University of Wollongong Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2010

Advances in practical optimal coalition structure algorithms

Chattrakul Sombattheera University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Sombattheera, Chattrakul, Advances in practical optimal coalition structure algorithms, Doctor of Philosophy thesis, School of Computer Science and Software Engineering - Faculty of Informatics, University of Wollongong, 2010. https://ro.uow.edu.au/theses/3141

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Advances in Practical Optimal Coalition Structure Algorithms

A thesis submitted in fulfillment of the requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Chattrakul Sombattheera

School of CS and SE. June 2010 © Copyright 2010

by

Chattrakul Sombattheera

All Rights Reserved

Dedicated to

My Parents

Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

> Chattrakul Sombattheera June 20, 2010

Abstract

This thesis presents a number of algorithms for forming coalitions among cooperative agents in pragmatic domains where traditional cooperative game theory solution concepts do not apply due to bounded rationality of agents. While previous work in coalition formation in multi-agent systems research operated on relatively small number of agents, e.g. less than 30 agents, this work explores coalition formation among 100 agents, this is due to limited computational resources not the performance of the our algorithms. We explore a bestfirst search centralized algorithm for optimal coalition structures which is based on a novel idea of deciding what is the best coalition to put into coalition structure being generated. Empirical results show that the solution reaches optimality quickly and terminates quickly in pragmatic domains. We further explore on optimal coalition structures with distributed algorithms in linear and non-linear domains. For the linear domains, we explore linear production and integer programming. For the non-linear domains we explore logistic providers. Based on existing algorithms, we explore a novel environment of forming coalitions in supply networks involving buyers, sellers and logistics providers agents. In this setting, buyers form coalitions to increase their negotiation power while sellers and logistics providers form coalitions to aggregate their supply power and optimize their resources usage.

List of Publications

The material of this thesis is based on the following publications:

- 1. Chattrakul Sombattheera, Aditya Ghose: A best-first anytime algorithm for computing optimal coalition structures. AAMAS (3) 2008: 1425-1428
- Chattrakul Sombattheera, Aditya Ghose: A Pruning-Based Algorithm for Computing Optimal Coalition Structures in Linear Production Domains. Canadian Conference on AI 2006: 13-24
- 3. Chattrakul Sombattheera, Aditya Ghose: A Distributed Algorithm for Coalition Formation in Linear Production Domain. ICEIS (2) 2006: 17-22
- 4. Chattrakul Sombattheera, Aditya Ghose: Supporting Dynamic Supply Networks with Agent-Based Coalitions. IEA/AIE 2006: 1127-1137
- 5. Chattrakul Sombattheera, Aditya K. Ghose: A Distributed Branch-and-Bound Algorithm for Computing Optimal Coalition Structures. SETN 2006: 334-344
- Chattrakul Sombattheera and Aditya Ghose: Agent-based Coalitions in Dynamic Supply Chains. the international conference 9th Pacific Asia Conference on Information Systems (PACIS 2005).
- 7. Chattrakul Sombattheera, Aditya Ghose, Peter Hyland: A Framework to Support Coalition Formation in Supply Chain Collaboration. ICEB 2004: 1-6

First and foremost, I thank my supervisors: Professor Aditya Ghose, who introduced me to the area of coalition formation, guided me to produce most of my publications, etc. There are too many to mention here and I just want to say that I owe him a great deal. Associate Professor Peter Hyland, who brought me to do this PhD in Wollongong, supported me throughout the difficult times, and most importantly, help me to reach the end of this thesis.

I also would like to thank, Dr. Richard Booth and Mr. Evan Morrison, who have been very sincere and very helpful in proofreading most of the content of this thesis. I thank my old DSL colleagues, Chee Fon "Chief", Peter Harvey, Duc, Aneesh (and many others) who helped train me via so many presentations. Of course, new members of DSL colleagues, George Koliadis and Evan, are very generous. I thank my Thai fiends (as far as I can remember): Noi, Mam, Tip, P' Suay, Savanid, etc. for their friendship and help.

I thank my bosses (Deans of Faculty of Informatics, Mahasarakham University, Thailand): Associate Prof Wanchai Rievpaiboon, Assistant Professor Sangkom Pumpan, Assistant Professor Sujin Butdeesuwan and Associate Professor Wirat Pongsiri, for being supportive throughout my study leave. I thank my colleagues in Management Information System Department, Ajarn Preecha, Ajarn Boy, Ajarn Chumsak, Ajarn Namphon, for being supportive and taking care of my teaching during my absence.

