ and M∗ as input, A never issues a request for a policy-

controlled signature to the PSO oracle.

b. Given P∗ as input, A can issue a request for credentials to the VCO oracle;

however, A does not make sufficient requests for credentials to satisfy the

policy P∗.

c. Accept← V erify(param,M∗, σ∗, pkS).

Next, F chooses a random bit b
$← {0, 1}. If b = 1 then, given a signature σ∗,

a policy P∗, a signer’s public key pkS and a message M∗ as input, F makes a

request for a policy-controlled signature to the PSO oracle and responds A
with δ∗ as an output from the PSO oracle. Otherwise, given a signature σ∗, a

policy P∗, a signer’s public key pkS, a policy signer’s public key pkP , a message

M∗, a valid policy-controlled signature δ on message M∗ with a policy P∗ and

a set of credentials {Ci,j,k} ∈ B∗ as input, F computes a (simulated) invalid

policy-controlled signature δ∗ and responds to A with δ∗.

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it wants, on one condition, that A must have at least one set of challenges

M∗, P∗, σ∗, δ∗ such that

a. Given σ∗, P∗ and M∗ as input, A never issues a request for a policy-

controlled signature to the PSO oracle.

b. Given P∗ as input, A can issue a request for credentials to the VCO oracle,

however, A does not have sufficient credentials to satisfy the policy P∗

and to verify σ∗.

c. Accept← V erify(param,M∗, σ∗, pkS).

4. Guessing: On the challenge M∗, P∗, σ∗, δ∗, A finally outputs a guess b′. The

distinguisher wins the game if b = b′.

Let SuccCMP−A
CRI−UPCS(.) be the success probability of ACMP−A

CRI−UPCS winning the above

game.

5.6. The Proposed UPCS Scheme 115

Definition 5.6 We say that a UPCS scheme is (t, qH , qSS, qPS, qV C, ε)-secure ex-

istential coalition-resistant under a chosen message and chosen policy attack if there

is no PPT distinguisher ACMP−A
CRI−UPCS such that the success probability SuccCMP−A

CRI−UPCS(`)

= |Pr[b = b′]−Pr[b 6= b′]| = ε is non-negligible in `, where ACMP−A
CRI−UPCS runs in time

at most t, makes at most qH queries to the random oracle, and at most qSS,qPS and

qV C queries to the SSO, PSO and VCO oracles, respectively.

5.6 The Proposed UPCS Scheme

In this section, we present our concrete construction of UPCS schemes. Let H0 :

{0, 1}∗ → G1; H1 : {0, 1}∗ → G1; H2 : {0, 1}∗ → G1 be three distinct random

one-way functions that map any string to group G1 and let h : {0, 1}∗ → ZZ∗p be a

collision-resistant hash function. We denote by G1 and GT two groups of prime order

p. Assume that there exists an efficient computationally bilinear mapping function ê,

which maps G1 to GT . The above mapping function is defined as ê : G1×G1 → GT .

The scheme is described as follows.

Setup: Given a security parameter ` as input, a trusted third party randomly

chooses a prime p = poly(1`). Select a random generator g ∈ G1 and a bilinear

mapping function ê. Select hash functions H0(.), H1(.), H2(.), h(.). We denote

by param = (p, ê, g,H0, H1, H2, h) the system parameter. Then, Setup returns

param.

TKeyGen: Given a system parameter param as input, a trusted authority TA ran-

domly generates a private key skTA and a public key pkTA as follows: select

random integers µ, γ ∈ ZZp. Let U = gµ;W = gγ denote a public key. There-

fore, TKeyGen returns skTA = (µ, γ) as a private key of the trusted authority

and pkTA = (U,W) as a public key of the trusted authority.

SKeyGen: Given a system parameter param as input, a signer S randomly generates

a private key skS and a public key pkS as follows: select a random integer

s ∈ ZZp. Let S = gs denote a public key. Therefore, SKeyGen returns skS = s

as a private key of the signer and pkS = S as a public key of the signer.

PKeyGen: Given a system parameter param as input, a policy signer P randomly

generates a private key skP and a public key pkP as follows: select a random

integer x ∈ ZZp. Let X = gx; X̂ = W x denote a public key. Therefore,

5.6. The Proposed UPCS Scheme 116

SKeyGen returns skP = x as a private key of the policy signer and pkP =

(X, X̂) as a public key of the policy signer.

CreGen: Let P be a statement in the policy, e.g., P =“Manager”. An assertion A

of P is computed as follows: A = H2(P). Given a system parameter param, the

trusted authority’s public key pkTA, the trusted authority’s private key skTA

and a set of assertions A1, ..., An that the verifier is allowed to obtain as input,

a trusted authority TA randomly generates each verifier’s credential string

Ci = (Vi, Ri, Gi) where i is an index of credentials as follows. TA randomly

selects νi ∈ ZZ∗p and computes each credential Vi = U1/νi ; Ri = g(µγ)/νiAµi ; Gi =

gνi and then returns Ci = (Vi, Ri, Gi) to the verifier as a credential of assertion

Ai. The verifier checks the validity of Ci as follows.

ê(Ri, g)
?
= ê(Ai, U)ê(W, Vi),

ê(Vi, Gi)
?
= ê(U, g).

Sign: Given a message M , pkS and skS, S computes σ = H3(M)s as a BLS short

signature on message M .

V erify: Given pkS, σ and a message M , a signature holder (who is also a policy

signer) P checks whether ê(σ, g)
?
= ê(H2(M),S) holds or not. If not, then it

outputs Reject. Otherwise, it outputs Accept.

PSign: Let σ be a signature from the signer S. Given param, pkTA, skP , pkP , pkS,

P =
∨a
i=1[
∧ai
j=1Ai,j] and a message M as input, PSign computes a universal

policy-controlled signature δ on a message M as follows.

r1, r2, r3, t
$← ZZp, δ1 = gr1 , δ2 = Xr1 , δ3 = X̂r1 ,

Ψ = δ1||δ2||δ3||t||pkP ||pkS||pkTA||P,

δ4 = ê(H0(Ψ), g)r2 , δ5 = ê(H0(Ψ), g)r3 , Ω = Ψ||δ4||δ5,

for i = 1 to a:

Ri = t⊕ h(H0(Ω)||i||ê((
ai∏
j=1

Ai,j)
r1·x, U)).

5.7. Security Analysis of UPCS Scheme 117

Then compute

M = δ1||δ2||δ3||δ4||δ5||t||pkP ||pkS||pkTA||P||R1||...||Ri,

δ6 = H0(Ψ)r2σh(M), δ7 = r3 + r2 · h(M),

M = δ1||δ2||δ3||δ4||δ5||δ6||δ7||t||pkP ||pkS||pkTA||P||R1||...||Ri,

δ8 = H1(M)x.

The universal policy-controlled signature on a message M is

δ = (H0(Ω),δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8, R1, ..., Ri).

PV erify: Let {Ci} = Ci,1, ..., Ci,ai be a set of credentials in B that the verifier pos-

sesses. Given pkS, pkTA, pkV , {Ci} ⊂ B, P, δ and a message M , a verifier V

first checks whether ê(δ2, g)
?
= ê(δ1, X), ê(δ3, g)

?
= ê(δ2,W) hold or not. If

not, then V outputs Reject. Otherwise, V computes as follows.

t̂ = Ri ⊕ h(H0(Ω)||i||(
ai∏
j=1

(ê(Ri,j,δ2)ê(Vi,j,δ3)−1))).

Next, let Ψ = δ1||δ2||δ3||t||pkP ||pkS||pkTA||P; Ω = Ψ||δ4||δ5 and then V

checks whether H0(Ω)
?
= H0(Ω). After that, compute

M = δ1||δ2||δ3||δ4||δ5||t̂||pkP ||pkS||pkTA||P||R1||...||Ri,

M = δ1||δ2||δ3||δ4||δ5||δ6||δ7||t̂||pkP ||pkS||pkTA||P||R1||...||Ri.

Then, V checks whether ê(δ6, g)
?
= δ4 · ê(H3(M),S)h(M), ê(H0(Ψ), g)δ7

?
=

δ5 · δ4
h(M), ê(δ8, g)

?
= ê(H1(M), X). hold or not. If not, then it outputs

Reject. Otherwise, it outputs Accept.

5.7 Security Analysis of UPCS Scheme

5.7.1 Unforgeability: Policy Signer

Theorem 5.4 Our universal policy-controlled signature scheme is existential un-

forgeable under an adaptive chosen message, a signer’s private key exposure and

credentials exposure attack if the CDH assumption holds in the random oracle model.

Proof: In the following proof, we will show that if there exists a forgerA, which runs

the existential unforgeability game on the policy signer’s side defined in Section 5.5.2,

5.7. Security Analysis of UPCS Scheme 118

then we can construct an algorithm F to solve the CDH problem by using A. First,

we illustrate the concept of the proof. The proof will begin with the construction of

oracles defined in Section 5.5.2. Next, we will construct a simulator F and run the

existential unforgeability game defined in Section 5.5.2 with a forgery A. Finally, we

will analyse the success probability of the existential unforgeability game under an

adaptive chosen message, a signer’s private key exposure and credentials exposure

attack and show that this success probability is reducible to the CDH problem in

the random oracle model.

The construction of oracles for the existential unforgeability game describe as

follows. Given g, ga and gb as an instance of the CDH problem, F sets gb as

one of the answers for the hash query to the random oracle. Next, F chooses

a random integer µ, γ ∈ ZZp and sets U = gµ;W = gγ as a public key of TA.

Then, F sets X = ga; X̂ = Xγ as the signer’s public key pkS. We note that

the algorithms managing the lists of each oracle are simple to construct, and such

algorithms will be omitted. From the above setting, it is easy for F to construct

the SPO, SKO,SSO, PSO, VCO, VSO and HO oracles as follows.

HO oracle: Let M be a message that is an input for the hash value to the HO
oracle. If it is a request for a hash value of H1(M), HO selects d

$← {0, 1}
such that the probability of d = 1 is 1

qH
. If d = 1 then set H1(M) = gb and

return H1(M). Otherwise, l̄
$← ZZp; H1(M) = g l̄ and return H1(M). For

H0(M), HO chooses l1
$← ZZp and then returns H0(M) = gl1 . For H2(M),

HO chooses l2
$← ZZp and then returns H2(M) = gl2 . For H3(M), HO chooses

l3
$← ZZp and then returns H3(M) = gl3 . For h(M), HO chooses l4

$← ZZp and

then returns h(M) = l4. Then HO keeps l̄, l1, l2, l3, l4 in the list and this list

can be accessed only by F . Note that HO manages the duplicated hash value

of the list by repeating the process such that the output of HO behaves like

a result from the random oracle.

SPO oracle: SPO runs SKeyGen to generate the signer’s public-private key

pair (pkS, skS) and then returns pkS. After that, SPO updates (pkS, skS) to

the list SL.

SKO oracle: Given pk as input, SKO obtains skS from the list SL and then

returns skS. After that, SKO updates (pkS, skS) to the list QK.

5.7. Security Analysis of UPCS Scheme 119

VCO oracle: VCO runs CreGen to generate the credential Ci of assertion Ai and

then returns Ci.

SSO oracle: Given a message M and a signer’s public key pk as input, SSO
accesses the list SL to obtain skS and runs Sing to generate the signature σ

on a message M . Next, SSO returns σ.

PSO oracle: Given P, a signature σ, a signer’s public key pkS and a message M

as input, PSO computes a policy-controlled signature as follows.

r1, r2, r3, t
$← ZZp, δ1 = gr1 , δ2 = Xr1 , δ3 = X̂r1 ,

Ψ = δ1||δ2||δ3||t||pkP ||pkS||pkTA||P,

δ4 = ê(H0(Ψ), g)r2 , δ5 = ê(H0(Ψ), g)r3 , Ω = Ψ||δ4||δ5,

for i = 1 to a:

Ri = t⊕ h(H0(Ω)||i||(
ai∏
k=1

(ê(Ri,j,δ2)ê(Vi,j,δ3)−1))).

Then compute

M = δ1||δ2||δ3||δ4||δ5||t||pkP ||pkS||pkTA||P||R1||...||Ri,

δ6 = H0(Ψ)r2σh(M), δ7 = r3 + r2 · h(M),

M = δ1||δ2||δ3||δ4||δ5||δ6||δ7||t||pkP ||pkS||pkTA||P||R1||...||Ri.

Next, having access to the list of l̄, l1, l2, l3, l4, F checks whether H1(δ1||δ2||δ3

||δ4||δ5||δ6||δ7||t̂||pkP ||pkS||pkTA||P||R1||...||Ri)
?
= gb). If not, then F gives

l̄ to PSO and PSO computes δ8 = X l̄. Otherwise, it outputs ⊥. Fi-

nally, PSO returns a policy-controlled signature on message M , which is

δ = (H0(Ω),δ1,δ2,δ3, δ4,δ5,δ6,δ7,δ8, R1, ..., Ri).

A is given an access to these oracles. Assume that a hash of a string or a

message from the random oracle HO is always queried before A makes a query to

the SSO, PSO and VCO oracles, or before it outputs a potential forgery, denoted

by M∗, δ∗, P∗, pk∗S.

With an adaptive strategy, A executes the above oracles and outputs a forgery

δ∗ on a message M∗ with respect to P∗ and pk∗S. We say that A wins the game if

a policy-controlled signature δ∗ on message M∗ with respect to P∗ and pk∗S is valid

and is not an output from the PSO oracle.

5.7. Security Analysis of UPCS Scheme 120

We denote by SuccCM−SK−AEUF−UPCS = ε the probability that A wins the game. Let e

be the base of the natural logarithm and let q ≥ qH be a polynomial upper bound

on the number of queries that A makes to the HO oracle. As mentioned above, A
always make a query request to the HO oracle before making any requests to the

PSO oracle; hence, qH ≥ qPS. Therefore, we can analyse the success probability

that A outputs a policy-controlled signature δ∗ on message M∗ with respect to P∗

and pk∗S, where δ∗8 = H1(M)x = (gb)x, and wins the above game as follows.

• E1: F does not abort during the issuing of queries to the SSO oracle. The

probability of this event is (1 − 1
qH

)qPS . The fact is that A needs to reserve

at least one request for a hash value to output δ∗8, which is a part of forgery.

Therefore, the upper bound for the PSO oracle is qH − 1 and then the prob-

ability of this event is greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after A output δ∗. A needs to reserve at least one request

for a hash value to output δ∗8, which is a part of forgery. However, if

H1(δ1||δ2||δ3||δ4||δ5||δ6||δ7||t||pkP ||pkS||pkTA||P||R1||...||Ri)

= H1(M) 6= gb

for δ∗4, then F aborts the simulation. Hence, the probability of this event is

greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

The probability that A wins the above game and outputs a policy-controlled signa-

ture δ∗ on a message M∗, where δ∗8 = H1(M)x = (gb)x, is

Pr[SuccCM−AEUF−PCS] · Pr[SuccCM−AEUF−PCS|E1|E2] ≥ ε(
qH

e · (qH − 1)
)2.

F obtains δ∗8 = H1(M)x from the above outputs. Since H1(M) = gb and x = a, F
returns δ∗8 = gab as an output for the CDH problem with non-negligible probability

as mentioned above. �

5.7.2 Unforgeability: Signer

Theorem 5.5 Our universal policy-controlled signature scheme is existential un-

forgeable under an adaptive chosen message, a policy signer’s private key exposure

and credentials exposure attack if the BLS scheme is existential unforgeability under

an adaptive chosen message attack in the random oracle model.

5.7. Security Analysis of UPCS Scheme 121

Proof: In the following proof, we will show that if there exists a forgerA, which runs

the existential unforgeability game on the signer’s side defined in Section 5.5.2, then

we can construct an algorithm F to attack the unforgeability of the BLS scheme

by using A. Let J be the challenger of the unforgeability of the BLS scheme.

We construct the proof in a similar way to the proof for Theorem 5.4. First, the

construction of the HO, PPO, PKO and SSO oracles is given as follows.

HO oracle: Let M be a message that is an input for the hash value to the HO
oracle. For H0(M), HO chooses l̄

$← ZZp and then returns H0(M) = g l̄. For

H1(M), HO chooses l1
$← ZZp and then returns H1(M) = gl1 . For H2(M),

HO chooses l2
$← ZZp and then returns H2(M) = gl2 . For h(M), HO chooses

l3
$← ZZp and then returns h(M) = l3. For H3(M), HO forwards the queries

to the challenger J . Then HO keeps l̄, l1, l2, l3 in the list and this list can be

accessed only by F . Note that HO manages the duplicated hash value of the

list by repeating the process such that the output of HO behaves like a result

from the random oracle.

PPO oracle: PPO runs PKeyGen to generate the policy signer’s public-private

key pair (pkP , skP) and then returns pkP . After that, PPO updates (pkP , skP)

to the list SL.

PKO oracle: Given pkP as input, PKO obtains skP from the list SL and then

returns skP . After that, PKO updates (pkP , skP) to the list QK.

VCO oracle: VCO runs CreGen to generate the credential Ci of assertion Ai and

then returns Ci.

SSO oracle: Given a message M as input, SSO forwards the queries to the

challenger J . When J replies with σ, SSO returns σ. After that, SSO
updates (σ,M) to the list SS.

A is given an access to these oracles. Assume that a hash of a string or a

message from the random oracle HO is always queried before A makes a query to

the SSO and VCO oracles, or before it outputs a potential forgery, denoted by

M∗, δ∗, P∗, pkS.

With an adaptive strategy, A executes the above oracles and outputs a forgery

δ∗ on a message M∗ with respect to P∗ and pkS. We say that A wins the game if

5.7. Security Analysis of UPCS Scheme 122

a policy-controlled signature δ∗ on message M∗ with respect to P∗ and pkS is valid

and A never makes a request for a signature σ∗ to SSO on input of a message M∗.

With a trivial probability, F runs A on the same setting but with a different hash

function h′(.). F obtains the second policy-controlled signature δ′ and computes

σ = (δ∗6 ·δ′−1
6)1/(h(M)−h′(M)). Finally, F outputs a BLS signature σ on a new message

M∗ and gives it to J . �

5.7.3 Coalition-resistance

Theorem 5.6 In the random oracle model, the proposed universal policy-controlled

signature scheme is existential coalition-resistant against an adaptively chosen mes-

sage and chosen policy attack ACMP−A
CRI−UPCS if the DBDH assumption is held.

Proof: In the following proof, we will show that if there exists a forger A, which

runs and wins the existential coalition-resistance game defined in Section 5.5.3, then

there exists an adversary F that answers the DBDH problem by using A as a tool.

The guidelines for this proof are similar to the proof for Theorem 5.3. We start by

constructing the oracles as follows: given g, ga, gb, gc and Z as an instance of the

DBDH problem, F sets ga as one of the answers for the hash query to the random

oracle. Next, F randomly selects x, γ and sets U = gb;W = gγ as the TA public

key. Then, F sets X = gx; X̂ = gx·γ as the signer’s public key. Assume that there

exists an algorithm managing the list of each query and such an algorithm will be

omitted. From the above setting, F constructs the SSO, PSO, VCO and random

oracle HO as follows.

HO oracle: Let M be a message that is an input for the hash value to the HO
oracle. If it is a request for a hash value of H2(M), HO selects d

$← {0, 1}
such that the probability of d = 1 is 1

qH
. If d = 1 then set H2(M) = ga and

return H2(M). Otherwise, l̄
$← ZZp; H1(M) = g l̄ and return H2(M). For

H0(M), HO chooses l1
$← ZZp and then returns H0(M) = gl1 . For H1(M),

HO chooses l2
$← ZZp and then returns H2(M) = gl2 . For H3(M), HO chooses

l3
$← ZZp and then returns H3(M) = gl3 . For h(M), HO chooses l4

$← ZZp and

then returns h(M) = l4. Then HO keeps l̄, l1, l2, l3, l4 in a list and this list can

be accessed only by F . Note that HO manages the duplicated hash value of

the list by repeating the process such that the output of HO behaves like a

result from the random oracle.

5.7. Security Analysis of UPCS Scheme 123

VCO oracle: Given Ai as input, VCO accesses to the HO oracle for a matching

pair of Pi, Ai = H2(Pi), if the HO oracle returns Ai = H2(Pi) = ga then

VCO outputs ⊥. Otherwise, F accesses the list in the HO oracle and returns

l̄i : Ai = g l̄i to the VCO oracle. Then the VCO oracle selects a random integer

ν ∈ ZZp and computes Vi = U1/νi ; Ri = Uγ/νiU l̄i ; Gi = gνi as a credential of Ai.

The VCO oracle returns Ci = (Vi, Ri, Gi).

SSO oracle: Given a message M as input, SSO, with access to skS, runs Sing

to generate the signature σ on message M and then returns σ.

PSO oracle: Given P, a signature σ, a signer’s public key pkS and a message M

as input, PSO computes a policy-controlled signature as follows.

r1, r2, r3, t
$← ZZp, δ1 = gr1 , δ2 = Xr1 , δ3 = X̂r1 ,

Ψ = δ1||δ2||δ3||t||pkP ||pkS||pkTA||P,

δ4 = ê(H0(Ψ), g)r2 , δ5 = ê(H0(Ψ), g)r3 , Ω = Ψ||δ4||δ5,

for i = 1 to a:

Ri = t⊕ h(H0(Ω)||i||ê((
ai∏
j=1

Ai,j)
r1·x, U)).

Then compute

M = δ1||δ2||δ3||δ4||δ5||t||pkP ||pkS||pkTA||P||R1||...||Ri,

δ6 = H0(Ψ)r2σh(M), δ7 = r3 + r2 · h(M),

M = δ1||δ2||δ3||δ4||δ5||δ6||δ7||t||pkP ||pkS||pkTA||P||R1||...||Ri,

δ8 = H1(M)x.

Finally, PSO returns a policy-controlled signature on message M , which is

δ = (H0(Ω),δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8, R1, ..., Ri).

A is given an access to these oracles. Assume that a hash of message M from the

HO oracle is always queried before A makes a query request to the SSO, PSO
and VCO oracles, or before it outputs a decision bit b.

Now, we run an experiment as defined in Section 5.5.3 as follows.

1. Phase 1: A arbitrarily sends query requests to the SSO, PSO and VCO
oracles. The oracles respond as above.

5.7. Security Analysis of UPCS Scheme 124

2. Challenge: After the first phase, A decides to challenge and then outputs

M∗ and P∗. The challenge set M∗, σ∗ and P∗ is valid if the following conditions

hold.

1. Given P∗ and M∗ as input, A issues a request for a policy-controlled sig-

nature to the PSO oracle.

2. A does not have sufficient credentials to satisfy the policy P∗.

Next, F computes a response as follows.

r1, r2, r3, t
$← ZZp, δ

∗
1 = gr1 , δ∗2 = Xr1 , δ∗3 = X̂r1 ,

Ψ = δ∗1||δ∗2||δ∗3||t||pkP ||pkS||pkTA||P∗,

δ∗4 = ê(H0(Ψ), g)r2 , δ∗5 = ê(H0(Ψ), g)r3 , Ω = Ψ||δ∗4||δ∗5,

for i = 1 to a: if Ai∗,j∗ = ga then compute as follows.

Ri = t⊕ h(H0(Ω)||i||ê((
ai∏

j=1,j 6=j∗
gc·l̄i,j)r·x, U)Zr·x).

Otherwise, compute as follows.

Ri = t⊕ h(H0(Ω)||i||ê((
ai∏
j=1

gc·l̄i,j)r·x, U)).

Then compute

M = δ∗1||δ∗2||δ∗3||δ∗4||δ∗5||t||pkP ||pkS||pkTA||P∗||R1||...||Ri,

δ∗6 = H0(Ψ)r2σ∗h(M), δ∗7 = r3 + r2 · h(M),

M = δ∗1||δ∗2||δ∗3||δ∗4||δ∗5||δ∗6||δ∗7||t||pkP ||pkS||pkTA||P∗||R1||...||Ri,

δ∗8 = H1(M)x.

Finally, F returns a policy-controlled signature on message M , which is

δ∗ = (H0(Ω),δ∗1,δ
∗
2,δ
∗
3,δ
∗
4,δ
∗
5,δ
∗
6,δ
∗
7,δ
∗
8, R1, ..., Ri).

3. Phase 2: In this phase, A can return to Phase 1 or Challenge as many times

as it requests, on one condition, that A must have at least one set of challenges

(which is a set of M∗, P∗, σ∗ and δ∗) such that

a. Given P∗ as input, σ∗ and M∗, A never issues a request for a policy-

controlled signature to the PSO oracle.

5.7. Security Analysis of UPCS Scheme 125

b. Given P∗ as input, A can issues a request for credentials to the VCO
oracle, however, A does not have sufficient credentials to satisfy the policy

P∗.

4. Guessing: With a challenge set of M∗, P∗, σ∗ and δ∗, A finally outputs a

guess b′.

From the above experiment, we can solve the DBDH problem when A wins or

aborts the experiment on a condition that A picks the challenge M∗, P∗, σ∗, and δ∗,

which is inserted with Z and gc, and a credential for Ai,j∗ = ga was never queried.

Since Ai,j∗ = ga contained in αi, A can use it to check whether

ê((

ai∏
j=1,j 6=j∗

gc·l̄i,j)r·x, U)Zr·x ?
=

ai∏
j=1

(ê(Ri,j,δ2) · ê(Vi,j,δ3)−1)

holds or not. A will not abort the game if the above holds.

To link the experiment to the DBDH problem, the following shows that A will

not abort if Z = ê(g, g)a·b·c.

ê((

ai∏
j=1,j 6=j∗

gc·l̄i,j)r·x, U)Zr·x =

ai∏
j=1

(ê(Ri,j,δ2) · ê(Vi,j,δ3)−1)

ê((

ai∏
j=1,j 6=j∗

gc·l̄i,j)r·x, U)Zr·x =

ai∏
j=1,j 6=j∗

(ê(Ri,j,δ2) · ê(Vi,j,δ3)−1) ·

ê(Ri,j∗ ,δ2) · ê(Vi,j∗ ,δ3)−1

Zr·x = ê(Ri,j∗ ,δ2) · ê(Vi,j∗ ,δ3)−1

Zr·x = ê(Uγ/νi,j∗Abi,j∗ , g
c·x·r) · ê(U1/νi,j∗ , gc·γ·x·r)−1

Zr·x = ê(Abi,j∗ , g
c·x·r)

Zr·x = ê((ga)b, gc·x·r)

Zr·x = ê(g, g)a·b·c·x·r

Z = ê(g, g)a·b·c.

Suppose A wins the game with the probability SuccCMP−A
CRI−UPCS = ε. We denote

by e the base of the natural logarithm and let q ≥ qH be a polynomial upper bound

of queries that A makes to the HO oracle. Note that q << p. As mentioned above,

A always makes a query request to the HO oracle before it makes any requests to

the PSO and VCO oracles; hence, qH ≥ qV C and qH ≥ qPS. Therefore, we can

analyse the probability that A’s guess is correct and wins the above game as follows.

5.8. Definition of Multi-level Controlled Signature Scheme (MLCS) 126

• E1: F does not abort during the issuing of queries to the VCO oracle. The

probability of this event is (1 − 1
qH

)qV C . The fact is that A needs to reserve

at least one request for a credential of A∗i,j and one request for a hash value

of A∗i,j = H2(P ∗i,j), which is a part of policy P∗. Therefore, the upper bound

for the VCO oracle is qH − 1 and then the probability of this event is greater

than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after Phase 1 and Phase 2. Since we have assumed

that A follows the experiment and outputs a guess with a valid challenge

(M∗, P∗, σ∗, δ∗), then the probability of this event is 1.

The probability that A wins the above game and outputs a correct guess b′ = b is

Pr[SuccCMP−A
CRI−UPCS] · Pr[SuccCMP−A

CRI−UPCS|E1|E2] ≥ ε qH
e·(qH−1)

. Let ε′ be an advantage in

solving the DBDH problem. From the above game, F outputs a guess for the DBDH

problem with A’s guess. However, we note that A can choose a challenge policy

P∗ and try to guess from one of the credentials that A does not make a request for

credentials to the VCO oracle. Thus, there is a event that A’s guess is not a correct

guess for the DBDH problem, which is when A∗i,j is not chosen by A. The probability

for this event is 1
a
. Therefore, the probability that F can output a correct guess

for the DBDH problem by using A is ε′ ≥ 1
a
ε qH
e·(qH−1)

. Hence, the probability that A
can break the existential coalition-resistance property of the UPCS scheme against

adaptively chosen message and chosen policy attack is ε ≤ ε′a · e · (qH − 1)/qH .

Since a ≤ qH << q, the analysis of the above probabilities shows that success

breaking the existential coalition-resistance property of the proposed PCS scheme

is non-negligible if the probability of breaking the DBDH problem is non-negligible.

�

5.8 Definition of Multi-level Controlled Signature

Scheme (MLCS)

In this section, we give a definition of multi-level controlled signature (MLCS)

schemes that allow only verifiers, who hold a credential for a certain security level

specified by a signer, to verify the authenticity of the signed message. In other words,

only a verifier that satisfies the security level specified by the signer can verify the

multi-level controlled signature that generated by a signer. The practical scenario

5.8. Definition of Multi-level Controlled Signature Scheme (MLCS) 127

of multi-level controlled signature schemes is mentioned in Section 5.1. We provide

an outline of our MLCS scheme as follows.

5.8.1 Outline of MLCS

Let TA be a trusted authority that issues credentials associated with a security level

in a multi-level security system. In MLCS schemes, there are three main players,

which are a signer, a verifier and a trusted authority TA. A signer S generates a

signature that can be verified only by a verifier V who holds a credential satisfying

the multi-level security policy. TA is responsible for issuing a credential for V . Let

AV denote a security level in the multi-level security policy. We define ML to be a

multi-level security policy, which contains a policy that indicates a level of security

clearance of the verifier. Without losing generality, we assume that the order of

the security levels increases, for example, a higher number means a higher security

level1. For instance, ML = “AV > n” where n is the number indicating the security

level. Generally, we can use another type of index or symbol to indicate the security

level. A multi-level controlled signature scheme Σ is a 6-tuple (Setup, TKeyGen,

SKeyGen, CreGen, Sign, V erify), which is described as follows.

System Parameter Generation (Setup):

This is a probabilistic algorithm that, given a security parameter ` as input,

outputs the system parameter param. That is,

Setup(1`)→ param.

TA Key Generator (TKeyGen):

This is a probabilistic algorithm that, given the system parameter param as

input, outputs the private key (skTA) and the public parameter (pkTA) of a

trusted authority. That is,

TKeyGen(param)→ (pkTA, skTA).

Signer Key Generator (SKeyGen):

This is a probabilistic algorithm that, given a system parameter param and

a public key of the trusted authority pkTA as input, outputs the private key

(skS) and the public parameter (pkS) of a signer. That is,

SKeyGen(param, pkTA)→ (pkS, skS).

