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Abstract 

ABSTRACT 

The work in this thesis concentrates on the fabrication and characterization of MgB2 

superconducting bulk wire and tape. An overview of the research on MgB2 

superconductor during the last three years is also provided.  

High transport and magnetic critical current density values above 105 A/cm2 have been 

obtained for metal-clad wires and tapes. Fe-clad MgB2 tapes were fabricated using a 

powder-in-tube technique. The tape shows a sharp transition with a transition width ∆Tc 

of 0.2 K and a Tc0 of 37.5 K. An high transport critical current value of 1.7 × 104 A/cm2 

for both 29.5 K in 1 Tesla and 33 K in zero applied field has been achieved.  The effects 

of sintering time and temperature on the formation and critical current densities of Fe-

clad MgB2 wires is also investigated. MgB2 wires were sintered for different periods of 

time at predetermined temperatures. In contrast to the common practice of sintering for 

several hours, results show that there is no need for prolonged heat treatment in the 

fabrication of Fe/MgB2 wires. A total time in the furnace of several minutes is enough 

to form nearly pure MgB2. Jc of 4.5×105 A/cm2 in zero field and above 105 A/cm2 in 2 T 

at 15 K has been achieved for Fe/MgB2 wires sintered for a short time. These findings 

substantially simplify the fabrication process, making it possible to have a continuous 

process for fabrication and reducing the costs for large-scale production of MgB2 wires. 

Ag and Cu clad MgB2 wires were also fabricated using an in-situ reaction method. The 

effects of a shorter than usual sintering on the critical current densities of Ag and Cu 

clad MgB2 wires were studied. For Ag clad wire Jc is improved by more than two times 

after the short period sintering process. Jc values of 1.2×105 A/cm2 in zero field and 

above 104 A/cm2 in 2 T at 20 K have been achieved for Ag clad MgB2 wire which is 

only sintered for a few minutes at 800 oC. However, a remarkable degree of reaction has 

been found between the superconducting cores and the sheath materials, leading to the 

formation of Cu2Mg and Ag3Mg for copper and silver clad wires, respectively. The 

results show that the short sintering causes less reaction between the magnesium and the 

sheath materials and markedly improves the critical current density. Our results also 

show that iron is still the best sheath material for MgB2 superconductor wire and tape. 

Sixteen-filament stainless steel/Fe/MgB2 wires were fabricated by the powder-in-tube 

method followed by groove rolling. Magnetic critical current densities of 3.4×105 A/cm2 
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in 0.5 T and about 1.9×105 A/cm2 in 1 T at 5 K were achieved. Results on transport Jc of 

solenoid coils up to 100 turns fabricated with Cu-sheathed MgB2 wires using a wind-

reaction in-situ technique are reported. Despite the low density of the single core and 

some reaction between the Mg and the Cu-sheath, our results demonstrate that the 

decrease in transport Jc with increasing length of MgB2 wires is insignificant. Solenoid 

coils with diameters as small as 10 mm can be readily fabricated using a wind-reaction 

in-situ technique. The Jc of coils is essentially the same as for straight wires. Jc values of 

133,000 A/cm2 and 125,000 A/cm2 at 4 K and self field have been achieved for small 

coil wound using Cu-sheathed tape and Cu-sheathed wire respectively. The results 

indicate that the MgB2 wires have potential for large scale applications. 

The effect of chemical doping on the superconductivity and critical current density of 

MgB2 superconductor is investigated. Enhancements in the Jc field performance as well 

as the irreversibility field were obtained due to chemical doping with both C and SiC 

nano-particles. 

Doping MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10 wt% nano-SiC doped MgB2 

sample, led to slight decrease in Tc and significantly enhanced Hc2, Hirr and Jc at high 

magnetic fields. Compared to the non-doped sample, Jc for the 10 wt% doped sample 

increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. 

At 20 K, which is considered to be a benchmark operating temperature for MgB2, the 

best Jc for the doped sample was 2.4×105 A/cm2 at 2 T, which is comparable to Jc of the 

best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was 36,000 A/cm2, which is an order of 

magnitude higher than for the Fe/MgB2 tape. Our results show that there are two 

distinguishable but closely related mechanisms: increase of Hc2 and improvement of 

flux pinning that control the performance of Jc(H) in the samples. SiC-doping 

introduced many nano-scale precipitates and disorders at B and Mg sites, provoking a 

high resistivity of ρ (40K) = 300 µΩ-cm (RRR = 1.75) for the SiC-doped sample, 

leading to significant enhancement of both Hc2 and Hirr with only minor effects on Tc. 

EELS and TEM analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, 

and BC at a scale below 10 m and an extensive domain structure of 2-4nm domains in 

the doped sample which serve as strong pinning centers. The effect of nano-SiC doping 

on the critical current density and flux pinning of Fe/MgB2 wires is also investigated. 

The depression of Tc with increasing SiC doping level remained rather small. High level 
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SiC doping resulted in a substantial enhancement in the Jc(H) performance. The 

transport Jc for all the wires is comparable to the magnetic Jc at higher fields despite the 

low density of the samples. The transport Ic for the 10 wt% doped Fe/MgB2 wire 

reached 675 A at 24 K and 1 T (Jc = 140,000 A/cm2) and 500 A at 20 K and 2T (Jc = 

103,000A/cm2). The transport Jc for the 10wt% SiC doped MgB2 wire is 30 times 

higher than for the undoped wire. SiC doped MgB2 polycrystalline samples were 

fabricated using different grain sizes (20 nm, 100 nm, and 37 µm) of SiC and different 

doping levels (0, 8, 10, 12, 15 wt %) in order to investigate the effect of the particle size 

of the starting SiC powder on the properties of samples. Results show that grain sizes of 

the starting precursors of SiC have a strong effect on the critical current density and its 

field dependence. The smaller the SiC grains are, the better the Jc field performance is. 

Significant enhancement of Jc and the irreversibility field Hirr were revealed for all the 

SiC doped MgB2 with additions up to 15 wt%. A Jc as high as 20,000 A/cm2 in 8 T at 5 

K was achieved for the sample doped with 10 wt% SiC with a grain size of 20 nm. 

Results indicate that the nano-inclusions and substitution inside MgB2 are responsible 

for the enhancement of flux pinning. 

Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon 

powder were prepared using an in-situ reaction method under well-controlled conditions 

to limit the extent of C substitution. It was found that both the a-axis lattice parameter 

and the Tc decreased monotonically with increasing doping level. However, for the 

sample doped with the highest nominal composition of x=0.4 the Tc dropped only 2.7 K. 

The nano-C doped samples showed an improved field dependence of the Jc compared 

with the undoped sample over a wide temperature range. The enhancement by C-doping 

is not as strong as for nano-SiC doped MgB2. X-ray diffraction results indicate that C 

reacted with Mg to form nano-size Mg2C3 and MgB2C2 particles.  

A study of ac susceptibility, magnetic shielding and the sample size effect is presented 

in Chapter 6. Systematic ac susceptibility measurements were performed on MgB2 bulk 

samples. It is shown that the flux creep activation energy is a nonlinear function of the 

current density U , indicating a nonlogarithmic relaxation of the current 

density in this material. The dependence of the activation energy on the magnetic field 

is determined to be a power law 

( ) 2.0−∝ JJ

∝ BBU , showing a steep decline in the activation ( ) 33.1−
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energy with magnetic field, which accounts for the steep drop in the critical current 

density with magnetic field that is observed in MgB2.  

Magnetic shielding was investigated by means of transport critical current 

measurements for Fe-sheathed MgB2 round wires. Strong magnetic shielding by the iron 

sheath was observed, resulting in a decrease in Ic by only 15% in a field of 0.6 T at 32 

K. In addition to shielding, interaction between the iron sheath and the superconductor 

resulted in a constant Ic between 0.2 and 0.6 T. This was well beyond the maximum 

field for effective shielding of 0.2 T. This effect can be used to substantially improve 

the field performance of MgB2/Fe wires at fields at least 3 times higher than the range 

allowed by mere magnetic shielding by the iron sheath. The dependence of Ic on the 

angle between the field and the current showed that the transport current does not flow 

straight across the wire, but meanders between the grains. 

The effect of sample size on the critical current density and the flux pinning of pure and 

SiC doped MgB2 bulk samples has been investigated. At high fields a systematic 

degradation of magnetic Jc and Hirr was observed as the sample size decreased. 

However, Jc remarkably increased on decreasing the sample volume at low magnetic 

fields below 1 T. The SiC doped samples show less sample size effect than the pure 

samples, indicating a larger n-factor and therefore a stronger pinning effect due to SiC 

doping.
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CHAPTER 1: INTRODUCTION 

Superconductivity has been an exciting, fascinating and challenging topic for almost 

one century. This phenomenon was observed for the first time by a brilliant Dutch 

physicist. Heike Kamerlingh Onnes, a professor of physics at the University of Leiden, 

successfully liquefied Helium in 1908 and was subsequently able to reduce the 

temperature of liquid helium down to as low as 0.9 K. He had intended to measure the 

resistivity of metals as a function of temperature at very low temperatures. By 

measuring the resistivity of Mercury, as a high purity metal at the time, he found in 

1911 that the electrical resistivity of Mercury abruptly dropped to zero, the lowest 

measurable value, when the sample was cooled below 4.2 K [1]. Onnes realized that the 

new phenomenon represented a new physical state and termed it the superconductive 

state. In 1913, he won a Nobel Prize in Physics for his research in this field. His further 

investigation showed that other metals such as tin and lead also enter the 

superconducting state if they are cooled below 3.8 K and 7.2 K, respectively [2]. The 

temperature at which the transition from the normal state to the superconducting state 

occurs was called the critical temperature (Tc).  Onnes also observed that although it 

was possible to pass a huge electric current through the superconducting mercury 

sample, there was a threshold value for the current density above which the sample 

would return to the normal state [3]. This threshold value, which is extremely important 

for practical applications is called the critical current density (Jc). Moreover, Onnes also 

discovered that magnetic fields higher than Hc, the critical magnetic field, can similarly 

destroy the superconducting state.  

For many years the study of the low temperature properties of materials led to the 

observation of the superconductivity in many metals and alloys. 

In 1933, Walther Meissner and his student Robert Ochsenfeld discovered an important 

magnetic property of superconductors. They observed that a magnetic field lower than 

Hc was suddenly expelled by superconductor specimens on cooling below Tc [4]. In 

other words, the material becomes fully diamagnetic in the superconducting state. This 

is called the Meissner effect and was found to be an intrinsic property of 

superconductors. It has been widely used for the testing the superconducting state. Due 
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to the Meissner effect, if an external magnetic field is applied to a sample which is in 

the superconducting state, an electric current is produced near the surface of sample, in 

such a way as to create a magnetic field that exactly cancels the external magnetic field.  

In 1935, Fritz and Heinz London theoretically explained the Meissner effect by positing 

two groups of electrons in a superconducting material, the superconducting electrons 

and the normal state electrons. They employed the Maxwell equations to develop a set 

of electrodynamics equations, called the London equations [5].  According to the 

London equations, the magnetic field exponentially falls off with increasing distance 

from the surface of a superconducting sample. The characteristic decay length is called 

the London penetration depth (λ ). 

In 1950 V. Ginzburg and L. Landau developed a theoretical explanation for 

superconductors based on general symmetry properties [6]. Although the Ginzburg-

Landau theory explained the macroscopic properties of superconductors, the 

microscopic properties remained unsolved. 

Seven years later, three physicists at the University of Illinois in Urbana, John Bardeen, 

Leon Cooper and Robert Schrieffer, presented a theoretical explanation for the 

superconducting state [7]. This theory was widely accepted and is well known as the 

BCS theory. Based on this theory, despite the Coulomb repulsive forces between the 

electrons, due to distortion in the crystal structure (phonon mediation), slight attraction 

between pairs of electrons located near the Fermi surface leads to the production of 

bonded pairs of electrons, called Cooper pairs [8]. The size of a Cooper pair in a 

superconductor is known as the coherence length (ξ ). The BCS theory explained 

superconductivity in the low temperature and low magnetic field regime. Soon after 

that, the BCS theory was extended and become useful for high magnetic fields as well 

[9]. 

Alexei Alekseevich Abrikosov theoretically investigated the properties of 

superconductors in external magnetic fields. In 1957 he discovered that superconducting 

materials can be separated into two groups, type-I and type-II superconductors [10]. His 

brilliant predictions were experimentally confirmed about three years later. In type-II 

superconductors there are two critical fields, the lower critical field (Bc1) and the upper 

critical field (Hc2). If the external magnetic field is lower than Bc1, the field is 
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completely expelled and the material behaves the same as a type-I superconductor. By 

increasing the field above Bc1 up to Bc2, the flux partially penetrates into the 

superconductor as vortices. As the field increases above Bc2, the flux totally penetrates 

the whole sample, and it returns to the normal state. 

In 1962 Brian D. Josephson, a 22 years old British student at Cambridge University, 

predicted that via a tunneling process, electric current could flow between two 

superconducting materials separated by a thin (a few nano-meter thick) insulating layer 

or weak link [11]. Later, his prediction was experimentally confirmed and became 

known as the Josephson effect. This phenomenon is widely used in applications of 

superconductors. 

A significant breakthrough was made in 1986 by Georg Bednorz and Alex Müller, at 

the IBM Laboratory in Rüschlikon, Switzerland, when they made a ceramic 

superconductor from lanthanum, barium, copper, and oxygen with a transition 

temperature of 35 K [12]. Subsequently, by substitution of yttrium for lanthanum 

another ceramic superconductor with a transition temperature of 92 K was discovered 

[13]. This was significant because it now became possible to use cheap liquid nitrogen 

as the refrigerant. Since the transition temperature of the material was considerably 

higher than those of the old superconductors, they called these materials the High 

Temperature Superconductors (HTS).  

Further investigation led to the synthesis of a new Tl-Ca-Ba-Cu-O superconductor with 

a Tc value of 120 K in 1988 [14]. In 1993 the mercury based oxide superconductor 

HgBa2Ca2Cu3O8 with a Tc of 133 K was discovered [15]. By the partial substitution of 

thallium for mercury in this material, the Tc value increased to 138 K for a 

superconductor with the nominal composition of Hg0.8Tl0.2Ba2Ca2Cu3O8+x [16].  

In terms of applications of high temperature superconductors in polycrystalline form, 

most efforts to date have been concentrated on two main groups of materials, YBCO 

[13] and BSCCO [17]. In the first group, YBa2Cu3O7 (Y123) has a Tc value of 93 K. 

The superconducting materials in the second group can be synthesized in three different 

phases, Bi2Sr2CuOx (Bi-2201), Bi2Sr2CaCu2Ox (Bi-2212) and Bi2Sr2Ca2Cu3Ox (Bi-

2223).  
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Although a single crystal of YBCO has quite an high critical current density and strong 

flux pinning, it was very soon confirmed that the polycrystalline form of this 

superconductor cannot be used due to weak links. Grain boundaries between grains that 

are misaligned by more that 10 degrees are not effectively transparent to current flow 

and act as strong barriers to current [18].  In the BSCCO group, so far Bi-2223 with a Tc 

value of 110 K has been the most promising compound. The grains in this material can 

be very well aligned by careful mechanical and thermal processing.  

The discovery of superconductivity at 39 K in MgB2 was first announced by Prof. J. 

Akimitsu in Jan. 2001 at the Symposium on Transition Metal Oxides in Sendai, Japan 

and published in Nature [19]. For the first few months of 2001, groups all over the 

world attempted to understand the properties of this new intermetallic superconductor. 

Tc was interestingly high compared to the other binary superconductors, almost twice as 

high as the highest Tc previously reported, 23 K in Nb3Ge. Such a high Tc attracted great 

interest in clarifying the mechanism of superconductivity in this material, since some 

theorists proclaimed that a transition temperature higher than 23 K was not possible 

[20]. On the other hand, although the transition temperature of MgB2 was only 39 K, 

indeed much lower than the Tc of 134 K attained by mercury based high-Tc 

superconducting cuprates (HTS), MgB2 superconducting wire and tape were quickly 

prepared by many groups. The biggest motivation to use MgB2 conductors for power 

applications is the cost of this superconductor [21]. Despite the low cost of cooling the 

HTS with liquid nitrogen, the available HTS conductors, made from BSCCO, consume 

a large amount of expensive silver, about 70% by volume [21]. However MgB2 is a 

quite simple compound made of relatively low cost elements. It also can be cooled to a 

practical temperature by inexpensive and readily available closed-cycle cryocooler 

systems. In addition, the large coherence length, low anisotropy, strong grain 

connectivity, and high critical current density of MgB2 make this superconductor a good 

candidate for practical applications. 

In this thesis, we study the preparation and characterization of MgB2 superconductor 

bulk, wire and tape. Our main focus is on possible ways to improve its properties to 

push it toward practical applications. We have developed techniques to prepare high 

quality MgB2 samples. The standard powder-in-tube technique was used to prepare 

mono-and multi-filamentary wire and tape. Cu, Ag, Fe and stainless steel were used as 
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sheath materials. Fe appears to be the most suitable sheath material among them, not 

only because of less reaction with the superconducting core, but also because it partially 

shields the superconducting core against an external magnetic field. It was found that 

pure MgB2 superconductor is not very suitable for practical applications due to low flux 

pinning and low upper critical field. The poor flux pinning in pure MgB2 samples that 

leads to steep decreases in Jc as the magnetic field increases was also confirmed by ac 

susceptibility measurements. However, we show that the high field critical current 

density, the upper critical field, and Hirr can be improved by chemical doping.  Both C 

and SiC nano-particle doping are shown to significantly improve the Jc field 

performance, making the materials suitable for practical applications. We have also 

shown that the Hirr and zero field Jc are strongly dependent on the sample size in both 

pure and SiC-doped polycrystalline samples. However, SiC-doped sample show a much 

lower sample size effect compared to pure samples. 
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CHAPTER 2: LITERATURE REVIEW 

2-1 Introduction 

Magnesium diboride is an old material, synthesized and very well known since 1954 

[1]. The discovery of superconductivity at 39 K in MgB2 was first announced by Prof. J. 

Akimitsu in Jan. 2001 at the Symposium on Transition Metal Oxides in Sendai, Japan. 

Soon after that many groups all over the world attempted to work on this this new 

intermetallic superconductor. From an experimental point of view, different aspects 

have been studied, such as preparation of this superconductor, including the preparation 

of samples in the form of bulk, wire, tape and thin film, as well as the characterization 

of samples. At the same time many groups have tried to theoretically explain the 

properties of this superconductor. Papers daily appear on the cond-mat website 

providing rapid communications between all groups. More than 900 papers have been 

submitted to the cond-mat website during the last three years. Also according to the ISI 

Current Contents Database, until Jan 2004 more than 1300 papers with the title or 

subject of MgB2 or magnesium diboride have been published in the international 

journals. The large amount of published research results reveals the great interest of the 

research community in this newly discovered material. In this chapter we provide 

general information about this superconductor and present a brief overview of the 

research progress in this field.  

2-2 Crystal Structure and Superconductivity in MgB2 

MgB2 has a layered structure with the P6/mmm space group, as shown in Fig. 2-1. It 

contains graphite-type boron layers that are separated by hexagonal close-packed 

magnesium layers. Each magnesium atom is located at the center of hexagons of boron 

atoms. The hexagonal unit cell has the in plane and out of the plane lattice parameters of 

a = 3.086 Ǻ and c = 3.524 Ǻ, respectively. Both transport and magnetic measurements 

show that MgB2 is a superconductor with a transition temperature of about 39 K Fig. 2. 
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Figure 2- 1: The crystal structure of MgB2. 

 
Figure 2- 2: Temperature dependence of the resistivity of MgB2 under zero magnetic field [2]. Inset 
is the field dependence of the susceptibility under zero field cooling (ZFC) and field cooling (FC) 
conditions. 
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2-3 Overview of Progress on MgB2 

2-3-1 Superconducting Energy Gap 

According to the BCS model the value of the superconducting gap is given by ∆=1.76 

KBTc [3]. Taking the Tc value of 39 K into account, we obtain a value of ∆=5.9 meV for 

MgB2 superconductor. Soon after the discovery of MgB2 superconductor, the energy 

band structure of this superconductor near the Fermi energy was theoretically calculated 

from first principles [4-13]. The band structure of this compound is shown in Fig. 2-3. 

 
Figure 2- 3: Band structure of MgB2 superconductor with the B p character. The radii of the gray 
and black circles are proportional to the B pz and B px,y character respectively [4]. 

An early scanning tunneling spectroscopy experiment by Karapetrov et al shows that the 

value of the superconducting gap in MgB2 at 4.2 K is 5 meV [14] with a temperature 

dependence of the BCS form. 

Rubio-Bollinger et al. also reported a tunneling spectroscopy experiment [15] in small 

grains of MgB2 and a good fit to the BCS model with a gap value of 2 meV was 
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obtained. To explain such a large discrepancy from the expected value of 5.9 meV they 

supposed that this value was due to the deviation of the DOS at the surface of 

superconductor with respect to the bulk. Therefore they supposed that this value of gap 

corresponded to a critical temperature at the surface of about 13.2 K. 

Further experimental studies with different techniques such as specific heat 

measurements, point contact spectroscopy, Raman spectroscopy, tunneling spectroscopy 

and Andreev reflection spectroscopy indicate that in contrast to the conventional 

superconductors, MgB2 has two different sized superconducting gaps of about ∆(0) = 7 

meV for the σ sheets and ∆(0) = 2meV for the π sheets [16-56].  The superconductor 

gaps decrease with temperature, and both gaps equally become zero at T=Tc as is shown 

in Fig. 2-4. These results are also supported by theoretical studies [8, 57-60]. It has been 

shown that the Fermi surface of this compound consists of four bands, two σ-type two-

dimensional cylindrical hole sheets and two π-type three-dimensional tubular networks 

[4, 61, 62] as is shown in Fig. 2-5. This Fermi surface topology is very well confirmed 

by de Hass-van Alphen experiments as well [63, 64].  

 
Figure 2- 4: Temperature dependence of superconducting gaps in MgB2. Vertical solid curves 
represent the distribution of the superconducting gap values at various temperatures from 4 K to 
38 K [60]. 

 

10 



Chapter 2 : Literature Review 
 

 
Figure 2- 5: The Fermi surface of the MgB2 superconductor. The green and blue surface (holelike) 
comes from the bonding px,y bands, the blue tubular network (holelike) from the bonding pz bands, 
and the red (electronlike) tubular network from the antibonding pz band. The last two surfaces 
touch at the K point [4]. 

2-3-2 Hall Effect 

The first measurement to evaluate the longitudinal resistivity (ρxx) and Hall coefficient 

(RH) of the polycrystalline MgB2 sample by Kang et al. shows that RH is positive in this 

superconductor for all temperatures above Tc [65], indicating that the charge carriers in 

MgB2 are holes. According to their results RH decreases with decreasing temperature 

with the value of RH = 4.1 x 10-11 m3/C at 100 K (Fig. 2-6). They also showed that Cot 

θH is proportional to T1.8 as shown in the inset of Fig. 2-6.  

The hole carrier density calculated by this group at this temperature is 1.5×1023 /cm3, 

which is about one order of magnitude larger than the charge carrier density in Nb3Sn 

[66] and about two orders of magnitude larger than YBa2Cu3Oy [67] at the same 

temperature. An Hall coefficient measurement of a c-axis oriented thin film by the same 

group confirmed that holes are the charge carriers [68, 69] (Fig. 2-7). In addition, it was 

found that Cot θH linearly increases as a function of T2 instead of T1.8. However a 

deviation from linearity occurred in the temperature range below 130 K (T* in Fig. 2-7) 

[69].  
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Figure 2- 6: Hall coefficient at 5 K. Top inset is the cotangent of the Hall angle measured at 5 T. 
The curve shows a nearly T1.8 behavior. Bottom inset is the temperature dependence of the ρxx curve 
which shows an overall T2 behavior and a sharp transition near Tc [65]. 

 
Figure 2- 7: RH versus temperature of MgB2 thin films at 5 T. Distinct temperature dependencies of 
the RH are evident below and above 130 K. The upper inset is the temperature dependence of Cot θH 
at 5 T. A clear T2 law was observed above 130 K. The lower inset is a schematic diagram of the 
Hall-bar pattern. [68, 69] 
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More measurements by Kang et al. showed no Hall sign anomaly in the mixed state 

(Fig. 2-8) [68]. Other results reported by this group also indicated a universal scaling 

law of ρxy∝  ρβxx with β~2 in the mixed state and ρxy and ρxx the longitudinal and Hall 

resistivities, respectively. These results were in agreement with the experimental results 

for Bi2Sr2CaCu2O8 single crystal [70] and Tl2Ba2Ca2Cu3O10 thin film[71]. It is also in 

agreement with the universal Hall scaling theory proposed by Vinokur et al. [72].  

However, experimental results reported by Jin et al. showed an unusual Hall effect in 

the mixed state in superconducting MgB2 films [73]. In contrast to Kang et al., Jin et al. 

observed a sign reversal in the measured Hall resistivity versus temperature over a wide 

range of applied magnetic field up to 8 T, as we can see in Figs. 2-9 and 2-10. An 

anisotropy in the normal state Hall effect was also observed in the MgB2 single crystal 

by Eltsev et al. (Fig. 2-11) [74, 75]. They found a positive in-plane Hall constant (H 

parallel to the c axis) in agreement with the previous experiments, while they found that 

the out-of-plane Hall constant (H parallel to ab plans) is negative, indicating n-type 

charge carriers.  

 
Figure 2- 8:  ρxx (a) and ρxy (b) measured at applied current densities of 102, 103, and 104 A/cm2 and 
for H=2 and 5 T. No sign change was observed in the mixed-state, which is in contrast to the HTS 
case [68]. 
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Figure 2- 9: Temperature dependence of RH (H=8T) of a MgB2 film plotted on a logarithmic 
temperature scale. The sign change of RH in the mixed state can be clearly seen. The inset is the 
Hall angle Cot θH versus the temperature between Tc and 300 K at H=8 T [73]. 

 
Figure 2- 10: Temperature dependence of (a) RH and (b) longitudinal resistivity ρ at H=2, 4, 6, and 
8 T [73]. 
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Figure 2- 11: The in- and the out-of-plane Hall constants, as a function of temperature in the 
normal state of MgB2 single crystals (top and bottom panels, respectively). Inset: Temperature 
dependence of Cot θH at 5 T. The line is a linear fit at intermediate temperatures of 150–220 K [74]. 

This result was in agreement with the numerical calculations of the independent Hall 

components of the resistivity tensor for MgB2 performed by Eltsev et al. (Fig. 2-12) 

[76]. The anisotropy in the Hall coefficient can be explained as follow: as we saw 

earlier, the Fermi surface of MgB2 consists of four bands, two hole-like σ-bands in the 

form of 2D cylindrical Fermi surfaces and two hole- and electron-like 3D π-bands [4, 8, 

9]. In the in plane case (H parallel to c), the hole-like carriers dominate the behavior of 

RH, resulting in positive values of RH. On the other hand when H is parallel to the ab 

plane (out-of-plane), the σ-bands become less important, and the electron-like carriers 

dominate the RH [75-77]. 
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Figure 2- 12: The numerical calculation of transport properties of MgB2 as a function of doping in a 
rigid-band scheme [76]. 

2-3-3 Pressure Effect 

Study of the superconducting properties under high pressure is one of the first 

experiments usually performed after the discovery of a new superconductor. The effect 

of pressure on the MgB2 superconductor has been examined by many groups in terms of 

either change in the transition temperature or change in lattice parameters. Table 2-1 

shows a summary of experimental results of the effects of pressure on the Tc of MgB2 

superconductor [78]. As we can see, the experiments have been carried out at pressures 

as high as 44 GPa. Also, different materials such as He, Fluorinert, NaF and Silicon oil 

have been utilized as a pressure medium. The experimental results of a few groups are 

also presented in Fig. 2-13 [79]. It can be seen that Tc monotonically decreases as the 

pressure is increased, with the measured dTc/dP values between –0.35 K/GPa [80, 81] 

and –2 K/GPa [82, 83]. However, a dTc/dP value of about –1.1 K/GPa is mostly 

confirmed by experiments. The reduction of Tc under pressure is consistent with a BCS-

type pairing interaction mediated by high-frequency boron-boron modes. This indicates 

that the reduction of the density of states at the Fermi energy, due to the contraction of 

B-B and B-Mg bonds, dominates the hardening phonon frequencies that can cause an 

increase in Tc as external pressure is applied [79]. 
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Table 2- 1: Summary of the experimental results of the pressure effects on MgB2 superconductor 
single crystal (first 5 rows) and polycrystalline (remaining rows) samples [78].  

