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Abstract

Voltage fluctuations which cause lamp flicker tend to propagate from the point of ori-

gin to various parts of a power system exhibiting some level of attenuation depending

on factors such as system impedances, composition of loads and frequency compo-

nents of the fluctuating waveform. Maintaining the flicker levels at various busbars

below the planning limits specified by the standards is crucial, and in this regard it

is important to develop an insight into the manner in which the flicker propagates

via systems operating at different voltage levels. This thesis presents flicker trans-

fer analysis methodologies applicable for radial and interconnected power systems

particularly considering the influence of induction motor loads on flicker attenuation.

In the first phase of the work, development of the foundations towards flicker

transfer analysis methodologies is carried out by investigating the stand-alone be-

haviour of induction motors that are subjected to regular supply voltage fluctuations.

The electrical and mechanical response of induction motors to two types of sinusoidal

fluctuations in the supply voltage where (a) a positive or negative sequence sinusoidal

frequency component is superimposed on the mains voltage and (b) mains voltage

amplitude is sinusoidally modulated are examined. State space representation of

induction motors is used to develop a linearised induction motor model describing

the response of the stator current and the rotor speed to small voltage variations in

the supply voltage. The results from the model reveal that various sub-synchronous

and/or super-synchronous frequency components that exist in the supply voltage as

small voltage perturbations can influence the dynamic response of the machine in

relation to flicker. In particular, oscillations in the electromagnetic torque and ro-

tor speed arising as a result of the applied voltage perturbations are found to be

the key influencing factors controlling the stator current perturbations. It has been

noted that, the speed fluctuation caused by a superimposed positive sequence voltage

v
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perturbation tends to produce extra emf components in the rotor which in turn can

reflect back to the stator. This concept of multiple armature reaction has been found

to be significant in large motors especially when the superimposed frequencies are

closer to the fundamental frequency.

The second phase of the work covers the development of systematic methods for

evaluation of flicker transfer in radial and interconnected power systems taking the

dynamic behaviour of induction motors into account. In relation to radial systems,

small signal models are developed which can be used to establish the flicker propa-

gation from a higher voltage level (upstream) to a lower voltage level (downstream)

where induction motor loads are connected. Although this method can be applied for

regular or irregular voltage fluctuations, emphasis has been given to sinusoidal voltage

fluctuations arising from conventional sinusoidal amplitude modulation of upstream

voltage. Moreover, the method examines the propagation of sub-synchronous and

super-synchronous frequency components that exist in the supply voltage as side

bands and hence determines the overall attenuation in the voltage envelope. The

contribution of induction motors of different sizes and other influential factors such

as system impedance, loading level of the motor are examined. It has been noted that

in general higher frequency components of the upstream fluctuating voltage envelope

tend to attenuate better at the downstream. A method is also presented which allows

aggregation of induction motors at the load busbars in relation to flicker transfer

studies.

In relation to interconnected systems, a frequency domain approach which can

be used to investigate the flicker transfer is presented. This approach can be consid-

ered as an extension to the impedance matrix method as described in the literature

and can overcome some of the limitations of the latter method. In the proposed ap-

proach, induction motor loads are modelled in a more realistic manner to replicate
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their dynamic behaviour, thus enabling the examination of the frequency dependent

characteristics of flicker attenuation due to induction motors and the influence of tie

lines in compensating flicker at remote load busbars consisting of passive loads.

To verify some of the theoretical outcomes real time voltage waveforms captured

from a large arc furnace site have been used, in addition to the experimental work

using a scaled down laboratory set up of a radial power system.



List of Principal Symbols

δi voltage angle of ith node [degree]

∆i variation in stator current [pu]

∆ids, ∆iqs d-q axes stator current variations [pu]

∆P active power drawn by the motor at frequency fi [kW]

∆Q reactive power drawn by the motor at frequency fi [kVAr]

∆v magnitude of voltage fluctuation [pu]

∆vs variation in amplitude of the supply voltage [pu]

EPsti flicker emission limit of an individual load
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fi superimposed sub-synchronous or super synchronous frequency [Hz]

fm modulation frequency [Hz]

fr rotor speed (electrical) [Hz]
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φm phase angle of modulating signal [rad]

GPst global flicker contribution

H inertia constant

Ip amplitude of line current

J moment of inertia [kgm2]

k load torque constant

LPst short term flicker planning level

m modulation depth (factor)

ωb base angular frequency [rad/s]
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ωe synchronous speed (angular) [elec rad/sec]

ωm modulation frequency (angular) [rad/sec]
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p d
dt

operator

Pit instantaneous flicker sensation

Pst short term flicker severity index

Plt long term flicker severity index

r′r rotor resistance (referred to the stator) [Ω]

rs stator resistance [Ω]

ψd, ψq d-q axes flux linkages per second [V]

ψ′
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′
q d-q axes flux linkages per second referred to the stator [V]

s Laplace operator

Si consumer’s agreed power [MVA]

StMV total supply capacity at a MV busbar [MVA]

StHV total supply capacity at a HV busbar [MVA]

Te electromagnetic torque [Nm]

TL load torque [Nm]

TPstAB
flicker transfer coefficient from A to B

TLSB, TUSB transfer coefficients of lower and upper side band voltages

u control (input) vector

vd, vq dq axes voltages [V]

v′d, v
′
q dq axes voltages referred to stator [V]

Vm peak value (amplitude) of the modulating signal [V]

Vp amplitude of line-to-neutral voltage [V]

x state vector

X ′
lr stator leakage reactance (referred to the stator) [Ω]
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X ′
d sub transient reactance of the generator

Xls stator leakage reactance [Ω]

XM mutual reactance [Ω]

y output vector

subscripts:

s stator variables

r rotor variables

o steady state values
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