1We note that for a decreasing order of security levels, our scheme can be slightly modified.

5.8. Definition of Multi-level Controlled Signature Scheme (MLCS) 128

Verifier Credential Generator (CreGen):

This is a probabilistic algorithm that, given the system parameter param, the

TA’s private key, and an assertion AV indicated a security level of a verifier

as input, outputs a credential for verifier C. That is,

CreGen(param, skTA, AV)→ C.

Multi-level Controlled Signature Signing (Sign):

This is a probabilistic algorithm that, given the system parameter param, the

trusted authority’s public key pkTA, the signer’s private key skS, the signer’s

public key pkS, a message M and the multi-level security policy ML as input,

outputs a signer’s signature δ. That is,

Sign(param,M, skS, pkS, pkTA, ML)→ δ.

Multi-level Controlled Signature Verification (V erify):

This is a deterministic algorithm that, given the system parameter param, the

trusted authority’s public key pkTA, the signer’s public key pkS, the multi-level

security policy ML, a credential C, a message M and a signature δ as input,

outputs a verification decision d ∈ {Accept, Reject}. That is,

V erify(param,M, δ, pkTA, pkS, ML, C)→ d.

5.8.2 Unforgeability

The unforgeability property of MLCS schemes is to prevent an attacker that has

access to the credential oracle from generating a multi-level controlled signature δ∗

on a new message M∗. Formally, the unforgeability in this model provides assurance

that someone, with access to the SSO oracle, the VCO oracle, the signer’s public

key pkS and the trusted authority’s public key, should be unable to produce a

multi-level controlled signature on a new message M∗ even if it arbitrarily chooses

a multi-level security policy ML, a message M and the entire credentials as input.

Let CM -A denote the adaptive chosen message and credentials exposure attack and

let EUF -MLCS denote the existential unforgeability of a MLCS scheme. Let A be

the adaptively chosen message and credentials exposure adversary that attack the

unforgeability of a MLCS scheme. The experiment between the adversary A and a

simulator F models the security against existential unforgeability under an adaptive

chosen message and credentials exposure attack as described below.

5.8. Definition of Multi-level Controlled Signature Scheme (MLCS) 129

First, the oracles are provided in order to model the ability of adversaries to

break the unforgeability of a MLCS scheme as shown below.

SSO oracle: At most qSS times, A can make a query for a signature δ on its choice

of a message M . As a response, SSO runs the Sign algorithm to generate

a signature δ on a message M corresponding with pkTA, pkS and ML. SSO
then returns δ,M to A.

VCO oracle: At most qV C times, A can make a query for the credential Ci cor-

responding to the arbitrarily chosen security level AV . As a response, VCO
replies to A with corresponding credentials C.

Then, with an adaptive strategy, A arbitrarily makes queries to the SSO
and VCO oracles on its choice of a message M . Let C be the credentials for

the entire security level. For instance, if the system has 12 security levels, then

C = (V1, ..., V12, R1, ..., R12). After the queries are processed, assume that A outputs

a forged signature δ∗ on a new message M∗ with respect to the public key pkS and

multi-level security policy ML∗. A wins the experiment if:

1. Accept← V erify(M∗, δ∗, pkS, ML
∗, C).

2. On input M∗, pkS, ML
∗, A never makes a request for a multi-level controlled

signature to the SSO oracle.

We denote SuccCM-A
EUF -MLCS(.) as the success probability of ACM-A

EUF -MLCS winning the

above experiment.

Definition 5.7 A MLCS scheme is (t,qH ,qSS,qV C,ε)-secure existential unforgeable

under a chosen message and credentials exposure attack if there is no PPT adversary

ACM-A
EUF-MLCS such that the success probability SuccCM-A

EUF-MLCS(`) = ε is non-negligible

in `, where ACM-A
EUF-MLCS runs in time at most t, and makes at most qH hash queries,

qSS signing queries and qV C verification queries.

5.8.3 Coalition-resistance

In this section, we will describe the coalition-resistance property of a MLCS scheme.

This property aims to prevent an attacker as a group of corrupted credential holders

(verifiers) from verifying a multi-level controlled signature δ∗ on a message M∗ with

a multi-level security policy ML, where the attacker does not have the credentials

5.8. Definition of Multi-level Controlled Signature Scheme (MLCS) 130

to satisfy the security level indicated in ML. Note that the unforgeability property

implies security against the coalition-resistance’s attacker for trying to forge the

signature. Since the attacker trying to break the unforgeability property possesses

the credentials for the entire security level, the ability of this attacker implies the

ability of coalition-resistance’s attacker.

Let CR-MLCS denote the existential coalition-resistance property of a MLCS

scheme. Let ACMP−A
CRI−PCS be the adaptively chosen message and chosen multi-level

security policy distinguisher and let F be a simulator. The experiment between the

adversary A and a simulator F models the security against the existential coalition-

resistance property of a MLCS scheme under a chosen message and chosen multi-level

security policy attack, which is described below.

First, the oracles are provided in order to model the ability of adversaries to

break the unforgeability of a MLCS scheme as shown below.

SSO oracle: At most qSS times, A can make a query for a signature δ on its choice

of a message M . As a response, SSO runs the Sign algorithm to generate

a signature δ on a message M corresponding with pkTA, pkS and ML. SSO
then returns δ,M to A.

VCO oracle: At most qV C times, A can make a query for the credential Ci cor-

responding to the arbitrarily chosen security level AV . As a response, VCO
replies to A with corresponding credentials C.

VSO oracle: At most qV S times, A can make a query for the verification of a

signature δ on a message M to VSO with a signature δ and message M as

input. As a response, VSO returns with a decision d, which is Accept or

Reject corresponding to a validation of signature δ.

Then, we divide the game into two phases and run them as follows.

1. Phase 1: With any adaptive strategies, A arbitrarily issues a query request to

the SSO, VCO and VSO oracles. The oracles respond as per their design.

2. Challenge: After the first phase, A outputs M∗ and ML∗ = “AV ≥ l” such

that:

a. Given ML∗ and M∗ as input, A never issues a request for a multi-level

controlled signature to the SSO oracle.

5.9. The First Proposed MLCS Scheme 131

b. With ML∗ = “AV ≥ l”, A can issue a request for credentials to the VCO
oracle for a security level AV < l.

If the above condition is held, F chooses a random bit b
$← {0, 1}. If b = 1

then, given a multi-level security policy ML∗ and a message M∗ as input, F
issues a request for a multi-level controlled signature to the SSO oracle. Then

F responds to A with δ∗ as an output from the SSO oracle. Otherwise, given

a multi-level security policy ML∗, a message M∗, a valid multi-level controlled

signature δ on message M∗ with ML∗ and a credentials C as input, F computes

a (simulated) invalid multi-level controlled signature δ∗. Then F responds to

A with δ∗.

3. Phase 2: In this phase, A can arbitrarily return to Phase 1 or Challenge. On

one condition, that at least one set of challenges M∗, ML∗, δ∗ must be valid and

satisfy the condition in the challenge phase, and that it must not be submitted

to VSO for verification.

4. Guessing: A finally outputs a guess b′ based on a challenge M∗, ML∗, δ∗. The

distinguisher wins the game if b = b′.

We denote by SuccCMP -A
CR-MLCS(.) the success probability of ACMP -A

CR-MLCS winning the

above experiment.

Definition 5.8 A MLCS scheme is (t,qH ,qSS,qV C,ε)-secure existential coalition-

resistant under a chosen message and chosen multi-level security policy attack if

there is no PPT distinguisher ACMP-A
CR-MLCS such that the success probability

SuccCMP-A
CR-MLCS(`)= |Pr[b = b′]−Pr[b 6= b′]| = ε is non-negligible in `, where ACMP-A

CR-MLCS

runs in time at most t, and makes at most qH hash queries, qSS signing queries and

qV C verification queries.

5.9 The First Proposed MLCS Scheme

In this section, we present our first concrete construction of MLCS schemes. Let

H : {0, 1}∗ → G1 be a collision-resistant hash function. Let h : {0, 1}∗ → ZZ∗p be a

collision-resistant hash function. Let G1 and GT denote two groups of prime order p.

Let ê be the bilinear mapping function, which maps G1 to GT . The above mapping

function is defined as ê : G1 ×G1 → GT . The scheme is described as follows.

5.9. The First Proposed MLCS Scheme 132

• Setup: Given a security parameter ` as input, a trusted third party randomly

chooses a prime p = poly(1`). Choose a random generator g ∈ G1 and a

bilinear mapping function ê. Select two hash functions H(.) and h(.) Let us

denote by param = (p, ê, g,H, h) the system parameter. Then, Setup returns

param.

• TKeyGen: Let n be a number of security levels. Given a system parameter

param as input, a trusted authority TA randomly generates a private key

skTA and a public key pkTA for each security level as follows: select random

integers µ0, ..., µn, γ0, ..., γn, a, b, c1, ..., cn ∈ ZZp. Let pkTA = (U0 = gµ0 , ..., Un =

gµn ,W0 = gγ0 , ...,Wn = gγn ,A = ga,B = gb) denote a public key. Then,

TKeyGen returns skTA = (µ0, ..., µn, γ0, ..., γn, a, b, c1, ..., cn) as a private key

of the trusted authority and pkTA = (U0, ..., Un,W0, ...,Wn,A,B) as a public

key of the trusted authority.

• SKeyGen: On input a system parameter param, a signer S randomly generates

a private key skS and a public key pkS as follows: first, choose a random integer

x ∈ ZZp. Let X = gx;W = Ax;U = Bx denote a public key. Then, SKeyGen

sets skS = x as a private key of the signer and pkS = (X,W,U) as a public

key of the signer. Finally, SKeyGen returns skS, pkS.

• CreGen: Let AV indicate a security level of a verifier, for example, AV =“D”.

On input a system parameter param, the trusted authority’s public key pkTA,

the trusted authority’s private key skTA and a security level of a verifier AV = l

that the verifier is allowed to obtain, a trusted authority TA randomly gen-

erates a set of credential strings C = (V1, ..., Vl, R1, ..., Rl), where i is an index

of security level, as follows. TA randomly selects ν1, ..., νl ∈ ZZ∗p and com-

putes each credential Vi = gci·νi ; Ri = g(µi·γi−µi−1·γi−1−a·ci·νi)/b, and then returns

C = (V1, ..., Vl, R1, ..., Rl) to the verifier as a credential for a security level as-

sertion AV = l. The verifier checks the validity of both Vi and Ri as follows:

ê(Ui,Wi)
?
= ê(A, Vi)ê(B, Ri)ê(Ui−1,Wi−1).

• Sign: Given param, pkTA, skS, pkS, ML = “AV ≥ l” and a message M , S

5.10. Security Analysis of the First MLCS scheme 133

computes a multi-level controlled signature δ on a message M as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr, δ3 = Wr, δ4 = Ur,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML, δ5 = gk,

δ6 = H(Γ)x,

δ7 = h(ê(Ul,Wl)
x·r) + h(M ||Γ||δ5),

δ8 = k + δ7 · x.

The multi-level controlled signature on a message M is δ = (δ1,δ2,δ3,δ4,δ5,

δ6,δ7,δ8). S publishes M, δ, ML.

• V erify: Let C = V1, ..., Vl, R1, ..., Rl, be a set of credentials that a verifier pos-

sessed. Parse Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML. Given pkS, pkTA, pkV , C,

ML = “AV ≥ l”, δ and a message M , a verifier V checks whether

ê(δ1,X)
?
= ê(δ2, g), ê(δ3, g)

?
= ê(δ2,A),

ê(δ4, g)
?
= ê(δ2,B), ê(δ6, g)

?
= ê(H(Γ),X),

δ7
?
= h(M ||Γ||δ5) + h(ê(δ3,

l∏
i=1

Vi)ê(δ4,
l∏

i=1

Ri)),

gδ8
?
= δ5 · Xδ7

hold. If it does not hold, then V outputs Reject. Otherwise, it outputs Accept.

5.10 Security Analysis of the First MLCS scheme

5.10.1 Unforgeability

Theorem 5.7 The above multi-level controlled signature scheme is existential un-

forgeable under an adaptive chosen message and credentials exposure attack if the

CDH assumption holds in the random oracle model.

Proof: Assume that there exists a forger A running the existential unforgeability

game defined in Section 5.8.2. Then we will show that, by using A, an adversary

F can solve the CDH problem. We now begin with the construction of oracles. To

begin with, F runs Setup and TKeyGen to obtain a system parameter param, a

private key skTA and a public key of TA. Next, given g, gx and gy as an instance of

the CDH problem, F sets X = gx;W = Xa;U = Xb as the signer’s public key pkS.

5.10. Security Analysis of the First MLCS scheme 134

F sets gy as one of the answers for the hash query to the random oracle. Then, F
constructs oracles as follows.

• HO oracle: On input a string Γ, if it is a request for a hash value of H(Γ), the

HO oracle randomly choose d
$← {0, 1} such that the probability of d = 1 is

1
qH

. If d = 1, set H(Γ) = gy and return H(Γ). Otherwise, l
$← ZZp; H(Γ) = gl

and return H(Γ). In the case of h(Γ), HO chooses ι
$← ZZp and then returns

h(Γ) = ι. Then HO keeps l and ι in the list and this list can be accessed only

by F .

• VCO oracle: Given a private key skTA as input, VCO runs CreGen to

generate the credential C for the security level assertion AV = l and then

returns C.

• SSO oracle: Given ML = “AV ≥ l” and a message M as input, SSO computes

a multi-level controlled signature as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr, δ3 = Wr,

δ4 = Ur, Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML.

Before processing the next step, on accessing to the lists of l and ι, F checks

whether H(Γ)
?
= gy. If it holds, it outputs ⊥. Otherwise, F gives l to SSO.

Next, F randomly selects ι′
$← ZZp; K

$← G1 and F adds ι′, h(M ||Γ||K) to the

list. Then, F returns K to SSO. As a result, SSO computes the rest of the

signature as follows.

z
$← ZZp, δ8 = z, δ6 = Xl, δ5 = gδ8X−δ7 ,

δ7 = h(ê(X,Wl)
µl·r) + h(M ||Γ||K).

At the end of the process, on input of δ5 from SSO, F updates ι′, h(M ||Γ||δ5)

to the list. Hence, a multi-level controlled signature on message M is δ =

(δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8). SSO then responds with M, δ, ML.

Now, we begin the game by giving access to the above oracles to A. Assume that A
always makes a query for a string or a message to the HO oracle before it outputs a

potential forgery, denoted by M∗, δ∗, ML∗. After executing an adaptive strategy with

the above oracles, A outputs a forgery δ∗ on a message M∗ with respect to ML∗. A
wins the game if a multi-level controlled signature δ∗ on message M∗ with respect

to ML∗ is valid and is not an output from the SSO oracle.

5.10. Security Analysis of the First MLCS scheme 135

We denote by ε the success probability SuccCM-A
EUF -MLCS(.) of A winning the game.

Let e be the base of the natural logarithm. As we mentioned earlier, a query for

a hash of a string or message to HO is always issued before A issues a query for

a signature to the SSO oracle; hence, qH ≥ qS. Now, we can analyse the success

probability where A outputs a signature δ∗ on message M∗ with respect to ML∗,

where δ∗6 = H(Γ)x = (gy)x, and wins the above game as follows.

• E1: F does not abort during the issuing of queries to the SSO oracle. The

probability of this event Pr[E1] is (1 − 1
qH

)qS . This is because A needs to

have at least one query for H(Γ) to output δ∗6, which is part of a forgery.

Since qH ≥ qS, the upper bound for the SSO oracle is then qH − 1 and

Pr[E1] ≥ (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after A outputs δ∗. F aborts the experiment after A
outputs δ∗ when only H(Γ) 6= gy. Therefore, the probability of this event is

greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

To summarise the probability of success, A wins the above game and outputs a

signature δ∗ on a message M∗, where H(Γ) = gy and δ∗6 = H(Γ)x, with a prob-

ability equal to Pr[SuccCM-A
EUF -MLCS] · Pr[SuccCM-A

EUF -MLCS|E1|E2] ≥ ε(qH
e·(qH−1)

)2. From

the above results, F outputs δ∗6 = H(Γ)x = gxy as an answer to the CDH problem

and the above probability shows that our multi-level controlled signature scheme

is secure against existential unforgeability under an adaptive chosen message and

credentials exposure attack if the success probability of solving the CDH problem is

negligible.

5.10.2 Coalition-resistance

Theorem 5.8 The above multi-level controlled signature scheme is existential coalition-

resistant against an adaptively chosen message and chosen multi-level security policy

distinguisher ACMP-A
CR-MLCS if the DBDH assumption holds in the random oracle model.

Proof: Assume that an adversary A runs the existential coalition-resistance game

defined in Section 5.8.3 and successfully outputs a correct guess. We will then show

that an adversary F can solve the DBDH problem by using A as a tool.

First, F constructs the oracles as follows: let n be the number of a security level.

Given g, gx, gy, gz and Z as an instance of the DBDH problem, F randomly selects

5.10. Security Analysis of the First MLCS scheme 136

µ1, ..., µn, γ1, ..., γn, a, b, c1, ..., cn ∈ ZZp, sets pkTA = (U1 = gµ1 , ..., Un = gµn ,W1 =

gγ1 , ...,Wn = gγn ,A = ga,B = gb) and sets pkS = (X = gx,W = Xa,U = Xb). F
randomly selects j ∈ {1, ..., n} and sets Uj = gy,Wj = gz. Assume that there exists

an algorithm managing the list of each query and then such an algorithm will be

omitted. Now, F constructs the oracles as follows.

• HO oracle: In the case of H(Γ), given a string Γ as input, HO selects l
$← ZZp

and sets H(Γ) = gl. HO returns H(Γ). In the case of h(Γ), HO chooses

ι
$← ZZp and then returns h(Γ) = ι. Then HO keeps l and ι in the list and

this list can be accessed only by F .

• VCO oracle: Given AV = l as input, if l ≥ j it then outputs ⊥. Otherwise,

VCO runs CreGen to generate C = (V1, ..., Vl, R1, ..., Rl). VCO then returns

C.

• SSO oracle: On input ML = “AV ≥ l” and a message M , SSO computes a

multi-level controlled signature as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr, δ3 = Wr,

δ4 = Ur, Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML.

Before processing the next steps, if l = j then, with an access to the lists

of l and ι, F randomly selects ι∗
$← ZZp and sets ι∗ = h(ê(X,Wl)

µl·r). F
updates the list in HO and returns l for H(Γ) and ι∗ for h(ê(X,Wl)

µl·r)

to SSO. Otherwise, F returns only l and, for h(ê(X,Wl)
µl·r), SSO can

make a request for the hash value directly to HO. Next, F randomly selects

ι′
$← ZZp; K

$← G1 and F adds ι′, h(M ||Γ||K) to the list. Then, F returns K

to SSO. From the above outputs, SSO computes the rest of the signature

as follows.

λ
$← ZZp, δ8 = λ, δ6 = Xl, δ5 = gδ8X−δ7 ,

δ7 = h(ê(X,Wl)
µl·r) + h(M ||Γ||K).

At the end of the process, on input of δ5 from SSO, F updates ι′, h(M ||Γ||δ5)

to the list. Note that if l = j then δ7 = ι∗+h(M ||Γ||δ5). Hence, a multi-level

controlled signature on message M is δ = (δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8). SSO
then responds with M, δ, ML.

5.10. Security Analysis of the First MLCS scheme 137

To begin the experiment, A is given an access to the above oracles. Next, we run

an experiment between A and F as modelled in Section 5.8.3 as follows.

1. Phase 1: With any adaptive strategy, A arbitrarily makes queries to the

SSO, VCO oracles. The oracles respond as outlined.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗ and ML. F aborts the game if

1. Given ML∗ and M∗ as input, A issued a request for a multi-level controlled

signature to the SSO oracle.

2. A has a credential that is equal to or higher than the security level assigned

in the multi-level security policy ML.

Otherwise, F computes a response as follows.

r, k
$← ZZp, δ

∗
1 = gr, δ∗2 = Xr, δ∗3 = Wr,

δ∗4 = Ur, Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML.

Before processing the next steps, if l = j then, with access to the lists of l and

ι, F randomly selects ι∗
$← ZZp and sets ι∗ = h(Zr). After that, F updates

the list in the HO oracle. Next, F randomly selects ι′
$← ZZp; K

$← G1 and

F adds a pair ι′, h(M ||Γ||K) to the list. F computes the rest of the signature

as follows.

λ
$← ZZp, δ

∗
8 = λ, δ∗6 = Xl,

δ∗7 = h(Zr) + h(M ||Γ||K), δ∗5 = gδ8X−δ7 .

At the end of the process, on input of δ∗5 from SSO, F updates ι′, h(M ||Γ||δ∗5)

to the list. Note that if l 6= j then δ∗7 = h(ê(X,Wl)
µl·r)+h(M ||Γ||δ∗5). Hence,

a multi-level controlled signature on message M is δ∗ = (δ∗1,δ
∗
2,δ
∗
3,δ
∗
4,

δ∗5,δ
∗
6,δ
∗
7,δ
∗
8). F then responds with M∗, δ∗, ML∗ to A.

3. Phase 2: In this phase, A can go back to Phase 1 or Challenge as many times

as it requests. However, F will abort the game if

1. Given ML∗ and M∗ as input, A issues a request for a multi-level controlled

signature to the SSO oracle.

5.10. Security Analysis of the First MLCS scheme 138

2. A has a credential that is equal to or higher than the security level assigned

in the multi-level security policy ML∗.

4. Guessing: On the valid challenge M∗, ML∗, δ∗, A finally outputs a guess b′.

Let SuccCM-A
CR-MLCS = ε be the probability of A winning the above game. Let

q be a polynomial upper bound of queries that A issues to the HO oracle. Note

that q ≥ qH and q << p2. Since only F and SSO access HO before it outputs

a response, we can thus conclude that qH ≥ qS. Therefore, we can analyse the

probability that A’s guess is correct and wins the above game as follows.

• E1: F does not abort during the issuing of queries to the VCO oracle. Let

qV C be the highest security level that A issues to the VCO oracle. qV C is not

a number of queries that A makes a query request to the VCO oracle. Since

A can make just one query for the security level Av = n− 1 , A can use this

set of credentials to verify signatures with the entire security level except the

security level n. Note that j is a random integer chosen at the beginning of

the game and n is the upper bound of the security level. The fact is that A
can make a request for credentials up to the security level qV C = n− 1 to the

VCO oracle and the value of j is in range of {1, ..., n}. However, if qV C ≥ j,

then the VCO will always terminate the experiment. Otherwise, qV C < j,

then the VCO will not terminated the experiment. To pick up qV C and j

randomly, the probability that A chooses qV C is 1
n

and the probability that F
choose j is 1

n
Therefore, the probability of this event is 1

n2 .

• E2: F does not abort after Phase 1 and Phase 2. Since we have assumed

that A follows the experiment and outputs a guess with a valid challenge

(M∗, ML∗, δ∗), then the probability of this event is 1.

The probability that A wins the above game and outputs a correct guess b′ = b is

Pr[SuccCM-A
CR-MLCS] · Pr[SuccCM-A

CR-MLCS|E1|E2] ≥ ε · 1
n2 .

However, there is a situation when A’s guess in the game is not the correct guess

for the DBDH problem, and this is where ML∗ 6= “AV ≥ j”. The probability of this

event is 1
n
. Let ε′ be an advantage in solving the DBDH problem. To conclude, the

probability that F will output a correct guess for the DBDH problem by using A
is ε′ ≥ ε · 1

n2 · 1
n

= ε · 1
n3 . Hence, the probability that A can break the existential

2the notation q << p means that q is significanly smaller than p

5.11. The Second Proposed MLCS Scheme 139

coalition-resistance property of a MLCS scheme secure against adaptively chosen

message and chosen multi-level security policy attack is ε ≤ n3ε′. Since n <<

qH << q, the analysis of the probability above shows that the success probability of

breaking the existential coalition-resistance of our MLCS scheme is non-negligible if

the probability of breaking the DBDH problem is non-negligible.

5.11 The Second Proposed MLCS Scheme

In this section, we present our second construction of MLCS schemes. The scheme

is described as follows.

• Setup: Given a security parameter ` as input, a trusted third party randomly

selects a prime p = poly(1`). Choose a random generator g ∈ G1 and a bilinear

mapping function ê. Select two hash functions H(.) and h(.). H : {0, 1}∗ → G1

is a collision-resistant hash function that takes strings as input and outputs

an element in G1. h : {0, 1}∗ → ZZ∗p is a collision-resistant hash function that

takes strings as input and outputs an element in ZZ∗p. Let param = (p, ê, g,H, h)

denote the system parameter. Then, Setup returns param.

• TKeyGen: Let n be a number of security levels. Given a system parame-

ter param as input, a trusted authority TA randomly generates a private key

skTA and a public key pkTA for each security level as follows: select ran-

dom integers µ, a, b, w1, ..., wn ∈ ZZp. Let pkTA = (U = gµ,A = ga,B =

gb,W1 = gw1 , ...,Wn = gwn denote a public key. Then, TKeyGen returns

skTA = (µ, a, b, w1, ..., wn) as a private key of the trusted authority and pkTA =

(A,B, U,W1, ...,Wn,) as a public key of the trusted authority.

• SKeyGen: Given a system parameter param, a signer S randomly generates

a private key skS and a public key pkS as follows: choose a random integer

x ∈ ZZp. Let us set pkS = (X = gx,U = Ux,W1 = W x
1 , ...,Wn = W x

n) to denote

a public key. Then, SKeyGen returns skS = x as a private key of the signer

and pkS = (X,U,W1, ...,Wn) as a public key of the signer.

• CreGen: Let AV indicates a security level of a verifier. Given a system pa-

rameter param, the trusted authority’s public key pkTA, the trusted authority’s

private key skTA and a security level of a verifier AV = l that the verifier is

5.12. Security Analysis of the Second MLCS Scheme 140

allowed to obtain, a trusted authority TA randomly generates a set of creden-

tial strings C = (V, R) as follows. TA randomly selects s ∈ ZZ∗p and computes

each credential V = gs; R = g((a·b−s·µ)/wl) and then returns C = (V, R) to the

verifier as a credential for a security level assertion AV = l. The verifier checks

the validity of V, R as follows: ê(A,B)
?
= ê(U, V)ê(Wl, R).

• Sign: Given param, pkTA, skS, pkS, ML = “AV ≥ l” and a message M , S

computes a multi-level controlled signature δ on a message M as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr,

δ3 = {δ3,l = Wr
l , ...,δ3,n = Wr

n}, δ4 = Ur,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML,

δ5 = gk, δ6 = H(Γ)x, δ8 = k + δ7 · x,

δ7 = h(ê(A,B)x·r) + h(M ||Γ||δ5).

The multi-level controlled signature on a message M is δ = (δ1,δ2,δ3,δ4,δ5,

δ6,δ7,δ8). S publishes M, δ, ML.

• V erify: Let C = (V, R) be a credential that a verifier possesses for security

level “AV = t”, where l ≤ t ≤ n. Let parse Γ = δ1||δ2||δ3||δ4|| pkS||pkTA||ML.

Given pkS, pkTA, pkV , C, ML = “AV ≥ l”, δ and a message M as input, a

verifier V checks whether, for i = l to n, ê(δ3,i, g)
?
= ê(δ2,Wi), and then

checks whether

ê(δ1,X)
?
= ê(δ2, g), ê(δ4, g)

?
= ê(δ2, U),

ê(δ6, g)
?
= ê(H(Γ),X), gδ8

?
= δ5 · Xδ7 ,

δ7
?
= h(M ||Γ||δ5) + h(ê(δ4, V)ê(δ3,t, R))

hold or not. If it does not hold, then V outputs Reject. Otherwise, it outputs

Accept.

5.12 Security Analysis of the Second MLCS Scheme

5.12.1 Unforgeability

Theorem 5.9 Our second multi-level controlled signature scheme is existential un-

forgeability under an adaptive chosen message and credentials exposure attack if the

CDH assumption holds in the random oracle model.

5.12. Security Analysis of the Second MLCS Scheme 141

Proof: Assume that there exists a forger A running the existential unforgeability

game defined in Section 5.8.2. Then we will show that, by using A, an adversary

F can solve the CDH problem. We now begin with the construction of oracles. To

begin with, F runs Setup and TKeyGen to obtain a system parameter param, a

private key skTA and a public key of TA. Next, given g, gx and gy as an instance of

the CDH problem, F sets X = gx;U = Xµ;W1 = Xw1 ; ...;Wn = Xwn as the signer’s

public key pkS. F sets gy as one of the answers for the hash query to the random

oracle. Then, F constructs oracles as follows.

HO oracle: Given a string Γ as input, if it is a request for a hash value of H(Γ),

the HO oracle randomly choose d
$← {0, 1} such that the probability of d = 1

is 1
qH

. If d = 1, set H(Γ) = gy and return H(Γ). Otherwise, l
$← ZZp; H(Γ) = gl

and return H(Γ). In the case of h(Γ), HO chooses ι
$← ZZp and then returns

h(Γ) = ι. Then HO keeps l and ι in the list and this list can be accessed

only by F . Note that HO manages the duplicated hash value of the list by

repeating the process such that the output of HO behaves like a result from

a random oracle.

VCO oracle: On input a private key skTA, VCO runs CreGen to generate the

credential C for the security level assertion AV = l and then returns C.

SSO oracle: On input ML = “AV ≥ l” and a message M , SSO computes a

multi-level controlled signature as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr, δ3 = (Wr

l , ...,Wr
n), δ4 = Ur,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML.

Before processing the next step, on accessing the lists of l and ι, F checks

whether H(Γ)
?
= gy). If it holds, F outputs ⊥. Otherwise, F gives l to SSO.

Next, F randomly selects ι′
$← ZZp; K

$← G1 and F adds ι′, h(M ||Γ||K) to the

list. Then, F returns K to SSO. As a result, SSO computes the rest of the

signature as follows.

z
$← ZZp, δ8 = z, δ6 = Xl, δ7 = h(ê(X,A)b·r) + h(M ||Γ||K), δ5 = gδ8X−δ7 .

At the end of the process, on input of δ5 from SSO, F updates ι′, h(M ||Γ||δ5)

to the list. Hence, a multi-level controlled signature on message M is δ =

(δ1,δ2,δ3,δ4,δ5,δ6,δ7,δ8). SSO then responds with M, δ, ML.

5.12. Security Analysis of the Second MLCS Scheme 142

Now, we begin the game by giving access to the above oracles to A. Assume that A
always makes a query for a string or a message to the HO oracle before it outputs a

potential forgery, denoted by M∗, δ∗, ML∗. After executing an adaptive strategy with

the above oracles, A outputs a forgery δ∗ on a message M∗ with respect to ML∗. A
wins the game if a multi-level controlled signature δ∗ on message M∗ with respect

to ML∗ is valid and is not an output from the SSO oracle.