Pmax (GPa) Tc (0) (K) (dTc/dP)0 (K/GPa) Measurement Pressure medium Sample Ref. 
0.63, 23 38.24 -1.10(3) χac He SC [78] 

0.61 38.27 -1.14(3) χac He SC [78] 
0.4 37.16 -1.17(4) χac He SC [78] 
0.58 37.88 -1.12(3) χac He SC [78] 
1.4 38 -2 ρ Fluorinert SC [82] 
0.66 39.1 -1.11(2) χac 

11B He PC [84] 
0.63 39.1 -1.09(4) χac

11B He PC [85] 
0.61 39.2 -1.11(3) χac

11B He PC [85] 
0.64 40.5 -1.12(3) χac

10B He PC [85] 
0.4 37.5 -1.13 χac He PC [86] 
0.84 39.2 -1.07 χac He PC [87] 
0.84 37.4 -1.45 χac He PC [87] 
0.6 37.3 -1.2 χac He PC [78] 
32.3 39.1 -1.1 χac 

11B He PC [78] 
33 40.2 -1.1 χac

mod 11B He PC [88] 
44 39.2 -1.6 χac

mod 10B He PC [88] 
15 39.1 -1.6 χac

mod 11B Fluorinert PC [78] 
1.84 37.4 -1.6 χac Fluorinert PC [89] 
28 37.3 -2 χac 4:1 methanol/ethanol PC [83] 

1.46 38.2 -1.36 ρ 1:1 dephne/kerosene PC [90] 
1.35 37.5 -1.9 ρ Fluorinert PC [91] 
1.1 38.3 -1.5(1) Χdc Kerosene/mineral oil PC [92] 
9 39 -1.03 ρ Fluorinert PC [93] 

40 39 -1.1 Χdc  PC [94] 
7.6 37.5 -1.6(increasing) Χac NaF PC [86] 
7.6 37.5 -1.13(decreasing) Χac NaF PC [86] 
11 39 -1.20(9) ρ Steatite PC [95] 
33 ~35 -0.35 to –0.8 ρ Steatite PC [80, 81] 
0.8 38 -1.18(6) Χdc Silicon oil PC [95] 

 

Changes in the crystal structure and lattice parameters of MgB2 superconductor under 

pressure have been studied by many groups [81, 86, 93, 96-100]. Experimental results 

confirm that MgB2 remains hexagonal and keeps its crystal structure even at high 

pressures up to 40 GPa [81]. It is also confirmed by all experimental results that an 

anisotropy in the compressibility of MgB2 occurs, with the c-axis lattice parameter 

decreasing faster than the a-axis lattice parameter as the hydrostatic pressure increases, 

indicating that the Mg-Mg (in-plane) bonds are stronger than the Mg-B (out-of-plane) 

bonds (Fig 2-14) [79]. This anisotropy in the compressibility decreases with pressure as 

revealed in the inset of Fig. 2-14 [79, 81].  

The differences in dTc/dP as well as in the compressibility values reported by different 

groups might be due to the different materials utilized in different experiments as the 

pressure medium, as we can see in Table 2-1 and Figs. 2-13 and 2-14 [78, 79].  
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Figure 2- 13: The pressure dependence of Tc of the MgB2 superconductor [79]. The legends indicate 
the pressure medium used by each author, Saito [91], Lorentz [87, 89], Tissen [83], Monteverde 
[80], Bordet [81], Schlachter [86], Tomita [84], Goncharov [100], and Deemyad [85]. 

 
Figure 2- 14: The pressure dependence of the normalized lattice parameters of MgB2 
superconductor. The lattice parameters are normalized to zero pressure values [79]. The legends 
indicate the pressure medium used by each author, Prassides [98], Goncharov [100], Vogt [96], 
Schlachter [86], and Bordet [81]. Inset shows the pressure dependence of the ratio between the c-
axis lattice parameters and a-axis lattice parameters [81]. 
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2-3-4 Isotope Effect 

An isotope effect on a superconductor transition temperature indicates the phonon 

mediation of superconductor coupling. MgB2 is a special system with two elements 

which both have different isotope masses that can change Tc due to substitution of 

different isotopes. For a single element superconductor, the isotope effect coefficient 

(α ) is defined as MdTd c lnln=α  or T  [101, 102]. M is an atomic mass, 

which is different for different isotopes of this superconductor.  

αMc ∝

For a multi-element superconductor the total isotope effect coefficient is the sum over 

the individual isotope effects for different masses Mi: 

∑ ∑ ∂∂−== icit MT lnlnαα  

Soon after the discovery of the MgB2 superconductor, the effect of B isotopes on this 

superconductor was measured by Bud’ko et al. [103]. They found that measurements of 

both temperature dependent magnetization and specific heat reveal a 1 K shift in Tc 

from 39.2 K for Mg11B2 to 40.2 K for Mg10B2 (Figs. 2-15 and 2-16).  Also, using the 

above equation they calculated the boron isotope coefficient to be αB = 0.26 (3), where 3 

indicates the error in the last decimal place. These results strongly support the idea that 

MgB2 is a phonon mediated BCS superconductor.  

 
Figure 2- 15: Magnetization divided by applied magnetic field as a function of temperature for 
Mg10B2 and Mg11B2 [103].  
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Further studies of the isotope effects of both the Mg and B elements were performed by 

Hinks et al. [104]. They measured six different samples prepared using 10B, 11B, 24Mg, 
25Mg and 26Mg isotopes. Fig. 2-17 shows the superconducting transition for the 

isotopically substituted MgB2 samples reported by Hinks et al. [104]. According to their 

experimental results, the B isotope effect coefficient is Bα = 0.3 (1), which was in good 

agreement with the measurements of Bud’ko et al. On the other hand, they found that 

Mg isotope has very little effect on Tc. Tc increases by about 0.1 K on substitution of 
24Mg with 26Mg.  The estimated Mg isotope effect coefficient is Mgα = 0.02 (1). 

Therefore the total isotope effect is 32.0MgBt . These results clearly indicate 

that the phonons involved in the superconductivity of MgB2 are mainly B phonons, 

while Mg phonons make very little contribution to the overall pairing. 

=+= ααα

 

 
Figure 2- 16: Temperature dependent specific heat of Mg10B2 and Mg11B2 in zero and 90 kG (filled 
circle and open triangles, respectively) applied magnetic field for temperatures near Tc. Arrows 
show the transition temperatures [103]. 
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Figure 2- 17: Superconducting transition for the MgB2 samples substituted by Mg and B isotopes 
(reported by Hinks et al.)  [104]. The magnetization for all samples is shown in (a) (nMg indicates a 
sample with natural Mg).  (b) and (c) show the small change in superconducting transition due to 
the substitution of Mg isotopes (the temperature scale is expanded). 

The total isotope effect for MgB2 is much lower than the expected value of 0.5 for a 

conventional BCS superconductor. Recent calculations [105] show that the reduced 

isotope effect can be due to the anharmonicity of the planar B optic mode. This idea was 

confirmed by Choi et al. [59]. By calculation of the isotopic-effect exponent coefficient 

from the anisotropic Eliashberg equation with anharmonic phonon frequencies, they 

obtained Bα = 0.32 and Mgα = 0.03 which are very close to the experimental values. 

However without anharmonicity they obtained Bα = 0.46 and Mgα = 0.02, indicating that 

the low isotope effect exponent coefficient is mainly due to phonon anharmonicity. 
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2-3-5 Fabrication of MgB2 Thin Film 

Superconducting films are important for electronics applications such as Josephson 

junctions and superconducting quantum interference devices (SQUID). Many groups 

have attempted to prepare MgB2 thin films. However, the high sensitivity of Mg to 

oxidation, the high volatility of Mg and the large difference between the vapor pressures 

of Mg and B are the main obstacles to preparation of superconducting MgB2 films. 

 MgB2 thin films have been prepared using the different techniques as listed in Table 2-

2. Pulsed laser deposition (PLD) seems to be the most common method for film 

fabrication among them. High quality films have been prepared using a one step 

preparation (in-situ) or a two step preparation (ex-situ) technique. Ex-situ techniques 

consist of deposition of amorphous B (or Mg-B composite) precursors on substrates, 

then heating the film in a rich Mg vapor. This method has been widely used and has 

been quite successful in growing high-quality films [106-112]. A few groups have also 

fabricated MgB2 film using the in-situ or one step technique [113-116].  

Each method has its benefits and disadvantage. The two step method gives good 

crystalline films and good superconducting properties, but cannot be used to fabricate 

Josephson junctions or multi-layer films. On the other hand, although the in-situ method 

gives films with poorer crystallinity and lower Tc, this method is applicable for multi-

layer fabrication. The one step method gives films with a more smooth surface than 

films made via the two step method, but generally speaking, MgB2 films have a rough 

surface morphology compared to YBa2Cu3O7 thin films. Therefore, methods need to be 

improved to be suitable for electronic device applications. However, recently Zeng et al. 

[117] reported in-situ growth of high-quality MgB2 thin films by using a newly 

developed technique of hybrid physical–chemical vapor deposition. This is expected to 

be a very promising growth technique in terms of applications for superconducting 

electronics.  

Different substrates have been used for the deposition of MgB2 thin films. Appropriate 

substrate selection is important in order to achieve better lattice matching and less 

reaction with the superconductor film. It has been reported that MgB2 reacts with many 

common substrate materials such as Si, SiO2, Al2O3, SiC and SrTiO3, but no reaction 
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occurs with ZrO2 and MgO [118]. To date, various substrates such as sapphire (Al2O3) –

R and -C, SrTiO3 (100) and (111), SiC (0001), LaAlO3, MgO (100) and Si (100) and 

(111) have been used to prepare MgB2 film. Al2O3 seems to be the most common 

substrate used to prepare high quality films. For this substrate, films prepared by Mg 

diffusion show higher Tc with a sharper transition than other films[79]. Fig. 2-18 which 

is extracted from reference [79] shows the critical temperature of thin films prepared on 

different substrates. 

 
Figure 2- 18: Critical temperature and critical temperature width for MgB2 films deposited on 
different substrates.  Figure is extracted from ref. [79]. Data are from the references: Al2O3 1 [107, 
111], 2 [109], 3 [106], 4, 8, 12 [112], 5 [119], 6, 10, 13 [111], 7 [120], 9, 14 [121], 11 [122], 14 [123]; 
SrTiO3- 1,2,3 [108],4 [124]; Si-1,2 [112], 3,4 [125],5, 6, 7 [111], 8 [124]; MgO- [124] ; SiC [124].  

 

2-3-6 Fabrication of MgB2 Single Crystal 

The physical properties of a superconductor especially the anisotropy properties, have to 

be studied on a single crystal. Many groups have attempted to grow single crystals after 

the discovery of MgB2 superconductor. However, the formation of MgO phase, the high 
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Table 2- 2: Summary of the experimental results on MgB2 superconductor thin film prepared by 
different techniques. 

Preparation technique Tc (K) Substrate Reference 
PLD 29-34 Al2O3 [126] 
PLD 22-24 Si, SrTiO3, MgO [124] 
PLD 27 Si [127] 
PLD 31-36 SrTiO3 [108] 
PLD 36 Al2O3, MgO [128] 
PLD 25 MgO, Al2O3 [114] 
PLD 39 Al2O3 [106] 
EBE1 39 Al2O3, MgO [110] 
PLD 22, 39 SrTiO3 [129] 

MBE2 36 Si, SrTiO3, Al2O3 [113] 
PLD 39 Al2O3 [119] 
PLD 38.6, 38.1 Al2O3, MgO [130] 
PLD 34 Al2O3 [120] 
EBE 26, 38 Al2O3 [131] 

rf MS3 35 Al2O3 [132] 
PLD, MS 34 Al2O3, MgO, STO [133] 

EBE 29 Si, Al2O3 [134] 
PLD 31.4, 36.2, 37.5 Al2O3, MgO [135] 
PLD 31.5, 37.4 MgO [136] 
CVD 39 Al2O3 [137] 
PLD 25, 37.5 Al2O3 [138] 
PLD 20, 30, 37 SrTiO3 [139] 
MBE 34.5 Al2O3 [115] 
PLD 39.2 Al2O3 [140] 

Vacuum co-deposition 29 Kapton-E polyamide foil! [141] 
PLD 20-24 Si, SrTiO3, MgO, SiC [142] 

HPCVD4 39.3 Al2O3, SiC [117] 
MTS5 28 Al2O3 [143] 
MBE 32-36 Si, SrTiO3, Al2O3 [144] 
MS 35 MgO [145] 

MBE 35.2 Si, MgO [146] 
CVD 35 Al2O3 [147] 
PLD 34 Al2O3 [148] 

Rf MS 24 SrTiO3, Al2O3 [149] 
Rf Sputtering 15-20 SrTiO3, Al2O3 [150] 

d.c. PMS6 35 Al2O3, MgO [151] 
PLD 38 Al2O3, MgO [152] 
PLD 24-30 AlB2, ZrB2, CaB6, Al2O3 [153] 
PLD 39.2 Al2O3 [69] 
MS 35 MgO, Al2O3 [154] 

rf MD 27 MgO [155] 
Ion implantation 11-18 Mg [156] 

HPCVD 41.8 SiC [157] 
MEB 15-37.5 Si, SrTiO3, Al2O3e, Glass [158] 
CVD 37.5 LaAlO3 [159] 

HPCVD 40 SiC [160] 
PLD, EBE 25-39 Al2O3, Si [111] 

PLD 25 Al2O3, MgO [121] 
PLD 24 Al2O3 [122] 
MS 24 Al2O3 [123] 
PLD 28 Al2O3 [116] 

                                                 
1 electron-beam evaporation 
2 molecular beam epitaxy 
3 magnetron sputtering 
4 hybrid physical–chemical vapour deposition (HPCVD) 
5 multiple-target sputtering 
6 planar magnetron sputtering 
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reactivity of Mg in the vapor and melt phases with containers and flux materials, the 

low solubility of MgB2 in Mg, and the high Mg vapor pressure and incongruent melting 

of Mg cause difficulties in the crystal growth procedure of MgB2 [161, 162].  

 A thermodynamic analysis of the Mg-B system using the calculation of phase diagrams 

modeling technique is presented by Liu et al. [163]. They calculated three phase 

diagrams of temperature–composition (Fig. 2-19), pressure–composition (Fig. 2-20), 

and pressure–temperature (Fig. 2-21) for this superconductor based on the known data 

on the MgB2, MgB4 and MgB7 phases. According to their results, MgB2 is stable only 

under high Mg overpressure. If the Mg overpressure is too low MgB2 tends to 

decompose to MgB4 +Mg (gas) [163]. For example under 1 atm and 1 Torr pressure, 

MgB2 is decomposed to MgB4 and Mg gas at 1545 oC and 912 oC, respectively [161]. 

 
Figure 2- 19: Temperature–composition phase diagrams of the Mg–B system under pressures of (a) 
1 atm, (b) 1 Torr, and (c) 1 mTorr [163]. 
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Figure 2- 20: Pressure–composition phase diagram of the Mg–B system at 850 °C. 

 
Figure 2- 21: The phase diagram (pressure–temperature) for the Mg:B atomic ratio xMg /xB>1/2. 
The thermodynamic stability window for the deposition of MgB2 thin films is region of Gas+MgB2 
[163]. 

So far, two different methods have been developed to prepare sub-millimeter MgB2 

single crystal; one is crystal growth by encapsulation and the other is the high-pressure 

method. In this method a mixture of Mg and B is heated at high temperature up to 1700 
oC in a closed metal container of stainless steel, Nb or Mo [164-166] under an Ar gas 
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pressure of 1< PAr <14kbar. With this method, crystals have been made using techniques 

such as vapor transformation [167, 168], using a mixture of MgB2 and other flux 

materials, i.e. Na [166], Mg [164, 165, 169-171], Cu[171, 172], and  Al [171].  The 

other method is sintering at high-pressures and temperatures in BN[162, 171, 173-177] or 

Ta reaction cells[169]. For experiments in the Mg-B-N system, the BN powder is used as a 

source of boron and nitrogen. The powder is put in a BN container as a reaction cell and 

sintered under high pressure, mostly by using the cubic-anvil press as shown in Fig. 2-22 

[171].  Fig. 2-23 shows optical microscope images of MgB2 single crystal prepared using 

the BN system. 

 
Figure 2- 22: a) The image of the cubic anvil apparatus including the hydraulic press to provide the 
necessary force. b) A schematic of the cubic anvil cell. Steel pieces are arranged so as to provide 
forces from all sides onto the sample located in the middle. A 400 A current passes through a 
graphite tube inside the pyrophylite cube to provide the heat. The sample is placed in a BN 
container which is located inside the graphite heater [171]. 

 
Figure 2- 23: Optical microscope picture of MgB2 single crystals prepared using the Mg-B-N system 
under high pressure. Scale size is 1 mm [162]. 
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2-3-7 Fabrication of MgB2 Wire and Tape 

Preparing and developing superconducting wires and tapes is essential for practical 

applications such as applications in the cable and magnet industries. MgB2 

superconductor wire was produced very soon after the discovery of this superconductor. 

The first wire was produced by Canfield et al. [178] by diffusing Mg vapor into boron 

fibers with a tungsten wire core. This wire showed a quite high Jc value of above 105 

A/cm2 at 5 K and zero field. The results were promising and many groups have 

attempted to make wires and tapes using different methods.  

2-3-7-1 Preparation of Wire and Tape 

Since MgB2 is mechanically hard and brittle, it is impossible to directly draw it into a 

fine wire. Different techniques have been developed to prepare MgB2 conductors. 

Although the powder in tube technique is widely used, other techniques have also been 

tried by a few groups. The powder-in-tube technique will be explained in detail in the 

next chapter.  However, the continuous tube forming and filling technique (CTFF) will 

be explained in this chapter. 

2-3-7-1-1 Powder in Tube Technique 

The conventional powder-in-tube technique, using a metal tube as a stabilizer, has 

become a major method for the preparation of wires and tapes due to the relatively low 

cost and high quality of the products, as well as the suitability of this technique for large 

scale industrial production.  

2-3-7-1-2 Continuous Tube Forming and Filling (CTFF) Technique 

This technique has been used to prepare MgB2 wires and tapes by the High-Tech 

Company in US.  In fact it has been adapted to wire fabrication from pre-existing 

technologies used in the tobacco industry. In this technique, a continuous metal strip 

(Fe, Cu,) is first produced as a sheath material. As the ribbon enters and moves through 

the tube shaping dies they gradually form it into a U shape as shown in the Fig. 2-24. 

After the powder is inserted, the closing dies gradually close off the tube. After the tube 
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has been closed, it passes through subsequent dies to reduce the diameter to a fine wire 

of approximately 2mm in diameter. Numerous long lengths of wire have been made 

using this technique.  

 
Figure 2- 24: Schematic of apparatus for continuous tube forming and filling (CTFF) for MgB2 
wire and tape fabrication. 

2-3-7-2 Effect of the Sheath Material 

Using the proper metal as a sheath material has been found to be critical in preparing 

high performance wire. Iron was found to be a suitable sheath material for MgB2 wire 

[179] or tape [180-182] as Mg tends to react with many metals such as Cu and Ag even 

at temperatures lower than its melting point [181].  

2-3-7-2-1 WIRE 

Iron has been widely used by many groups as a sheath material for wire [179, 181, 183-

212]. However other metals, such as Cu [185, 195, 200, 206, 213-227], Ag [213, 215, 

218, 220, 221, 223], Ni [189, 228-230], and Ta[195, 231] have also been used for this 

purpose. In addition multi-layers of metals or metallic alloys, such as stainless steel (SS) 

[185, 204, 215, 232-237], carbon steel (CS) [206], Fe/Cu [181, 188, 203, 219, 238], 

Fe/SS [186, 201, 239-241], NbZr [195], Cu/Ni [185, 206, 232], Cu/Ta [214, 242-244], 
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Ag/SS [213], Ta/Cu/SS [245], Nb/Cu/SS [239, 245], Ta/SS [186], and Nb/SS [186], 

have been reported by many groups as metal cladding for MgB2 wire.  

2-3-7-2-2 Tape 

Fe is also most commonly used as a sheath material for MgB2 superconducting tape 

[180, 182, 186, 188-190, 195, 197-199, 201, 206, 209, 211, 241, 246-254]. However, 

similar to the wire situation, other metals and alloys, such as Cu [195, 206, 215, 217, 

219, 252, 255-259], Ag[215, 252, 257], SS [206, 215, 232, 258, 260-264], Ni [182, 189, 

228, 257, 265-270], Ta[195], Nb[271], Fe/Cu[219, 272], Ni/Cu[206, 232, 258], 

NbZr[195], Fe/SS[186, 201], Ta/Cu[244, 273], Cu/NbZr[274], Monel[271], and 

CS[206, 275-277], have also been used as the metal cladding.  

It was found that mechanical hardness of the sheath material results in densification as 

well as improving the grain connectivity in the superconducting core[185, 186, 206, 

258, 277]. Therefore, hard sheath materials such as SS [186, 258] and CS [277] have 

been used. Experimental results reveal that critical current density and its field 

dependence are significantly enhanced due to the hardness of sheath materials. 

Multi-filamentary wires and tapes are also prepared using different sheath materials 

[188, 191, 194, 198, 200, 203, 209, 229, 240, 274, 278]. 

2-3-7-3 Effect of the Precursor Material 

In terms of precursor material, to prepare MgB2 superconductor two different methods 

are mainly used. In the so-called in situ reaction method a mixture of Mg and B is used 

as a starting material. The mixture is packed into a metallic tube, and then MgB2 is 

formed inside the tube by heat treatment. However, commercially available and pre-

reacted MgB2 powder is used as a starting material in the ex situ reaction method. The 

in situ reaction method is widely used both for wire [180, 187, 190, 191, 200, 207, 210, 

211, 213, 218, 220, 221, 223-227, 238, 244, 248-250, 275, 279-281] and for tape [180, 

187, 190, 191, 200, 207, 210, 211, 221, 238, 244, 248-250, 273, 275, 279, 280]. The ex 

situ reaction method is also used both for wire [194, 197, 199, 203, 207, 213, 219, 220, 

222, 275, 282] and for tape [194, 197, 199, 203, 207, 219, 222, 231, 275]. Apart from 
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these methods a mixture of Mg+2B and MgB2 was also used by Schlachter et al. to 

prepare wire and tape [208], as well as by Pan et al. [207]. 

In the ex situ reaction method it has been shown that the quality of the starting powder 

has a significant effect on the critical current density of Cu clad tape [256]. 

Fujii et al. used MgH2 instead of Mg as a precursor powder to prepare MgB2 tape. They 

claimed that the Jc values of the tapes prepared using mixture of MgH2 + B were about 

twice as large as those prepared using the mixture of Mg + B [251, 275, 276]. 

Using the pre-reacted powder, the influence of the initial MgB2 grain size on critical 

current density, upper critical and irreversibility fields has been studied by Flukiger et 

al. [198]. They employed ball milling to reduce the grain size of MgB2 starting material 

leading to an enhancement of Jc [198]. 

The porosity of samples has been one of the main weaknesses of MgB2 samples so far. 

Samples with higher mass density have been prepared using pre-reacted and very fine 

powders in the reaction ex situ technique [198] or by sintering under pressure (hot press 

technique) in the reaction in situ method [283-286]. The hot isostatic pressing (HIP) 

method has also been employed to make dense samples, resulting in improvements in 

the microstructure and superconducting properties of the material, thereby improving 

the Jc field performance [235, 287]. 

2-3-7-4 Magnetic Shielding and ac Loss in Fe/MgB2 Conductors 

Studies on two other physical aspects of Fe sheath MgB2 superconductor, ie. magnetic 

shielding [183, 187, 192, 202, 205, 288] and ac loss [187, 288] have also been reported. 

Results indicate that the presence of Fe in MgB2/Fe composite shields the 

superconductor core against an external field of 2 kOe; at higher fields a fixed ∆H was 

observed (partial shielding) [183, 187]. It also results in suppression of ac loss due to 

shielding of the core against an externally applied field [187]. Therefore, using Fe as a 

sheath material may be beneficial for power applications. 
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2-3-7-5 Long Conductors and Coil 

Ni coil [230] has been produced using ex situ reaction, and Cu coil [227] has been 

produced using the wind-reaction in situ technique (to be explained in chapter 4). Ni 

clad conductor in the shape of a helix about 1.5 m long and in a pancake shape about 2 

m long have also been successfully prepared and measured by Grasso et al. [270]. These 

results confirm the suitability of this superconductor for practical applications. 

2-3-7-6 Effect of Heat Treatment in MgB2 Tape and Wire 

On the one hand, heat treatment is an essential step in the in situ technique. For post 

annealing, a wide range of temperatures have been used, from as low as just above the 

Mg melting point [179, 227] to as high as 1100 oC [204]. It was found that even lower 

sintering temperatures of 500 oC [289] or 600 oC [225] are enough to form the MgB2 

phase if mechanically pre-alloyed powder is employed. 

On the other hand, even in the ex situ reaction methods, post annealing is essential as it 

has been found to enhance the Jc and its magnetic field performance [185, 194, 201, 

204, 208, 229, 270, 277]. This enhancement is reported to be up to one order of 

magnitude [201, 208]. 

The effects of sintering time on the critical current density of MgB2 wires prepared by 

the reaction in situ method have also been studied (it will be explained in chapter 4). We 

have found that prolonged heat treatment is not necessary in the fabrication of Fe clad 

wires. MgB2 phase can be formed quickly. Several minutes sintering gives almost the 

same performance as a longer sintering time. This finding substantially simplifies the 

fabrication procedure for wire. Short sintering of wires with other sheath materials, such 

as Cu and Ag, avoid a high reaction rate between the magnesium powder and the 

sheath, resulting in an enhancement in Jc (see Chapter 4). 

2-3-7-7 Other Techniques Have Been Used for Preparation of MgB2 

Conductors 

Other techniques, such as Reactive Liquid Mg Infiltration to make hollow wires as used 

by Giunchi et al. [278] and diffusion of magnesium vapor into boron fibers with 
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tungsten cores [178, 290-292], as well as the suspension spinning method [293, 294], 

were also tried by a few groups to prepare MgB2 superconducting wire. 

Two more different techniques, boron diffusion into Mg tape [295] and deposition of 

MgB2 film on a Hastelloy tape buffered with an yttria-stabilized-zirconia layer [296], 

have also been used to prepare different types of MgB2 tape. 

2-3-8 Chemical Doping 

Attempts have been made to accomplish substitutions in the MgB2 superconductor 

lattice. Substitutions are important because they can lead to increases in Tc or to the 

discovery of a related compound with higher Tc, or to enhancement in the physical 

properties by such means as producing pinning centers. They can also clarify the 

mechanism of superconductivity.  

Many elements have been tried as substitutes for Mg or B, such as C [297-305], Al 

[306-311], Mn [309, 312], Zr [309, 313-315], Na [310, 316], Li [306, 316-318], Si [306, 

319], Be [320], Ag [309, 310, 321], Ti [212, 244, 309, 315, 322, 323], Mg [324], B 

[324], Sn [325], Fe [309, 325, 326], Co [325, 326], F [327], Cu [309, 310, 328, 329], 

Mo [309], Ca [309, 310], Y [309], Pb [330], Ir [331], Zn [310], V [323], Nb [323] and 

O [108]. In addition to the above elements, many compounds have also been tried as 

dopants in MgB2, such as SiC [193, 211, 251, 332-335], Y2O3 [336], WSi2 [250], ZrSi2 

[250] and SiO2 [251].  

Although many of the above reports declared the Mg and B had been partially replaced 

by other elements, Cava et al. [337] have recently claimed that most of them are 

incorrect and that just three elements, C, Al and Mn are really substituted, while the 

others cannot meet the criteria for successful chemical doping.  

Unfortunately, all chemical dopants lead to decreases in the Tc value. It has been shown 

by many groups that C can substitute in the B position up to about x=0.1 in the MgB2-

xCx composition. All reports show a serious decrease in the in-plane lattice parameter. 

