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Abstract

A nonlinear medium that displays promise in all-optical communications is

a nematic liquid crystal. A nematic liquid crystal exhibits a “huge” non-

linearity, so that nonlinear effects can be observed over millimetre distances

for relative low powered input beams (milliwatt power). Spatial optical soli-

tons, termed nematicons, are supported in nematic liquid crystals. A further

property of nematic liquid crystals is that there optical response is nonlocal,

in that the elastic response of the nematic extends beyond the optical per-

turbing beam. This nonlocal response allows two dimensional beams, such

as nematicons and optical vortices, to be stable.

The equations governing nonlinear optical beam propagation in nematic

liquid crystals form a non-integrable, coupled system of an nonlinear Schrödinger-

type equation for the beam and a Poisson’s equation for the medium re-

sponse. This system has no known, general solutions. In this thesis, an

approximate variational technique, termed modulation theory, and numer-

ical solutions will be used to analyse the evolution and propagation of ne-



maticons, both circular and elliptical in cross section, and optical vortices

in a finite liquid crystal cell. Particular attention is paid to the effect of

boundaries on the beam trajectory and stability. Modulation theory has

the advantage that the coupled partial differential equations governing the

beam are reduced to a finite dimensional dynamical system, which yields

insights into the underlying physical mechanisms. In addition, modulation

theory can be easily extended to account for the effect of the diffractive

radiation shed as a beam evolves.

Two methods are used to solve the equation for the medium response,

Fourier series and the method of images, with the latter found to give a much

more efficient solution. It is found that the cell boundaries act as a repulsive

force on a beam, so that a beam has a spiral path down a cell. It is also found

that interaction with cell walls can destabilise an optical vortex. A linearised

stability analysis is used to determine the minimum distance of approach to

a cell boundary before instability sets in. This minimum distance is found to

be in excellent agreement with numerical solutions. Finally, the propagation

of an elliptic nematicon with orbital angular momentum in a finite-sized cell

is analysed. It is found that the inclusion of angular momentum loss to

radiation is vital for the accurate description of this beam. This loss is

included for the first time.
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Chapter 1

Introduction

1.1 Solitary waves and the soliton: A brief history

Historically, the voyage of the soliton began with an observation of a novel

nonlinear phenomenon by John Scott Russell in 1834 [1], which he called the

“Wave of Translation,” later to be known as a solitary wave in recognition

of its single pulse structure [2]. Scott Russell’s observation of an isolated

water wave propagating with a constant velocity and amplitude over a large

distance created great excitement in the scientific community. As an iso-

lated wave was contrary to accepted water wave theory of the time, which

consisted of periodic waves, this new type of was was naturally dismissed.

Prominent scientists and mathematicians were eventually drawn by personal

interest to this new found field. In 1876 Lord Rayleigh, for instance, was

one of the first scientists to express a solitary wave in shallow water using

1
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a mathematical description, describing the profile in terms of the square of

a hyperbolic secant [3]. Keeping in mind the aim of arriving at a governing

equation that supports solitary wave solutions, let us digress to water waves

in the ocean. Water waves form, peak and then break, with the underlying

evolutionary factor being nonlinear. In fact, what is occurring is that the

crest of the propagating wave is travelling faster than the remainder of the

wave, resulting in an instability. The wave can no longer maintain its profile,

and the wave breaks. Nonlinearity is then important for the description of

water waves. The mathematicians Korteweg and de Vries [4] went beyond

the usual linear water wave theory and use a weakly nonlinear long wave

expansion to derive an equation supporting solitary wave solutions. The re-

sulting Korteweg de Vries (KdV) equation governs the evolution of nonlinear

long water waves, similar to those observed by Scott Russell. The key in-

gredient of the KdV equation is its balance between the effects of dispersion

and nonlinearity.

After a long dormant period, interest in the KdV equation was revived by

the numerical work of Fermi, Pasta and Ulam [5]. Using the first computers

at Los Alamos they numerically studied the behaviour of a long chain of

masses joined by nonlinear springs. They expected to see the system go to

thermal equilibrium with all modes excited almost equally. However, they

found that the system exhibited quasi-periodic behaviour with only a few

modes excited. Zabusky and Kruskal [2] extended this numerical study by
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taking the continuous limit of the Fermi, Pasta, Ulam chain, which is the

KdV equation. They found that an initial condition decomposed into a

finite number of waves, solitary waves, which then interacted cleanly, that is

they did not change form upon interaction. They coined the term “soliton”

to describe this particle-like behaviour of the solitary waves. This created

much new interest in the solitary wave. As a result of this numerical study

a more mathematically precise definition of a soliton was developed using

two prominent features of the propagation of nonlinear waves.

A soliton:

- has a profile which is asymptotically constant at infinity; and

- can interact with other solitons without changing its form or identity.

The only effect of a collision may be a phase change.

Adding to the revival of the solitary wave was the development of the

inverse scattering transform [6] which offered an exact solution to the KdV

equation. The KdV equation is then one of a class of equations terms inte-

grable [7]. Although now many equations are now known to govern different

types of solitary waves, it was Miura et al [8] who first showed that the KdV

equation, is related to a linear equation, the Schrödinger equations, which

determines the soliton solutions for a given initial condition via the method

of inverse scattering.

The theoretical developments of the 1960s sparked interest in finding
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physical examples of solitary waves in various media, including nonlinear

optical media. The exploration of solitary waves in nonlinear optics be-

gan with initial experiments into optical second harmonic generation by

Franken [9]. Next came advances in materials engineering, with the devel-

opment of low loss glass, which spurred interest in potential applications in

optical communications. The prediction by Hasegawa and Tappert [10, 11]

that these low loss glass fibres could support the propagation of stable tem-

poral solitary waves, and was soon confirmed experimentally by Mollenauer

in 1980 [12].

It was found that solitary waves exist in two forms, temporal and spatial,

each defined by a different nonlinear effect. Descriptions of the two types of

solitary waves are as follows:

- Temporal solitary wave: occurs in a dispersive medium, such as silica-

glass fibres [12], with a temporal broadening of the beam. The mech-

anism that drives dispersion is a phase velocity difference between the

frequency components of the beam. As the pulse evolves the beam

frequency broadens as different components have different phase ve-

locities, resulting in the frequencies moving at differing speeds. Finally,

the beam disperses.

- Spatial solitary wave: a broadening of the beam due to diffraction.

The difference in the spatial phase velocity of the components causes

the beam to diffract.
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Both temporal and spatial solitary waves can only exist if a counterbal-

ance to the dispersion/diffraction is produced by the propagation medium.

The broadening of the beam in both cases is balanced by a localised change

in the refractive index of the medium. The nonlinearity of the medium

modifies the refractive index, leading to “light induced lensing” [13] or “self-

focusing” [14]. The combination of self-focusing and beam broadening allows

the propagation (or evolution) of temporal and spatial solitary waves in non-

linear media. A change in the refractive index of a medium by a beam is

known as nonlinear self-focusing. When this occurs the beam has formed

its own waveguide and is said to be self-trapped [13].

In this thesis spatial solitary waves will be considered based upon these

observations:

- the large nonlinearities associated with media that support spatial

solitary waves produce interesting physical effects;

- the equations that govern the evolution of spatial solitary waves are

highly dependent on the properties of the propagation medium. As

a result, there is an immense number of media which support spatial

solitary waves and the number of governing equations are vast, leaving

much room for many original research paths; and

- keen interest has been aroused through the proposed use of spatial

solitary waves in technology, especially in communications.
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Based on these reasons spatial solitary waves in nonlinear soft media, specif-

ically nematic liquid crystals, where the nonlinear response of the media is

deemed nonlocal, will be the focus of this thesis.

1.2 Liquid crystal: Medium of propagation

Although numerous other optical media allow the formation of solitary

waves, such as lead glass [15, 16], thermal liquids [17], ion gases [18], photre-

fractive crystals [19, 20] and Bose-Einstein condensates [21, 22], liquid crys-

tals possess a nonlinear refractive index, where by a response extends beyond

the local change in the refractive index to include the surrounding area of

the media, termed nonlocal. The nonlocal response can also be observed in

lead glass [15, 16] and thermal liquids [17]. In recent times, liquid crystals

have received profound amounts of attention owing to their unique physical

and optical properties. Physically, the liquid crystal molecules can flow like

a liquid, but also maintain some degree of crystalline structure. Apart from

this, liquid crystals can integrate seamlessly with current opto-electronic

devices (due to their chemical stability), allowing for an easy transition to

its use in all-optical communications. The amazing advantage that liquid

crystals have over other optical media is its large nonlinearity, which exists

in all of its phases, that is, the transition from one physical state to another

physical state.

Liquid crystal is a thermotropic medium, which means that the phase’s
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of the liquid crystal are temperature dependent. There are three distinct

phases, which vary from a highly ordered molecular state (cold temperature)

to a highly disordered molecular state (hot temperature). The anisotropic,

or smectic phase, is a highly structured phase for which the molecules main-

tain positional and directional ordering in layers, similar to crystal lattices.

The next phase is the nematic phase, for which the medium develops the

fluidity of a liquid and loses positional ordering within the crystal. How-

ever, directional ordering is maintained in the form of a preferred average

direction. The final phase is the isotropic phase, for which all order within

the crystal is lost [23, 24].

1.2.1 Nematic liquid crystal

A nematic liquid crystal (NLC) or the nematic phase of the liquid crystal

is of interest in this thesis. The nematic molecules are described as rod-like

structures [23, 24, 25] with no positional order, but a tendency to naturally

align due to intermolecular forces, with the long axes of the molecules being

close to parallel and in a common direction. These nematic molecules are

able to flow and are randomly positioned as if in a liquid, yet a long-ranged

directional ordering is preserved in space. Further, the orientational order

of the molecules, that is, a preferred average direction and a degree of an-

gular/rotational ordering make NLC an attractive and flexible propagation

medium.
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n̂

X

Z

Figure 1.1: The molecular organisation of the nematic phase of a liquid crys-

tal, indicating the preferred directional ordering in terms of the molecular

director n̂.



CHAPTER 1. INTRODUCTION 9

This preferred average direction is denoted by a unit vector called the

molecular director, n̂. Figure 1.1 shows the preferred average direction of

the nematic molecules, plus their lack of positional order within NLC. The

rod-like nature of nematic molecules means that the refractive indices for

light polarised parallel and perpendicular to n̂ are different. The refractive

indices of the NLC orthogonal and parallel to n̂ are defined in terms of the

dielectric tensor ǫ of the nematic. That is, n2 = n2⊥−n2‖ where n⊥ =
√

ǫ⊥/ǫ0

and n‖ =
√

ǫ‖/ǫ0, and ǫ0 is the vacuum dielectric permeability [25, 26].

Let us consider an ideal NLC, for which the molecules align to a common

direction locally described by the director field n̂. The organisation of the

molecules becomes deformed due to interactions with confining boundaries

(of interest in this thesis, see Chapters 3, 4 and 5) and/or applied electric or

magnetic fields [27]. These deformations produce a change in the directional

ordering of the molecules.

There are three specific macroscopic deformations that alter the molec-

ular director. They are splay, twist and bend and are shown in figure 1.2.

These deformations occur on a scale that is much larger than the molecu-

lar size, and can therefore be taken as constant everywhere and as elastic

continuum theory applies. Elastic continuum theory states that a defor-

mation can be modelled neglecting the medium structure at the molecular

scale by associating an energy contribution to specific macroscopic deforma-

tions [23, 25].
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(a) Splay

(b) Twist

(c) Bend

Figure 1.2: Macroscopic deformations of NLC, splay, twist and bend.



CHAPTER 1. INTRODUCTION 11

The director distribution is also determined by the interaction of the

NLC with confining surfaces, at which the nematic molecules can be an-

chored in a specific orientation. This interaction is normally a reactionary/restoring

force. This force tends the restore the average direction of the molecu-

lar director whenever a perturbation occurs as a results of electric, magnetic

and/or optical excitations [27]. When an electric field acts on NLC, a molec-

ular dipole moment is induced, which aligns the molecule towards the field

polarisation direction. Hence, a strong electric field increases the alignment

between the director axis and the field polarisation direction.

In optical terms, the rotation of the nematic molecules via the induced

dipole moment changes the refractive index of the NLC, which produces a

nonlinear self-focusing response in the medium [23, 24]. Further, optically

induced distortions in NLC are opposed by the elastic nature of the nematic

which seeks to distribute the internal stresses within the NLC, resulting in a

smoothing relaxation away from the point of maximum intensity [28]. This

smoothing behaviour of the NLC is known as a nonlocal effect, whereby the

nematic molecules beyond the optical waist of the beam are also distorted

by the dipole moments, but to a lesser extent as the position moves farther

from the centre of the optical beam.
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1.2.2 Nematicon: A solitary wave in NLC

The properties of NLC allow the formation of a solitary wave, termed a

nematicon [29]. Before we look at the formation of a nematicon, let us go

back to NLC and find out what happens when a coherent optical beam, such

as a laser, enters the medium.

As with any light source when it enters a more optically dense medium,

the optical beam linearly diffracts, as shown in figure 1.3(a). At the other

extreme, the optical beam can induce a local change in the refractive index

of the NLC, which results in a self-focusing of the optical beam to a point.

Figure 1.3(b) depicts pure self-focusing of an optical beam. Both the pure

linear diffraction and pure self-focusing responses, respectively, have an on-

axis phase shift, denoted by ∆D and ∆F respectively, due to the curved

wavefronts of the optical beam, clearly shown in figure 1.3.

A nematicon is formed due to a balance between these two optical effects,

linear diffraction and self-focusing. Imposing the nonlinear compensation of

diffraction results in ∆D + ∆F = 0. This balance results in a self-trapped

beam or nematicon, as shown in figure 1.4.

Collapse and nonlocality

The stability of a nematicon is due to the nonlocality of the NLC. This

can be demonstrated by looking at a local medium such as a Kerr medium.

Nonlinear beam propagation in local Kerr media is governed by the nonlinear
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A

Z

∆D

λ

(a) Pure linear diffraction of an optical beam.

A

Z

∆F

λ

(b) Pure self-focusing of an optical beam.

Figure 1.3: Pure linear diffraction and pure self-focusing, where λ is the

wavelength of the optical beam, ∆D is the diffractive on axis phase shift

and ∆F is the self-focusing on axis phase shift.



CHAPTER 1. INTRODUCTION 14

X

Z

λ
n̂

Figure 1.4: A self-trapped optical beam, indicted by the larger rotation

angle formed with the Z axis (red nematic molecules) and a lesser rotation

due to the nonlocality outside the confines of the optical beam. λ is the

wavelength of the optical beam and n̂ is the average director direction.
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Schrödinger (NLS) equation

i
∂u

∂z
+

1

2
∇2u+ |u|2u = 0. (1.1)

In one space dimension, ∇2u = uxx, the NLS equation is exactly inte-

grable [7] and solitary wave solutions are stable. However, in two space

dimensions, ∇2u = uxx + uyy, solitary wave solutions of the NLS equation

show catastrophic collapse, that is they become of infinite amplitude and

zero width in finite z. In contrast to this, in NLC the medium response

is nonlocal, that is the nematic response extends beyond the optical beam

due to elastic forces. As a result the refractive index perturbation is wider

than the actual beam, affecting the nematic molecules outside of the optical

beam [30]. This stabilises the a nematicon [25]. Further, an increase in the

power of the nematicon creates a weakening in the self-focusing ability of

the beam, thus preventing the usual collapse associated with solitary waves

in 2D local media and so sustaining the nematicon.

Freédericksz threshold

To enable the self-focusing of an optical beam in NLC and thus obtain a

nematicon, a minimum power level is required to induce a change in the

refractive index (molecular rotation) of the NLC which will result in the

self-focusing of the optical beam, hence a threshold exists. Initially, the

nematic molecules are perpendicular to the polarisation direction and the

threshold is at a maximum. This minimum power level is known as the
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Freédericksz threshold [25, 28]. Originally, when NLC was first [31] being

considered as a propagation medium, difficulties in obtaining a self-focusing

response were encountered. The use of large optical beam powers O(1 Watt)

met the threshold limit and induced a change in the refractive index, but

at the same time introduced thermal effects due to localised heating of the

NLC [31]. External cooling of the NLC was attempted to counteract the lo-

calised heating [31], but was cumbersome. Introducing a dye into the NLC,

reduced the power level of the optical beam needed to obtain self-focusing,

and an increase in the nonlinear response was observed [32]. However, ther-

mal effects were still present which altered the properties of the nematic. An

idea emerged to use the pre-existing properties of the NLC to an advantage,

which allowed for smaller optical beam powers to be used O(1 mW) and so

negated thermal effects. The self-focusing of the optical beam requires the

nematic molecules to rotate. Hence, by applying a low-frequency static ex-

ternal electric field to the NLC in the direction perpendicular to the optical

beam’s propagation direction (optical beams polarisation direction), that

is, the X direction, the nematic molecules could be pre-tilted [29]. Thus,

the self-focusing of the optical beam is aided as it no longer requires such a

large optical beam power to excite molecular rotation. A combination of an

applied external static electric field and the optical beam’s electric field can

also meet the minimum power requirements to induce molecular rotation of

the nematic molecules. Hence, the balance required to self-trap/form a ne-
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maticon is struck at low optical powers. Further, the ideal molecular pre-tilt

angle was found to be π/4 with the Z axis, as this reduced the Freédericksz

threshold to zero [33]. Experimentally, the pre-tilt angle is set to be less

then π/4, but close to this angle [25, 29].

1.3 Nematicons and experimental observations in

NLC

Let us consider a NLC cell sandwiched between two glass plates, with the

nematic molecules in a planar configuration in the X − Z plane, as shown

in figure 1.5 with the director parallel to the Z axis. Indium-tin-oxide film

electrodes are deposited on the inside of the glass plates containing the NLC

to allow a low-frequency voltage to be applied across the NLC thickness.

Polymer films are also applied to the inner sides of the glass plates [23] and

manually rubbed to excite the planar anchoring of the nematic molecules

at the boundaries. A third glass plate seals the NLC-air interface to stop a

meniscus forming, which could alter the polarisation and phase distribution

of the input optical beam [29, 34, 35, 36]. This experimental setup is shown

in figure 1.5.

An optical beam is launched into the NLC cell along the Z direction, and

is polarised in the X direction. The beam’s polarisation direction causes the

nematic molecules to try to directionally align themselves with the beam’s
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Input beam

V

Polymer films Indium-tin-oxide

film electrodes

Glass plates

Y

X

Z

Figure 1.5: The experimental setup showing a cross section of the NLC cell.

The diagram indicates how the nematic molecules are affected by the optical

beam. Note, that the nematic molecules on the boundaries are anchored at

an angle of zero.
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polarisation, thus rotating the nematic molecules in the X − Z plane. As

explained in the above section, the molecular rotation induces beam self-

focusing, which is balanced by the linear diffraction of the beam to form

a self-trapped waveguide (nematicon) within the NLC cell. This nemati-

con was first observed using an initial pre-tilt (avoiding the Freédericksz

transition) of the nematic molecules via an external bias applied in the X

direction [35].

The waveguide nature of a nematicon lead to the question, could a weaker

linear beam be co-launched with the initial beam, and what will the outcome

be? That is, can a nematicon act as a waveguide? This procedure is called

“probing” and takes two beams with the same polarisation and propagates

them together [36]. It was found that the nematicon would trap the probing

beam. Thus, the probe could be launched using a beam with a different

wavelength and/or an alternative initial angle and each time the nematicon

would confine the beam. Further, the nematicon could steer the probe by

altering its own path [14, 37, 38].

The optical properties of the nematic is governed by a refractive index

which is a determined by a tensor response. For a uniaxial crystal, such

as a nematic liquid crystal, this tensor gives two eigendirections, termed

ordinary and extraordinary waves [39] (section 12.8). The ordinary waves

are non-dispersive, and so do not form solitary waves. However, at large

power levels the optical beam can self-focus and be balanced by higher order
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nonlinear contributions to dispersion. This area has not been experimentally

or theorectically explored. The extraordinary waves are dispersive and so

can form solitary waves. A nematicon is then formed from the extraordinary

response of the NLC. The extraordinary waves have a group velocity which

is at an angle to the wavevector of the input beam. Hence a nematicon

propagates at an angle to the input beam, which is termed walk-off [40, 41].

The mathematical models presented throughout this thesis have factored

out the (constant) walk-off angle by using a phase shift, details of which can

be found in reference [42].

In early experiments on the formation and steering of nematicons, the

NLC cell was considered to be infinitely thick for simplicity. The effects

of the cell walls were assumed negligible and that they did not impose on

the propagation dynamics of the nematicon. This was assumed a good

approximation for a nematicon propagating in the centre of a cell with a

typical cell width being 24 times the width of a nematicon [36]. However,

an experimental study [43] found a power dependent relationship between

the boundary and a nematicon’s trajectory. The boundaries were found to

repel the nematicons based on beam power, with larger beam intensities

corresponding to stronger repulsion. The underlying mechanism responsible

for the stronger repulsion for higher beam power was the nonlocality of

the nematic, as more nematic molecules were affected by the presence of

the beam [43, 44]. A continuation of the investigation of the effect of cell
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boundaries on the trajectories of optical beams in finite-sized NLC cells [30,

43, 44, 45, 46] will be theoretically studied in Chapters 3, 4 and 5.

Alternative beam structures have been of interest in the study of optical

phenomena, with the optical vortex [47, 48, 49] being an example. An optical

vortex when viewed along its axis resembles a ring, with a phase singularity

present at its centre. This phase singularity causes the instability of an

optical vortex in local media [50, 51]. However, the nonlocality of NLC

smooths the nematic’s response at the centre of the optical vortex, and

hence, stabilises it [52, 53]. The effects of the NLC cell boundaries on the

stability of an optical vortex will be examined, as well as on its trajectory,

in Chapter 4.

Applying orbital angular momentum to an optical beam has sparked in-

terest in the potential use of optical beams as manipulative tools [54], giving

experimentalists the ability to control, trap (using an optical vortex), and

move individual small particles within a medium. Examples of these are the

optical spanner [55] and optical rotating turbines [56]. An elliptically shaped

optical beam with orbital angular momentum is also a possible manipulation

tool. Such a beam is studied in Chapter 5.

In summary, NLC has a huge nonlinearity, so that nonlinear optical

effects can be observed over millimetre distances [57]. The nonlinearity is

saturable [58], aiding the stability of propagating solitary waves. However,

the nonlinear response time of NLC (∼ 0.1 s) [29] is too slow for many
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applications, as seen by the “ghosting” of liquid crystal televisions during

fast motion. Further, experiments conducted on optical interconnects give a

reaction time of seconds [14] for NLC, while current electrical interconnects

respond within microseconds. There is currently work being conducted on

NLC to improve the reaction time to enable more applications of NLC to

optical devices.

1.4 Aims of thesis

The research presented in this thesis aims to fill the gap in the current un-

derstanding of boundary interactions between a finite-sized NLC cell and

different optical beam structures, specifically a nematicon (circular), an op-

tical vortex solitary wave and an elliptically shaped optical beam. In Chap-

ters 3, 4 and 5 variational (modulation) theory will be employed to derive

semi-analytical solutions of the equations governing optical beams in NLC

for these three beam types. The equations governing nonlinear optical beam

propagation in NLC form a coupled system of a NLS-type equation for the

optical response and a Poisson’s equation for the mediums response. The

highly nonlinear, coupled nature of the equations means that there are no

exact solutions. Hence approximate and numerical solutions are the only

possible methods to analyse solutions of these equations. These solutions

will be compared with full numerical solutions of the governing equations to

determine the variational solutions accuracy and utility.
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The derivation of the equations that govern an optical beam in NLC

will be derived in Chapter 2. The semi-analytical method used to analyse

solutions of these equations will be introduced through a simple example

of a nematicon in a (2 + 1) dimensional (D) infinitely thick NLC cell. A

description of full numerical scheme used to solve the equations of this thesis

will conclude the chapter.

Chapter 3 will study the propagation of a nematicon in a (2+1)D finite-

sized NLC cell. Particular attention will be placed on the effect of the

boundaries on a nematicon. The novel solution technique of the method

of images will be introduced to solve the equation governing the director

perturbation.

Chapter 4 will explore the propagation of a stable optical vortex in a

bounded NLC cell. A linearised stability analysis will provide an analyti-

cal expression for the minimum distance an optical vortex can approach a

boundary before instability sets in.

Chapter 5 studies elliptically shaped optical beams with orbital angular

momentum in a finite-sized NLC cell. In the process, two different varia-

tional methods will be compared and contrasted with each other and their

accuracy determined by comparison with full numerical solutions of the gov-

erning equations. It will be shown that angular momentum is shed by the

optical beam and an accounting of this is required to gain a reasonable

comparison with full numerical solutions.
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The concluding Chapter 6 will summarise the findings for the different

optical beam structures in finite-sized NLC cells and briefly explore future

research avenues in NLC and other optical media.



Chapter 2

Equations and methodology

2.1 Introduction

This chapter gives an overview and description of the fundamental set of

equations used to model the propagation of coherent light through a medium

of soft matter. In particular, this medium will be nematic liquid crys-

tal (NLC). These equations are two coupled partial differential equations

(PDEs) which describe the electric field envelope of a light beam and the

behaviour of the NLC when this light beam propagates through it. Since this

system of equations does not have exact solutions, this chapter will describe

the general asymptotic approach used to obtain a semi-analytical solution

for nonlinear light beam propagation in NLC. Using a (2 + 1)D example, it

will be shown how solitary waves (known as nematicons in NLC) are formed

and how diffractive radiation loss has to be considered if the analytic solu-

25



CHAPTER 2. EQUATIONS AND METHODOLOGY 26

tion is to compare favourably with numerical solutions. It should be noted

that the term solitary wave and soliton will be used when discussing general

applications to a range of media, whereas, nematicon is specific to solitary

waves in NLC.