To my family, I thank my father, Khun Por Prayoon Sombattheera, who contributed his saving to my education. It has always be emotional whenever I think about what it means to him and to me. I owe him a lot. I thank my mother, Khun Mae Pannee Sombattheera, who has been the best of the best supporter throughout this very long journey. I can never come this far without her support. My thanks go to my brothers, Piboonseth and Paripat Sombattheera for their support throughout these years.

The last but not the least, I thank Dr. Sujanya Sombattheera, my cousin sister who inspired me to come to Australia and helped me a lot during the first half of my 12 years in down under.

Contents

Abstract				v
Li	st of l	Publicat	tions	vi
A	cknow	vledgem	ients	vii
1	Intr	oductio	n	1
	1.1	Introd	uction	1
	1.2	Backg	round	2
	1.3	Structu	ure of the thesis	4
2	Bac	kgroun	d	6
2	2.1	Introd	uction to Coalition Formation	6
		2.1.1	Cooperative Game Theory	6
		2.1.2	Example of Cooperative Game	8
		2.1.3	Solution Concepts in Cooperative Games	9
	2.2	Coalit	ion Formation in Multi-agent Systems	16
		2.2.1	Impractical Issues in Cooperative Game Theory	16
		2.2.2	Early Dynamic Coalition Formation	17
		2.2.3	Kernel in Multi-Agent Systems	19
		2.2.4	Bounded Rational and Time-Constrained Coalition Formation	21
		2.2.5	Strategic Coalition Formation	22
	2.3	Algori	thms for Computing Optimal Coalition Structures	23
		2.3.1	The Analysis of the Problem	24
		2.3.2	Coalition Value Distribution	25
	2.4	Previo	us Centralized Algorithms in Optimal Coalition Structures	26
	2.5	Coalit	ion Formation in Combinatorial Settings	30
		2.5.1	Linear Production Games	30

	2.6	Coaliti	ion Formation in Supply Networks	32
		2.6.1	Coalitions of Buyers	32
		2.6.2	Coalitions of Buyers and Sellers	36
		2.6.3	Coalitions of Logistics Providers	37
	2.7	Qualit	ative Coalition Formation	39
	2.8	Other	Coalition Formation Work	41
	2.9	Motiva	ation to the Thesis and Research Question	41
		2.9.1	Motivation	41
		2.9.2	Research Questions	42
3	Con	nputing	Optimal Coalition Structures	45
	3.1	Introdu	uction	45
	3.2	The C	H Algorithm	46
		3.2.1	Main Function	49
		3.2.2	Working Functions	51
		3.2.3	Proof Completeness and Systematicity of the CH algorithm	54
		3.2.4	Example of Coalition Structures Generation	57
		3.2.5	Applying Branch and Bound Method	58
		3.2.6	Example of Applying Branch and Bound	59
	3.3	Experi	imental Results	59
		3.3.1	Empirical Results	61
	3.4	Conclu	usion	65
4	Con	puting	OCS in Linear Production Domain	66
	4.1	Introdu	uction	66
	4.2	Coaliti	ion in a Linear Production Domain	67
	4.3	Distrib	outed Algorithm for Coalition Formation	69
		4.3.1	Deliberating Process	69
		4.3.2	Coalition Formation Algorithm	74
		4.3.3	Best Coalition and Coalition Structure Pattern	77
		4.3.4	Generating Coalition Structures	78
		4.3.5	An Example of Generating Coalition Structure	78
	4.4	Experi	iments	80
		4.4.1	Generating Coalitions	80
		4.4.2	Generating Optimal Coalition Structures	82
	4.5	Conclu	usion	83

5	Non	on-Linear Optimal Coalition Structure 83		
	5.1	Introduction	85	
	5.2	Distributed Algorithm for Distributing Goods	87	
		5.2.1 Setting	88	
		5.2.2 Main Algorithm	95	
		5.2.3 Algorithm to Deliberate Task-Plan	96	
		5.2.4 Algorithm to Deliberate Task-Agent	98	
		5.2.5 Algorithm to Choose the Best Assignment	98	
	5.3	Example \ldots		
		5.3.1 Combinations of Tasks, Plans, Execution and Access Costs	100	
		5.3.2 Example of Run	102	
	5.4	Experiments	104	
	5.5	Conclusion	106	
6	Coa	lition Formation in Dynamic Supply Networks	108	
	6.1	Introduction	108	
	6.2	Coalitions in Dynamic Supply Networks	110	
	6.3	Coalition Formation	111	
		6.3.1 Setting	112	
		6.3.2 Forming Primary Coalitions	113	
		6.3.3 Secondary Coalitions	117	
		6.3.4 Decision Mechanism	118	
		6.3.5 Algorithm	120	
	6.4	Experiments	121	
	6.5	Conclusion	126	
7	Con	clusion and Future Work	127	
	7.1	Introduction	127	
	7.2	Contribution	127	
	7.3	Significance of the Research	130	
	7.4	Limitations	130	
	7.5	Future directions	131	
	7.6	Conclusion	131	
Bi	bliog	raphy	132	