There are some disagreements between the results in term of the rate of decrease in Tc, 

which is probably due to incomplete incorporation of C in different experiments. Al has 

also been found to be very well substituted in the Mg site. The higher the doping, the 
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larger the decreases in Tc and the wider the transition. The decrease in Tc is significant 

as at about x=0.4 in Mg1-xAlxB2 the superconducting phase disappears [338]. Doping 

also leads to a contraction in both lattice parameters. However, the in-plane lattice 

parameter decreases faster than the out-of-plan lattice parameter as the doping level 

increases. It has also been found that there are two phases for doping levels between 

x=0.1 and x=0.25 having different c axis lattice parameters with different AlB2 base 

structures [337] (Fig. 2-25). In the case of Mn, it has been shown that the solubility of 

Mn in MgB2 is very low; Mn can successfully substitute into the Mg site to the 

maximum value of 5%. The substitution causes a great suppression in Tc at the rate of 

dTc/dx=-159 [312].  

In contrast to doping with elements, a slight reduction of Tc has been found in the 

samples doped with large amount of SiC, Y2O3, WSi2, ZrSi2 and SiO2. Also, the Jc 

values of samples doped with these compounds were significantly enhanced in high 

magnetic fields and increases in Hirr and Hc2 occurred, a promising development for 

practical applications.  

 
Figure 2- 25: Partial collapse of the spacing between the boron layers in Mg1-x AlxB2. The figure 
shows variation of the in-plane (a) and between-plane (c) lattice parameters as a function of 
aluminium concentration. In the two-phase region, c-axis values for both phases are shown [337, 
338]. 
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2.3.9 Critical Fields 

MgB2 is a type II superconductor, therefore two different critical field have to be 

measured. 

2-3-9-1 Upper Critical Field (Hc2) 

To have a potential application, it is essential to have a high Hc2, as it shows the ability 

of superconductor to sustain superconductivity at high magnetic fields. A wide range of 

Hc2 values has been reported for different samples so far.  Even for the same sample 

there are two different values for Hc2 due to anisotropy in this superconductor. For clean 

single crystal samples, relatively low values of the upper critical fields about Hc2
║ab (0) 

≈ 18 T and Hc2
┴ab (0) ≈ 3.5 T have been reported parallel and perpendicular to the ab 

plan, respectively [174, 339-343]. However, the higher value of the upper critical fields 

varies considerably up to about Hc2 ≈ 29 T for bulk samples containing impurities [344, 

345] and up to about Hc2
║ab (0) ≈ 48 T for thin film according to recent measurements 

[344, 346, 347]. Such high values of Hc2 also suggest that MgB2 is a suitable candidate 

for practical applications. 

2-3-9-2 Lower Critical Field (Hc1) 

By characterizing single and polycrystalline MgB2 superconductors, different values of 

the lower critical field ranging between Hc1 (0) ≈ 150 Oe to 480 Oe have been reported 

[79, 164, 348-351]. However, according to recent measurements in a high purity single 

crystal sample, the lower critical field has been found to be Hc1
║ab (5K) ≈ 120 mT and 

Hc1
┴ab (5K) ≈ 250 mT [342]. 

2.3.10 Penetration Depth 

 Using the data for the lower critical field, the value of the penetration depth can be 

calculated, ranging between 85-203 nm [79] with the average value of λ ~ 140 nm [340, 

352]. However, recent measurements in a high purity single crystal sample shows the 

penetration depth to be λab
 (0) ≈ 22±2 nm and λc

 (0) ≈ 100±10 nm [342]. 
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2-3-11 Coherence Length 

In the CGS system the coherence length can be calculated using Hc2 as 20 2 cHπξ Φ=2

)0(

 

[353]. Using the value of Hc2, ξ has been estimated to be ~ 5 nm in polycrystalline 

samples [178]. Considering the different values of Hc2 in single crystal, the values of the 

coherence length have been reported to be abξ nm and 4)0( ≈cξ nm for aligned 

MgB2 crystallites, using the ab
cH ⊥

20 2πab
2 (ξ Φ=)0 and ¦¦ab

2cab Hπξ 0 2cξ Φ= formulas 

[354]. However, different values of 2.010)0( ±=abξ  nm and 2.0±5)0( =cξ  nm were 

recently reported for single crystal, which are relatively higher than other values in the 

literature [342]. 

7)0( ≈

2-3-12 Mean Free Path 

The electronic mean free path can be roughly calculated from the experimental data of 

resistivity (ρ) and carrier density, as well as the average Fermi velocity, using the 

classical Drude model. The value of l is estimated to be approximately 60 nm[178] for 

high purity polycrystalline samples and 80 nm for single crystal samples [33]. 

2-3-13 Anisotropy 

The study of anisotropy is important for practical applications as well as for 

understanding the physical properties. The layered structure of MgB2 results in an 

anisotropy property in the superconducting parameters. Many groups have measured the 

anisotropy parameter by using either the upper critical field Hc2
║ab/ Hc2

┴ab = 

cab ξξ or the critical current density cab
cc JJ=γ . 

=γ

2-3-13-1 Anisotropy in MgB2 Powder 

The anisotropy in Hc2 has been measured for MgB2 powder. The very large values of 

γ=6 [355] and γ= 6-9 [356] were determined using different techniques.  
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2-3-13-2 Anisotropy in Bulk MgB2 

A small, but distinct anisotropy of the upper critical field Hc2
║ab/ Hc2

┴ab =1.2 was 

found for hot deformed and high density samples [357-359]. However an upper critical 

field anisotropy of 1.7 as well as an almost temperature independent ratio Jc
ab/Jc

c

=

 

similar to 1.5 were found in an aligned bulk MgB2 crystallite sample [354, 360].  

=γ

=γ

2-3-13-3 Anisotropy in MgB2 Thin Film 

Different values of the anisotropy parameter were found for MgB2 thin film samples. 

Different values of γ 1.8-2 [347], 1.2-1.8 [135], 1.4-1.8 [136], 1.25 [346], 2 [361] and 

3 [132] have been reported for the upper critical field anisotropy. By measuring the 

critical current density =γ 2.55 was determined from the scaling behavior of Jc [362].  

2-3-13-4 Anisotropy in MgB2 Single Crystal 

In single crystal samples a wide range for the anisotropy parameter from 2 to 6 

has been reported by many groups [164, 165, 170, 171, 174, 175, 339, 341-343, 363-

372]. Although many people found a constant anisotropy parameter over the 

temperature range measured [339, 342, 363], despite the anisotropic Ginzburg-Landau 

theory that predicts temperature independent anisotropy, it has been found by many 

groups that γ is temperature dependent and decreases with increasing temperature [171, 

174, 343, 365-368, 371]. 

=γ =γ

2-3-13-5 Anisotropy in MgB2 Tape 

It has been found from x-ray diffraction studies, that c-axis texturing appears in the core 

of MgB2 tapes during the cold working procedure [198, 199, 206, 215, 228, 258, 275]. 

This texturing increases with the sheath strength [215, 258] and has been found to be 

larger in tapes made by the ex situ technique than in tapes made by the in situ technique 

[275]. The anisotropy ratio was determined to be 1.3 for Hc2 parallel and perpendicular 

to the surface of the tape [198, 199]. However an unusual larger anisotropy factor of 10 

was also reported by Kumakura et al. [258]. 

37 



Chapter 2 : Literature Review 
 

2-3-14 Strong Grain Connectivity 

It has been confirmed by transport and magnetic measurements that unlike the HTS 

superconductors [373, 374], MgB2 does not show any weak links, therefore grain 

boundaries are highly transparent to current flow [375, 376]. This is an advantage of 

MgB2 compared to the HTS superconductors so far as practical applications are 

concerned, since high values of critical current density have been observed in MgB2 thin 

film, bulk, and tapes and wires with no weak links.  

Fig. 2-26 reveals the temperature dependence of Jc at different magnetic fields [377]. A 

good agreement between the Jc values obtained by transport measurements and the 

magnetic Jc values estimated from hysteresis loops using the Bean model confirms 

inductive current flows throughout the sample with no grain boundary barrier. 

 
Figure 2- 26: Temperature dependence of the critical current density of polycrystalline MgB2 

sample for H = 0.5, 1, 2, 3, and 5 T. The values for Jc > 103 A/cm2 were estimated from magnetic 
measurements,  while  those  for  Jc  <  103  A/cm2

  were estimated  from  transport  measurements  
[377]. 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

3-1 Sample Preparation 

3-1-1 Preparation of Bulk MgB2 

Polycrystalline samples of MgB2 were prepared through the conventional solid state 

reaction using a reaction in-situ process. High purity powders (99%) of magnesium (-

325 mesh) and amorphous boron (-325 mesh) were used as starting materials. The 

precursor powders were weighed out according to the nominal atomic ratio and well 

mixed through grinding using a mortar and pestle. The powders were pressed into 

pellets 10 mm in diameter and 2-3 mm in thickness using a uniaxial hydraulic press. 

The pellets were sealed in Fe tubes, then heat treated at different temperature ranged 

between 680 oC to 950 oC. Wide range of sintering time were used from a few minutes 

to 2h. In order to get the pure phase and suitable results different sintering time and 

temperature have been used for different experiment. Heat treatment performed in 

flowing high purity Ar under the ambient pressure using the tube furnace. This was 

followed by a furnace cooling to room temperature. A temperature profile for the 

preparation of MgB2 bulk sample is shown in the Fig. 3-1. Bar-shaped samples in a few 

millimeter size were cut and dry polished from the sintered pellets. 

 
Figure 3- 1: Schematic drawing of the thermal treatment used in the preparation of MgB2 samples. 
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3-1-2 Fabrication of MgB2 Wire and Tape 

3-1-2-1 Fabrication of Wire and Tape Using the Powder-in-Tube 

Technique 

During this work Fe, Cu and Ag-clad MgB2 wires were prepared using a standard 

powder-in-tube (PIT) method. The procedure is mainly consists of three steps.  

I. Preparing the precursor powder and packing the powder into a metal tube.  

II. Mechanical deformation process to make green wire or tape. 

III. Heat treatment. 

In the first step two different powders were used. In the experiments using the ex situ 

reaction technique, commercially available powder supplied by Alfa Acer was 

employed. However, in situ reaction technique was used in the most of the experiments. 

For these experiments, powders of magnesium and amorphous boron (both in 99% 

purity and –325 mesh) with the stoichiometry of MgB2 were well mixed using an agate 

mortar and pestle. The mixed powder was then loaded into a metal tubes. The tubes 

used in the experiments have an outside diameter (OD) of 6-9 mm, a wall thickness of 

0.5-1.5 mm, and a lenngh of about 10 cm depending on the experiment. One end of the 

tube was sealed either by a piece of lead or by a piece of aluminum. The tubes were 

filled in and packed with mixed powders. The remaining ends were crimped 

mechanically.  

Mechanical deformation is the second step. Each tube was drawn to the final diameter 

of about 1.3 mm. Drawing was carried out by passing the tube through the conical hole 

of successive round dies at a speed of a few cm/s.  For tape making, the thin wire was 

cold rolled to the flat tape with a thickness of 300-600 µm.  

Apart from the above procedure two axial groove rolling was used to prepare the 

Stainless Steel sheath square wire. A deformation rate of no more than 15% per pass 

was used in the whole mechanical deformation procedure. 
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Figure 3- 2: The preparation procedure of the single filament MgB2 tape. 

Sintering the wires and tapes were carried out using a tube furnace by a similar 

procedure to the heat treatment of pellet samples. Different sintering times and sintering 

temperatures were used and will be explained for each experiment separately. Fig. 3-2 

shows the preparation procedure for single filament MgB2 tape. 

3-1-2-2 Fabrication of Multifilament MgB2 Wire 

To prepare the multifilament wire, numbers of single filament wires with a length of 

about 10-15 cm were cut from the as drawn wire. This was followed by bundling and 

restacking the wires, then inserting them into new metal tubes. This tube was then 

mechanically deformed to a thin wire and heat treated in a similar way to the single 

wire. Fig. 3-3 shows the fabrication procedure for multifilament tape. The detailed 

experiments will be presented later. 

3-2 Sample Characterization 

3-2-1 X-ray Diffraction Pattern (XRD) Technique 

The X-ray diffraction pattern technique is the fastest and most convenient method for 

microstructure characterization of MgB2 superconductor. This technique has been 

widely employed to examine the microstructure, phase formation, and study of the 
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Figure 3- 3: The fabrication procedure of the multifilament tape. 

texture, as well as calculation of the lattice parameters. The X-ray examination were 

carried out using two different instruments: Philips PW1730 and MAC MO3XHF22. 

Both machines were fully automated and configured in a Bragg-Brentano focusing 

geometry, with a θ-2θ optics. In all X-ray investigations, monochromatized CuKα 

radiation from a normal focus X-ray tube was used, having wavelengths λKα1=1.5405 Ǻ 

and λKα2=1.5443 Ǻ. For the X-ray study of powders and pellets, the samples were 

ground using a mortar and pestle. For study and phase analysis of MgB2 tapes or wires, 

the metal sheaths were mechanically removed simply by dry polishing the sheath to 

expose the core. A chemical compound or new phase can be determined if the volume 

ratio exceeds a few percent and if the grain sizes are larger than 1 µ. Peaks were indexed 

using Bragg’s law of , where n is an integer, λ is the radiation wavelength 

θ is the diffraction angle and d is the distance between the reflecting parallel planes with 

same (hkl) Miller’s indices. The average grain size can be semi-quantitatively 

estimated, as the average crystallite is proportional to the width of a reflection peak at 

half maximum intensity (FWHM) [398, 399]. The lattice parameters were calculated by 

indexing the peaks using the Rietveld refinement method. 

λθ nd =sin2

3-2-2 Scanning Electron Microscopy (SEM) and Optical 
Microscopy (OM) 

A direct observation of microstructure as well as the investigation of morphology can be 

made using the SEM and OM. The SEM was equipped with Electron Dispersive 
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Analysis (EDS) attachments. The scanning electron microscopy was performed using 

secondary electron and back-scattered electron (BSE) detectors. The resolution of the 

optical microscope is 1 µm. However SEM can provide useful information on the 

structure in the sub-micron range. Specimens were prepared by cold mounting the wires 

and tapes in the Strues Epofix epoxy resin. The polishing procedure was applied after 

about 24 h to allow the resin to cure. SiC grinding papers of 600, 800, 1200 and 2400 

mesh were used followed by polishing with 5 µm, 3 µm and 1 µm diamond paste. Water 

cannot be used as a lubricant due to the reaction of MgB2 with water; therefore to avoid 

this, Struers blue lubricant was used during the polishing process. A thin layer of gold 

with a thickness of about 300 Ǻ was deposited on the specimens mounted in resin. 

3.2.4 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy permits a direct observation and characterization of 

fine microstructure. The TEM images were obtained at the University of New South 

Wales and the Nanyang Technological University of Singapore. Two different 

instruments were employed for TEM examination: a Philips CM200 Field Emission 

Gun Transmission Electron Microscope and a JEOL 3010 High Resolution 

Transmission Electron Microscope (HRTEM). Specimens were prepared by pulverizing 

the powder with mortar and pestle, then dispersing it in ethanol. The suspension was 

then pipetted on to holey-carbon coated copper grids. 

3-2-5 Magnetic Measurements 

3-2-5-1 AC Susceptibility Measurements 

To study the electromagnetic properties of superconductors, a method consisting of 

generating a harmonically varying magnetic field to probe the sample and registering 

the magnetic response of the sample, is widely used [400]. The ac susceptibility 

measurement is one of the common experiments of this type.  

A schematic diagram of the instrument for ac susceptibility is shown in Fig. 3-4. For 

measurement, a piece of MgB2 in the normal state is placed in a system of coils, 
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consisting of a large coil for dc magnetic field control, a smaller coil for the ac magnetic 

field, and pick-up coils which can detect the magnetic response of the specimen. A 

harmonic magnetic field (Hac) is produced by the ac coil. According to the Faraday’s 

law, the induced voltage in the pick-up coils is: 

V= -
dt
dϕ     (3-1) 

Where ϕ  itself consist of two terms due to Hac, as well as the specimen response, ϕ = 

extϕ  + sϕ . In order to eliminate the extϕ , the pick-up coil set consists of two identical 

coils, wound in an opposite direction and connected in series together.  As long as the 

sample is in the normal state, the ac magnetic field penetrates the whole sample. When 

the normal-superconductor transition occurs, the magnetization of the specimen changes 

due to flux exclusion, therefore ϕ  changes as s MA. Here, A is the cross-sectional 

area of specimen. Since dH , it follows: 

ϕ =

dM=χ

dt
dHA

dt
dH

dH
dMA

dt
d χϕ

==        (3-2) 

Therefore the voltage induced in the pick-up coil is proportional to the susceptibility of 

sample: 

dt
dHV χΑ−=     (3-3) 

Then, any change in the sample susceptibility gives a change in the voltage across the 

pick-up coil, and this change can be detected by a Lock-in Amplifier. 

In this work, the ac susceptibility of MgB2 samples was measured using the Quantum 

Design Physical Property Measurement System (PPMS) with a sensitivity of up to 

emu. More details as well as experimental results are presented in the subsequent 

chapters. 

8−10
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3-2-5-2 DC Magnetization Measurements 

DC magnetization measurements were carried out on MgB2 samples using the Quantum 

Design Physical Property Measurement System (PPMS). In order to measure the 

absolute value of the dc magnetization, a dc field was applied to the sample, and the 

sample was moved through the entire detection coil. The pick-up coil detects a 

waveform signal versus the position of the sample. The dc magnetization was then 

extracted by fitting the detected signal with the known waveform signal. 

 
Figure 3- 4: A schematic diagram of the instrument for ac susceptibility.  

Jc can be calculated from the measured magnetic hysteresis loop assuming that 

, where ∆M is the width of the hysteresis loop (Fig. 3-5). ∆M can be 

calculated using the relation 

MJ ∆∝

−+

c

MMM , where +M  and −M  are positive and 

negative branch of hysteresis loop, respectively. The calculation of Jc from the dc 

magnetization is based on the critical state model [401], applied to a finite sample and 

usually called the “modified Bean model”. For a bar shaped sample, the magnetic 

critical current density can be calculated using the following relation [402]: 

−=∆
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In this relation, a and b are the dimensions of sample in cm, perpendicular to the 

magnetic field direction with a<b. Jc and ∆M are in A/cm2 and in emu/cm3, respectively. 

For a cylindrical sample parallel to the magnetic field, Jc can be calculated as: 

d
MJ c

∆
= 30 , 

where d is the diameter of the cylinder in cm. 

∆M ~ Jc  

 

M

H
 

Figure 3- 5: Magnetic hysteresis loop showing the width of the magnetic hysteresis loop (∆M). 

3-2-6 Transport Measurements 

Transport measurements of MgB2 samples were carried out using the so-called four 

probe technique. This method consists of attaching four contacts to the sample. The two 

outermost contacts are for the current (I) and the two inner contacts are for the voltage 

(V). As the current passes trough the sample, a voltage is generated which is 

proportional to the resistivity. At the normal-superconducting transition, the voltage 

drops down to a level which is lower than the noise level of the measuring instrument. 

In the case of critical current (Ic) measurements, the standard value of 1 µV/cm was 
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used as a criterion for Ic. Therefore, Ic is arbitrarily defined as the value of the current 

which produces a voltage drop of 1 µV between two voltage contacts separated by 1 cm. 

In different experiments, contacts were attached to the sample using different materials 

such as silver epoxy, Woods alloy, or by low temperature soldering with Sn:Pb 50:50 in 

order to make low resistance contacts. Particular care was taken with the current 

contacts. Details of the transport measurements are presented in further chapters. 
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CHAPTER 4: PREPARATION AND 
CHARACTERIZATION OF MgB2 WIRE AND TAPE 

4-1 Preparation and Characterization of Fe/MgB2 Wire 

4-1-1 Introduction 

Efforts have been made to fabricate MgB2 wires since the discovery of 

superconductivity at 39 K in this material [19]. A number of techniques have been 

developed to improve the processing parameters for achieving high critical current 

densities [198, 201, 233, 252, 277, 291, 315]. Among these, the powder-in-tube (PIT) 

process appears most promising and practically feasible. Some metals and alloys have 

been found to be suitable for sheath materials in the PIT process. Iron and its alloys in 

particular have been found to be non-poisoning to MgB2 [201, 315, 403]. High transport 

critical current densities have been reported for Fe and Fe alloy clad-MgB2 wires by 

some groups [201, 252, 315].  

Heat treatment is applied in most PIT processes used for the fabrication of MgB2. The 

times and temperatures that have been used so far for fabricating MgB2 pellets and 

wires/tapes range from less than an hour to more than 48 h at sintering temperatures 

from 600 to 1000 oC. All the heat treatments must be under high purity Ar protection 

from oxidation. High Jc metal-sheathed MgB2 tapes without any heat treatment were 

reported using the pre reacted powder [277]. This process has advantages over those 

with heat treatment as it substantially simplifies the process and hence reduces the cost 

for wire fabrication. However, the sheath materials need to be of very high hardness in 

order to densify the MgB2 core. High toughness metal is easily broken during the cold 

drawing and rolling process, and very careful and delicate design and control are 

mandatory [252, 294]. Furthermore, as MgB2 is very brittle, it would be a formidable 

task to overcome the cracking problem for long length production without heat 

treatment. 
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In order to further improve and simplify the fabrication processes, we have carried out a 

systematic study on the effects of sintering time on MgB2 formation and Jc. In this 

section we present the fabrication procedure as well as the characterization of the Fe-

clad MgB2 wire. The effects of sintering time and temperature on the phase formation 

and critical current density of Fe-clad MgB2 wires will also be explained. MgB2 wires 

were fabricated using the powder-in-tube process and sintered for different periods of 

time at predetermined temperatures. In contrast to the common practice of sintering for 

several hours, the present results show that there is no need for prolonged heat treatment 

in the fabrication of Fe-clad MgB2 wires. A total time in the furnace of several minutes 

is enough to form nearly pure MgB2 phase with high performance characteristics. The 

results on Tc, Jc and Hirr convincingly show that the samples which were only sintered 

for 3 minutes have quite good performances. In fact, the Jc field performance for the 

most rapidly sintered sample is as good as for all the other samples.  Jc of 4.5×105 

A/cm2 in zero field and above 105 A/cm2 in 2 T at 15 K has been achieved for the best 

Fe-clad MgB2 wires. As a result of such a short sintering there is no need for using high 

purity argon protection and it is possible to carry out the heat treatment in a much less 

protective atmosphere or in air. These findings substantially simplify the fabrication 

process, making it possible to have a continuous process for fabrication and reducing 

the costs for large-scale production of MgB2 wires.  

4-1-2 Experimental Details 

The Fe/MgB2 wire was prepared using the powder-in-tube technique. Powders of 

magnesium (99%) and amorphous boron (99%) were used as starting materials. The 

pure Fe tube has 8mm OD, 1.5 mm wall thickness and 10 cm long. The composite tube 

was drawn from 8 mm to 1.5 mm diameter. Short wire samples of about 2 cm in length 

were sealed in a small Fe tube and then heat treated at 750 oC for 30 min in flowing 

high purity Ar. Due to a strong shielding effect from the Fe sheath metal [200, 203], 

bare cores were used for the magnetic characterization. Cylindrical bars of MgB2 core 

were obtained by removing the Fe sheath mechanically. 

82 



Chapter 4: Preparation and Characterization of MgB2 Wire and Tape 
 

4-1-3 Results and Discussion 

4-1-3-1 Phase Formation and Microstructure  

Fig. 4-1 shows XRD patterns recorded from the core of the Fe-clad MgB2 wire after the 

iron sheath was mechanically removed. The sample is revealed to be single phase with a 

small amount of MgO (<5%).  
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Figure 4- 1: XRD patterns recorded from the core of the Fe-clad MgB2 wire after the iron sheath 
was mechanically removed. 

Fig. 4-2 shows the more accurate XRD pattern obtained with Rietveld analysis. It also 

shows a small amount of MgO. The peaks can be very well indexed with the space 

group P6/mmm. SEM examination revealed that the grain size in the superconducting 

core is smaller than 1 micron. An optical image of a cross-section of a sample is shown 

in Fig. 4-3.  There is a well-defined interface between the Fe sheath metal and the MgB2 

core. No reaction has been found between the sheath and the superconductor. The core 

is very porous in agreement with the mass density of sample, which is only 1.3 g/cm3, 

suggesting that the performance of wire could be further improved if the density of the 

wires can be increased.  
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Figure 4- 2: Rietveld analysis of MgB2 powder. The powder was prepared by grinding the 
superconducting core of Fe/MgB2 wire. 

4-1-3-2 Superconductivity and Critical Current Density 

 Fig. 4-4 shows the transition temperature (Tc) for a core sample determined by the ac 

susceptibility (real part and imaginary part) measurements. The Tc onset for the sample 

(~ 38.3 K) is almost the same as that reported by a number of groups. The sample also 

showed a sharp transition with a transition width of less than 1 K. 

 
Figure 4- 3: A typical optical microscope image of the transverse cross-section for a Fe/MgB2 wire 
sample. 
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Figure 4- 4: AC susceptibility of the core of the Fe-clad MgB2 wire after the iron sheath was 
mechanically removed. 

Measurements of the M-H loops at different temperatures were carried out on the bare 

cylindrical bar samples. A typical M-H loop of a MgB2 wire sample is shown in Fig. 4-

5. We can see that a typical flux-jumping pattern is present for temperatures below 15 

K. This flux jumping was first observed in an MgB2 bulk samples [404] but occurs in 

thin films samples as well [405]. The flux jumping has been directly visualized using 

magneto-optical imaging techniques and explained in terms of phenomena associated 

with rapid flux penetration[405, 406].The critical current density was calculated from 

the M-H loops using the Bean critical model. Jc versus magnetic field up to 8 Tesla for 

Fe/MgB2 wire sample at 5 K, 10 K, 15 K, 20 K, 25 K, and 30 K is presented in Fig. 4-6. 

It should be noted that Jc of 4.5×105 A/cm2 at 15 K and zero field has been achieved. 

Because of the flux jumping, the Jc below 15 K cannot be measured. 
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Figure 4- 5: M-H loop for Fe/MgB2 wire sample at different temperatures: 5 K, 10 K, 15 K, 20 K, 25 
K, and 30 K. 
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4-1-3-3 Effect of the Sintering Time 

In order to further improve and simplify the fabrication processes of Fe/MgB2 wire, we 

have carried out a systematic study on the effect of sintering time on MgB2 formation 

and Jc. Short wire samples of about 2 cm in length were sealed in a small Fe tube and 

then directly heated at a preset temperature (Tmax) for 3-32 minutes in flowing high 

purity Ar or nitrogen, or in air (when a very short sintering time is used). This is then 

followed by a quench in liquid nitrogen.  
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Figure 4- 6: Field dependence of Jc of Fe/MgB2 wire sample at different temperature 5 K, 10 K, 15 
K, 20 K, 25 K, and 30 K. 

Fig. 4-7 shows the real temperature of the samples as a function of time, starting from 

when the wires were loaded into a hot tube furnace held at a constant temperature Tmax 

of 745, 840, and 900 oC. It shows that only a short time (2-3 min.) is required for the 

samples to reach Tmax, and that the higher the Tmax, the shorter the time. Six samples, 

which were heat treated at different Tmax, are illustrated and the removal time indicated 

by open circles as shown in Fig. 4-7. Samples 1, 5 and 6 were removed from the furnace 

after 3 minutes, having experienced only a few seconds at Tmax. Samples 2-4 were 

removed after sintering for 6, 15, and 32 minutes, respectively. The surface of the Fe 

tube used to seal the wires was slightly oxidized after sintering in air. However, the 

MgB2/Fe wire samples sealed inside the Fe tube were as fresh as before sintering, 
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regardless of the time at Tmax and regardless of the atmosphere.  A longer sintering time 

only gives rise to more severe surface oxidation of the outside Fe tube.  
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Figure 4- 7: The real temperature of the samples as a function of time, after the wires were loaded 
into a hot tube furnace held at a constant temperature Tmax. 
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Figure 4- 8: XRD patterns recorded from the powdered core of the Fe-clad MgB2 wire samples 
after the iron sheath was mechanically removed. 
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4-1-3-3-1 Effect of the Sintering Time on the Phase Formation and Microstructure 

XRD results show that all the samples have almost the same phase purity (above 90% 

MgB2). Fig. 4-8 shows XRD patterns recorded from the core of the Fe/ MgB2 wires 

(samples 1, 4 and 5) after the iron sheath was mechanically removed.  It is clear that 

sample 5 has the same high phase purity as sample 4, even though it was only heat 

treated for 3 min.  