2.2 The governing equations

Maxwell’s equations describe the general evolution of electromagnetic waves.

These equations can be solved using numerical techniques, but this loses

the deep insight into how waves evolve and propagate through time and

space. For example, numerical studies of a light beam propagating through a

NLC (or nematic) misses the molecular-electric field interaction between the

nonlocal response of the nematic and the electric field of the light beam [59],

as well as other effects such as low frequency dispersive radiation [60].

As they stand, Maxwell’s equations are far too complicated to be solved

analytically. However, using a narrow-beam asymptotic analysis under the

paraxial approximation, which is a more general approach of geometric op-

tics [28, 39], Maxwell equations can be reduced to a single nonlinear PDE

which is strongly coupled to another PDE describing the nonlinear response

of the medium. For instance, McLaughlin et al [28] showed that for a light

beam propagating in an NLC, Maxwell’s equations could be reduced to a

Helmholtz equation coupled with a Poisson equation. This system was used

for an exploration of the self-focusing effect of optical beams. Further analy-
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sis showed that the Helmholtz equation could be transformed to a nonlinear

Schrödinger (NLS)-like equation, while still maintaining the coupling to the

Poisson equation [28, 35]. The equations governing the propagation of a

coherent polarised optical beam in NLC in the presence of an external static

electric field [29, 38, 61] are given by

i2k
∂u

∂Z
+∇2

XY u+ k20ǫa

(

sin2 φ− sin2 θ̂
)

u = 0 (2.1)

4K∇2
XY φ+ 2∆ǫRFu

2
S sin (2φ) + ǫ0ǫa sin (2φ) |u|2 = 0, (2.2)

where u is the complex envelope of the beam’s electric field, Z is the prop-

agation direction of the beam, X is the polarisation direction of the light

beam and is orthogonal to Z, while Y is orthogonal to both X and Z. In-

duced by the combination of the external static electric field and the electric

field of the propagating light beam, the total reorientation of the director

field can be written as

φ = θ̂ + θ, (2.3)

where θ̂ is the pre-tilt angle for the molecular reorientation induced by the

external static electric field applied in the X direction, so that molecular

rotation occurs in theX−Z plane, while θ is the optically induced rotation of

the director due to the electric field of the light beam. For the usual milliwatt

optical beam powers, θ ≪ θ̂. Furthermore, k is the propagation constant

(wavenumber) of the beam and k0 = 2π/λ0 is the initial wavenumber of the

beam with λ0 being the input wavelength. The constants ǫa = n2‖−n2⊥ and ǫ0
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are the optical birefringence and the permittivity of free space respectively,

n‖ and n⊥ being the refractive indices for an optical beam parallel and

orthogonal to the director alignment [25, 38]. uS is the strength of the

applied external static electric field and ∆ǫRF is the static anisotropy. K

is the Frank constant which measures the elasticity of the medium and is

taken equal for splay, twist and bend deformations of the nematic molecules,

as shown in figure 1.2.

Poisson’s equation (2.2) for the optical axis φ is derived from the free

energy of the nematic, which is a combination of the electric field-molecular

dipole interaction and the energy due to a perturbation of the director field

which is the addition of the elastic responses to splay, twist and bend [23,

25, 38]. Hence, Poisson’s equation governs the total reorientation of the

nematic molecules.

Let us non-dimensionalise the nematic equations by

X = αx, Y = αy, Z = βz and u = AEeiγz. (2.4)

Equation (2.1) then becomes

i
∂E

∂z
+

1

2
∇2
xyE − cos (2φ)E = 0, (2.5)

where the non-dimensionalising parameters in (2.4) are

α = 2/k0
√
ǫa, β = 4k/k20ǫa and γ = βk20ǫa cos(2θ̂)/4k. (2.6)

Equation (2.5) is now in the form of the well known Foch–Leontovich equa-

tion [62].
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Equation (2.2) can also be non-dimensionalised using the same change

of variables given by (2.4). Equation (2.2) becomes

ν∇2
xyφ+ p sin (2φ) + 2 sin (2φ) |E|2 = 0, (2.7)

where

ν = 8K/ǫ0ǫa and p = 4∆ǫRFE
2
S/ǫ0ǫa. (2.8)

The Laplacian (∇2
xy) in equations (2.5) and (2.7) in the x − y plane. For

convenience, the subscript that appears in both equations (2.5) and (2.7)

will be dropped. The Laplacian will be assumed to act in the x − y plane

unless otherwise stated. Also, non-dimensional variables will used, except

where it is vital for clarity. The parameter ν in equation (2.7) quantifies

the inter-molecular elastic links between the nematic molecules and is a

measure of the nonlocality of the nematic. Small values of ν correspond

to the local limit and are associated with the formation and propagation

of Townes solitons [63], while large values of ν correspond to the nonlocal

limit. The parameter p is related to the strength of the external static

electric field used to pre-tilt the nematic molecules. It is assumed that at

the cell boundaries the director angle is fixed, that is, φ = φ0. Using (2.3),

equation (2.7) expands to become

ν∇2θ̂ + ν∇2θ + p sin(2θ̂) cos(2θ) + p cos(2θ̂) sin(2θ)

+ 2 sin(2θ̂) cos(2θ)|E|2 + 2 cos(2θ̂) sin(2θ)|E|2 = 0. (2.9)
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By adjusting the pre-tilt angle so that θ̂ ≥ π/4 in the centre of the x − y

plane of the NLC cell, the molecular rotation, which enables self-focusing of

the light beam, will permit the optical intensity to be above the Freédericksz

threshold. To maximise the effect of the external electric field and minimise

the optical beam power, the pre-tilt angle θ̂ is also set to be greater than

π/4, but close to it as the Freédericksz threshold is zero when θ = π/2 also,

the NLC has a saturation limit which is reached when φ = π/2, this angle

being the maximum angle of rotation of the molecules in the x− z plane.

The pre-tilt angle is determined by the director equation (2.9) when

E = 0. Hence, the director angle satisfies equation

ν∇2θ̂ + p sin(2θ̂) = 0, (2.10)

with the angle at the boundaries anchored at θ̂ = 0. Note that the pre-tilt

angle θ̂ is solely due to the static external electric field, p. Equation (2.9)

can be simplified further by substituting equation (2.10) and using the small

angle approximation for θ, |θ| ≪ θ̂, so that the last term in (2.9) is of lower

order

ν∇2θ + p sin(2θ) cos(2θ̂) + 2|E|2 cos(2θ) sin(2θ̂) = 0. (2.11)

The slowly varying functions cos(2θ̂) and sin(2θ̂) can be replaced with typical

values found at the cell’s centre in the x − y plane, where the nematicon

propagates. Also, recall that the external field is chosen to result in θ̂ > π/4,

but close to π/4 in the centre of the cell. Then sin(2θ̂) ∼ 1 and cos(2θ̂) <
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0. Hence, rescaling of the director equation (2.11) results in the further

simplification

ν∇2θ + q sin (2θ) + 2|E|2 cos (2θ) = 0, (2.12)

where the parameter q is the rescaling of the low frequency external electric

field.

Applying an argument similar to that for the director equation above,

the Foch–Leontovich equation (2.5) can be simplified to the form

i
∂E

∂z
+

1

2
∇2E + sin (2θ)E = 0. (2.13)

Using the small angle deviation limit for θ, the governing equations (2.12)

and (2.13) for the propagation of a nematicon with an applied external static

electric field can be simplified as:

i
∂E

∂z
+

1

2
∇2E + 2θE = 0, (2.14)

ν∇2θ + 2qθ + 2|E|2 = 0. (2.15)

In recent years an alternative pre-tilt technique for NLC has been devel-

oped, whereby the glass plates which contain the nematic are “rubbed” [30,

44]. A static charge is induced in the rubbed cell walls which excites a

dipole moment in the adjacent nematic molecules, thus causing the nematic

molecules to rotate. This induced static charge in the form of a molecular

rotation is now passed to the neighbouring nematic molecules via the elastic

inter-molecular forces (nonlocality). Hence, the pre-tilt angle θ̂ is uniformly
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distributed (approximately) throughout the NLC cell. The static external

electric field is no longer needed to pre-tilt the nematic molecules and the

term describing the external field’s strength is zero as q = 0. Hence, the

director equation (2.15) is then simplified to

ν∇2θ + 2|E|2 = 0. (2.16)

Thus, equations (2.14) and (2.16) are the basic system of coupled PDEs that

govern nonlinear optical beam propagation in NLC when rubbing is used

to pre-tilt the nematic molecules, from the weakly nonlocal limit Townes

solitons (ν → 0) and to highly nonlocal limit accessible solitons (ν → ∞).

Nevertheless, these equations are universal and appear as the governing

equations for other nonlinear optics problems, such as thermal media [16,

64, 65] and certain photorefractive crystals [66, 67].

2.3 Approximate methods

In order to mathematically model the evolution of a light beam as it prop-

agates through a NLC, a semi-analytical approach is adopted here as there

are no exact solitary wave solutions of the governing equations, this semi-

analytical approach has major benefits over a purely numerical studies of the

governing equations (2.14) and (2.16) as it yields insights into the underlying

mechanisms and the features which control the evolution.

Reviewing the governing equation (2.14), we can see that this equation
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closely resembles the 1D NLS which has known solitary wave solutions. With

this in mind, the semi-analytical approach is based on a trial function for the

light beam that is similar to the soliton solution of the 1D NLS. The trial

function has various parameters such as width, amplitude, position and shelf

height that vary with the propagation variable z, which acts as a time-like

variable in the equations. These parameters will govern the beam formation

and its evolution.

Due to the simplifications, the approximate method imposes conditions

on the beam profile, which means that key features of its evolution may be

removed or restricted. To avoid the shortcomings of this method, a careful

choice of trial function is required. Hence, the chosen trial functions for both

the light beam’s envelope and the nematic’s response to the light beam such

that they give a reasonable approximation to the actual solution profiles. It

will be shown later that these trial functions compare favourably with the

full numerical solution which is then ultimate justification. This successful

choice of trial function will lead to insights into the underlying physics and

mechanics of the beam formation, propagation and dynamical behaviour

that is not obtainable from numerical techniques.

2.3.1 Trial function

As discussed in this chapter, a trial function is used as an approximation

for the light beam’s envelope as exact solutions for the governing equations
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(2.14) and (2.15) are unknown. Apart from assuming a 1D NLS type solution

for the form of the trial function, the best choice for a trial function is one

that has the correct asymptotic behaviour as x→ ±∞ and is a good match

to the full numerical solutions. Generally, there are no real mathematical

constructs or rules which dictate the choice of trial function. However,

Malomed [59] mentioned some points to consider when choosing the trial

function:

- Necessity to perform analytic integration;

- Need for a balance between a simplistic and complicated trial function;

and

- Steady state solutions for the dynamical system have no direct link to

the trial function.

As stated above, the electric field envelope is governed by the NLS-like equa-

tion (2.14). The (1+1)D NLS equation, whose solution can be determined

using inverse scattering, is used as an initial launch pad to develop a trial

function which best fits the profile of the light beam. Now, the trial func-

tion must incorporate parameters which capture the behaviour of certain

features of the light beam, such as amplitude, width, position and phase.

Anderson [68] was the first to successfully realise the potential of vari-

ational theory and apply the idea of a trial function to the problem of a

solitary wave in a nonlinear fibre optic cable, which was governed by the
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NLS equation. Further, Anderson used a version of the trial function incor-

porating “chirp”, which is due to the addition of quadratic corrections in the

phase. This initial work led the way for the use of variational techniques in

conjunction with dynamical systems and has since been tried and tested for

many nonlinear optical problems [59, 68]. Beyond these initial applications,

the method has been adapted for use in many different optical scenarios,

such as Bose–Einstein condensates [69] and Kerr media [50].

Typically, the trial function takes the form of a basic beam profile

E = f(h1(z), h2(z), . . . , hN (z)) (2.17)

where the parameters are given by hi(z), i = 1, . . . , N , and N is the total

number of parameters. Note that the parameters in the trial function (2.17)

vary with respect to the propagation distance z.

To obtain a dynamical system governing the evolution of an optical beam

based on this trial function, the trial function (2.17) is substituted into the

Lagrangian formulation of the governing equations. This Lagrangian is then

averaged [39] by integrating in the spatial variables x and y, so that the av-

eraged Lagrangian depends on the propagation coordinate z only. In the

original formulation of modulation theory by Whitham [39], the wave en-

velope was assumed to be slowly varying, so that this averaging process

integrated out the fast phase dependence. Whitham then showed that mod-

ulation theory is equivalent to the standard asymptotic technique of the

method of averaging, or multiple scales.
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A set of variational equations, known as modulation equations, arise

from the averaged Lagrangian L for each of the parameters hi(z) by way of

the Euler–Lagrange equation, are

d

dz

∂L
∂(h′i)

− ∂L
∂hi

= 0. (2.18)

Equation (2.18) forms a system of first-order nonlinear ordinary differential

equations (ODEs), a dynamical system. These can be solved using a simple

numerical scheme, such as the standard fourth-order Runge–Kutta.

Writing the system in terms of Lagrangian actions and modulation equa-

tions allows the application of Nöther’s theorem. This theorem permits the

determination of conserved quantities from symmetries of the underlying

Lagrangian. Nöther’s theorem relates the lack of explicit dependence of the

Lagrangian on the time-like variable z to the conservation of energy. Any

Lagrangian L has a translational symmetry in z [70]

∂(h′i)

dz

d

dz

∂L
∂(h′i)

− L = 0, (2.19)

where the summation convention has been used. The variational method

and the principle of stationary action are closely linked to the infinite num-

ber of conservation equations found in integrable systems. In fact, each

of the variational equations given by the Euler–Lagrange equation (2.18)

can be obtained by calculating the conserved quantities associated with the

governing equations (2.14) and (2.15) [39].
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2.3.2 Extension of the trial function

Solutions of the modulation equations as derived above will not evolve to

a steady state. This is because the effect of the diffractive radiation shed

by a solitary wave as it evolves has not been included. This shed radiation

acts as a damping, allowing the wave to evolve to a steady state. However,

a study by Kath and Smyth [60] proposed an extension to the trial function

and variational theory. A (1+1)D soliton in an optical fibre governed by the

1D NLS equation was analysed. It was shown that over short propagation

distances (small z), the existing approximate theory and trial function were

adequate at describing the evolution of the light beam, but was unable

to provide good comparisons over large distances. This was due to the

variational theory being unable to capture the damping of the amplitude

oscillations to a steady state experienced by the soliton, which was present

in full numerical solutions. The break-through by Kath and Smyth [60]

occurred when they linked the evolution to a steady state to radiation loss by

the soliton. The observed damping was shown to be the effect of mass loss in

the form of dispersive radiation shedding. This was the key to matching the

variational approximations to the actual behaviour of the physical system.

As a consequence, a modification was made to the initial trial function

to include radiation. The mass loss was also included in the modulation

equations. This had the effect of damping parameter evolution to a steady

state solitary wave. Hence, this modification produced excellent agreement
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with full numerical solutions of the NLS equation. Not only did the addition

of the radiation loss allow for a valid approximation over large propagation

distances, it extended the variational method to a wider range of optical

soliton regimes, even non-integrable systems [60, 71].

This modified variational method will form the basis of the analysis

throughout this thesis. Any details that differ from the approximate method

presented here will be highlighted at the appropriate place.

2.3.3 A nematicon in the nonlocal limit: An illustrative ex-

ample

To demonstrate the theory presented in Sections 2.2 and 2.3 and to outline

the extended variational technique of Kath and Smyth [60], a simple example

of a (2+1)D nematicon in the nonlocal limit (ν large) will be reviewed [72].

In this example, the x and y boundaries of the NLC cell are considered to

be infinite. The nematic molecules will be pre-tilted by an external static

electric field applied in the x direction.

Equations (2.14) and (2.15) in radially symmetric polar form, are

i
∂E

∂z
+

1

2r

∂

∂r

(

r
∂E

∂r

)

+ 2θE = 0 (2.20)

ν
∂2θ

∂r2
− 2qθ + 2|E|2 = 0, (2.21)

where r2 = x2 + y2. Here, E as described above, is the complex valued

envelope of the electric field of the optical beam, θ is the perturbation of the

director from the pre-tilt angle in the x−z plane, ν is the elastic response of



CHAPTER 2. EQUATIONS AND METHODOLOGY 39

the nematic molecules and is related to the nonlocality of the medium and

q is the non-dimensional value of the static electric field externally applied

to the nematic in order to pre-tilt the molecules.

The analysis begins by writing the governing equations (2.20) and (2.21)

in the form of a Lagrangian

L = ir (E∗Ez − EE∗
z )− r|Er|2 + 4rθ|E|2 − νrθ2r − 2qrθ2, (2.22)

where ∗ represents the complex conjugate.

An appropriate trial function or ansatz is now chosen whose parameters

vary independently with z (the propagation direction). In Section 2.3, the

(1+1)D soliton solution of the NLS equation was suggested as an appropriate

initial starting point for a trial function. This solution is given by the sech

profile

E = a sech(ax)eia
2z/2. (2.23)

A similar profile will be used as the trial function for E and θ in our governing

equations (2.20) and (2.21).

Numerical simulations [60] for the (1 + 1)D NLS equation show a shelf

of low-wavenumber diffractive radiation forming under the beam as it prop-

agates. The existence of this shelf has been verified using perturbative tech-

niques and perturbed inverse scattering [60, 73]. Using a simple argument

based on group velocity, this shelf of radiation will be explained below.

Linear waves describing the diffractive radiation of the NLS-like equation
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(2.20) have group velocity cg = k. Hence, low wavenumber waves have a low

group velocity and remain within the vicinity of the nematicon. There is

then a continuous interaction between this shelf of low wavenumber radiation

and the nematicon [60, 71]. To account for the presence of the shelf, a term

corresponding to the shelf height or shelf amplitude is included in the trial

function for the optical beam based on equation (2.23). That is,

E = a sech
( r

w

)

eiσ + igeiσ. (2.24)

Here, the amplitude a, width w, phase σ and shelf amplitude g are the

nematicon parameters which vary independently with z.

Perturbative analysis [60, 73] showed that the nematicon and the shelf of

radiation that accumulates under the nematicon are π/2 out-of-phase. This

is reflected in the ansatz (2.24) by the multiplication of the shelf amplitude g

by i and can be observed in the oscillation of the nematicon amplitude, where

an increase in amplitude occurs when the shelf feeds into the nematicon, that

is, the maximum amplitude occurs when they are out of phase. The shelf

of diffractive radiation is assumed to be flat within the disc 0 ≤ r ≤ ℓ,

where ℓ is the shelf radius (which needs to be determined). Outside of

this shelf, g is taken to be zero. The form of the radiation outside of this

shelf will be discussed below. The shed radiation that is travelling near

the nematicon (the shelf) can be incorporated into suitably chosen trial

functions, but the far field radiation is not included in the chosen trial

function. The incorporation of the shed diffractive radiation is essential to
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allow the nematicon to settle towards a steady state. Otherwise there will be

no damping and the nematicon will continue to oscillate around the steady

state. However, over short propagation distances z ≤ 100, the importance of

the radiation loss is negligible, as the difference between the full numerical

solution and the modulation theory without radiation loss is minimal [60].

Over longer propagation distances z > 100, there is a noticeable amount

of damping in the amplitude of the full numerical solution. However, if

the radiation loss is taken into account the modulation solution undergoes

damping and compares favourably with the full numerical solution.

The director angle is also represented by an ansatz that is chosen by a

similar process to that for the nematicon. As there are no known solutions

of the director equation (2.21), a trial function similar in form to the electric

field envelope of the optical beam is used. That is, the director angle trial

function in polar form is given by

θ = α sech2
(

r

β

)

, (2.25)

where α is the amplitude and β is the width of the director angle and both

are functions of z.

The trial function for the electric field envelope E (2.24) and the director

rotation θ (2.25) are now substituted into the Lagrangian (2.22), which is

then averaged by integrating in r from 0 to ∞.

In the local limit, ν → 0, the widths of the nematicon w and the director

β are equal, β = w, and the calculation of the averaged Lagrangian is greatly
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simplified [74]. However, in the limit of current interest, the nonlocal limit

with ν large, the widths are different β 6= w. Indeed in the nonlocal limit

β ≫ w. The integrals that involve the cross terms of θ and E in the averaged

Lagrangian then cannot be evaluated explicitly. To enable approximations

to these integrals to be evaluated, the method of equivalent functions is

used [72].

Consequently, the averaged Lagrangian for a nematicon in the nonlocal

limit is

L = −2
(

a2w2I2 + Λg2
)

σ′ − 2I1aw
2g′ + 2I1gw

2a′ + 4I1awgw
′

− a2I22 − 4νI42α
2 − 2qI4α

2β2 +
2A2B2αa2β2w2

A2β2 +B2w2
. (2.26)

The I’s are various constants given by integrals and A and B are con-

stants that are obtained using equivalent functions [72] and are stated in

Appendix A. The area of the radiation shelf that accumulates under the

evolving nematicon is modulo 2π, Λ = 1
2ℓ

2, where ℓ is the shelf radius,

which needs to be determined.

Using the Euler–Lagrange equation (2.18), variations of the averaged

Lagrangian with respect to the nematicon parameters generates a system of

N first-order nonlinear ODEs of the form, a dynamical system,

d

dz

(

I2a
2w2 + Λg2

)

= 0, (2.27)

d

dz

(

I1aw
2
)

= Λgσ′, (2.28)
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I1
dg

dz
=
I22a

2w2
− A2B4αaw2β2

(A2β2 +B2w2)2
, (2.29)

I2
dσ

dz
= −I22

w2
+
A2B2αβ2

(

A2β2 + 2B2w2
)

(A2β2 +B2w2)2
, (2.30)

along with the algebraic equations

α =
A2B2β2w2a2

2 (A2β2 +B2w2) (2νI42 + qI4β2)
, (2.31)

α =
A2B4w4a2

qI4 (A2β2 +B2w2)2
. (2.32)

The system of equations (2.27)–(2.30) are called the modulation equations

and are solved to find the evolution of the nematicon parameters with respect

to the propagation length z.

Once the nematicon has ceased shedding radiation, it reaches its steady

state. This means a relationship between the steady amplitude â and the

steady width ŵ can be found using equation (2.29) with ĝ = 0, yielding

â2 =
I22

(

A2β̂2 +B2ŵ2
)(

2νI42 + qI4β̂
2
)

A2B6β̂4ŵ6
, (2.33)

where the carat ˆ denotes the steady state values or fixed points.

The following procedure is adopted to determine the shelf radius ℓ. The

modulation equations (2.27)–(2.30) are linearised using perturbations about

the fixed points for the amplitude a, width w and shelf height g. That is,

a = â+ a1, w = ŵ + w1 and g = ĝ + g1 = g1, (2.34)
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where a1, w1 and g1 are the first order perturbations of â, ŵ and ĝ. Lin-

earised modulation equations are obtained by substitution of (2.34) into

equations (2.27)–(2.30). The perturbation of the shelf amplitude g1 is found

to be given by the simple harmonic oscillator equation

d2g1
dz2

− QΛσ̂′

I21 (ŵ
2 + 2âŵΘ)

g1 = 0. (2.35)

By matching the oscillation frequency σ̂ of the steady nematicon (using

equation (2.30) at the fixed point) to the frequency of the oscillator equation,

the area of the low wavenumber diffractive radiation shelf is found to be

Λ =
1

2
ℓ2 = − σ̂

′I21
(

ŵ2 + 2âŵΘ
)

Q
(2.36)

where Θ and Q [72] are stated in Appendix A.

Now the nonlocal interaction between the director and the beam extends

the radiation shelf [72]. This is due to the director response to the beam

having a longer tail, a result caused by the large value of ν. This in turn

forces the electric field E to have a longer extension of the radiation tail, with

the radiation shed from the edge of the extended tail. Hence, in the nonlocal

regime the shelf of diffractive radiation is made up of two components. There

is an inner portion of the shelf related to the radius ℓ defined by (2.36)

on the region 0 ≤ r ≤ ℓ. This inner portion of the shelf is due to the

resonant interaction of the zero wavenumber diffractive radiation with the

light beam. The outer portion of the shelf is due to the nonlocal forcing of

the optical axis, and has a radius ρ [60, 72, 73]. The outer shelf radius ρ
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is related to the half-width of the optical disturbance of width β, that is,

β1/2 = sech−1(1/
√
2)β. Therefore, the outer shelf area is given by (modulo

2π)

Λ̃ =
1

2
ρ2 (2.37)

an analogy with the inner shelf (2.36). Comparison with numerical solutions

gives ρ = 7β1/2 [72], which is robust for different initial conditions. Hence,

the modulation equations (2.27)–(2.30) along with the shelf lengths (2.36)

and (2.37), form a complete system of evolution equations for a nematicon.

However, losses due to shed diffractive radiation have not been accounted for.

Before the radiation loss is added to the modulation equations, a summary

of the major details that will reappear throughout the remaining chapters

will be presented. If and when there are differences, these details will be

noted within the relevant sections. The points below are universal to the

analytical technique used to study the evolution of optical beams and consist

of

- the derivation of dynamical equations that model the particular gov-

erning equations of interest accurately and

- the choice of a trial function whose parameters vary independently and

realistically with the propagation distance.