We denote by ε the probability of success SuccCM-A
EUF -MLCS(.) of A winning the

game. Let e be the base of the natural logarithm. As we mentioned earlier, a query

for a hash of a string or message to HO is always issued before A issues a query for a

signature to the SSO oracle; hence, qH ≥ qS. Now, we can analyse the probability

of success where A outputs a signature δ∗ on message M∗ with respect to ML∗, where

δ∗6 = H(Γ)x = (gy)x, and wins the above game as follows.

• E1: F does not abort during the issuing of queries to the SSO oracle. The

probability of this event Pr[E1] is (1 − 1
qH

)qS . This is because A needs to

have at least one query for H(Γ) to output δ∗6, which is part of a forgery.

Since qH ≥ qS, the upper bound for the SSO oracle is then qH − 1 and

Pr[E1] ≥ (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

• E2: F does not abort after A output δ∗. F aborts the experiment after A
output δ∗ when only H(Γ) 6= gy. Therefore, the probability of this event is

greater than (1− 1
qH

)qH−1 ≈ qH
e·(qH−1)

.

To summarise the probability, A wins the above game and outputs a signature δ∗

on a message M∗, where H(Γ) = gy and δ∗6 = H(Γ)x, with a probability equal

to Pr[SuccCM-A
EUF -MLCS] · Pr[SuccCM-A

EUF -MLCS|E1|E2] ≥ ε(qH
e·(qH−1)

)2. From these results,

F outputs δ∗6 = H(Γ)x = gxy as an answer to the CDH problem and the above

probability shows that our multi-level controlled signature scheme is secure against

existential unforgeability under an adaptive chosen message and credentials exposure

attack if the success probability of solving the CDH problem is negligible.

5.12.2 Coalition-resistance

Theorem 5.10 Our second multi-level controlled signature scheme is existential

coalition-resistant against an adaptively chosen message and chosen multi-level se-

curity policy distinguisher ACMP-A
CR-MLCS if the DBDH assumption holds in the random

oracle model.

5.12. Security Analysis of the Second MLCS Scheme 143

Proof: Assume that an adversary A runs the existential coalition-resistance game

defined in Section 5.8.3 and successfully outputs a correct guess. We will then show

that an adversary F can solve the DBDH problem by using A as a tool.

First, F constructs the oracles as follows: let n be the number of a security

level. Given g, ga, gb, gc and Z as an instance of the DBDH problem, F randomly

selects j ∈ {1, ..., n} and w1, ..., wn, x, µ, k1, k2 ∈ ZZp. Next, F sets pkTA = (U =

gµ,W1 = ga·w1 , ...,Wj−1 = ga·wj−1 ,Wj = gwj , ...,Wn = gwn ,A = ga,B = gb) and sets

pkS = (X = gx,U = Ux,W1 = W a
1 , ...,Wn = W x

n ,).

Assume that there exists an algorithm managing the list of each query and then

such an algorithm will be omitted. Now, F constructs the oracles as follows.

HO oracle: In the case of H(Γ), given a string Γ as input, HO selects l
$← ZZp

and sets H(Γ) = gl. HO returns H(Γ). In the case of h(Γ), HO chooses

ι
$← ZZp and then returns h(Γ) = ι. Then HO keeps l and ι in the list and

this list can be accessed only by F .

VCO oracle: Given AV = l as input, if l ≥ j it then output ⊥. Otherwise,

VCO first selects random integer s. VCO then computes C = (V = ga·s, R =

g(b−s·µ)/wl). VCO then returns C.

SSO oracle: Given ML = “AV ≥ l” and a message M as input, SSO computes

a multi-level controlled signature as follows.

r, k
$← ZZp, δ1 = gr, δ2 = Xr, δ3 = (Wr

l , ...,Wr
n), δ4 = Ur,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML,

δ5 = gk, δ6 = H(Γ)x, δ7 = h(ê(A,B)x·r) + h(M ||Γ||δ5), δ8 = k + δ7 · x.

Hence, a multi-level controlled signature on message M is δ = (δ1,δ2,δ3,δ4,

δ5,δ6,δ7,δ8). SSO then responds with M, δ, ML.

To begin the experiment, A is given an access to the above oracles. Next, we run

an experiment between A and F as modelled in Section 5.8.3 as follows.

1. Phase 1: With any adaptive strategy, A arbitrarily makes queries to the

SSO and VCO oracles. The oracles respond as outlined the above.

2. Challenge: At the end of the first phase, A decides to challenge and then

outputs M∗ and ML. F aborts the game if

5.12. Security Analysis of the Second MLCS Scheme 144

1. Given ML∗ and M∗ as input, A issues a request for a multi-level controlled

signature to the SSO oracle.

2. A has a credential that is equal to or higher than the security level assigned

in the multi-level security policy ML∗.

Otherwise, F computes a response as follows: if AV in the multi-level security

policy ML∗ is more than or equal to j, then F computes

k
$← ZZp, δ

∗
1 = gc, δ∗2 = gc·x, δ∗3 = gc·x·wl , ..., gc·x·wn , δ∗4 = gc·x·µ,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML,

δ∗5 = gk, δ∗6 = H(Γ)x, δ∗7 = h(Zx) + h(M∗||Γ||δ5), δ∗8 = k + δ7 · x.

Otherwise, AV > j then computes

r, k
$← ZZp, δ

∗
1 = gr, δ∗2 = Xr, δ∗3 = (Wr

l , ...,Wr
n), δ∗4 = Ur,

Γ = δ1||δ2||δ3||δ4||pkS||pkTA||ML,

δ∗5 = gk, δ∗6 = H(Γ)x, δ∗7 = h(ê(A,B)x·r) + h(M∗||Γ||δ5),

δ∗8 = k + δ7 · x.

Hence, a multi-level controlled signature on message M is δ∗ = (δ∗1,δ
∗
2,δ
∗
3,

δ∗4,δ
∗
5,δ
∗
6,δ
∗
7,δ
∗
8). F then responds with M∗, δ∗, ML∗ to A.

3. Phase 2: In this phase, A can go back to Phase 1 or Challenge as many times

as it requests. However, F will abort the game if

1. Given ML∗ and M∗ as input, A issues a request for a multi-level controlled

signature to the SSO oracle.

2. A has a credential that is equal to or higher than the security level assigned

in the multi-level security policy ML∗.

4. Guessing: On the valid challenge M∗, ML∗, δ∗, A finally outputs a guess b′.

Let SuccCM-A
CR-MLCS = ε be the probability of A winning the above game. Let

q be a polynomial upper bound of queries that A issues to the HO oracle. Note

that q ≥ qH and q << p. Since only F and SSO access HO before it outputs

a response, we can thus conclude that qH ≥ qS. Therefore, we can analyse the

probability that A’s guess is correct and wins the above game as follows.

5.12. Security Analysis of the Second MLCS Scheme 145

• E1: F does not abort during the issuing of queries to the VCO oracle.

To simplify, we denote qV C as the security level that A issues to the VCO
oracle. Note that qV C is not a number of queries that make to the VCO
oracle. This is because A can issue one request for security level Av = n − 1

and then use it to verify signatures with the entire security level except the

security level n. Let qvc be the actual number of queries that A issued to the

VCO oracle and the upper bound of queries is qV C < n. There are two cases

for this event:

1. In the case where qV C ≥ j, the probability of this event is 0, since F will

always abort the simulation.

2. In the case where qV C < j, the probability of this event is 1.

The fact is that A can make a request for credentials up to security level

qV C = n− 1 to the VCO oracle and the value of j is randomly chosen from 1

to n. Hence, the probability of this event is 1
n2 , since it is only concerned about

the random integer j ∈ {1, ...n} selected by F at the beginning of the game

and the highest security level qV C ∈ {0, ...n− 1} selected by A. Note that the

probability for this event is not tied to the number of queries according to the

explanation above.

• E2: F does not abort after Phase 1 and Phase 2. Since we have assumed

that A follows the experiment and outputs a guess with a valid challenge

(M∗, ML∗, δ∗), then the probability of this event is 1.

The probability that A wins the above game and outputs a correct guess b′ = b

is Pr[SuccCM-A
CR-MLCS] · Pr[SuccCM-A

CR-MLCS|E1|E2] ≥ ε 1
n2 .

Let ε′ be an advantage to solve the DBDH problem. From the above game, F
outputs a guess for the DBDH problem with A’s guess. Note that A can choose a

challenge multi-level security policy ML∗, where A does not have the credentials for

that security level or above.

Hence, there is an event when A’s guess in the game is not the correct guess for

the DBDH problem, and this is where A∗V is lower than j. The probability of this

event does not happening is j
n
. To conclude, the probability that F will output a

correct guess for the DBDH problem by usingA is ε′ ≥ ε· 1
n2 · jn . Hence, the probability

that A can break the existential coalition-resistance probability of our MLCS scheme

5.13. Conclusion 146

secure against an adaptively chosen message and chosen multi-level security policy

attack is ε ≤ n3

j
ε′. Since n << qH << q, the analysis of the probabilities above

shows that probability of breaking the existential coalition-resistance property of our

MLCS scheme is non-negligible if the probability of breaking the DBDH problem is

non-negligible.

5.13 Conclusion

In this chapter, we have introduced the notion of policy-controlled signatures and

their applications, which are universal policy-controlled signatures and multi-level

controlled signatures. The notion of policy-controlled signatures allows a signer

to control his signature’s verification by an assigned policy. Only a verifier that

satisfies the assigned policy can verify the authenticity of the message. Hence, in

order to verify the signature on the message, the verifier has to have valid credentials

satisfying the policy designed by the signer. We have presented a definition of PCS

schemes and its security model. We have also provided a concrete construction that

is secure in our model.

The notion of universal policy-controlled signatures allows a policy signer to

enclose an assigned policy on a signed message. Hence, a policy signer can claim

possession of a signer’s signature on a message to verifiers that satisfy the policy

appointed by the policy signer. We have presented a definition of UPCS schemes

and their security model. A concrete construction that is secure in our model has

also presented.

The notion of multi-level controlled signatures allows a signer to enclose a secu-

rity level on the signature. Only verifiers that possess a credential for the level of

security above the level assigned by the signer are able to test the authenticity of

the message. We have presented a definition of MLCS schemes and their security

model. Two concrete schemes and their proof of security have been presented. To

conclude, we are the first researchers to propose these primitive schemes and we

provided the concrete schemes together with their security analysis. These crypto-

graphic primitives are difficult to construct. In particular, they have to ensure that

any coalition of unauthorised verifiers is not able to verify the authenticity of any

signature.

Chapter 6

Fair Multi-Signature Scheme

A new primitive algorithm called a “fair multi-signature” is described in this chapter.

This notion is an extension of a multi-signature scheme where a group of signers

together fairly generate a signature. In other words, every signer should be able to

output a multi-signature if the protocol is complete. Otherwise, none of the signers

can output a multi-signature. Moreover, we only require that the third party is semi-

trusted, since even if malicious, he/she cannot output a multi-signature. Hence, this

notion further strengthens the notion of multi-signature schemes.

6.1 Introduction

Many businesses are unable to hold a meeting with their customers in person due to

their different locations and travel cost. Thanks to the virtual conference technology,

there is an excellent platform for entrepreneurs to manage their business with distant

clients in a way that is fast, easy and cost effective. Apart from virtual conferences,

digital signatures play an important role in virtual meetings. A digital document

with its digital signature that can be delivered through the Internet network is

replacing paperwork of the traditional meeting.

A multi-signature (MS) scheme is needed in the above scenario, when a group of

parties who engage in an interactive protocol want to generate a joint signature on an

agreement (a message) m. There are several advantages in having a multi-signature

rather than a standard digital signature, such as the size of a multi-signature being

constant and short, and the fact that the verification algorithm is as efficient as a

standard signature. Therefore, for a practical application such as signing an online

contract, a multi-signature scheme allows a group of parties to co-sign an agreed

document.

147

6.1. Introduction 148

Consider the following scenario. Alice, Bob and Charlie agree to sign some agree-

ments jointly. Let us assume that Charlie and Bob comply correctly and completely

according to the signing protocol of the multi-signature scheme, so that their partial

signatures are generated and distributed to every signer. Now, after Alice obtains

the partial signatures from Charlie and Bob, if she does not complete the protocol

or, in other words, she does not send her partial signature to Charlie and Bob, then

it becomes unfair to Charlie and Bob who have engaged in the protocol honestly

(because Alice has obtained the full multi-signature already).

Generally, for multi-signature schemes, if all parties follow the protocol correctly,

then a multi-signature is securely generated. However, the security model of multi-

signature schemes does not provide security against an attacker who is in the group of

signers and who eventually refuses to complete his part in the signing protocol whilst

the others have completed their parts. As we have illustrated in the above scenario,

multi-signature schemes are not fair to honest signers since only the malicious signer

can output a multi-signature whilst the others cannot. Therefore, a fair multi-

signature scheme is needed in order to provide fairness for honest signers.

6.1.1 Related Work

Invented by Itakura and Nakamura in 1983 [IN83], a multi-signature scheme allows a

group of n signers together to generate a signature with a constant size on the same

message. After its invention, many variants of the multi-signature scheme have been

proposed, including [IN83, BN06, Oka88, MOR01, Bol03, LOS+06, BJ08, BCJ08,

HRL09, RY07].

In 1988, a multi-signature scheme using bijective public-key cryptosystems was

proposed by Okamoto in [Oka88]. Later, Micali, Otha and Reyzin [MOR01] pro-

posed a formal security model for multi-signatures. The rouge key attack is an attack

model where a malicious can arbitrarily register a public key without a knowledge

of the private key associated with the registered public key. To avoid rouge key

attacks, the “Knowledge of Secret Key” assumption was first introduced in their

paper. To achieve the Knowledge of Secret Key assumption, all of the signers must

be involved in the interactive pre-protocol. There is another way to achieve the

Knowledge of Secret Key assumption, which is by employing the Key Registration

Model for Public Key Infrastructure. This is introduced by Ristenpart and Yilek in

[RY07].

6.1. Introduction 149

In 2003, a multi-signature generation that does not require the signers to interact

was proposed by Boldyreva [Bol03]. This is a multi-signature scheme based on a

short signature scheme proposed by Boneh, Lynn and Shacham in [BLS01].

The plain public-key model is a model where all parties are required to register

their public key to a Certification Authority before the multi-signature generation

begins. In CCS’06, Bellare and Neven [BN06] were the first to propose a multi-

signature scheme that is secure against rouge key attacks in the plain public-key

model. In EUROCRYPT’07, Ristenpart and Yilek [RY07] proposed a solution for

the security against rouge key attacks in the registered key model. In this model,

all parties are required to provide a proof of possession of their private key in order

to register their public key to a Certification Authority before the multi-signature

generation begins. Hence, rouge key attacks are contained in the registered key

model.

The closest primitive to a multi-signature is an aggregate signature. This was

first introduced by Boneh, Gentry, Lynn, and Shacham (BGLS in short) [BGLS03].

This notion allows each signer to compute his/her signature on the same message

and then aggregates those signatures to obtain a multi-signature. Moreover, the

verifiable encrypted signature based on the aggregate signature was also introduced

in [BGLS03]. The BGLS’s verifiable encrypted signature are similar to an aggre-

gate signature by appending a simulated signature into an original signature. The

simulated signature is in fact the variant of ElGamal encryption algorithm.

The other variant is a sequential aggregate signature scheme based on The RSA

cryptosystem proposed by Lysyanskaya, Micali, Reyzin and Shacham in [LMRS04].

This notion is similar to an aggregate signature and allows a group of signers to

construct a multi-signature sequentially. Hence, if the last signer in the sequence re-

fuses to output a multi-signature, then none of the rest can output a multi-signature.

Later, a new sequential aggregate signature scheme and a new verifiable encrypted

signature that are efficient and provable as secure in the standard model were pro-

posed by Lu, Ostrovsky, Sahai, Shacham and Waters (LOSSW in short) in [LOS+06].

There are verifiable encrypted signature schemes that are not designed for a

signature to be aggregated after decrypting the verifiable encrypted signature, such

as [Ate04, CD00]. These schemes are the traditional verifiable encrypted signature

schemes, which are constructed from a signature that is non-aggregatable, and hence

they do not fit in with our generic construction of fair multi-signature schemes.

6.2. Definition of Fair Multi-Signature Schemes 150

6.1.2 Our Contributions

In this chapter, we introduce the notion of fair multi-signature (FMS) schemes to

solve the outlined problem above. In our notion, nobody will be able to produce

a valid signature until all signers produce their partial signatures correctly. We

describe the model of the FMS scheme and its security notions to capture the in-

tegrity of a message, and the non-repudiation of the signers. We also present a

generic construction of the FMS scheme that is proven to be secure in our security

model.

Chapter Organisation

The rest of the chapter is organised as follows: in the next section, the definition of

FMS and its security notations will be described. We will give a generic construc-

tion of the FMS scheme from a verifiable encrypted signature scheme based on an

aggregate signature in Section 6.3. In Section 6.4, we will provide a proof of the

security of this generic construction. Next, we will give two instantiations of this

generic construction in Section 6.5 and Section 6.6. Finally, we will conclude the

chapter.

6.2 Definition of Fair Multi-Signature Schemes

In this section, we give a definition of fair multi-signature (FMS) schemes that

allow a group of signers to cooperate fairly and sign the same message. In fair multi-

signature schemes, if the protocol is complete, then every signer can output a multi-

signature. However, if a signer cannot output a multi-signature after completing

the interaction then the other signers cannot output a multi-signature either. We

describe below the notion of a fair multi-signature scheme and its security model.

6.2.1 Outline of FMS

It is assumed that all parties who need to use their public-private key pair in this

scheme comply with a registration protocol with a certificate of authority to obtain

certificates on their public key prior to communication with others. Let LS be a

list of all of the signers, such that LS = {pkSi} where i is an index of the signer

and pki is a public key of the i-signer. Let n be the total number of signers involved

in the signature. Let TP denote a semi-trusted third party who is not involved in

6.2. Definition of Fair Multi-Signature Schemes 151

the list of signers LS. TP is assumed to be trusted to handle the partial signature

computation and TP is assumed that it does not collude with the malicious signers.

A fair multi-signature scheme Σ is a 5-tuple (Setup, TKeyGen, SKeyGen, Sign,

V erify), which is described as follows.

System Parameters Generation (Setup):

This is a probabilistic algorithm that, given a security parameter ` as input,

outputs the system parameter param. That is,

Setup(1`)→ param.

TP Key Generator (TKeyGen):

This is a probabilistic algorithm that, given the system parameter param as

input, outputs strings (skTP , pkTP)which denote a private key and a public

key of a semi-trusted third party, respectively. That is,

TKeyGen(param)→ (pkTP , skTP).

Signer Key Generator (SKeyGen):

This is a probabilistic algorithm that, given the system parameter param as

input, outputs strings (skS, pkS), which denote a private key and a public key

of a signer, respectively. That is,

SKeyGen(param)→ (pkS, skS).

Signature Signing (Sign):

Sign is an interactive protocol involving a group of signers and a semi-trusted

third party. Let us denote by

Sign.〈S1(skS1), ..., Sn(skSn), TP (skTP)〉(LS, pkTP ,M)→ σ

a signing protocol Sign that involves a group of signers and a semi-trusted

third party and outputs a signature σ, where M is an input message and LS

is a list of the signers’ public key involved in the signing process.

Signature Verification (V erify):

This is a deterministic algorithm that, given the list of the signers’ public key

LS, a message M and a signature σ as input, outputs a verification decision

d ∈ {Accept, Reject}. That is,

V erify(M,σ,LS)→ d.

6.2. Definition of Fair Multi-Signature Schemes 152

6.2.2 Unforgeability

In this section, when we discuss the unforgeability property, it means security against

existential unforgeability under an adaptive chosen message and chosen public key

attack. Intuitively, the unforgeability property of FMS schemes is provided that,

with the cooperation of n − 1 corrupted signers and a corrupted TP, an adversary

should not be able to forge a multi-signature without interacting with an honest

signer, where n is the total number of signers signing a message. Here, our definition

of unforgeability is to provide assurance that someone with access to a key generation

oracle, a signing oracle and a verification oracle, and with the entire set of the

signers’ public parameters pkS1 , ..., pkSn and the knowledge of n − 1-signer secret

keys skS1 , ..., skSn−1 and a TP private key skTP , should be unable to produce a

multi-signature on a new message, even with the capability of arbitrarily choosing

the n− 1-signers’ secret keys, a TP private key and message M as input.

The following game describes the existential unforgeability of the FMS scheme.

Let CM -CPK-A be the adaptively chosen message, chosen public key and insider

corruption attack and let EUF -FMS be the existential unforgeability of the FMS

scheme. We denote by A the adaptively chosen message, chosen public key and

insider corruption adversary. We also denote by F the simulator.

First, let SL be an algorithm that maintains the list of public-private key pairs

and let QK be an algorithm that maintains the list of queried private keys. Next,

we define the signer’s public key generation oracle SPO, the signer’s private key

generation oracle SKO, the semi-trusted third party’s private key generation oracle

T KO and the interactive signing oracle SSO as follows.

SPO oracle: At most qSP times, A can make a query for a new public key of a

signer S or semi-trusted third party TP to SPO. Let i represent the signer S

or the semi-trusted third party TP . As a response, given the system parameter

param, if i = S then SPO runs the SKeyGen algorithm to generate a public-

private key pair of the signer (pkS, pkS). Otherwise, SPO runs the TKeyGen

algorithm to generate a public-private key pair of the signer (pkTP , pkTP).

Next, SPO returns pki to A. Then SPO keeps a record in the SL, which

is SL← SL(pki, ski).

SKO oracle: At most qSK times, A can make a query for a signer’s private key

skS with respect to a chosen signer’s public key pkS to SKO. As a response,

6.2. Definition of Fair Multi-Signature Schemes 153

SKO matches the signer’s public key pkS in the list SL to obtain the signer’s

private key pkS. Then SKO returns skS to A. Next, SKO keeps a record of

this query in the QK, which is QK← QK(pkS, skS).

T KO oracle: At most qTK times, A can make a query for a semi-trusted third

party’s private key skTP with a respect to a chosen semi-trusted third party’s

public key pkTP to T KO. As a response, T KO matches the semi-trusted

third party’s public key pkTP in the list SL to obtain the semi-trusted third

party’s private key pkTP Then T KO returns skTP to A. Next, T KO keeps

a record of this query in the QK, which is QK← QK(pkTP , skTP).

SSO oracle: At most qSS times, A can make a query for a fair multi-signature

σ on its choice of a message M . As a response, SSO acts as the signers

S1, ..., Sn ∈ LS and the semi-trusted third party TP , and then runs the inter-

active protocol Sign to generate a signature σ on a message M corresponding

with pkS1 , ..., pkSn . SSO then returns σ,M to A.

Next, we begin the experiment ExptA
CM-CPK-A
EUF-FMS (`) as follows: given a choice of mes-

sages M and access to the SPO, SKO, T KO and SSO oracles, A arbitrarily

makes queries to the oracles in an adaptive way. At the end of these queries, we as-

sume that A outputs a forged multi-signature σ∗ on a new message M∗ with respect

to the list of the signer’s public keys LS∗. We say that A wins the game if:

1. for at least one pkS∗ ∈ LS∗ : skS∗ 6∈ QK.

2. skTP∗ 6∈ QK.

3. Accept← V erify(M∗, σ∗,LS∗).

The probability of success of ACM-CPK-A
EUF -FMS winning the above game is defined as

SuccCM-CPK-A
EUF -FMS (.).

Definition 6.1 The FMS scheme is said to be (t,qH ,qSP ,qSS,qSK,ε)-secure existen-

tial unforgeable under an adaptive chosen message, chosen public key and insider

corruption attack if there is no PPT adversary ACM-CPK-A
EUF-FMS such that the success

probability SuccCM-CPK-A
EUF-FMS (`) = ε is non-negligible in `, where ACM-CPK-A

EUF-FMS runs in

time at most t, and makes at most qH , qSP , qSS, qTK and qSK queries to the random

oracles, SPO oracle, SSO oracle, T KO oracle and SKO oracle, respectively.

6.2. Definition of Fair Multi-Signature Schemes 154

6.2.3 Fairness

Intuitively, the definition of fairness has two sub-properties. First, completeness

if the signing protocol is completed and the semi-trusted third party is not com-

promised, then every signer in LS should output the same multi-signature. Sec-

ond, soundness if the signing protocol is uncompleted or interrupted and the semi-

trusted third party is not compromised, then no one should be able to output a

multi-signature corresponding to the list LS and a message M . However, the com-

pleteness of fairness property is straightforward Hence, we will only consider for the

soundness of fairness. The following game describes the existential fairness with

soundness of the FMS scheme. We denote by EFS-FMS the existential fairness

with soundness of the FMS scheme. Let ACM-CPK-A
EFS-FMS be the adaptively chosen mes-

sage, chosen public key and insider corruption adversary. Let F be a simulator of

the existential fairness with soundness game. First, the interactive signing oracle

SSO, the signer’s public key generation oracle SPO and the signer’s private key

generation oracle SKO are defined below. Let SL be an algorithm that maintains

the list of public-private key pairs and let QK be an algorithm that maintains the

list of queried private keys.

SPO oracle: At most qSP times, A can make a query for a new public key of a

signer S or semi-trusted third party TP to SPO. Let i represent the signer S

or the semi-trusted third party TP . As a response, given the system parameter

param, if i = S, then SPO runs the SKeyGen algorithm to generate a public-

private key pair of the signer (pkS, pkS). Otherwise, SPO runs the TKeyGen

algorithm to generate a public-private key pair of the signer (pkTP , pkTP).

Next, SPO returns pki to A. Then SPO keeps a record in the SL, which

is SL← SL(pki, ski).

SKO oracle: At most qSK times, A can make a query for a signer’s private key

skS with a respect to a chosen signer’s public key pkS to SKO. As a response,

SKO matches the signer’s public key pkS in the list SL to obtain the signer’s

private key pkS. Then SKO returns skS to A. Next, SKO keeps a record of

this query in the QK, which is QK← QK(pkS, skS).

SSO oracle: At most qSS times, A can make a query for a fair multi-signature

σ on its choice of a message M . As a response, SSO acts as the signers

S1, ..., Sn ∈ LS and the semi-trusted third party TP , and then runs the

6.2. Definition of Fair Multi-Signature Schemes 155

interactive protocol Sign to generate a multi-signature σ on a message M

corresponding with pkS1 , ..., pkSn . SSO then returns σ,M to A.

We then begin the experiment as follows: given a choice of messages M and access

to the above oracles, A arbitrarily makes queries to the oracles. At the end of these

queries, F , who plays the role of an honest signer pk∗S, interacts with A, who plays

the role of a corrupted signers. We assume that A outputs a forged multi-signature

σ∗ on a message M∗ with respect to LS∗, pkTA. A wins the above game if the

private key of the honest signer pk∗S in LS∗ is not known to A, and F (as a signer

S∗) did not fully complete the signing protocol with A and TP . Note that “not

fully completed the interaction” means that F communicated only with the signers

in the LS∗ but not with TP ; hence, neither F nor the signers in the LS∗ should be

able to output a multi-signature σ∗. The success probability that ACM-CPK-A
EFS-FMS wins

the above game is defined as SuccCM-CPK-A
EFS-FMS (.).

Definition 6.2 The FMS scheme is said to be (t,qH ,qSP ,qSS,qSK,ε)-secure existen-

tial fair with soundness under an adaptive chosen message, chosen public key and

insider corruption attack if there is no PPT adversary ACM-CPK-A
EFS-FMS such that the

success probability SuccCM-CPK-A
EFS-FMS (`) = ε is non-negligible in `, where ACM-CPK-A

EFS-FMS

runs in time at most t, makes at most qH , qSP , qSS, and qSK queries to the random

oracles, SPO oracle, SSO oracle and SKO oracle, respectively.

6.2.4 Semi-trust

Intuitively, the definition of semi-trust is to prevent an adversary that acts as a

semi-trusted third party from outputting a multi-signature after interacting with a

signing protocol that involves honest signers. To simplify this, we say that an ad-

versary, corrupted with a semi-trusted third party, arbitrarily interacts with honest

signers and breaks the semi-trust of the FMS scheme if the adversary outputs a

multi-signature σ∗ on a new message M∗ after completing an interaction with the

arbitrarily chosen honest signers. Let us denote by CM -CPK-A the adaptively

chosen message and chosen public key attack, and let us denote by EST -FMS the

existential semi-trust of the FMS scheme. Let ACM-CPK-A
EST -FMS be the adaptively chosen

message, chosen public key and insider corruption adversary. Let F be a simulator

of the existential semi-trust game.

First, let SL be an algorithm that maintains the list of public-private key pairs

and let QK be an algorithm that maintains the list of queried private keys. Next,

6.2. Definition of Fair Multi-Signature Schemes 156

we define the signer’s public key generation oracle SPO, the signer’s private key

generation oracle SKO and the interactive signing oracle SSO as follows.

SPO oracle: At most qSP times, A can make a query for a new public key of a

signer S or semi-trusted third party TP to SPO. Let i represent the signer S

or the semi-trusted third party TP . As a response, given the system parameter

param, if i = S, then SPO runs the SKeyGen algorithm to generate a public-

private key pair of the signer (pkS, pkS). Otherwise, SPO runs the TKeyGen

algorithm to generate a public-private key pair of the signer (pkTP , pkTP).

Next, SPO returns pki to A. Then SPO keeps a record in the SL, which

is SL← SL(pki, ski).

SKO oracle: At most qSK times, A can make a query for a signer’s private key

skS with a respect to a chosen signer’s public key pkS to SKO. As a response,

SKO matches the signer’s public key pkS in the list SL to obtain the signer’s

private key pkS. Then SKO returns skS to A. Next, SKO keeps a record of

this query in the QK, which is QK← QK(pkS, skS).

SSO oracle: At most qSS times, A can make a query for a fair multi-signature

σ on its choice of a message M . As a response, SSO acts as the signers

S1, ..., Sn ∈ LS and the semi-trusted third party TP , and then runs the inter-

active protocol Sign to generate a signature σ on a message M corresponding

with pkS1 , ..., pkSn . SSO then returns σ,M to A.

Next, we begin the experiment ExptA
CM-CPK-A
EST-FMS (`) as follows: given a choice of mes-

sages M and access to the SPO, SKO, T KO and SSO oracles, A arbitrarily

makes queries to the oracles in an adaptive way. At the end of these queries, A
begins the challenge by running an interactive protocol Sign with F . F acts as

S1, ...Sn ∈ LS and A acts as TP . We assume that A outputs a multi-signature σ∗

on a new message M∗ with respect to the list of the signer’s public keys LS∗. We

say that A wins the game if:

1. skS1 , ..., skSn 6∈ QK.