SEM examination revealed that the grain size is smaller than 1 micron, and the 

homogeneity appears to be the same for all the samples. The optical images of cross 

sections of samples are similar to what has been shown in Fig. 4-3.  There is a well-

defined interface between the Fe sheath metal and the MgB2 core. It should also be 

noted that the density of the wire sample is only 1.3 g/cm3, suggesting that Jc could be 

further improved if the density of the wires can be increased.  

4-1-3-3-1 Effect of the Sintering time on the Superconductivity, Critical Current 
Density and Irreversibility Field 

Transition temperatures, Tc, and transition widths, ∆Tc, for the 3-15 minute treated 

samples are all very similar. In fact, Tc is almost the same (~ 38 K) for all the samples, 

while there is only a small difference in ∆Tc, which decreases with increasing heating 

time from 3-15 min for samples 1-3 sintered at 745 oC (Fig 4-9). 
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Figure 4- 9: Temperature dependence of the real part of the ac susceptibility. 
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Measurements of the M-H loops at different temperatures were carried out on the bare 

cylindrical bar samples. Jc versus magnetic field up to 6 Tesla for three samples at 10 K, 

15 K, 20 K, and 30 K is shown in Fig. 4-10. Note that Jc of 4.5×105 A/cm2 at 15 K and 

zero field has been achieved for sample 4. Again the Jc below 15 K cannot be measured 

because of the flux jumping. For Tmax = 745 oC, the Jc increases as the sintering time 

increases from 3 to 15 min. Fig. 4-11 shows the Jc versus sintering temperature for 

samples 1, 5 and 6 which were all treated for 3 min. Sample 1, sintered for 3 minutes at 

745 oC, has a markedly lower Jc than the other samples, probably due to poor grain 

connectivity. However, if Tmax = 840 oC , the Jc of the wire treated for just 3 minutes 

(sample 5) is as good as that of a wire treated for 15 min. at 745 oC. Furthermore, Jc– 

field performance of the sample sintered at Tmax = 840 oC for 3 min. is the best out of all 

the samples, as evidenced by the crossover (indicated by arrows) of Jc–H curves in 

higher fields as shown in Fig. 4-10. 

Fig. 4-12 shows the comparison of Jc at 20 K for both zero field and 3 T for sample 

wires sintered for different times.   We can see that the Jc is as high as 3 ×105 A/cm2 at 

20 K zero field for samples 2-5. Noted that Jc for the 3 min sintered sample 5 is the 

same as for samples 2-4 which were sintered for 6 min to 32 min. For further 

comparison, Jc data from a Fe-clad MgB2 tape (described in the next section) are also 

shown in Fig. 4-12. The sample was prepared by 3 h heating to 800 oC, holding for 1 h, 

and then slow cooling down to room temperature. It can be seen that the Jc and field 

dependence of the wire samples which were sintered for only a very short time are 

almost as good as the Jc and field performance of this reference tape.  
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Figure 4- 10: Field dependence of Jc at different temperatures for samples 3, 4 and 5. 
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Figure 4- 11: Jc versus sintering temperature of Tmax for samples 1, 5 and 6 which were all sintered 
for 3 minutes. 

 

Table 4- 1: Fabrication conditions and Jc for all the samples. 

Jc (A/cm2) No. Tmax Time* 
15 K, 0T 20K, 0T 30 K, 0T 

      
1 745 oC 3 min. 1.5 × 105 1.1 × 105 3.2 × 104 
2 745 oC 6 min 2.7 × 105 2.7 × 105 6.5 × 104 
3 745 oC 15 min 4.5 × 105 3.5 × 105 1.3 × 105 
4 745 oC 32 min 3.5 × 105 2.8 × 105 9.8 × 104 
5 840 oC 3 min 3.7 × 105 2.9 × 105 1.1 × 105 
6 900 oC 3 min - 3.0 × 105 1.0 × 105 

*Samples were quenched in liquid nitrogen after a total sintering time in a furnace with predetermined 
Tmax. 
 

Table 4- 2: Comparison of Jc values. 

 Jc (A/cm2) at 25 K, 1 T Reference 
MgB2 wire (Sample 4, this work) 5.9 × 104 this work 
MgB2 (HP synthesised pellet) 1.6 × 104 [407] 
Bi2223/Ag tape 2.9 × 105 [408] 
Bi2212/Ag tape 2.5 × 103 [409] 
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Figure 4- 12: Jc as a function of real sintering time at different Tmax. Jc data (closed circles) for a 
normally sintered MgB2/Fe tape is also shown for comparison. 

Jc of sample 4, a typical short-sintered MgB2 wire is compared with good quality Jc 

Bi2212/Ag and Bi2223/Ag tapes at 25 K and 1 T [408, 409] (Table 4-2). The Jc of a 

MgB2 pellet prepared using Mg+2B powders and sintered at 850 oC for 1 h under a 

pressure of 45 kbar [407] (HP synthesised MgB2 pellet) is also shown in the table.   It 

can be seen that our short-sintered sample 4 has a lower Jc than for the Bi2223/Ag tape 

at 25 K and 1 T, but it has a higher Jc than the HP synthesised MgB2 pellet, and Jc is 

more than one order of magnitude higher for the Bi2212/Ag tapes.   
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Figure 4- 13: Irreversibility line for all the samples. 
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Fig. 4-13 shows the irreversibility fields (Hirr) versus temperature for all the samples. 

Hirr was determined from Jc–H curves using the criterion of 100 A/cm2. We can see that 

all the samples, except sample 1, have approximately the same Hirr. 

4-1-4 Summary 

Fe/MgB2 wire has been prepared using the powder-in-tube and reaction in situ 

techniques. The effect of sintering time and temperature on the formation and critical 

current densities of Fe-clad MgB2 wires has been investigated. It was found that there is 

no need for prolonged heat treatment in the fabrication of Fe-clad MgB2 wires. A total 

sintering time of several minutes is enough to form nearly pure MgB2. The Tc, Jc and 

Hirr results show convincingly that the samples which were sintered for 3 minutes have 

quite high performance characteristics. These findings substantially simplify the 

fabrication process and can reduce the costs for large-scale production of MgB2 wires. 
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4-2 Preparation and Characterization of Fe/MgB2 Tape 

4-2-1 Introduction 

The high critical current density values observed in bulk samples, regardless of the 

degree of grain alignment [395], are an advantage for making wires or tapes with no 

degradation of Jc, in contrast to the degradation due to grain boundary induced weak-

links, which is a common and serious problem in cuprate high temperature 

superconductors. In polycrystalline bulk MgB2 samples, critical current densities of 104 

to 105 A/cm2 at 4.2 K have been reported by several groups [368, 404, 410-413]. 

However, the fabrication of metal clad MgB2 tapes or wires will be essential to meet the 

requirements of most such high current applications. Mechanical deformation during the 

tape making process can increase the density of the superconducting core as well as 

inducing pinning centres. 

For tape fabrication, it is necessary to find a suitable sheath material for MgB2 which 

does not degrade the superconductivity. So far, several metal-clad MgB2 tapes or wires 

have been fabricated with sheath materials such as Nb [291], Cu, Ag, and Ni [233, 277], 

as well as Fe.  For example, a transport Jc of 104 A/cm2 at 4.2 K has been obtained for 

Ag/MgB2 using pre-reacted MgB2 without any heat treatment [233]. In fact any sort of 

heat treatment caused a degradation of Jc. A high transport Jc of 105 A/cm2 at 4.2 K has 

been achieved for an unsintered Ni/MgB2 tape [277].   Relatively high Jc values were 

obtained for Cu clad MgB2 tapes which were sintered for long time (48 h) at 620 oC 

[233].   For critical current optimization the proper choice of metal cladding material is 

essential since the Mg component of the compound tends to react with many metals 

such as Cu or Ag during sintering or reaction at temperatures around 900-1000 oC. In a 

detailed study of material compatibility, Jin et al [201] noted that whereas admixtures as 

high as 5 mol% of powdered Y, Mo, Cu, Ag,  and Ti,  to the MgB2 powder prior to 

ribbon-forming and  sintering  at  900 oC seriously degraded the Jc, the presence of the 

same amount of Fe powder decreased Jc,4.2K only from 1.8×105 to 1.5×105 A/cm2 at 0.5 

T and not at all at 1.25 T.   It has been established that Mg and Fe have meager mutual 

solubility  (about 0.01% Fe in Mg at its M.P. and 0.2 at.% Mg in Fe [414]). This and the 
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above results suggest that the processing of Mg+B or MgB2 powders in an Fe tube 

would be accompanied by little contamination and only slight degradation of Jc, and 

even then only in fields below about 1 T.       

Most of the transport Jc results reported for MgB2 wires and tapes are limited to 4.2 K so 

far. To take advantages of the relatively high Tc of 39 K for MgB2 superconductor it is 

essential to have high Jc values at temperatures above 20 K. For example, the boiling 

point of hydrogen at atmospheric pressure is 20.13 K, so that it is possible to use liquid 

hydrogen or cold hydrogen gas as a cryogen for cooling MgB2 wires. This requires that 

the MgB2 wires have sufficiently high Jc values at around 25 K. In this section we 

present the fabrication of pure Fe clad MgB2 tapes with a high transport Jc above 104 

A/cm2 at 30 K and 1 T and Ic greater than 150 A. 

4-2-2 Experimental Details 

Standard powder-in-tube methods were used for the Fe clad MgB2 tape. The as drawn 

wire was cold rolled to a ribbon over many steps. Several short samples 2 cm in length 

were cut from the ribbon. These pieces were then sintered in a tube furnace at 750 K for 

30 min in flowing Ar gas. The mass loss after sintering is very small, less than 1%. 

4-2-3 Results and Discussion 

4-2-3-1 Microstructures 

Scanning electron microscopy (SEM) photomicrographs for the Fe clad tape after 

sintering are shown in Fig. 4-14. The picture on the left is a typical transverse cross 

section of an Fe clad tape. It clearly shows that the MgB2 core presents a homogeneous 

cross section. The picture on the right is the longitudinal cross-sectional micrograph 

showing good core homogeneity. Fig. 4-15 presents the high magnification 

microstructure of the core surface after mechanically removal of the Fe sheath material. 

This micrograph shows a porous microstructure with a clusters of grains of about 100 

µm in size. Our results showing large grain sizes are very different from those seen in 

the reported Cu/Fe/MgB2 tape which was made using reacted MgB2 powders with a 
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starting grain sizes of 3 µm. The final grain size was significantly reduced to 120 nm 

due to the occurrence of substantial grain refinement during the wire fabrication process 

[201]. 

 
Figure 4- 14: SEM image for a typical transverse (a) and a longitudinal (b) cross-section 

4-2-3-2 Transport Properties 

The critical current of the Fe clad MgB2 tape was measured by the standard four-probe 

method. The sample used for the measurement has a length of 20.5 mm and a width of 3 

mm. The MgB2 core cross-section in this sample is similar to that shown in Fig. 4-14. 

Its average dimensions are 2.1 × 0.45 mm2. Therefore, the core cross-section is about 

9.45 × 10–3 cm2. The current and voltage contacts were soldered with Wood’s alloy 

(giving a current contact resistance lower than 10 mΩ), and the distance between the 

voltage contacts was 7.5 mm. 

 
Figure 4- 15: High magnification microstructure of the core surface after the top Fe sheath material 
has been removed mechanically. 
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Figure 4- 16: R-T curves for Fe/MgB2 tape measured in fields of 0, 4, and 9.5 kOe in the EO and FO 
orientation. 

The temperature dependence of the resistance (R-T) was measured using an AC current 

(frequency 18.4 Hz, I =1 mA). Fig. 4-16 shows R-T measured at zero field over a wide 

temperature range from 300 to 10 K.   It shows a sharp transition with a width, ∆Tc, of 

0.2 K and a Tc0 of 37.8 K. We also measured R-T around the transition temperature with 

applied fields of 4 kOe and 9.5 kOe directed perpendicular to the sample axis and (a) 

parallel to the broad sample face (the “edge-on” or EO orientation) or (b) perpendicular 

to it (“face-on”, FO).   As a result of differences in the degree of magnetic screening 

(see below) the field-induced decreases in Tc were larger for the EO orientation than for 

the FO orientation. 

Critical current measurements were made using a pulse method, with the current pulse 

linearly rising from zero to maximum current. The pulse duration was 20 ms for T>33 

K and 10 ms for T<30 K. The voltage was amplified and recorded on a digital storage 

oscilloscope together with the voltage across a standard resistor, giving the current 

flowing through the sample. The temperature of the sample holder was monitored 

during the measurement with a gold-chromel thermocouple, showing a temperature rise 

after a pulse of approximately 0.2 K at currents higher than 150 A (the next pulse was 

applied after the temperature had fallen to denoted values). We estimate that the 

temperature rise of the sample itself was somewhat higher, but that just means that the 

critical current obtained is underestimated. 
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Although the above mentioned procedure for critical current measurements enables the 

determination of Ic with the 1 µV/cm criterion, there were two problems: 1) the current 

pulse causes magnetization of the iron cladding, which gives a spurious voltage signal 

Vm superimposed on the voltage of the superconductor Vs. Since Vm was appreciable in 

fields B<0.4 T, Ic in these fields was determined as the current at which the overall 

voltage starts to increase above the decaying Vm. However, the error in Ic determination 

is 10% at most, and because of heating, the real Ic is probably higher than the results 

obtained (especially at lower fields); 2) magnetization depends on the field direction. 

For that reason, we measured Ic for both field directions (denoted on the figures in the 

same way as for resistance measurements) at 35 K. 

The critical currents measured at temperatures above 29 K and in fields up to 1 T are 

shown in Fig. 4-17. Again as a result of differences in magnetic screening (see below) 

Ic,FO for a given applied field was greater than Ic,EO. The critical current, Ic, increased 

from 10 to 164 A as the temperature decreased from 36.4 to 30 K, and changes of Ic 

with field were smooth for 32 and 30 K. The critical current density Jc is calculated 

using the calculated core cross section of 9.45 × 10–3 cm2, and its value is shown on the 

right axis of Fig. 4-17 We can see that the Fe clad MgB2 has a very high transport Jc of 

above 104 A/cm2 for fields <0.5 T at 33.2K and for fields < 0.8 T at 32 K. The highest Jc 

is about 1.7 × 104 A/cm2 at 29.5 K and 1 T.  

 
Figure 4- 17: Field dependence of Ic (left axis) and Jc (right axis) at different temperatures with 
fields perpendicular and parallel to the tape plane. 
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4-2-3-3 Magnetic Critical Current Density 

Magnetic measurements (M-H loops) were carried out on a superconducting quantum 

interference device (SQUID, Quantum Design PPMS 9 T) magnetometer. In order to 

avoid a large magnetic signal from the Fe clad tape, we measured a MgB2 core with 

dimensions of 0.78×3.95×0.32mm3 taken from one of the Fe-clad tapes. All magnetic 

measurements were performed in the FO orientation. The magnetic critical current 

densities were derived from the Bean model: )3/1(/20c  and are 

summarized in Fig. 4-18, where Jc(T) curves at B=0 T, 1 T, 2 T are plotted.  

baaMJ −∆=

 
Figure 4- 18: Temperature dependence of Jc at different applied magnetic fields perpendicular to 
the tape plane (FO orientation). 

The magnetic critical current density at B=0 T and T=35 K is about 1.38×104 A/cm2, 

which is higher than the transport Jc (see fig. 4-17). This is understandable because the 

transport critical current density was underestimated due to either the heating of the 

sample or the fast swaping rate of the applied current. 

4-2-3-4 Magnetic Screening 

Genenko et al. [415] have proposed the use of a surrounding high-permeability medium 

to enhance a superconductor’s transport current density, and Majoris et al [416] have 

proposed magnetic screening by surrounding ferromagnetic sheaths as a possible way of 

decreasing transport AC loss in multifilamentary strands.  Applicability of the screening 
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principle to both high-Tc and low-Tc superconductors has been pointed out and its 

benefits to applications such as power transmission and fault-current limitation 

suggested [416].  But since Fe or low-alloy steels seem suitable cladding materials for 

the processing of powder-in-tube MgB2 strand both from mechanical and chemical-

compatibility standpoints, the resulting wires automatically become ideal candidates 

upon which to explore and exploit the properties of magnetic screening.  

 
Figure 4- 19: M(H) loops at T=40 K, and T=15 K(inset) before (curve i) and after (curve ii) 
numerically subtracting the M-H loop for the Fe sheath  as measured at 40 K. 

In an Fe-clad wire the influence of magnetic screening can be gauged by comparing its 

superconductive properties in the sheath-on and sheath-off conditions, provided sheath 

removal can be successfully achieved without damage to the underlying 

superconductor.  In the case of a rectangular tape screening information can be obtained 

by comparing its magnetically influenced properties in the FO and EO orientations as in 

Figs. 4-16 and 4-17, both of which indicate that screening is more effective when the 

tape is in the FO orientation. Consider Fig. 4-17, for example. This shows that rotating 

the sample from FO to EO in an applied field of 0.6 T is equivalent to increasing the 

internal field by 0.13 T.   So far, we have not been able to use these data to deduce the 

actual shielding factors, S= Happlied/Hinternal, of the tapes concerned in spite of the 

existence of some published information on screening by rectangular cylinders [417]. 

Finally we note that in the context of magnetization measurement an equivalent sheath-

off/sheath-on comparison can be achieved using data acquired at 40 K and below Tc, 
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respectively, as in Fig. 6. The 15K M-H loop for an Fe-clad round wire (from the same 

stock as the tape) is depicted in Fig. 19. That of the superconductive core itself, inset, is 

obtained by numerically subtracting the M-H loop for the Fe sheath as measured at 40 

K.  Evidently partial screening takes place throughout an applied field range of  ±0.6 T 

and complete shielding within ±0.06 T.   

4-2-4 Summary   

Fe-clad MgB2 tapes fabricated by PIT techniques and sintered in pure Ar at 800 oC for 1 

h at ambient pressure show a superconducting core with large clusters of grains with a 

size of about 100 µm. They have a sharp transition with a transition width ∆Tc of 0.2 K 

and Tc0 at 37.8 K. A transport critical current density of 1.7 × 104 A/cm2 for both 29.5 K 

in 1 T and for 33 K in null field has been obtained. 

The Fe or low-alloy steel cladding material that seems necessary for successful PIT 

processing, both from the mechanical- and chemical-compatibility standpoints, also 

provides magnetic screening, the benefits of which (depending on applied field strength 

and materials permeability) can be higher Ic and lower ac loss. In low magnetic fields 

wherein the relative permeability of the sheath material is large the shielding can be 

very effective, but becomes weaker as the sheath approaches magnetic saturation. It has 

been pointed out previously [416] that magnetic screening by surrounding 

ferromagnetic sheaths should decrease transport ac loss in both high-Tc and low-Tc 

multifilamentary strands and improve the performances of superconductive devices 

such as power transmission lines and fault-current limiters.  Finally we note that the 

ferromagnetic sheath may have an additional benefit quite apart from screening.  In 

precision field dipole magnets a considerable departure from field uniformity 

accompanies the use of superconducting strand with its inherent (“persistent-current”) 

magnetization.  Among the several techniques available for canceling out the effects of 

superconductor magnetization [418] is strand coating with a ferromagnetic layer [419-

421]. 
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4-3 Preparation and Characterization of Cu/MgB2 and 
Ag/MgB2 Wire 

4-3-1 Introduction 

As explained in the last section some metals and alloys have been found to be suitable 

for sheath materials in the PIT process. Iron and its alloys in particular have been found 

to be not only non-poisoning to MgB2 [199-201, 315, 403] but also capable of providing 

magnetic screening to reduce the effect of external applied magnetic fields on the 

critical current [200, 203, 315]. A high transport Jc on the order of 104-105 A/cm2 at 20 

K and 4.2 K has been reported for Cu/Fe/MgB2 tapes where reacted MgB2 powders 

were used as the core conductor and sintered at 900-1000 oC for 0.5 h out of a total heat 

treatment time of more than 3 h, including the initial heating [404]. Recently Fe and Ni 

clad wire have been fabricated with quite high Jc values of 2.3x105 A/cm2 at 4.2 K and 

1.5 T in a Ni/MgB2 tape and 104 A/cm2 at 4.2 K and 6.5 T in a Fe/MgB2 tape [202]. By 

using unreacted Mg+2B powders and sintering at 800 oC for 1 h, Fe clad MgB2 tapes 

with a high transport Jc above 104 A/cm2 at 30 K and 1 Tesla and Ic greater than 150 A 

also have been successfully fabricated as explained in the previous sections. 

Although the high toughness materials have some benefits in achieving high-density 

samples, these materials are usually very hard to mechanically deform. They are also 

easily broken. Therefore, easily deformable silver and copper can be better alternatives 

for sheath materials, especially for some applications such as superconducting magnets, 

if high critical current density can be achieved. Ag and Cu-clad MgB2 tapes using in-

situ and ex-situ reactions have already been prepared. A magnetic Jc value of above 104 

A/cm2 has been reported by Glowacki et al. at 5 K and low magnetic field for Cu clad 

MgB2 wire, which was sintered at 620 oC for 48 h [233].  They have also reported 

relatively higher Jc values for Cu clad MgB2 wire that was heat-treated at 700 oC for 1h 

[238]. In section 4-1 we have shown that the MgB2 superconducting phase can be 

formed in a very short time at any temperature above the melting point of magnesium. 
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Just a few minutes of heat treatment is enough to achieve high quality Fe/MgB2 wires 

with a high Jc value of 4.5x105 A/cm2 at 15 K and 1 T. 

As it has been reported that Ag and Cu react with Mg [238], it is proposed that a shorter 

sintering time would decrease the reaction of Mg with Ag and Cu sheath materials and 

lead to some improvements in wire performance. In this section we present the 

fabrication procedure as well as the characterization of the Ag and Cu sheathed MgB2 

superconductor wire. We also study the effect of short period sintering on the Jc of Ag 

and Cu/MgB2 wires and compare these results with the performance of Fe/MgB2 wire 

that was also prepared with the short sintering. 

4-3-2 Experimental Details 

The powder-in-tube method was used to fabricate Ag and Cu clad MgB2 wires using an 

in-situ reaction method. Powders of magnesium (99%) and amorphous boron (99%) 

with the stoichiometry of MgB2 were well mixed. The pure Ag and Cu tubes had an 

outside diameter (OD) of 8 mm, a wall thickness of 1 mm, and were 10 cm long. The 

fabrication procedure has been explained previously. Short length Ag and Cu-clad wire 

samples about 2 cm in length were sintered using the fast formation method as 

described in section 4-1-3-3. One of the Ag-clad samples was also sintered by the 

normal longer sintering. 

For the short sintering, Ag and Cu-clad wire samples were sealed in a small Fe tube and 

then directly heated at a preset temperature of 800 oC for 6 minutes in flowing high 

purity Ar. This was then followed by a quench in liquid nitrogen. In the normal 

sintering case, one Ag-clad MgB2 sample was sealed in a small Fe tube and then 

sintered in a sealed tube furnace in flowing high purity Ar. In this case, the temperature 

was increased at a heating ramp rate of 600 oC/h to 800 oC, then furnace cooled down to 

room temperature without any holding period at 800 oC.  

Fig. 4-20 shows the real temperature of the normally sintered sample as a function of 

time. The inset shows the average temperature variation of the fast sintered samples 

with time, starting from when the samples were loaded into a hot tube furnace held at a 

constant temperature of 800 oC. 
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Figure 4- 20: Real temperature that sample has experienced as a function of time for normal 
sintered sample. The inset shows the time variation of the average real temperature of the short 
sintered sample, starting from when the wires were loaded into a hot tube furnace held at a 
constant temperature of 800 oC. 

Fig. 4-20 reveals that for the normal sintering case, the sample experienced 

temperatures higher than 660 oC, which is the magnesium melting point, for about 77 

minutes. We thus called this sample the long time-sintered (LS) sample. However, for 

the fast formation case, this period is only a few minutes (about 4.5 min.) and we call 

these samples short-time sintered (SS) samples. The surface of the Fe tubes used to seal 

the wires was slightly oxidized after sintering. However, the MgB2 wire samples sealed 

inside the Fe tubes were as fresh as before sintering. 

 By opening the wires and removing the superconductor cores mechanically, X-ray 

diffraction of the internal surface of the Ag and Cu sheath materials can be performed. 

The dc field dependence of the magnetization was measured using the PPMS (Quantum 

Design) between 5 K and 35 K at different dc fields up to 6 T. For magnetic 

characterization of Fe clad wire, bare cores were used because of the strong shielding 

effect of the Fe sheath metal as explained in the last section. Cylindrical bars of MgB2 

core were obtained by mechanically removing the Fe sheath. Ac susceptibility was 

measured with the amplitude and frequency of the excitation field 1 Oe and 117 Hz, 

respectively, using the same instrument. 
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4-3-3 Result and Discussion 

The XRD pattern of a typical MgB2 core separated from the Ag and Cu-clad wires is 

shown in Fig. 2. It can be seen that the result is relatively single MgB2 phase with a 

slight amount of MgO (<5%) and MgB4. In order to study the reaction between the core 

and the sheath material at the interface, XRD patterns of the internal surface of the Ag 

and Cu were obtained after the cores were removed mechanically. The temperature 

dependence of ac susceptibility for Fe, Ag and Cu-clad samples is shows in the inset of 

Fig. 4-21. It shown that all samples have a Tc of about 38 K.  

The XRD results are shown in Fig. 4-22. The patterns have been recorded from the 

internal surface of the sheaths of Ag and Cu-clad MgB2 wire samples when the 

superconducting core was mechanically removed. It shows that magnesium has reacted  
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Figure 4- 21: XRD pattern recorded from the superconducting core of one of the MgB2 samples 
when the Ag and Cu sheath materials were mechanically removed. The temperature dependence of 
the ac susceptibility for Fe, Ag and Cu-clad samples is shown in the inset. 
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Figure 4- 22:  XRD patterns recorded from the internal surface of the sheath of Ag and Cu-clad 
MgB2 wire samples when the superconducting core was mechanically removed. 

 

 
Figure 4- 23: Scanning electron microscope image of a transverse cross-section of SS Cu-clad MgB2 
wire sample using back scattered electron imaging. 

 

with the sheath materials and formed Cu2Mg and Ag3Mg phases on the internal sheath 

surfaces of the Cu and Ag-clad wires, respectively. The unknown peaks that were not 

matched with PDF database lines are indicated by question marks. For Fe-clad wire 
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there was not any clear evidence for any reaction between Mg or B and Fe. These 

results are in agreement with our results in the last sections. 

Fig. 4-23 presents a magnified view of a transverse cross section of SS Cu-clad wire 

using SEM back scattered electron imaging. A well-defined reacted layer about 40 µm 

in thickness can be clearly seen. It is due to the reaction of magnesium and copper at 

high temperature in agreement with the XRD pattern (Fig. 4-22). The diffusion of 

magnesium into the copper sheath is clear in Fig. 4-24, which shows the Electron 

Dispersive Spectroscopy (EDS) surface analysis result.  The magnesium concentration 

in the central part of the superconductor core is higher than in the area close to the 

copper sheath. The reacted layer in the SS Ag-clad wire is also about 25 µm (Fig. 4-25). 

However as we can see in Fig. 4-26, the reacted layer in the LS Ag-clad wire is much 

thicker, about 90 µm. So increasing the sintering time increases the magnesium 

deficiency and consequently causes a deficiency in MgB2 phase in the superconducting 

core. Longer sintering times could thus lead to a lower Jc in the wire. 

 
Figure 4- 24: Scanning electron microscope image and EDS surface analysis of a transverse cross-
section of SS Cu-clad MgB2 wire sample. 
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Figure 4- 25: Scanning electron microscope image of a transverse cross-section of the SS Ag-clad 
MgB2 wire sample using back scattered electron imaging. 

 
Figure 4- 26: Scanning electron microscope image of a transverse cross-section of the LS Ag-clad 
MgB2 sample using back scattered electron imaging. 

Measurements of the M-H loops at different temperatures were carried out on the Cu, Fe 

and Ag-clad wires. A typical M-H loop of an SS Ag-clad wire sample is shown in Fig. 