In addition to these points, there are several key details common to the

variational method for determining the evolution of a nematicon
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- the trial function for the beam envelope takes the form of a sech profile,

plus an extra term which factors in the accumulation of the radiation

under the nematicon,

- the amplitude of the shelf is small compared to that of the beam,

|g| ≪ a;

- the nematicon solutions will oscillate about a fixed point, which is a

centre; and

- the evolution of the nematicon towards the steady state requires damp-

ing in the form of shed diffractive radiation.

The calculation and a discussion of the radiative loss are dealt with in the

next section.

2.3.4 Radiative losses and a simple nematicon system

As for our example in section 2.3.3, the radiation loss is calculated using the

governing equation (2.20) for the electric field envelope.

The shed diffractive radiation has small amplitude compared to the ne-

maticon. Hence it is governed by the linearised equation (2.20), which is the

Schrödinger equation

i
∂E

∂z
+

1

2r

∂

∂r

(

r
∂E

∂r

)

= 0. (2.38)

The boundary condition for the linearised NLS equation (2.38) requires that

the shed radiation be matched to the shelf formed under the nematicon, that
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is, E = S(z) at r = ℓ. Now, the major contribution of this shed radiation is

via mass shed from the nematicon as it evolves to the steady state. Using

the mass density ρ = |E|2 and the mass flux density J = i
2 (EE

∗
r − E∗Er),

the mass conservation equation is

∂ρ

∂z
+

1

r

∂

∂r

(

rJ
)

= i
∂

∂z

(

r|E|2
)

+
1

2

∂

∂r
(rEE∗

r − rE∗Er) = 0. (2.39)

The mass flux transferring into dispersive radiation to the right of the ne-

maticon from the evolving nematicon can be determined by integrating equa-

tion (2.39) from the edge of the shelf r = ℓ to r = ∞ and is given by

d

dz

∫ ∞

ℓ
r|E|2 dr = Im (rE∗Er)|r=ℓ +O

[

ℓ̇(z)
]

. (2.40)

For the mass loss equation (2.40) to be useful, a relationship between Er

and E at the edge of the shelf r = ℓ needs to be established and the boundary

condition S(z) requires to be determined in terms of the nematicon parame-

ters. The boundary condition S(z), in terms of the nematicon parameters, is

found by looking within the vicinity of the disk r ≤ ℓ. The trial function for

the electric field envelope can be decomposed into the fixed-point solution

Ê plus a component E1 that must eventually be radiated away

E = Ê + E1, (2.41)

where E1 is the radiated component and |E1| ≪ |Ê|.

The mass conservation equation (2.39) indicates that the mass density
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decomposes as

∫ ℓ(z)

0
|E|2r dr =

∫ ℓ(z)

0

[

|Ê|2 + 2Re
(

ÊE1

)

+ |E1|2
]

r dr. (2.42)

Assuming that a small overlap exists between Ê and E1, we have

I2a
2w2 + Λg2 = I2â

2ŵ2 + Λ|E1|2
∣

∣

r=ℓ
. (2.43)

The total mass is given by the mass variational equation (2.27) as

I2a
2w2 + Λg2 (2.44)

Setting |E1|
∣

∣

r=ℓ
= S(z), equation (2.43) leads to the approximation involv-

ing mass conservation to give S(z) as

|S(z)|2 = 1

Λ

[

I2a
2w2 − I2â

2ŵ2 + Λg2
]

. (2.45)

In order to calculate the mass flux (2.40) one final quantity, Im (rE∗Er),

needs to be determined. To evaluate this, the linearised NLS equation (2.38)

together with the boundary condition E = S(z) on r = ℓ needs to be solved.

As the shelf radius ℓ is slowly varying, it may be treated as a constant

throughout the following calculation.

The linearised NLS equation (2.38) is solved using Laplace transforms

Ē(r, s) = L {E(r, z)} =

∫ ∞

0
e−szE dz. (2.46)

On taking Laplace transforms equation (2.38) becomes

isĒ +
1

2r

∂

∂r

(

r
∂Ē

∂r

)

= 0, (2.47)
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where s is the Laplace transform variable. By making the substitution

r = αw, this transform equation can be set in terms of the modified Bessel’s

equation of order zero

wĒww + Ēw − wĒ = 0, (2.48)

which has the solution

Ē = AK0[w] = AK0

[√
2sre−iπ/4

]

, (2.49)

where K0 is the modified Bessel’s function of order 0. We are interested in

finding Er. Taking the derivative of Ē with respect to r we obtain

Ēr = −A
√
2se−iπ/4K1

[√
2sre−iπ/4

]

, (2.50)

where K1 is the modified Bessel’s function of order 1. Rearranging equa-

tion (2.49) to find A and substituting it into equation (2.50), the Laplace

transform (2.50) can be inverted using convolution theorem to give

Er|r=ℓ = − 1

2πi

∫

C

√
2se−iπ/4

K1

[√
2se−iπ/4ℓ

]

K0

[√
2se−iπ/4ℓ

]Ē0e
sz ds. (2.51)

Here E0 is the boundary condition for E at r = ℓ and the integral is over

the usual inversion contour C for Laplace transforms. The required flux

product for the mass loss integral (2.40) is then of the form

E∗Er = S(z)∗
∫ z

0
G(z − z′)E0(z

′) dz′, (2.52)

since E = S at r = ℓ. The Green’s function G is

G(χ) = − 1

2πi

∫

C

√
2se−iπ/4

K1

[√
2se−iπ/4ℓ

]

K0

[√
2se−iπ/4ℓ

]esχ ds, (2.53)
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where χ = z − z′. By writing S in polar form

S(z) = R(z)eiφ(z), (2.54)

and assuming that the phase φ is slowly varying, the flux product can be

simplified to

E∗Er = R(z)

∫ z

0
G(z − z′)R(z′) dz′. (2.55)

Equation (2.54) gives that |R| = |S| and the radiation flux is thus determined

by calculating the Green’s function G. The Green’s function in its current

form is not suitable, so a useful approximation will now be derived. To

calculate G, the integrand in equation (2.53) can be rearranged in the form

−2s

ℓ

d

ds
log
{

K0

[√
2se−iπ/4ℓ

]}

. (2.56)

The shed radiation accumulates under the nematicon over a long propa-

gation length. As a result, we are interested in the behaviour of the radiation

flux for large z. Thus the above expression (2.56) can be expanded for s→ 0

using the asymptotic expansion [75]

K0(z) ∼ − log
(z

2

)

as z → 0. (2.57)

When s→ 0 the integrand in equation (2.53) can be approximated by

−1

ℓ

2

log s+ log Λ− iπ
2

, (2.58)

where Λ = ℓ2/2. Hence, the Green’s function (2.53) becomes

G(χ) =
1

2πiℓ

∫

C

2esχ

log s+ log Λ− iπ
2

ds. (2.59)
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To evaluate the integral (2.59) the contour C must be deformed around

the branch cut due to log s on the whole of the negative real line. The

deformation results in the Green’s function integral becoming

G(χ) =
1

2ℓ

∫ ∞

−∞

e−e
µχ+µ

(

µ
2 + log Λ

2

)2
− iπ

2

(

µ
2 + log Λ

2

)

+ 3π2

16

dµ. (2.60)

The Green’s function is now in a form that allows the use of the method of

stationary phase for large z. We rewrite the integral (2.60) as

2ℓG(χ) =

∫ ∞

−∞
g(µ)ef(µ) dµ, (2.61)

where

f(µ) = −eµχ+ µ, and (2.62)

g(µ) =

[

(

µ

2
+

log Λ

2

)2

− iπ

2

(

µ

2
+

log Λ

2

)

+
3π2

16

]−1

. (2.63)

The advantage of the method of stationary phase is that upon evaluation

of the integral, only the dominant contribution is asymptotically important.

This means that only the highest stationary point of f(µ) will offer the

major contribution, which turns out to be a saddle point as we are working

in the complex plane. The result is derived from the Taylor series expansion

of f(µ) about the point µ0, where µ0 is chosen such that df/dµ0 = 0, that

is, the stationary point. It is found that µ0 = − logχ. The method of

stationary phase then gives

2ℓG(χ) ≈ g(µ0)e
f(µ0)

(

2π

|d2f(µ0)/dµ2|

)1/2

. (2.64)
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Substitution of µ0 into equation (2.64) reveals the approximate solution for

the Green’s function to be

2ℓG(χ) =

√
2π

eχ
(

(

1
2 log

χ
Λ + iπ

4

)2
+ π2

4

) . (2.65)

The Green’s function (2.65) can now be substituted into the flux term (2.55)

to give

Er =

√
2π

2ℓe

∫ z

0

R(z′)
{

(

1
2 log

(

z−z′

Λ

)

+ iπ
4

)2
+ π2

4

}

dz′

(z − z′)
. (2.66)

Mass conservation then shows that the mass flux to radiation result (2.40)

gives mass conservation for the nematicon as

d

dz

(

a2w2I2 + Λg2
)

=
d

dz

∫ ∞

ℓ
r|E|2 dr (2.67)

= − Im







√
2πR(z)

2e

∫ z

0

R(z′)
{

(

1
2 log

(

z−z′

Λ

)

+ iπ
4

)2
+ π2

4

}







dz′

(z − z′)

Finally, to complete the calculation the height of the shelf of radiation R(z)

needs to be calculated. This is done by equating the area of the shelf to

the difference in mass between the solution at z and the fixed point solitary

wave, so that

|R(z)|2Λ = (I2a
2w2 − I2â

2ŵ2 + Λg2). (2.68)

Incorporating the mass loss into the modulation equation for g, equation

(2.29) in its final form becomes the modified modulation equation

I1
dg

dz
=
I22a

2w2
− I4a

3

q
+

3I8a
7

q3
− 2δg, (2.69)
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where δ is the loss coefficient. The conservation of mass equation (2.67) is

d

dz

(

a2w2I2
)

+ 2Λg
dg

dz
= −Im {ℓREr|r=ℓ} . (2.70)

Further, at the fixed point it is assumed that the radiation loss term is the

major contributor from equation (2.69)

dg

dz
∼ −2δg

I1
, (2.71)

so that equation (2.70) yields

−4Λδg2

I1
= −4ΛδR2

I1
= −Im {ℓREr|r=ℓ} . (2.72)

The loss coefficient δ is then

δ =
Im {ℓREr|r=ℓ} I1

4ΛR2
. (2.73)

After evaluating the imaginary part of the integral for Er from (2.66), the

final form of the loss coefficient δ is

δ =− π
√
2πI1

32eR(z)Λ
(2.74)

×
∫ z

0

R(z′) log
(

z−z′

Λ

)

[

(

{

1
2 log

(

z−z′

Λ

)}2
+ 3π2

16

)2
+ π2

16

{

log
(

z−z′

Λ

)}2
]

dz′

(z − z′)

It should be noted that a minor bracketing error occurred in the term
(

{

1
2 log

(

z−z′

Λ

)}2
+ 3π2

16

)2

for δ in reference [72], which has been corrected

in this thesis. This expression for δ, along with the modulation equations

(2.27), (2.28) and (2.30) with the extended equation (2.69) form a complete

set of modulation equations approximating a single nematicon’s evolution

in the nonlocal regime of a NLC.
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Before continuing, it is worth noting that the radiation calculation pre-

sented here is identical for all the work presented in Chapters 3, 4 and 5.

Where there are differences, these will be discussed in the respective chapter.

The numerical technique used to solve the modulation equations is the

subject of the next section.

2.3.5 Solving the modulation equations

In section 2.3.3 a system of first order nonlinear ODEs, known as modulation

or variational equations, were obtained using approximate methods to an-

alytically solve the governing equations (2.20) and (2.21) for optical beams

in NLC. This system of equations (2.27), (2.28), (2.30) along with (2.69),

needs to be solved numerically. The modulation equations can be solved

using the standard fourth-order Runge–Kutta method (RK4), for instance.

The modulation equations as they are currently expressed form a non-

linear system of first order ODEs in terms of the nematicon parameters

present in the trial functions (2.24) and (2.25) for the electric field envelope

and nematic response, respectively.

In order to use the fourth order Runge–Kutta scheme (RK4) to determine

the solution of the system of ODEs, the modulation equations need to be

expressed in the form of an initial value problem (IVP) as

x
˜

′(z) = Φ
˜
(z,x

˜
), x

˜
(z0) = x0

˜
, (2.75)

where x
˜

= (x1, x2, . . . , xN )
T , N is the number of nematicon parameters.
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The current modulation equations (2.27)–(2.30) and (2.69) are of the form

Ax
˜

′ = b
˜
, (2.76)

where A is the matrix of coefficients of x
˜
′ and b

˜
= (b1, b2, . . . , bn)

T is the

right hand sides of the system of ODEs. A is initially given by the initial

nematicon parameter values. Provided that detA 6= 0, then the matrix A

can be decomposed into lower, L, and upper, U , triangular matrices via an

LU decomposition. That is, equation (2.76) can be written as

LUx
˜

′ = b
˜
. (2.77)

Pre-multiplying by L−1 both sides of equation (2.77) leads to

Ux
˜

′ = L−1b
˜
. (2.78)

If we let

y
˜
= L−1b

˜
(2.79)

then equation (2.76) becomes a coupled system of equations of the form

Ly
˜
= b

˜
(2.80)

Ux
˜

′ = y
˜
, (2.81)

where y
˜
and x′

˜
are obtained through the usual numerical forward and back-

ward substitution techniques, respectively.
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It should be noted that equation (2.75) could have been obtained by

evaluating

x′

˜
= A−1b

˜
, (2.82)

where Φ
˜
(z,x

˜
) = A−1b

˜
. However, the process of factorising the matrix A

using an LU decomposition increases the efficiency of calculating the solution

by a factor of three over the inversion of A.

In equations (2.80) and (2.81), each bi and yi for the N nematicon pa-

rameters is easily solved. This procedure has the advantage over Gaussian

elimination, as the computation of x
˜
′ for each bi would slow down the process

as the elimination process would need to be performed N times [76].

The system of ODEs written as an IVP in equation (2.75) can now be

solved for x
˜
using RK4, where the ith component is given by

xi+1

˜
= xi

˜
+

1

6

(

k1
˜
+ 2k2

˜
+ 2k3

˜
+ k4

˜

)

, (2.83)

zi+1 = zi + h. (2.84)

Here i = 1, 2, . . . , N , xi
˜
is the vector of nematicon parameters at the position

zi within the cell after i steps, and xi+1

˜
are the values of the nematicon

parameters at the next propagation distance zi+1. The estimates of the
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slopes kj
˜

(j = 1, . . . , 4) are

k1
˜

= Φ
˜

(

zi,xi
˜

)

, (2.85)

k2
˜

= Φ
˜

(

zi +
h

2
,xi
˜
+
h

2
k1
˜

)

, (2.86)

k3
˜

= Φ
˜

(

zi +
h

2
,xi
˜
+
h

2
k2
˜

)

, (2.87)

k4
˜

= Φ
˜

(

zi + h,xi
˜
+ hk3

˜

)

. (2.88)

The system (2.76) is now solved to fourth order accuracy.

Prior to solving the system of equations (2.76), diffractive radiation loss

(derived in Section 2.3.4) needs to be included, as the loss allows the ne-

maticon to approach its steady state. In the next section, a method will be

developed to numerically account for the radiation loss.

Section 2.3.6 now describes how the diffractive radiation loss is numeri-

cally calculated.

2.3.6 Numerical calculation of radiation

It was discussed in section 2.3.4 that the inclusion of diffractive radiation

loss allows the nematicon to approach its steady state as z becomes large.

This radiation loss term was derived from the linearised NLS equation (2.38)

and determined as equation (2.74). This loss coefficient can be rewritten in

the following form

δ = − π
√
2πI1

32eR(z)Λ

∫ z

0

g(z′)

(z − z′)
dz′, (2.89)
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where

g
(

z′
)

=
R (z′) ln

[

(z−z′)
Λ

]

(

(

{

1
2 ln

[

(z−z′)
Λ

]}2
+ 3π2

16

)2

+ π2

16

{

ln
[

(z−z′)
Λ

]}2
) . (2.90)

It is easily seen that equation (2.89) has a singularity at the upper limit of

the integral at z′ = z, complicating the evaluation of the integral. Miksis

and Ting [77] developed a general numerical method to deal with similar

singular integrals involved in integro-differential equations. The numerical

method requires the region of integration (0 ≤ z′ ≤ z) to be split into two

separate regions. Thus, the region of integration is separated into a region

without the singularity (0 ≤ z′ ≤M) and a region containing the singularity

(M < z′ ≤ z), where M ∈ [0, z]. That is, the integral in equation (2.89) can

be written as

∫ z

0

g(z′)

(z − z′)κ
dz′ =

∫ M

0

g(z′)

(z − z′)κ
dz′ +

∫ z

M

g(z′)

(z − z′)κ
dz′

= Ψ1 +Ψ2, (2.91)

where g is non-singular. The integral is divergent if κ ≥ 1. The value of M

is chosen carefully, so that it is sufficiently far from the singularity z′ = z,

and also, ensures Ψ1 will be smooth.

Garćıa-Reimbert [74] modified the original method of Miksis and Ting [77]

to allow the denominator of equation (2.89) to be approximated by a leading

order singularity as z′ → z. Note for our case that κ = 1 in the denominator

of equation (2.91). This means that the integral in equation (2.89) could be
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divergent. However, as z → z′ in (2.90) the logarithms, give that the inte-

gral still converges. A careful analysis of the singularity near z = z′ taking

account of the logarithms in the denominator shows that the singularity is

integrable.

Ψ1 can be numerically integrated using a standard technique, such as

the trapezoidal rule.

The integral Ψ2 containing the singularity then remains to be considered.

Ψ2 is singular at the upper limit z′ = z and for this reason the integral is

expressed as the sum of integrals, such that

Ψ2 =
m
∑

j=k

∫ zj+1

zj

g(z′)

(z − z′)
dz′, (2.92)

where zk is chosen so that zk =M and zm+1 = z.

Hence, the singularity that appears in the region of integration [0, z] is

dealt with by splitting the region into two distinct regions, Ψ1 and Ψ2. The

singular part is integrated exactly with g set as g(zj) within each term.

2.4 Full numerical scheme

The modulation analysis in the preceding sections was in relation to the

propagation of a (2 + 1)D nematicon in an infinite plane NLC cell. The

reason for this was to develop an understanding of the basic arguments used

to construct semi-analytical solutions for the propagation of light beams in

soft matter, followed by a simple example to give full details in the simplest
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case. In this section, discussion will centre on deriving a full numerical

scheme for beam propagation in a finite NLC cell . The main reasons for

shifting the focus are

- this thesis concentrates on the propagation of a nematicon in a finite

NLC cell;

- the numerical scheme for a finite NLC cell is different to that for an

infinite NLC cell used in [72], which was a pseudo-spectral method.

Hence, it is left to the reader to refer to the paper by Fornberg and

Whitham [78] that describes the basic numerical scheme used in this

work.

The approximate method used to solve the governing equations has been

developed in Section 2.3. In this section the full numerical scheme for the

coupled system of PDEs (2.14) and (2.16) that govern the propagation of a

light beam in a finite NLC cell will be described.

The non-dimensional governing equations are

iEz +∇2E + 2θE = 0, (2.93)

ν∇2θ + 2|E|2 = 0. (2.94)

The boundaries that enclose the region of interest are a closed rectangle

with dimensions 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly, as shown in figure 2.1. This

rectangle resembles a typical non-dimensional finite sized NLC cell in the

x−y cross-section. On all four of the boundaries the director is anchored, so
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θ = 0

θ = 0 θ = 0

θ = 0

x

y

Lx

Ly

(0, 0)

(Lx, Ly)

Figure 2.1: Diagram of the NLC cell in the x−y plane with the propagation

direction z going into the page. The NLC cell is bounded by 0 ≤ x ≤ Lx

and 0 ≤ y ≤ Ly. The director is anchored at zero on the four walls of the

cell, θ = 0 at x = 0, Lx and y = 0, Ly.

that the director perturbation angle θ = 0. That is, θ = 0 on x = 0, Lx and

y = 0, Ly for all z (see figure 2.1). For numerical purposes, we represent the

continuous x − y plane of the NLC cell as an uniformly spaced discretised

m×n grid, wherem = 0, 1, . . . ,M and n = 0, 1, . . . , N . The uniform spacing

between each of the grip points is given by ∆x and ∆y (see figure 2.2) in

the x and y directions, respectively. The final grid points are chosen so that
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z

∆z

∆x

∆y

x

y

Lx

Ly

(0, 0)

f jm,n

Figure 2.2: Diagram of the discretised NLC cell. The x, y and z axes have

uniformly spaced step sizes ∆x, ∆y and ∆z, respectively. The point f jm,n

represents the point f(xm, yn, zj) on the grid.

M∆x = Lx and N∆y = Ly.

Further, the light beam is propagating through a NLC cell in the z (time-

like) direction, which is also discretised by uniform grid spacing ∆z (see

figure 2.2). Numerically, j will represent the discretised propagation length

0 ≤ j ≤ J , where the final propagation length is chosen so that J∆z = zf .

Hence, a function f(x, y, z) can be represented on the discretised grid by the
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point f(xm, yn, zj), where each discrete set of points is written as

xm = x0 +m∆x, m = 0, 1, . . . ,M

yn = y0 + n∆y, n = 0, 1, . . . , N

zj = z0 + j∆z, j = 0, 1, . . . , J.

(2.95)

From now on, we will write f jm,n to represent f(xm, yn, zj).

To begin with, initial conditions are applied to the system. The di-

rector angle θ is uniformly set to equal zero over the x − y plane, that

is, θ0m,n = 0. The electric field envelope for the light beam is the trial

function (equation (2.17)) with g = 0, with the nematicon parameters cho-

sen to be typical non-dimensional values for an input light beam, that is,

E0
m,n = f(h1m,n(0), . . . , hNn,m(0)).

Let us now discretise equation (2.93) for the electric field envelope of the

light beam using second-order centred differences for the Laplacian ∇2E.

The spatial step sizes are set to be equal, that is, ∆x = ∆y. The numerical

solution for the next time step can then be calculated by

Ej+1
m,n =Ejm,n + i∆zf jm,n, (2.96)

where

f jn,m = ujm,n + vjm,n (2.97)

ujm,n =
Ejm+1,n + Ejm−1,n + Ejm,n+1 + Ejm,n−1 − 4Ejm,n

2(∆x)2
(2.98)

vjm,n = 2θjm,nE
j
m,n. (2.99)



CHAPTER 2. EQUATIONS AND METHODOLOGY 64

The accuracy of the numerical scheme in its current form can be improved

by using a predictor-corrector method based on the second-order Runge–

Kutta method. The method works by predicting the values of the electric

field envelope at the (j + 1)th z step. We will denote the predicted values

by P jm,n, which are calculated using the equation in (2.96)

P j+1
m,n = Ejm,n + i∆z

(

ujm,n + vjm,n
)

. (2.100)

Now that we have predicted the solution at the next time step, we use these

values to correct the linearisation of the derivative, given by f in equation

(2.96). Let us denote the corrector by Cjm,n. Then

Cj+1
m,n = Ejm,n +

i∆z

2

(

f jm,n + pj+1
m,n

)

, (2.101)

where pj+1
m,n uses the predicted values from P j+1

m,n to calculate the slope, yield-

ing

pj+1
m,n =

P j+1
m+1,nP

j+1
m−1,n + P j+1

m,n+1 + P j+1
m,n−1 − 4P j+1

m,n

2(∆x)2
+ 2θjm,nP

j+1
m,n . (2.102)

A more accurate solution of equation (2.93) has now been found, where the

corrected value becomes the solution at the (j + 1)th time step, that is,

Cj+1
m,n = Ej+1

m,n. The error in this scheme is O(∆x2,∆z2).

However, to be able to solve equation (2.93) at the next time-step zj+1,

the solution for the director angle at zj needs to be determined. Again, using

the standard second order centred differences for the Laplacian ∇2θ, we can
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write the discretised boundary value problem (BVP), equation (2.94), as

θjm,n =

(

θjm+1,n + θjm−1,n + θjm,n+1 + θjm,n−1

)

4
+

(∆x)2|Ejm,n|2
2ν

, (2.103)

where the boundary conditions are θ0,n = θM,n = θm,0 = θm,N = 0 for

all j ∈ [0, J ]. To solve the above BVP, an iterative technique is employed

with a convergence criteria used to determined when the solution reaches

the required level of accuracy. Equation (2.103) is solved using Jacobi it-

eration, by which the four nearest neighbouring points on the grid (shown

in figure 2.3), plus the source term, the last term on the right hand side

of (2.103) are iterated until convergence. The convergence criteria requires

that the difference between successive iterations be less than or equal to

some ǫ, where ǫ≪ 1, that is,

max
∣

∣

∣
θj(m,n)k+1

− θj(m,n)k

∣

∣

∣
≤ ǫ (2.104)

where k is the number of iterations performed.

The combination of equations (2.101) and (2.103) give the full numerical

solution for the nematicon governing equations (2.14) and (2.16) and act as

a numerically accurate comparison for the solutions that will be derived in

the next chapters using the semi-analytical methods outlined in this chapter.