List of Tables

2.1	Search Space in Coalition Structure where " B_n " is the number of coalition	
	structures, "Largest L_i " is the largest layer <i>i</i> , " $S(n, i)$ " is the number of CS	
	in that layer i , "# of Config." is the number of configuration, "Conf Max"	
	is the configuration which has the largest number of CSs , "CS Max" is the	
	number of CSs in "Conf Max"	25
4.1	This table compares the average deliberation time of each agent using our algorithm against exhaustive search. Our algorithm outperforms exhaustive search after the number of agents exceeds 35 (exhaustive time not available—NA).	81
		51

List of Figures

2.1	Configuration Bounds	24
2.2	Search Direction in Divided Search Space	27
2.3	Configuration Bounds	28
3.1	Data Structure Coalitions are stored in 2-dimension array C . Available can-	
	didate coalitions for all layers are kept tracks by 2-dimension array \mathcal{B} . The	
	CS being constructed is kept in 1-dimension array \mathcal{CS} . The remaining agents,	
	which can be candidates for the best coalition at the present layer l of \mathcal{CS} ,	
	are kept track by 1-dimension array \mathcal{R}	48
3.2	Generating Coalition Structure Coalitions are stored in array \mathcal{C} , where	
	rows represent the position of the coalitions in each cardinality, represented	
	by column. Candidate coalitions for each layer l in CS are stored in array \mathcal{B} ,	
	whose rows represent the layer of \mathcal{CS} and columns represent the cardinality.	
	Attached to the left of the array are two additional columns. The first one	
	indicates the execution round, while the second one represents the respective	
	layer of CS . The coalition structure is stored in one dimensional array CS .	
	As it appeared here, multiple rows are the current state of \mathcal{CS} with respect	
	to the corresponding execution round appears in \mathcal{B} . Remaining agents are	
	stored in array \mathcal{R} . Each row represents remaining agents after a candidate	
	coalition has been chosen for \mathcal{CS} in the same execution round in the corre-	
	sponding rows of \mathcal{B} and \mathcal{CS} .	56
3.3	Empirical Results on STD Distribution The graphs show convergence and	
	termination times of Algorithm CH against that of algorithm RN on STDF1,	
	STDF5 and STDF10 distributions	61
3.4	Empirical Results on IND Distribution The graphs show convergence and	
	termination times of Algorithm CH against that of algorithm RN on INDF1,	
	INDF5 and INDF10 distributions.	62

3.5	Empirical Results on DCD Distribution The graphs show convergence and	
	termination times of Algorithm CH against that of algorithm RN on DCDF1,	
	DCDF5 and DCDF10 distributions.	62
3.6	Empirical Results on CCD Distribution The graphs show convergence and	
	termination times of Algorithm CH against that of algorithm RN on CCDF1,	
	CCDF5 and CCDF10 distributions	63
3.7	Empirical Results on CVD Distribution The graphs show convergence and	
	termination times of Algorithm CH against that of algorithm RN on CVDF1,	
	CVDF5 and CVDF10 distributions.	63
3.8	Empirical Results on RDD, NMD and UNI Distribution The graphs show	
	convergence and termination times of Algorithm CH against that of algo-	
	rithm RN	64
4.1	Ranking Agents Agents are ranked by their potential profit per each resource	
	of a good	70
4.2	Empirical Results This graph shows the number of coalition structures gen-	
	erated and elapsed time for generating the optimal coalition structures of our	
	algorithm against those of exhaustive search	83
5.1	Empirical Results NLRP-NLRP The graphs show reduced cost in raw fig-	
	ure and percentage achieved from the seven time allocation strategies as per	
	elapsed time.	106
5.2	Empirical Results NLRP-NLDL The graphs show reduced cost in raw fig-	
	ure and percentage achieved from the seven time allocation strategies as per	
	elapsed time.	107
5.3	Empirical Results NLDL-NLRP The graphs show reduced cost in raw fig-	
	ure and percentage achieved from the seven time allocation strategies as per	
	elapsed time.	107
6.1	Empirical Results of V(CS) against FEV(CS) The graphs show conver-	
	gence versus termination time, and V(CS) versus FEV(CS) of the V(CS)-	
	Oriented versus FEV(CS)-Oriented search.	125