4-27. We can see that a typical flux-jumping pattern is present for temperatures below 

15 K. This flux jumping has been also observed in MgB2 bulk samples [404]. 

The critical current density was calculated from the M-H loops using the Bean critical 

model. The field dependence of Jc for three samples of Cu and Ag-clad wires at 10 K, 

20 K and 30 K are shown in Fig. 4-28. The field dependence of Fe clad wire at 20 K and 

30 K is also shown. As we can see, Fe-clad wire has the highest Jc  and the best Jc-field 
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dependence among all samples at 20 K and 30 K. It should be noted that a Jc of 1.3×105 

A/cm2 at 20 K and zero field has been achieved for the SS Ag-clad sample. It is not 

possible to exactly measure the Jc at low fields at temperatures below 15 K due to the 

flux jumping. As we can see the Jc in the SS sample is more than two times higher than 

for the LS sample due to less reaction between the superconducting core and sheath 

material. 
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Figure 4- 27: M-H loop of the SS Ag-clad MgB2 wire sample at different temperatures. 
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Figure 4- 28: Field dependence of Jc at 5 K, 20 K and 30 K for Ag, Cu and Fe clad wires. 
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LS Ag-clad wire has the lowest Jc at low fields over the entire temperature range. 

Although the SS Cu-clad wire has a higher Jc than the LS Ag-clad wire at low field, the 

Jc-field performance of this sample is not as good as for the LS Ag-clad sample. The LS 

Ag-clad sample has a slightly higher Jc than SS Cu-clad wire at high fields over the 

entire temperature range, probably due to poor grain connectivity in the Cu-clad wire. 
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Figure 4- 29: The comparison between Jc field dependence of our SS Cu-clad MgB2 wire and the 
Cu-clad wires which were reported by Glowacki et al. [14,15] at 5 K. 

The field dependence of Jc for the SS Cu-clad wire was compared with the results which 

were reported by Glowacki et al. [233, 422], as is shown in Fig. 4-29. As we can see, 

the Jc of wire that was sintered at 700 oC for 1h is about two times higher than for wire 

that was sintered at 620 oC for 48 h. Our SS Cu-clad wire, which was sintered at 800 oC 

for 6 min, has better Jc-field performance than wire that was sintered at 620 oC for 48 h. 

It even has better Jc-field performance at low field (less than 4 T) than wire that was 

sintered at 700 oC for 1 h. The slightly inferior performance of our SS Cu-clad wire at 

high fields is probably because the longer sintering time in the 700 oC sample caused 

stronger grain connectivity.  

Fig. 4-30 shows the irreversibility field (Hirr) versus temperature for all the samples. Hirr 

was determined from Jc – H curves using the criterion of 100 A/cm2. We can see that 

the copper clad wire has the lowest Hirr for the whole temperature range. The SS Ag-

clad wire also has a higher Hirr than the LS wire over the whole temperature range. Fe 
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has the highest Hirr among all the samples. As we can see, the differences between the 

Hirr values are increased by decreasing the temperature.  
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Figure 4- 30: Irreversibility lines for all the samples. 

 

4-3-4 Summary 

In this section we have investigated the effects of sintering time and temperature on the 

critical current densities of Cu, Ag and Fe-clad MgB2 wires. It was found that a short 

heat treatment in the fabrication of Cu and Ag clad MgB2 wires can markedly enhance 

the critical current density. A total sintering time of several minutes is enough to form 

nearly pure MgB2 with high performance characteristics. SEM microanalysis, Jc and 

Hirr results show that the Cu and Ag clad MgB2 wires samples which were sintered for 6 

minutes are better than those sintered for longer times. Jc of 1.2×105 A/cm2 in zero field 

and above 104 A/cm2 in 2 T at 20 K have been achieved for the SS Ag-clad MgB2 wire. 
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4-4 Fabrication and Critical Current Density in 16-
Filament Stainless Steel/Fe/MgB2 Square Wire 

4-4-1 Introduction  

As we explained in the previous sections the powder-in-tube (PIT) method seems the 

most promising for practical applications of MgB2 wires or tapes. Fe and some of its 

alloys have been found to be suitable for this purpose [200, 203]. Grasso et al. showed 

that MgB2 tape or wire can be made from pre-reacted commercially available powder 

without any heat treatment [277]. Furthermore Suo et al. showed that the critical current 

density of pre-reacted powder can be improved by a final heat treatment [202]. It has 

been also shown that increases in the Jc of tapes or wires result from the use of high 

toughness sheath materials due to mechanical densification of the superconducting core 

[265]. A 7-filament Cu-Ni/MgB2 wire prepared by Kumakura et al. [252] had a 

transport Jc,4.2K of about 3×104 A/cm2 in self field and 104 A/cm2 at 1 T. They had used 

pre-reacted powder and no further heat treatment was applied. An 18-filament 

Cu/NbZr/MgB2 tape fabricated by Liu et al. [294] exhibited a transport Jc,10K of about 

8×104 A/cm2 in self field and 1.36×104 A/cm2 at 1T. They used an in-situ reaction 

method, sintering samples at 600-1000 oC for 1-10 h. To prepare dense and compact 

multifilament wire we used Fe and stainless steel (SS) as a sheath material. In this 

section we report on the preparation and properties of a 16-filament MgB2 square wire.  

4-4-2 Experimental Details  

The SS/Fe/MgB2 wires were prepared using a standard PIT method. Commercially 

available MgB2 powder (Alfa Acer) was loaded into an 8cm long pure Fe tube with an 

outside diameter of 5 mm and a wall thickness of 0.5 mm. The tube was groove rolled 

to wire with a square cross section of about 1.5 mm on each side and a length of 50 cm. 

An empty SS tube was groove rolled to prepare a square cross section tube with a 6 mm 

inside dimension (each side) and a length of 8 cm. Four pieces of the Fe-clad wire, each 

about 8 cm in length, were stacked inside this tube which was then groove rolled to a 4-

filament wire about 2mm in outside dimension. Fig. 4-31 presents an SEM back 
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scattered electron image of a transverse cross section of the 4-filament SS/Fe/MgB2 

wire. A well-defined Fe sheath layer fully covered by an SS layer can be clearly seen. 

 
Figure 4- 31: Scanning electron microscope image of a transverse cross-section of 4-filament 
SS/Fe/MgB2 wire sample using back scattered electron imaging. 

Four pieces of the 4-filament SS/Fe/MgB2 wire each about 10 cm in length were again 

stacked inside another SS tube and groove rolled to a tough, high density, 16-filament 

wire about 2-3 mm in dimension (Fig. 4-32). Fig. 4-32 is an SEM image of a transverse 

cross section of the 16-filament SS/Fe/MgB2 wire. 

 
Figure 4- 32: Scanning electron microscope image of a transverse cross-section of 16-filament 
SS/Fe/MgB2 wire sample. 
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Several samples about 2.5cm long were cut and sintered at 950 oC in flowing high 

purity Ar. Fig. 4-33 is an SEM image of a superconducting core from the 16-filament 

SS/Fe/MgB2 wire after sintering. Highly packed grains with an average grain size of 

about 300 nm can be seen.  

 
Figure 4- 33: High magnification Scanning Electron Microscope image of a superconducting core 
for 16-filament SS/Fe/MgB2 wire sample. The mark indicates 1 micron. 

A sample about 6 mm long was taken from the middle of each wire for magnetic 

measurement. The dc field dependence of the magnetization was measured by VSM 

using an applied field sweep amplitude of 17 kOe and a temperature range of 4.2 to 40 

K, the latter temperature being just above the Tc of MgB2. In order to obtain the M-H 

loops for the superconductor itself, the Fe contribution (the measurement results at 40 

K) was subtracted away from the total M-H loop [200, 207]. In the other words, the Fe 

magnetic contribution was electrically removed. Separate measurement of a small Fe 

sample sufficed to verify that (M-H)sheath itself was practically temperature independent 

within the temperature range of 4 to 40 K, validating the subtraction procedure over the 

temperature range of interest. 

Magnetization loops for the 16-filament wire were measured from 4.2 K to 40 K at 2.5 

K temperature intervals. A typical M-H loop for a wire sample, with and without the Fe 

signal, is shown in Fig. 4-34.   
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4-4-3 Results and Discussion 

Fig. 4-35 depicts a representative set of temperature-dependent loops after electrical 

removal of the sheath material. The paramagnetic slope evident at high temperature is 

due to the presence of stainless steel. Magnetic Jcs were calculated using the 

conventional semi-Bean critical-state approach. 

The temperature dependences of magnetic Jc of the 16-filament SS/Fe/MgB2 wire at 

fields of 5 kOe and 10 kOe are shown in Fig. 4-36. At 5 K, Jcs of 3.4×105 A/cm2 in 5 

kOe and 2.4×105 A/cm2 in10 kOe were obtained. The transport Jc temperature 

dependence of an 18-filament Cu/NbZr/MgB2 wire [252] in self field and 10 KOe are 

also included in the figure, as well as the transport Jc,4.2K of 7-filament Cu-Ni/MgB2 

wire [294] in self field and 10 kOe. It should be noted that a Jc,10K values of 2.3×105 

A/cm2 at 5 kOe and 1.3×105 A/cm2 at10 kOe have been achieved for the 16-filament 

SS/Fe/MgB2 wire sample. Fig. 4-36 shows that the Jc of our wire at 10 K and 10 kOe is 

considerably higher than that of the 18-filament Cu/NbZr/MgB2 tape which had been 

prepared using unreacted powder and sintered at 600-1000 oC for 1-10 h.  

 
Figure 4- 34: A typical M-H loop of 16-filament SS/Fe/MgB2 wire sample. 
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Figure 4- 35: M-H loops of 16-filament SS/Fe/MgB2 wire sample at different temperatures, with the 
Fe contribution was removed. 
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Figure 4- 36: Temperature dependence of magnetic J  of 16-filament SS/Fe/MgB  wire sample at 0.5 
and 1 T. The figure includes the temperature dependence of the transport J  of 18-filament 
Cu/NbZr/MgB  tape sample at 0 and 1 T that is extracted from Liu et al. [294]. The temperature 
dependences of critical current density J  of 7-filament Cu-Ni/MgB  wire at 0 and 1 T and 4.2 K 
that are extracted from Kumakura et al. [252] is also included. 
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4-4-4 Summary 

Sixteen-filament stainless steel/Fe/MgB  wires were fabricated by the powder-in-tube 

method followed by groove rolling and heat treatment at 950 C. The wires were 

characterized using SEM, and vibrating sample magnetometery. High strength sheath 

material results in a dense superconducting core and relatively high critical current 

density. Magnetic critical current densities of 3.4×10  A/cm  in 0.5 T and about 1.9×10  

A/cm  in 1 T at 5 K were achieved. 

2

o

5 2

2

5
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4-5 Transport Critical Current of Solenoidal MgB2/Cu
Coils Fabricated Using a Wind-Reaction In situ 
Technique 

 

4-5-1 Introduction 

Since the discovery of the 39 K superconductor, MgB [19], significant advances has 

been achieved in the fabrication of various forms of MgB . In particular, intensive 

efforts have been made in improving the critical current density (J ) in various metal sheathed 

MgB  wires. High J  of 10  – 10  A/cm  at 4 K to 30 K for MgB  wires and good 

performance of J  in magnetic field have been reported by several groups [200-202, 233, 

265, 277, 404, 423]. However, the results reported thus far have been largely limited to 

short samples several centimetres long. In contrast, long Bi-based HTS wires with high 

J  were reported within several months time after discovery of the Bi-HTS compound 

[424].  For large scale applications it is essential to fabricate this material into long 

wires and coils.  The critical challenge that remains is how much the J  deteriorates with 

increasing length of the wire and whether one can wind the wire into a coil without 

appreciable loss of J . In this section, we report the fabrication and transport critical 

current of solenoidal MgB /Cu coils fabricated using a wind-reaction in-situ technique. 

2 

2

c

2 c
6 2

2

c

c

c

2  

4-5-2 Experimental Details 

Standard powder-in-tube methods were used for Cu-Fe or Cu clad MgB  tapes. The 

pure Cu or Fe tubes had an outside diameter (OD) of 10 mm, a wall thickness of 1 mm, 

and a length of 12 cm. One end of the tube was sealed, and the tube was filled in with 

magnesium (99% purity) and amorphous boron (99%) with the stoichiometry of MgB . 

The composite was drawn to 0.5, 0.7 and 1 mm diameter wires several meters long. 

Some wires were further rolled to ribbon over many steps. Several short samples 2 cm 

in length were cut from the wires and ribbons. The green wires were wound onto a 

ceramic tube 8 mm in diameter with both ends fixed to slots at the end of the ceramic 

2

2

5

c
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tube. Several coils were prepared using this procedure, and one of the coils has 100 

turns and was wound using 3-meter long Cu-sheathed MgB  wire. These coils and some 

straight pieces of wires and tapes were then sintered in a tube furnace at temperatures 

within a range of 650-750 C for 10 min. A high purity argon gas flow was maintained 

throughout the sintering process.  

o

Short pieces of wires 4 mm and 30 mm long were used for magnetic and transport 

critical current measurements using the four probe method. For longer wire samples up 

to 300 mm, a number of voltage contacts were made at different distances to determine 

the variation of I  with length. For the 100 turn coil two voltage contacts were made at a 

distance of 2 meters apart with the current contacts at the end of the coil.   Transport 

measurements of the voltage versus current (V-I) were performed by a standard 4-probe, 

DC method. The measurements were performed in liquid helium. Current contacts were 

soldered onto the samples at least 1cm away from the voltage contacts, to allow for the 

heat created at the current contacts to dissipate into the liquid helium before it reached 

the part of the sample between the voltage contacts. The current was switched on and 

off gradually, to avoid damage to the sample due to the mechanical shock resulting from 

a fast change in the current. Each point in V-I was taken within 10 seconds, to avoid 

heating the sample. Magnetic measurements were performed by a Quantum Design 

PPMS magnetometer. Magnetic hysteresis loops were used to obtain the field 

dependence of the critical current density at each of the temperatures measured, by 

employing the critical state model. The sweep rate of the field was 50 Oe/s. The 

magnetic field was always applied along the sample. 

c

4-5-3 Results and Discussions 

Figure 4-37 displays 10 mm diameter MgB  coils of 100 turns, wound using 3 meters of 

Cu-sheathed single core wire and heat-treated at 700 
2

oC for 10 min. The coils are 

reasonably flexible and can be stretched by 20% and bent to an angle of 30o after heat 

treatment without degradation in I . Figure 4-38 shows photomicrographs of transverse 

and longitudinal cross-sections of a 100 turn solenoid coil (Coil-4). It is seen that the 

interface between the Cu and the MgB  core is very smooth. Although there is thin layer 

of MgCu formed during sintering the reaction between the Cu and the Mg is not very  

c

2

2
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Figure 4- 37: The appearance of two 10 mm diameter MgB  coils of 100 turns, wound using 3 
meters of Cu-sheathed single core wire and a 10 mm diameter coil of 10 turns. These coils were 
heat-treated at 700 C for 10 min. 

2

o

serious as a short reaction time (10min) and low sintering temperatures (750 oC) were 

used. 

 
Figure 4- 38: Photomicrographs of the transverse (a) and longitudinal (b) cross-sections of the 100 
turn coil-4. The scale bars represent about 300 µm. 
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Table 4-3 lists the parameters for samples in the form of straight wires and coils with 

Cu-sheaths. These results show very interesting features. Compare wire-1 and coil-1 

which are made from the same green wire. The J  is the same for both cases, indicating 

that (a) winding the wire into a 10 mm diameter coil does not degrade J  and (b) the 

increase in distance between the two voltage contacts from 13mm to 100mm did not 

cause a reduction in J . The J  results obtained from the straight wire (wire-2) and the 

100 turn coil (coil-4) further indicate that there is no evidence of significant length 

dependence of J . For the sample wire-2, the critical current was not reached due to the 

limitations of contact heating. But the I  for all three contact distances exceeds 100 A. 

The 6 turn coil (coil-2) and 5 turn coil (coil-3) were wound using thinner Cu-sheathed 

wire (OD = 0.5mm) and tape respectively. Because their core density is relatively 

higher, respective J  values of 125,000 A/cm  and 133,000 A/cm  at helium temperature 

and self field has been achieved, suggesting that density is one of the critical factors to 

influence J . 

c

c

c c

c

c

c
2

 
Table 4- 3: List of various samples with description and measurement results of J . c

Designation 
of samples Sample description 

Distance between 
voltage contacts (D, 

mm) 

MgB  Core 
diameter (mm) 

2
c J  (A/cm ) c

2

Wire-1 30mm MgB2/Cu straight wire 0.45 105 66,000 
37 >100 >35,300 
80 0.6 >100 Wire-2 200mm long MgB2/Fe-Cu straight 

wire 
120 0.6 >100 >35,300 

Wire Coil-1 5 turn MgB /Cu coil, 10mm OD 2 100 (3 turns) 0.45 >101 >63,500 
6 turn MgB /Cu coil, 10mm OD 2 140 (4 turns) 0.32 100 125,000 

Tape Coil-3 2 100 (3 turns) 0.055 >73 >133,000 
35 (1 turn) 0.45 72 45,300 

Wire Coil-4 100 Turn MgB /Cu solenoid, 10mm 
OD 0.45 73 45,900 

Figure 4-39 shows the characteristics of the voltage – current curves (V-I) for the 100 

turn solenoid coil with two voltage contacts at distance of 35 mm (1 turn) and 2 meters 

(63 turns) apart.  Despite possible inhomogeneity along the length and the low density 

of the core, the same value of J  for the two very different voltage contact distances 

clearly indicates that the deterioration of J  with increasing length of MgB  wires is 

insignificant. It should be pointed out that the measurement for the voltage contact 

distance of 35 mm was performed after several cycles of the coil between helium 

temperature and room temperature due to the needed to change the contact position. It is 

c

c

2

c

I  (A) 

13 
0.6 

>35,300 

Wire Coil-2 
5 turn MgB /Cu coil, 10mm OD 

2

2000 (63 turns) 

2
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expected that the cycling could cause some degradation in J  as the density of the single 

core is low. Furthermore, a solenoid coil with 100 turns passing 73 A will generate a 

self-field of about 80 mT which will slightly reduce the I . So, the J  for the 35mm 

contact distance should be higher than that with the 2 meters contact distance. 

Compared to sample wire-1 which was made from the same batch of green wire the J  

for the 35 mm contact distance would not be higher than that of wire-1. If the density of 

the wire core can be improved the thermal cycling would not have detrimental effects as 

has been demonstrated for Fe-sheathed wire [203]. 

c

c c

c

 
Figure 4- 39: The voltage – current curves (V-I) for the 100 turn solenoid coil with two voltage 
contacts at a distance of 35 mm (1 turn) and 2 meters (63 turns). The two current contacts were 
soldered at the end of each side of the solenoid coil for the latter case. 

Note also from Figure 4-39 that the V-I curve for the contact distance of 35 mm shows a 

steep increase at the critical current 72 A while the voltage for the large contact distance 

increases more gradually. For the former the V-I characteristics beyond the critical 

current are dominated by the Cu sheath while in the latter case, there are still large 

segments of the coil remaining superconducting when a small section becomes normal. 

It is unclear that what kind of voltage criteria should be used to determine the I  for the 

Cu-sheathed MgB  wire at this stage. In our measurements we use the same standard to 

determine the I  for short straight wire and for the solenoid coils. This means that the 

criterion for the 100 turn solenoid coil is about 0.005 µV/cm, compared with common 

criterion of 1 µV/cm used in HTS wires. If we apply the 1 µV/cm criterion to the 100 

turn coil the I  will be about 200 A, estimated by extrapolating the V-I curve. This will 

c

2

c

c
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cause huge heating over normal sections of coil. Thus, the 1 µV/cm criterion may be 

applicable to the metal sheathed MgB  wire. 2

4-5-4 Summary 

In this section, we report the results of transport J  of solenoid coils up to 100 turns 

fabricated with Cu-sheathed MgB  wires using a wind-reaction in-situ technique. 

Despite the low density of the single core material and some reaction between Mg and 

Cu-sheath, our results demonstrate that the decrease in transport J  with increasing 

length of MgB  wires is insignificant. Solenoid coils with diameters as small as 10 mm 

can be readily fabricated using a wind-reaction in-situ technique. The J  of coils is 

essentially the same as for straight wires. A J  of 133,000 A/cm  and 125,000 A/cm at 4 

K and self field has been achieved for a small coil wound using Cu-sheathed tape and 

Cu-sheathed wire respectively. These results indicate that MgB  wires have a great 

potential for large scale applications.  

c
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c
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c

c
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CHAPTER 5: EFFECT OF CHEMICAL DOPING ON 
THE CRITICAL CURRENT DENSITY AND FLUX 
PINNING OF MgB  2

5-1 Enhancement of the Critical Current Density and 
Flux Pinning of Superconductor MgB  by Nanoparticle 
SiC Doping 

2

5-1-1 Introduction 

High J  values at a level of 10  A/cm  to 10  A/cm at 20 K to 30 K for MgB  wires and 

tapes have been presented in previous chapter. Many groups have attempted to improve 

the critical current density in this superconductor as it has a lower H  and H  than the 

commercial low temperature superconductors Nb Sn and NbTi. Despite the strong link 

grain boundary effects on critical current density [1], the J  drops rapidly with 

increasing magnetic field due to poor flux pinning. Therefore, extensive research has 

been done on introducing pinning centers into this superconductor.  

c
5 2 6 2 

2

c2 irr
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c

Various mechanical deformation processes have been used either to improve the density 

or to introduce defects, resulting some improvements in J (H) in hot-pressed bulk, wires 

and tapes [2-10]. Because the MgB  lattice structure is rather rigid and the number of 

elements in the structure is only two, the density of defects, if any, introduced by 

mechanical deformation is too low to provide effective pinning. 

c

2  

Effective pinning centers has been induced by high energy ion irradiation of MgB2 

powder [11] or by oxygen alloying in MgB  thin films [10]. Producing pinning centers 

via chemical doping is another effective method and more practical compared to 

physical techniques. Several attempts have been made to improve flux pinning using 

chemical doping. The results for doping into MgB  reported so far are limited to 

2

2
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addition rather than substitution. Additives appear to be ineffective for improving 

pinning at high temperatures. Zhao et al., and Feng et al. have doped MgB  with Ti and 

Zr, showing an improvement of J  at low temperatures, attributable to the sintering aid 

effect of these additives [12, 13]. However, there is no evidence for improved pinning at 

temperatures above 10 K as the J  drops off rapidly with increasing field (H 4 T at 

20 K). Wang et al. doped MgB  using Y O  nanoparticles [14]. Their results showed a 

significant improvement of the irreversibility field (H = 11.5 T) at 4.2 K for the doped 

sample due to the introduction of highly dispersed inclusions such as YB . However, the 

improvement in H  at 20 K is insignificant for the doped samples. Cimerle et al. found 

that doping with a small amount of Li, Al and Si produced some increase in J , but there 

was no improvement in H  [15] because single element doping degrades T  

dramatically at high doping levels.  

2

c

c irr 

2 3

irr

4

irr

c

irr

Recently, using high field transport measurements, Gurevich et al. have reported the 

achievement of record high upper critical fields (H ) for high resistivity films and 

untextured bulk polycrystals [16]. They found that enhancements to the resistivity have 

a strong influence on H . The observed remarkable H  enhancement to almost 50 T is 

a consequence of the two-gap superconductivity of MgB , which offers special 

opportunities for further H  increased by tuning the impurity scattering.  In this section 

we present chemical doping with nanoparticle SiC into MgB  by means of transport and 

magnetic measurement evaluations in combination with TEM observations on the 

nanoscale-SiC doped MgB . We will show that SiC doping can significantly enhance J  

in high fields without a reduction in low field J  and only a slight reduction in T . The 

results demonstrate that nanoparticle SiC doping in MgB  induced intra-grain defects as 

effective pinning centres, which are largely responsible for the improved performance 

of J (H) over a wide range of temperatures. 

c2

c2 c2

2

2

2 c

c

2

c

5-1-2 Experimental Details 

MgB  pellet samples were prepared by an in-situ reaction method, which was described 

in detail previously. Powders of magnesium (99% pure) and amorphous boron (99% 

pure) were well mixed with SiC nano-particle powder (with a particle size of 10 nm to 

100 nm) with the atomic ratio of MgB (SiC) , where x = 0, 0.2,  and 0.3. A sample 

with 10 wt% of SiC addition to MgB  was also made. Pellets 10 mm in diameter and 2 
2-x x/2

2

≈

2

c

c2

c

2
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mm in thickness were made from these powders. Heat treatment was performed at a 

temperature of 800 C for 30 min.  o

The magnetization of samples in magnetc fields up to 9 T was measured using a PPMS 

(Quantum Design) at the University of Wollongong and up to 14 T using the vibrating 

sample magnetometer (VSM) at the University of Wisconsin at Madison. The resistivity 

versus temperature curves ρ(T), were measured in magnetic fields up to 9 T by a four 

probe method at a current density of about 1 A/cm  using the 9 T PPMS (Quantum 

Design) at the University of Wisconsin at Madison. All the samples were cut to the 

same size of 0.56×2.17×3.73 mm  from as-sintered pellets. A magnetic J  was derived 

using a Bean model. An empirical magnetic irreversibility field (H ) was defined as the 

field at which J  falls to 100 A/cm . The critical temperature (T ) was obtained as the 

onset of the diamagnetic transition in magnetic ac susceptibility measurements. An 

high-resolution transmission electron microscope (HRTEM) was employed to 

characterize the morphology of the samples. Electron energy loss spectroscopy (EELS) 

[17] was obtained using a JEOL-3000F field emission STEM/TEM, equipped with a 

Schottky field-emission source operated at 300 keV.  

2

3
c

irr

c c

5-1-3 Results and Discussion 

Fig. 5-1 shows XRD patterns for the SiC doped and non-doped samples. The XRD 

pattern for the non-doped sample reveals about 5% MgO, besides MgB  as the main 

phase. Doped samples consist of MgB  as the main phase, with Mg Si as the major 

impurity phase (crosses in Fig. 5-1) as well as small amounts of MgO and MgB .  
2 2

4

2

2
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Figure 5- 1: XRD patterns for the undoped and SiC-doped samples. 

Fig. 5-2 shows an SEM image of the MgB  + 10 wt% SiC sample. As we can see, the 

sample is very porous, consistent with the low mass density of the sample, about 1.3 

g/cm  which is about 50% of the mass density of a fully dense sample. This suggests 

that J  could be further improved if the density of the sample can be increased. Large 

numbers of spherical holes with a size of about 10-15 µm are uniformly distributed in 

the superconducting matrix, as can be seen in this image. The holes can be attributed to 

voids that were left by the melting magnesium particles. A very similar microstructure 

was found for all the samples without any significant differences. Further SEM 

examination revealed that the MgB  matrix consists of sub-micron grains with average 

grain sizes of less than 100 nm, and the homogeneity appears to be the same for all the 

samples with different doping levels. 

2
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Figure 5- 2: SEM image of MgB  bulk sample. 2

Fig. 5-3 shows the transition temperature (T ) and transition width ∆T  for the doped 

and undoped samples determined by ac susceptibility measurements. The T  onset for 

the undoped sample (~ 38.2 K) is almost the same as that reported by a number of 

groups. It shows also a sharp transition with the transition width of less than 1 K. For 

the doped samples, the T  decreases with increasing doping level. It is striking to note 

that despite the high doping level, the T  only drops about 0.8 K with 10 wt% of SiC 

doping. In contrast, T  is depressed to about 22 K for C doped MgB  with the nominal 

stoichiometry of Mg(B C )  synthesized from Mg and B C [18]. These results 

suggest that there is only a small fraction, if any, of C substituted for B in our samples. 

c

c

c

c

c

0.8 0.2 2 4

Fig. 5-4 shows the J (H) curves for MgB  doped and undoped samples at 5 K, 20 K, and 

30 K. Note that all the J (H) curves for doped samples show a crossover with the 

undoped samples at higher fields. Although SiC doping caused a slight reduction of J  

in low fields, it is important to note that the J  for the doped samples drops with 

increasing field much more slowly than for the undoped ones. 

c 2

c

c

c

2

c

130 



Chapter 5: Effect of Chemical Doping on the Critical Current Density and Flux Pinning of MgB2 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

-0.10

-0.05

0.00
 MgB2
 MgB2+10% (SiC)
 MgB1.8(SiC)0.1
 MgB1.7(SiC)0.15

χ'
[e

m
u/

cm
3 ]

T[K]
 

Figure 5- 3: Transition temperature (Tc) for the doped and undoped samples determined by ac 
susceptibility measurements (real part). 