Within this chapter we have addressed how a physical model of a light

beam propagating through a NLC cell can evolve into a mathematical model

consisting of a strongly coupled system of PDEs that can describe the non-
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θm,n

θm,n−1

θm,n+1

θm−1,n θm+1,n

Figure 2.3: Shows the four nearest neighbours of the source term used to

calculate the director angle θm,n numerically.

linear behaviour of such a light beam. As there is currently no known exact

solitary wave solution for these governing equations, an approximate the-

ory was developed to explore a semi-analytical method of solution. This

approximate method involved using applications of modulation theory and

conservation equations for a nematicon.

An illustration of this approximate method was achieved by using a

(2 + 1)D nematicon as an example. This example gave insight and under-

standing of the theory. The approximate theory was further developed by

the derivation of the effect of the diffractive radiation shed by the evolving

nematicon. The importance of accounting for shed diffractive radiation in

the model is that it allowed damping to settle the solution to its steady state.
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The approximate method resulted in a system of N ODEs, where N is the

number of nematicon parameters. This system of ODEs was solved using an

LU decomposition and RK4 to gain fourth order accurate results. Finally,

a full numerical solution was outlined, which gives an accurate comparison

for the semi-analytical solution. This chapter represents the groundwork

for the approximate and numerical methods used throughout the remaining

Chapters 3, 4 and 5. These methods will be built upon in each case.



Chapter 3

Propagation of optical

solitary waves in bias-free

nematic liquid crystal cells.

3.1 Background

The field of nonlinear optics is no different to the any other field, where new

advances in technology are constantly being sort to enhance the specialised

effects presented by an optical medium. In nonlinear optics, this effect is the

nonlinearity experienced by the input laser beam as it traverses through the

nonlinear medium. It turns out that nematic liquid crystal (NLC), or ne-

matic for short, is an ideal medium for the propagation of such input beams.

The ‘huge’ nonlinearity displayed by the NLC means that the nonlinear ef-

68
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fects can be observed over millimeter distances [28]. The nematic also offers

the additional advantage of nonlocality whereby the effect of the light beam

on the NLC extends far beyond the waist of the beam (see Chapter 1 for

more details of an NLC’s properties). The usual catastrophic collapse of a

two-dimensional bulk solitary wave is then arrested by the nonlocal response

of the nematic [29, 36, 50].

There have been many investigations into nonlocal nonlinear media, for

which the driving force for self-focusing is the intensity-dependent change in

the refractive index, which can balance the diffraction of the beam to form a

self-trapped solitary wave in NLC, or a nematicon [29]. The mechanism that

changes the refractive index of the NLC is the dipole moment that forms in

the nematic molecules due to the interaction with the electric field of the

beam, thus causing a rotation of the molecules and, in turn, a change in the

refractive index [23]. Nematic liquid crystals have attracted interest due to

their potential use in all-optical devices, such as logic gates [23, 29, 79].

The phenomenon, known as the Freédericksz threshold, requires a min-

imum beam power to overcome the inertia of the molecules to rotate and

allow the beam to self-focus and thus form a nematicon. To reduce the need

for using high power beams, which destroy the NLC, the molecules are pre-

tilted, thus overcoming the threshold and allowing the propagation of low

power (milliwatt) beams [29, 36]. There are two ways in which the molecular

pre-tilt is achieved. The first is to apply an external static electric field in
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the polarisation direction x, perpendicular to the propagation direction z.

This method has been well studied both experimentally [29, 62, 79, 80] and

theoretically [15, 36, 81, 82]. The second technique to overcome the thresh-

old is to “rub” the cell walls of the nematic so that the nematic molecules

are pre-tilted at the walls. The elastic response of the NLC enables the

pre-tilt at the cell walls to be propagated through the remaining bulk of the

medium.

This chapter and the remainder of this thesis will only consider the rub-

bing pre-tilt method. The underlying physical difference between the two

pre-tilt mechanisms is that, in the case of the application of the static exter-

nal electric field, the director response decays exponentially away from the

local area of the beam [30]. The typical ratio of the cell to beam width is

O(20). If the nematicon is then launched near the centre of the cell, the ef-

fect of the cell walls can be neglected. However, if the cell walls are “rubbed”

to pre-tilt the nematic molecules, the molecular re-orientation behaves log-

arithmically, making the cell walls an integral part of the system [30].

The model presented here aims to include the repulsion due to the cell

walls experienced by a nonlinear optical beam as it propagates through the

NLC. Let us consider a coherent, linearly polarised light beam input into a

planar liquid crystal cell, propagating in the z (pseudo-time) direction, with

the x−y plane orthogonal to the propagation direction. The direction of po-

larisation is the x direction. To allow the formation of nematicons [29] from
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milliwatt beam powers, the nematic molecules are pre-tilted, thus avoiding

the diffraction of the beam and overcoming the Freédricksz threshold [23, 36].

The rubbing pre-tilts the nematic molecules by an angle θ0 to the cell walls.

The elastic response of the nematic is then responsible for the transmission

of the pre-tilt angle throughout the bulk of the nematic. The pre-tilt angle

θ0 is made with the z direction in the x − z plane. The introduction of

the electric field of the light beam causes a further rotation θ of the ne-

matic director. The total director angle is thus φ = θ0 + θ. The equations

governing the propagation of a single light beam in NLC consist of a non-

linear Schrödinger-like (NLS-like) equation for the light beam’s electric field

and a director (Poisson) equation governing the perturbation of the nematic

molecules from the pre-tilt angle. In non-dimensional form the governing

equations are [30, 43, 44]

i
∂E

∂z
+

1

2
∇2E + E sin 2θ = 0, (3.1)

ν∇2θ + 2|E|2 cos 2θ = 0, (3.2)

where the Laplacian∇2 is in the x−y plane. The parameter ν is a measure of

the elastic response of the nematic, and thus is a measure of the nonlocality,

with large values corresponding to a nonlocal response. The variable E

is the complex-valued slowly varying envelope of the electric field of the

beam [36]. Typical values of ν are of O(100) in experiments [26]. Also,

experimentally a prominent effect known as walk-off occurs, whereby the
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beam trajectory follows the Poynting vector which is at an angle to the input

wavevector. This effect has been eliminated from equation (3.1) with the

use of a phase factor [40, 42] for constant walk-off. The phase factor is valid

as the nematic has constant properties and so the walk-off is constant [42].

The full derivation of the nematicon governing equations can be found in

Section 2.2.

3.2 Analysis

3.2.1 Nematicon governing equations

For milliwatt beam powers in the nonlocal limit (ν large), the small deviation

angle approximation can be used. Hence, the perturbation angle of the

nematic molecules θ from the pre-tilt angle θ0 is small, |θ| ≪ θ0. For this

small angle limit the nematicon governing equations (3.1) and (3.2) may be

approximated by

i
∂E

∂z
+

1

2
∇2E + 2Eθ = 0, (3.3)

ν∇2θ + 2|E|2 = 0. (3.4)

We will consider a rectangular cell geometry and take the cell to lie within

0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly. In experimental studies of the effect of cell

boundaries on nematicon propagation, typical dimensional values are a cell

thickness of 75 µm with a beam waist of 3 µm for a 1.064 µm beam at a
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beam power of 3 mW [40]. Hence, a typical non-dimensional cell length

is 25. The nematic molecules are fixed at the boundaries at the angle θ0.

Therefore, the appropriate boundary conditions for the perturbation angle

θ are θ = 0 on the four walls x = 0, Lx and y = 0, Ly (see figure 2.1).

As previously stated, the nematicon governing equations (3.3) and (3.4)

have no known solitary wave solution at present. Using the methods outlined

in Chapter 2 the coupled system of equations are written in terms of a

Lagrangian as

L = i (E∗Ez − EE∗
z )− |∇E|2 + 4θ|E|2 − ν|∇θ|2. (3.5)

Here, the superscript ∗ denotes the complex conjugate.

To demonstrate that the Lagrangian (3.5) represents the nematicon gov-

erning equations (3.3) and (3.4), we take variations of the Lagrangian (3.5)

with respect to both the electric field envelope E and the director angle θ.

Consider the variation in E, that is,

δE :
∂

∂z

(

∂L

∂Ez

)

+
∂

∂x

(

∂L

∂Ex

)

+
∂

∂y

(

∂L

∂Ey

)

− ∂L

∂E
= 0. (3.6)

Substituting equation (3.5) into equation (3.6) yields

2iE∗
z − E∗

xx − E∗
yy − 4θE∗ = 0. (3.7)

Then taking the complex conjugate of (3.7) results in the NLS-like governing

equation (3.3). Similarly, taking variations of the Lagrangian with respect
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to the director angle θ, we have

δθ :
∂

∂x

(

∂L

∂θx

)

+
∂

∂y

(

∂L

∂θy

)

− ∂L

∂θ
= 0. (3.8)

Again, by substituting the Lagrangian (3.5) we obtain equation (3.4)

An alternative form of the Lagrangian is to use a Green’s function

G(x, y, x′, y′) for the solution of the director equation (3.4). In this case

the Lagrangian can be written as

L = i (E∗Ez − EE∗
z )− |∇E|2

+
4

ν
|E|2

∫ Ly

0

∫ Lx

0
|E
(

x′, y′
)

|2G
(

x, y, x′, y′
)

dx′ dy′. (3.9)

This alternative Lagrangian arises as the director equation (3.4) is also solv-

able by using a Green’s function. Thus, the solution for the director takes

the form

θ =
2

ν

∫ Ly

0

∫ Lx

0
|E
(

x′, y′
)

|2G
(

x, y, x′, y′
)

dx′ dy′. (3.10)

The Green’s function G(x, y, x′, y′) satisfies the differential equation

ν∇2G(x, y, x′, y′) = −δ(x− x′)δ(y − y′). (3.11)

The remainder of this chapter will concentrate on developing modulation

equations for the two Lagrangians (3.5) and (3.9). To achieve this, two

equivalent solutions for the director equation (3.4) will be derived.
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3.2.2 Working towards the modulation equations - evolution

of the system

As was stated in Chapter 2, the NLS-like governing equation (3.3) has no

known exact solitary wave solution. In this case, approximate techniques,

many based on averaged Lagrangian methods [39], have proved successful

in obtaining solutions in excellent agreement with numerical and experi-

mental results. Furthermore, these techniques have offered insights into the

mechanisms and the underlying physics not available from numerical solu-

tions alone [26, 42, 72, 83, 84, 85, 86, 87, 88]. To enable tracking of the

evolutionary path of the nematicon, we shall use a hybrid of an exact solu-

tion and trial function and averaged Lagrangian techniques, as outlined in

Chapter 2. There are two main choices for the profile of the trial function,

each with their own advantages. They are a hyperbolic secant (sech) and

a Gaussian. It was noted that the sech profile is the exact soliton solution

for the one-dimensional NLS equation [60], while the Gaussian profile is the

limiting profile of a nematicon in the limit of infinite nonlocality ν for the

medium [89]. It has previously been shown that around its peak, a nemati-

con has a Gaussian profile, while in its tails it has the exponential decay of

the modified Bessel function K0, which is similar to the decay of the sech

[36].

In this chapter we will use the Gaussian trial function, due to its sim-
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plicity for calculating the integrals for the averaged Lagrangian

E =
(

ae−r
2/w2

+ ig
)

eiψ, (3.12)

where

r2 = (x− ξ)2 + (y − η)2 , (3.13)

ψ =σ + Vx (x− ξ) + Vy (y − η) . (3.14)

The trial function beam parameters are the amplitude a, width w, position

(ξ, η), propagation constant (Vx, Vy), phase σ, and the shelf height g. These

parameters are all functions of z. It can be seen from (3.13) that the trial

function is radially symmetric. However, experimental results show that

nematicons have a slight elliptic cross section [79]. This will be, for analytic

simplicity, neglected in the modulation theory. The first term in (3.12) rep-

resents a slowly varying nematicon-like beam. The second term represents

the shelf of low wavenumber diffractive radiation which accumulates under

the evolving nematicon [60, 72], as described in Chapter 2. The existence of

the shelf of radiation for the (1 + 1)D NLS equation has been shown using

perturbed inverse scattering theory [60]. While for a coupled system of NLS

equations, and for the defocussing NLS equation, the existence of the shelf

of radiation has been shown using perturbation theory [73, 90, 91]. However,

a simple explanation shows the existence of the shelf. The dispersion rela-

tion for the linearised electric field equation (3.3) is ω = |k|2/2, so that the

group velocity is cg = k. Low wavenumber (corresponding to long wave-
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length) waves then have low group velocity and so accumulate under the

evolving nematicon. The shelf is also π/2 out of phase with the nematicon

and this is accounted for in the trial function (3.12) by the multiplication of

g by i. This phase difference is seen when the in-phase perturbations serve

to change the amplitude and width of the nematicon [60]. The variable g is

the height of this radiation shelf.

Optical power cycles in and out of the shelf, resulting in the nematicon’s

amplitude and width oscillating as it evolves. This shelf of radiation cannot

remain flat indefinitely, so it is assumed that g is nonzero in the disk (x −

ξ)2 + (y − η)2 ≤ ℓ2.

In previous work, the director angle θ was approximated by a sech2

profile [72]. This was a good choice as the director was pre-tilted by a

static external electric field, which caused the director response due to the

light beam to decay exponentially away from it. However, when there is

no static external electric field to pre-tilt the director, the response behaves

logarithmically away from the light beam, as may be found from the director

equation (3.4) on setting E = 0. This different decay rate of the light beam

and the director response can be seen in figure 3.1. In this case it is better

to solve the director equation (3.4) exactly, as found in previous work for a

one-dimensional nematicon in a finite cell [30].

The equations will now be solved using two methods: a Fourier series

solution which corresponds to the Lagrangian given by equation (3.5) and
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Figure 3.1: Electric field intensity versus x. Shown are the numerical so-

lutions for (a) |E| and (b) θ for y = 25 at z = 500. The initial values are

a = 2.5, w = 4, ξ = 50, η = 5 with ν = 200, Lx = 100 and Ly = 50.

a solution based on the method of images using a Green’s function for the

Laplacian, which occurs in the Lagrangian (3.9).
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Fourier series

The director equation (3.4) has an exact solution using an eigenfunction

expansion, a Fourier series, upon substitution the trial function (3.12) for

the electric field envelope E. After neglecting the O(g2) contribution, the

solution is found to be

θ = −
∞
∑

n,m=1

Cnm
π2Q1

sin
nπx

Lx
sin

mπy

Ly
. (3.15)

Using the orthogonality condition for the trigonometric functions the Fourier

coefficients are

Cnm = − 8

νLxLy

∫ Ly

0

∫ Lx

0
|E|2 sin nπx

Lx
sin

mπy

Ly
dx dy

= − 4πa2w2

νLxLy
e−γ1 sin

nπξ

Lx
sin

mπη

Ly
, (3.16)

where

Q1 =
n2

L2
x

+
m2

L2
y

, γ1 =
π2Q1w

2

8
. (3.17)

The director solution (3.15) for θ and the trial function (3.12) for the electric

field envelope E are now substituted into the Lagrangian (3.5), which is then

averaged by integrating in x and y over the cell [39] to yield the averaged

Lagrangian

L = − 2

(

1

4
a2w2 + Λg2

)(

σ′ − Vxξ
′ − Vyη

′ +
1

2
V 2
x +

1

2
V 2
y

)

− aw2g′ + gw2a′

+ 2agww′ − 1

2
a2 +

2a4w4

πνLxLy

∞
∑

n,m=1

e−2γ1

Q1
sin2

nπξ

Lx
sin2

mπη

Ly
. (3.18)
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Here Λ = ℓ2/2, which is the area under the shelf, modulo 2π. Taking

variations of the averaged Lagrangian using the Euler–Lagrange equation

we find the modulation equations

∂

∂z

∂L
∂p′j

− ∂L
∂pj

= 0, (3.19)

where pj and p
′
j are the j (= 1, 2, . . . , n) nematicon parameters and their cor-

responding derivatives with respect to z. The modulation equations provide

the evolutionary information for the propagating nematicon. This system

of first-order ODEs, the modulation equations, is

d

dz

[1

4
a2w2 + Λg2

]

= 0, (3.20)

d

dz
(aw2) = 2Λg

[

σ′ − Vxξ
′ − Vyη

′ +
1

2
V 2
x +

1

2
V 2
y

]

, (3.21)

dξ

dz
= Vx,

dη

dz
= Vy, (3.22)

d

dz

(

1

4
a2w2 + Λg2

)

Vx = (3.23)

2a4w4

νL2
xLy

∞
∑

n,m=1

ne−2γ1

Q1
sin

nπξ

Lx
cos

nπξ

Lx
sin2

mπη

Ly
,

d

dz

(

1

4
a2w2 + Λg2

)

Vy = (3.24)

2a4w4

νLxL2
y

∞
∑

n,m=1

me−2γ1

Q1
sin2

nπξ

Lx
sin

mπη

Ly
cos

mπη

Ly
,

dg

dz
=

a

2w2
− πa3w4

2νLxLy

∞
∑

n,m=1

e−2γ1 sin2
nπξ

Lx
sin2

mπη

Ly
, (3.25)

dσ

dz
= − 2

w2
+

8a2w2

πνLxLy

∞
∑

n,m=1

e−2γ1

Q1
sin2

nπξ

Lx
sin2

mπη

Ly
(3.26)

+
1

2
(V 2
x + V 2

y ) +
πa2w4

νLxLy

∞
∑

n,m=1

e−2γ1 sin2
nπξ

Lx
sin2

mπη

Ly
.
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The modulation equation (3.20) is the equation for conservation of mass

(optical power) and equations (3.23) and (3.24) are those for conservation

of x and y momentum, respectively. The primary concern of the present

work is the trajectory of the nematicon, which is given by the modulation

equations (3.22), (3.23) and (3.24).

As the nematicon evolves it sheds diffractive radiation in order to settle

to a steady state [60, 72, 74]. The flux of diffractive radiation from the

nematicon has been calculated previously (see Section 2.3.4) [60, 72, 74].

From these previous works, we know to include loss to diffractive radiation

in the mass equation (3.20) and the modulation equation (3.25) for g. They

thus become

d

dz

[

1

4
a2w2 + Λg2

]

= −2δΛκ2, (3.27)

dg

dz
=

a

2w2
− πa3w4

2νLxLy

∞
∑

n=1

∞
∑

m=1

e−2γ1 sin2
nπξ

Lx
sin2

mπη

Ly
− 2δg. (3.28)

The loss coefficient δ is

δ = −
√
2π

32eκΛ̃

∫ z

0
πκ(z′) ln[(z − z′)/Λ̃]× (3.29)





(

{

1

2
ln[(z − z′)/Λ̃]

}2

+
3π2

4

)2

+ π2
{

ln[(z − z′)/Λ̃]
}2





−1

dz′

(z − z′)
,

where

κ2 =
1

Λ̃

[

1

4
a2w2 − 1

4
â2ŵ2 + Λ̃g2

]

. (3.30)

One major effect of nonlocality is to shift the point at which the nematicon

sheds diffractive radiation from the edge of the shelf
√

(x− ξ)2 + (y − η)2 =
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ℓ to a new radius ℓ̃ from the nematicon position (ξ, η), which is the edge of

the director response [72]. This radius for the radiation response was termed

the outer shelf radius [72]. In the present case of a finite cell, the director

response extends to the cell walls. Hence

Λ̃ = ℓ̃2/2, (3.31)

where

ℓ̃ = min

(

Lx
2
,
Ly
2

)

. (3.32)

In the case of a finite cell, the diffractive radiation is then shed in a boundary

layer at the cell walls.

The final steady state for the nematicon can be found from energy con-

servation. Total energy conservation for the nematicon can be found from

Nöther’s theorem based on the invariance of the Lagrangian (3.5) with re-

spect to shifts in z. Nöther’s theorem then gives that the energy conservation

equation for the Lagrangian (3.5) is

∂

∂z

[

∂E

∂z

∂L

∂Ez
+
∂E∗

∂z

∂L

∂E∗
z

+
∂θ

∂z

∂L

∂θz
− L

]

+
∂

∂x

[

∂E

∂z

∂L

∂Ex
+
∂E∗

∂z

∂L

∂E∗
x

+
∂θ

∂z

∂L

∂θx

]

+
∂

∂y

[

∂E

∂z

∂L

∂Ey
+
∂E∗

∂z

∂L

∂E∗
y

+
∂θ

∂z

∂L

∂θy

]

= 0.

(3.33)

Averaging the energy conservation equation by integrating in x and y from
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−∞ to ∞ gives the average energy conservation equation

dH

dz
=

d

dz

∫ Ly

0

∫ Lx

0

[

∂E

∂z

∂L

∂Ez
+
∂E∗

∂z

∂L

∂E∗
z

+
∂θ

∂z

∂L

∂θz
− L

]

dx dy = 0,

(3.34)

which yields

dH

dz
=

d

dz

∫ Ly

0

∫ Lx

0
[|∇E|2 − 4θ|E|2 + ν|∇θ|2] dx dy

=
d

dz





1

2
a2 − 2a4w4

πνLxLy

∞
∑

n,m=1

e−2γ1

Q1
sin2

nπξ

Lx
sin2

mπη

Ly



 = 0. (3.35)

The final steady nematicon can be determined from this energy conservation

equation (3.35) for any given initial input optical beam. The repulsive nature

of the cell walls on the nematicon [43, 44] help it settle into the centre of the

cell at the final steady state. Denoting the steady-state by a carat ,̂ we have

(ξ̂, η̂) = (Lx/2, Ly/2) and Vx = Vy = 0. Since the nematicon has settled to

the steady state it will no longer shed diffractive radiation, that is g = 0.

Solving equation (3.25) for g = 0, we find the steady state relationship

between the amplitude â and width ŵ

â2 =
νLxLy
πŵ6





∞
∑

n,m=1

e−2γ̂1





−1

, (3.36)

where

γ̂1 =
π2ŵ2Q1

8
. (3.37)

Combining the energy conservation equation (3.35) and the steady state
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relationship (3.36), the final steady state amplitude and width of the ne-

maticon can be determined for any initial input beam.

Method of images

An alternative technique to the Fourier series solution, found via an eigen-

function expansion for the director equation (3.4), is to use a Green’s func-

tion G. The simplest manner in which to determine this Green’s function is

to use the method of images (MoI) [92].

The method of images is as follows. By taking a point source inside the

(x, y) plane of the cell, say at (x′, y′), a series of source and sink image terms

is constructed around the point source, as shown in figure 3.2. This infinite

series of images is constructed so that the boundary conditions at the cell

walls are satisfied. The appropriate Green’s function for the rectangular cell

is then given by [92]

G(x, y, x′, y′) = − 1

2π
Re
{

ln f(x, y, x′, y′)
}

. (3.38)

An expression for the function f needs to be found. As the function f has

only simple poles and simple zeros and is periodic, the simplest analytical

expression for f is in terms of elliptic functions [92]

f(x, y) =
σ(h− µ, x, y)σ(h+ µ, x, y)

σ(h− µ∗, x, y)σ(h+ µ∗, x, y)
, (3.39)

where

h = x+ iy, µ = x′ + iy′,
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Figure 3.2: Method of images depicting the sources (red or dark squares)

and the sinks (green or light squares) over the constructed lattice for the

first eight images.
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σ(u, x, y) = u
∏

ω 6=0

[(

1− u

2ω

)

eu/(2ω)+u
2/(8ω2)

]

[75]. (3.40)

In equation (3.40) u is a complex valued function and

ω = nLx + imLy, n = 0,±1, ..., m = 0,±1, ....

This Green’s function (3.38) is a conformal mapping of the half-plane onto

a rectangle via the Weierstrass elliptic function σ [92] This makes the MoI a

versatile technique for different geometries for which a closed form expression

for the Green’s function exists, via conformal mapping for instance. The

Green’s function (3.38) is now substituted into the solution (3.10) for θ.

However, the resulting integral cannot be evaluated exactly. The NLC we

are considering is in the nonlocal limit, that is large ν. Hence, the director

response is much wider than the beam waist and a standard approximation

can be made [45]. The Green’s function does not show significant variation

over the light beam [53, 88], allowing the Gaussian component of the trial

function (3.12) to be replaced with a Dirac delta function. Hence,

θ =
2

ν

∫ Ly

0

∫ Lx

0
|E(x′, y′)|2G(x, y, x′, y′) dx′ dy′

where

|E|2 ∼ a2e−2r2/w2 ∼ πa2w2δ(x′ − ξ) δ(y′ − η)

θ =
πa2w2

ν

∫ Ly

0

∫ Lx

0
G(x, y;x′, y′) δ(x′ − ξ) δ(y′ − η) dx′ dy′

=
πa2w2

ν
G(x, y, ξ, η). (3.41)
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In this case, the solution (3.10) for the director perturbation θ can be ap-

proximated by (3.41), that is

θ = − a2w2

2ν
Re

{

ln
σ(h− τ, x, y)σ(h+ τ, x, y)

σ(h− τ∗, x, y)σ(h+ τ∗, x, y)

}

, (3.42)

where τ = ξ + iη. This solution is now substituted into the Lagrangian

(3.9), which is averaged over the cell in the x− y plane to give the averaged

Lagrangian

L = − 2

(

1

4
a2w2 + Λg2

)(

σ′ − Vxξ
′ − Vyη

′ +
1

2
V 2
x +

1

2
V 2
y

)

− aw2g′ + gw2a′ + 2agww′ − a2

2
− a4w4

4ν

[

∆1 +∆2 −∆3 −∆4

]

.