2. Accept← V erify(M,σ,LS).

The success probability that ACM-CPK-A
EST -FMS wins the above game is defined as

SuccCM-CPK-A
EST -FMS (.).

6.3. Generic Construction of FMS scheme 157

Definition 6.3 The FMS scheme is said to be (t,qH ,qSP ,qSS,qSK,ε)-secure exis-

tential semi-trust under an adaptive chosen message and chosen public key at-

tack if there is no PPT adversary ACM-CPK-A
EST-FMS such that the success probability

SuccCM-CPK-A
EST-FMS (`) = ε is non-negligible in `, where ACM-CPK-A

EST-FMS runs in time at

most t, makes at most qH , qSP , qSS, and qSK queries to the random oracles, SPO
oracle, SSO oracle and SKO oracle, respectively.

6.3 Generic Construction of FMS scheme

In this section, we present a generic construction of the FMS scheme. Before de-

scribing our generic construction, in the following subsection we will discuss about

the definition of a verifiable encrypted signature scheme that constructed from an

aggregate signature scheme. Next, we provide the definition of an aggregate sig-

nature scheme. Then we will proceed with the generic construction of the FMS

scheme.

6.3.1 Verifiable Encrypted Signature Scheme from Aggre-

gate Signature

There are two well-known verifiable encrypted signatures (VES) that are con-

structed from aggregate signatures. The first scheme [BGLS03] is constructed from

the BLS signature and the second scheme [LOS+06] is constructed from Waters sig-

nature scheme [Wat05]. From these two schemes, we will adopt the VES model that

they propose and describe it as follows.

System Parameter Generation (V ES.Setup):

Setup is a PPT algorithm that, on input a security parameter `, outputs the

system parameter param.

Key Generator (V ES.KeyGen): KeyGen is a PPT algorithm that, on input

the system parameter param, outputs strings (sk, pk), which denote a private

key and a public key, respectively. That is,

KeyGen(param)→ (pk, sk).

Note that we assume that the key generator algorithm for a signer is the

same as the key generator algorithm for an adjudicator. Even through some

6.3. Generic Construction of FMS scheme 158

VES schemes require these algorithms to be different, there is only a trivial

adjustment.

Signature Signing (V ES.Sign):

On input the system parameter param, the signer’s private key skS, the signer’s

public key pkS and a message M , Sign outputs the signer’s signature σ. That

is,

Sign(param,M, skS, pkS)→ σ.

Signature Verification (V ES.V erify):

On input the system parameter param, the signer’s public key pkS, a message

M and a signature σ, V erify outputs a verification decision d ∈ {Accept, Reject}.
That is,

V erify(param,M, σ, pkS)→ d.

Verifiable Encryption (V ES.Enc):

On input the system parameter param, the adjudicator’s public key pkAD and

a signature σ, Enc outputs a verifiable encrypted signature o. That is,

Enc(param, σ, pkAD)→ o.

Verifiable Encrypted Signature’s Verification (V ES.EV F):

On input the system parameter param, the adjudicator’s public key pkAD, the

signer’s public key pkS, a message M and a verifiable encrypted signature o,

EV F outputs a verification decision d ∈ {Accept, Reject}. That is,

EV F (param,M, o, pkAD, pkS)→ d.

Verifiable Encrypted Signature’s Adjudication (V ES.ADJ):

On input the system parameter param, the adjudicator’s public key pkAD,

the adjudicator’s private key skAD, the signer’s public key pkS, a verifiable

encrypted signature o and a message M , ADJ outputs a signature σ. That is,

ADJ(param,M, o, skAD, pkAD, pkS)→ σ.

6.3. Generic Construction of FMS scheme 159

Note that signatures from V ES.Sign can be aggregated since the verifiable en-

cryption signature scheme is based on the aggregate signature scheme.

6.3.2 Aggregate Signature Scheme

Let AS denote a aggregate signature scheme. We describe an aggregate signature

scheme as follows.

Setup (AS.Setup) and Key Generator (AS.KeyGen):

AS.Setup and AS.KeyGen are the same as V ES.Setup and V ES.KeyGen in

the VES scheme, respectively.

Sign (AS.Sign) and Verify (AS.V erify):

AS.Sign and AS.V erify are the same as V ES.Sign and V ES.V erify in the

VES scheme, respectively.

Aggregation (AS.Aggregate):

On input the system parameter param, signatures σS1 , ..., σSn and a message

M , AV erify outputs an aggregate signature q. That is,

Aggregate(param,M, σS1 , ..., σSn)→ q.

Aggregate Signature Verification (AS.AV erify):

On input the system parameter param, the signer’s public keys pkS1 , ..., pkSn ,

a message M and an aggregate signature q, AV erify outputs a verification

decision d ∈ {Accept, Reject}. That is,

AV erify(param,M, q, pkS1 , ..., pkSn)→ d.

6.3.3 Generic Construction Scheme

In this section, we present our generic construction scheme. The scheme works as

follows.

Setup: On input a security parameter `, Setup runs V ES.Setup and returns param.

TKeyGen: On input a system parameter param, a semi-trusted third party TP

randomly generates a private key skTP and a public key pkTP as follows: run

V ES.KeyGen and output (skTP , pkTP) as a private key and public key of the

semi-trusted third party, respectively.

6.3. Generic Construction of FMS scheme 160

SKeyGen: Similar to TKeyGen, SKeyGen runs V ES.KeyGen to obtain (skS, pkS)

as a private key and public key of the signer, respectively.

Sign: Assume that communication between the parties is secure. Given a message

M , a list of signers LS = {pkS1 , ..., pkSn} and a private key skSi , a signer Si,

where i ∈ {1, ..., n}, processes the Sign protocol as follows.

• Round 1: All the signers work together and run V ES.KeyGen to generate

(skR, pkR) as a shared random private key and a shared random public

key, respectively.

• Round 2: On input skR, pkR, skSi , pkSi , pkTP , a signer Si computes as

follows.

$i = V ES.Sign(param,M, skSi , pkSi),

ϑi = V ES.Esign(param, $i, pkR),

di = V ES.Esign(param, ϑi, pkTP).

Si then sends Υi = (di, pkR) to TP .

• Round 3: Upon receiving Υ1, ...,Υn, TP first checks whether pkR in each

Υ1, ...,Υn are the same. Next, check whether ∀i ∈ {1, ..., n} :

V ES.EV F (param,M,Υi, pkTP , pkS)
?
= Accept

and let λi = V ES.ADJ(param, di, skTP). Then check whether

V ES.EV F (param,M, λi, pkR, pkS)
?
= Accept

Finally, if the above holds then TP outputs a vector σ1 = {λ1, ..., λn}
and sends it to all the signers.

• Extract the multi-signature: each signer computes ∀i ∈ {1, ..., n} : σi =

V ES.ADJ(param, λi, skR). The multi-signature on message M is

Θ := AS.Aggregate(σ1, ..., σn).

V erify: Given LS = {pkS1 , ..., pkSn}, Θ and a message M , a verifier V runs

AS.AV erify(param,M,Θ, pkS1 , ..., pkSn). IfAS.AV erify outputsAccept then

it accepts the signature. Otherwise, it outputs reject.

6.4. Security Analysis for The Generic Construction Scheme 161

6.4 Security Analysis for The Generic Construc-

tion Scheme

6.4.1 Unforgeability

Theorem 6.1 Our fair multi-signature scheme is existential unforgeable under an

adaptive chosen message, chosen public key attack and insider corruption if the

verifiable encrypted signature scheme is secure against existential forgery.

Proof: The following experiment between an unforgeability adversary A and a

VES forgery F shows that F can use A to forge a VES signature if A breaks the

unforgeability under an adaptive chosen message and chosen public key attack, and

insider corruption exists. Let S be the VES simulator. Since F can forward all

queries to S, F can construct the SPO, SSO, T KO, SKO and HO oracles

straightforwardly and leave only one signer S∗, which will forward the signature

queries to S. Note that if A makes a query for private key of the signer S∗ then F
aborts the experiment. F gives access to the SPO, SSO, T KO, SKO and HO
oracles to A. After A finishes making arbitrary queries to these oracles, it chooses

a set of public keys and outputs a multi-signature Θ∗. The probability that F will

not abort is (1 − 1
qSK+n

)qSK where qSK is an upper bound of the queries that are

made to the SKO oracle. This probability is negligible; hence, F outputs a forgery

o by extracting from Θ∗, since Θ∗ is an aggregate signature and F knows all the

secret keys of the signers except for the signer S∗. �

6.4.2 Fairness

Theorem 6.2 Our fair multi-signature scheme is existential fair with soundness

secure under an adaptive chosen message, chosen public key attack and insider

corruption if the verifiable encrypted signature scheme is secure against existential

forgery.

Proof: The following experiment between an unforgeability adversary A and a VES

forgery F shows that F can use A to forge a VES signature if A that breaks the

fairness with soundness under an adaptive chosen message, chosen public key attack

and insider corruption exists. Let S be the VES simulator. The proof here is similar

to the proof in Theorem 6.1. Since F can forward all queries to S, F can construct

the SPO, SSO, T KO, SKO and HO oracles straightforwardly and leave only

6.4. Security Analysis for The Generic Construction Scheme 162

one signer S∗, which will forward the signature queries to S. If A makes a query for

the private key of the signer S∗ to the SKO oracle, then F aborts the experiment.

F gives access to the SPO, SSO, T KO, SKO and HO oracles to A. After A
finishes making arbitrary queries to these oracles, it chooses a set of public keys and

interacts with the TP ∗ played by F . A wins the game if the following conditions

hold:

• A outputs Θ∗.

• Accept← V erify(M∗,Θ∗,LS).

• The input: M∗ and LS∗ are never submitted to the SSO oracles.

• At least one honest signer’s private key in LS have never been queried to the

SKO oracle.

• pkTP ∗ has never been queried to the T KO oracle.

• The transaction between A and the honest signers is uncompleted.

Note that, since the honest signer(s) generates a random public-private key pair in

the first round and does not need to participate in the second and third rounds,

F does not need to provide any information except the public key of the honest

signer(s) to A. The probability that F will not abort is (1 − 1
qSK+n

)qSK where qSK

is an upper bound of queries that are made to the SKO oracle. This probability

is negligible and hence F outputs a forgery o by extracting from Θ∗, since Θ∗ is an

aggregate signature and F knows all the private key of signers except for the signer

S∗. �

6.4.3 Semi-trust

Theorem 6.3 Our fair multi-signature scheme is existential semi-trust secure un-

der an adaptive chosen message and chosen public key attack if the verifiable en-

crypted signature is secure against the extraction defined in [BGLS03].

Proof: Assume that an adversary A runs the existential semi-trust game defined in

Section 6.2.4 and successfully outputs a multi-signature. We will then show that an

adversary F can use A to break the extraction of the verifiable encrypted signature.

Let S be the VES simulator in the extraction game [BGLS03]. The proof of this is

6.5. An Instantiation 163

similar to the proof in Theorem 6.1. Since F can generate the secret keys for all the

signers, except for one signer S∗ where its signature queries will be forwarded to S,

F can construct the SPO, SSO, T KO, SKO and HO oracles straightforwardly.

F gives access to the SPO, SSO, T KO, SKO and HO oracles to A. After A
finishes making arbitrary queries to these oracles, it chooses a set of public keys.

Then A, acting as TP , interacts with the signers acted by F . The signing protocol

runs as follows.

Round 1: Let AD be an adjudicator assigned by S. In this case, F does not have

AD’s private key. F sets pkR = pkAD.

Round 2: For the signer S∗, F makes a request of

θ∗ = V ES.Esign(param,M, V ES.Sign(param,M, skS∗ , pkS∗), pkR)

to S. Then it computes oS∗ = V ES.Esign(param,M, θ∗, pkTP). and sends oS∗

to TP . For the rest of the signers, F computes oi straightforwardly for the

signer Si and sends it to TP .

Output from A: A wins the game if A outputs Θ∗ and

V erify(param,M,Θ∗, pkS1 , ..., pkS∗ , ., pkSn) = Accept.

F outputs a signature σ on a message M of the signer S∗ to S by extracting from

Θ∗. since Θ∗ is an aggregate signature and F knows all the secret keys of signers

except for the signer S∗. �

6.5 An Instantiation

In this section, we present the instantiation of the generic construction from BGLS’s

verifiably encrypted signatures.

6.5.1 BGLS’s Verifiably Encrypted Signatures

Introduced by Boneh, Gentry, Lynn and Shacham [BGLS03], a verifiably encrypted

signature (VES) scheme based on an aggregate signature is a 7-triple (Setup, KeyGen,

Sign, V erify, Enc, EV F , ADJ). We elaborate the verifiably encrypted signature

scheme as follows.

6.5. An Instantiation 164

Setup: Setup sets param = (p, ê, g1 ∈ G1, ψ : G1 → G2, H : {0, 1}∗ → G2, ê :

G1 ×G2 → GT) to be a system parameter.

KeyGen: On input a system parameter param, KeyGen chooses a random private

key x, y ∈ ZZp. Then, for the signer, KeyGen returns pkS = X and skS = x as

a public key and a private key of the signer, respectively. For the adjudicator,

KeyGen returns pkAD = Y = gy1 and skAD = y as a public key and a private

key of the signer, respectively.

Sign: Given a message M , pkS and skS, S computes σ = H(M)x as a signature on

message M .

V erify: Given pkS, σ and a message M , a verifier V checks whether ê(σ, g)
?
=

ê(H(M), X) holds or not. If it does not, then it outputs Reject. Otherwise,

it outputs Accept.

Enc: Given a signature σ on a message M , Esign chooses a random integer r ∈
ZZp and computes µ = ψ(g1)r; σ̂ = ψ(Y)r. Then it computes a verifiably

encrypted signature o = (µ, ω = σ̂ · σ). Note that, in the original BGLS

scheme, Sign is also a part of Esign. However, we separate it to make it

unique for constructing the fair multi-signature, so that the signer must run

Sign to obtain a signature σ before processing Enc.

EV F : Given pkS, pkAD, o and a message M , a verifier V checks whether ê(g1, ω)
?
=

ê(H(M), X) · ê(µ, Y) holds or not. If it does not, then it outputs Reject.

Otherwise, it outputs Accept.

ADJ: Given a message skAD and o, S computes σ = ω · µ−y as a signature on a

message M .

6.5.2 Instantiation from BGLS Scheme

In this section, we present the instantiation of our generic construction scheme. The

scheme works as follows.

Setup: Setup works in the same way as the BGLS V ES.Setup.

TKeyGen: TKeyGen works in the same way as the BGLS V ES.KeyGen. Let

skTP = y, pkTP = Y = gy1 be a private key and a public key of the semi-

trusted third party, respectively.

6.6. Another Instantiation in the Standard Model 165

SKeyGen: Run the BGLS V ES.KeyGen to obtain skS = x, pkS = gx1 as a private

key and a public key of the signer, respectively.

Sign: Assume that communication between the parties is secure. Given a message

M , a list of signers LS = {pkS1 , ..., pkSn} and a private key skSi , a signer Si,

where i ∈ {1, ..., n}, processes the Sign protocol as follows.

• Round 1: Each signer randomly selects γi and exchanges it with one

another. Each signer generates skR = γ =
∏n

i=1 γi, pkR = R = gγ1 as a

shared random secret key and a shared random public key, respectively.

• Round 2: On input skR, pkR, skSi , pkSi , pkTP , a signer Si randomly se-

lects r1, r2 and computes σ = H(M)x, µ1 = ψ(g1)r1 , µ2 = ψ(g1)r2 , σ̂ =

ψ(R)r1 , σ̌ = ψ(Y)r2 ,. oi = (µ1, µ2, ω = σ · σ̂ · σ̌) Si then sends Υi =

(oi, pkR) to TP .

• Round 3: Upon receiving Υ1, ...,Υn, TP first checks whether pkR in each

Υ1, ...,Υn are the same. Next, check whether ∀i ∈ {1, ..., n} :

ê(g1, ωi)
?
= ê(H(M), X) · ê(µ1, R) · ê(µ2, Y)

and let λi = (µ1, ω
′
i = ωi · µ−y2). Then check whether

ê(g1, ω
′
i)

?
= ê(H(M), X) · ê(µ1, R).

Finally, if the above holds then TP outputs a vector λ̄ = {λ1, ..., λn} and

sends it to all the signers.

• Extract the multi-signature: each signer computes ∀i ∈ {1, ..., n} : σi =

ω′i · µ
−γ
1 . Finally, each signer computes a multi-signature on message M ,

which is Θ =
∏n

i=1 σi.

V erify: Given LS = {pkS1 , ..., pkSn}, Θ and a message M , a verifier V checks

whether ê(Θ, g)
?
= ê(H(M),

∏n
i=1X) holds or not. If it holds then a verifier

accepts the signature. Otherwise, the verifier reject the signature.

6.6 Another Instantiation in the Standard Model

In this section, we present an instantiation of the generic construction from LOSSW’s

verifiably encrypted signature. Before describing the instantiation, we briefly review

6.6. Another Instantiation in the Standard Model 166

LOSSW’s scheme first. The security of the instantiation is provable in the standard

model. The difference between the oracle model and the standard model is presented

in Section 2.2.7.

6.6.1 LOSSW’s Verifiably Encrypted Signatures

Lu, Ostrovsky, Sahai, Shacham and Waters [LOS+06] proposed a verifiably en-

crypted signature (VES) scheme based on aggregate signatures in the standard

model. We present their VES scheme as a 7-triple (Setup, KeyGen, Sign, V erify,

Enc, EV F , ADJ). We elaborate LOSSW’s verifiably encrypted signature scheme

as follows.

Setup: Setup sets param = (p, ê, g ∈ G1, u0, u1, ..., uk, ψ : G1 → G2, H : {0, 1}∗ →
{0, 1}k, ê : G1 ×G2 → GT) to be a system parameter.

KeyGen: On input a system parameter param, KeyGen chooses a random private

key x, y ∈ ZZp. Then, for the signer, KeyGen returns pkS = X = ê(g, g)x and

skS = x as a public key and a private key of the signer, respectively. For the

adjudicator, KeyGen returns pkAD = Y = gy and skAD = y as a public key

and a private key of the signer, respectively.

Sign: Given a message M as a bit string (m1, ...,mk) ∈ {0, 1}k, pkS and skS, S

randomly chooses r ∈ ZZp and computes σ = (θ1 = gxu0

∏k
i=1 u

mi
i , θ2 = gr) as

a signature on message M .

V erify: Given pkS, σ and a message M , a verifier V checks whether

ê(θ1, g)ê(θ2, u0

k∏
i=1

umii)−1 ?
= X

holds or not. If it does not, then a verifier outputs Reject. Otherwise, it

outputs Accept.

Enc: Given a signature σ on a message M , Esign chooses a random integer r ∈ ZZp

and computes E1 = θ1 · Y r ; E2 = θ1 ; E3 = gr. Then it computes a

verifiably encrypted signature o = (E1, E2, E3).

EV F : Given pkS, pkAD, o and a message M , a verifier V checks whether

ê(E1, g) · ê(E2, u0

k∏
i=1

umii)−1 · ê(E3, Y)−1 ?
= X

6.6. Another Instantiation in the Standard Model 167

holds or not. If it does not, then a verifier outputs Reject. Otherwise, it

outputs Accept.

ADJ: Given a message skAD and o, S computes σ = (θ1 = E1 · E3
−y, θ2 = E2) as

a signature on a message M .

6.6.2 Instantiation from LOSSW Scheme

In this section, we present the instantiation of our generic construction scheme in

the standard model. The scheme works as follows.

Setup: Setup works in the same way as the LOSSW V ES.Setup.

TKeyGen: TKeyGen works in the same way as the LOSSW V ES.KeyGen. Let

skTP = y, pkTP = Y = gy1 be a private key and a public key of the semi-trusted

third party, respectively.

SKeyGen: Run the LOSSW V ES.KeyGen to obtain skS = x, pkS = X = ê(g, g)x

as a private key and a public key of the signer, respectively.

Sign: Assume that communication between the parties is secure. Given a message

M , a list of signers LS = {pkS1 , ..., pkSn} and a private key skSi , a signer Si,

where i ∈ {1, ..., n}, processes the Sign protocol as follows.

• Round 1: Each signer randomly selects γi and exchanges it with one

another. Each signer generates skR = γ =
∏n

i=1 γi, pkR = R = gγ1 as a

shared random secret key and a shared random public key, respectively.

• Round 2: On input skR, pkR, skSi , pkSi , pkTP , a signer Si randomly se-

lects r, r1, r2 and computes θ1 = gxiu0

∏k
i=1 u

mi
i , θ2 = gr. Then com-

pute E1 = θ1 · Rr1Y r2 , E2 = θ1, E3 = gr1 , E4 = gr2 . Let oi =

(E1, i, E2, i, E3, i, E4, i). Si then sends Υi = (oi, pkR) to TP .

• Round 3: Upon receiving Υ1, ...,Υn, TP first check whether pkR in each

Υ1, ...,Υn are the same. Next, check whether ∀i ∈ {1, ..., n} :

ê(E1, i, g) · ê(E2, i, u0

k∏
j=1

u
mj
j)−1 · ê(E3, i, R)−1 · ê(E4, i, Y)−1 ?

= Xi

6.7. Conclusion 168

and let λi = (K1, i = E1, i · E4
−y
, i , K2, i = E2, i, K3, i = E3, i). Then

check whether

ê(K1, i, g) · ê(K2, i, u0

k∏
j=1

u
mj
i)−1 · ê(K3, i, R)−1 ?

= Xi

holds or not. Finally, if the above holds then TP outputs a vector λ̄ =

{λ1, ..., λn} and sends it to all the signers.

• Extract the multi-signature: each signer computes ∀i ∈ {1, ..., n} : σi =

(θi = K1, i · K3
−γ
, i , φi = K2, i). Finally, each signer computes a multi-

signature on message M , which is Θ = (θ =
∏n

i=1 θi, φ =
∏n

i=1 φi).

V erify: Given LS = {pkS1 , ..., pkSn}, Θ and a message M , a verifier V checks

whether

ê(θ, g) · ê(θ, u0

k∏
j=1

u
mj
j)−1 ?

=
n∏
j=1

Xj

holds or not. If the equation holds, then V accepts the signature. Otherwise,

V rejects it.

6.7 Conclusion

In this chapter, the notion of fair multi-signature schemes was proposed to capture

the need for fairness in multi-signature schemes. In other words, the authenticity

of the message produced by signers is fairly distributed. By enabling the fairness

property, where all honest signers can be assured of the authenticity of the mes-

sage and the distribution of the multi-signature, the notion of fair multi-signature

schemes bridges the gap between theory and practice. Using the existing verifiably

encrypted signatures, a generic construction of FMS schemes and its instantiations

in the random oracle model and the standard model have been provided. We have

presented a security model for fair multi-signature schemes and proofs of their se-

curity for generic construction. On the whole, if readers give the matter careful

consideration, it is not difficult to come to the conclusion that this cryptographic

primitive is useful in many practical applications, in particular those that involve a

multi-party signing process.

Chapter 7

Identification Schemes

In this chapter, a new primitive algorithm called “escrowed deniable identification”

is described. Part of this chapter appeared in SecTech’09 [THS+09], International

Journal of Security and Its Application [THS+10] and WISA’09 [TSM09a]. Ad-

ditionally, we also contribute to the notion of identity-based identification scheme

that is secure against concurrent-reset attacks in the standard model and efficient

identity-based identification that is secure against passive attack in the standard

model [TSM09a].

7.1 Introduction

Invented by Fiat and Shamir in [FS86], an identification scheme allows a party

called a prover to prove his/her identity to another party called a verifier; hence,

it is a scheme that prevents impersonation. There are many types of settings for

identification schemes, such as a public key setting and a symmetric setting. In this

chapter, we are interested in a public key setting, where the prover holds the private

key for proving himself/herself and the verifier holds the corresponding public key

for verifying the prover identity during the protocol. Generally, the prover’s public

key appears to be a random bit string; however, it is generated after the associated

private key has been selected. Nevertheless, an identity-based identification scheme

allows a prover to select a public key that represents the identity of the prover, such

as an email address. An example of an identity-based identification’s application

would be where a web service can determine from the user’s identity whether to

grant or deny an access to a resource.

It is essential to consider the security of identity-based identification schemes

against active and concurrent attacks. For example, a well-known attack that is

the man-in-the-middle attacks is the alternative name of the active and concurrent

169

7.1. Introduction 170

attacks. In this attack, an adversary pretends to be a verifier and interacts with the

honest prover before impersonating the honest prover. Moreover, the device used

for executing the interactive protocol is often a resettable device such as Personal

Computer (PC), whereby a computer can be reset to any state other than the initial

state. Bellare, Fischlin, Goldwasser and Micali [BFGM01] formalised concurrent-

reset attacks where an adversary has the power to reset the prover to the initial state

and obtains information that leads to the associated private key before attempting

to impersonate. A smart card is vulnerable to the reset attack, as mentioned in

[BFGM01] and [CGGM00]. To reset a smart card’s state to the initial state, an

adversary only has to disconnect and reconnect its power source. Based on the study

by Canetti, Goldwasser, Goldreich and Micali in [CGGM00] and the security analysis

in [BFGM01], reset attacks play an important part in the security of (identity-based)

identification protocols.

The need for privacy-preserving techniques has become essential due to increas-

ing concern about the erosion of privacy in our society. Consider the following

scenario in today’s society. These days, politicians’ privacy is threatened by pa-

parazzi, who always relentlessly shadow them in their public and private activities.

Suppose that such a politician would like to enter a building that is equipped with

a smart card identification system. In this case, the politician will act as the prover

and the smart card reader is the verifier. If the identification system employed does

not ensure deniability, then as soon as the politician has identified himself to the

system, the smart card verification system can be used to convince a paparazzo that

the politician is indeed in the building. In the worst case scenario, this could be

used by a terrorist for malicious purposes. Therefore, it is clear that it is essential to

equip identification schemes with a deniability property. Generally, an identification

scheme based on a zero knowledge protocol provides the deniability property. The

idea behind deniability is to allow a transcript of the identification protocol to be

simulated by any verifier. Therefore, there is no an actual evidence that the iden-

tification protocol has been executed between a prover and a verifier. On the other

hand, if a terrorist enters the building with malicious intent, then there is no evi-

dence to seize the terrorist. Hence, identification schemes also should be equipped

with an escrowed deniability property. Let us consider another scenario where a ver-

ifier needs evidence to prove the existence of a transcript of a conversation between

the prover and himself. Let Peggy be an online software seller and let Victor be an

online software buyer. Assume that Peggy has sold some software to Victor through

7.1. Introduction 171

the internet. Later, Victor has been caught using illegal software that he bought

from Peggy. Victor seems to be a victim of Peggy’s crime since he didn’t know that

the software that he bought from her is illegal software. In order to prove that he is

innocent, Victor has to provide a proof of the money transaction for this software

and the transcript of a conversation between himself and Peggy for that transaction.

Why is the transcript of a conversation needed? The money transaction could have

been conducted off-line and hence it might not be traceable to Peggy. Also, Peggy

could deny the relationship between the money transaction and the illegal software,

since the transcript of a conversation has ceased to exist. Therefore, a proof of the

transcript of a conversation is needed to verify the co-existence of money transaction

and the conversation between Victor and Peggy. The example above shows that an

escrowed deniability property for an identification scheme based on a zero knowl-

edge protocol is required. In our escrowed deniable identification scheme, a trusted

party that can produce evidence to prove that a prover has participated in the gen-

eration of the identification transcript with a verifier is introduced to achieve both

deniability and escrowed deniability. Moreover, the verifier alone cannot create a

proof of the generation of the identification transcript. In the following subsections,

a review of related works and a summary of our contribution are given to support

this concept.

7.1.1 Related Work

Bellare, Fischlin, Goldwasser and Micali [BFGM01] provided four paradigms for

constructing an identification protocol that would be secure under reset attack.

The first three paradigms are based on cryptographic primitives, which are stateless

signature schemes, encryption schemes and a combination of trapdoor commitment

schemes and standard identification protocols secured against non-resetting attacks.

The fourth paradigm is based on the resettable zero knowledge proof of membership,

which was introduced in [CGGM00]. However, they did not provide a solution

against the reset attack for identity-based identification. The well-known identity-

based identification schemes, which were proposed by Kurosawa and Heng [KH05],

are only secure under passive and concurrent-active attacks in the standard model.

An identity-based identification scheme that is secure against reset attacks does not

exist yet prior to this work.

For the deniability property, Dwork, Naor and Sahai were the first to introduce

7.1. Introduction 172

the concept of deniability in authentication [DNS98]. Later in Crypto’03 [Pas03],

Pass gave a formal definition of the deniable zero knowledge. Later, the deniability

in authentication and key exchange were proposed in [RGK06, RG05].

For the ‘escrow’ property, it has been comprehensively studied in other areas,

such as the “verifiable escrowed signatures” by Mao [Mao97], and the “escrowed

linkability of ring signatures” by Chow, Susilo and Yuen [CSY06]. Moreover, the

recent notion of ‘ambiguous fair exchange’ by Huang et al. [HYWS08] shares some

commonalities with our notion of escrowed deniable identification. However, to

transform these studies so as to obtain an escrowed deniable identification scheme

is not a trivial matter.

The following works are used as tools to construct escrowed deniable identifi-

cation scheme presented in this chapter. A publicly verifiable encryption (fair ex-

change) protocol was first proposed in Eurocrypt’98 by Asokan, Shoup and Waidner

[ASW98]. A signature is encrypted with a trusted third party’s public key. This

encrypted signature is fairly exchanged and verifiable before each party reveals their

decrypted signature in the last round. Any party can request the trusted third party

to reveal the signature when another party is malicious. This concept is applied in

escrowed deniable identification schemes to achieve deniable and openable proof of

the transcript.

The second technique used to construct escrowed deniable identification schemes

is a technique that transforms a weakly unforgeability secured signature scheme into

a fully unforgeability secured signature scheme in the standard model proposed by

Huang et al. [HWLZ08] in 2008. Their technique is to use a strong one-time signature

to sign a message concatenated with a regular signature that signs a one-time public

key. This eliminates the use of the random oracle in the proof of security of the

signature scheme. Hence, with the technique above we can construct an escrowed

deniable identification scheme and prove its security in the standard model.

7.1.2 Our Contribution

Our contribution is divided into two parts in this chapter. The first part outlines our

contribution towards the identity-based identification scheme. For our contribution

to the security model for identification and identity-based identification scheme, we

give a definition called “CR1+”, which improves a definition of CR1. Compared

to CR1, our definition improves an attacker’s power. In the CR1 attack model, an

7.1. Introduction 173

adversary is only allowed to reset the state of a prover, including its clones, to its

initial state. In contrast, in the CR1+ attack model, an adversary is allowed to reset

the state of a prover, including its clones, to any state that he/she chooses. Hence,

we claim that CR1 is a special case of CR1+. It is obvious that a CR1+ attacker’s

execution time is less than a CR1 attacker’s execution time. Moreover, in terms

of our contribution to identity-based identification, we are the first to propose an

identity-based identification scheme that is provably secure against impersonation

attack under concurrent-reset attacks named CR1 as well as the concurrent-reset

attacks named CR1+. Based on the q-Strong Diffie-Hellman (SDH) assumption in

[BB04] (where q equals to 2), our scheme is provable as secure under a CR1+ attack.