Compared to the non-doped sample, J  for the 10 wt% doped sample increased by more 

than one order of magnetude at high magnetic fields. Although all the doped samples 

show considerably better J (H) performance compared to the undoped sample, Fig. 5-4 

shows that the sample doped with 10 wt% SiC has slightly better performance than the 

other samples. 

c

Fig. 5-5 shows a comparison of J (H) for the 10 wt% SiC doped sample at 20 K with 

data reported in literature. J  for this sample exhibits better field performance and higher 

values of J  in high fields than any other element doped samples [12, 14] and better than 

the undoped tape [19]. Our SiC doped MgB  samples are even better than thin film 

MgB , which has exhibited one of the strongest reported flux pinning with  high J  in 

high magnetic fields. At 20 K, the best J  for the 10wt% SiC doped sample was10

A/cm  at 3 T, which exceeded J  of the state-of-the-art Ag/Bi-2223 tapes. At 20 K and 4 

T, J  was 36,000 A/cm , which is twice as high as for the MgB  thin films [10] and an 

order of magnitude higher than for the state-of-the-art Fe/MgB  tapes [19]. 
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Figure 5- 4: Jc(H) curves for MgB2 doped (crosses, dashed and dotted lines for MgB  + 10 wt% SiC, 
MgB (SiC) , and  MgB (SiC)  respectively) as well as undoped samples (solid lines) at 5 K, 20 
K, and 30 K. 

2

0.1 1.7 0.15

 
Figure 5- 5: A comparison of magnetic J (H) at 20 K for the 10 wt % SiC-doped sample and for 
samples that were doped with Ti and Y O  as well as a thin film with strong pinning and Fe/MgB  
tape. Inset: temperature dependence of the irreversibility field for SiC-doped MgB  with different 
SiC content (triangles and squares) and for previously prepared doped MgB  (round symbols). 

c

2 2

2

2

The temperature dependence of H  for nano-SiC doped MgB , as well as for the pellets 

and tapes reported previously in the literature (round symbols), is shown in the inset to 

Fig 5-5. Apparently, H  for x=0 overlaps with H  for the previous samples, even 

though the latter had significantly smaller values of J . Doping with SiC significantly 

irr 2

irr
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improved H . For example, H  for SiC doped samples reached 7.3 T at 20 K, 

compared to 5.7 T for the non-doped one. This is consistent with improvement of field 

dependence of J  with the doping. Because H  for the undoped control sample (x=0) is 

the same as for the previously reported samples, the improvement of J (H) occurred 

indeed because of the SiC doping and not because of improved sintering of MgB .  

irr irr

c irr

2

Given the ease of production of SiC-doped MgB , our results significantly strengthen 

the position of MgB  as a competitor to more expensive conventional superconductors 

and HTS. This is because SiC doping is easily achievable and results in strong 

improvement of flux pinning. In the present study, the density of the pellet samples is 

still very low, only about 1.3 g/cm . Thus, still higher J  can be achieved by improving 

the density. 

2

2

3
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Fig. 5-6 shows the resistivity versus temperature between 30 K to 300 K, for doped and 

undoped samples, obtained by four probe transport measurements. The onset T  of the 

undoped sample was 37.5 K. For the 10 wt% SiC-doped sample, T  decreased only by 

0.6 K, consistent with the previous results. It should be note that the resistivities of the 

two samples are very different. The doped sample has a larger resistivity than the 

undoped sample over the whole temperature range. For example at 40 K, ρ is 90 µΩcm 

for the undoped sample and 300 µΩcm for the doped sample. However the undoped 

sample has a lower residual resistivity ratio (RRR) than the doped sample. Both doped 

and undoped samples were prepared using a reaction in-situ method, and they both have 

a low density, about 50% of theoretical density. Thus, the porosity is about the same for 

both samples and should not be the reason for the significant difference in the 

resistivity. However these results are understandable as the doped sample contains a 

large amount of impurity. 

c

c

c

In order to confirm the results and check the reproducibility of samples, as well as 

achieving better understanding of the underlying mechanism responsible for the 

improvement in J (H), more samples were made by doping with 10 wt% addition of SiC 

nano particles. The pure and doped samples have been measured in the Applied 

Superconductivity Center, University of Wisconsin in Madison. 
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Figure 5- 6: Resistivity versus temperature between 30 K to 300 K, for doped and undoped samples, 
extracted from four probe transport measurements. 

 
Figure 5- 7: Resistivity versus temperature curves ρ(T) for the undoped sample in different 
magnetic fields up to 9 T. 

 
Figure 5- 8: Resistivity versus temperature curves ρ(T) for the the SiC-doped sample in different 
magnetic fields up to 9 T. 
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Figs. 5-7 and 5-8 show the resistivity versus temperature curves ρ(T) for the undoped 

(Fig. 5-7) and the SiC-doped (Fig. 5-8) samples at different magnetic fields up to 9 T. 

The doped sample has stronger superconductivity than the undoped, as is shown 

explicitly in the figures. The transition becomes broad with increasing field. The 

broadening of the transition for the undoped sample is more pronounced than for the 

nano-SiC doped sample at high field. It is also evident that the T was depressed much 

more severely with increasing applied field in the undoped sample (Fig. 5-7) than in the 

nano-SiC doped sample (Fig. 5-8), indicating that nano-SiC doping enhanced the flux 

pinning in the MgB .  2

Figs. 5-9 and 5-10 show the magnetic field dependence of J  at 4.2 K, 10 K, 20 K and 

30 K for the undoped and doped samples respectively, calculated from the dc 

magnetization measurements using the VSM. Note that all the J (H) curves for doped 

samples show a much slower drop with increasing field compared to the undoped 

sample over all the measured temperature ranges, which is consistent with the previous 

results. The J  for the nano-SiC doped sample is greater than 10,000 A/cm  at 4.2 K and 

10 T, 10 K and 8 T, and 20 K and 5 T, respectively.  

c
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Figs. 5-11 and 5-12 display the comparison between the J (H) values at 4.2 K and 20 K 

for the undoped and SiC-doped samples. The J  for the doped sample increased by more 

than one order of magnitude at 4.2 K and above 10 T, compared to that for undoped 

samples. The J  for the doped sample also increased by an order of magnitude at 20 K 

and 5 T compared to the undoped samples. At 20 K, the best J  for the 10 wt% SiC 

doped sample achieved 10 A/cm  at 3 T which again exceeded those of the state-the-art 

Ag/Bi-2223 tapes and 36,000 A/cm  at 4 T, which is double that of the thin film and an 

order of magnitude high than those of the Fe/MgB  tapes [19].  

c
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Figure 5- 9: Magnetic field dependence of J  at 4.2 K, 10 K, 20 K and 30 K for the undoped MgB  
sample. 

c

 
Figure 5- 10: Magnetic field dependence of J  at 4.2 K, 10 K, 20 K and 30 K for the SiC doped 
MgB  sample. 

c

2

 
Figure 5- 11: The comparison between J (H) of the undoped and SiC-doped samples at 4.2 K. 
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Figure 5- 12: The comparison between J (H) of the undoped and SiC-doped samples at 20K. c

Irreversibility fields (H ) for both the doped and undoped samples are shown in Fig. 5-

13. The irreversibility line for the doped sample is higher than for the undoped sample 

over the whole temperature range. Doping with SiC significantly improved H . For 

example, the H  for the SiC doped sample reached 12 T and 7.5 T, compared to 8.8 T 

and 5.5 T for the undoped one at 10 K and 20 K, respectively.  

irr

irr  

 
Figure 5- 13: The irreversibility field, H  versus temperature for the undoped and doped samples. 

 

Fig. 5-14 shows the temperature dependence of the upper critical field H  determined 

from the resistance transition curves in Figs. 5-7 and 5-8 at a temperature where the 
c2

irr

irr
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resistivity is 90% of the value of the resistive transition. We note that H (T) is 

improved for the nano-SiC doped sample. This is in agreement with the Gurevich et al. 

results that found the higher H  for films and untextured bulk polycrystals with higher 

resistivity [16]. Since H  should be directly tied to ρ it is clear that the effect of 

impurities must be considered to be affecting the derived values of resistivity, which are 

not directly interpretable as being representative of the scattering in the samples. This 

problem will be discussed below in connection with the effect of impurity on flux 

pinning.  

c2

c2

c2

 

The TEM images showed a high density of dislocations and a large number of ~10nm 

inclusions inside the grains (Fig. 5-15 top and bottom right). EDS analysis of the grains 

revealed the presence of uniformly distributed Mg, B, C, Si and O (inset to Fig. 5-15 

top). TEM examination revealed that there are a number of impurity phases in the form 

of nano-meter size inclusions inside and in between the grains in the nano-SiC doped 

sample. These impurities include Mg2Si, MgB  and MgO detected by XRD analysis, 

and unreacted SiC, amorphous BO , Si B O  and BC detected by using the EELS 

technique. TEM images also show that the grain size of MgB  is smaller than 100nm. 

The Z-contrast image [20-22] of the nano-SiC doped sample, which shows a typical 

MgB  crystal in the [100] orientation, is presented in Fig. 5-15 as well (bottom left). 

EDX analysis shows that the Mg:Si ratio is identical across the entire sample, indicating 

that the phase distribution is globally homogeneous. However, nano-scale impurity 

phases of MgB  and MgO are present within the grains.  The presence of oxygen within 

4

x x y z

2

4

Figure 5- 14: The upper critical field (90% of the resistive transition) as a function of the 
temperature for the undoped and the 10 wt% SiC doped sample. 

2
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the grains is consistent with the results obtained from an oxygen alloyed thin film with 

strong pinning and a resistivity of 220 µΩcm [10].  

Recent work on SiC-doped MgB2 single crystal grown under high pressure (30 kbar) 

and high temperature (1900-1950oC) showed there was only C substitution for B with 

no Si detected in the crystals. These authors revealed that the C substitution for B is as 

high as 16%, the highest level of substitution in all the C-doping studies so far, which 

leads to a depression in T  from 39 K to 9 K [23]. There is a clear trend for C 

substitution in MgB  to depress T  in the literature data as well [24-27]. The higher the 

sintering temperature is, the larger the proportion of C that is substituted for B in MgB . 

As we used relatively lower sintering temperatures, ~800 

c

c

2

oC, the C substitution for B is 

expected to be lower. In the SiC doped sample, it is therefore possible that the C 

substitution is at 1-3%, which is believed to be quite reasonable from literature on C 

substitution in terms of depression of T . However the level of C substitution could not 

be readily identified so far.  
c

In addition to the high concentration of nano-inclusions, there are structural defects 

observed in the nano-SiC doped sample by Li et al. [28]. This kind of nano-domain 

structure may be the result of a small proportion of C substituted for B.  

2

c

c c

c

According to two-gap superconductivity theory, the nano SiC doping could lead to two 

different scattering channels. First, the partial C substitution for B or the formation of 

alloying between B and Si, B and C and B and O in the close vicinity of B sites causes 

disorder on B sites which will result in in-plane σ scattering. The alloying phases such 

as BC, BO  and SiBO  detected by the EELS analysis have dimensions well below 

10nm. Their scattering will lead to an increase in dH /dT at temperatures near T . The 
x x

c2 c

2

Nano-particle SiC doping into MgB  has a special features compared to all other doping 

reported so far. In this case, not only the extent of enhancement in J (H) is very large, 

by more than an order of magnitude above certain fields, but also the enhancement of 

J (H) occurred in all the temperatures ranges up to T , in contrast to most of the other 

doping studies, which have been effective in enhancing J (H) only within low 

temperature ranges. Also in contrast to previous work on doping for improving J , SiC 

doping has no densification effect, as evidenced by the fact that the density of the doped 

samples is quite low and independent of the doping level. 

c

139 



Chapter 5: Effect of Chemical Doping on the Critical Current Density and Flux Pinning of MgB2 

higher H  at higher temperatures contributes to the enhancement of J (H) at higher 

temperatures for the SiC doped samples. Second, the formation of nano-domain 

structures is due to the variation of Mg-B spacing which in turn causes disorders at B 

and Mg sites. These nano-domains with a size of 2-3nm are also well below the 8-10 

nm coherence length of MgB . These extensive nano-domain defects could result in 

strong in-plane and out-off-plane scatterings and contribute to the increase of resistivity 

and H  in a wide temperature regime.  This accounts for the enhancement of J (H) over 

a wide temperature range for the SiC doped samples. 

c

2

c2 c

 
Figure 5- 15: TEM images showing the intragrain dislocations and nanoparticle inclusions within 
MgB grains (top and bottom right). Inset: EDS element analysis of MgB  grains of doped sample. 2 2

On the other hand, the additional impurities at nano-scale introduced by SiC doping can 

serve as strong pinning centers to improve flux pinning within a certain field region. 

c2
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This is clearly demonstrated by the superior J  – H performance of the SiC doped 

samples. 

The potential pinning centers induced by SiC doping include inclusions such as the 

highly dispersed MgSi , BC, BO  and SiBO  which are all at a scale below 10nm, 

match the coherence length very well and can act as strong pinning centers. Some large 

impurity particles such as unreacted SiC would not be effective pinning centers but 

would act to reduce superconducting volume and thus should be eliminated in order to 

further improve the zero field J . In addition, the nano-domain defects at a scale of 2-3 

nm in an extensive network would provide very effective collective pinning at all 

temperatures up to T .  

2 x x

c

c

5-1-4 Summary 

2

2

2 c2

c2

c 

2 x

c2

2 c

 

c

In summary, we have demonstrated that the critical current density, irreversibility field 

and flux pinning properties of MgB  in bulk form can be significantly improved by a 

readily achievable and economically viable chemical doping with SiC, paving the way 

for MgB  to potentially replace the current market leader, Nb-Ti. The nano-scale SiC 

doping into MgB  enhances both H  and flux pinning through multiple scattering 

channels. Alloying at B and Mg sites due to C substitution and the formation of nano-

domain structures will cause strong scattering over a wide range of temperatures, 

leading to enhancement in H . A high concentration of various nano-scale impurity 

phases results in high resistivity, a low residual resistivity ratio, and a large 

irreversibility field and upper critical field with modest T reduction. The highly 

dispersed nano-scale precipitates MgSi , BC, BO , SiBO  and the extensive domain 

structures on a scale well below 10 nm serve as strong pinning centres. Large particle 

impurities such as unreacted SiC (>100 nm) increase resistivity, reduce the 

superconducting volume and do not help with the improvement of either flux pinning or 

H  and therefore should be eliminated. The doping with SiC enhances the critical 

current density, the irreversibility field and the upper critical field in a manner that helps 

make MgB  potentially competitive with both low and high-T  superconductors. 

x
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5-2- Transport Critical Current Density in Fe-Sheathed 
Nano-SiC Doped MgB  Wires 2

5-2-1 Introduction  

It has been shown that Fe is suitable sheath for fabrication of MgB2 wire using a 

powder-in-tube method [7, 8] as demonstrated in the previous chapter.  However, the Jc 

performance of wires remains unsatisfactory for many applications due to the poor 

pinning ability of this material. In the previous section, we showed that chemical doping 

with nano-particle SiC into MgB2 can significantly enhance Jc in high fields with only 

slight reduction in Tc. This finding suggested that possible substitution of C for B in 

MgB  induced intra-grain defects as well as an high density of nano-inclusions as 

effective pinning centres, responsible for the improved performance of J (H) over a 

wide range of temperatures. However, all the critical current densities presented in the 

previous section were limited to magnetic measurements. As the materials are far from 

optimum and the sample density was only about 50% of the theoretical value the current 

in such a porous material is highly percolative. The major concern is whether the 

material can carry a large transport J . In this section, we study the effect of the 

nanometer-size SiC doping on the transport critical current density and its magnetic 

field dependence for MgB  wires. Our results reveal that the nanometer size SiC-doped 

MgB /Fe wires can carry very high transport I  and J  in the applied magnetic fields. 

SiC doped MgB  is very promising for many applications, as this chemical doping is a 

readily achievable and economically viable process to introduce effective flux pinning. 

2

c

2

2 c c

2

Standard powder-in-tube methods were used for the Fe clad MgB  tape. Powders of 

magnesium (99%) and amorphous boron (99%) were well mixed with 0 and 10 wt% of 

SiC nanoparticle powder (size of 10 nm to 20 nm) and thoroughly ground. The pure Fe 

tube had an outside diameter (OD) of 10 mm, a wall thickness of 1 mm, and was 10 cm 

long. The wire preparation procedure has been explained earlier. Short samples 2 cm in 

2

c

5-2-2 Experimental Details 
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length and 1.4 mm in diameter were sintered in a tube furnace at 800 C for 30 min. A 

high purity argon gas flow was maintained throughout the sintering process. Transport 

current was measured using pulse DC method. Because the critical current for these 

wires was hundreds of amperes, the transport measurements had to be performed by a 

pulse-method, to avoid heating. A pulse of current was obtained by discharging a 

capacitor through the sample, a coil of thick copper wire and a non-inductive resistor 

connected in series. The current was measured via the voltage drop on the non-inductive 

resistor of 0.01 Ohm. With a proper choice of coil, the current reached its maximum 

value (700 A) within 1 ms. The voltage developed on the sample was measured 

simultaneously with the current, using a 2-channel digital oscilloscope. Because both 

channels of the oscilloscope had the same ground, the signal from the voltage taps was 

first fed to a transformer preamplifier (SR554). This decoupled the voltage taps from the 

resistor used for measuring the current, thereby avoiding creation of ground loops and 

parasitic voltages in the system, as well as of an additional current path in parallel to the 

sample. The transformer amplified the voltage 100 times, improving the sensitivity of 

the experiment.  Magnetic field was produced by a 12 T superconducting magnet. 

Sample mounting allowed for orienting the field either perpendicular to the wire, or 

parallel to it. In the later case, the field was also parallel to the current passing through 

the sample. The sample was placed into a continuous flow helium cryostat, allowing a 

control of temperature to better than 0.1 K. The magnetization of samples was also 

measured using a PPMS (Quantum Design).  The samples were in the form of bars cut 

from pellets which were processed under the same conditions as the wires, as explained 

in the previous chapter. A magnetic J  was derived from the height of the magnetization 

loop using Bean’s model.  

o

c

5-2-3 Results and Discussion 

Fig. 5-16 shows the transition temperature (T ) for the doped and undoped samples 

determined by ac susceptibility measurements. The T  obtained as the onset of magnetic 

screening for the undoped sample was 37.6 K. For the 10 wt% SiC doped sample, the T  

was decreased by only 0.7 K. In contrast, the T  was depressed by almost 7 K for 10% C 

substitution for B in MgB  [27].  

c

c

c

2

c
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Figure 5- 16: Critical transition temperature (T ) measured using magnetic susceptibility versus 
temperature for pure MgB  and 10wt% SiC doped MgB /Fe wires  

c

2 2

c

2 

Fig. 5-17 shows a typical V-I characteristic for the 10 wt% SiC doped MgB /Fe wire. It 

should be noted that the self-field of the current pulse induced a voltage in the voltage 

taps, which gave a background voltage. It was easy to distinguish the voltage created by 

the superconductor on this background, because the voltage developed very abruptly 

when the current reached the value of I . It is interesting to note that the total current 

that the SiC doped wire can carry reached 665 A at 24 K and 1.1 T. Due to the 

limitations of our power source all the I  measurements were limited to a maximum 700 

A. 

2

c

 
Figure 5- 17:  I-V curves for 10 wt% SiC doped MgB2/Fe wire.  Ic = 665 A at 24 K and 1.1 T. 

 

As explained in the previous section, this suggests that the higher tolerance of T  to SiC 

doping in MgB is attributable to the low level of C substitution.  
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Fig. 5-18 shows the J (H) curves for the undoped and the 10 wt% SiC-doped MgB

samples at 5 K, 10 K, and 30 K. Note that all the J (H) values for 10 wt% SiC doped 

MgB /Fe wire are significantly higher than for the undoped sample at higher fields. The 

transport I  for the 10 wt% doped MgB /Fe reached 140,000 A/cm  at 24 K and 1 T and 

103,000 A/cm  at 20 K and 2 T (J ). The transport J  for the 10 wt% SiC doped MgB  

wire increased by a factor of 6 at 5 K and 9 T and 20 K and 5 T respectively, compared 

to the undoped wire. These results indicate that SiC doping strongly enhances the flux 

pinning of MgB  in magnetic fields.    

c 2 

c

2

2

2
c c 2

 
Figure 5- 18: The transport J  – H dependence at 5 K, 10 K and 20 K for the pure MgB /Fe and 10 
wt% SiC doped MgB /Fe wires. 

c 2

2

The enhancement of pinning by SiC doping is also evident from the pinning force 

density versus magnetic field results shown in Fig. 5-19. The volume pinning force 

density of 5.5 GN/m  at 20 K is comparable to that of NbTi at 4.2 K. Although the 

maximum pinning force density only has a little shift to higher field the pinning force 

density for the SiC doped MgB /Fe wire is clearly greater than for the undoped wire at 

fields above 1.5 T.  
2

2
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Fig. 5-20 shows a comparison of the transport J  with the magnetic J . Although there 

are quite different voltage standards for measuring the transport and magnetic J , due to 

steep characteristics, results are expected to be similar for both methods. The transport 

J  for the wires is comparable to the magnetic J  at higher fields despite the low density 

of the samples and percolative nature of the current. Fig. 5-20 also shows a comparison 

of the transport J (H) behaviour for 10 wt% SiC doped MgB /Fe wire at 20 K with the 

thin film [8] and the Fe-sheathed MgB  tape [7] reported previously. 

c c

c

c

c 2

2

 
Figure 5- 19: Pinning force density versus magnetic field for the undoped and 10 wt% SiC doped 
MgB /Fe wires. 2

Figure 5- 20: A comparison of the transport J  with magnetic J  for the 10 wt% SiC doped MgB /Fe 
wire, including the best transport J  of a strongly pinned thin film [8] and Fe-sheathed MgB  tape 
[7]. 
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We see the J  for the 10 wt% SiC doped wire is 30 times higher than one of the best 

transport J  reported in Fe-MgB  tape and better than the strongly pinned thin film 

(magnetic J  for the thin film).  

c

c 2

c

Fig. 5-21 shows the J (H) versus temperature for 10 wt% SiC doped wire at 1 T, 2 T 

and 4 T. With SiC doping, we can achieve J  values from 50,000 A/cm  to 150,000 

A/cm  over a temperature range between 15 K and 25 K and a field range of 2 T to 5 T 

under the total current supply limit of 700 A. Nevertheless, these results demonstrate 

that nano-SiC doping into MgB /Fe wire makes a number of applications practical, 

including MRI, moderate magnets, magnetic windings for energy storage, magnetic 

separators, transformers, levitation, motors and generators. Furthermore, the SiC 

substituted MgB /Fe wire is much more attractive from the economic point of view. The 

main cost for making MgB  conductors will be the high purity B. Because C and Si are 

abundant, inexpensive and readily available, by doping the superconductor with SiC, the 

overall cost for making MgB  conductors will be reduced. Furthermore, SiC doping has 

already been shown to enhance flux pinning, a significant benefit. 

c

c
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Figure 5- 21: J (H) versus temperature for the 10 wt% SiC doped MgB  wire at 1 T, 2 T and 4 T. c 2

The TEM image (Fig. 5-22) shows a high density of dislocations and massive nano-

meter size inclusions inside the grains, consistent with the previous section. The density 

of the present Fe-sheathed MgB  wires is still very low, only about 1.2 to 1.3 g/cm . 

Thus, a higher J  and better flux pinning can be achieved by further optimization of the 

processing conditions, as well as further improving the density of samples. 
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Figure 5- 22: TEM image for the 10 wt% SiC doped MgB /Fe wire. 2

 

5-2-4 Summary 

Nano-SiC doped MgB2/Fe wires were fabricated using a powder-in-tube method and a 

reaction in-situ process. The depression of Tc with increasing SiC doping level remained 

rather small. The transport Jc for all the wires is comparable to the magnetic J  at higher 

fields despite the low density of the samples and the percolative nature of current.  We 

have further demonstrated that a very high transport critical current and current density 

of Fe-sheathed MgB  wires can be achieved by a readily achievable and economically 

viable chemical doping with nano-SiC. J  values over 100,000 A/cm2 at 5 K and 5 T 

and 20 K and 2 T are comparable to NbTi and HTS respectively. High performance SiC 

doped MgB  wires will have a great potential to replace the current market leaders, Nb-

Ti and HTS, for many practical applications at 5 K to 25 K up to 5 T. There is a plenty 

of room for further improvement in J  as the density of the current samples is only about 

50%. 
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5-3 Effect of Grain Size and Doping Level of SiC on the 
Superconductivity and Critical Current Density in MgB  
Superconductor 

2

5-3-1 Introduction 

We have shown in the previous sections a significant improvement of Jc, H  at both 

high and low temperatures in nano-SiC doped MgB  bulk samples with only a slight 

reduction of T . It has been shown that nano-inclusions, as well as possible substitution 

in the crystal lattice, lead to this significant improvement. The objective of this section 

is to study the grain size effect of the precursor SiC on the superconductivity and flux 

pinning and to further investigate the enhancement in J  field performance. It was found 

that the particle size of SiC plays a critical role in controlling the reaction between 

Mg+2B and SiC resulting in both substitution and nano-inclusions. 

irr

2

c

c

5-3-2 Experimental Details 

MgB  pellet samples used in the present study were prepared by an in-situ reaction 

method, which has been described in detail previously. Magnesium (99%) and 

amorphous boron (99%) were well mixed with commercial SiC (0, 8, 10, 12, 15 wt%). 

Powders having three different grain sizes were used: a very fine powder with particle 

sizes smaller than 20 nm (powder 1), powder 2 which has particle sizes ranging up to 

300 nm and powder 3, a coarse crystalline SiC with particle sizes around 35 µm. These 

particle sizes were determined by TEM and SEM and will be explained in the next 

section. Pellets 10 mm in diameter and 2 mm in thickness were prepared by sintering at 

800 C for 30 min in flowing high purity Ar. The magnetization of samples was 

measured using a PPMS (Quantum Design). Samples in the form of bars were cut from 

the as-sintered pellets. All the samples have the same size (0.56×2.17×3.73 mm ). A 

magnetic J  was derived from the height of the magnetization loop (M-H) using the 

Bean Model.  

o

3
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5-3-3 Results and Discussions 

5-3-3-1 Effect of Grain Sizes of SiC 

Fig. 5-23 shows the XRD patterns for the three different SiC powders used in this work. 

It can be seen that there are no diffraction peaks for powder 1, indicating that this 

powder is amorphous. Powders 2 and 3 show diffraction peaks, indicative of their 

crystalline natures. Powder 3 gives a strong diffraction intensity as well as sharp peaks 

in agreement with its bigger particle size. On the other hand, powder 2 shows a few 

peaks, which are wider than the equivalent peaks for powder 3, especially the 2θ =  

and  peaks that are very wide with low intensity. This XRD pattern indicates that 

powder 2 contains a wide range of particle sizes.  
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Figure 5- 23: The XRD pattern of the starting SiC powders with different grain sizes. 

Figs. 5-24 to 5-26 show TEM images of powders 1 and 2 (Figs. 5-24 and 5-25) as well 

as a SEM image of powder 3 (Fig. 5-26). We can see that the grains of SiC in powder 1 

are very fine with almost the same grain size of about 10 nm to 20 nm, (Fig. 5-24). On 

the other hand it can be clearly seen that powder 2 contains grains with a wide range of 

grain sizes from about 10 nm to about 300 nm (Fig. 5-25), consistent with its XRD 

pattern. The SiC particles in powder 3 are almost uniform crystalline grains with an 

average size of about 37 µm (Fig. 5-26).  
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The XRD patterns of the samples after reaction as well as the reference MgB  sample 

are shown in Fig. 5-27. All three samples were doped with 10 wt % SiC. Mg Si is the 

main impurity phase for the sample that was made using powder 1 (sample a), in 

agreement with previous results. However, we can still see some un-reacted SiC in the 

samples that were made using powders 2 and 3, samples b and c, respectively. In 

addition, no Mg Si was found in sample c. This means that only part of the SiC takes 

part in the reaction with Mg and B and becomes doped into MgB .  

2

2

2

2

 
Figure 5- 24: TEM image of starting powder 1. Powder contains almost uniform particles with an 
average grain size of 10 nm to 20 nm.  

 
Figure 5- 25: TEM image of starting powder 2. Powder contains different particles with a wide 
range of grain sizes from 10 to 300 nm. 
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Figure 5- 26: SEM image of starting powder 3. Powder contains almost uniform particles with an 
average grain size of 35 µm. 
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Figure 5- 27: XRD patterns of MgB  samples doped with 10 wt % of different SiC powders as well 
as the reference sample. 