(3.43)

Here

∆1 = ln
w√
2
− γ

2
− ln 2 + ln

√

ξ2 + η2 − ln(ξη), (3.44)

∆2 =

∞
∑

n,m=−∞

[

1

2
ln

(nLx − ξ)2 + (mLy − η)2

n2L2
x +m2L2

y

+
(ξ2 − η2)(n2L2

x −m2L2
y) + 4nmξηLxLy

2(n2L2
x +m2L2

y)
2

]

,

(3.45)

∆3 =
∞
∑

n,m=−∞

[

1

2
ln
n2L2

x + (mLy − η)2

n2L2
x +m2L2

y

+
η2(n2L2

x −m2L2
y)

2(n2L2
x +m2L2

y)
2

]

, (3.46)

∆4 =
∞
∑

n,m=−∞

[

1

2
ln

(nLx − ξ)2 +m2L2
y

n2L2
x +m2L2

y

+
ξ2(n2L2

x −m2L2
y)

2(n2L2
x +m2L2

y)
2

]

, (3.47)

where γ is Euler’s constant, γ = 0.577215665 [75].

Taking variations of the averaged Lagrangian (3.43) with respect to the

nematicon parameters results in the system of first-order ODEs, or modu-

lation equations,

d

dz

[

1

4
a2w2 + Λg2

]

= 0, (3.48)
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d

dz
(aw2) = 2Λg

[

σ′ − Vxξ
′ − Vyη

′ +
1

2
V 2
x +

1

2
V 2
y

]

, (3.49)

dξ

dz
= Vx,

dη

dz
= Vy, (3.50)

d

dz

(

1

4
a2w2 + Λg2

)

Vx =
a4w4

8ν

{

η2

ξ (ξ2 + η2)
−

∞
∑

n,m=−∞

nLx − ξ

(nLx − ξ)2 +m2L2
y

+
∞
∑

n,m=−∞

[

nLx − ξ

(nLx − ξ)2 + (mLy − η)2
− 2ηnmLxLy

(n2L2
x +m2L2

y)
2

]

}

,

(3.51)

d

dz

(

1

4
a2w2 + Λg2

)

Vy =
a4w4

8ν

{

ξ2

η (ξ2 + η2)
−

∞
∑

n,m=−∞

mLy − η

n2L2
x + (mLy − η)2

+
∞
∑

n,m=−∞

[

mLy − η

(nLx − ξ)2 + (mLy − η)2
− 2ξnmLxLy

(n2L2
x +m2L2

y)
2

]

}

,

(3.52)

dg

dz
=

a

2w2
− a3w2

8ν
, (3.53)

dσ

dz
= − 2

w2
+

1

2
(V 2
x + V 2

y )−
a2w2

ν

[

∆1 +∆2 −∆3 −∆4 −
1

4

]

. (3.54)

The modulation equation (3.48) is the equation for conservation of mass

(optical power) and equations (3.51) and (3.52) are those for conservation

of x and y momentum, respectively. The primary concern of the present

work is the trajectory of the nematicon, which is given by the modulation

equations (3.50), (3.51) and (3.52).

From previous discussions, as the nematicon evolves it sheds diffractive

radiation in order to settle to a steady state (see Section 2.3.4) [60, 72, 74].

As in the Fourier series approach, to account for the shed radiation the
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modulation equations (3.48) and (3.53) are modified to become

d

dz

[

1

4
a2w2 + Λg2

]

= −2δΛκ2, (3.55)

dg

dz
=

a

2w2
− a3w2

8ν
− 2δg. (3.56)

The loss coefficient δ is given by (3.29), with Λ̃ given by (3.31).

Nöther’s theorem may again be used to find the averaged energy conser-

vation equation

dH

dz
=

d

dz

∫ Ly

0

∫ Lx

0

[

|∇E|2 − 2|E|2θ
]

dx dy

=
d

dz

{

1

2
a2 +

a4w4

4ν
[∆1 +∆2 −∆3 −∆4]

}

= 0. (3.57)

The final steady state nematicon can be determined from this energy con-

servation equation. The relationship between the steady state amplitude â

and width ŵ is given by the modulation equation (3.53) with g = 0, yielding

â2 =
4ν

ŵ4
. (3.58)

The final steady state values for any initial input light beam can now be

calculated using the combination of (3.57) and (3.58).

The final parameter to be determined is the shelf radius ℓ. In previous

studies the modulation equations were linearised about their steady state.

This resulted in a simple harmonic oscillator equation [60, 83]. The frequen-

cies of this oscillator and the steady state nematicon were then matched to

determine Λ [60, 83]. However, in a finite cell this method does not work

for the present modulation equations, as was the case for a one-dimensional
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nematicon in a finite cell [30]. The reason is that a localised distribution is

not formed around the perturbation of the director angle θ, as is the case

for an infinite cell where the pre-tilting of the nematic molecules is done

via a static external electric field [30, 72, 83]; see figure 3.1. To overcome

this problem, there is a matching of the frequency of the nematicon’s ampli-

tude oscillation as given by the modulation equations to the full numerical

solution for a particular input beam. The established frequency was then

shown to be robust for different input beams, as was the situation for the

one-dimensional case [30].

The shelf radius is taken to be

ℓ =
3βπ2ŵ

8
, (3.59)

where β is a constant to be determined by the above matching and validation

process. The shelf length for the NLS equation is found when β = 1 in this

expression [60]. It was found that β = 0.4 gave a robust match for the

period of the numerical solutions.

An alternative derivation of the Green’s function is as follows. The

Green’s function G(x, y, x′, y′) satisfies

∇2G(x, y, x′, y′) = −δ(x− x′)δ(y − y′) (3.60)

with homogeneous boundary conditions on the cell walls. An equivalent

solution of this equation is

G(x, y, x′, y′) =
4

π2LxLy

∞
∑

n,m=1

φn(ξ)φm(η)φn(x)φm(y)

Q1
, (3.61)
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where

φn(x) = sin
nπx

Lx
, φm(y) = sin

mπy

Ly
. (3.62)

Substitution into the solution (3.10) for θ yields the Fourier series solution

(3.15). This shows that the two methods of solution for the director angle are

equivalent. The Green’s function solution via the MoI rearranges the infinite

series in another form. Numerical computations give excellent agreement for

the equilibrium nematicon as given by the Fourier series (3.35) and the MoI

solution (3.57), as required.

3.3 Results

In this section the full numerical solution for the nematicon governing equa-

tions (3.3) and (3.4) will be compared with the modulation solution to test

the accuracy and reliability of the approximations used to derive the approx-

imate equations for the evolution of the nematicon as it propagates down

the NLC cell. The numerical method presented in Section 2.4 will be used

here with the trial function for the electric field envelope E (3.12) with g = 0

forming the initial input beam. The step sizes used to compute the full nu-

merical solution are ∆x = ∆y = 0.2 and ∆z = 0.001. The size of the cell

was chosen based on typical experimental sizes, with the non-dimensional

values of 50 and 100 used. A propagation distance of z = 500 was chosen as

this is a typical non-dimensional cell length [26].
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Figure 3.3: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line) and method of images solution

(blue dot-dashed line) for the (a) amplitude a and (b) x position for a square

cell. The initial values are a = 2.5, w = 4, ξ = 10, η = 15, Vx = 0 and

Vy = 0 with ν = 200, Lx = 50 and Ly = 50.
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Figure 3.3: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line) and method of images solution

(blue dot-dashed line) for the (c) y position and (d) x-y position for a square

cell. The initial values are a = 2.5, w = 4, ξ = 10, η = 15, Vx = 0 and

Vy = 0 with ν = 200, Lx = 50 and Ly = 50.
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Let us first consider the propagation of a nematicon in a square cell. While

in experiments the cell geometry is rectangular, we start with the simple

case of a square cell so as to gather information as to whether the aspect

ratio of the cell has an effect on the propagation of the nematicon. Figure

3.3 shows a comparison between the full numerical solution (solid red line)

and the modulation solution based on the Fourier series green (dashed line)

and MoI (blue dot-dashed line) for this square cell.

Excellent agreement is seen between the modulation solution and the full

numerical solution for both the amplitude (figure 3.3(a)) and the trajectory

(figure 3.3(d)). There is a small period difference between the amplitude

oscillations as given by the modulation and full numerical solutions, with

the Fourier series giving a better period agreement than the MoI. This shift

in period is caused by the amplitude and width oscillations forming a non-

linear oscillator. Hence, the slight difference seen between the amplitude

oscillations for the modulation and full numerical solutions translates to a

shift in the period. However, the overall envelope of the amplitude given

by the modulation solution is in excellent agreement with the full numerical

solution.

The position of the nematicon as given by both the modulation solutions

(Fourier and MoI) is identical, but there is a difference in the amplitude

evolution. This is due to the evaluation of the integrals for the different
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Figure 3.4: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line) and method of images solution

(blue dot-dashed line) for the (a) amplitude a and (b) x position for a

rectangular cell. The initial values are a = 2.5, w = 4, ξ = 10, η = 15,

Vx = 0 and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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Figure 3.4: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line) and method of images solution

(blue dot-dashed line) for the (c) y position and (d) x-y position for a rect-

angular cell. The initial values are a = 2.5, w = 4, ξ = 10, η = 15, Vx = 0

and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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modulation methods. The integrals for the Fourier series solution were eval-

uated exactly for the director solution θ, while the integrals for the MoI

involving the Green’s function (3.10) required asymptotic approximations

for evaluation. Note that this approximate evaluation had a greater effect

on the amplitude than on the position. The effects of the cell walls on a

nematicon can be seen in figure 3.3(d) where it can be seen that they impart

a repulsive force towards the centre of the cell [43, 44].

Importantly, the modulation equations based on the MoI are computa-

tionally faster than the Fourier series solution. Since the position is the

only data experimentally available and both sets of modulation equations

give identical trajectories, the MoI has an advantage over the Fourier series

solution.

Let us consider the physically more realistic case of a rectangular cross-

sectional cell, where the comparison of techniques is shown in figure 3.4.

The aspect ratio chosen replicates a case of two-dimensional nematicon

propagation studied in [30]. In this work the motion of the nematicon was

considered to be two independent movements, one in the x direction and

the other in the y direction. The agreement between the modulation and

full numerical solutions is similar to that for a square cell shown in figure

3.3. Again, the Fourier series and MoI solutions give identical positional

information and give excellent agreement with the full numerical solution.

The amplitude comparison maintains the small period difference between
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Figure 3.5: Comparison between the full numerical solution (red solid line),

Fourier series solution (green long dashed line), the Fourier series solution

with fundamental only (magenta dotted line), and the fundamental plus first

harmonic (blue short dashed line) for the (a) amplitude a and (b) x position

for a rectangular cell. The initial values are a = 2.5, w = 4, ξ = 20, η = 25,

Vx = 0 and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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Figure 3.5: Comparison between the full numerical solution (red solid line),

Fourier series solution (green long dashed line), the Fourier series solution

with fundamental only (magenta dotted line), and the fundamental plus first

harmonic (blue short dashed line) for the (c) y position and (d) x-y position

for a rectangular cell. The initial values are a = 2.5, w = 4, ξ = 20, η = 25,

Vx = 0 and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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the modulation and full numerical solution oscillations. This is linked to

the slight difference in the amplitude oscillations, as well as the modulation

solutions faster decay rate to the steady state.

The major dynamical difference between the square and rectangular cells

is the number of boundary interactions along the increased distance in the

y direction. The nematicon is required to travel further to now interact

with the boundary. It is found that the agreement in position between the

modulation and the full numerical solutions is much better than for the

two independent one-dimensional motion approximation of [30]. This is as

expected, as the present theory in this chapter is fully two-dimensional.

The director distribution for the Fourier series solution in a finite cell

is commonly approximated by its first term [93]. This approximation is

of particular importance when nonparaxial effects are studied as it greatly

reduces the numerical computation involved as then the Laplacian is in

two, not three, dimensions. It is found that the numerical solutions of the

nonparaxial nematicon equations for the nematicon trajectory are in good

agreement with experimental results [93]. The Fourier series solution derived

here will be used to show the validity of this approximation. In figure 3.5

the full numerical solution for the nematicon equations is compared with the

full Fourier series modulation equations and the Fourier series modulation

equations with that for only the fundamental and the fundamental plus first

harmonic in the series. Figure 3.5(a) indicates that the truncated Fourier
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Figure 3.6: Comparison between the full numerical solution (red solid line),

MoI solution (green long dashed line), and MoI solution taking only the first

eight images (blue dashed line) for the (a) amplitude a and (b) x position

for a rectangular cell. The initial values are a = 2.5, w = 4, ξ = 20, η = 25,

Vx = 0 and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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Figure 3.6: Comparison between the full numerical solution (red solid line),

MoI solution (green long dashed line), and MoI solution taking only the first

eight images (blue dashed line) for the (c) y position and (d) x-y position

for a rectangular cell. The initial values are a = 2.5, w = 4, ξ = 20, η = 25,

Vx = 0 and Vy = 0 with ν = 200, Lx = 50 and Ly = 100.
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series results in a poor amplitude comparison, while in figure 3.5(b) the po-

sition of the nematicon as found by the Fourier series including only the

fundamental mode maintains a good comparison. Paradoxically, when the

second harmonic mode is included the Fourier series gives a much poorer tra-

jectory comparison. However, it improves the amplitude comparison. This

is the consequence of using such low dimensional approximations compared

to the full series. The results in figure 3.5 demonstrate the adequacy of the

approximation used in [93] when numerical and experimental results for the

nematicon trajectory are compared and only the fundamental mode is used

in the approximation. The beam intensity was not compared in [93], which

is a more difficult comparison.

The MoI solution (3.42) for the director equation is expressed in terms of

an infinite series, and naturally a truncation of the series can also be applied

and compared with the full numerical solution. Figure 3.6 shows the com-

parison of the full numerical solution with the MoI modulation equations

solution, and the MoI modulation equations solution with only the funda-

mental eight images which form the nearest neighbours to the physical cell

are used (see figure 3.2). It can be seen that use of these nine terms (the

source plus eight images) gives an excellent comparison for both the ampli-

tude and the trajectory of the nematicon. The reason for this is that the

contribution of an image term to the solution decays both with the distance

the image is from the physical cell and the cell dimensions. This shows that,
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for simplicity, the full images solution need not be used and the much sim-

pler approximation of the fundamental eight images and the point source

gives a good approximation.

3.4 Discussion

In this chapter we have investigated the propagation of a bulk solitary wave,

or nematicon, in a finite nematic liquid crystal cell. The cell walls have been

pretreated by rubbing to give the nematic molecules a pre-tilt in order to

overcome the Freéderickzs threshold. To investigate the evolution of the ne-

maticon a hybrid exact solution-modulation theory technique has been used,

with the director perturbation resulting from the nematicon being found us-

ing two techniques: a Fourier series solution and a Green’s function solution

based on the MoI. It was shown that the two solution methods were mathe-

matically equivalent by showing that the Green’s function can be rewritten

as Fourier series. In practice, these techniques have a different utility. Both

methods have been found to give excellent agreement with the full numerical

solutions of the governing equations. The major difference between the two

methods occurs when the series is prematurely truncated, to give simpler

approximate solutions. Using only the fundamental or fundamental plus the

first harmonic in the Fourier series solution gives an adequate approximation

for the path of the nematicon through the NLC cell, but not the amplitude

(power) evolution. In contrast, using the source point plus the eight neigh-
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bouring images in the MoI solution gives excellent amplitude and positional

agreement for the nematicon. The truncation of the Fourier series validates

an approximation used in the study of nonparaxial effects [93]. The present

chapter shows that the MoI, while it has not been widely used to analytically

study nematicon evolution, has promise as an alternative to using Fourier

series solutions for the director distribution. The bouncing of the nematicon

by the cell walls is then clearly seen as the effect of the images. The MoI

can be used for the equations describing nonlinear beam evolution in other

bulk media [16, 24, 64, 65, 66, 67, 94, 95]. In this regard, the view of the

effect of the cell walls as due to image sources has promise [46].

The Green’s function used to solve the director angle was for the half-

plane conformally mapped onto a rectangle. It is this ease of derivation for

different cell geometries that allows the MoI the flexibility to be applied to

any study of beam evolution in other geometries for which a closed form

conformal map exists.



Chapter 4

Vortices in bounded NLC

cells

4.1 Background

The study of optical vortices has been of interest for many years, beginning

with the initial theoretical work of Nye and Berry [96], who mathemati-

cally studied the phase dislocations in a wave train. An optical vortex is

a light beam which has an azimuthal twist, resulting in a corkscrew like

structure, such that its azimuthal phase increases by 2nπ, with n an inte-

ger, over one twist. The integer n is referred to as the charge of the vortex.

This optical phenomenon has been termed a vortex for its similarity with

a vortex in fluid flow. The optical field amplitude is zero at the centre to

adjust to the phase singularity there. Optical vortices have been shown to

106
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exist in many media, including photorefractive lattices [97, 98], rubidium

vapour cells [99, 100] and Bose–Einstein condensates [101]. A nematic liq-

uid crystal (NLC), as mentioned in previous chapters, is an ideal medium

for its potential use in all-optical devices [24, 29, 79] and is no exception

when it comes to optical vortex formation and propagation. Optical vor-

tex solitary waves are unstable in local media. However, in nonlocal media

(such as NLC) the propagation of a stable optical vortex solitary wave is

supported. The reason for this is that if the nonlocality is large enough, it

can suppress the symmetry breaking mode-2 azimuthal instability [52, 53].

In contrast to local media [50, 51], optical vortex solitary waves in non-

local media have received considerably less attention, especially in a NLC

[46, 47, 48, 49, 53, 88, 102].

An optical vortex can be generated experimentally when a diffracting

light beam’s smooth wavefront is input through a computer generated holo-

graphic mask [99, 103], as shown in figure 4.1. This creates a helical phase

ramp whose thickness increases around the centre (the singularity) of the

vortex by 2nπ, where n = 1, 2, . . . is the topological charge of the vortex [46].

The helical phase ramp with a topological charge n = 1 is shown in figure 4.2,

where only one winding occurs.

A gradient of circulation is forced in the angular variable around the

vortex, with the amplitude at the centre equal to zero to compensate for

the phase singularity as discussed earlier and shown in figure 4.3. An op-
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tical vortex in NLC undergoes the same formation process as an optical

solitary wave or nematicon does, whereby a balance between the diffractive

spreading of a light beam and the self-focusing induced by the nonlinear

dependence of the refractive index of the NLC on the beam’s intensity ex-

ists [29, 36]. As was mentioned extensively in the previous Chapters 1, 2

and 3, the Freédericksz threshold is a requirement that a minimum beam

power is needed to obtain a rotation of the nematic molecules, which in

turn self-focuses the light beam [23, 24, 25, 104]. Rubbing the NLC cell

walls is one way to overcome the Freédericksz threshold by creating a static

charge which pre-tilts the nematic molecules at the cell walls by an angle

θ0. Here, the nonlocality of the NLC, the intermolecular elastic forces [25],

propagates this pre-tilt angle throughout the bulk of the medium, thus al-

lowing the use of milliwatt beam powers to form an optical vortex solitary

wave. The pre-tilt angle is set to be θ0 ∼ π/4 as it has been shown that

θ0 is a minimum when the nematic molecules make an angle of π/4 with

the z axis [33]. Thus, pre-tilting the nematic molecules by rubbing creates

a linear (1D) or logarithmic (2D) decay of the nematic response away from

the beam centre [30, 44]. This implies that all the nematic molecules are

affected by the presence of the beam in the cell [30] and particular attention

must be placed on the proper inclusion of the boundary conditions.

In this chapter, the behaviour and propagation of an optical vortex soli-

tary wave in a finite nematic cell will be investigated. This chapter is con-
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cerned with nonlinear optical vortex solitary waves, and not with linear

optical vortices. From now on the term optical vortex will mean nonlinear

optical vortex solitary wave. This chapter will focus on the effect of the cell

boundaries on both the propagation and stability of the optical vortex. The

task is achieved by a blend of an exact solution found using two alternative,

but equivalent methods, as described in Chapter 3 for a nematicon. These

methods being an eigenfunction expansion and the method of images (MoI),

plus a trial function coupled with a Lagrangian formulation of the governing

equations and modulation theory [39].

The use of modulation theory with suitable trial functions to model op-

tical beams has proved highly successful, with excellent comparisons with

full numerical solutions [42, 53, 72, 84, 88, 102, 105] and experimental re-

sults [26, 106].

A study of the propagation of an optical vortex in a finite NLC cell will

form the first half of this chapter, while an analysis of the stability of an

optical vortex will be explored in the second half.

4.2 Analysis

4.2.1 Optical vortex governing equations

An optical vortex is input at the NLC-air interface of a cell filled with

nematic liquid crystal. The z direction is taken as the non-dimensional
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Figure 4.1: A computer-generated holographic mask which the optical beam

is input through, resulting in the winding of the beam around the phase

singularity.

Figure 4.2: Depiction of the phase ramp with one circulation of the beam

around the singularity, n = 1 of a (50, 50) NLC cell.
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Figure 4.3: Shows the phase singularity at y = 100 for the beam profile (red

solid line) and the director angle (green dashed line) using a Gaussian trial

function given by equation (4.6).

propagation direction down the cell, with the x − y plane perpendicular to

this. The optical beam is polarised in the x (non-dimensional) direction.

The nematic molecules are rotated in the x − z plane due to rubbing and

are arranged in a planar configuration within the cell. The intermolecular

elastic forces between the nematic molecules are used to pass the pre-tilt

angle θ0 induced by the static charge created from rubbing the cell walls

through the bulk of the medium. The application of the pre-tilt overcomes

the Freédericksz threshold [23, 28, 36], a threshold which requires a minimum

beam power to rotate the nematic molecules. As stated previously, the

Freédericksz threshold is a minimum when the molecules are pre-tilted by



CHAPTER 4. OPTICAL VORTEX 112

(a) Profile for an optical vortex.
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(b) Phase plot for the profile of an optical vortex,

with the phase singularity occurring in the centre

of the spiral.

Figure 4.4: An example of an initial optical profile and phase plot showing

the phase singularity at the centre of the vortex.
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θ0 = π/4 [33]. This allows milliwatt beam powers to be used, as they can now

self-focus and form optical vortices with the nonlinear self-focusing balancing

the diffractive spreading [29]. The optical field therefore causes an additional

rotation θ of the director, so that the total director angle is θ0 + θ to the z

direction. For milliwatt beam powers, this extra rotation is small |θ| ≪ |θ0|.

In this small extra rotation limit, the governing equations are as described

in (2.14) and (2.16) with q = 0. The non-dimensional equations governing

the propagation of the optical vortex beam in the paraxial approximation

are then [30, 43, 44, 45]

iEz +
1

2
∇2E + 2θE = 0, (4.1)

ν∇2θ + 2|E|2 = 0. (4.2)

The Laplacian ∇2 is in the x− y plane [29, 36, 72]. E is the complex valued

envelope of the optical beam’s electric field. The nonlocality parameter ν is

related to the elastic response of the nematic and is experimentally of the

order of O(100) [26]. The light beam experiences a phenomenon known as

walk-off, whereby the beam deviates from the input wavevector. The walk-

off angle is the angle between the Poynting vector and the input beam’s

wavevector. As the nematic is uniform and the walk-off is also constant,

it can be removed from the governing equations by a phase factor [40, 42],

which has been done in deriving (4.1). The cell geometry is rectangular

in the cross section, with 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly and is shown in
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figure 2.1.

The governing equations (4.1) and (4.2) have the following equivalent

Lagrangians

L = i (E∗Ez − EE∗
z )− |∇E|2 + 4θ|E|2 − ν|∇θ|2, (4.3)

L = i (E∗Ez − EE∗
z )− |∇E|2 + 2θ|E|2. (4.4)

The ∗ denotes the complex conjugate. The two distinct Lagrangians arise

due to the two alternative methods used to solve the director equation (4.2).

Equation (4.3) uses an eigenfunction expansion to write the director angle

θ as an infinite series solution, while for the Lagrangian (4.4) the director

equation is solved using a Green’s function G(x, y, x′, y′), so that

θ =
2

ν

∫ Ly

0

∫ Lx

0
|E(x′, y′, z)|2G(x, y, x′, y′) dx′ dy′. (4.5)

This chapter will now focus on the application of the semi-analytical method

(as described in Chapter 2) to the problem of an optical vortex propagating

in a finite NLC cell.

4.2.2 Optical vortex: The evolutionary process

A point that has been discussed previously in this thesis is the fact that

the governing equations (4.1) and (4.2) have no known exact solitary wave

solution and in this specific case they have no known vortex solution [72].

As a result techniques based around averaged Lagrangian methods [39] have
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proven successful in the past in gaining insights into the underlying physics

and mechanics of the nonlinear beams that full numerical solutions cannot

supply. The analysis presented in this chapter is based on an exact solution

and a trial function averaged Lagrangian method [30, 45, 88]. The trial

function for the optical beam’s electric field uses a Gaussian profile and is

given by

E =
(

are−r
2/w2

+ ig
)

eiψ+inφ, (4.6)

where

ψ = σ + Vx(x− ξ) + Vy(y − η), (4.7)

and r and φ are polar coordinates based on the centre of the vortex,

r2 = (x− ξ)2 + (y − η)2, φ = tan−1

(

y − η

x− ξ

)

. (4.8)

The vortex parameters a, width w, the phase σ, the position (ξ, η), the

velocity (Vx, Vy) and the shelf height g all depend on the evolution variable

z. The azimuthal angle is given by φ and the topological charge n is the

number of windings around the phase singularity that are undertaken by

the beam. A profile of this trial function for an optical vortex is shown in

figure 4.3 by the solid red line and a 3D representation is shown in figure

4.4.