The second part of this chapter presents our contribution towards escrowed iden-

tification. The notion of escrowed deniable identification schemes was first intro-

duced in [THS+09, THS+10]. In this notion, the identity of a prover is protected

from being revealed to the public by a verifier. Meanwhile, if the prover misbe-

haves, then a trusted party can non-interactively reveal the prover’s identity from

an identification transcript. The transferability property of our primitive provides

for the verifier to interactively prove to another party that the prover has identified

himself to the verifier. This interactive proof is undertaken without revealing the

prover’s signature, which the verifier possesses. The formal security definitions for

escrowed deniable identification schemes are also provided. These include imper-

sonation, deniability and transferability/escrowed deniability. Moreover, based on

certain standard number-theoretic assumptions, a concrete and efficient construction

of an escrowed deniable identification scheme and its security proof in the standard

model are proposed.

Chapter Organisation

The rest of the chapter is organised as follows. In Section 7.2, we define the identity-

based identification scheme model, types of attack, the security of identity-based

identification scheme under the passive and the concurrent-reset attack settings. A

secure identity-based identification scheme under the passive attacks and its security

proof is presented in Section 7.3. In Section 7.4, an identity-based identification

scheme secure against impersonation under the concurrent-reset attacks with its

proof of security and its experiment is presented. Next, we present the comparison

of our presented schemes with the state-of-the-art of identity-based identification

schemes in the literature in Section 7.5. In Section 7.6, we present the definition

7.2. Definition of Identity-based Identification Scheme 174

of the escrowed deniable identification scheme and its security model. The concrete

construction scheme of an escrowed deniable identification scheme and its security

analysis present in Section 7.6 and Section 7.8. Finally, we conclude this chapter.

7.2 Definition of Identity-based Identification Scheme

In this section, we present a definition of identity-based identification schemes and

their security models as outlined below.

7.2.1 Outline of Identity-based Identification Schemes

In an identity-based identification scheme (IBI-scheme), the algorithms can be clas-

sified into two PPT algorithms and one interactive protocol as follows.

1. Key Generation (KeyGen):

Take a security parameter 1` as input and generate a pair of a public parameter

pkK and a master private key skK . That is, KeyGen(1`)→ (pkK , skK).

2. Key Extraction (Extract):

Given the identity of a prover ID and the master private key skK , Extract

takes ID and skK as input and computes a witness instance (a prover’s private

key) skP and gives it to the prover. That is, Extract(ID, skK)→ skP .

3. Identification Protocol (〈P, V 〉):
A canonical protocol of an identification scheme can be denoted by CID =

(Commit, Challenge, Response, Check), where Commit, Challenge, Response

and Check are PPT algorithms used in the following protocol, where P is the

prover and V is the verifier:

• Step 1. P chooses r at random from a certain domain and computes

x = Commit(r). P then sends x to V .

• Step 2. V chooses a challenge c at random from a certain set and sends

Challenge = c to P .

• Step 3. P computes a response y = Response(pkK , skP , x, c) and sends

y to V .

• Step 4. V checks if x = Check(pkK , ID, x, c, y). V accepts P if only the

prior equation holds.

7.2. Definition of Identity-based Identification Scheme 175

The above protocol (P, V) in both standard and identity-based identification schemes

is often called a canonical protocol. We say that (x, c, y) is a valid transcript for pkK

if it satisfies the equation in the step 4 as specified above. Observe that most identifi-

cation schemes are transformable from or to digital signature schemes [KH04, KH05].

This is a fast track to construct an identification scheme, but nonetheless these

schemes are insecure against concurrent-active or reset attacks.

7.2.2 Security of Identity-based Identification Schemes against

Impersonation under Passive Attack

An imp-pa adversaryA = (Û , P̂) is a pair of randomised polynomial-time algorithms

that consist of the cheating identity-based user and cheating prover, respectively.

We consider the following game that comprises three phases:

Phase 1: KGC runs on input 1` to produce a master public key and private key

(pkK , skK). A random tape and a master public key are given to Û . Then, it

interacts with KGC initialised with pkK , skK . We can define precisely that Extract

is a function of KGC that takes an incoming user’s identity ID, pkK , skK , and the

current state, and it returns a user’s private key skP associated with pkK and the

identity of a user ID. Therefore, the cheating identity-based user Û can issue a

request for the form (IDi, i) where i is an index of each request form. As a result,

the operation (skP i) ← Extract(IDi, skK) is executed and skP i is returned to Û

as the private key associated with the user’s identity IDi. These requests can be

arbitrarily interleaved and the next chosen user’s identity IDi+1 may be relevant for

KGC public key and/or the previous user’s identities (ID1, ..., IDi) and the user’s

secret keys (skP 1, ...skP i).

Eventually, Û outputs the user’s identity ID∗, which A decides to impersonate.

This ends the first phase. Note that it is not critical whether or not A can output

skP ∗. The most important thing is that A can impersonate the user’s identity ID∗

so that the game can continue to the next phase.

Phase 2: A makes a request for conversation transcripts between the honest prover

(the user’s identity ID∗) and the honest verifier. A fresh random tape R is chosen for

the honest verifier and the prover ID∗. Let Sti = (pkK , ID∗, R, i) be the state of in-

formation of each request and let each transcript contain {Commiti, Chi, Responsei,
Checki} where Chi is a random challenge number for each request. These requests

can be arbitrarily interleaved and, eventually, A outputs a set of state information

7.2. Definition of Identity-based Identification Scheme 176

St and then stops, ending the second phase.

Phase 3: A now acts as a cheating prover P̂ , which attempts an impersonation on

ID∗. A is initialised with St, the verifier V is initialised with pkK , ID∗ and freshly

chosen states (or coins) and P̂ interacts with V . We say that adversary A wins if

V accepts this interaction. The imp-pa advantage of A, denoted by Advimp−paIBI,A (`),

is the probability that A wins, having taken over the coins of `, the coins of Û ,

the coins of the prover ID∗, and the coins of V . We say that the IBI is secure

against impersonation under a passive-reset attack (IMP -PA secure) if the function

Advimp−paIBI,A (.) is negligible for all imp-pa adversaries A of time complexity polynomial

in the security parameter `. Furthermore, the time of A is defined as the execution

time of the entire three-phase game, including the time taken by the key generation,

extraction, initialisation and computation of all the queries in each phase.

7.2.3 Security of Identity-based Identification Schemes against

Impersonation under CR1+ Attack

An imp-cra adversary A = (Û , V̂ , P̂) is a triple of randomised polynomial-time

algorithms, a cheating identity-based user, a cheating verifier and a cheating prover,

respectively. The first phase is identical to the imp-pa game, and in this section, we

consider the last two phases of the game as follows.

Phase 2: A now plays the role of a cheating verifier V̂ . To initialise the setting

for this phase, a resettable random tape Rs is first provided to the prover ID∗.

The cheating verifier V̂ can then issue either a request for the form (ch, j, 0) for

the initial state or the form (ch, j, i) for any other state i, where ch is a chosen

challenge number and j is the index of the prover (or clone) that will be reset. For

the form (ch, j, 0), the initial state Stj,0 of the clone j is set to (pkK , ID∗, Rs), the

operation (Commitout, Respout)← P (0, Stj,0, ch) is executed, (Commitout, Respout)

is returned to V̂ , and remains at the Stj,0 state. In the other form (ch, j, i), V̂

can issue a request for the form (ch, j, i) where the selected challenge number ch is

sent to the j-th clone with the chosen current state at i. The j-th clone computes

(Commitout, Respout) ← P (i, Stj,i, ch) and returns (Commitout, Respout) to V̂ , and

it also remains at the Stj,i state. These requests can be arbitrarily interleaved and

V̂ may eventually output a set of state information St and then stop, ending the

second phase.

Phase 3: A now plays the role of a cheating prover P̂ . P̂ is initialised with St (note

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 177

that it is not compulsory to give P̂ separate coins, or even pkK , since these coins

can be obtained from V̂ from the previous phase via St.), the honest verifier V is

initialised with pkK , ID∗ and a freshly chosen coin, and P̂ interacts with V . We

say that adversary A wins if V accepts this interaction. The imp-cra advantage of

A, denoted by Advimp-craIBI,A (`) is the probability that A wins, having taken over the

coins of `, the coins of V̂ , the coins of the prover clones, and the coins of V . It is

said that the IBI is secure against impersonation under a CR1+ attack (IMP -CRA

secure) if the function Advimp-craIBI,A (.) is negligible for all imp-cra adversaries A of

time complexity polynomial in the security parameter `. Moreover, the time of A is

defined as in the passive attack model.

7.3 Identity-based Identification Schemes against

Impersonation under Passive Attack (IBI-PA)

In this section, we first present our scheme that resists impersonation under passive

attack. Then, in the next section, we modify our scheme to resist against imperson-

ation under CR1+ attack. The scheme is described as follows.

1. Key Generation (KeyGen):

Let (G1,GT) be two multiplicative cyclic groups where |G1| = |GT | = p for

some prime p. g is a generator of G1 and ê : G1 × G1 → GT is a bilinear

pairing function. Given a security parameter 1`, which is a positive integer,

KeyGen works as follows.

• Run the public parameter generator to obtain the system parameter

param = {G1, GT , ê, p, g}.

• Select random numbers α, a, c, τ ∈ ZZ∗p and compute PPub = ê(g, g)α,

A = ga, B = gτ , C = gc, D = ga·c, E = gτ ·c.

In this case, a pair of private key and public parameter of KGC is generated

where pkK = (G1,GT ,ê,p,g,Ppub, A, B, C, D, E) is the set of public parameters

and skK =(α,a,c, τ) is the KGC’s master private key.

2. Key Extraction (Extract):

Given the identity of a prover (ID ∈ ZZ∗p), the public parameter pkK and

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 178

the master private key skK , Extract takes ID and (α, a, c, τ) as input and

computes a user P ’s witness instance skP as follows.

• Ui chooses random integers k, n ∈ ZZ∗p such that (ID+n · a+ τ) mod p 6=
0 and k 6= a−1 and computes $1 = g

α
(ID+n·a+τ) , $2 = gk·a, $3 =

gk, $4 = k + ID · c, $5 = gk·τ .

After this point, the user’s public key ID and the user’s private key (a witness

instance) skP = ($1,$2,$3,$4,$5, n) are provided to the prover.

3. Identification Protocol (〈P, V 〉):
A canonical protocol of an identity-based identification scheme can be de-

noted by CID =(Commit, Challenge, Response, Check), where Commit,

Challenge, Response and Check are PPT algorithms used in the following

protocol, where P is the prover and V is the verifier:

• Step 1. P chooses a random integer r ∈ ZZ∗p and computes Commit($2,

$3,$5, n, r) = ($2,$3,$5, n, r), and then sends ($2,$3,$5, n, r) to V .

• Step 2. V chooses a random challenge integer ch ∈ ZZ∗p and sends

Challenge = ch to P .

• Step 3. P computes a response Response($1,$4, n, r, ch) = z, where

z = $
1

r·$4+ch

1 ∈ G1, and sends z to V .

• Step 4. V checks if Ppub(= ê(g, g)α) ≡ ê(z,$n·r
2 ·$ID·r

3 · An·ch · Cr·ID2 ·
Dn·r·ID · gID·ch ·$r

5 · Er·ID ·Bch).

Check(pkK , ID,$2,$3,$5, n, r, ch, z) = 1 if the above holds.

• Step 5. V accepts P only if Check holds.

7.3.1 An Experiment on Identity-based Identification Schemes

against Impersonation under Passive Attack

Given a random tape R, let Û denote a cheating user that issues a request form

(IDi, i) to KGC, and let KGC return with a private key skP i associated with a

public key IDi. Let A be an adversary that can break the IBI-PA identity-based

identification scheme with an advantage Advimp−pra and let A play a role in the

following game as Û , an eavesdropper and P̂ in the associated phases as defined

earlier. Let an adversary’s algorithm S, attempting to solve the q-SDH problem

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 179

with h, hx, hx
2
, ..., hx

q
as input and output (h

1
x+r , r), be the challenger. S runs the

experiment as follows.

Experiment: Adversary S(h, hx, hx
2
, ..., hx

q
)

Since A can make a request for a transcript of the conversation for at

most qIP queries, where qS < q , we may then assume that A issues

exactly q − 1 queries. If the actual number of requests is less, we can

always virtually reduce the value of q so that q = qS + 1. However, A
is required to reveal a number of queries up front. S randomly chooses

integer l1, ..., lq−1 ∈ ZZ∗p.

Let f(y) be the polynomial f(y) =
∏q−1

i=1 (y+li). Reform f(y) by expand-

ing it to f(y) =
∑q−1

i=0 βiy
i where β0, ..., βq−1 ∈ ZZp are the coefficients of

the polynomial f(y). Let K1, ..., Kq denote as hx, hx
2
, ..., hx

q
. Compute

as follows.

g ←
q−1∏
i=0

(Ki)
βi = hf(x) ∈ G1 and gx ←

q∏
i=1

(Ki)
βi−1 = hxf(x) ∈ G1.

S randomly chooses an integer a, c, α, τ ∈ ZZ∗p. Then, let S set A = ga,

B = gτ , C = gc, D = ga.c, E = gτ ·c and PPub = ê(g, g)α be a public

key pkK = (g, A,B,C,D,E, PPub). Initialise with (pkK , R) and set i to

0. Let ID be the list of user’s identities that A makes a request for a

private key associated with a public key pkK and user identity ID.

Phase 1: S answers A’s requests as follows. A issues a request for the

form (IDi, i) where IDi is an adaptively chosen integer in ZZ∗p by A.

Without losing generality, assume that A will never issue a request for

the same user’s identity again. A then sends a query to S. Then,

S computes as follows: set i ← i + 1 and then S randomly selects

integers ni, ki ∈ ZZ∗p such that (IDi + ni · a+ τ) mod p 6= 0 and ki 6= a−1

and computes $i,1 = g
α

(IDi+ni·a+τ) , $i,2 = gki·a, $i,3 = gki , $i,4 =

ki+IDi ·c, $i,5 = gki·τ and keeps ($i,1,$i,2,$i,3, $i,4,$i,5, ki, ni, IDi)

in the ID. S then returns ($i,1,$i,2,$i,3,$i,4,$i,5, ni) as a private key

associated with the public key IDi to A.

Phase 2: Eventually, after at most qID < (p− 2) queries, A outputs ID∗

as the public key, which A will attempt to impersonate. Then A now

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 180

acts as an eavesdropper that can issue a request for a transcript of the

conversation between the prover ID∗ and the honest verifier.

If ID∗ is in the ID, then S terminates and returns failure. Otherwise,

initialise A with (pkP (= (pkK , ID∗)), R); set i to 0; S selects a random

integer n ∈ ZZ∗p such that τ+n·a+ID∗ 6= 0 and then constructs the partial

ID∗’s witness instance as follows: $∗,2 = gk·a = ga·x, $∗,3 = gk = gx,

$∗,5 = gk·τ = gτ ·x. For the above context, k is x. Let TC be the list of

conversation transcripts that A has requested and it is initialised with

an empty list. S then answers A’s requests as follows: A issues a request

for a transcript of the conversation between the user ID∗ and the honest

verifier and then S performs as follows. set i ← i + 1 and then S
randomly chooses ri ∈ ZZ∗p such that ri is not contained in the TC. If i ≥
q, then S terminates and returns failure. S sets ($∗,2,$∗,3,$∗,5, n, ri)

as a commitment. S computes chi = ri(li − c · ID∗) as a challenge

number. S must generate a response with g
1

x+li . To do so, let fi(y) be

the polynomial fi(y) = f(y)
(y+li)

=
∏q−1

j=1,j 6=i(y + lj). As before, we reform

fi(y) into fi(y) =
∑q−2

j=0 yjy
j. Compute g

1
x+li ←

∏q−2
i=0 K

yi

j = h
f(x)

(x+li) ∈ G1.

Let zi = g
α

ri(τ+n·a+ID∗)·(x+li) be the response. If zi was in the TC, then S
terminates and returns failure. S then keeps (ri, chi, zi) in the TC and

returns ($∗,2,$∗,3,$∗,5, n, ri, chi, zi) as a conversation transcript to V̂ ,

until V̂ outputs the state information St on at most qIP < q queries and

then stops.

Phase 3: Now, A changes its status to P̂ and can no longer issue a request

for a transcript of the conversation between the user ID∗ and the honest

verifier to S.

P̂ starts the impersonation process.

• P̂ first randomly chooses an integer r ∈ ZZ∗p and then sends ($∗,2,$∗,3,

$∗,5, n, r) to V .

• S randomly selects an integer ch ∈ ZZ∗p such that l∗ = (ch + r · c ·
ID∗)/r and l∗ 6∈ {l1, ..., lq−1} and sends ch to P̂ .

• P̂ returns z∗.

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 181

Define Check(pkK , z∗, ch,$∗,2,$∗,3,$∗,5, n, r, ID∗) as:

Ppub
?
= ê(z∗,$

n·r
∗,2 ·$ID∗·r

∗,3 ·An·ch ·Cr·ID2
∗ ·Dn·r·ID∗ ·gID·ch ·$r

∗,5 ·Er·ID∗ ·Bch),

where Ppub = ê(g, g)α. If the equality holds, then the output of Check(pkK ,

z∗, ch,$∗,2,$∗,3,$∗,5,n,r,ID∗) is 1. Otherwise, it outputs 0. If Check(pkK ,

z∗, ch,$∗,2, $∗,3,$∗,5,n, r, ID∗) = 1 then S computes the output as fol-

lows.

Since l∗ =
r · ID∗ · c+ ch

r
;

hence, Z = z
r(τ+n·a+ID∗)

α
∗

= g(α
(τ+n·a+ID∗)(r(x+ID∗·c)+ch)

)(
r(τ+n·a+ID∗)

α
)

= g
1

x+(ID∗·c+ch/r) .

= g
1

x+l∗

Since g = hf(x), Z = h
f(x)
x+l∗ . Let us denote by Z∗ = h

1
x+l∗ . Let f∗(y)

be the polynomial f∗(y) = f(y)
(y+li)

such that there exists some polynomial

γ(y) =
∑q−2

i=0 γiy
i and some γ−1 ∈ ZZ∗p. Then we reform f∗(y) into γ(y) as:

f(y) = γ(y)(y+ l∗)+γ−1. The exponent of Z, where Z is h
f(x)
x+l∗ , can then

be written as f(x)
(x+l∗)

= γ−1

x+l∗
+
∑q−2

i=0 γix
i. Since f(x) =

∏q−1
i=1 (x + li) and

l∗ /∈ {l1..., lq−1}; hence, (x+ l∗) does not divide f(x) and γ−1 6= 0. Then

S computes Z∗ ←
(
Z.
∏q−1

i=1 K
−γi
i

)1/γ−1
= g

1
(x+l∗) . S wins the game and

returns (Z∗, l∗) as the solution of q-SDH. Otherwise, S returns failure.

7.3.2 Proof of Security

Theorem 7.1 Let IBI = (KeyGen,Extract, P, V) be an IBI-PA identity-based

identification scheme associated with the q-SDH assumption. Let A = (Û , P̂) be an

imp-pa adversary of time complexity t(.) attacking IBI. Then there exists a q-SDH

adversary S of time complexity t′(.) solving the q-SDH problem such that for every

security parameter `

Advimp−paIBI,A (`) ≥ e2 · Advq−SDHB (`) or, put in a simple terms,

ε ≥ e2 · ε′,

where e is the natural logarithm. Moreover, the time complexity t of A is t ≤
t′−((6+3qID+qIP)CG+2CP), where CG is a computation time of group exponential

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 182

operation and CP is a computation time of bilinear group pairing operation, and A
can request queries at most qID < p− 1 queries and at most qIP < q queries.

Corollary 7.2 If the (q, t′, ε′)-SDH assumption holds, then the IBI-PA identity-

based identification scheme is (qID, qIP , t, ε)-secure against impersonation under pas-

sive attack.

Proof: The experiment S(h, hx, hx
2
, ..., hx

q
) in Section 7.3.1 shows that the IBI-PA

identity-based identification scheme that is (t, qID, qIP , ε)-secure against imperson-

ation under passive attack can be reduced to the (q, t′, ε′)-SDH problem. For any

input h, hx, hx
2
, ...hx

q ∈ G1, S(h, hx, hx
2
, ...hx

q
) returns (h

1
x+r , r) where these out-

puts are computed in one unit of time from outputs (z∗, l∗). From these outputs, it

is suggested that the adversary A breaks the IBI-PA identity-based identification

scheme with the passive attack setting.

However, to show that the probability that the experiment S can succeed in

solving the q-SDH problem with an advantage of at least ε′, we analyse three events

needed for S to succeed.

E1: S does not abort as a result of the queries in phase 1.

E2: S does not abort as a result of the queries in phase 2 and phase 3.

E3: A can impersonate ID∗ with a (r, ch, z∗)-transcript where (r, z∗) is gener-

ated by A and ch is chosen by S.

The probability that S will succeed, if all of the above events happen, is

Pr[E1 ∧ E2 ∧ E3] = Pr[E1] ·Pr[E2|E1] ·Pr[E3|E1 ∧ E2]

= Pr[E1] ·Pr[E2] ·Pr[E3|E1 ∧ E2].

The following claims give an upper bound of the probability for each of the above

terms.

Claim 7.3 (1) The probability that S does not abort as a result of the queries in

phase 1 is at least 1/e where e is the natural logarithm. Hence, Pr[E1] ≥ 1/e.

Proof: In general, we assume that A does not query a private key for the same

identity twice. Subsequently, the only result of a user’s private key queries that

causes an abortion is a collision of responses in the ID, which A can use to compute

7.3. Identity-based Identification Schemes against Impersonation under Passive

Attack (IBI-PA) 183

a KGC’s private key. Therefore, using the inductive hypothesis to prove the above

claim, the probability that, for each request for a user’s private key, S does not

abort as a result of a collision of a user’s private key queries on the ID is 1− 1/(p−
1). Consequently, the probability that S does not abort after issuing responses for

a user’s private key queries at most qID queries is at least
∏qID

i=1(1 − 1/(p − 1)).

Therefore, since qID approached p − 2, the probability that S does not abort as a

result of all the private key queries is at least (1− 1/(p− 1))p−2 ≥ 1/e. �

Claim 7.4 (2) After phase 1 is complete, the probability that S does not abort as

a result of the queries in phase 2 and phase 3 is at least 1/e. Hence, Pr[E2|E1] =

Pr[E2] = (1− 1/(qIP + 1))qIP ≥ 1/e.

Proof: As a result of the queries in phase 1, S requires only one user’s identity out

of the ID to challenge A, where the limit of qID can be set at most qID ≤ p − 2

queries. Therefore, the results of the queries are not influenced by the conversation

transcript queries in phase 2, which means Pr[E2|E1] = Pr[E2].

For the conversation transcript queries in phase 2, it is assumed that S does

not need to respond with the same challenge numbers twice and A must reveal the

number of queries up front where qIP < q. Thus, the only result of all the conver-

sation transcript queries that causes a termination is a collision of the responses in

the TC, which A can use to compute a private key. We then again use the inductive

hypothesis to prove the above claim, where the probability that, for each query for

a transcript of conversation, S does not abort as a result of a collision of the conver-

sation transcript queries on the TC is 1−1/(qIP + 1). Consequently, the probability

that S does not abort after issuing a request for a conversation transcript at most

qIP queries is at least
∏qIP

i=1(1− 1/(qIP + 1)). Therefore, since qIP = q− 1, the prob-

ability that S does not abort as a result of all the conversation transcript queries is

at least (1− 1/q)q−1 ≥ 1/e.

For phase 3, S does not abort after A has identified itself as a user ID∗. Hence,

the probability that S does not abort as a result in phase 3 is 1.

Therefore, the probability that S does not abort as a result of all the conversation

transcript queries in phase 2 after phase 1 has finished is Pr[E2] = (1 − 1/(qIP +

1))qIP ≥ 1/e for at most qIP < q queries. �

Claim 7.5 (3) If algorithm A can impersonate a user ID∗ after phases 1, 2 and

3 have finished, then algorithm A’s view is identical to its view in a real attack.

Hence, Pr[E3|E1 ∧ E2] ≥ ε.

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 184

Proof: The public key provided to A is obtained from the same distribution as the

public key produced by the KeyGen algorithm. Responses to identity queries and

conversation transcripts are the same as in a real attack. Moreover, each response

for identity queries and conversation transcripts is uniformly and independently

distributed in ZZ∗p and all responses to queries are valid. Therefore, A impersonates

an honest member with a probability of at least ε. Hence, Pr[E3|E1 ∧ E2] ≥ ε. �

Using the bounds from all of the above claims, it is shown that S can generate a

solution for the q-SDH problem with the probability of at least ε · 1
e2

as required.

Moreover, S’s running time is the same as A’s running time, plus the time that

it takes to respond to qID queries for the request of a private key associated with

a public key (pkK , ID) and to qIP queries for the request of ID∗’s conversation

transcripts. Let CG be a computation time of group exponential operation and CP

be a computation time of bilinear group pairing operation. The total running time

is consequently at most t′ ≥ t+(6+3qID+qIP)CG+2CP as required. Note that the

computation of multiplication in the finite field order p is not taken into account.

This completes the proof of Theorem 7.1. �

7.4 Identity-based Identification Scheme against

Impersonation under CR1+ Attack (IBI-CRA)

In this section, we present our identity-based identification scheme, which is secure

against CR1+ attack. The KeyGen phase is the same as the IBI-PA scheme from

Section 7.3, and therefore it is omitted. We will describe the rest of the scheme as

follows.

1. Key Extraction (Extract):

Given an identity of the prover (ID ∈ ZZ∗p), the public parameter pkK and

the master private key skK , Extract takes ID and (α, a, c, τ) as input and

computes an user P ’s private key (or a user P ’s witness instance) skP as

follows.

• Ui chooses random integers v, k, n1, n2 ∈ ZZ∗p such that (ID + n1 · a +

τ) mod p 6= 0, (ID + n2 · a + τ) mod p 6= 0, and k 6= a−1 and computes

$1 = g
α−v

(ID+n1·a+τ) , $2 = g
v

(ID+n2·a+τ) , $3 = gk·a, $4 = gk, $5 =

k + ID · c, $6 = gk·τ .

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 185

Thereafter, the user’s public key ID and the user’s private key (a witness

instance) skP = ($1,$2,$3,$4,$5,$6, n1, n2) are provided to the prover.

2. Identification Protocol (〈P, V 〉):
A canonical protocol of an identity-based identification scheme can be de-

noted by CID = (Commit, Challenge, Response, Check), where Commit,

Challenge, Response and Check are PPT algorithms used in the following

protocol, where P is the prover and V is the verifier:

• Step 1. P chooses a random integer r ∈ ZZ∗p and computes Commit($3,$4,

$6, n1,n2, r)= ($3,$4,$6, n1, n2, r) and then sends ($3,$4,$6, n1, n2, r)

to V .

• Step 2. V chooses random challenge integers ch1, ch2 ∈ ZZ∗p and sends

Challenge = (ch1, ch2) to P .

• Step 3. P computes a response Response($1,$2,$5, n, r, ch1, ch2) =

(z1, z2), where z1 = $
1

ch1·$5+r

1 , z2 = $
1

ch2·$5+r

2 ∈ G1, and sends (z1, z2) to

V .

• Step 4. V checks if Ppub(= ê(g, g)α) ≡ ê(z1,$
n1·ch1
3 ·$ID·ch1

4 ·An1·r·Cch1·ID2 ·
Dn1·ch1·ID · gID·r ·$r

6 ·Er·ID ·Bch1) · ê(z2,$
n2·ch2
3 ·$ID·ch2

4 ·An2·r ·Cch2·ID2 ·
Dn2·ch2·ID · gID·r · $r

6 · Er·ID · Bch2). Then, Check(pkK , ID,$3,$4,$6,

n1, n2, r, ch1, ch2, z1, z2) = 1 if the above equation holds.

• Step 5. V accepts P only ifCheck is 1.

7.4.1 An Experiment on Identity-based Identification Schemes

against Impersonation under CR1+ Attack

Let Û denote a cheating user who issues a request form (IDi, i) to KGC. Given a

random tape R and a resettable random tape Rs, KGC returns with a private key

skP i associated with a public key IDi. Let A be an adversary that can break the

IBI-CRA identification scheme with an advantage Advimp-cra and let A play a role

in the following game as Û , V̂ and P̂ , respectively. Let an adversary’s algorithm S,

attempting to solve the 2-SDH problem with h, hx, hx
2

as input and output (h
1
x+r , r),

be the challenger. S executes the experiment as follows.

Experiment: Adversary S(h, hx, hx
2
)

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 186

S first randomly chooses an integer a, c, α, τ ∈ ZZ∗p and sets gx = hx
2
,

g = hx, g
1
x = h. Then, S sets A = ga, B = gτ , C = gc, D = ga.c,

E = gτ.c and PPub = ê(g, g)α. Let pkK = (g, A,B,C,D,E, PPub) be

public key. Perform the initialisation with (pkK , R) and set i to 0. Let

ID be the list of user’s identities that A makes a request for a private

key associated with public key (pkK , ID).

Phase 1: S answers A’s requests as follows: A issues a request for the

form (IDi, i) where IDi is an adaptively chosen integer in ZZ∗p by A.

Without losing generality, assume that A will never issue a request for

the same user’s identity again. Then, A sends a query to S. S re-

sponds as follows. Set i ← i + 1 and then S randomly selects inte-

gers ni,1, ni,2, ki, vi ∈ ZZ∗p such that (IDi + ni,1 · a + τ) mod p 6= 0 and

(IDi + ni,2 · a + τ) mod p 6= 0 and ki 6= a−1 and computes $i,1 =

g
α−vi

(IDi+ni,1·a+τ) , $i,2 = g
vi

(IDi+ni,2·a+τ) , $i,3 = gki·a, $i,4 = gki , $i,5 =

ki+IDi·c, $i,6 = gki·τ and keeps ($i,1,$i,2,$i,3,$i,4,$i,5,$i,6, ki, ni,1,

ni,2, IDi) in the ID. S then returns ($i,1,$i,2,$i,3,$i,4,$i,5,$i,6, ni,1,

ni,2) as a private key associated with the public key IDi to A.

Phase 2: Eventually after at most qID < (p− 2) queries, A outputs ID∗

as the public key, which A will attempt to impersonate. A now acts

as a cheating verifier V̂ . Simultaneously, S acts as the honest prover of

user ID∗. If ID∗ is in the ID, then S terminates and returns failure.