2

Fig. 5-28 shows an SEM image of sample c which was made using crystalline SiC 

powder  (Powder 3).  Big grains of un-reacted SiC can be easily seen in the MgB  

matrix, which is in agreement with its XRD pattern. This means that the coarse SiC 

powder is very stable and did not react with Mg+B. Therefore; little or no substitution 

for B by Si and C can be expected. However, for very fine SiC powder substitutions 

take place as Mg Si was formed. This is the big difference in the phases of samples 

2

2
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made with coarse and fine powder. This difference is responsible for the significant 

difference in J  field dependence shown below. However, this pattern does not show 

that all the SiC powder was consumed in sample a.  
c

AC susceptibility measurement results for all samples are presented in Fig. 5-29. T  

values of about 37.65K, 37.5K, 37K and 36.25K were found for the reference sample, 

sample c, sample b and sample a respectively. The small change in T  for such a large 

amount (10 wt%) of added material confirms the results presented in the previous 

section. Also, we can see that the smaller grain size leads to lower T , which is 

understandable, as smaller grains can react more readily than larger ones. 

c

c

c

 
Figure 5- 28: SEM image of sample c after reaction. The large grains of un-reacted SiC can be 
easily seen in the MgB  superconductor. 2
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Figure 5- 29: The ac susceptibility of MgB2 samples doped with 10 wt % of different SiC powders 
as well as the reference sample at different temperatures. 
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J  versus field at 30, 20 and 5 K are plotted in Fig. 5-30. The performance of the J  field 

dependence was improved by decreasing the grain sizes of the SiC precursor powder. 

The finer the SiC powders, the better the J  field dependence is. For the coarse powders 

(-400 mesh), the J  field dependence is slightly better than for the MgB  reference 

sample due to limited reaction between the particles, which can react with Mg+B. The 

resultant impurities or remaining SiC can embed in the MgB  grains acting as pinning 

centers. For sample a, J  value of about 20000 A/cm  was achieved at 5 K and 8 T, 

which is more than one order of magnitude higher than that of the MgB  reference 

sample at the same field and temperature. TEM results show that there are large 

numbers of nano-inclusions embedded inside the MgB  grains. This is because the SiC 

is very fine, so that it can be readily form as inclusions inside the MgB  grains and 

substitute in the lattice during the formation of MgB as explained in previous sections. 

However, the crystalline SiC powders may distribute themselves around grain 

boundaries acting as weak links due to their poor chemical activity. 
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Figure 5- 30: The J  field dependence of MgB  samples doped with 10 wt % of different SiC 
powders as well as the reference sample at different temperatures of 5, 20 and 30 K. 

c 2

 5-3-3-2 Effect of SiC Doping Levels 

As the very fine powders of SiC (20 nm) produce the best results, we can use this fine 

powder to study the effect of the amount of SiC on the flux pinning in the SiC-doped 

MgB2 samples in order to optimize the addition of SiC. Samples with SiC weight % of 

0, 8, 10, 12, and 15 were studied in this work. The XRD patterns show that there is 
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almost no difference in phase purity, with only an increase of Mg Si when SiC 

increases. T  also changed only slightly in all the samples. The J  field dependence at 

different temperatures is shown in Fig. 5-31. It can be seen that all the SiC doped 

samples have almost the same J  values as a function of field and temperature at all the 

doping levels studied. However, it seems that the sample doped by 10 wt% SiC has 

slightly better performance, compared to the MgB  reference sample. This means that 

the MgB  is very tolerant to the amount of SiC. 
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Figure 5- 31: The J  field dependence of MgB  samples doped with SiC weight % of 0, 8, 10, 12, 15 
at 5 K and 20 K.  

c 2

5-3-4 Summary 

SiC doped MgB  polycrystalline samples were fabricated by in-situ reaction using 

different grain sizes (20 nm, 100 nm, and 37 microns) of SiC and different doping levels 

(0, 8, 10, 12, 15 wt %). Grain sizes of the precursor SiC have a strong effect on the 

critical current density and its field dependence. The smaller the SiC grains are, the 

better the J  field performance and H  is. It was found that very fine SiC powder plays 

an important role in the reaction between Mg+B and SiC. Significant enhancement of J  

and H  were revealed for all the SiC-doped MgB  with added levels up to 15 wt%. A J  

value as high as 20,000 A/cm  in 8 Tesla and 5 K was achieved for the sample doped 

with 10 wt% SiC having a grain size of about 20 nm. The high performance of the nano-

SiC doped MgB  superconductor will have great potential for practical applications. 

2

c irr

2

c

irr 2 c

2

155 



Chapter 5: Effect of Chemical Doping on the Critical Current Density and Flux Pinning of MgB2 

5-4 Effect of Nano-Carbon Particle Doping on the Flux 
Pinning Properties of MgB  Superconductor 2

5-4-1 Introduction 

The effect of C-doping on superconductivity in MgB  compound has been studied by 

several groups [23-27, 29-32]. The results on C solubility and the effect of C-doping on 

T reported so far vary significantly from no substitution to 16% of B substituted by C, 

while the decrease in T  ranged up to 30 K at the highest substitution level [18, 23, 33, 

34]. The significant differences among the studies on C-substitution are attributable to 

the fabrication techniques and precursor materials used. It appears that lower sintering 

temperatures (e.g. 700 C) and short sintering times result in an incomplete reaction and 

hence lower C solubility in MgB . The mixing procedure applied to the precursor 

materials may also contribute to inhomogeneity in the final product. It is difficult to 

precisely determine the C solubility in the lattice, as the lattice parameters can also be 

affected by the change of stoichiometry in MgB , because excess C extracts Mg and B 

to form MgB C .  Recently, Ribeiro et al. used Mg and B C as precursors to synthesize 

C doped MgB  by sintering at 1200 C for 24 hours [33]. Their samples appeared to be 

homogeneous. A neutron diffraction study confirmed that the most likely solubility of C 

in MgB  is around 10% of B positions [34]. This gives a large drop in both T  (=22K) 

and the a-axis lattice parameter.    

2

c 

c

o

2

2

2

o

2 4

2

2 c

The studies on C doping into MgB  have thus far only focused on the effect on 

superconductivity. From the applications point of view, the effect of C doping on the 

flux pinning properties is also important. In this section, we explain the effects of C 

doping on the flux pinning and critical current density in MgB . It is clear from previous 

works that complete substitution causes a drastic depression in T , which is very 

undesirable for improving J  at high temperatures. In order to explore the potential 

applications of MgB  at around 20 K or above, it is essential to maintain the T  and, at 

the same time, to enhance the J  performance in magnetic fields. Therefore, we 

2

2

c

c

c

c

2
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designed synthesis conditions that limit the degree of C substitution, but can introduce 

effective pinning centers into MgB .   2

5-4-2 Experimental Details 

Polycrystalline samples of MgB C  were prepared through a reaction in-situ process as 

explained earlier. High purity powders of magnesium (99%), amorphous boron (99%) 

and carbon nano-particles (with a particle size of about 20 nm) were weighed out 

according to the nominal atomic ratio of MgB C  with x = 0, 0.05, 0.1, 0.2, 0.3, 0.4 

and well mixed through grinding. The heat treatment was performed at 770 C for 30 

min in flowing high purity Ar. An un-doped sample was also made under the same 

conditions for use as a reference sample. The magnetization was measured using a 

PPMS (Quantum Design).  The magnetic J  was calculated from the height ∆M of the 

magnetization loop (M-H) using the Bean model. The T  was determined by measuring 

the real part of the ac susceptibility at a frequency of 117 Hz and an external magnetic 

field of 0.1 Oe. T  was defined as the onset of the diamagnetism.  

2-x x

2-x x

o

c

c

c

5-4-3 Results and Discussion 

Fig. 5-32 shows the XRD patterns of MgB C  samples for x=0, 0.05, 0.1, 0.2, 0.3 and 

0.4 as well as the XRD pattern of the starting C powder. An Si standard was used for all 

runs. It can be seen that there are no diffraction peaks for C powder, indicating that this 

powder is amorphous. Thus, there is no peak related to C in the XRD patterns of the C-

doped samples, and the amount of the un-reacted C powder is not clear. The undoped 

samples consist of a main phase, MgB , with minor phases of MgO (<5%) and MgB  In 

the C-doped samples extra peaks appear as impurity phases. These peaks can be indexed 

as Mg C and MgB C , and they increase as the doping level increases.  

2-x x

2 4.

2 3 2 2  

More accurate XRD examinations were performed to evaluate the lattice parameters. 

The XRD patterns are shown in Fig. 5-33. Note that the position of the (100) peak shifts 

continuously to higher angles with increasing C doping level, indicating a decrease in 

the a-axis lattice parameter. However the position of the (002) peak remains unchanged 

with increasing C-doping level, indicating that C-doping does not affect the c axis. 
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Figure 5- 32: XRD patterns of MgB C  composition for x=0, 0.05, 0.1, 0.2, 0.3 and 0.4 as well as 
the XRD pattern of the starting C powder. 
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Figure 5- = 0, 0.05, 
0.1, 0.2, 0.3, and 0.4 

The changes in crystal lattice parameters deduced from the x-ray diffraction patterns of 

the samples as well as the lattice parameters extracted from the previously published 

studies by Maurin et al. [25] and Avdeev et al. [34] are shown in Fig. 5-34. As can be 

seen, the in-plane (a axis) lattice parameter decreases monotonically as the C doping 

level decreases from 3.087Ao to 3.076Ao at x=0 and x=0.4 respectively. This is 
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understandable because the average size of the C ion (0.077 nm) is smaller than the B 

(0.082 nm). However, we are unable to see any significant change in the inter layer (c-

axis) lattice parameter. This is in agreement with recent work, indicating that carbon is 

substituted in the boron honeycomb layer and does not change the interlayer distance in 

the MgB2 crystal. However, the change in the a lattice parameter even for x=0.4 is 

considerably less than the a axis contraction from 3.085 to 3.052 due to 10% carbon 

doping [34]. This indicates that the carbon powder in our samples is only partially 

substituted in the B position due to the low sintering temperature and short sintering 

time. The C mostly reacted with Mg and B to form Mg2C3 and MgB2C2 or remained in 

an un-reacted form. 
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Figure 5- 34: Change in the a and c lattice parameters in MgB2-xCx as a function of the nominal C 
content x. The lattice parameters extracted from the previously published studies by Maurin et al. 
[25] and Avdeev et al. [34] are also included. 

Fig. 5-35 shows the transition temperature (Tc) for the doped and undoped samples 

determined by ac susceptibility measurements. The Tc onset for the undoped sample (~ 

38.5 K) is almost the same as that reported by a number of groups. For the doped 

samples, the Tc decreases with increasing doping level. Despite the large amount of non-

superconducting phases present, the Tc only drops slightly, 2.7 K at a high C doping 

level of x=0.4 (which represents 20% C doping). This result is in contrast to the 

previously reported results in which the Tc was depressed about 17 K in the 10% C 
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substituted sample, as we can see in the inset of Fig. 5-35 [34]. Once again, these results 

suggest that only a small amount of C powder was substituted in the B position in our 

samples, consistent with the lattice contraction. Because the C doping has little effect on 

the Tc, the partial substitution and partial addition of nano-carbon particles may enhance 

flux pinning over a wide range of temperatures. 
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Figure 5- 35: AC susceptibility (real part) vs. magnetic field for different nominal C content x for 
MgB2-xCx.  The inset shows the Tc changes with x for the same composition including for x=0.1, 
reported by Ribeiro et al.  [18]. 

Fig. 5-36 (a-d) shows the Jc(H) curves for MgB2 doped and undoped samples at 5 K, 10 

K, 20 K and 30 K. It should be noted that at 5 K, 10 K and 20 K, all the Jc(H) curves for 

doped samples show a crossover with the undoped sample at higher fields except for the 

sample doped with x=0.4 at 20 K. Because the C doping reduces Tc, only the Jc(H) 

curve for the C-doped sample with x=0.05 shows the crossover with the undoped 

sample at 30 K.  

Fig. 5-37 shows the irreversibility field, Hirr versus temperature for all the doped and 

undoped samples. Here, we defined Hirr as the field where Jc drops to 100 A/cm2. The 

improvement in Hirr for all the C doped samples is consistent with the Jc(H). 
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Figure 5- 36: The Jc field dependence of MgB2-xCx composition for x=0, 0.05, 0.1, 0.2, 0.3 and 0.4 at 
5 K, 10 K, 20 K and 30 K. 
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Figure 5- 37: Irreversibility lines for MgB2-xCx composition for x=0, 0.05, 0.1, 0.2, 0.3 and 0.4. 
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In order to understand the mechanisms for the enhancement of flux pinning in the nano-

C doped samples a TEM study was performed. Fig. 5-38 shows a typical TEM image 

for the C-doped sample at x=0.05 (Fig. 7(a)) and x=0.1 (Fig.7 (b)). Note that the MgB2 

grains are approximately 100 –200 nm long and 50-100 nm wide.  It is evident that 

although the doping levels of x=0.05 and x=0.1 are well below the C solubility limit, 

there are noticeable amounts of precipitates which may be unreacted C and the impurity 

phases Mg2C3 and MgB2C2. These precipitates are uniformly distributed within the 

matrix and have a diameter of 5nm to 10nm. Many are included in the grains as fine 

inclusions. The density and amount of these inclusions increase with increasing doping 

level. The size of these inclusions matches the coherence length of MgB2 very well. 

Thus, it is believed that the high density of nano-inclusions is responsible for the 

enhanced flux pinning in the C-doped samples. 

Figure 5- 38: TEM images for C doped MgB2-xCx composition at x=0.05 (a) and 0.1 (b). 

In previous sections, we presented the effect of nano-SiC doping into MgB2. Compared 

to the un-doped sample, Jc for the 10wt% SiC-doped sample increased by more than an 

order of magnitude in higher magnetic fields. It was also confirmed that nano-Si particle 

doping shows a pinning enhancement, but not as strong as with SiC [35]. Fig. 5-39 

compares the normalized Jc(H) and Hirr for nano-SiC, nano-Si [35] and nano-C doped 

MgB2 at 20 K.  Note that C and Si doping gave almost the same level of enhancement 

over the undoped sample, while SiC-doped MgB2 remained the best of all the forms of 

MgB2.  

162 



Chapter 5: Effect of Chemical Doping on the Critical Current Density and Flux Pinning of MgB2 

0 20000 40000 60000

1E-3

0.01

0.1

1
20K

H irr
 [O

e]

Temperature [K]

 10% SiC
 5% Si
 5% C

no
rm

al
ize

d 
J c [

a.
 u

.]

Magnetic Field [Oe]

6 9 12 15 18 21 24 27 30

20000

40000

60000

80000

100000

120000

MgB2

 
Figure 5- 39: A comparison of Jc(H) and Hirr for SiC, C and Si doped MgB2. 

5-4-4 Summary 

The effect of C doping on lattice parameters, Tc, Jc and flux pinning in MgB2 was 

investigated under the conditions of limited C substitution for B.  It was found that both 

the a-axis lattice parameter and the Tc decreased monotonically with increasing doping 

level. For the sample doped with the highest nominal composition of x=0.4 the Tc 

dropped only 2.7 K. The nano-C-doped samples showed an improved field dependence 

of the Jc over a wide temperature range compared with the undoped sample. X-ray 

diffraction and TEM studies indicate that C reacted with Mg to form Mg2C3 and 

MgB2C2 with nano-dimensions. Nano-particle inclusions and substitution, both 

observed by transmission electron microscopy, are proposed to be responsible for the 

enhancement of flux pinning in high fields. 
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CHAPTER 6: STUDY OF AC SUSCEPTIBILITY, 
MAGNETIC SHIELDING AND SAMPLE SIZE 
EFFECT IN MgB2 SUPERCONDUCTOR 

6-1 Flux Dynamics of MgB2 Superconductor by ac 
Susceptibility Measurement 

6-1-1 Introduction 

The critical current density, one of the most important parameters in considering 

superconductors for practical applications, has been determined to be quite high in 

MgB2 as we have shown in the last chapters. Although the zero field values of Jc are 

quite exciting compared to the high temperature superconductors, we have seen in 

previous chapters that they decrease rapidly with the applied magnetic field. The critical 

current density is determined by the pinning properties of the sample as well as by the 

flux motion, because the motion of the vortices over pinning centres (flux creep) in the 

superconductor induces dissipation and reduces the critical current density Jc. It is the 

flux creep that sets the limiting critical current density in superconductors. It is thus 

essential to study the activation energy against flux motion, in order to understand the 

underlying mechanism resulting in the rapid decreasing relationship between the critical 

current density and magnetic field, and therefore to enhance the current carrying 

capacity of this material. In this section, we investigate the flux creep activation energy 

in MgB2, and determine its dependence on the current density, the magnetic field, and 

the temperature by measuring the real χ'(T) and imaginary χ"(T) parts of the ac 

susceptibility at different ac field amplitudes, frequencies and dc magnetic fields. The 

irreversibility line is obtained using the third harmonic ac susceptibility technique. 
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6-1-2 Experimental Details 

All measurements were performed on a MgB2 bulk sample (Tc= 38.6 K, ∆Tc<1 K by ac 

susceptibility in an ac field of 1 G and frequency 117 Hz.). The sample preparation has 

been explained in the previous chapters. A sample with dimension of 2.18×2.76×1.88 

mm3 was cut from the as sintered pellet. Phase purity was determined by XRD and grain 

size by SEM. The ac susceptibility measurements were carried out using a Quantum 

Design PPMS. 

6-1-3 Results and Discussion 

Figure 6-1 shows the effects of the dc magnetic field Bdc on the ac susceptibility of the 

MgB2 bulk sample. As Bdc is increased from 0.5 T to 3 T, the transition temperature 

shifts to lower temperatures and the transition width broadens. Although the transition 

width is slightly changed from about 3 K at 0.5 T to 6 K at 3 T, the transition 

temperature is greatly depressed by the dc field from about 35 K at 0.5 T to 27 K at 3 T, 

while in Y-Ba-Cu-O, the depression in Tc is quite small [1, 2]. As the transition 

temperature under a dc magnetic field is an indication of the irreversibility line (IL), this 

result indicates that the IL in the pure MgB2 bulk sample is rather low in the H-T plane, 

as has been obtained by dc magnetization measurements [3, 4] and confirmed by our 

results explained in previous chapters. The inset of Fig. 6-1 shows the IL of the MgB2 

sample determined by the onset temperature of the ac susceptibility at high frequency 

and low ac field amplitude, which is higher than the ILs obtained by dc measurements 

[1, 2]. The reason is that the IL determined by ac measurement is frequency and ac field 

amplitude dependent. This has been discussed in detail by Deak et al. [5]. 

Typical χ'(T) and  χ"(T) curves for the MgB2 bulk sample at Bdc=1 T are shown in Fig. 

6-2. The frequency f =1117 Hz, and different ac field amplitudes Bac are indicated in 

this figure. As Bac is increased, the transition shifts to lower temperatures accompanied 

by an increasing transition width. The effects of the frequency on the ac susceptibility of 

this MgB2 sample is shown in Fig. 6-3. In contrast to the effects of Bac, the transition 

shifts to higher temperatures and the transition width broadens as f is increased. All the 

characteristics shown in Figs. 6-1 to 6-3 for the MgB  sample are similar to what have 
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been observed in high temperature superconductors [1, 2] and predicted from theoretical 

calculations [6]. This is understandable, because ac susceptibilities at different dc 

magnetic fields, ac field amplitudes and frequencies reflect a common phenomenon, i.e. 

flux dynamics in type-II superconductors. 

 
Figure 6- 1: χ'(T) and  χ"(T) curves of the MgB2 bulk sample at Bac= 1 G,  f = 1117 Hz, and Bdc = 0.5, 
1, 2, 3 T. Inset shows the irreversibility line (solid line is just a guide to the eye). 

 
'(T) and  χ"(T) curves of the MgB2 sample at Bdc =1 T, f =1117Hz and BFigure 6- 2: χ ac = 0.1, 0.5, 1, 

2, 5, 10, 15 G (from right to left).  

 

169 



Chapter 6: Study of ac Susceptibility, Magnetic Shielding and Sample Size Effect in MgB2 Superconductor 

A measurement of the superconducting transition by means of the ac susceptibility χ = 

χ' + iχ'' typically shows a sharp decrease in the real part of the susceptibility χ', just 

below the critical temperature Tc, a consequence of diamagnetic shielding, and a peak in 

the imaginary part of the susceptibility χ'', representing losses. The peak in χ'' will occur 

when the flux front reaches the centre of the sample. It follows that the position of the 

peak in χ'' will also strongly depend on temperature, dc field, ac field amplitude and 

frequency. The criterion for the peak in χ'' is [7]: 

U(Tp, Bdc, J)=U(Tp)U(Bdc)U(J)=kBTpln
0

1
tf peak

 (6-1) 

where the time scale  [7], )(/4 2
0

2
00 ωρπµ JHt ac= 0ρ is the prefactor in the Arrhenius 

law (exp[ JU−= ]/) TK B0 , Tp is the peak temp e in the χ''(T) curve and kB is the 

It has been shown [6] by numerical calculation that during the penetration of the ac 

magnetic field into a superconductor, the magnetic field profile can be regarded as a 

straight line. Therefore, at the peak temperature, the current density can be 

approximated as  

eratur

Boltzmann constant. 

ρρ

d
H

J ac=  (6-2) 

where d is the sample size.  

Since  

)ln()ln(),()(
0tfBJU

TK
TU

dc
B

−−=  (6-3) 

a plot of - lnfpeak versus U(Tp)/kBTp should be a straight line with the slope of U(J,Bdc). 

We can derive the current density dependence of the activation energy U (J) by varying 

the ac amplitude and then using equation (6-2) to determine the current density. Using 

the ac method the usual difficulty in conventional relaxation measurements of having 
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4only a very limited time window (1~10  s) can be overcome by extending the latter to 

smaller values of 5− ~ 3−  s (f =100 kHz -1 kHz) [1, 2].  

In order to account for the explicit temperature dependence of the activation energy, we 

choose a form of temperature scaling function 

  (6-4) 

where Tx=36.3, 34.3, 31.5, 29.1 K for Bdc=0.5, 1, 2, 3 T, respectively, is a characteristic 

temperature, which is taken from the irreversibility line. U(T) changes slightly with 

temperature for T «Tx and drops rapidly as T approaches Tx. A detailed discussion on 

choosing the function U(T) has been given by McHenry et al. [8]. 

 10 10

22 ])/(1[)( xTTTU −=

 
Figure 6- 3: χ'(T) and  χ"(T) curves of the MgB2 sample at Bdc = 0.5 T, Bac =2 G, and f =17, 51, 117, 
351, 1117, 3331, 9999 Hz (from left to right). 

Fig. 6-4 shows -lnfpeak versus U(Tp)/kBTp curves at Bdc =0.5 T and various current 

densities. The experimental data can be fitted very well by straight lines [Eq. (6-3)], 

shown assolid lines in Fig. 6-4. We can then derive the activation energy U (J, Bdc = 0.5 

T) from the slopes of the straight lines. U(J,Bdc) at other dc magnetic fields have also 

been derived, and the results are summarized in Fig. 6-5, where the activation energy 
3.1  is plotted as a function of the current density for the MgB2 bulk 

gnetic fields. As can be seen from Fig. 6-5, we have obtained a 

),()( BBJUJU dc ×∝

sample at various dc ma
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1.3universal curve U(J) by scaling the data by B . The slight scattering at low current 

density may result from the field-dependent critical current density Jc(B). Note that Bac 

has been changed to J by using Eq. (6-2), where d is the sample size rather than the 

grain size, because it has been reported [3] that current flow in MgB2 is strongly linked. 

The current density J obtained here is also very close to what has been derived using 

magnetization measurements [9]. 

 
Figure 6- 4: -Ln fpeak versus U(Tp)/kBTp of the MgB2 sample at various current densities indicated by 
different symbols. Solid lines are linear fits calculated from Eq. (3). 

From the best fit of the data in Fig. 6-5, we derived the current density dependent 

activation energy 2.0− , which is highly non-linear. This result suggests that the 

VI − curve of Mg  also be highly non-linear, because using the Arrhenius rate 

equation, we µ−−∝−= . Non-linear 

characteristics have b  [10]. On the other 

hand, the relaxation of the tization can be derived from 

equation (6-1) as . 

)( ∝ JJU

B2 should

 have 

e

/[ln()( ∝ tttJ

)exp(]/)(exp[0 JTkJUBvE B

en experimentally observed in MgB2

current density or the magne
µ/1

0 )]− , which is also a non-linear function of 

VI −

)/ln( 0tt
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Figure 6- 5: Activation energy U(J) ~ U(J, Bdc) x B1.3 as a function of the current density for the 
MgB2 sample at various dc magnetic fields. Solid line is the fitting curve U(J) ~ J-0.2. 

As can be seen from equation (6-3), we can also derive the activation energy as a 

function of the dc magnetic field U(B) by fixing the current density J. The results are 

summarized in Fig 6-6, where the activation energy 21.0  is plotted 

as a function of the magnetic field for the MgB2 sam

can be seen from Fig. 6-6, by scaling the data by 

universal curve. This current density dependence is con ed in 

Fig. 6-5. Since the scaling factor B0 [see Eq. (6-5) bel ent density 

independent, we can see that the scaling of U(B) is m (J) shown 

in Fig. 6-5. The solid line in Fig. 6-6 is a f 33.1− . The 

obtained U(B) is also consistent with the one derive

consistent scaling of U(J,B) shown in Fig. 6-5 and Fig. 6-6 suggests that the separation 

of the activation energy U(J,B,T) to U(J)U(B)U(T) in Eq. (6-1) is quite reasonable. The 

final expression for the temperature-, field- and current density- dependent activation 

energy is given by 

),()( JBJUBU dc ×∝

ple at various current densities. As 
21.0J , we have also obtained a 

sistent with the one deriv

ow] for B is curr

uch better than that of U

it to the power law )( ∝ BBU

d from scaling in Fig. 6-5. The self-
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where, U0, B0 and J0 are scaling values, and the exponents n and µ are determined to be 

1.33 and 0.2 respectively. 
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Figure 6- 6: Activation energy ( ) ( ) 21.0, JBJUJU dc ×∝  

current densities.  The solid line 

as a function of the magnetic field for 

the MgB2 sample at various is the fitting curve . 

As for the magnetic field dependence of the activation energy, a B-1 dependence has 

been previously derived using the Anderson-Kim model of the activation energy 

combined with the Ginzburg-Landau expressions for the coherence length, 

thermodynamic critical field, depairing critical current density, etc. [11, 12]. Such a B-1 

dependence has been observed in a La1.86Sr0.14CuO4 single crystal with weak pinning 

centres by McHenry et al. [8]. For YBa2Cu3Ox samples with strong pinning centres, 

such as twin planes, stacking faults or Y2BaCuO5 inclusions, a U(B)~B-0.5 has been 

derived by both ac susceptibility [2] and dc magnetization measurements [13, 14]. 

On the other hand, for the new superconductor MgB2 we find a 

dependence showing that the activation energy decreases even faster with increasing 

magnetic field, compared to weakly pinning high temperature superconducting 

La1.86Sr0.14CuO4 single crystal. The weakening of the activation energy with increasing 

magnetic field is probably the reason why the critical current density drops steeply as 

the magnetic field increases, as has been observed by dc magnetization measurements 

[3, 4, 15, 16]. 

 ( ) 33.1−∝ BJU

33.1)( −∝ BBU  
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6-1-4 Summary 

In summary, a systematic ac susceptibility measurements have been performed on a 

MgB2 bulk sample. The magnetic-field- and current-density-dependent flux creep 

activation energy has been determined to be 33.12.0 −−∝ . Compared to high-

temperature superconductors 1−
1.86Sr0.14CuO4 single 

crystal and 5.0− , the steeply declining 

dependence  resu gnetic field and suggests 

2  the low irreversibility 

field. 