The first term in the trial function (4.6) represents the electric field of
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the optical vortex. Hence, the amplitude of the optical vortex is

A =
aw√
2
e−r

2/w2

(4.9)

and this peak amplitude occurs at the radius r = w/
√
2. It should be noted

that the peak amplitude of the vortex is derived from the trial function (4.6)

by finding the maximum value of E,

∂E

∂r
= a

(

1− 2r

w2

)

e−r
2/w2

eiψ+inφ = 0. (4.10)

In this chapter we will only concern ourselves with vortices of charge 1,

so that n = 1. This is shown in figure 4.2 where only one winding of phase

around the singularity occurs.

The second term in the trial function (4.6) is related to the shelf of low

wavenumber diffractive radiation that accumulates under the evolving vor-

tex [60]. This radiation shelf can be clearly seen in figure 4.5. The existence

of the shelf of radiation is shown by conducting a perturbation analysis by

linearising the electric field equation (4.1) about the steady state [60, 73].

This shed radiation allows the vortex to evolve to its final steady state.

Finally, the shelf of low wavenumber radiation under the evolving vortex

is π/2 out of phase with it [60]. The height of the shelf of radiation is

denoted by g in equation (4.6). The shelf form under the vortex within the

region rmin ≤ r ≤ rmax, where rmax,min = w ± R/2 [53] and R is to be

determined.

For a nematicon, the director perturbation can be approximated by a
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Figure 4.5: Evolution for |E| of the vortex equations (4.1) and (4.2) at

z = 30 for the initial condition (4.6) with g = 0 showing the shelf under the

vortex.
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sech2 profile derived from the electric field, as was the case in Section 2.3.3,

equation (2.25) [72, 74, 84]. This profile is found to simulate the behaviour

observed numerically and experimentally of the liquid crystal under the

influence of the light beam very well. However, in the case of a vortex, using

a similar approximation for the director perturbation does not work, as the

nonlocality smooths out its response near the central dip in the vortex, so

that it does not have the same profile as the electric field. This is shown

in figure 4.3 by the green dashed line, which shows the numerical solution

for the director. To overcome the difficulty caused by the smoothing, the

director equation (4.2) is solved exactly for θ using two alternative methods.

The first method uses an eigenfunction expansion or Fourier series, while the

second method uses a Green’s function and the MoI. The director solution θ

now contains an accurate representation of the logarithmic far field response

of the nematic under the influence of the anchoring boundary conditions [44].

This approach of using an exact solution for the director response has been

used for both a 1D cell [30] and a 2D cell [45] (Chapter 3), where excellent

comparisons with the full numerical solutions were obtained in both cases.

The director equation (4.2) will now be solved using two methods: a

Fourier series solution that corresponds to the Lagrangian given by equation

(4.3) and a solution based on the MoI to determine the Green’s function for

the Laplacian in the Lagrangian (4.4).
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Fourier series

An exact solution for the director equation (4.2) can be found using an eigen-

function expansion, a Fourier series, upon substituting the trial function for

the electric field envelope E, equation (4.6) into the director equation. After

neglecting the O(g2) contribution, the solution is

θ = −
∞
∑

n,m=1

Cnm
π2Q1

sin

(

nπx

Lx

)

sin

(

mπy

Ly

)

, (4.11)

where

Cnm = − 8

νLxLy

∫ Ly

0

∫ Lx

0
|E|2 sin

(

nπx

Lx

)

sin

(

mπy

Ly

)

dx dy

= − πa2w4

νLxLy
e−γ1/2 (P1 − γ1) sin

(

nπξ

Lx

)

sin

(

mπη

Ly

)

. (4.12)

Here,

P1 = 2− γ1, Q1 =
n2

L2
x

+
m2

L2
y

, γ1 =
1

4
π2w2Q1. (4.13)

The director solution (4.11) is now substituted into the corresponding La-

grangian (4.3), along with the trial function for the electric field E (4.6) and

averaged over the NLC cell in the x− y plane [39], resulting in the averaged

Lagrangian

L =− 4

(

a2w4

8
+ g2Λ1

)(

σ′ − Vxξ
′ − Vyη

′ +
Vx
2

+
Vy
2

)

−
√
πag′w3 +

√
πa′gw3 + 3

√
πagw2w′ − a2w2

− 2g2Λ2 +
∞
∑

n,m=1

νLxLyC
2
nm

4π3Q1
, (4.14)

where Λ1 = wR and Λ2 = ln (rmax/rmin).
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Taking variations of the averaged Lagrangian (4.14) with respect to the

vortex parameters gives the modulation equations describing the evolution

of the vortex. These modulation equations are stated below and include the

previously derived diffractive radiation shed as the vortex evolves towards

the final steady state [60, 72, 74] (see Section 3.2.2)

d

dz

[

a2w4

8
+ g2Λ1

]

= −2δΛ̃κ2, (4.15)

√
π
d

dz

(

aw3
)

− 4gΛ1σ
′ = −2gΛ1

(

V 2
x + V 2

y

)

+ 2gΛ2, (4.16)

ξ′ = Vx, η′ = Vy, (4.17)

d

dz

[(

a2w4

8
+ g2Λ1

)

Vx

]

=

a4w8

8νL2
xLy

∞
∑

n,m=1

nP 2
1 e

−γ1

Q1
sin

(

nπξ

Lx

)

cos

(

nπξ

Lx

)

sin2
(

mπη

Ly

)

, (4.18)

d

dz

[(

a2w4

8
+ g2Λ1

)

Vy

]

=

a4w8

8νLxL2
y

∞
∑

n,m=1

mP 2
1 e

−γ1

Q1
sin2

(

nπξ

Lx

)

sin

(

mπη

Ly

)

cos

(

mπη

Ly

)

, (4.19)

dg

dz
=−

√
πa3w7

8νLxLy

∞
∑

n,m=1

[(

1 +
P1

2

)

P1e
−γ1 sin2

(

nπξ

Lx

)

sin2
(

mπη

Ly

)]

+
a√
πw

− 2π3/2δg, (4.20)

dσ

dz
=
πa2w6

4νLxLy

∞
∑

n,m=1

[(

1 +
P1

2

)

P1e
−γ1 sin2

(

nπξ

Lx

)

sin2
(

mπη

Ly

)]

+
a2w4

πνLxLy

∞
∑

n,m=1

P 2
1 e

−γ1

Q1
sin2

(

nπξ

Lx

)

sin2
(

mπη

Ly

)

+
1

2

(

V 2
x + V 2

y

)

− 4

w2
. (4.21)
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The loss coefficient δ is given by equation (3.29) and

κ2 =
1

Λ̃

[

1

8
a2w4 − 1

8
â2ŵ4 + Λ̃g2

]

. (4.22)

One major effect of nonlocality is to shift the point at which the vortex

sheds diffractive radiation from the edge of the shelf
√

(x− ξ)2 + (y − η)2 =

ℓ2 to a new radius ℓ̃ from the vortex’s position (ξ, η), which is the edge of

the director response [72]. The radius for the radiation response is termed

the outer shelf radius [72]. In the present case of a finite cell, the direc-

tor response extends to a boundary layer at the cell walls [45], as for the

nematicon of Chapter 3. Hence,

ℓ̃ = min

(

Lx
2
,
Ly
2

)

(4.23)

and therefore the outer area of the shelf is Λ̃ = ℓ̃2/2. For a finite cell, the

diffractive radiation is then shed in a boundary layer at the cell walls.

The final quantity required is the radius R of the shelf of low wavenumber

radiation that accumulates under the vortex. For a vortex in an unbounded

region, it was found that the radius was equal to the vortex width, R =

w [53]. However, in a bounded region, the shelf of radiation is affected by

the cell walls, and this unbounded cell radius will not work. As the actual

effect of the cell walls on the vortex and shelf is complicated and difficult

to analyse, it was found easiest to set R = βw, with β to be determined.

Then,

Λ1 = βw2, Λ2 = ln

(

1 + β/2

1− β/2

)

. (4.24)
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A comparison of the modulation solution with the full numerical solution

found that a value of β = 0.2 is robust for numerous input vortices.

The final steady state of the vortex for a given input beam can be found

from total energy conservation for the system. This energy conservation

equation is most easily found using Nöther’s theorem based on the invariance

of the Lagrangian (4.3) with respect to shifts in z (refer to Section 3.34 for

an outline of the process). The averaged energy conservation equation can

then be found by integrating this energy conservation equation in x and y

over the cell, resulting in

dH

dz
=
d

dz

∫ Ly

0

∫ Lx

0

[

|∇E|2 − 2θ|E|2
]

dx dy

=
d

dz







a2w2 +
∞
∑

n,m=1

νLxLyC
2
nm

4π3Q1







= 0. (4.25)

It was found that the cell boundaries act with a repulsive force towards the

vortex [30, 45, 53]. As a result, the vortex traverses a spiral path towards

the centre of the cell, where the repulsive forces exerted by the boundaries

are in balance. Hence, at the steady state the vortex will be in the centre

of the cell. The steady state is denoted using a carat .̂ We then have

ξ̂ = Lx/2, η̂ = Ly/2 with Vx = 0 and Vy = 0. Further, the vortex will have

ceased shedding radiation at the steady state and hence the shelf height ĝ

will be zero. Thus, the modulation equation (4.20) can be used to find a
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relationship between the steady state amplitude â and width ŵ, which yields

â2 =
8νLxLy
ŵ8





∞
∑

n,m=1

(

1 +
P1

2

)

P1e
−γ1





−1

. (4.26)

Hence, equations (4.25) and (4.26) can be used to determine the final steady

state values of the amplitude â and width ŵ for a given initial condition.

Method of images

The second method used to solve the director equation (4.2) is the MoI [92].

A point source is taken at (x′, y′) within the x − y plane of the NLC cell.

An infinite series of images is taken of this point, as shown in figure 3.2.

The images are reflections of the point source, and are taken so that the

Green’s function satisfies the boundary condition θ = 0 at the cell walls

x = 0, Lx and y = 0, Ly. The Green’s function that satisfies these boundary

conditions is [92]

G = − 1

2π
Re

{

ln

[

σ(t− τ, x, y)σ(t+ τ, x, y)

σ(t− τ∗, x, y)σ(t+ τ∗, x, y)

]}

, (4.27)

where

σ(υ, x, y) = υ
∏

ω 6=0

[(

1− υ

2ω

)

eυ/(2ω)+υ
2/(8ω)2

]

(4.28)

is the Weierstrass σ function. Here, t and τ are the complex coordinates

t = x+ iy and τ = x′ + iy′, respectively. Finally, υ is complex valued and

ω = nLx +mLy, n = 0,±1, . . . , m = 0,±1, . . . . (4.29)
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The Green’s function (4.27) is obtained by mapping the Green’s function for

the half plane onto the rectangle [0, Lx] × [0, Ly] using the elliptic function

σ [92]. The director angle θ solution (4.5) is then found by substituting in

the Green’s function, equation (4.27).

The usual experimental regime for nonlinear optics in liquid crystals

is the nonlocal one where ν is large, that is, ν = O(100) [26]. In this

limit, the director distribution is slowly varying on a length scale O(
√
ν),

so that relative to the director, the vortex can be treated as a Dirac delta

function. Using this approximation for the vortex, |E|2, in the Green’s

function solution (4.5) for the director θgives the perturbation of the director

angle as

θ = −a
2w4

2ν
Re

{

ln
σ(t− ζ)σ(t+ ζ)

σ(t− ζ∗)σ(t+ ζ∗)

}

, (4.30)

where ζ = ξ + iη, as was found for the nematicon of Chapter 3. This

solution for θ and the trial function, equation (4.6), are now substituted

into the Lagrangian (4.4), which is then integrated over x and y to find the

averaged Lagrangian [39]

L = −
√
πag′w3 +

√
πa′gw3 + 3

√
πagw2w′ − a2w2 − 2g2Λ2

− 4

(

a2w4

8
+ g2Λ1

)

(

σ′ − Vxξ
′ − Vyη

′ +
V 2
x

2
+
V 2
y

2

)

− a4w8

8ν
[∆1 +∆2 −∆3 −∆4] . (4.31)
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Here,

∆1 = ln
w√
2
+

1− γ

2
− ln 2 + ln

√

ξ2 + η2 − ln (ξη) , (4.32)

∆2 =
∞
∑

n,m=−∞

[

1

2
ln

(nLx − ξ)2 + (mLy − η)2

n2L2
x +m2L2

y

(4.33)

+

(

ξ2 − η2
) (

n2L2
x −m2L2

y

)

+ 4nmξηLxLy

2
(

n2L2
x +m2L2

y

)2

]

, (4.34)

∆3 =
∞
∑

n,m=−∞

[

1

2
ln
n2L2

x + (mLy − η)2

n2L2
x +m2L2

y

−
η2
(

n2L2
x −m2L2

y

)

2
(

n2L2
x +m2L2

y

)2

]

, (4.35)

∆4 =
∞
∑

n,m=−∞

[

1

2
ln

(nLx − ξ)2 +m2L2
y

n2L2
x +m2L2

y

+
ξ2
(

n2L2
x −m2L2

y

)

2
(

n2L2
x +m2L2

y

)2

]

, (4.36)

and γ is Euler’s constant, γ = 0.577215665 . . . [75]. Also, Λ1 and Λ2 maintain

the values stated in section 4.2.2, equation (4.24), and the same value of

β = 0.2 remains a robust fit for a wide variety of input vortices.

Using the Euler–Lagrange equation (2.18) and taking variations of the

averaged Lagrangian equation (4.31) with respect to the vortex parameters

yields the modulation equations describing the vortex evolution. To these

are added loss terms to account for the effect of the shed diffractive radiation

(see Section 3.2.2 for an explanation) these equations are

d

dz

[

a2w4

8
+ g2Λ1

]

= −2δΛ̃κ2, (4.37)

√
π
d

dz

(

aw3
)

− 4gΛ1
dσ

dz
= −2gΛ1

(

V 2
x + V 2

y

)

+ 2gΛ2, (4.38)
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ξ′ = Vx, η′ = Vy, (4.39)

d

dz

[(

a2w4

8
+ g2Λ1

)

Vx

]

=
a4w8η2

32νξ (ξ2 + η2)
(4.40)

+
a4w8

32ν

∞
∑

n,m=−∞

[

(nLx − ξ)

(nLxξ)
2 + (mLy − η)2

− − 2nmηLxLy
(

n2L2
x +m2L2

y

)2 − (nLx − ξ)

(nLx − ξ)2 +m2L2
y

]

,

d

dz

[(

a2w4

8
+ g2Λ1

)

Vy

]

=
a4w8ξ2

32νη (ξ2 + η2)
(4.41)

+
a4w8

32ν

∞
∑

n,m=−∞

[

(mLy − η)

(nLx − ξ)2 (mLy − η)2

+ − 2nmξLxLy
(

n2L2
x +m2L2

y

)2 − (mLy − η)

n2L2
x + (mLy − η)2

]

,

dg

dz
=

a√
πw

− a3w5

16
√
πν

− 2δg, (4.42)

dσ

dz
=

1

2

(

V 2
x + V 2

y

)

− 4

w2
− a2w4

2ν

[

∆1 +∆2 −∆3 −∆4 −
1

4

]

. (4.43)

Again, the loss coefficient δ is given by equation (3.29) and κ by equa-

tion (4.22). The modulation equation (4.37) is the equation for conservation

of mass (optical power) and equations (4.40) and (4.41) are those for con-

servation of x and y momentum, respectively. The primary concern of the

present work is the trajectory of the vortex, which is given by the modulation

equations (4.39), (4.40) and (4.41).

As with the Fourier series analysis, the final steady state values can

be found using total energy conservation for the system. An application
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of Nöther’s theorem (equation (3.34)) based on the invariance of the La-

grangian for the MoI (4.4) with respect to shifts in z results an equation for

total energy conservation. Averaging this energy conservation equation by

integrating in x and y over the cell, gives the averaged energy conservation

equation

dH

dz
=
d

dz

∫ Ly

0

∫ Lx

0

[

|∇E|2 − 2θ|E|2
]

dx dy

=
d

dz

{

a2w2 +
a4w8

8ν
[∆1 +∆2 −∆3 −∆4]

}

= 0. (4.44)

The steady state relationship between the amplitude â and width ŵ can be

found from equation (4.42) to be

â2 =
16ν

ŵ6
(4.45)

on setting g = 0. Using the same argument as for the Fourier series, equa-

tions (4.44) and (4.45) are used to determine the final steady state values of

the amplitude â and width ŵ for a given input vortex.

4.2.3 Stability analysis

Vortices are unstable in local media [50, 97, 98, 107]. However, in nonlocal

media, vortices are stable for high enough nonlocality [52, 53]. These results

are for a vortex propagating in infinite region. This section is dedicated to

the study of how the interaction of a vortex with a boundary can change the

stability of a vortex even in a nonlocal medium for which the nonlocality is

high enough to guarantee stability away from the boundary. The linearised
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x = 0

(x′, y′)(−x′, y′)

Figure 4.6: A picture of the half-plane, showing the point source at (x′, y′)

and the reflection at the boundary (−x′, y′).

stability analysis conducted here will make use of the MoI. To simplify the

stability analysis, let us assume that the vortex is close enough to one of

the cell walls such that the effect of the other three boundaries on the vor-

tex are negligible. Let us take this wall to be the plane where x = 0. To

calculate the Green’s function for this simplified geometry, a point source

(x′, y′) is taken within the half plane, x > 0. Hence, the boundary condition,

θ = 0 at x = 0 is satisfied by taking a point sink at the image point of the

source (−x′, y′). Figure 4.6 shows the point source and its reflection about

this plane. Using this newly constructed Green’s function, an appropriate

averaged Lagrangian can be calculated from the governing equations (4.1)

and (4.2). However, the calculation of this averaged Lagrangian differs from

those previously calculated throughout this thesis. The stability of the vor-

tex is dependent on the azimuthal angle φ around the circumference of the

vortex, as a vortex becomes unstable via a symmetry-breaking azimuthal
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instability which splits the vortex in two [52, 53]. Hence, the stability anal-

ysis needs to account for this, and as a result the vortex parameters need to

vary independently with respect to z and φ. Therefore, the Green’s function

for the half plane with zero boundary condition on the wall x = 0 is [92]

G = − 1

2π

[

ln
√

(x− x′)2 + (y − y′)2 − ln
√

(x+ x′)2 + (y − y′)2
]

. (4.46)

The trial function for the electric field E remains the same as in (4.6).

However, for the stability analysis all the parameters are dependent on z

and φ (for example, a = a(z, φ)). The director angle for the half plane

can be calculated by substituting the Green’s function (4.46) and the trial

function for the electric field E (4.6) into the Green’s function solution for θ

equation (4.5). Now, using the previously discussed asymptotic Dirac delta

function approximation for the electric field relative to the director (valid in

the nonlocal limit) to evaluate the resulting integral in equation (4.5) yields

θ = −a
2w4

4ν

[

ln
w√
2
+

1− γ

2
− ln

√

(x+ ξ)2 + (y − η)2
]

. (4.47)

Due to the new dependence on the polar angle φ, the Lagrangian for the

governing equations (4.1) and (4.2) is now

L = i(E∗Ez − EE∗
z )− |Er|2 −

|Eφ|2
r2

+ 2θ|E|2. (4.48)

After substituting the trial function E (4.6) and the exact solution θ for

the half plane (4.47) into the Lagrangian (4.48) the averaged Lagrangian is
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found by integrating in x and y over the half plane x > 0, which results in

L =−
√
πagzw

3 +
√
πazgw

3 + 3
√
πagw2wz + 2

√
πaφgw

+ 2
√
πagwφ − 2

√
πagφw − a2w2 −

a2φw
2

2
− a2w2

φ − 2g2Λ2

− awaφwφ − 2g2φΛ2 −
a4w8

8ν

(

ln
w√
2
+

1− γ

2
− ln 2ξ

)

− 4

(

a2w4

8
+ g2Λ1

)(

σz − Vxξz − Vyηz +
Vx
2

+
Vy
2

)

. (4.49)

Noted that the phase σ is taken to be a function of z alone due to w and g

being conjugate variables governing the stability of the vortex. Hence, σ as

a function of z only does not affect the linearised stability analysis [53].

The expressions (4.24) for the shelf remain valid. An extension of the

Euler–Lagrangian equation to two variables (z, φ) is required so as to cal-

culate the modulation equations. The extended Euler–Lagrange equation is

given by

∂L

∂hi
− d

dz

∂L

∂hi,z
− d

dφ

∂L

∂hi,φ
= 0, (4.50)

where the vortex parameters hi(z, φ), i = 1 . . . n, are now dependent upon

z and φ. Also, hi,z and hi,φ represent the derivatives with respect to z and

φ, respectively. The resulting modulation equations are then

d

dz

[

a2w4

8
+ g2Λ1

]

= 0, (4.51)

√
π
(

aw3
)

z
+ 2

√
π (aw)φ =4gΛ1

(

σz − Vxξz − Vyηz +
V 2
x

2
+
V 2
y

2

)

− 2Λ2 (gφφ + g) , (4.52)
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dξ

dz
= Vx,

dη

dz
= Vy, (4.53)

d

dz

[(

a2w4

8
+ g2Λ1

)

Vx

]

=
a4w8

32νξ
, (4.54)

d

dz

[(

a2w4

8
+ g2Λ1

)

Vy

]

= 0, (4.55)

√
π
dg

dz
=
a

w
+
aw2

φ

w3
+

2
√
πgφ
w2

− aφφ
2w

− a3w5

16ν
, (4.56)

dσ

dz
=

1

2

(

V 2
x + V 2

y

)

− 4

w2
−

3w2
φ

w4
+

2aφwφ
aw3

− 8
√
πgφ

a2w3
+

2aφφ
aw2

+
wφφ
w3

− a2w4

2ν

(

ln
w√
2
+

1− 2γ

4
− ln 2ξ

)

. (4.57)

A linearised stability analysis about the steady state is now conducted

to find the minimum distance of approach of the vortex to the boundary

before it becomes unstable. We perturb about the steady state with

a = â+ a1, w = ŵ + w1 and g = ĝ + g1 = g1, (4.58)

since ĝ = 0 at the steady state. The modulation equations (4.51), (4.52),

(4.56) and (4.57) are linearised using the perturbations given in equation

(4.58), yielding the following linearised equations

d

dz

[

(â+ a1)
2(ŵ + w1)

4

8

]

= 0, (4.59)

6
√
πâŵ2dw1

dz
+2

√
πŵ

da1
dz

+ 4
√
πâ
da1
dφ

+ 4
√
πŵ

∂a1
∂φ

− 8g1Λ1
∂σ

∂z
+ 4Λ2

∂2g1
∂φ2

=− 4g1Λ1

(

V 2
x + V 2

y

)

+ 4g1Λ2, (4.60)



CHAPTER 4. OPTICAL VORTEX 132

√
π
∂g1
∂z

− 2
√
π

ŵ2

∂g1
∂φ

+
1

2ŵ

∂2a1
∂φ2

=
â

ŵ
− â3ŵ5

16ν
− âw1

ŵ2
+
a1
ŵ

− 5â3ŵ4w1

16ν

− 3â2ŵ5a1
16ν

. (4.61)

∂σ̂

∂z
=

1

2

(

V 2
x + V 2

y

)

− 2

ŵ2
− â2ŵ4

2ν

(

ln
ŵ√
2
+

1− γ

2
− ln 2ξ

)

(4.62)

Perturbation terms of quadratic order and higher have been neglected, that

is, O(a21), O(w2
1) and O(g21) terms.

Modal solutions of the linearised equations (4.60) and (4.61) are sought

of the form

w1 =Wei(λz+ρφ), g1 = Gei(λz+ρφ), (4.63)

where ρ is the azimuthal wavenumber of the vortex [53], and ρ = 1, 2, . . ..

The linearised mass equation (4.59) gives a relationship between the pertur-

bation amplitude a1 and width w1

a1 = −2â

ŵ
w1. (4.64)

After some algebra, the linearised modulation equations (4.60) and (4.61)

can be written in the form of a determinant to find the stability eigenvalues

λ
∣

∣

∣

∣

∣

∣

∣

∣

i
√
π
(

λ− 2ρ
ŵ2

)

âM1

4M2 i2
√
πâ
(

ŵ2λ− 2ρ
)

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (4.65)

Here

M1 =
3

ŵ2
+
ρ2

ŵ2
− â2ŵ4

16ν
, (4.66)
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M2 =
4Λ1

ŵ2
+
â2ŵ4Λ1K1

ν
−
(

1 + ρ2
)

Λ2, (4.67)

K1 = ln
ŵ√
2
+

1− γ

2
− ln 2ξ. (4.68)

This yields the eigenvalues λ given by

λ =
4πρ±

√
−8πŵ2M1M2

2πŵ2
. (4.69)

The vortex is unstable whenM1M2 > 0, with the borderline cases occurring

when M1 = 0 and M2 = 0. We are interested in the minimum distance of

approach to the boundary which causes instability in the vortex. As M1

does not involve the distance parameter ξ, we proceed to study M2 only.