Otherwise, initialise A with (pkP (= (pkK , ID∗)), R); set i to 0; S selects

random integers n1, n2 ∈ ZZ∗p such that τ+n1 ·a+ID∗ 6= 0 and τ+n2 ·a+

ID∗ 6= 0. S then constructs a partial ID∗’s witness instance as follows:

$∗,3 = gk·a = ga·x,$∗,4 = gk = gx, $∗,6 = gk·τ = gτ ·x. For the above

context, k is x. Let TC be the list of conversation transcripts that A has

requested and it is initialised with an empty list. A also sets a counter

for a number of provers (clones) ν = 0. S then answers V̂ ’s requests as

follows.

• If V̂ issues a request for the form (ch, j, 0), where ch
$← ZZ∗p and

j = ν then S computes as follows: set r0,j ∈ Rs ← r; i ← 0;

j ← j. If i ≥ (p − 2) then S terminates and returns failure. S
sends ($∗,3,$∗,4, n1, n2, r0,j) as a commitment. Then, V̂ issues

challenge numbers (ch0,j,1, ch0,j,2) to S. Next, S computes k3 =

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 187

− (ch0,j,2·ID∗·c+r0,j)(τ+n2·a+ID∗)
(ch0,j,1·ID∗·c+r0,j)(τ+n1·a+ID∗)

. If k3·ch0,j,1(τ+n1·a+ID∗)+ch0,j,2(τ+

n2·a+ID∗) = 0 or (ch0,j,2·ID∗·c+r0,j)(τ+n2·a+ID∗) = 0 or (ch0,j,1·
ID∗ ·c+r0,j)(τ+n1 ·a+ID∗) = 0 then S terminates and returns fail-

ure. Otherwise, z0,j,1 = g
k3·α

x·(k3·ch0,j,1(τ+n1·a+ID∗)+ch0,j,2(τ+n2·a+ID∗)) and

z0,j,2 = g
α

x·(k3·ch0,j,1(τ+n1·a+ID∗)+ch0,j,2(τ+n2·a+ID∗)) are the response. S
then keeps (r0,j, ch0,j,1, ch0,j,2, z0,j,1, z0,j,2) in the TC and returns (z0,j,1,

z0,j,2) to V̂ .

• If V̂ issues a request for the form (ch, j, i), where ch
$← ZZ∗p and

j is any value such that j ≤ ν, then S acts as follows. First, S
sets ri,j ∈ Rs ← r; i ← i + 1. If i ≥ (p − 2) then S terminates

and returns failure. S sends ($∗,3,$∗,4, n1, n2, ri,j) as a commit-

ment (chi,j,1, chi,j,2)← ch
$← ZZ∗p. Then, V̂ issues challenge numbers

(chi,j,1, chi,j,2) to S. Next, S computes k3 = − (chi,j,2·ID∗·c+ri,j)(τ+n2·a+ID∗)
(chi,j,1·ID∗·c+ri,j)(τ+n1·a+ID∗)

.

If k3 · chi,j,1(τ + n1 · a + ID∗) + chi,j,2(τ + n2 · a + ID∗) = 0 or

(chi,j,2 · ID∗ · c + ri,j)(τ + n2 · a + ID∗) = 0 or (chi,j,1 · ID∗ · c +

ri,j)(τ + n1 · a + ID∗) = 0 then S terminates and returns failure.

Otherwise, zi,j,1 = g
k3·α

x·(k3·chi,j,1(τ+n1·a+ID∗)+chi,j,2(τ+n2·a+ID∗)) and zi,j,2 =

g
α

x·(k3·chi,j,1(τ+n1·a+ID∗)+chi,j,2(τ+n2·a+ID∗)) are the response. S then keeps

(ri,j, chi,j,1, chi,j,2, zi,j,1, zi,j,2) in the TC and returns (zi,j,1, zi,j,2) to

V̂ .

This continues until V̂ outputs the state information St or makes at

most qIP < (p− 1) queries and then it stops.

Phase 3: Now, A changes status from V̂ to P̂ . P̂ begins the imperson-

ation process.

• P̂ first randomly chooses an integer r ∈ ZZ∗p and then sends ($∗,3,

$∗,4,$∗,6, n1, n2, r) to V .

• S first sets ch1 = ch2 and randomly selects an integer ch1 ∈ ZZ∗p

such that ch1 6= −r
c·ID∗ and (r, ch1, ch2) are not in the TC and then

sends it ch1, ch2 to P̂ .

• P̂ returns z1, z2.

Define Check(pkK , ID, z1, z2, ch1, ch2,$∗,3,$∗,4,$∗,6, n1, n2, r, ID∗) as:

Ppub
?
= ê(z1, $

n1·ch1
∗,3 ·$ID∗·ch1

∗,4 · An1·r · Cch1·ID2
∗ ·Dn1·ch1·ID∗ · gID·r ·$r

∗,6 ·

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 188

Er·ID∗ ·Bch1) · ê(z2,$
n2·ch2
∗,3 ·$ID∗·ch2

∗,4 ·An2·r ·Cch2·ID2
∗ ·Dn2·ch2·ID∗ · gID·r ·

$r
∗,6 · Er·ID∗ ·Bch2), where Ppub = ê(g, g)α. If the equality holds, then it

outputs 1; otherwise, it outputs 0. If Check outputs 1 then S checks if

Ppub 6= ê(zτ+n1·a+ID∗
1 , (gx · gID∗·c)ch1gr) · ê(zτ+n2·a+ID∗

2 , (gx · gID∗·c)ch2gr),

then S returns failure. Otherwise, S computes the solution for the

2-SDH problem as follows: let m = ID∗ · c + r
ch1

. Then compute

Z = (z
ch1(τ+n1·a+ID∗)
1 · zch2(τ+n2·a+ID∗)

2)
1
α = g

(
(α−v)·ch1(τ+n1·a+ID∗)

α(τ+n1·a+ID∗)(ch1(x+ID∗·c)+r)
) ·

g
(

v·ch2(τ+n2·a+ID∗)
α(τ+n2·a+ID∗)(ch2(x+ID∗·c)+r)

)
. Since ch1 = ch2 and g = hx, Z = g

1
x+ID∗·c+r/ch1 =

g
1

x+m = h
x

x+m = h
−m
x+m · h. Hence, let Z∗ = (Z−1 · h)

1
m = h

1
x+m . S wins

the game and returns (Z∗,m) as the solution to the 2-SDH problem.

Otherwise, S returns failure. Note that v is assumed to be a variable

that does not need to be known for solving the 2-SDH problem.

7.4.2 Proof of Security

Theorem 7.6 Let IBI = (KeyGen,Extract, P, V) be an IBI-CRA identity-based

identification scheme associated with the 2-SDH assumption. Let A = (Û , V̂ , P̂) be

an imp-cra adversary of time complexity t(.) attacking IBI. Then there exists a

2-SDH adversary S of time complexity t′(.) solving the 2-SDH problem such that for

every security parameter `

Advimp-craIBI,A (`) ≥ (1/(1− 1

p− 1
)qID)(1/(1− 1

p− 1
)qIP) · (p− 1)2

p2 − 2p
· Adv2−SDH

B (`)

Advimp-craIBI,A (`) ≥ e2 · (p− 1)2

p2 − 2p
· Adv2−SDH

B (`) or, put in simple terms,

ε ≥ e2 · (p− 1)2

p2 − 2p
· ε′,

where e is the natural logarithm. Moreover, the time complexity t of A is t ≤
t′−((8+4qID+2qIP)CG+5CP), where CG is a computation time of group exponential

operation and CP is a computation time of bilinear group pairing operation, and A
can request queries at most qID < p − 2 queries and at most qIP < p − 1 queries.

For simplicity, we assume that the entire computation time of the multiplication in

ZZ∗p for all the phases is one unit of time.

Corollary 7.7 If the 2-SDH assumption is (2, t′, ε′)-secure then the IBI-CRA identity-

based identification scheme associated with the 2-SDH assumption is (qID, qIP , t, ε)-

secure against impersonation under CR1+ attack.

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 189

Proof: The experiment S(h, hx, hx
2
) in Section 7.4.1 shows that the IBI-CRA

identity-based identification scheme that is (qID, qIP , t, ε)-secure against imperson-

ation under CR1+ attack can be reduced to the (2, t′, ε′)-SDH problem. For any

input h ∈ G1, hx ∈ G1 and hx
2 ∈ G1, S(h, hx, hx

2
) returns (h

1
x+r , r) where these

outputs are computed in one unit of time from outputs (z1, z2, r). These outputs

are obtained if the adversary A breaks the IBI-CRA identity-based identification

scheme with the CR1+ attack setting.

However, to show the probability that the experiment S can succeed in solving

the 2-SDH problem with an advantage of at least ε′, we analyse four events required

for S to succeed.

E1: S does not abort as a result of the queries in phase 1.

E2: S does not abort as a result of the queries in phase 2.

E3: A can impersonate user ID∗.

E4: S does not abort as a result of A’s output in phase 3.

The probability that S will succeed, if all of the above events happen, is

Pr[E1 ∧ E2 ∧ E3 ∧ E4] = Pr[E1] ·Pr[E2|E1] ·Pr[E3|E1 ∧ E2]

·Pr[E4|E1 ∧ E2 ∧ E3]

= Pr[E1] ·Pr[E2] ·Pr[E3|E1 ∧ E2] ·Pr[E4].

The following claims give a lower bound for each of the above terms.

Claim 7.8 (1) The probability that S does not abort as a result of the queries in

phase 1 is at least 1/e where e is the natural logarithm. Hence, Pr[E1] ≥ (1−1/(p−
1))qID ≈ 1/e.

Proof: In general, we assume that A does not make a query request for a private

key for the same identity twice. Subsequently, the only result of a user’s private key

queries that causes a termination is a collision of secret keys in the ID, which A
can use to compute a KGC’s private key. Therefore, using the inductive hypothesis

to prove the above claim, the probability that, for each query, S does not abort

as the result of a collision of a user’s private key queries on the ID is 1 − 1/(p −
1). Consequently, the probability that S does not abort after issuing responses for

7.4. Identity-based Identification Scheme against Impersonation under

CR1+ Attack (IBI-CRA) 190

a user’s private key queries at most qID queries is at least
∏qID

i=1(1 − 1/(p − 1)).

Therefore, since qID approached p − 2, the probability that S does not abort as a

result of all the private key queries is at least (1− (1/(p− 1)))p−2 ≥ 1/e. �

Claim 7.9 (2) The probability that S does not abort as a result of the queries in

phase 2, after finishing the queries in phase 1, is at least 1/e. Hence, Pr[E2|E1] =

Pr[E2] ≥ (1− 1/(p− 1))qIP ≈ 1/e.

Proof: First, in phase 1, S requires only one user’s identity from the ID for a

challenge, where the limit of qID can be set at most qID < (p − 2). Therefore, the

results of the private key queries in phase 1 do not interfere with the identification

queries in phase 2, so that Pr[E2|E1] = Pr[E2].

Second, we assume that A does not issue a query for the same pair of challenge

numbers twice. We then again use the inductive hypothesis to prove this claim.

The probability that, for each query, S does not abort as the result of a collision of

identification queries on the TC is 1− 1/(p− 1). Consequently, the probability that

S does not abort after issuing responses for all the requests for identification at most

qIP queries is at least
∏qIP

i=1(1 − 1/(p − 1)). Therefore, since qIP approached p − 2,

the probability that S does not abort as a result of all the identification queries is

at least (1− 1/(p− 1))p−2 ≥ 1/e.

Finally, the probability that S does not abort as a result of all the conversation

transcript queries in phase 2, after phase 1 has finished, is Pr[E2] ≥ (1 − 1/(p −
1))qIP ≈ 1/e for at most qIP < (p− 2) queries. �

Claim 7.10 (3) If algorithm A can impersonate a user ID∗ after phases 1 and 2

have finished, then algorithm A’s view is identical to its view in a real attack. Hence,

Pr[E3|E1 ∧ E2] ≥ ε.

Proof: The public key given to A is from the same distribution as a public key

produced by the KeyGen algorithm. Responses to identity queries and CR1+ attacks

are the same as in a real attack. Nonetheless, each response for identity queries and

conversation transcripts is uniformly and independently distributed in ZZ∗p and all

responses to queries are valid. Hence, A will impersonate an honest user with a

probability of at least ε. Hence, Pr[E3|E1 ∧ E2] ≥ ε. �

Claim 7.11 (4) The probability that S does not abort during phase 3, after phases

1 and 2 have finished and A can identify itself as a user ID∗ is at least 1−1/(p−1)2.

Hence, Pr[E4|E1 ∧ E2 ∧ E3] = Pr[E4|E3] ≥ 1− 1/(p− 1)2

7.5. Efficiency 191

Proof:

In phase 3, S aborts the simulation only if A can impersonate the user ID∗ by

generating two random generators z∗1 , z
∗
2

$← G1, which satisfy the equation below.

Ppub = ê(g, g)α

= ê(z∗1 ,$
n1·ch1
∗,3 ·$ID∗·ch1

∗,4 · An1·r · Cch1·ID2
∗ ·Dn1·ch1·ID∗ · gID·r) ·

ê(z∗2 ,$
n2·ch2
∗,3 ·$ID∗·ch2

∗,4 · An2·r · Cch2·ID2
∗ ·Dn2·ch2·ID∗ · gID·r)

Therefore, the probability that A can succeed in choosing two random generators

to fulfil the equation above is 1/(p − 1)2. It is also noted that termination in this

phase is not influenced by the private key and identification queries, since a was not

needed to generate the above z∗1 , z
∗
2 . Consequently, the probability that S does not

abort as a result in phase 3, after phases 1 and 2 have finished and A can identify

itself as a user ID∗, is at least Pr[E4|E3] ≥ 1− 1/(p− 1)2. �

Using the bounds from all of the above claims, it is shown that S can generate a

solution for the 2-SDH problem with a probability of at least ε · 1
e2
·(1−1/(p−1)2) as

required. Moreover, S’s running time is the same as A’s running time, plus the time

that it takes to respond to qID queries for the request of a private key associated

with a public key (pkK , ID) and to qIP queries for the request of ID∗’s identification

transcripts. Let CG be a computation time of group exponential operation and CP be

a computation time of bilinear group pairing operation. Note that the computation

of multiplication in the finite field order p is not taken into account for simplicity.

The total running time is consequently at most t′ ≥ t+ (8 + 4qID + 2qIP)CG + 5CP

as required. This completes the proof of Theorem 7.6. �

7.5 Efficiency

The performance comparison between our identity-based identification scheme and

the state-of-the-art identity-based identification scheme secure against passive attack

and concurrent-active attack proposed by Kurosawa and Heng [KH05] is provided

in Table 7.1. Let CE be a computation of group exponential operation, CP be a

computation of bilinear group pairing operation and CM be a computation time

of bilinear group multiplicative operation. Note that KH-IBI-PA and KH-IBI-

CA are Kurosawa-Heng IBI secured against the passive and concurrent attacks,

respectively.

7.6. Definition of Escrowed Deniable Identification Schemes 192

Computation KH-IBI-PA IBI-PA
Prover 3CE+CP+4CM CE
Verifier 3CE+CP+4CM 9CE+CP+8CM
Total 6CE+2CP+8CM 10CE+1CP+8CM
Bandwidth KH-IBI-PA IBI-PA
Public(bits) 3403 2210
Secret(bits) 331 2721
Communi-
cation (bits) 1515 2019

Computation KH-IBI-CA IBI-CRA
Prover 6CE+2CP+6CM 2CE
Verifier 6CE+2CP+6CM 18CE+2CP+16CM
Total 12CE+4CP+12CM 20CE+2CP+16CM
Bandwidth KH-IBI-CA IBI-CRA
Public(bits) 5451 2210
Secret(bits) 662 3052
Communi-
cation (bits) 3190 2337

Table 7.1: Table: Bandwidth and Computation Comparison.

7.6 Definition of Escrowed Deniable Identification

Schemes

In this section, we provide a formal model of an escrowed deniable identification

scheme and its security model. Unlike previous definitions of identification schemes

[BP02, Oka92, Sch89, Sho99, AABN02, BFGM01], we introduce a trusted third

party into the escrowed deniable identification schemes, a party that has the power

to invoke the deniability of a prover. Therefore, in our security models of escrowed

deniable identification schemes, we consider a new property, ‘transferability ’. This

provides a security guarantee for the trusted third party and the prover, which

preserves privacy for all other cases except the case in dispute.

7.6.1 Outline of Escrowed Deniable Identification Schemes

We introduce a notion called an escrowed deniable identification scheme (EDID)

that balances both the need for deniability and the need for undeniability in iden-

tification schemes. In an escrowed deniable identification scheme, in addition to

7.6. Definition of Escrowed Deniable Identification Schemes 193

the fact that a prover can deny an identification transcript, a trusted authority can

convert a deniable identification transcript into an undeniable one, enabling anyone

to verify ownership of the transcript.

Formally, an EDID scheme involves a prover P , a verifier V , a trusted authority

TA and any third party AnyV . It consists of the following algorithms and protocols:

System Parameter Generation (Setup):

On input of 1`, where ` is the security parameter, the algorithm generates a

system parameter, i.e. Setup(1`)→ param.

Trusted Authority Key Generator (TKeyGen):

On input of param, TKeyGen generates a public-private key pair (pkT , skT)

for the trusted authority, i.e. TKeyGen(param)→ (pkT , skT).

Prover Key Generator (PKeyGen):

On input of param, PKeyGen generates a public-private key pair (pkP , skP)

for the prover, i.e. PKeyGen(param)→ (pkP , skP).

Identification protocol (〈P, V 〉):
This is an interactive protocol between the prover P and the verifier V . It con-

sists of four rounds of communication and six PPT algorithms, (CmtV , CmtP , Ch,

Rsp, CheckP , CheckV), where (CmtP , CheckP) and (CheckV , CmtV) are sets of

algorithms to generate commitments and to verify the commitment run by

the prover P and the verifier V , respectively. Ch is an algorithm to disclose

the challenge and Rsp is an algorithm run by the prover P to generate a re-

sponse after the process of commitment generation, challenge disclosure and

commitment verification.

• Step 1. V chooses a challenge c at random from a certain domain, and

computes T ← CmtV (c). V then sends T to P .

• Step 2. P chooses r at random from a certain domain, and computes

a← CmtP (r). P then sends a to V .

• Step 3. V runs Ch to reveal a random challenge c, and sends it to P .

• Step 4. After receiving V ’s challenge c, P then runs b ← ckP (c, T). If

b = 0, P aborts; otherwise, it computes its response by running z ←
Rsp(skP , r, c), and sends z to V .

7.6. Definition of Escrowed Deniable Identification Schemes 194

• Step 5. V checks the validity of P ’s response by running CheckV (pkT ,

pkP , a, c, z). If the output is ‘1’, V accepts it; otherwise, it rejects it.

Open protocol (〈TA, V 〉):
An open protocol can be formalised by two (probabilistic) polynomial-time

algorithms Open, Verf, where Open is invoked by TA, and Verf is executed by

the verifier V . On input of a transcript tr and the private key of TA, Open

outputs an evidence to affirm the authenticity of tr. Verf is an algorithm for

validating the evidence with respect to tr and pkP . It takes as input pkT , pkP ,

tr and the evidence, and outputs 1 to accept or 0 to reject the evidence.

Transfer protocol (〈V,AnyV 〉):
A transfer protocol is an interactive protocol between any third party AnyV

and the verifier V that possesses a transcript tr and its affirmative evidence

from the trusted authority (TA). The aim of the protocol is to convince AnyV

that tr indeed represents an execution of the identification protocol between

P and V .

The completeness can be defined in a natural way. Next we define other security

properties in an escrowed deniable identification scheme.

7.6.2 Deniability

Roughly speaking, deniability indicates that given a transcript of an execution of an

identification protocol, a prover is able to deny that he is the prover in the execution.

To achieve deniability, we require that the verifier can generate this transcript itself.

Formally, we consider the following definition, which share similarity with that of

zero knowledge.

Definition 7.1 (Deniability) An EDID scheme is deniable if for any param ←
Setup(1`), (pkT , skT) ← TKeyGen(param) and (pkP , skP) ← PKeyGen(param),

for any PPT algorithm D, or for any verifier strategy V ∗, there exists a PPT algo-

rithm S, which has oracle access to V ∗, such that

|Pr[Expt1(`) = 1]− Pr[Expt2(`) = 1]| = ε(`),

where ε(·) is a negligible function in `, and Expt1(`) and Expt2(`) are defined as

follows.

7.6. Definition of Escrowed Deniable Identification Schemes 195

Expt1(`): Expt2(`):

tr ← 〈P (skP), V ∗〉(pkT , pkP) tr′ ← SV
∗
(pkT , pkP)

b← D(pkT , pkP , tr) b′ ← D(pkT , pkP , tr)

return b return b

where the probabilities are taken over the random bits used in Setup, TKeyGen,

PKeyGen, and the random bits consumed by P , V ∗, S and D.

7.6.3 Impersonation

An identification scheme is secure against impersonation if no-one except the prover

P with its public key pkP can identify itself to others as P . In this section, we

consider the most common impersonation attacks, i.e. passive attacks and active

attacks, which are described below:

• Passive Attack (imp-pa): This is the weakest form of attack considered

for impersonation. An adversary can only listen to the interaction between

a prover and a verifier, and then begin to impersonate the prover after the

interaction.

• Active Attack (imp-aa): This attack is stronger than the one above. In an

active attack, the adversary, acting as a (cheating) verifier, actively interacts

with prover clones in sequence. After the last execution of the identification

protocol is over, it starts to impersonate the prover to others.

Impersonation under Active Attack: An imp-aa adversary A is a pair of PPT

algorithms (A1,A2), where A1 acts as V ∗ and A2 acts as P ∗. Let St denote the state

of information. The active attack is initialised by first calling Setup, TKeyGen and

PKeyGen to generate public-private key pairs (pkT , skT) and (pkP , skP) for the

trusted authority and the prover respectively. Taking public keys pkT and pkP as

input, the adversary A then performs its attack in the following two phases:

• Phase 1. (Learning Phase) Given input pkT , pkP , the adversary A1 is allowed

to interact with P ’s clones sequentially. When each of P ’s clones interacts

with A1, it is initialised with (pkP , skP), pkT and fresh random coins. Later,

A1 outputs St to be passed onto A2. This completes phase 1.

• Phase 2. (Impersonation Phase) At the beginning of phase 2, V is initialised

with the public keys pkT , pkP , while the adversary A2 is given St. Then A2

7.6. Definition of Escrowed Deniable Identification Schemes 196

tries to impersonate P to V . At the end of this phase, V outputs a decision

bit b, indicating Accept or Reject.

The adversary A is said to be successful in the attack if V outputs 1 at the end of

Phase 2. Formally, we consider the following experiment:

Exptimp−aa
A (`):

param← Setup(1`)

(pkT , skT)← TKeyGen(param)

(pkP , skP)← PKeyGen(param)

(⊥, St)← A1
P (skP)(pkT , skT , pkP)

(⊥, b)← 〈A2(skT , St), V 〉(pkT , pkP)

return b

where an oracle call to P (skP) results in an execution of the identification protocol

with the prover P and a transcript tr is returned.

Definition 7.2 (Security against Impersonation under Active Attack) We

say an escrowed deniable identification scheme EDID is secure against imperson-

ation under active attack, if there is no PPT adversary A = (A1,A2) such that the

probability Pr[Exptimp−aa
A (`) = 1] is non-negligible in `.

Note that in the definition above the adversary can be the trusted authority. That

is, even TA cannot impersonate the prover in an active attack.

7.6.4 Transferability

Intuitively, the notion of transferability in escrowed deniability identification schemes

is aimed at revealing the transcript confirmation or evidence that proves the validity

of the prover of the transcript. The idea is that a verifier is provided with evidence

for a case in dispute to prove to another party who would like to be convinced of

the validity of the transcript. To complete this idea, a trusted authority is involved

to process an opening (transferring) algorithm. Unlike the deniability property in a

general identification scheme (for example, zero-knowledge protocol based identifi-

cation schemes), the verifier can now convince another party that the transcript of

an identification scheme is actually due to an interaction with the claimed prover

with the help of or evidence from a trusted party. In the experiment below, the ad-

versary is modelled as a malicious verifier who tries to convince any third party to

7.6. Definition of Escrowed Deniable Identification Schemes 197

accept the transcript without the help of the trusted authority. Hence, the trusted

authority is viewed as an opening oracle OPN who answers queries for opening

the chosen transcript. We provide a formal definition of transferability as follows.

Let V ∗ be any verifier strategy (honest or malicious). Let (pkP , skP) be the

prover’s public key and private key generated by the key generation algorithm of

the identification scheme, and let (pkT , skT) be the TA’s public key and private key,

respectively, generated by the key generation algorithm of the identification scheme.

Let tr ← 〈P (skP), V ∗〉(pkP) be the transcript of an interaction between P and V ∗,

and let θ← 〈TA(skTA), V ∗〉(pkP) be the confirmation evidence θ of an interaction

between TA and V ∗. Let Verf be the verifier’s decision algorithm, which takes a

transcript tr and its confirmation evidence θ as input and outputs 1 or 0, which

indicate ‘Accept’ or ‘Reject’, respectively. Let S be a probabilistic polynomial-time

algorithm. We consider the following experiment:

ExpttranA (`):

(pkP , skP)← PKeyGen(1`)

(pkT , skT)← TKeyGen(1`)

(⊥, St)← A1
OID,OPN (pkP , pkT)

(tr∗, θ∗)← A2(St)

If (tr∗, θ∗) has been queried to OID,OPN then ⊥,

otherwise, in the transfer protocol (or any other protocol for

transferring the proof (tr∗, θ∗)),

(⊥, b)← 〈A2(tr∗, θ∗), AnyV 〉(pkP , pkT)

Return b

Adversary A is said to be successful in the attack if AnyV outputs b = Accept.

Definition 7.3 (Security against Transferability Attack) An identification scheme

ID = (PKeyGen, P , V) is said to be secure against transferability attacks if there

is no probabilistic polynomial-time tran adversary A = (A1,A2) such that the prob-

ability Pr[ExpttranA (`) = 1] is non-negligible in `.

7.7. Our Construction 198

Oracle OPN (tr): Oracle HO(str):
θ← Open(skT , pkT , tr) m← H(str)
b← Verf(tr, θ, pkT) Return m
Return θ iff b = accept
Otherwise, return ⊥

Oracle OID:
tr = (a, b, z)← 〈OID(skP), V 〉(pkT , pkP)
Return tr

Figure 7.1: Oracle for Adversary Attacking Transferability of Escrowed Deniability
Identification Scheme

7.7 Our Construction

7.7.1 High Level Idea

Before presenting our construction of escrowed deniable identification schemes, we

will first describe the idea and intuition behind our construction. Let TA’s pair

of public/secret keys be (pkT , skT). First, P generates a commitment Cmt, and V

replies with a random challenge c. Then, P signs both Cmt and c to obtain θ. Next,

P will verifiably encrypt θ using the TA’s public key pkT . That is, φ← V EpkT (θ).

Then, P sends φ to V . V can check the validity of φ with respect to pkT and pkP r,

but V cannot transfer this conviction to anyone else (due to the indistinguishability

property of the verifiable encryption used). When mischievous behaviour occurs,

TA converts the transcript and makes it undeniable. TA can decrypt φ using skT

to obtain θ, and since θ is a regular digital signature generated by P ; hence, it is

undeniable.

7.7.2 The Construction

In this section, we present our scheme based on the idea outlined above. The

construction uses a Boneh-Boyen short signature scheme and verifiable encryption

scheme developed by Boneh et al. [BB04, BGLS03]. We incorporate the technique

described in [HWLZ08] to construct our EDID scheme in the standard model. The

scheme works as follows.

System Parameter Generation (Setup):

7.7. Our Construction 199

Let (G1,GT) be two multiplicative cyclic groups where |G1| = |GT | = p for

some large prime p. g, g1 and g2 are generators of G1 and ê : G1×G1 → GT is

a bilinear pairing. Let H : {0, 1}∗ → ZZ∗p be a collision-resistant hash function.

The system parameter param then consists of (G1, GT , ê, p, g, g1, g2, H).

Trusted Authority Key Generator (TKeyGen):

Given the public parameter param, TKeyGen selects random numbers x, y ∈
ZZp; W ∈ G1 and computes V = Wy, U = Vx. The public key and private key of

the trusted authority are pkT = (U, V, W) and skT = (x, y) respectively.

Prover Key Generator (PKeyGen):

Given the public parameter param, PKeyGen selects a random number s ∈ ZZp

and computes SP = gs1. The public key and private key of the prover are

pkP = SP and skP = s respectively.

Identification protocol (〈P, V 〉):

The protocol comprises two parts. The first part is a 4-round zero-knowledge

proof protocol of the Schnorr Identification, in which the prover P proves to

the verifier V that it knows the private key s, which is the discrete logarithm

of the public key SP to base g1. In the second part of the identification

protocol, prover P generates a BB04 short signature θ on the 4-round Schnorr

Identification transcript it just carried out with the verifier. P then computes

φ, which is the verifiable encryption of θ under the TA’s public key, and sends

it to the verifier. Finally, P proves, in an interactive manner, to the verifier

that φ is correctly formed. Following the description above, the protocol will

be more than four rounds. Optimisation of the round efficiency of the protocol

can be done by setting θ to be the signature on the first two rounds of the 4-

round Schnorr Identification protocol and conducting the proof-of-correctness

of φ in parallel with the Schnorr Identification with the verifier. The resulting

protocol remains four rounds and it is shown as follows.

1. 1st Round (V to P). (Commitment of Challenge.) V randomly generates

c, d
$← ZZ∗p, computes T = gc1g

d
2 and sends T to P .

2. 2nd Round (P to V).

7.7. Our Construction 200

(a) P randomly generates rs
$← ZZ∗p and computes T = grs1 . Now, P runs

the KeyGen of the BB04 signature for the one-time public key pkOT

and the one-time private key skOT . However, P can simply use a

common parameter from param, such as p, ê, for the BB04 signature.

Hence, on input of param, P randomly selects ga, gb ∈ G1; α, η ∈ ZZp

and computes the one-time public key pkOT = (ga, gb,U = gαb ,V =

gηb ,Z = ê(ga, gb)) and the one-time private key skOT = (α, η).

(b) P randomly selects a, b
$← ZZ∗p and computes E1 = Ua and E2 = Vb.

Then, P randomly generates ra, rb
$← ZZ∗p and computes A1 = Ura and

A2 = Vrb .

(c) Let m = H(pkOT). Now, P computes a signature θ = g
1

s+m . Then,

P computes E3 = θWa+b and A3 = ê(W, SPg
m
1)ra+rb . Parse Â as

(A1, A2, A3) and Ê as (E1, E2, E3).