 

),( BJBJU

 for a weakly pinned La

2Cu3Ox

rop in Jc with ma

 also be seen from

)( ∝ BBU

 for strongly pinned YBa

lts in a steep d

 is quite weak, as can

)( ∝ BBU
33.1)( −∝ BBU

that pinning in pure MgB
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6-2 Improvement of Critical Current in Fe/MgB2 
Superconducting Wires by a Ferromagnetic Sheath 

6-2-1 Introduction 

As we saw in the previous chapters, Fe sheathed MgB2 wire is currently one of the most 

promising conductors for practical application. In addition to providing a medium for 

obtaining MgB2 in a chemical reaction at high temperature and ensuring the mechanical 

strength of the wires, iron is a ferromagnetic material which can be utilized to 

magnetically shield the superconductor from the external field. This could be very 

effectively employed for decoupling the superconducting filaments in a 

multifilamentary MgB2/Fe wires, substantially lowering the AC loss in the wires. 

Majoros et al. theoretically predicted that magnetic shielding could lead to a decrease in 

transport ac loss [17]. A model by Genenko et al.[18] predicted either a  suppression or 

enhancement of the loss-free transport current of a superconducting strip in magnetic 

surroundings. Earlier measurements [19] indicated the existence of magnetic shielding 

in MgB2/Fe tapes, suppressing the ac loss. In chapter 4 we have also shown that the 

critical current density of Fe/MgB2 tape can be affected by magnetic shielding. In this 

section, we present more detailed measurements of the field dependence of transport Jc, 

influenced by magnetic shielding and the interaction between the Fe sheath and the 

superconductor in round MgB2/Fe wires.  

6-2-2 Experimental Details 

Fe/MgB2 wire samples were prepared through the powder in tube and reaction in situ 

techniques. Measurements were performed on three superconducting round wires The 

zero field critical current density (Jc0) at 32 K as well as the dimensions of the samples 

are given in Table 6-1. The critical temperature of all the samples obtained from the 

measurements of magnetic ac susceptibility was found to be almost 38.5 K. The mass 

density of the samples was almost the same for all the samples within experimental 

uncertainty (5%), about 60%. However, we expect S3 to have slightly higher mass 

176 

density because it was drawn to the smaller diameter and had the highest value of Jc0 as 



Chapter 6: Study of ac Susceptibility, Magnetic Shielding and Sample Size Effect in MgB2 Superconductor 

can be seen in Table 6-1. SEM images showed that all three samples had the same 

average grain size of about 100nm. 

Voltage-current characteristics were measured using a 6 milliseconds long pulse of 

current. The current was swept at a constant rate, with the maximum current 250 A. The 

signal from the voltage taps was filtered by a low-pass filter and pre-amplified by a 

SR560 preamplifier. The current through the wire was measured via the voltage drop on 

a non-inductive resistor, connected in series to the wire and current source.  Both 

voltage and current signals were fed into a digital oscilloscope. The measured data were 

transferred into a computer for analysis. Using a high enough cut-off frequency of the 

low-pass filter prevented distortions of the voltage signal and the phase shift between 

the current and voltage signals.  

The measured MgB2/Fe wire was placed in a continuous flow cryostat, with temperature 

control better than 0.1 K.  The cryostat was placed in an electromagnet on a rotating 

base, enabling the angle between the field and long axis of the wire to be changed. 

Measurements were limited to the temperature range between 32 and 35 K, due to the 

limitations of the current source. V(I) measurements showed a very sharp increase in the 

voltage at the critical current (Ic).  

6-2-3 Results and Discussion 

Figure 6-7 shows the angular dependence of Ic for S1, at 33.7 K and 400 mT. The θ = 

90° represents the magnetic field perpendicular to the long (cylindrical) axis of the wire. 

As we can see, critical current shows a maximum value of 99 A for θ = 90°. The Ic 

value is decreased by about 75% of its maximum value within 30°. However, for the 

remaining 60°, only a negligible change in Ic was observed (Fig. 6-7). These 

measurements helped to accurately align the field into a perpendicular orientation. Fig. 

6-8 shows the temperature dependence of Ic for S1 in zero field. The zero field critical 

current value (Ic0) decreased almost linearly with temperature between 32 and 36 K, at a 

rate of 46.4 A/K. For higher temperatures, Ic0 decreased more gradually, approaching 

zero at about 38.5 K.  
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Table 6- 1: Dimensions of the samples measured; do, di, and l are outer diameter, inner diameter 
and length, respectively. Jc0 is the critical current density in zero external field, at a temperature of 
32 K. 

Sample  do (mm) di(mm) l(mm) Jc0(A/cm2) 
S1 1.50 0.85 14 38,700 
S2 1.52 0.95 14 21,000 
S3 1.30 0.65 13 53,300 

The magnetic field dependence of Ic for sample S3 at 32 K is shown in Fig. 6-8. The 

solid and open symbols correspond to θ = 90° and θ = 0°, respectively. In the latter 

case, the field is parallel to the long wire axis, and therefore to the current. The solid 

line shows the value of the self-field produced by the critical current at the surface of 

the superconducting core. For θ = 0°, Ic does not change with the field up to about 0.03 

T (open symbols in Fig. 6-9). For higher fields, an exponential decrease in Ic is 

obtained: Ic = Ic0 exp(-H/H0). For all the samples measured, H0 ≈ 0.35 T at 32 K. 
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Figure 6- 7: Angular dependence of critical current for Fe/MgB2 wire sample S1 at 33.7 K and 0.4 
T.  
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Figure 6- 8: Temperature dependence of critical current in zero field for Fe/MgB2 wire sample S1. 
Inset is the critical current density versus temperature for this sample. Lines are just guides to the 
eye. 

For θ = 90°, the field dependence of Ic is the same as for θ = 0° with H>0.6 T. However, 

for 0.2 T < H < 0.6 T, there is a plateau in Ic(H), where Ic decreases with the field by 

less than 5% of Ic0 (Figure 6-9).  For H< 0.2 T, Ic decreases with the field by about 20% 

of Ic0. The inset to Fig. 6-9 shows that the experimental points for the two field 

orientations overlap by adding 0.38 T to the parallel field. 

 
Figure 6- 9: Field dependence of critical current for sample S3 at 32 K. The solid and open symbols 
are for perpendicular and parallel field (i.e. θ = 90° and 0°), respectively. The solid line is the self-
field produced on the surface of the superconductor by the critical current. Inset: The same, with 
380 mT added to the parallel field. 
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The same results were obtained for the other samples measured, except for the 

difference in Ic0 and the field by which Ic(H) for θ = 0° had to be shifted to obtain 

overlapping with Ic(H) for θ = 90° ( Inset to Fig. 6-9). The values of this field for S1 and 

S2 were 0.39 T and 0.33 T, respectively.  

The results shown in Fig. 6-9 are affected by the magnetic shielding due to the Fe 

sheath, as well as by the interaction between the sheath and superconductor. To identify 

the effects of shielding only, the field inside and outside the sheath was measured, with 

the MgB2 removed. This was performed by inserting tiny pick-up coils into the sheath 

and using an external ac magnetic field with frequencies between 20 and 60 Hz, and a 

field amplitude up to 0.6 T. The length of the coils corresponded to the distance 

between the voltage contacts when measuring Ic(H). Comparing the results for different 

frequencies, we found that the dynamic effects (eddy currents) were negligible below 30 

Hz.  

Fig. 6-10 shows the magnetic field inside the Fe sheath against the external magnetic 

field for θ = 90° (open symbols). The solid symbols were measurements with the sheath 

removed from the pick-up coil (Hin=Hout) and the solid line shows theoretical shielding 

for an infinite cylinder of the same dimensions and magnetic susceptibility as our Fe 

sheath [20].  

For H<0.2 T, the shielding from the external field was almost total, with Hin= 0.04 Hout 

at 0.2 T (Fig. 6-10). For higher fields, the shielding rapidly weakened and for H>0.4 T 

the entire external field additional to 0.4 T was passed through the Fe sheath, i.e. Hin 

against Hout was parallel to the data with no shield for H>0.4 T.  These measurements 

are in good quantitative agreement with calorimetric measurements of ac loss in a 

similar MgB2/Fe wire [19].  However, the measured shielding is better than that given 

by the analytical expression for an infinite cylindrical shield of the same thickness and 

magnetic permeability [20] (solid line in Fig. 6-10). Still, extrapolation of the 

experimental results to high fields is in agreement with the theoretical prediction. The 

discrepancy at low fields is probably due to the finite length of the measured sheath.  

The inset to Fig. 6-10 shows the measured shielding for θ = 0°. The dashed line 

represents Hin=Hout. The shielding was almost total for H< 0.02 T. For H>0.025 T, the 
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entire field higher than 0.025 T was passed through the shield. The hysteresis was due 

to magnetic hysteresis of the iron. 

 
Figure 6-  The magnetic field inside the iron sheath, Hin, plotted against the external field, Hout, 
for perpendicular field, θ = 90° (open symbols). When the iron sheath is removed, Hin=Hout (solid 
symbols). The solid line shows theoretical Hin against Hout. Inset: Hin against Hout for a parallel field, 
θ = 0° (solid symbols). The dashed line shows Hin=Hout. 

Ic(H) for θ = 0° can be explained by the shielding effect. The initial plateau is a 

consequence of complete shielding from the external field. Above 0.025 T, Ic(H) is the 

same as with no shield, except for about 0.025 T which is screened out by the shield. 

The same is obtained for θ = 90° and H>0.6 T, except that the value of the screened-out 

field is about 0.3 T (Fig. 6-10). However, Ic(H) for H<0.6 T cannot be explained by 

simple screening. Instead of the expected constant Ic with the external field fully 

screened out for H<0.2 T, Ic actually decreases with the field (Fig. 6-9). For 0.2 T 

<H<0.6 T, Ic decreases very little with field (Fig. 6-9), despite the full penetration of 

field through the Fe sheath (Fig. 6-10).  

Overlapping of Ic(H) for θ = 0° and θ = 90° above 0.6 T  (Inset to Fig. 6-9) shows that 

the current does not flow through the wires in a straight line. If that were the case, Ic(H) 

corrected for the shielding of the iron sheath would differ for the two orientations of the 

field. This is because Ic(H) is defined by the Lorentz-like force on magnetic vortices 

[21]. This force is proportional to H

10:

×sinθ. Therefore, for θ = 0°, Lorentz force would 

always be zero and Ic would not depend on the field. This is in contrast to the 

experimental results in the Inset to Fig. 6-9. These results suggest that the current 
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meanders between the superconducting grains, resulting in a variation of local θ. 

Averaging over the whole sample volume gives the same Ic(H) for θ = 90° and 0° after 

shifting of Ic(H) by 0.38 T along H-axis (the shift is needed to account for the shielding 

by the iron sheath). The decrease in Ic for H<0.2 T cannot be ascribed to weak links, 

because such a decrease was not also observed for the case θ = 0° (Fig. 6-9).  

6-2-4 Summary 

In conclusion, transport critical current (Ic) was measured for Fe-sheathed MgB2 round 

wires. A critical current density of 5.3×104 A/cm2 was obtained at 32 K. Strong 

magnetic shielding by the iron sheath was observed, resulting in a decrease in Ic by only 

15% in a field of 0.6 T at 32 K. In addition to shielding, interaction between the iron 

sheath and the superconductor resulted in a constant Ic between 0.2 and 0.6 T. This was 

well beyond the maximum field for effective shielding of 0.2 T. This effect can be used 

to substantially improve the field performance of MgB2/Fe wires at fields at least 3 

times higher than the range allowed by mere magnetic shielding by the iron sheath. The 

dependence of Ic on the angle between the field and the current showed that the 

transport current does not flow straight across the wire, but meanders between the 

grains. 
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6-3 Effect of Sample Size on the Magnetic Critical 
Current Density in Nano-SiC Doped MgB2 
Superconductors 

6-3-1 Introduction 

Improving the critical current density (Jc) is one of the most important issues so far as 

applications are concerned. Results presented in chapter 5 show that SiC doped MgB2 

superconductor is one of candidates for high field applications.  In contrast to the direct 

transport Jc measurements used for tapes and wires, for bulk samples one has to 

calculate magnetic Jc from the dc magnetization using the Bean model. It has been 

shown that magnetic Jc strongly depends on the sample size [22]. In contrast to the high 

Tc superconductor materials [23] it was observed that in pure MgB2 bulk samples Hirr 

decreased as the sample volume decreased. Due to the dependence of Jc on sample size, 

for a reliable comparison of Jc values derived from magnetic measurements, sample size 

has to be carefully taken into account. Some explanations have been presented to 

explain this behavior. Jin et al. suggested a linear dependence of the activation energy 

on the Jc and gave an explanation for the Jc dependence on the sample size [24]. They 

proposed that in a cylindrical MgB2 sample, vortices are remarkably rigid in small 

samples up to 1mm long, while they behave as individual segments for longer samples. 

Horvat et al. qualitatively explain this phenomenon by considering the different 

coupling between the grains at different length scales [22]. Very recently Qin et al. 

established a new model to explain this effect [25]. Based on this model the magnetic Jc 

depends on sample size as n
c RJ ∝

E-J

1

 where R is the radius of a cylindrical sample and n 

is the n-factor characterizing the  curve n . They proposed that the low n 

factor at high magnetic fields is the reason fo t sample size effect for pure 

MgB2 superconductors. As the nano-SiC doped sample exhibited much stronger flux 

pinning than the pure MgB2, we intend to investigate the size effect in the strong 

pinning samples and compare them with pure MgB2 samples. A detailed study with the 

aim of further understanding the sample size effect in both pure and doped MgB2 

superconductor is presented in this section. 

cc JJEE )/(=

r the significan
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6-3-2 Experimental Details 

Two groups of polycrystalline MgB2 and MgB2 +10% SiC samples were synthesized 

from high purity Mg and B and nano-SiC powders using the Hot Isostatic Pressing 

(HIP) method. An MgB2 pellet was prepared by reacting magnesium and boron powders 

at 850°C under isostatic pressure of 150 MPa for 1 hour. The magnetization was 

measured over a temperature range of 5 K to 30 K using the Quantum Design PPMS. 

Bar shaped samples were cut and dry polished from each pellet for magnetic 

measurements. The shiny polished surface was golden and black for the pure and doped 

samples respectively. The sample volume was decreased about 75% through sawing and 

dry polishing after each measurement. To avoid any geometrical effect on the results 

each dimension reduced by a factor of about 0.35% (i.e. the ratio of a:b:c remains 

constant) before each subsequent measurement. The sample information is presented in 

Table 6-2. The magnetic measurements were performed by applying the magnetic field 

parallel to the longest sample axis. The magnetic Jc was calculated using the Bean 

model. The Tc was determined to be 38.6 K and 37.5 K for the pure and doped samples 

respectively using the ac susceptibility measurement. A small bar shaped sample of the 

same size as sample 4, was directly cut from the same batch and given a Jc 

measurement. No significant difference was found between the results for this sample 

and for sample 4, indicating that the repeated polishing and measurements had no effect 

on the samples. 

 
Table 6- 2: The dimensions of samples prepared for magnetic measurements.  Each dimension was 
reduced by about 35% before each subsequent measurement. The magnetic field was applied 
parallel to the c axis. 

Undoped Doped  
Sample a (mm) b (mm) c (mm) V (mm3) a (mm) b (mm) c (mm) V (mm3) 

1 1.07 3.27 7.15 25.01 1.12 2.98 6.95 23.2 
2 0.7 2.12 4.65 6.9 0.7 2.12 4.62 6.82 
3 0.46 1.34 2.92 1.78 0.45 1.34 2.9 1.75 
4 0.29 0.85 1.87 0.46 0.3 0.85 1.81 0.45 
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6-3-3 Results and Discussion 

The field dependence of Jc for SiC doped and undoped MgB2 samples at 5 K, 20 K and 

30 K for samples of different sizes are presented in Fig. 6-11 and Fig. 6-12 respectively. 

It can be clearly seen that in both doped and undoped samples the Jc field performance 

strongly depends on the sample size. At high field, Jc significantly decreased as a 

function of the magnetic field as the sample size decreased. On the other hand the low 

field Jc increased as the sample size decreased in both pure and doped samples. These 

changes in either low fields or in high fields are stronger in the lower temperature 

regime. Flux jumping was observed in both pure and doped samples but flux jumps 

occurred at higher fields for bigger samples. Flux jumping was also found to be less 

serious in the doped samples. For sample 1 flux jumping was observed up to 3.9 T for 

the doped sample, but in the pure sample flux jumping can be seen even at 5 T. Flux 

jumping also occurred in the pure samples 1 and 2 at 20 K, but no flux jumping was 

observed in the doped samples at 20 K. 
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Figure 6-  Magnetic Jc field dependence of MgB2 + 10% SiC samples of different sizes (Table 6-
2) at 5 K, 20 K and 30 K. 
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Figure 6- 12: Magnetic Jc field dependence of pure MgB2 samples of different sizes (Table 6-2) at 5 
K, 20 K and 30 K. 

The ratio of Jc1/Jc4 for samples 1 and 4 between 5 T and 8.5 T for both pure and doped 

samples at 5 K are presented in Fig. 6-13. For both samples the larger the sample, the 

higher the Jc1/Jc4 ratio. However, the sample size dependence is much more pronounced 

in the undoped sample. At 6.5 T and 5 K Jc4 is lower than Jc1 by a factor of 1.8 for the 

doped samples. However, under the same conditions, Jc4 is more than one order of 

magnitude lower than Jc1 in the pure samples. The Jc field dependences of the doped 

samples at low magnetic fields and 20 K are shown in the inset of Fig. 6-13. As we can 

see, the zero field Jc increases as the sample size decreases. However, the differences 

between the Jc values of all the samples are reduced by increasing the magnetic field. 

The Jc field dependence curve of sample 1 crosses over the Jc curves of the smaller 

samples at a magnetic field of about 1 T. The same behavior was also found in the pure 

samples. 

The dependence of the irreversibility field Hirr on the volume of pure and doped 

samples at 20 K is shown in a semi-logarithmic plot in Fig. 6-14. Hirr was determined 

from Jc–H curves using the criterion of 100 A/cm2. Some points for the pure samples 

were extracted from reference [4]. As we can see, Hirr decreases logarithmically as the 
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sample volume decreases. The irreversibility field Hirr versus the sample volume is 

plotted in the inset with linear scaling, showing a gradual saturation behavior as the 

sample volume increases. Almost the same trend was found at other temperatures as 

well. 

50000 60000 70000 80000
100

101

102

 MgB2
 MgB2+10%SiC

J c  
[A

/c
m

2 ]

J c1
/J

c4

5K

 

 

H [Oe]

3x105

4x105

5x105

6x105

0 5000 10000
MgB2+10%SiC

20K
4

3
2

1

 
 

 

 

 
Figure 6- 13: The ratio of Jc1/Jc4 between 50000 Oe and 85000 Oe for both pure and doped samples 
at 5 K. The Jc field dependence of doped sample at low magnetic fields at 20 K is shown in the inset. 
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Figure 6- 14: The dependence of Hirr samples on the sample volume of pure and doped MgB2 at 20 
K in a semi-logarithmic plot. Hirr versus the volume with linear scaling is shown in the inset. 
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Fig. 6-15 shows the dependence of the zero field critical current (Jc0) on the sample 

volume of pure and doped samples at 20 K and 30 K. Some points for pure samples 

were extracted from reference [4]. All Jc0 values were normalized to the Jc0 value of the 

biggest sample. Over all temperature ranges the smaller samples had a higher Jc0.  For 

pure samples the normalized Jc0 increases slightly as the sample volume decreases down 

to 7 mm3, followed by a faster increase for smaller sample volumes. Jc0 can also be very 

well scaled for both 20 K and 30 K with the same curve. However for doped samples, 

Jc0 increases more gradually than for the pure samples as the sample size decreases. 

Moreover the Jc0 values for 20 K and 30 K cannot be scaled using the same curve. The 

difference between the normalized Jc0 values for 20 K and 30 K is increased by 

decreasing the volume. The lower the temperature is, the faster Jc0 increases. The 

absolute value of Jc0 versus the sample volume for pure and doped samples at 20 K is 

plotted on a logarithmic scale in the inset. The curves can be fitted as an exponential 

decay function as is shown in the figure (lines).  
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Figure 6- 15: The dependence of the zero field Jc (Jc0) on the sample volume of pure and doped 
samples at 20 K and 30 K. In the inset the dependence of Jc0 on the volume at 20 K is plotted on a 
logarithmic scale. 
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Based on Qin’s method we have plotted ln(Jc) versus  for the doped 

samples at 20 K and at 3 T, 4 T, 5 T, and 6 T in Fig. 6-16. Similar curves at 5 K and 30 

K for different magnetic fields are presented in the inse  The solid lines 

are the best linear fittings between ln(Jc) and /(ln[ aab

)]/(ln[ baab +

ts of this figure.

)]b+ . The inverses of the slopes 

give the n factors. Calculated n mples are shown in Fig. 6-

17 at 5 K, 20 K and 30 K. The n factors of pure samples are also included as open 

squares and open triangles for 5 K and 20 K respectively.  The solid lines are just guides 

to the eye.  
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Figure 6-  The sample size dependence of Jc for doped MgB2 samples at 20 K. The same 
dependence is plotted in the insets for 5 K and 30 K. The solid lines are linear fits to the data. 

As the n-factor is the exponent characterizing the E-j curve n= , a large n-

factor will lead to a sharp E-j curve. On the other hand, the n  calculated as 

kTUn /=  [25], where U  is the energy scale for th  

)/)( jjUjU =  with k  the Boltzma n 

n/1 , indicatin  rise to 

le size depen ence. It can be seen from Fig. 6-16 that the -factors of the 

doped samples are much higher than those of the pure samples, indicating that strong 

pinning centers have been introduced into the MgB2 samples by means of SiC doping. 

16:
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indicates a stronger pinning effect. Moreover,
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Fig. 6-17 also explains the observed lesser sample size effect in the SiC doped samples 

shown in Figs. 1–3. 
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Figure 6-  The n factor versus applied magnetic field for the doped MgB2 samples at 5 K, 20 K 
and 30 K (solid symbols). The n factor of pure samples are also included (open symbols). The solid 
lines are only guides to the eye. 

6-3-4 Summary 

In conclusion we have studied the sample size effect in pure and SiC doped MgB2 

samples and derived the n-factors for both samples. The doped samples show a larger n-

factor and less sample size dependence, indicating a stronger pinning effect by SiC 

doping in MgB2 samples. The irreversibility field Hirr was found to increase with 

increasing sample volume as a logarithmic function.  The zero field Jc decreased with 

decreasing sample volume as an exponential decay function. A systematic shift in the 

pinning force density was found in both pure and doped samples as the sample volume 

decreased.  

17:
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CHAPTER 7: CONCLUSION 

Fe-clad MgB2 tapes made by powder-in tube technique show a superconducting core 

with large clusters of grains about 100 µm in size. They reveal a sharp transition with a 

transition width ∆Tc of 0.2 K and transition temperature Tc0 of 37.5 K. A transport 

critical current density of 1.7 × 104 A/cm2 for both 29.5 K in 1 T and for 33 K in null 

field has been obtained. The effects of sintering time and temperature on the critical 

current densities of Cu, Ag and Fe-clad MgB2 wires have been also investigated. It was 

found that a short time heat treatment in the fabrication of Cu and Ag clad MgB2 wires 

can markedly enhance the critical current density. A total sintering time of several 

minutes is enough to form nearly pure MgB2 with high performance characteristics. The 

Cu and Ag clad MgB2 wire samples which were sintered for 6 minutes are better than 

those sintered for longer times. Jc of 1.2×105 A/cm2 in zero field and above 104 A/cm2 

in 2 T at 20 K have been achieved for Ag-clad MgB2 wire sintered for a short period of 

time. Moreover, it is evident that long MgB2 wires and solenoid coils can be fabricated 

using the wind-reaction in-situ technique with little Jc degradation over the entire 

length, paving the way for design and fabrication of the magnetic windings and magnets 

which are the central element for many large scale applications.  

We demonstrated that a very high critical current density can be achieved by a readily 

achievable and economically viable chemical doping with nano-C or nano-SiC.  By 

studying the SiC doped samples, it was found that there are two closely related but 

distinguishable mechanisms: Hc2 and flux pinning that jointly control the performance 

of Jc(H). Nano-scale SiC doping into MgB2 enhances both Hc2 and flux pinning. 

Alloying at B and Mg sites due to C substitution and the formation of nano-domain 

structures will cause strong scattering over a wide range of temperatures, leading to 

enhancement in Hc2. A high concentration of various nano-scale impurity phases results 

in high resistivity, a low residual resistivity ratio and a large irreversibility field and 

upper critical field with modest Tc reduction. The highly dispersed nanoscale 

precipitates MgSi2, BC, BOx, and SiBOx and the extensive domain structures at a scale 

well below 10 nm both serve as strong pinning centres. Large particle impurities such as 
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unreacted SiC (>100nm) increase resistivity, reduce superconducting volume and do not 

help the improvement of either flux pinning or Hc2. They should therefore be 

eliminated. The doping with SiC gives enhancements to the critical current density, the 

irreversibility field and the upper critical field in a manner that helps make MgB2 

potentially competitive with both low and high-Tc superconductors. In Fe-sheathed 

MgB2 wire we have further demonstrated that Jc field performance can be significantly 

improved by nano-SiC doping. Jc values over 100,000 A/cm2 at 5 K and 5 T and 20 K 

and 2 T were obtained for Fe clad wire, comparable to both NbTi and HTS. High 

performance SiC doped MgB2 wires will have a great potential to replace the current 

market leaders, Nb-Ti and HTS, for many practical applications at 5 K to 25 K up to 5 

T. It was also found that the grain sizes of the precursor SiC have a strong effect on the 

critical current density and its field dependence. The smaller the SiC grains are, the 

better the Jc field performance and Hirr is. It was found that very fine SiC powder plays 

an important role in the reaction between Mg+B and SiC. Significant enhancements of 

Jc and Hirr were revealed for all the SiC-doped MgB2 with added levels up to 15 wt%. A 

Jc value as high as 20,000 A/cm2 in 8 Tesla and 5 K was achieved for the sample doped 

with 10 wt% SiC, which had grain sizes of about 20 nm. The high performance of the 

nano-SiC doped MgB2 superconductor will have great potential for practical 

applications  

The effect of nano-particle C doping on the lattice parameters, Tc, Jc and flux pinning in 

MgB2 was investigated as well.  It was found that both the a-axis lattice parameter and 

the Tc decreased monotonically with increasing doping level. For the sample doped with 

the highest nominal composition of x=0.4 the Tc dropped only 2.7 K. The nano-C-doped 

samples showed an improved field dependence of the Jc over a wide temperature range 

compared with the undoped sample. X-ray diffraction and TEM studies indicate that C 

reacted with Mg to form Mg2C3 and MgB2C2 with nano-dimensions. Nano-particle 

inclusions and substitution, both observed by transmission electron microscopy, are 

proposed to be responsible for the enhancement of flux pinning in high fields. Although 

a significant improvement in MgB2 performance has been obtained by nano-SiC and C 

doping, there is still no evidence for Si doping whether in Mg or B sites. It is still not 

clear whether substitution or inclusion is the more effective way to improve the 

properties of samples. More work is necessary to elucidate the mechanism of flux 
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particle doping effects on the mechanical properties and stability of samples exposed to 

water. It is also needs to be pointed out that the fabrication process needs to be 

optimized in order to achieve better performance for practical applications. 

In the final part of the thesis, we performed systematic ac susceptibility measurements 

on a MgB2 bulk sample. The magnetic-field- and current-density-dependent flux creep 

activation energy has been determined to be 33.12.0 −− . Compared to high-

temperature superconductors ( 1−∝ 1.86Sr0.14CuO4 single 

crystal and 5.0− ), the steeply declining 

dependence  resu gnetic field and suggests 

that pinni 2 onstrate by direct transport 

measurements of Ic that an iron sheath can be used as a very effective magnetic shield 

with MgB2 superconducting wires. The initial decrease in Ic with field and the plateau in 

intermediate fields is a newly observed effect, originating in an interaction between the 

Fe sheath and the superconductor. Better understanding of this effect can lead to 

extending the plateau to higher fields and improving the field performance of MgB2/Fe 

wires further.  It was also shown that the current path in the wires meanders between the 

grains. 

The sample size effect in pure and SiC doped MgB2 samples has been studied, and the 

n-factor for both samples was also derived. The doped samples show a larger n-factor 

and less sample size dependence, indicating a stronger pinning effect by SiC doping in 

MgB2 samples. The irreversibility field Hirr was found to increase with increasing 

sample volume as a logarithmic function.  The zero field Jc also decreased with 

decreasing sample volume. More work is needed to clearly understand the mechanism 

underlying this effect. 
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