We can thus determine the minimum distance of approach of the vortex to

the wall at which instability sets in from equation (4.67) as determined by

M2 =
4Λ1

ŵ2
+
â2ŵ4Λ1K1

ν
−
(

1 + ρ2
)

Λ2 = 0. (4.70)

This leads to the formula

ξmin =
1

2
e−ς , (4.71)

where

ς =
ν

â2ŵ4Λ1

[

−4Λ1

ŵ2
+ (1 + ρ2)Λ2

]

− ln
ŵ√
2
− 1− γ

2
. (4.72)

The vortex is stable for distances ξ for which M1M2 < 0. In previous

studies of vortices propagating in an infinite NLC, it was found that the

most unstable mode was given by ρ = 2 [52, 53]. For the present finite
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nematic cell, the same is true for ρ = 2, as the stability eigenvalue given

by equation (4.69) shows a maximum when ρ = 2 for M1M2 > 0. This is

in agreement with the full numerical solutions which show the vortex splits

into two beams when it becomes unstable on approach to a wall. This will

be discussed further in the next section. Additionally, the value of ρ is

insensitive to the value of β in the calculation. Hence, ρ = 2 will be used in

the minimum distance expression (4.71) for comparison with full numerical

solutions in the next section.

In the above stability calculation, resulting in the distance expression (4.71),

it should be noted that the distance ξ given in the trial function (4.6) is con-

sidered fixed. This has allowed a simple expression (4.71) for the minimum

distance of approach to be found. If the distance were allowed to vary the

stability analysis would become much more involved, with no equivalent

simple expression to (4.71) being found.

The vortex becomes highly distorted upon approach to the boundary, as

will be shown in the full numerical solutions. This is expected, and hence,

the fixed trial function for the vortex profile ceases to be valid close to the

wall. Hence, including a distance perturbation in the analysis still would

not capture the complete dynamical process. The expression (4.71) will be

found to be in reasonable accord with the full numerical solutions, even given

the approximations described in this section. Therefore, this represents a

balance between simplicity and capturing the full details, a point mentioned
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by Malomed [59] and in Chapter 2.

4.3 Results

In this section, we will compare full numerical solutions of the governing

equations (4.1) and (4.2) with those of the modulation equations found

using both the Fourier series and the MoI methods for the director equation

(4.2). The modulation equations for each solution, given in section 4.2.2,

were solved using the standard RK4 method, as described in Section 2.3.5.

The full numerical solution for the governing equations (4.1) and (4.2) was

obtained using the numerical scheme outlined in Section 2.4, where the trial

function (4.6) with g = 0 forms the initial condition for the optical beam’s

electric field E.

To satisfy the stability criteria and maintain accuracy, the numerical

step sizes used were ∆x = ∆y = 0.2 and ∆z = 0.001. The propagation

length was taken to be z = 500, which is a typical non-dimensional cell

length [26]. The numerical investigation was first conducted on a square cell

with a non-dimensional width and breadth of (Lx, Ly) = (100, 100).

4.3.1 Stable vortex propagation - results

Consider the propagation of a stable vortex which is sufficiently far from the

cell walls so that it does not become unstable. The vortex’s behaviour within

a finite NLC cell will be compared and contrasted to that of a nematicon
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given in Chapter 3 [45].

An optical vortex displays the same “bouncing” experienced by a nemati-

con as the boundary acts as a repulsive force on both optical beams [43, 45].

The vortex is also stable when it is sufficiently far from the cell walls, as was

found in previous studies for a circular cell [46, 88]. The input parameters

for the optical vortex were chosen so that the minimum power requirements

for existence were met, while remaining below the threshold at which the

vortex will split into two beams.

Figure 4.7 shows a typical comparison between the full numerical solu-

tion and both Fourier and MoI modulation solutions. In previous studies,

the first harmonic of the Fourier series solution has been used to compare

the path taken by a nematicon to the experimental trajectory, with the first

term giving an adequate approximation [93]. In Chapter 3, this idea was

taken further, by looking at the MoI solution and using only the fundamen-

tal images neighbouring the point source to construct the trajectory for a

nematicon, with very good results obtained [45]. The same idea will be used

in this chapter for a vortex, where the eight images surrounding the point

source will be used to approximate the evolution of the vortex, with the

obvious advantage being the number of calculations required to compute

an accurate solution compared to the full series the Fourier series solution.

Figure 3.2 shows the first eight images and the point source. In figure 4.7(a)

comparisons of the vortex amplitude A are shown. From this figure it can
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Figure 4.7: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line), MoI solution (blue dot-dashed

line), and MoI solution including only the first eight images (magenta dotted

line) for (a) amplitude A and (b) x position for a square cell. The initial

values are a = 0.15, A = 0.52 . . ., w = 8, (ξ, η) = (25, 20), and (Vx, Vy) =

(0, 0), with ν = 200 and (Lx, Ly) = (100, 100).
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Figure 4.7: Comparison between the full numerical solution (red solid line),

Fourier series solution (green dashed line), MoI solution (blue dot-dashed

line), and MoI solution including only the first eight images (magenta dotted

line) for (c) y position, and (d) (x, y) position for a square cell. The initial

values are a = 0.15, A = 0.52 . . ., w = 8, (ξ, η) = (25, 20), and (Vx, Vy) =

(0, 0), with ν = 200 and (Lx, Ly) = (100, 100).
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be seen that using the first eight images is all that is necessary to obtain

good agreement for the vortex amplitude with the full numerical solution,

with no discernible difference with the MoI solution calculated using 10 200

images.

As the vortex propagates further through the NLC cell, a period differ-

ence is noticeable between the Fourier series solution and the MoI, as well

as with the full numerical solution period, with the periods of the later two

in agreement. The MoI and Fourier series solutions use different approxima-

tions to calculate the corresponding modulation equations, which accounts

for the difference in the periods between them.

The amplitude found from the full numerical solution shows a more

complicated behaviour, which is not evident in either of the modulation

solutions. This is due to the deformation of the vortex upon interaction

with the boundary. This can be verified by comparison of the numerical

amplitude with the vortex’s position in figure 4.7(d), which shows that the

distortions occur when the vortex is close to the boundary. These distortions

at the boundaries cannot be captured by the fixed trial function (4.6).

Figures 4.7(b) and (c) show a comparison for the trajectory components

ξ and η as functions of z, respectively. It can be seen that both modulation

solutions give identical results that are in excellent agreement with the full

numerical trajectory. The reason lies in the fact that the amplitude-width

and position-velocity oscillations of nonlinear beams in NLC’s decouple [42,
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85, 86, 105]. Hence, the amplitude of the two solutions can differ, but the

position can agree. Again, it is noted that the fundamental images for the

MoI solution give an excellent comparison with the full numerical position.

This further confirms the superiority of the MoI over the traditional Fourier

series solutions, as first suggested in reference [45]. Figure 4.7(d) shows the

helical trajectory of the vortex as it propagates through the NLC cell, taking

the z direction to be into the page. As stated previously, the repulsive nature

of the cell walls can be clearly seen. The initial motion of the vortex is solely

due to the repulsive behaviour of the cell walls, as the vortex was not given an

initial velocity. Thus, if the interaction of the vortex with the cell walls does

not upset the phase singularity, stability of the vortex will be maintained,

and the vortex will be repelled away from the cell wall, as was the case for

a vortex in a circular cell [46, 88]. Figure 4.7(d) confirms the conclusions

drawn from figures 4.7(b) and 4.7(c), that is, both modulation solutions are

in agreement and are in excellent agreement with the numerical solution and

the first eight nearest neighbour images give an excellent approximation to

the vortex trajectory.

4.3.2 Instability, minimum distance - results

A comparison between the analytical minimum stable distance of approach

to the boundary, given by equation (4.71), and minimum stable distance of

approach as given by the full numerical solution is shown in figure 4.8. In this
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Figure 4.8: A comparison between the analytical stability boundary

(4.71)(red plus sign +) with the full numerical solution (green crosses ×)

for (Vx, VY ) = (0.8, 0) and the full numerical solution (blue stars, ∗) for

(Vx, Vy) = (1.5, 0). The numerical stability boundary is the distance from

the boundary at which instability first occurs. The initial conditions used

were a given by equation (4.73), (ξ, η) = (50, 100) for (Lx, Ly) = (100, 200).

figure, the stability boundary is shown as a function of the initial width w of

the vortex for two different initial velocities, these being, (Vx, Vy) = (0.8, 0)

and (Vx, Vy) = (1.5, 0).

The stability boundary, equation (4.71), was found using a small pertur-

bation from the steady vortex. In order to obtain a comparison with this

expression, the numerical solution must also initially start near a steady vor-
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tex. The modulation equation (4.56) gives the steady state amplitude-width

relationship as

â2ŵ6 = 16ν. (4.73)

Given an initial vortex width, this equation was used to determine the initial

amplitude for the comparisons in figure 4.8. Note that the cell dimensions

and initial positions were chosen to mirror the analytical description, that is,

close enough to one of the cell walls, yet sufficiently far from the other three

walls so that there is no effect on the vortex. The analytical and numerical

minimum distances are in reasonable agreement for all initial widths, but

the smaller widths are in better agreement for the higher initial velocity.

This comparison shows that the assumptions used in section 4.2.3 for the

linearised stability analysis are reasonable.

The numerical solutions show that the minimum distance of approach is

only weakly dependent on the initial velocity, particularly at larger initial

widths. The main cause of the differences between the minimum distance of

approach as given by the linearised stability analysis and the full numerical

solutions is the deformation that the leading edge of the vortex undergoes as

it interacts with the boundary. The trial function E, given by equation (4.6),

does not take into account this distortion of the vortex during interaction

with a boundary, other than changes in its amplitude and width for a fixed

functional form.

Figure 4.9 shows the numerical evolution of the vortex for a typical case
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for which the vortex approaches closer than the minimum distance and is

reflected, breaking up into two nematicons. The large deformation of the

vortex, particularly at the leading edge, can be clearly seen in figure 4.9(c).

Here, the anchoring boundary condition fixing θ = 0 at the cell wall induces

the instability of the vortex. It has been shown that the nonlocality of

NLC lifts the director angle θ sufficiently above zero under the centre of

the vortex, to stabilise it [52]. At the boundary, the anchoring boundary

condition forces θ to zero, which has the effect of making the NLC act like a

local medium there, for which vortices are unstable to a mode 2 symmetry-

breaking azimuthal instability [53]. We note that in a local medium the

director perturbation is zero at the vortex core [53].

A further complication in the analytic and full numerical comparison is

that the numerical vortex’s position in calculated at its centre of mass. That

is,

ξ =

∫ Ly

0

∫ Lx

0 x|E|2 dx dy
∫ Ly

0

∫ Lx

0 |E|2 dx dy
. (4.74)

This is clearly the centre (phase singularity) of the vortex when it is symmet-

ric. However, the distortion of the vortex when it interacts with the bound-

ary (as shown in figure 4.9), implies that the centre of mass has shifted and

no longer coincides with the phase singularity of the vortex which is the po-

sition of the vortex as given by the modulation equations. This accounts for

some of the differences seen in the comparisons of the analytical expression

for the position of the vortex given by equation (4.74) and the full numerical
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solutions seen in figure 4.7. Finally, figure 4.9(f) shows that the result of the

instability of the vortex is it splits in two, forming two nematicons. These

nematicons are stable, unlike in a local medium [50, 99]. The stability of

the two nematicons is due to the nonlocality of the nematic response, which

extends far beyond the waist of the electric field (see figure 4.3) and acts

as an attractive potential. This attraction of nonlinear beams in (nonlocal)

NLCs is in accord with experimental observations [47, 48] and theoretical

results [83, 108].

4.4 Discussion

In this chapter we have studied the propagation of an optical vortex solitary

wave in a finite nematic liquid crystal cell. A Lagrangian formulation of the

governing equations was used in conjunction with a hybrid of a trial function

and an exact solution to model the evolution of the vortex. The director

equation was solved exactly, using two different, but equivalent methods,

the method of images and a Fourier sine series. Both of these methods

produced modulation equations whose solutions were in good agreement

with the full numerical solutions. However, the MoI proved to be far superior

and computationally more efficient as only the fundamental eight images

surrounding the point source were needed to gain good agreement. This

confirms the prediction stated in Chapter 3 [45] that the MoI is a powerful

tool and an excellent alternative to Fourier series solutions for the director
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distribution.

The MoI was also used to analyse the stability of the vortex at a bound-

ary, in particular, the effect the anchoring boundary condition has on the

vortex stability. The vortex was assumed to be close enough to one wall,

so that the remaining three walls did not influence the vortex. This simpli-

fied the analysis as the other boundaries could be ignored. This assumption

allowed an analytical expression for the minimum distance of approach for

a vortex to the cell wall before instability arose to be found. The formula

for the minimum distance was found to be in reasonable agreement with

full numerical results, especially since the numerical results showed that the

vortex becomes highly deformed on approach to the boundary, which cannot

be captured by the fixed trial function in use.

The simple use of the MoI reinforces its utility in nonlinear beam prop-

agation problems. In the next chapter we will explore an elliptic shaped

beam with angular momentum in a finite NLC cell.
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Figure 4.9: A sequence showing a vortex colliding with a cell wall, showing

the instability of the vortex. (a) z = 0, (b) z = 50, (c) z = 75, (d) z = 100,

(e) z = 150, (f) z = 180. The initial vortex parameters are w = 8,with

a given by equation (4.73), ξ = 50, η = 100, Vx = 0.8 and Vy = 0, with

ν = 200, Lx = 100, and Ly = 200.



Chapter 5

Elliptic shaped nematicon in

a nematic liquid crystal

5.1 Background

The stable propagation of an elliptic cross-sectional optical beam in local me-

dia has long been an experimental [109, 110] and theoretical [111, 112, 113]

issue. The instability of an elliptical soliton is due to the existence of the

different major and minor axes of the elliptically-shaped optical beam, or

the two different widths, as the amount of nonlinearity required to sup-

port a radially symmetric soliton is dependent on the peak beam inten-

sity [110]. Hence, the peak beam intensity also determines the diffraction

angle that the medium can balance with the self-focusing of the optical

beam to self-trap [25, 29] and form a soliton. For an optical beam to do

147
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this, radial symmetry is needed. However, an elliptic beam is asymmetric

and, hence, difficulties arise in the support for the two competing diffraction

angles [110, 113]. The term elliptic soliton will be used from here on to de-

scribe an elliptically-shaped cross-sectional soliton. To add to the difficulty

of forming an elliptic soliton, it was shown both theoretically [111, 112, 113]

and experimentally [109, 110, 114] that the widths of the elliptic beam pe-

riodically oscillate, as would be expected from the behaviour of beams for

NLS-type equations.

Some suggested ways to form a soliton before the optical beam diffracts,

resulting in a symmetric circular beam, are to use partially incoherent elliptic

beams with an anisotropic mutual coherence function [109, 110], a medium

with a nonlocal response [112, 115] or applying an orbital angular momentum

to the elliptic-shaped optical beam [111].

Elliptic solitons were shown to exist in nonlocal NLC and found to have

interesting behaviour [115]. To understand the behaviour of elliptic soli-

tons, first, let us understand the self-focusing response of NLC. A nematic

molecule tends to align itself with the polarisation direction of the optical

beam. Depending on the intensity of the optical beam the molecule will

rotate by a certain angle, thus altering the refractive index of the NLC and

inducing a self-focusing response if and only if the optical beam conditions

are right. Interestingly, a competing molecular reorientation was found to

exist within the NLC. It was shown that the nematic molecules tend to align
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with the major axis of the elliptic beam [115].

In this chapter, an elliptically-shaped cross-sectional optical beam with

orbital angular momentum propagating through a finite sized NLC cell is

studied (figure 5.1(a)). The nonlocality of the NLC supports the propagation

of an elliptic soliton, as the nonlocal nematic response to the elliptical optical

beam smooths the response and makes the director response circular, rather

than elliptic. Hence the director responds as for the propagation of a radially

symmetric beam, as shown in figure 5.1(b). Therefore, the optical beam

can form an elliptic soliton by balancing the diffractive spreading of the

optical beam with the self-focusing induced by the nonlinear dependence of

the refractive index of the NLC on the beam intensity [29, 36]. However, to

induce the self-focusing response of the NLC, the optical beam intensity must

be above the minimum to enable the nematic molecular rotation, known

as the Freédericksz threshold [23, 24, 25, 104]. In previous chapters, the

Freédericksz threshold was overcome by pre-tilting the nematic molecules

by an angle θ0 ∼ π/4, which eliminates the restriction of a minimum beam

intensity to induce a change in the refractive index [33]. Experimentally, the

pre-tilt is achieved by rubbing the cell walls, which creates a static charge

at the boundary, which then induces in the nematic molecules closest to the

boundary a molecular rotation. Finally, this rotation is transmitted on to

the bulk NLC molecules due to the nonlocal elastic intermolecular forces

between the molecules [25]. Rubbing the cell walls to pre-tilt the nematic
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(a) Initial elliptic soliton profile

(b) Initial nematic response profile

Figure 5.1: The initial input elliptic soliton and the corresponding NLC

distribution, where the initial values are a = 2.5, wx = 6, wy = 3, φ = 0,

Θ = 0.07593, (ξ, η) = (25, 25), and (Vx, Vy) = (0, 0), with ν = 200 and

(Lx, Ly) = (50, 50).
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molecules results in different decay rates of the nematic response to the

optical beam away from the centre of the optical beam. In 1D [30] a linear

decay is experienced, while in 2D [45, 116] a logarithmic decay occurs. This

implies that the nematic response to the beam extends to the boundaries of

the NLC cell and as a result, the inclusion of proper boundary conditions is

vital to model an elliptic soliton accurately.

This chapter will focus on the role radiation and orbital angular momen-

tum loss play, as well as the effect the boundaries have, on the evolution of

elliptic solitons. An averaged Lagrangian representation of the governing

equations will be adopted to study the propagation of the elliptic soliton,

using a combination of an exact solution and a trial function. Variational

theory will also be applied [39, 59, 68] to develop the semi-analytical solu-

tion, as in Chapters 3 and 4.

Modulation theory has proved to be a successful technique in mod-

elling the evolution of propagating nonlinear optical beams in NLC, giving

excellent agreement with full numerical solutions of the governing equa-

tions [42, 53, 72, 84, 88, 102, 105] and experimental results [26, 106].
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5.2 Analysis

5.2.1 Elliptically-shaped cross-sectional optical beam gov-

erning equations

Consider an elliptically-shaped cross-sectional beam input into a finite sized

NLC cell with the z direction as the propagation direction. The nematic

molecules are arranged in a planar configuration within the NLC cell. The

optical beam is polarised in the x direction, which results in molecular rota-

tion in the x−z plane [25, 29, 34, 35, 36]. As in Chapters 3 and 4, the nematic

molecules are pre-tilted by a angle θ0 ∼ π/4 in the x−z plane [33], enabling

the use of milliwatt beam powers, as the Freédericksz threshold is then over-

come [23, 24, 25, 104]. The pre-tilt of the nematic is achieved by rubbing

the cell walls, as described in Chapters 3 and 4. The intermolecular elastic

forces of the NLC pass the rotation through the bulk of the medium, thus

obtaining a semi-uniform pre-tilt. The optical beam’s electric field causes

a further rotation of the director by an angle θ, so that the total director

angle is given by φ = θ0 + θ, relative to the z axis. The perturbation of the

director under the influence of the optical beam is small for milliwatt beam

powers, |θ| ≪ |θ0|. The non-dimensional equations governing the propaga-

tion of an optical beam in this small extra rotation limit, in the paraxial

approximation are a strongly coupled pair of PDEs, the first of which is a
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NLS-like equation and the second is Poisson’s equation [30, 43, 44, 45]

iEz +
1

2
∇2E + 2θE = 0, (5.1)

ν∇2θ + 2|E|2 = 0. (5.2)

The Laplacian ∇2 is in the x − y plane. E is the complex valued envelope

of the electric field. The elastic response of the NLC is related to the nonlo-

cality parameter ν, which is experimentally of the order of O(100) [26]. In

experiments, the optical beam experiences a phenomenon know as walk-off,

whereby the optical beam deviates from the input wavevector along the z

direction, following the beam’s Poynting vector instead. The walk-off has

been removed from the governing equations (5.1) and (5.2) by using a phase

factor [40, 42]. The NLC cell is a finite sized rectangle, with dimensions

0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly and is depicted in figure 2.1.

The governing equations (5.1) and (5.2) have the Lagrangian represen-

tation

L = i(E∗Ez − EE∗
z )− |∇E|2 + 4θ|E|2 − ν|∇θ|2, (5.3)

where the ∗ superscript denotes the complex conjugate. As in Chapters 3

and 4, a trial function, E, will be used to derive modulation equations for

the elliptical beam evolution, based on this Lagrangian [60]. However, an

alternative variational method, known as the chirp method [59, 68], will

also be used. This adds a quadratic phase term to the trial function, Ec,
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for the envelope of the optical beam’s electric field. Further, the governing

equation (5.2) for the director perturbation is solved using a Fourier series

expansion, which gives the solution in terms of an infinite series. The di-

rector equation (5.2) was not solved via the MoI as the asymmetry of the

beam introduced additional complexities, rendering the MoI unusable.

This chapter will focus on the propagation of an elliptic soliton as it

evolves within a finite sized NLC cell.

5.2.2 Chirp method

As mentioned in previous chapters, the governing equations (5.1) and (5.2)

have no known exact solitary wave solution [72]. Techniques involving mod-

ulation theory, including the averaged Lagrangian technique [39, 59] have

been developed to model the evolution of the optical beam as it propagates

through a NLC cell.

A trial function is used to model the envelope of the optical beam’s

electric field. A Gaussian shaped profile is chosen as the trial function, as

in Chapters 3 and 4

E = ae−(x−ξ)2/w2
x−(y−η)2/w2

yeiσ, (5.4)

where a is the amplitude, wx is the major axis and wy is the minor axis

of the ellipse, (ξ, η) is its position and σ is its phase. All the parameters

are functions of z the propagation variable. The chirp form of the trial

function alters the phase term of equation (5.4) by perturbing the phase by
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adding quadratic corrections [59, 68]. What differentiates this study from

the nematicon of Chapter 3, is the addition of an orbital angular momentum

term in the phase [111]. This additional phase term was shown to stop the

collapse experienced by elliptic solitons in Kerr media [111, 113]. The angle

the major axis of the elliptical beam makes with the x axis will be denoted

by φ. Then coordinates (X,Y ) centred on the beam and along its axes are

X = (x− ξ) cosφ+ (y − η) sinφ, Y = −(x− ξ) sinφ+ (y − η) cosφ.

(5.5)

Hence, the chirp trial function representing an elliptic soliton propagating

through a NLC cell with angular momentum in this rotated coordinate frame

is given by

Ec = ae−(X2/w2
x+Y

2/w2
y)ei(ζ+ζc), (5.6)

where ζ = σ+ Vx(x− ξ) + Vy(y− η) and ζc = BX2 +XYΘ+CY 2. Θ gives

the asymmetric phase factor related to the orbital angular momentum of

the beam, (Vx, Vy) is the velocity and B and C are related to the chirping

of the phase.

The solution of the director equation (Poisson’s equation) (5.2) for the

director angle perturbation can be calculated in the form of an eigenfunction

expansion, with |E|2 given by (5.6). As in Chapters 3 and 4, the solution is

θ = −
∞
∑

n,m=1

Cnm
π2Q1

sin
nπx

Lx
sin

mπy

Ly
. (5.7)
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Using the orthogonality condition for the trigonometric functions, the Fourier

coefficients are

Cnm = − 8

νLxLy

∫ Ly

0

∫ Lx

0
|E|2 sin nπx

Lx
sin

mπy

Ly
dx dy

= − 2πa2wxwy
νLxLy

αe−γ1 , (5.8)

where

γ1 =
n2π2

8ρ1L2
x

, U± =
π2w2

xw
2
y

8ρ1
ψ2
±, ϑ± =

nπξ

Lx
± mπη

Ly

Q1 =
n2

L2
x

+
m2

L2
y

, ρ1 =
cos2 φ

w2
x

+
sin2 φ

w2
y

, ρ3 = cosφ sinφ

(

1

w2
x

− 1

w2
y

)

α =
(

e−U+ cosϑ− − e−U− cosϑ+
)

, and ψ± =

(

ρ3n

Lx
± ρ1m

Ly

)

.