(d) Let m̄ = H(T,T, pkP , E1, E2, E3, A1, A2, A3). On input of pkOT , skOT ,

P randomly chooses κ
$← ZZ∗p and computes ϑ = g

1
α+κ·η+m̄
a . Then P

sends (T, pkOT , ϑ, κ, Ê, Â) to V .

3. 3rd Round (V to P). (Challenge.) V sends c, d to P .

4. 4th Round (P to V). (Response.) P checks if T
?
= gc1g

d
2 . Output ⊥

means the check fails. Otherwise, compute zs = rs− cs, za = ra− ca and

zb = rb − cb. Set Ẑ as (zs, za, zb) and send Ẑ to V .

5. (Verification.) V computes m̄ = H(T,T, pkP , E1, E2, E3, A1, A2, A3) and

m = H(pkOT) and outputs Accept if the following holds:

T1
?
= ScPg

zs
1 , ê(ga, gb)

?
= ê(θ,U · Vκ · gm̄2), A1

?
= Ec

1U
za ,

A2
?
= Ec

2V
zb , A3

?
=

(
ê(E3, SPg

m
1)

ê(g, g1)

)c
ê(W, SPg

m
1)za+zb .

Otherwise, it outputs Reject.

Open protocol (〈TA, V 〉):
A protocol can be denoted by OP = (Open, Verf), where Open and Verf are

PPT algorithms used in the protocol detailed in Figure 7.2.

Transfer protocol (〈V,AnyV 〉):
A protocol can be denoted by TP = (Cmt, Ch, Rsp, Check), where Cmt, Ch,

Rsp and Check are PPT algorithms used in the following protocol, where the

7.8. Security Analysis 201

verifier V proves that a transcript denoted as tr is indeed generated by P to

any third party verifier. This protocol is illustrated in Figure 7.2.

7.8 Security Analysis

In this section, we provide a proof of the security of our proposed EDID scheme,

which includes deniability, security against impersonation and transferability (es-

crowed deniability). First, we define the following notations, which we will use

throughout the rest of this section.

7.8.1 Deniability

We will now present proof that the identification protocol and the transfer protocol

in our EDID scheme are zero knowledge protocols. First, the completeness of the

identification and transfer protocols in our EDID scheme are straightforward; hence,

this will be omitted. Second, zero knowledge proof of the identification and transfer

protocols in our EDID scheme are outlined in the theorems below.

Theorem 7.12 The identification protocol in our identification scheme EDID is

deniable.

Proof: Let S be a simulator and V ∗ be any verifier. Given the public keys pkT =

(U, V, W), and pkP = SP = gs1, algorithm S simulates transcripts as follows.

1. First, S receives T from V ∗, and then computes its response as follows.

• S first selects random generators T′, A′1, A
′
2, A

′
3, θ
′ $← G1.

• Then, S runs KeyGen of the BB04 signature scheme and obtains pk′OT =

(ga′ , gb′ ,U = gα
′

b′ ,V = gη
′

b′ ,Z ′ = ê(ga′ , gb′)) and sk′OT = (α′, η′).

• Next, S chooses integers a′, b′, κ′
$← ZZ∗p and computes E ′1 = Ua

′
, E ′2 = Ub

′
.

S computes m′ = H(pk′OT).

• S computes E ′3 = θ′Wa+b and m̄′ = H(T′,T, pkP , E ′1, E ′2, E ′3, A′1, A′2, A′3).

Then it computes ϑ′ = g
1

α′+κ′·η′+m̄′

a′ .

• S responds to A with (T′, pk′OT , ϑ
′, κ′, E ′1, E

′
2, E

′
3, A

′
1, A

′
2, A

′
3).

7.8. Security Analysis 202

Open
TA V

tr←−−− tr
def
= (T, T, pkOT , ϑ, κ, Â, Ê, c, d, Ẑ)

m̄← H(T, T, pkP , E1,
E2, E3, A1, A2, A3);
m← H(pkOT);

iff not (T1
?
= ScPg

zs
1 ∧

ê(ga, gb)
?
= ê(θ,U · Vκ · gm̄2) ∧

A1
?
= Ec

1U
za ∧ A2

?
= Ec

2V
zb

∧ A3
?
=
(ê(E3,SP g

m
1)

ê(g,g1)

)c
ê(W, SPg

m
1)za+zb)

then ⊥.
Otherwise,

θ← E3/(E
1/xy
1 E

1/x
2);

iff ê(g, g1)
?
= ê(θ, SPg

m
1) then

Open(skTA)
def
= θ, Otherwise, ⊥ θ−−−→

Verf: iff ê(g, g1)
?
= ê(θ, SPg

m
1)

then Verf = accept.
Otherwise, Verf = reject.

Transfer

V AnyV
T←−−− c′, d′

$← ZZ∗p; T = gc
′

1 g
d′
2

a′, ra′
$← ZZ∗p;

D1 ← θga
′

2 ;
D2 ← ê(g2, SPg

m
1)ra′ ;

Cmt(pkP , tr, ra′ , a
′)

def
= (D1, D2)

tr,D1,D2−−−→
c′,d′←−−− Ch

def
= (c′, d′)

iff (T
?
= gc

′
1 g

d′
2) then

z ← ra′ + c′a′;

Rsp(pkP , skP , Cmt, Ch)
def
= z,

otherwise, ⊥ z−−−→
Check: m̄← H(T, T, pkP , E1, E2,
E3, A1, A2, A3) and m← H(pkOT).

iff (ê(D1, SPg
m
1)/ê(g, g1))c

′ ?
=

D−1
2 ê(g2, SPg

m
1)z

∧ ê(ga, gb)
?
= ê(θ,U · Vκ · gm̄2),

then the transcript tr was generated
by P

Figure 7.2: Open & Transfer Protocols

7.8. Security Analysis 203

2. After V ∗ replies with c′ and d′, S checks the validity of (c′, d′) with respect to

T and then rewinds V ∗ to its previous state and computes a new response as

follows.

• RunKeyGen of theBB04 signature scheme and obtain pkOT = (ga, gb,U =

gαb ,V = gηb ,Z = ê(ga, gb)) and skOT = (α, η).

• Select κ, zs, a, b, za, zb
$← ZZ∗p; E3

$← G1; E1 = Ua; E2 = Vb; T1 = ScPg
zs
1 ;

A1 = Ec′
1 U

za ; A2 = Ec
2V
zb .

• Then, it computes m = H(pkOT), A3 =
(ê(E3,SP g

m
1)

ê(g,g1)

)c
ê(W, SPg

m
1)za+zb .

• Compute m̄ = H(T,T, pkP , E1, E2, E3, A1, A2, A3), ϑ = g
1

α+κ·η+m̄
a .

• Return (T, pkOT , ϑ, κ, Ê, Â) to V ∗.

3. Finally, upon receiving c and d from V ∗, S aborts if c 6= c′ or d 6= d′. Otherwise,

S replies with (zs, za, zb).

From the structure of the protocol and the simulation process, the difference

between the distribution of the real transcripts = = {tr} and the simulated tran-

scripts =̂ = {t̂r} lies only in the event that c 6= c′ or d 6= d′. We denote this

event by INEQ. We can see the probability that event INEQ happens only with

negligible probability. If this is not the case, we can compute the discrete loga-

rithm of g2 with respect to the base g1. If c 6= c′, Then d 6= d′ as well. Since

gc1g
d
2 = T = gc

′
1 g

d′
2 , we obtain g2 = g

(c−c′)/(d′−d)
1 . As the group order p is known,

we can obtain logg1
g2 = (c− c′)/(d′ − d) mod p. This contradicts the discrete loga-

rithm assumption, hence, we can run this experiment to solve the discrete logarithm

problem by setting g1 = h and g2 = ha, where h, ha are instances of the discrete

logarithm problem. Therefore, we conclude that for any PPT algorithm D,∣∣Pr[D(pkT , pkP , tr) = 1]− Pr[D(pkT , pkP , t̂r) = 1]
∣∣ ≤ Pr[INEQ],

which is also negligible in `. �

Theorem 7.13 The transfer protocol in our identification scheme EDID = (Setup,

TKeyGen, PKeyGen, P, V, TA, AnyV) is a zero knowledge protocol.

Proof: Let S be a simulator and A play the role of any arbitrary verifier V ∗. Let

tr be a transcript that S wants to prove a possession of a proof of transcript tr S
simulates transcripts as follows.

7.8. Security Analysis 204

1. First, S receives T from A. Upon access to the random tape used by V ∗, S
obtains c′ and d′, where T = gc

′
1 g

d′
2 .

2. Then, S computes a response as follows.

• Select z
$← ZZ∗p and D1

$← G1.

• Compute m = H(pkOT , ϑ). Then compute

D2 =
(ê(g,g1)
ê(D1,SP g

m
1)

)c′
ê(g2, SPg

m
1)z.

• Then S returns (D1,D2) to A.

3. Upon receiving c and d, S aborts if c 6= c′ or d 6= d′. Otherwise, S replies with

z.

Let trt be a transcript of the real transfer transcripts and t̂rt be a transcript of the

simulated transfer transcripts. From the structure of protocol and the simulation

process, the difference between the distribution of the real transcripts = = {trt}
and the simulated transcripts =̂ = {t̂rt} only happen when c 6= c′ or d 6= d′ as the

challenge steps are revealed. Since both c, d
$← ZZp, the probability that c 6= c′ or

d 6= d′ but T = gc
′

1 g
d′
2 = gc1g

d
2 is equal to 1/p. Therefore, the distance between the

probability distribution of = and =̂ as a result of this is no more than 1/2` where `

is a security parameter and ` ≈ |p|.
Therefore, the distance between the probability distribution of = and =̂ is∣∣Pr[〈P (skP), V ∗〉(pkP) = 1]− Pr[SV

∗
(pkP) = 1]

∣∣ < 1/2`,

which is negligible for sufficiently large `. �

7.8.2 Security Analysis for Impersonation

The following theorem presents a security analysis of our escrowed deniability identi-

fication scheme against impersonation under active attack. Before we describe this,

we recall that confirmation evidence generated in the 2nd round of the protocol is in

fact a Boneh-Boyen basic short signature.

Theorem 7.14 Our identification scheme EDID is secure against impersonation

under active attack in the standard model, if the q-DL assumption holds.

7.8. Security Analysis 205

Proof: Suppose that there exists a PPT imp-aa adversaryA = (A1,A2) for an EDID

scheme such that the probability Pr[Exptimp−aa
A (`) = 1] is non-negligible. Then we

can show that there exists a PPT adversary F to solve the q-DL problem using A
as a subroutine. F is given g, gs, gs

2
, · · · , gsq ∈ G1 as input. F computes g1 and

SP in the same way as in the proof of Lemma 1 in [BB04]. F then sets g = gγ1

and g2 = gβ, where γ, β
$← ZZp. Let OT = {pkOT,1, skOT,1, ..., pkOT,qH , skOT,qH} be

the list of pre-computed one-time public keys and secret keys. Let LM = {m1 =

H(pkOT,1), ...,mqH = H(pkOT,qH)} be the list of hash values of the one-time public

keys.

Identification oracle OID: On input of a call, F simulates the prover as

follows.

1. Obtain T from A1.

2. First, select random generators T′, A′1, A
′
2, A

′
3

$← G1. Second, choose in-

tegers a′, b′
$← ZZ∗p and compute E ′1 = Ua

′
; E ′2 = Ub

′
. Let m

$← LM.

Next, compute θ = g
1/(s+m)
1 as in the proof of Lemma 1 in [BB04]. Then

compute E ′3 = θWa+b. Obtain pkOT ∈ LM, where m = H(pkOT) then se-

lect κ′
$← ZZ∗p and compute m̄′ = H(T,T, pkP , E1, E2, E3, A1, A2, A3); ϑ′ =

g
1

α+κ′·η+m̄′
a . Finally, OID returns (T′, pkOT , ϑ

′, κ′,E ′1, E
′
2, E

′
3, A

′
1, A

′
2, A

′
3).

3. A1 replies with c, d.

4. F checks the validity of c, d with respect to T. If it is not valid, F aborts

the current execution. Otherwise, it rewinds A1 to the second step and

then computes as follows.

(a) zs, a, b, za, zb
$← ZZ∗p; E1 = Ua; E2 = Vb; T = ScPg

zs
1 ; A1 = Ec

1U
za ;

A2 = Ec
2V
zb .

(b) Set E3 = E ′3 and compute A3 =
(ê(E3,SP g

m
1)

ê(g,g1)

)c
ê(W, SPg

m
1)za+zb .

(c) Select a random integer κ
$← ZZ∗p and compute m̄ = H(T,T,pkP ,E1,E2,

E3,A1,A2,A3); ϑ = g
1

α+κ·η+m̄
a .

(d) Finally, OID returns (T, pkOT , ϑ, κ, E1, E2, E3, A1, A2, A3) to A.

5. A replies with c′, d′.

6. Check the validation of c′, d′ with T and check whether c = c′ and d = d′.

If the above does not hold, F aborts the current execution. Otherwise,

it returns Ẑ = (zs, za, zb) to A.

7.8. Security Analysis 206

7. Finally, F records a transcript tr and a signature θ.

Now, F runs the eimp-aa experiment with A. First, in the Learning Phase, the

entire parameter is first initialised. The public-private key pair of provers is initially

set to pkP = SP and skP = s, then a public-private key pair of The TA is generated

by running (pkT , skT) ← TKeyGen(1`). In this phase, A plays the role of A1. A1

is given pkP , pkT , skT and access to OID. At the end of this phase, A1 outputs a

state of information St and passes it to A2.

Now we move to the Impersonation Phase. On input of St from the Learning

Phase, A2 runs the identification protocol to convince V (played by F) to accept

A2 as P . Note that the public parameter for A2 can be obtained from A1 in the

previous phase. A2 then interacts with F as the following protocol:

• (F → A2) Select random integers c, d ∈ ZZ∗p and compute T = gc1g
d
2 . F sends

T to A2.

• (A2 → F) Reply with (T, pkOT , ϑ, κ, E1, E2, E3, A1, A2, A3).

• (F → A2) Respond with c, d.

• (A2 → F) Return Ẑ = (zs, za, zb).

A wins the game if a transcript tr = (T, T, pkOT , ϑ, κ, E1, E2, E3, A1, A2, A3, c, d, Ẑ)

from the above protocol passes validation. Due to the fact that F possesses γ, β,

which are secret keys to solve the relationship between g, g1 and g2, with an over-

whelming probability, F then rewinds A2 to the third step and replies to A2 with

c′, d′ ∈ ZZ∗p such that c′ 6= c and d′ 6= d. A2 responds with Ẑ ′ = (z′s, z
′
a, z
′
b). Let

tr2 = (T, T, pkOT , ϑ, κ, E1, E2, E3, A1, A2, A3, c
′, d′, Ẑ ′) denote the second transcript.

From these two transcripts, F compute s as the answer to q-DL problem.

Next, we conclude by presenting the probability of success of A succeeding in

the impersonation. There are two events that trigger F to abort. We will show

that F will abort the simulation with negligible probability. These two events occur

in steps 4 and 6 of the identification oracle. The first event is that c 6= c′; d 6= d′

but T = gc1g
d
2 = gc

′
1 g

d′
2 . If this event occurs, then A1 can be used to solve the

discrete logarithm problem, where it is given g, gx as input to find x. We simply set

g1 = g; g2 = gx then, upon receiving c, d, c′ and d′, we compute x = (c− c′)/(d′−d).

Hence, this event occurs with negligible probability, underlying the fact that the

discrete logarithm problem is difficult. The second event is when c, d is dishonestly

7.8. Security Analysis 207

generated and is consequently not valid. Since the correctness of T = gc1g
d
2 holds

with negligible probability of error with regard to the first event, we can conclude

that if A1 is correctly interacting with the identification oracle, then the second

event will not occur. Therefore, we claim that F solves the q-DL problem with

non-negligible probability by using A.

To conclude, the explanation above shows that if there exists an adversary that

breaks the impersonation of an EDID scheme under active attack, then we can use

this adversary to solve the q-DL problem with non-negligible probability. Conversely,

if the q-DL problem holds, then the EDID scheme is secure against impersonation

under active attack. �

7.8.3 Security Analysis for Transferability

Theorem 7.15 Our identification scheme EDID = (Setup, TKeyGen, PKeyGen,

P, V, TA,AnyV) is secure against transferability attacks only if the q-SDH problem

hold under in the standard model.

Proof: From the proof presented in Theorem 7.12 and Theorem 7.13, the identifi-

cation protocol and the transfer protocol in our EDID scheme (computational) are

zero knowledge protocols. Based on this, we can exclude a PPT tran adversary that

can distinguish the simulated transcripts from the actual transcripts. We also ex-

clude an adversary that, without help from a trusted third party, uses any means (or

any protocol) to convince another party that the adversary has actually interacted

with the prover to generate a transcript. If there exists an adversary as described

above then that adversary seems in fact to be an adversary against deniability where

proof has been provided in Theorem 7.12. Hence, the rest of our proof will show

that, assuming that there exists a PPT tran adversary A = (A1,A2), there exists

a PPT algorithm F that uses A to solve the q-SDH problem. We begin with F
constructing oracles and setting up public parameters as follows.

Parameter setup: First, F is given g, gs, gs
2
, · · · , gsq ∈ G1 as input. Then, F

computes g1 and SP in the same way as in the proof of Lemma 1 in [BB04].

F then sets g = gγ1 and g2 = gβ, where γ, β
$← ZZp. Next, F runs TKeyGen

to get the public key and private key of the trusted authority, which are

pkT = (U, V, W) and skT = (x, y) respectively. Let OT = {pkOT,1, skOT,1, ...,
pKOT,qH−1, skOT,qH−1, pk∗OT , sk

∗
OT} be the list of pre-computed one-time public

7.8. Security Analysis 208

keys and secret keys. Let LM = {m1 = H(pkOT,1), ...,mqH−1 = H(pkOT,qH−1),

m∗ = H(pk∗OT)} be the list of hash values of the one-time public keys.

Identification oracle OID: For every request for a transcript to OID, except

when m = m∗, F constructs identification oracle in the same way as the proof

in Theorem 7.14. In the case of m∗, F changes the procedure for identification

oracle and processes them as follows.

1. Obtain T from A1.

2. First, select random generators T′, A′1, A
′
2, A

′
3, E

′
3

$← G1. Second, choose

integers a′, b′
$← ZZ∗p and compute E ′1 = Ua

′
; E ′2 = Ub

′
. Obtain pk∗OT ∈ LM

then select κ′
$← ZZ∗p and compute m̄′ = H(T,T,pkP ,E1,E2,E3, A1,A2,A3);

ϑ′ = g
1

α+κ′·η+m̄′
a . Finally, OID returns (T′, pkOT , ϑ

′, κ′, E ′1, E
′
2, E

′
3, A

′
1, A

′
2,

A′3).

3. A1 replies with c, d.

4. F checks the validity of c, d with respect to T. If it is not valid, F aborts

the current execution. Otherwise, it rewinds A1 to the second step and

then computes as follows.

(a) zs, a, b, za, zb
$← ZZ∗p, E3

$← G1 : E1 = Ua, E2 = Vb, T = ScPg
zs
1 ,

A1 = Ec
1U
za ; A2 = Ec

2V
zb .

(b) Compute A3 =
(ê(E3,SP g

m
1)

ê(g,g1)

)c
ê(W, SPg

m
1)za+zb .

(c) Select a random integer κ
$← ZZ∗p and compute m̄ = H(T,T,pkP ,E1,E2,

E3,A1,A2,A3); ϑ = g
1

α+κ·η+m̄
a .

(d) Finally, OID returns (T, pkOT , ϑ, κ, E1, E2, E3, A1, A2, A3) to A.

5. A replies with c′, d′.

6. Check the validation of c′, d′ with T and check whether c = c′ and d = d′.

If the above does not hold, F aborts the current execution. Otherwise,

it returns Ẑ = (zs, za, zb) to A.

7. Finally, F records a transcript tr∗ and a signature θ∗.

Open oracle OPN : F constructs open oracle as follows.

• If tr is in the list of queried transcripts, then OPN returns an associated

signature θ, except where m = m∗, it returns ⊥.

7.8. Security Analysis 209

• Otherwise, decrypt tr with skT and obtain θ and then check whether

ê(g, g1) = ê(θ, SPg
m
1). If the answer is yes, then OPN returns θ. If it is

not, then OPN returns ⊥.

Let param = (ê, p, g, g1, g2) and pkS = SP = gs1. The private parameters for F are

skTA, γ and β. Next, F simulates the Learning Phase by running A on input of

(param,pkP , pkT ,OID, OPN), and then operates as follows.

• On the request of tr, A1 runs the identification protocol with OID to obtain

tr.

• On being requested to open tr, A1 arbitrarily sends tr to OPN . OPN
returns a signature θ on a message m from tr, if tr and θ are valid and tr is

generated by OPN . Otherwise, it returns a failure.

At the end of this phase, A1 outputs a state of information St and passes it on to

A2. Now, we move to the Convincing Phase, where F plays the role of AnyV . Note

that the public parameter for A2 can be obtained from A1 in the previous phase.

A2 then interacts with AnyV as the following protocol:

• (AnyV → A2) Select random integers c, d ∈ ZZ∗p and compute T = gc1g
d
2 . F

sends T to A2.

• (A2 → AnyV) Run {tr,D1, D2} ← A2(St, pkP , pkT , param) and reply with

(tr,D1, D2).

• (AnyV → A2) Respond with c, d.

• (A2 → AnyV) Return z ← A2(St, pkP , pkT , param, tr,D1, D2, c, d).

A wins the game if a transfer transcript trt = (T, tr,D1, D2, c, d, z) from the above

protocol passes the validation. Due to the fact that F possesses γ, β, which are secret

keys to solve the relationship between g, g1 and g2, with a overwhelming probability,

F then rewinds A2 to the third step and replies to A2 with c′, d′ ∈ ZZ∗p such that

c′ 6= c and d′ 6= d. Then A2 responds with z′, with tr′t = (T, tr,D1, D2, c
′, d′, z′)

denoting the second transfer transcript.

Let qH , qO be the number of queries that A makes to the identification oracle

and open oracle, respectively. Within the probability 1
qH

, A processes the second

phase with m∗. If A wins the game with m∗, then, from these two transcripts, F
computes a signature θ∗ on a message m∗ as the answer to the q-SDH problem.

7.9. Conclusion 210

There are certain events that cause F to abort the simulation. We will now show

that such events happen with negligible probability or that some are expected to

occur with non-negligible probability. First, in the open oracle, the first event (E1)

is that F aborts the simulation when m = m∗. This event is already expected to

happen within the probability (1−1/(qH))qO ≥ 1/e where e is the natural logarithm.

The other event (E2) is also in the open oracle when tr is not in the list of transcripts

produced by OID but it passes verification. This means that A can produce a valid

transcript. Then A can indeed be used to break the impersonation of our EDID

scheme. Hence, from the proof presented in Theorem 7.14, the probability that F
aborts in this event is negligible. For the events above, the probability that F does

not abort the simulation is non-negligible, where Pr[E1] + Pr[E2] ≈ 1/e. Hence, we

claim that the probability that A wins the game is non-negligible if the probability

of solving the q-SDH problem is non-negligible.

7.9 Conclusion

We started this chapter by providing a stronger definition of CR1+ attack for an

identity-based identification scheme. The CR1+ attack is a stronger variant than

CR1 attack proposed in [BFGM01]. In CR1+ attack, an adversary is allowed to reset

the prover (or its clones) to any state. In CR1 attack, an adversary is allowed to reset

the prover only to the initial state. Hence, the CR1 attack in [BFGM01] is a spe-

cial case of our CR1+ attacks. Then, we provided two identity-based identification

schemes, which are secure under passive attack and secure against the CR1+ attack.

The complexity assumption used in our proof is weaker than the state-of-the-art

identification scheme by Kurosawa and Heng [KH05]. We also provided the compu-

tation comparison between our identity-based identification schemes and Kurosawa

and Heng’s identity-based identification schemes. We also introduced a new no-

tion called escrowed deniability in an identification scheme. This notion bridges the

gap between deniability and non-deniability in an identification scheme. We also

provided a concrete scheme that satisfies this new notion. The security of our iden-

tification scheme ensures impersonation and transferability (escrowed deniability).

Proof of these was also presented. In short, we believe the escrowed deniability

property is an essential feature for identification schemes where the need for incor-

poration and disaffirmation is crucial.

Chapter 8

Conclusions and Further Works

This chapter concludes our contributions in this thesis. We answer the research

questions mentioned in Chapter 1 and divide them in two main contributions, which

are contributions to signature schemes and contributions to identification schemes.

8.1 Contribution to Signature schemes

Our contributions to signature schemes comprise three aspects.

First, we proposed a signature scheme that provides the privacy and anonymity

of the signer. We also provided an algorithm to control the privacy of the signer.

Second, we proposed algorithms that allow a signer to assigns a set of verifiers

such that only these verifiers can verify the signature on a message signed by the

signer while others cannot do so.

Finally, we proposed an algorithm that provides fairness to the honest signers in

multi-signatures.

8.1.1 Universal Designated Verifier Signature Schemes

A universal designated verifier signature scheme allows a signature holder to delegate

a signature on a message that he obtains from a signer to any designated verifier. In

other words, a signature holder is given the privilege of designating the signature to

any verifier of his choice. In Chapter 4, we proposed two new notions: a “one-time

universal designated verifier signature” and a “universal designated verifier signature

with threshold-signers”. One-time universal designated verifier signature schemes

allow a signature holder to delegate a signature on a message that he obtains from

a signer to only one designated verifier of his choice. If a signature holder generates

a designated verifier signature more than once then the original signature that was

211

8.1. Contribution to Signature schemes 212

signed by the signer can be obtained by any party, and hence, the privacy of the

signature is no longer guarantied. We presented a definition of a one-time universal

designated verifier signature scheme and its security model in Section 4.2. We also

provided a concrete construction of a one-time universal designated verifier signature

scheme in Section 4.3 and its security analysis in Section 4.4. Universal designated

verifier signatures with threshold-signers allow the privacy of both the signer and

the signature holder to be preserved. The signature holder is allowed to provide

anonymity for the signer(s) and the signature(s) that he has in his possession. The

designated verifier only assures that a designated verifier signature is generated

from the signature(s) that have been signed by a signer (or t signers) in the list of n

signers. We presented a definition of a universal designated verifier signature with

threshold-signers and its security model in Section 4.5. We presented a concrete

construction of a universal designated verifier signature with threshold-signers in

Section 4.6 and its security analysis in Section 4.7.

8.1.2 Policy Controlled Signature Schemes

In Chapter 5, we proposed three new notions: a “policy-controlled signature”, a

“universal policy-controlled signature” and a “multi-level controlled signature”. A

policy-controlled signature scheme allows multiple verifiers to verify a signature on

certain messages signed by a signer; however, these verifiers must satisfy a policy

assigned by the signer in order to verify this signature. In other words, the signature

produced by the signer is verifiable only to those verifiers that satisfy certain policies

specified by the signer. Meanwhile, the other party that does not satisfy the policies

should not be able to verify this signature. A definition of a policy-controlled sig-

nature scheme and its security model were presented in Section 5.2. The proposed

scheme was presented in Section 5.3. Its security analysis was described in Section

5.4.

The extension of policy-controlled signatures, namely, universal policy-controlled

signatures and multi-level controlled signatures, were described in Sections 5.5 and

5.8. In universal policy-controlled signatures, a party called the policy holder is al-

lowed to generate proof (a policy-controlled signature) of the possession of a signer’s

signature on certain messages. This signature is verifiable only to a verifier that

satisfies the policy assigned by the policy signer. Our concrete scheme of universal

policy-controlled signatures was presented in Section 5.6. Its security analysis was

8.1. Contribution to Signature schemes 213

described in Section 5.7.

The notion of multi-level controlled signatures eliminates the unnecessary chain

of attributes in the policy when this can be assigned in a simple way, such as the

number of the security level. Let “POLICY=(11-security level or 12-security level

or 13-security level)” be an example of policies assigned by a signer in a policy-

controlled signature scheme. In multi-level controlled signatures, we can simply

assign the policy as “POLICY= more than or equal to 11-security level”. Multi-level

controlled signatures reduce the size of the signature and the number of attributes

specified in the policy. A definition of a multi-level controlled signature scheme and

its security model were presented in Section 5.8. The first proposed scheme with

a constant size for a signer’s private key was presented in Section 5.9. Its security

analysis was described in Section 5.10. The second proposed scheme with a constant

size for a verifier’s credentials was presented in Section 5.11. Its security analysis

was described in Section 5.12.

8.1.3 Fair Multi-Signature Schemes

Multi-signature schemes allow a number of parties together to generate a signature

on some messages. This signature is the so-called “multi-signature”. In Chap-

ter 6, we constructed a new notion for multi-signature schemes called “fair multi-

signatures”. In this notion a group of signers together fairly generate a signature. In

other words, every signer should be able to output a multi-signature if the protocol

is complete. Otherwise, none of the signers can output a multi-signature. It can be

seen clearly that this notion is an extension of a multi-signature scheme and it further

strengthens the notion of multi-signature schemes. We pointed out that this crypto-

graphic primitive is useful in many applications, in particular the ones that involve a

multi-party signing process. We presented a security model for fair multi-signature

schemes. We also provided a generic construction of a fair multi-signature scheme,

which can be constructed from the verifiable encrypted signature scheme based on

aggregate signatures. Two instantiations of our generic construction scheme with

their security analysis were presented in Sections 6.5 and 6.6.

8.2. Contribution to Identification Schemes 214

8.2 Contribution to Identification Schemes

An identification scheme allows a party called the prover to prove his/her identity

to another party called the verifier. However, the other party cannot claim to be a

prover. Hence, the security of an identification scheme aims to prevent imperson-

ation at the least. In a public key setting, the private key is chosen and then the

prover’s public key (appearing as a random bit string) is randomly generated and

this is used to represent the prover in a digital way. In an identity-based setting,

a prover is allowed to select a public key that represents the identity of the prover,

such as an email address. In Chapter 7, we proposed identity-based identification

schemes, which are secure under passive attack and secure against CR1+ attack. We

demonstrated that our identity-based identification schemes are more efficient than

the state-of-the-art identification scheme proposed by Kurosawa and Heng [KH05]

in Section 7.5.

We also introduced a new notion called “escrowed deniable identification” in Sec-

tion 7.6. In escrowed deniable identification schemes, a trusted party is introduced

who can provide evidence proving that a prover has participated in the genera-

tion of the identification transcript with a verifier. However, without the help of

the trusted party, the verifier cannot provide this evidence. Thus, our identifica-

tion scheme provides both deniability in general and non-deniability when this is

required. We provided a concrete scheme in Section 7.7 and the security of our

proposed scheme in Section 7.8.

8.3 Further works

The privacy of the signature holder in universal designated verifier signature schemes

always holds even though the signature holder might act maliciously. Future works

will focus on how to control or revoke the privacy of the signature holder when he

misuses the signer’s signature.

A policy-controlled signature scheme offers a huge impact in controlling and

limiting the number of verifiers to verifier the signer’s signature. One might hope

to provide a generic construction for policy-controlled signatures, which are secure

in the standard model.

For future works on identification schemes, we shall focus on the more efficient

construction of the identification scheme secure against reset attack and the escrowed

8.3. Further works 215

identification scheme.

Bibliography

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprem-

pre. From identification to signatures via the fiat-shamir transform:

Minimizing assumptions for security and forward-security. In Lars R.

Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Com-

puter Science, pages 418–433. Springer, 2002.

[AGH10] Esma Aı̈meur, Sébastien Gambs, and Ai Ho. Towards a privacy-

enhanced social networking site. In ARES, pages 172–179. IEEE Com-

puter Society, 2010.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-

change of digital signatures (extended abstract). In EUROCRYPT,

pages 591–606, 1998.

[Ate04] Giuseppe Ateniese. Verifiable encryption of digital signatures and ap-

plications. ACM Trans. Inf. Syst. Secur., 7(1):1–20, 2004.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles.

In Cachin and Camenisch [CC04], pages 56–73.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based

encryption with constant size ciphertext. In Ronald Cramer, editor,

EUROCRYPT, volume 3494 of LNCS, pages 440–456. Springer, 2005.

[BC05] Carlo Blundo and Stelvio Cimato, editors. Security in Communica-

tion Networks, 4th International Conference, SCN 2004, Amalfi, Italy,

September 8-10, 2004, Revised Selected Papers, volume 3352 of Lecture

Notes in Computer Science. Springer, 2005.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-

sure proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

216

BIBLIOGRAPHY 217

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisigna-

tures secure under the discrete logarithm assumption and a generalized

forking lemma. In ACM Conference on Computer and Communications

Security, pages 449–458. ACM, 2008.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from

the weil pairing. In Joe Kilian, editor, CRYPTO, volume 2139 of LNCS,

pages 213–229. Springer, 2001.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Iden-

tification protocols secure against reset attacks. In Birgit Pfitzmann,

editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Sci-

ence, pages 495–511. Springer, 2001.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate

and verifiably encrypted signatures from bilinear maps. In Eli Biham,

editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Sci-

ence, pages 416–432. Springer, 2003.

[BJ08] Ali Bagherzandi and Stanislaw Jarecki. Multisignatures using proofs of

secret key possession, as secure as the diffie-hellman problem. In SCN,

volume 5229 of LNCS, pages 218–235. Springer, 2008.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:

Stronger definitions, and constructions without random oracles. In Shai

Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in

Computer Science, pages 60–79. Springer, 2006.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from

the weil pairing. In Colin Boyd, editor, ASIACRYPT, volume 2248 of

Lecture Notes in Computer Science, pages 514–532. Springer, 2001.

[BM05] Walid Bagga and Refik Molva. Policy-based cryptography and applica-

tions. In Andrew S. Patrick and Moti Yung, editors, Financial Cryptog-

raphy, volume 3570 of Lecture Notes in Computer Science, pages 72–87.

Springer, 2005.

BIBLIOGRAPHY 218

[BM06] Walid Bagga and Refik Molva. Collusion-free policy-based encryption.

In Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritza-

lis, and Bart Preneel, editors, ISC, volume 4176 of Lecture Notes in

Computer Science, pages 233–245. Springer, 2006.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-

key model and a general forking lemma. In Juels et al. [JWdV06], pages

390–399.

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security

proofs for identity-based identification and signature schemes. In Cachin

and Camenisch [CC04], pages 268–286.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind

signatures based on the gap-diffie-hellman-group signature scheme. In

Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of LNCS,

pages 31–46. Springer, 2003.

[BP02] Mihir Bellare and Adriana Palacio. Gq and schnorr identification

schemes: Proofs of security against impersonation under active and

concurrent attacks. In Yung [Yun02], pages 162–177.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In ACM Conference on Com-

puter and Communications Security, pages 62–73, 1993.

[BSS02] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring

signatures and applications to ad-hoc groups. In Yung [Yun02], pages

465–480.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in El-

liptic Curve Cryptography (London Mathematical Society Lecture Note

Series). Cambridge University Press, New York, NY, USA, 2005.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-

based encryption (without random oracles). In Cynthia Dwork, editor,

CRYPTO, volume 4117 of LNCS, pages 290–307. Springer, 2006.

BIBLIOGRAPHY 219

[CC04] Christian Cachin and Jan Camenisch, editors. Advances in Cryptol-

ogy - EUROCRYPT 2004, International Conference on the Theory and

Applications of Cryptographic Techniques, Interlaken, Switzerland, May

2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Sci-

ence. Springer, 2004.

[CD00] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryp-

tion, and their applications to separable group signatures and signature

sharing schemes. In Tatsuaki Okamoto, editor, ASIACRYPT, volume

1976 of Lecture Notes in Computer Science, pages 331–345. Springer,

2000.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-

settable zero-knowledge (extended abstract). In STOC, pages 235–244,

2000.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited (preliminary version). In STOC, pages 209–218,

1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CHY04] Sherman S. M. Chow, Lucas Chi Kwong Hui, and Siu-Ming Yiu. Identity

based threshold ring signature. In Park and Chee [PC05], pages 218–

232.

[CHYC04] Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming Yiu, and K. P.

Chow. Secure hierarchical identity based signature and its application.

In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, ICICS, volume

3269 of LNCS, pages 480–494. Springer, 2004.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient

blind signatures without random oracles. In Blundo and Cimato [BC05],

pages 134–148.

[CSY06] Sherman S. M. Chow, Willy Susilo, and Tsz Hon Yuen. Escrowed link-

ability of ring signatures and its applications. In Phong Q. Nguyen,

BIBLIOGRAPHY 220

editor, VIETCRYPT, volume 4341 of Lecture Notes in Computer Sci-

ence, pages 175–192. Springer, 2006.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IT-

22(6):644–654, November 1976.

[DHP07] Catherine Dwyer, Starr R. Hiltz, and Katia Passerini. Trust and privacy

concern within social networking sites: A comparison of Facebook and

MySpace. In Proceedings of the Thirteenth Americas Conference on

Information Systems, August 2007.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-

knowledge. In STOC, pages 409–418, 1998.

[DP06] Yevgeniy Dodis and Prashant Puniya. On the relation between the ideal

cipher and the random oracle models. In Shai Halevi and Tal Rabin,

editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages

184–206. Springer, 2006.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of

identity. J. Cryptology, 1(2):77–94, 1988.

[Fre05] David Freeman. Pairing-based identification schemes. technical report

HPL-2005-154, Hewlett-Packard Laboratories, August 2005.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to

identification and signature problems. In Andrew M. Odlyzko, editor,

CRYPTO, volume 263 of Lecture Notes in Computer Science, pages

186–194. Springer, 1986.

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In

Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptogra-

phy, volume 4450 of Lecture Notes in Computer Science, pages 181–200.

Springer, 2007.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the crypto-

graphic applications of random functions. In CRYPTO, pages 276–288,

1984.

BIBLIOGRAPHY 221

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct

random functions. J. ACM, 33(4):792–807, 1986.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign

signatures without the random oracle. In EUROCRYPT, pages 123–

139, 1999.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-

ture scheme secure against adaptive chosen-message attacks. 17(2):281–

308, April 1988. Special issue on cryptography.

[Gol90] Shafi Goldwasser, editor. Advances in Cryptology - CRYPTO ’88, 8th

Annual International Cryptology Conference, Santa Barbara, Califor-

nia, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes

in Computer Science. Springer, 1990.

[Gol00] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.

Cambridge University Press, New York, NY, USA, 2000.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-

cations. Cambridge University Press, New York, NY, USA, 2004.

[Gol05] Oded Goldreich. Foundations of cryptography: a primer. Found. Trends

Theor. Comput. Sci., 1(1):1–116, 2005.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-

knowledge protocol fitted to security microprocessor minimizing both

trasmission and memory. In EUROCRYPT, pages 123–128, 1988.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography.

In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of LNCS, pages

548–566. Springer, 2002.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based en-

cryption. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of

LNCS, pages 466–481. Springer, 2002.

[HMSZ05] Xinyi Huang, Yi Mu, Willy Susilo, and Futai Zhang. Short designated

verifier proxy signature from pairings. In Tomoya Enokido, Lu Yan, Bin

Xiao, Daeyoung Kim, Yuan-Shun Dai, and Laurence Tianruo Yang,

BIBLIOGRAPHY 222

editors, EUC Workshops, volume 3823 of Lecture Notes in Computer

Science, pages 835–844. Springer, 2005.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to

Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2003.

[HRL09] Lein Harn, Jian Ren, and Changlu Lin. Efficient identity-based gq

multisignatures. Int. J. Inf. Sec., 8(3):205–210, 2009.

[HS03] Javier Herranz and Germán Sáez. Forking lemmas for ring signature

schemes. In Thomas Johansson and Subhamoy Maitra, editors, IN-

DOCRYPT, volume 2904 of Lecture Notes in Computer Science, pages

266–279. Springer, 2003.

[HSMW06] Xinyi Huang, Willy Susilo, Yi Mu, and Wei Wu. Universal designated

verifier signature without delegatability. In Peng Ning, Sihan Qing, and

Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes in Computer

Science, pages 479–498. Springer, 2006.

[HSMW08] Xinyi Huang, Willy Susilo, Yi Mu, and Wei Wu. Secure universal des-

ignated verifier signature without random oracles. Int. J. Inf. Sec.,

7(3):171–183, 2008.

[HSMZ06] Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. Restricted univer-

sal designated verifier signature. In Jianhua Ma, Hai Jin, Laurence Tian-

ruo Yang, and Jeffrey J. P. Tsai, editors, UIC, volume 4159 of Lecture

Notes in Computer Science, pages 874–882. Springer, 2006.

[HWLZ08] Qiong Huang, Duncan S. Wong, Jin Li, and Yiming Zhao. Generic trans-

formation from weakly to strongly unforgeable signatures. J. Comput.

Sci. Technol., 23(2):240–252, 2008.

[HYWS08] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo. Ef-

ficient optimistic fair exchange secure in the multi-user setting and

chosen-key model without random oracles. RSA Conference 2008, Cryp-

tographers’ Track (CT-RSA 2008), Lecture Notes in Computer Science

4964, pages 106 – 120, 2008.

BIBLIOGRAPHY 223

[IN83] K Itakura and K Nakamura. A public key cryptosystem suitable for

digital multisignatures. NEC Research and Development, 71:1–8, 1983.

[IT05] Toshiyuki Isshiki and Keisuke Tanaka. An (n-t)-out-of-n threshold ring

signature scheme. In Colin Boyd and Juan Manuel González Nieto,

editors, ACISP, volume 3574 of Lecture Notes in Computer Science,

pages 406–416. Springer, 2005.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind dig-

ital signatures (extended abstract). In Burton S. Kaliski Jr., editor,

CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages

150–164. Springer, 1997.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated

Verifier Proofs and Their Applications. Advances in Cryptology - Eu-

rocrypt ’96, Lecture Notes in Computer Science 1070, pages 143 – 154,

1996.

[JWdV06] Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,

editors. Proceedings of the 13th ACM Conference on Computer and

Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober

30 - November 3, 2006. ACM, 2006.

[KH04] Kaoru Kurosawa and Swee-Huay Heng. From digital signature to id-

based identification/signature. In Feng Bao, Robert H. Deng, and Jiany-

ing Zhou, editors, Public Key Cryptography, volume 2947 of Lecture

Notes in Computer Science, pages 248–261. Springer, 2004.

[KH05] Kaoru Kurosawa and Swee-Huay Heng. Identity-based identification

without random oracles. In Osvaldo Gervasi, Marina L. Gavrilova,

Vipin Kumar, Antonio Laganà, Heow Pueh Lee, Youngsong Mun, David

Taniar, and Chih Jeng Kenneth Tan, editors, ICCSA (2), volume 3481

of Lecture Notes in Computer Science, pages 603–613. Springer, 2005.

[KH06] Kaoru Kurosawa and Swee-Huay Heng. The power of identification

schemes. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal

Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes

in Computer Science, pages 364–377. Springer, 2006.

BIBLIOGRAPHY 224

[KK02a] Myungsun Kim and Kwangjo Kim. A new identification scheme based

on gap diffie-hellman problem. In The 2002 Symposium on Cryptography

and Information Security, 2002.

[KK02b] Myungsun Kim and Kwangjo Kim. A new identification scheme based

on the bilinear diffie-hellman problem. In Lynn Margaret Batten and

Jennifer Seberry, editors, ACISP, volume 2384 of Lecture Notes in Com-

puter Science, pages 362–378. Springer, 2002.

[KL10] Jon M. Kleinberg and Katrina Ligett. Information-sharing and privacy

in social networks. CoRR, abs/1003.0469, 2010.

[LLP05] Yong Li, Helger Lipmaa, and Dingyi Pei. On delegatability of four desig-

nated verifier signatures. In Sihan Qing, Wenbo Mao, Javier Lopez, and

Guilin Wang, editors, ICICS, volume 3783 of Lecture Notes in Computer

Science, pages 61–71. Springer, 2005.

[LLQ06] Fabien Laguillaumie, Benôıt Libert, and Jean-Jacques Quisquater. Uni-

versal designated verifier signatures without random oracles or non-

black box assumptions. In Roberto De Prisco and Moti Yung, editors,

SCN, volume 4116 of Lecture Notes in Computer Science, pages 63–77.

Springer, 2006.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.

Sequential aggregate signatures from trapdoor permutations. In Cachin

and Camenisch [CC04], pages 74–90.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent

Waters. Sequential aggregate signatures and multisignatures without

random oracles. In EUROCRYPT, volume 4004 of LNCS, pages 465–

485. Springer, 2006.

[LV04] Fabien Laguillaumie and Damien Vergnaud. Designated verifier signa-

tures: Anonymity and efficient construction from any bilinear map. In

Blundo and Cimato [BC05], pages 105–119.

[LV07a] Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers

signatures: anonymity without encryption. Inf. Process. Lett., 102(2-

3):127–132, 2007.

BIBLIOGRAPHY 225

[LV07b] Fabien Laguillaumie and Damien Vergnaud. On the soundness of re-

stricted universal designated verifier signatures and dedicated signa-

tures. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and

René Peralta, editors, ISC, volume 4779 of Lecture Notes in Computer

Science, pages 175–188. Springer, 2007.

[LW04] Joseph K. Liu and Duncan S. Wong. On the security models of (thresh-

old) ring signature schemes. In Park and Chee [PC05], pages 204–217.

[LW06] Jin Li and Yanming Wang. Universal designated verifier ring signa-

ture (proof) without random oracles. In Xiaobo Zhou, Oleg Sokolsky,

Lu Yan, Eun-Sun Jung, Zili Shao, Yi Mu, Dong Chun Lee, Daeyoung

Kim, Young-Sik Jeong, and Cheng-Zhong Xu, editors, EUC Workshops,

volume 4097 of LNCS, pages 332–341. Springer, 2006.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated verifier signa-

ture schemes: Attacks, new security notions and a new construction. In

Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi,

and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Com-

puter Science, pages 459–471. Springer, 2005.

[LWW03] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. A separable thresh-

old ring signature scheme. In Jong In Lim and Dong Hoon Lee, editors,

ICISC, volume 2971 of Lecture Notes in Computer Science, pages 12–26.

Springer, 2003.

[Mao97] Wenbo Mao. Verifiable escrowed signature. In Vijay Varadharajan,

Josef Pieprzyk, and Yi Mu, editors, ACISP, volume 1270 of Lecture

Notes in Computer Science, pages 240–248. Springer, 1997.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup

multisignatures: extended abstract. In ACM Conference on Computer

and Communications Security, pages 245–254, 2001.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing

elliptic curve logarithms to logarithms in a finite field. IEEE Transac-

tions on Information Theory, 39(5):1639–1646, 1993.

BIBLIOGRAPHY 226

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-

book of Applied Cryptography. CRC Press, 1997.

[Oka88] Tatsuaki Okamoto. A digital multisignature schema using bijective

public-key cryptosystems. ACM Trans. Comput. Syst., 6(4):432–441,

1988.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes

and corresponding signature schemes. In Ernest F. Brickell, editor,

CRYPTO, volume 740 of Lecture Notes in Computer Science, pages

31–53. Springer, 1992.

[OO88] Kazuo Ohta and Tatsuaki Okamoto. A modification of the fiat-shamir

scheme. In Goldwasser [Gol90], pages 232–243.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new

class of problems for the security of cryptographic schemes. In Kwangjo

Kim, editor, Public Key Cryptography, volume 1992 of Lecture Notes in

Computer Science, pages 104–118. Springer, 2001.

[OS90] H. Ong and Claus-Peter Schnorr. Fast signature generation with a fiat

shamir-like scheme. In EUROCRYPT, pages 432–440, 1990.

[Pas03] Rafael Pass. On deniability in the common reference string and random

oracle model. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture

Notes in Computer Science, pages 316–337. Springer, 2003.

[PC05] Choonsik Park and Seongtaek Chee, editors. Information Security and

Cryptology - ICISC 2004, 7th International Conference, Seoul, Korea,

December 2-3, 2004, Revised Selected Papers, volume 3506 of Lecture

Notes in Computer Science. Springer, 2005.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital

signatures and blind signatures. J. Cryptology, 13(3):361–396, 2000.

[RG05] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable

authentication. In Vijay Atluri, Catherine Meadows, and Ari Juels,

editors, ACM Conference on Computer and Communications Security,

pages 112–121. ACM, 2005.

BIBLIOGRAPHY 227

[RGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable

authentication and key exchange. In Juels et al. [JWdV06], pages 400–

409.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.

In Colin Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in

Computer Science, pages 552–565. Springer, 2001.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession:

Securing multiparty signatures against rogue-key attacks. In Moni Naor,

editor, EUROCRYPT, volume 4515 of LNCS, pages 228–245. Springer,

2007.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Uni-

versal designated-verifier signatures. In Chi-Sung Laih, editor, ASI-

ACRYPT, volume 2894 of Lecture Notes in Computer Science, pages

523–542. Springer, 2003.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart

cards. In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes

in Computer Science, pages 239–252. Springer, 1989.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J.

Cryptology, 4(3):161–174, 1991.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,

1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, pages 47–53, 1984.

[Sho99] Victor Shoup. On the security of a practical identification scheme. J.

Cryptology, 12(4):247–260, 1999.

[SMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive

zero-knowledge with preprocessing. In Goldwasser [Gol90], pages 269–

282.

[SPS10] Anna Cinzia Squicciarini, Federica Paci, and Smitha Sundareswaran.

Prima: an effective privacy protection mechanism for social networks.

BIBLIOGRAPHY 228

In Dengguo Feng, David A. Basin, and Peng Liu, editors, ASIACCS,

pages 320–323. ACM, 2010.

[Sti06] Douglas R. Stinson. Some observations on the theory of cryptographic

hash functions. Des. Codes Cryptography, 38(2):259–277, 2006.

[SW07] Hovav Shacham and Brent Waters. Efficient ring signatures without ran-

dom oracles. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public

Key Cryptography, volume 4450 of Lecture Notes in Computer Science,

pages 166–180. Springer, 2007.

[SZM04] Willy Susilo, Fangguo Zhang, and Yi Mu. Identity-based strong des-

ignated verifier signature schemes. In Huaxiong Wang, Josef Pieprzyk,

and Vijay Varadharajan, editors, ACISP, volume 3108 of Lecture Notes

in Computer Science, pages 313–324. Springer, 2004.

[THS+09] Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au,

Yi Mu, and Duncan Wong. Escrowed deniable identification schemes. In

Dominik Ślȩak, Tai hoon Kim, Wai-Chi Fang, and Kirk P. Arnett, ed-

itors, Security Technology, volume 58 of Communications in Computer

and Information Science, pages 234–241. Springer, November 2009.

[THS+10] Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au,

Yi Mu, and Duncan Wong. Escrowed deniable identification schemes.

International Journal of Security and Its Applications, 4(1):49–67, Jan-

uary 2010.

[TSM08] Pairat Thorncharoensri, Willy Susilo, and Yi Mu. How to balance pri-

vacy with authenticity. In Pil Joong Lee and Jung Hee Cheon, editors,

ICISC, volume 5461 of Lecture Notes in Computer Science, pages 184–

201. Springer, 2008.

[TSM09a] Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Identity-based identi-

fication scheme secure against concurrent-reset attacks without random

oracles. In Heung Youl Youm and Moti Yung, editors, WISA, volume

5932 of Lecture Notes in Computer Science, pages 94–108. Springer,

2009.

BIBLIOGRAPHY 229

[TSM09b] Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Policy-controlled

signatures. In Sihan Qing, Chris J. Mitchell, and Guilin Wang, editors,

ICICS, volume 5927 of Lecture Notes in Computer Science, pages 91–

106. Springer, 2009.

[TSM09c] Pairat Thorncharoensri, Willy Susilo, and Yi Mu. Universal desig-

nated verifier signatures with threshold-signers. In Tsuyoshi Takagi

and Masahiro Mambo, editors, IWSEC, volume 5824 of Lecture Notes

in Computer Science, pages 89–109. Springer, 2009.

[TWC+04] Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K.

Liu, and Duncan S. Wong. Separable linkable threshold ring signatures.

In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT,

volume 3348 of Lecture Notes in Computer Science, pages 384–398.

Springer, 2004.

[Wat05] Brent Waters. Efficient identity-based encryption without random ora-

cles. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture

Notes in Computer Science, pages 114–127. Springer, 2005.

[Yun02] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd An-

nual International Cryptology Conference, Santa Barbara, California,

USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes

in Computer Science. Springer, 2002.

[YWW04] Gang Yao, Guilin Wang, and Yong Wang. An improved identification

scheme. In Coding, Cryptography and Combinatorics, volume 23 of

Progress in Computer Science and Applied Logic, Birkhauser Verlag,

Basel, Switzerland, 2004. Birkhauser Verlag.

[ZFI05] Rui Zhang, Jun Furukawa, and Hideki Imai. Short signature and uni-

versal designated verifier signature without random oracles. In John

Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, ACNS, vol-

ume 3531 of Lecture Notes in Computer Science, pages 483–498, 2005.

[ZK02] Fangguo Zhang and Kwangjo Kim. ID-based blind signature and ring

signature from pairings. In Yuliang Zheng, editor, ASIACRYPT, volume

2501 of Lecture Notes in Computer Science, pages 533–547. Springer,

2002.

Index

IBI-CRA, 184

IBI-PA, 177

CR1+ Attack, 35

CR1 Attack, 33

CR2 Attack, 33

Semi-trust , 155

a single sign-on identity identification server,

87

AA, 34

Active Attack, 34

aggregate signature, 159

Anonymity, 74

AS, 159

BB04, 20

BGLS’s Verifiably Encrypted Signatures,

163

Bilinear Diffie-Hellman problem, 12

Bilinear Pairings, 9

BLS, 18

BLS’s Short Signature Scheme, 18

Boneh-Boyen Short Signature, 19

CDH, 10

Coalition-resistance, 94

Computational and Decisional Diffie-Hellman

Problem, 10

Computational Diffie-Hellman Assump-

tion, 11

Computational Diffie-Hellman Problem,

10

DBDH, 12

DDH, 11

Decision Bilinear Diffie-Hellman, 12

Decisional Diffie-Hellman Problem, 11

Deniability, 194

Designated Verifier Signature Scheme, 20

designated verifier unforgeability, 22

DVS, 20

EDID, 192

escrowed deniable identification, 192

fair multi-signature, 150

Fairness, 154

FMS, 150

Gap Diffie-Hellman problem, 11

GDH, 11

Group, 8

Identity-based Identification Scheme against

Impersonation under CR1+ Attack,

184

Identity-based Identification Schemes against

Impersonation under Passive At-

tack, 177

Impersonation, 195

Invisibility, 96

230

INDEX 231

KH-IBI, 41

KH-IBI-AC, 42

KH-IBI-P, 41

Kurosawa-Heng identity-based identifica-

tion scheme, 41

LOSSW’s Verifiably Encrypted Signatures,

166

MLCS, 90, 126

MS, 147

multi-level controlled signature, 90, 126

multi-signature, 147

Non-transferability Privacy, 28

one-time universal designated verifier sig-

nature, 48, 49

One-Way Pairing problem, 12

OT-UDVS, 48, 49

PA, 34

Passive Attack, 34

PCS, 90, 91

policy-based signature, 86

policy-controlled signature, 90, 91

Privacy of Signer’s Identity, 23

Random Oracle Model, 14

Reset Lemma, 13

Schnorr’s Identification Scheme, 37

SDH, 11

SIIS, 87

Single Designatability, 55

Standard Model, 14

Strong Diffie-Hellman Problem, 11

Strong Existential Unforgeability, 18

TC, 31

the concurrent-reset-1, 33

the concurrent-reset-2, 33

Transferability, 196

Trapdoor Commitment Scheme, 30

TS-UDVS, 48

UDVS, 25

Unforgeability, 17

Universal Designated Verifier Signature

Scheme, 25

universal designated verifier signature with

threshold-signers, 48

universal policy-controlled signature, 87,

108

UPCS, 87, 108

verifiable encrypted signatures, 157

VES, 157

Waters’s Short Signatures, 20

Weak Chosen Message Attack, 18

	Abstract
	Acknowledgement
	Publications
	Notation
	Abbreviations and Acronyms
	List of Tables
	List of Figures
	Introduction
	Background and Problems
	Objectives of this Thesis
	Organisation of this Thesis

	Preliminaries: Mathematical Foundations
	Number Theory and Basic Algebra Foundations
	Group
	Bilinear Pairings

	Cryptographic Primitives and a Brief Review on Provable Security
	Computational and Decisional Diffie-Hellman Problem
	Variants of Diffie-Hellman Problem
	Gap Diffie-Hellman problem
	Bilinear Diffie-Hellman problem
	One-Way Pairing problem
	Reset Lemma
	Random Oracle Model and Standard Model

	Background and Cryptographic Tools
	Signature Schemes
	Security of Signature Scheme
	BLS's Short Signature Scheme from Bilinear Pairing
	Boneh-Boyen Short Signature without Random Oracles
	Waters's Short Signatures without Random Oracles

	Designated Verifier Signature Scheme
	Security of Designated Verifier Signature Scheme

	Universal Designated Verifier Signature Scheme
	Security of Universal Designated Verifier Signature Scheme

	Trapdoor Commitment Scheme
	A Concrete Scheme of a Trapdoor Commitment Scheme

	Identification Scheme
	Types of Attack
	Definition of Identification Scheme
	Security of Identification Scheme
	Schnorr's Identification Scheme

	Identity-based Identification Scheme
	Definition of Identity-based Identification Scheme
	Security of Identity-based Identification Scheme
	Kurosawa-Heng Identity-based Identification without Random Oracles Scheme

	Universal Designated Verifier Signature Schemes
	Introduction
	Related Work
	Our Contributions

	Definition of One-Time Universal Designated Verifier Signatures
	Outline of OT-UDVS
	Completeness
	Unforgeability
	Non-transferability Privacy
	Single Designatability

	The Proposed OT-UDVS Scheme
	Security Analysis of OT-UDVS
	Completeness
	Unforgeability
	Non-transferability Privacy
	Single Designatability

	Definition of Universal Designated Verifier Signature with Threshold-Signers Schemes (TS-UDVS)
	Outline of TS-UDVS
	Completeness
	Unforgeability
	Non-transferable Privacy
	Anonymity

	The Proposed TS-UDVS Scheme
	Security Analysis of TS-UDVS
	Completeness
	Unforgeability
	Non-transferable Privacy
	Anonymity

	Conclusion

	Policy-controlled Signatures Scheme and Its Applications
	Introduction
	Related Work
	Our Contributions

	Definition of Policy-controlled Signature Scheme (PCS)
	Outline of PCS
	Unforgeability
	Coalition-resistance
	Invisibility

	The Proposed PCS Scheme
	The General Construction

	Security Analysis
	Unforgeability
	Coalition-resistance

	Definition of Universal Policy-controlled Signature Scheme (UPCS)
	Outline of UPCS
	Unforgeability
	Coalition-resistance

	The Proposed UPCS Scheme
	Security Analysis of UPCS Scheme
	Unforgeability: Policy Signer
	Unforgeability: Signer
	Coalition-resistance

	Definition of Multi-level Controlled Signature Scheme (MLCS)
	Outline of MLCS
	Unforgeability
	Coalition-resistance

	The First Proposed MLCS Scheme
	Security Analysis of the First MLCS scheme
	Unforgeability
	Coalition-resistance

	The Second Proposed MLCS Scheme
	Security Analysis of the Second MLCS Scheme
	Unforgeability
	Coalition-resistance

	Conclusion

	Fair Multi-Signature Scheme
	Introduction
	Related Work
	Our Contributions

	Definition of Fair Multi-Signature Schemes
	Outline of FMS
	Unforgeability
	Fairness
	Semi-trust

	Generic Construction of FMS scheme
	Verifiable Encrypted Signature Scheme from Aggregate Signature
	Aggregate Signature Scheme
	Generic Construction Scheme

	Security Analysis for The Generic Construction Scheme
	Unforgeability
	Fairness
	Semi-trust

	An Instantiation
	BGLS's Verifiably Encrypted Signatures
	Instantiation from BGLS Scheme

	Another Instantiation in the Standard Model
	LOSSW's Verifiably Encrypted Signatures
	Instantiation from LOSSW Scheme

	Conclusion

	Identification Schemes
	Introduction
	Related Work
	Our Contribution

	Definition of Identity-based Identification Scheme
	Outline of Identity-based Identification Schemes
	Security of Identity-based Identification Schemes against Impersonation under Passive Attack
	Security of Identity-based Identification Schemes against Impersonation under CR1+ Attack

	Identity-based Identification Schemes against Impersonation under Passive Attack (IBI-PA)
	An Experiment on Identity-based Identification Schemes against Impersonation under Passive Attack
	Proof of Security

	Identity-based Identification Scheme against Impersonation under CR1+ Attack (IBI-CRA)
	An Experiment on Identity-based Identification Schemes against Impersonation under CR1+ Attack
	Proof of Security

	Efficiency
	Definition of Escrowed Deniable Identification Schemes
	Outline of Escrowed Deniable Identification Schemes
	Deniability
	Impersonation
	Transferability

	Our Construction
	High Level Idea
	The Construction

	Security Analysis
	Deniability
	Security Analysis for Impersonation
	Security Analysis for Transferability

	Conclusion

	Conclusions and Further Works
	Contribution to Signature schemes
	Universal Designated Verifier Signature Schemes
	Policy Controlled Signature Schemes
	Fair Multi-Signature Schemes

	Contribution to Identification Schemes
	Further works

	Bibliography
	Index