Substituting the trial function (5.6) for the electric field and the director

solution (5.7) into the Lagrangian (5.3), gives the averaged Lagrangian

L =

∫ Ly

0

∫ Lx

0
Ldx dy,

= − πa2wxwy

(

σ′ − Vxξ
′ − Vyη

′ +
V 2
x

2
+
V 2
y

2
+
w2
xB

′

4
−
w2
yC

′

4
−

(w2
x − w2

y)Θφ
′

4

)

−
πa2(w2

x + w2
y)

2wxwy

[

1 +
w2
xw

2
yΘ

2

4

]

− 1

2
πa2wxwy(w

2
xB

2 + w2
yC

2)

+
∞
∑

n,m=1

νLxLyC
2
nm

4π2Q1
(5.9)

Taking variations of this averaged Lagrangian (5.9) with respect to the opti-

cal beam parameters and using the Euler–Lagrange equation (2.18), results

in variational equations

d

dz

[

a2wxwy
]

= 0, (5.10)
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dξ

dz
= Vx,

dη

dz
= Vy, (5.11)

d

dz

[

a2wxwyVx
]

= −
∞
∑

n,m=1

2na4w2
xw

2
y

νL2
xLyQ1

αΦe−2γ1 , (5.12)

d

dz

[

a2wxwyVy
]

=
∞
∑

n,m=1

2ma4w2
xw

2
y

νLxL2
yQ1

αΦe−2γ1 , (5.13)

d

dz

[

a2w3
xwy

]

= 4a2w3
xwyB, (5.14)

d

dz

[

a2wxw
3
y

]

= 4a2wxw
3
yC, (5.15)

dφ

dz
=

(w2
x + w2

y)Θ

(w2
x − w2

y)
, (5.16)

d

dz

[

a2wxwy(w
2
x − w2

y)Θ
]

=
∞
∑

n,m=1

2πa4w2
xw

2
yαe

−2γ1

νLxLyρ1Q1

[

χ− αMρ3
ρ1

]

(5.17)

σ′ +
1

4

[

w2
xB

′ +w2
yC

′ − (w2
x − w2

y)Θφ
′
]

=

1

2

(

V 2
x + V 2

y

)

−
(w2

x + w2
y)

2w2
xw

2
y

(

1 +
w2
xw

2
yΘ

2

4

)

− 1

2

(

w2
xB

2 + w2
yC

2
)

+
∞
∑

n,m=1

2a2wxwyα
2e−2γ1

πνLxLyQ1
, (5.18)

σ′+
1

4

(

3w2
xB

′ + w2
yC

′ − (3w2
x + w2

y)Θφ
′
)

= (5.19)

1

2

(

V 2
x + V 2

y

)

− 1

2

(

3w2
xB

2 + w2
yC

2 − 1

w2
x

+
1

w2
y

+
(3w2

x + w2
y)Θ

2

4

)

+
∞
∑

n,m=1

a2wxwyαe
−2γ1

2πνLxLyQ1

[

α

(

4− π2 cos2 φM

w2
xρ

2
1

)

−
π2w2

y

ρ1

(

w2
xG2 −

n sin(2φ)G

Lx

)

]

,
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σ′+
1

4

(

w2
xB

′ + 3w2
yC

′ − (w2
x − 3w2

y)Θφ
′
)

= (5.20)

1

2

(

V 2
x + V 2

y

)

− 1

2

(

w2
xB

2 + 3w2
yC

2 +
1

w2
x

− 1

w2
y

+
(w2

x + 3w2
y)Θ

2

4

)

+
∞
∑

n,m=1

a2wxwyαe
−2γ1

2πνLxLyQ1

[

α

(

4− π2 sin2 φM

w2
yρ

2
1

)

− π2w2
x

ρ1

(

w2
yG2 +

n sin(2φ)G

Lx

)]

.

for the elliptical beam evolution. Here

Φ = e−U+ sinϑ− − e−U− sinϑ+, (5.21)

M =
n2

L2
x

+ w2
xw

2
yψ+ψ−, (5.22)

χ =
n cos(2φ)(w2

x − w2
y)G

Lx
, (5.23)

G = ψ+e
−U+ cosϑ− − ψ−e

−U− cosϑ+, (5.24)

G2 = ψ2
+e

−U+ cosϑ− − ψ2
−e

−U− cosϑ+. (5.25)

The chirp method cannot be altered in any way to account for diffractive

radiation loss [60]. Therefore, the chirp solution will oscillate around the

steady state solution of the initial optical beam with a constant amplitude

oscillation. However, the chirp method still supplies valuable information

about the dynamics of the solitary wave over short propagation distances,

such as its trajectory.

5.2.3 Modulation theory

Following on from the method originally described by Kath and Smyth [60],

the trial function can be modified to include the loss to radiation shed by
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the evolving solitary wave and, thus allow the solution to settle to its steady

state as z → ∞. As in Chapters 3 and 4, the trial function is given by a

Gaussian profile

Ee =
(

ae−(X2/w2
x+Y

2/w2
y) + ig

)

ei(ζ+ζe), (5.26)

where a, wx, wy, X, Y and ζ have the same meaning as in section 5.2.2 for

the chirp trial function. In this case, ζe = XYΘ, with Θ related to the orbital

angular momentum of the optical beam. This method differs from the chirp

method as the trial function includes the shelf height g, which is linked to the

low wavenumber diffractive radiation that accumulates under the evolving

solitary wave [60]. This term also allows matching to the diffractive radiation

shed by the beam, which allows the modulation solution to evolve to a steady

state. Perturbative analysis of linearised governing equations of NLS-type

have shown the existence of the shelf and determined it to be π/2 out of the

phase with the solitary wave [60, 73]. A simple physical argument for the

existence of the shelf was given in Section 3.2.2. The shelf of radiation that

forms under the solitary wave cannot remain flat forever. Hence, g is taken

to be non-zero in the elliptically shaped region w2
yX

2 + w2
xY

2 ≤ w2
xw

2
y.

The trial function (5.26) and the Fourier series solution for the director

angle (5.7), which is the same as for the chirp trial function as |E| is the

same, are substituted into the Lagrangian (5.3), which is then averaged over
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the cell lengths in the x− y plane, resulting in the averaged Lagrangian

L =− 2πag′wxwy − 4π

(

a2wxwy
4

+ g2Λ

)

(

σ′ − Vxξ
′ − Vyη

′ +
V 2
x

2
+
V 2
y

2

)

+
1

4
πa2wxwy

(

w2
x − w2

y

)

Θφ′ + 2πa′gwxwy + 2πagw′
xwy + 2πagwxw

′
y

− πa2wy
2wx

− πa2wx
2wy

− 1

8
πa2wxwy

(

w2
x + w2

y

)

Θ2 +
∞
∑

n,m=1

νLxLyC
2
nm

4π2Q1
.

(5.27)

Here, Λ = βwxwy, and β is to be determined. Using the Euler–Lagrange

equation (2.18) to take variations of the averaged Lagrangian (5.27) with

respect to the beam parameters yields a system of first-order ODEs, known

as modulation equations, whose solution gives the evolution of the propa-

gating elliptic soliton. Diffractive radiation loss can then be included in the

modulation equations as in Chapters 3 and 4. The modulation equations,

including the loss to shed radiation, are then

d

dz

[

a2wxwy
4

+ g2Λ

]

= −2δΛκ2, (5.28)

a′wxwy + aw′
xwy + awxw

′
y − 2gΛσ′ = −gΛ

(

V 2
x + V 2

y

)

, (5.29)

ξ′ = Vx, η′ = Vy, (5.30)

d

dz

[(

a2wxwy
4

+ g2Λ

)

Vx

]

= −
∞
∑

n,m=1

na4w2
xw

2
yαΦe

−γ1

2νL2
xLyQ1

, (5.31)

d

dz

[(

a2wxwy
4

+ g2Λ

)

Vy

]

=
∞
∑

n,m=1

ma4w2
xw

2
yαΦe

−γ1

2νLxL2
yQ1

, (5.32)
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φ′ =

(

w2
x + w2

y

)

(

w2
x − w2

y

)Θ, (5.33)

d

dz

[(

a2wxwy
(

w2
x − w2

y

))

Θ
]

=
∞
∑

n,m=1

2πa4w2
xw

2
yαe

−γ1

νLxLyQ1ρ1
(5.34)

×
[

n cos (2φ)
(

w2
x − w2

y

)

G

Lx
− αMρ3

ρ1

]

,

dg

dz
=
a
(

w2
x + w2

y

)

Θ2

16
+

a

4w2
x

+
a

4w2
y

−
∞
∑

n,m=1

a3wxwyαe
−γ1

8πνLxLyQ1ρ1
(5.35)

×
[

π2αM + 2π2w2
xw

2
yG2 +

π2n sin (2φ)
(

w2
x − w2

y

)

G

Lx

]

− 2δg,

dσ

dz
=

1

2

(

V 2
x + V 2

y

)

− 1

w2
x

− 1

w2
y

+
∞
∑

n,m=1

a2wxwyαe
−γ

4πνLxLyQ1

×
[

α

(

8 +
π2M

ρ1

)

+
2π2w2

xw
2
yG2

ρ1
+
π2n sin (2φ)

(

w2
x − w2

y

)

G

Lx

]

.

(5.36)

The algebraic equation for Θ is given by

Θ2 =

(

w2
x − w2

y

)

D



− 4

w2
x

+
4

w2
y

−
∞
∑

n,m=1

2πa2wxwyαe
−γ1 (W − F )

νLxLyQ1ρ1



 , (5.37)

where

D = w4
x + 6w2

xw
2
y + w4

y, (5.38)

F =
αM

ρ1

(

cos2 φ

w2
x

− sin2 φ

w2
y

)

, (5.39)

W =
n sin (2φ)

(

w2
x + w2

y

)

G

Lx
. (5.40)
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As in Chapters 3 and 4, the loss coefficient δ is

δ = −
√
2π

32eκΛ̃

∫ z

0
πκ(z′) ln[(z − z′)/Λ̃]× (5.41)





(

{

1

2
ln[(z − z′)/Λ̃]

}2

+
3π2

4

)2

+ π2
{

ln[(z − z′)/Λ̃]
}2





−1

dz′

(z − z′)
,

where

κ2 =
1

Λ̃

[

1

4
a2wxwy −

1

4
â2ŵ2 + Λ̃g2

]

. (5.42)

The nonlocality of the NLC shifts the point at which the solitary wave sheds

diffractive radiation from the edge of the shelf
√

w2
yX

2 + w2
xY

2 = wxwy to a

new radius ℓ̃ from the solitary wave position (ξ, η), which is the edge of the

director response [72]. This radius for the radiation response was termed

the outer shelf radius [72]. In the present case of a finite cell, the director

response extends to the cell walls. Hence,

Λ̃ = ℓ̃2/2 (5.43)

where

ℓ̃ = min

(

Lx
2
,
Ly
2

)

, (5.44)

as in Chapters 3 and 4. In the case of a finite cell, the diffractive radiation

is then shed in a boundary layer at the cell walls, as for the nematicon and

vortex of Chapters 3 and 4

The final parameter to be determined is the area of the radiation shelf,

Λ = βwxwy. As in Chapters 3 and 4 β = 0.3 was found to be a robust
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choice to give good comparison with full numerical solutions for different

input beams.

The steady state for the elliptic soliton can be found using total energy

conservation for the system. As in Chapters 3 and 4, Nöther’s theorem is

used to find the energy conservation equation based on the invariance of the

Lagrangian (5.3) with respect to shifts in z (as shown in Section 3.2.2). The

averaged energy conservation is then

dH

dz
=

d

dz

∫ Ly

0

∫ Lx

0
[|∇E|2 − 4θ|E|2 + ν|∇θ|2] dx dy

=
d

dz







πa2wy
2wx

+
πa2wx
2wy

−
∞
∑

n,m=1

νLxLyC
2
nm

4π2Q1







= 0. (5.45)

The details for deriving this are as in Chapter 2, and so are not given here.

The cell boundaries are again found to be repulsive towards the solitary

wave, in accord with the results found in Chapters 3 and 4 [30, 45, 116].

The elliptic soliton as a result of this repulsion takes a helical trajectory

towards the centre of the NLC cell, the final steady state position. At the

centre all four boundaries exert an equal amount of force on the solitary

wave, pinning it in place. Again, the carat ˆ will denote the steady state

values of quantities. We then have ξ̂ = Lx/2, η̂ = Ly/2, V̂x = 0, V̂y = 0. At

the steady state the elliptic soliton will reshape into a circular cross-section

due to symmetry. Hence, it will no longer be rotating with an orbital angular

momentum and will have no discernible orientation angle due to the radial

symmetry of the optical beam, that is Θ̂ = 0 and φ̂ = 0. Also, the elliptic
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soliton will have stopped shedding radiation at the steady state, and hence

the shelf height ĝ will be zero. Thus, the modulation equation (5.35) can

be used to find the steady state relationship between the amplitude â and

width ŵ (here ŵ = ŵx = ŵy for the symmetry reasons stated above) of the

elliptic soliton, which yields

â2 =
4νLxLy
πŵ6Ω

, (5.46)

where

Ω =

∞
∑

n,m=1

e−γ̂1 sin

(

nπξ

Lx

)

sin

(

mπη

Ly

)

, (5.47)

γ̂1 =
π2ŵ2Q1

4
. (5.48)

The combination of the energy conservation equation (5.45) and the steady

state relation (5.46) is used to find the final steady state values for the

amplitude and width of the elliptic soliton for given initial beam parameters.

5.2.4 Inclusion of angular momentum loss

As the elliptic soliton evolves the beam reshapes into a circle over large z dis-

tances. This reshaping is a consequence of the symmetry of the medium [110,

113]. In addition, the reshaping is driven by loss of angular momentum to

shed diffractive radiation. By overall conservation of angular momentum as

the elliptic soliton loses angular momentum, the speed at which it spins also

slows. The net result is that the elliptic nematicon becomes circular, so that

wy → wx.
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It is then vital to determine the angular momentum shed as diffractive

radiation as the elliptic nematicon evolves. Due to the spinning of the beam,

these shed waves have a spiral pattern. As the spiral waves [117] have small

amplitude relative to the beam they satisfy the linearised NLS equation

iEz +
1

2
∇2E = 0. (5.49)

The boundary condition for these spiral waves at the elliptic soliton is a

signaling boundary condition as the elliptic beam sheds the waves. To de-

termine this boundary condition, recall that the trial function of the elliptic

soliton is (5.26), which is in the rotating frame of reference with coordinates

and angular velocity given by (5.33). We are only interested in the radiation

that is shed from the accumulated shelf under the elliptic solitary wave. As

the radiation matches to the edge of the shelf, for the matching the trial

function (5.26) is given by the shelf only, yielding

E ∼ gei(σ+ΘXY ) (5.50)

For ease in notation and calculation, the rotating coordinates X and Y can

be written in terms of matrices








X

Y









= A(φ)









x

y









, (5.51)

where the rotation matrix is

A(φ) =









cosφ sinφ

− sinφ cosφ









. (5.52)
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The level lines of the trial function (5.26) are ellipses parameterised in the

form

X(µ) = pwx cosµ and Y (µ) = pwy sinµ, 0 ≤ µ ≤ 2π, (5.53)

where p is to be chosen later.

Thus, (5.51) can be rearranged to give

X =









x

y









= A−1(φ)









pwx cosµ

pwy sinµ









, (5.54)

where

A−1(φ) =









cosφ − sinφ

sinφ cosφ









. (5.55)

Now, the spiral radiation boundary condition has the form

E = g exp[i(Θ(z)p2wxwy cosµ sinµ+ σ(z))] (5.56)

as it is found by the signalling boundary condition on the curve p as given

by equation (5.50).

The radiation equation (5.49) will be solved using a geometric optics

solution [39]

E = ueiS(x,y,z). (5.57)

Substitution of this from the radiation equation (5.49) yields the eikonal

equation

Sz +
1

2
|∇S|2 = 0. (5.58)
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Comparing the geometric optics solution (5.57) with the boundary condi-

tion (5.56) we see that

S(x, y, z) = Θ(z)p2wxwy cosµ sinµ+ σ(z) and u = g. (5.59)

To find the angular momentum radiated by the elliptic soliton, we need to

determine the derivative S normal to the boundary curve at the beam. To

obtain the desired derivative, the eikonal equation (5.58) is rewritten using

the tangential coordinate µ and the normal coordinate λ of the elliptical

boundary (5.54) in the form

X =









x

y









+ λn(z, µ), (5.60)

where

n =
X⊥
µ

∣

∣Xµ

∣

∣

=
1

∣

∣Xµ

∣

∣









−yµ

xµ









. (5.61)

Here, Xµ and Yµ are the derivatives of equation (5.54) with respect to µ and

are given by









−Yµ

Xµ









= A−1(φ)









−pwx cosµ

pwy sinµ









. (5.62)

The norm ofX⊥
µ is equal to the norm ofXµ and is

∣

∣Xµ

∣

∣ = p
√

w2
x sin

2 µ+ w2
y cos

2 µ.

In these coordinates, the eikonal equation (5.58) becomes

Sz +
1

2







(

Sµ
∣

∣Xµ

∣

∣

)2

+ S2
λ







= 0, (5.63)
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where Sµ and Sλ are the derivatives of S with respect to µ and λ respectively.

Now, let us take the derivative of S in equation (5.59) with respect to the

time-like parameter z, to yield

Sz +∇S ·Xz =
1

2
Θzp

2wxwy sin (2µ) + σz. (5.64)

In the calculation the derivatives on the slowly varying axis wx and wy

have been neglected. ∇S · Xz, is not calculated in terms of the tangen-

tial and normal coordinates to obtain the outgoing wavenumber Sλ from

equation (5.63). We have that

∇S ·Xz =
Sµ
∣

∣Xµ

∣

∣

2

(

Xµ ·Xz

)

+
Sλ
∣

∣Xµ

∣

∣

(

X⊥
µ ·Xz

)

(5.65)

=φzp
2

[

wxwySµ
∣

∣Xµ

∣

∣

2 +
(w2

x + w2
y) sin (2µ)Sλ

2
∣

∣Xµ

∣

∣

]

. (5.66)

The eikonal equation (5.64) can now be rearranged to give,

Sz =
1

2
Θzp

2wxwy sin (2µ) + σz − φzp
2

[

wxwySµ
∣

∣Xµ

∣

∣

2 +
(w2

x + w2
y) sin (2µ)Sλ

2
∣

∣Xµ

∣

∣

]

.

(5.67)

Substitution of this expression into the eikonal equation (5.63) to give

1

2
Θzp

2wxwy sin (2µ) + σz − φzp
2

[

wxwySµ
∣

∣Xµ

∣

∣

2 +
(w2

x + w2
y) sin (2µ)Sλ

2
∣

∣Xµ

∣

∣

]

+
1

2







(

Sµ
∣

∣Xµ

∣

∣

)2

+ S2
λ







= 0. (5.68)

Now φz can be replaced using the modulation equation (5.33) and Sµ is

given by the derivative of equation (5.59) with respect to µ, to yield

Sµ = Θp2wxwy cos (2µ) , (5.69)
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Figure 5.2: Profile of an elliptic nematicon with diffractive radiation shed

along the major axis rotating counter-clockwise.

as σ is a function of z only.

Further, numerical simulations indicate that the radiation shed by the

elliptic nematicon occurs along the major axis, as shown in figure 5.2. Thus,

the angle at which radiation is shed is small, leading to the approximations

cos (2µ) ≈ 1 and sin (2µ) ≈ 0. Now, equation (5.68) can be re-expressed as

a quadratic equation for the derivative normal to the boundary curve, Sλ,

−
Θ2p4w2

xw
2
y(w

2
x + w2

y)

(w2
x − w2

y)
∣

∣Xµ

∣

∣

2 +
Θ2p4w2

xw
2
y

2
∣

∣Xµ

∣

∣

2 +
S2
λ

2
= 0. (5.70)

Solving equation (5.70) results in the derivative of the normal to the bound-

ary curve as

Sλ =
Θpwx

√

w2
x + 3w2

y

(w2
x − w2

y)
1/2

. (5.71)
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Let us now use this eikonal equation solution to calculate the flux of angular

momentum in the shed radiation. The angular momentum flux is given by

∂Γ

∂z
= 2Re

∂

∂z

∫ 2π

0
(∇E · n) (∇E∗ ×X)

∣

∣Xµ

∣

∣ dµ. (5.72)

Using the geometric optics solution for E given by equation (5.57), the

angular momentum flux can be rewritten in terms of the tangential and

normal coordinates as

∂Γ

∂z
=2Re

∂

∂z

∫ 2π

0
(iueiSSλ)

[

−iue−iS
(

Sµ
∣

∣Xµ

∣

∣

2

(

Xµ ×X
)

+
Sλ
∣

∣Xµ

∣

∣

(

X⊥
µ ×X

)

)]

dµ

=2Re
∂

∂z

∫ 2π

0

[

u2Sλ

(

Sµ
∣

∣Xµ

∣

∣

2

(

Xµ ×X
)

+
Sλ
∣

∣Xµ

∣

∣

(
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(5.73)

Here

Xµ ×X = −p2wxwy









sinµ

cosµ









∼ −p2wxwy, (5.74)

X⊥
µ ×X = −1

2
p2









w2
x sin(2µ)

w2
y sin(2µ)









∼ 0, (5.75)

using the small angle approximation for µ. The norm under the small angle

approximation for µ is given by,
∣

∣Xµ

∣

∣

2
= p2(w2

x sin
2 µ + w2

y cos
2 µ) ∼ p2w2

y.

The final contribution from the angular momentum flux, using the same

small angle approximation for µ as before, results in

∂Γ

∂z
= − 2Re

∂

∂z

∫ 2π

0

u2p2wxwySλSµ
∣

∣Xµ

∣

∣

dµ

= − 2Re
∂

∂z

∫ 2π

0

u2Θ2p4w3
xwy

√

w2
x + 3wy

(w2
x − w2

y)
1/2

dµ. (5.76)
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Here u ∼ ϕ
√

Λ̂κ, κ is given by (5.42) and ϕ = 0.3 was found to be a

robust choice to give good comparison with full numerical solutions and the

paramaterisation variable p is set to equal one.

The calculated angular momentum flux loss must be added to the mod-

ulation equation related to the angular momentum of the elliptic nematicon,

equation (5.34). Doing this yields

d

dz

[

a2wxwy
(

w2
x − w2

y

)

Θ] =

∞
∑

n,m=1

2πa4w2
xw

2
yαe

−γ1

νLxLyQ1ρ1

[

n cos (2φ)
(

w2
x − w2

y

)

G

Lx
− αMρ3

ρ1

]

− u2Θ2p4w3
xwy

√

w2
x + 3wy

(w2
x − w2

y)
1/2

. (5.77)

The modulation equations (5.28) to (5.33), (5.35), (5.36), plus equation (5.77),

as well as the algebraic equation (5.37) form a system of first-order ODEs for

the evolution of the elliptic nematicon that include both mass and angular

momentum losses to dispersive radiation. It will be shown that the inclusion

of angular momentum loss is vital to obtain good comparisons of solutions

of the modulation equations with full numerical solutions.

5.3 Results

In this section, we will compare full numerical solutions of the equations (5.1)

and (5.2) that govern the propagation of an elliptic soliton through a fi-

nite sized NLC cell with solutions derived using variational approxima-

tions [39, 60, 68], that is, derived using the chirp method, modulation theory
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including radiation loss, and finally modulation theory including both ra-

diation and angular momentum loss, the details of which can be found in

sections 5.2.2, 5.2.3 and 5.2.4, respectively.

The variational equations were solved using the standard RK4, as out-

lined in Section 2.3.5. The full numerical solution of the governing equa-

tions (5.1) and (5.2) was obtained using the scheme described in Section 2.4.

The initial condition for the envelope of the electric field in the numerical

simulations was the trial function for the chirp method, equation (5.6), which

is the same as the trial function for the modulation theory, equation (5.26),

at z = 0 as initially B = C = 0 and g = 0. Hence the initial condition for

the optical beam is

E = ae−(X2/w2
x+Y

2/w2
y)ei(ζ+ΘXY ). (5.78)

To maintain the accuracy and stability of the full numerical scheme, the

step sizes used were ∆x = ∆y = 0.2 and ∆z = 0.001. The propagation

length was taken to be z = 500, a typical non-dimensional cell length [26].

The numerical investigation was conducted using several different cell sizes

with various non-dimensional widths, 50 ≤ Lx ≤ 100 and 50 ≤ Ly ≤ 100.

Let us first consider a propagating elliptic soliton initially positioned in

the centre of a square NLC cell, with a non-dimensional width and breadth

of (Lx, Ly) = (50, 50), as shown by the contour plot in figure 5.1(a). We

are interested in comparisons of the chirp and modulation theory solutions

with each other, as well as with full numerical solutions. An amplitude com-
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Figure 5.3: Comparison between the full numerical solution (red solid line),

chirp method solution (green dashed line), modulation theory solution in-

cluding radiation mass loss (blue dot-dashed line), and modulation theory

solution including radiation mass loss and angular momentum loss (ma-

genta dotted line) for the amplitude. The initial values are a = 2.5, wx = 6,

wy = 3, φ = 0, Θ = 0.07593, (ξ, η) = (25, 25), and (Vx, Vy) = (0, 0), with

ν = 200 and (Lx, Ly) = (50, 50).
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parison is shown in figure 5.3 for a typical input beam. Due to the optical

beam’s initial position in the centre of the cell, the position of the elliptic

soliton does not change during propagation Hence, there is no non-trivial

positional information to compare. From figure 5.3, we can see that both

the chirp solution and the modulation theory solution including radiation

mass loss give amplitudes that oscillate around a different steady state to

that of the full numerical solution. However, the modulation theory solu-

tion including radiation mass loss, matches the period of the full numerical

solutions oscillations, and shows signs of damping. Including both radiation

mass loss and angular momentum loss to the modulation equations causes

the modulation solution to oscillate about the same steady state (mean)

as the full numerical solution. This indicates that the inclusion of angular

momentum loss in the modulation equations is vitally important to gain

good agreement with the full numerical solution. Further, the modulation

theory solution including radiation mass loss, displays signs of beating or

competing modes, which is no longer present when angular momentum loss

is added to the equations. Lastly, it can be seen that the chirp method does

not provide an adequate approximation as loss, both mass and angular mo-

mentum, cannot be incorporated using this method. Angular momentum

loss is the essential feature driving the evolution of the elliptical nematicon.

Figure 5.4(a) shows an amplitude comparison for a different input beam
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Figure 5.4: Comparison between the full numerical solution (red solid line),

chirp method solution (green dashed line), modulation theory solution in-

cluding radiation mass loss (blue dot-dashed line), and modulation theory

solution including radiation mass loss and angular momentum loss (magenta

dotted line) for (a) the amplitude and (b) the amplitude for a reduced space

segment. The initial values are a = 3, wx = 7, wy = 4, φ = 0, Θ = 0.06194,

(ξ, η) = (25, 25), and (Vx, Vy) = (0, 0), with ν = 200 and (Lx, Ly) = (50, 50).
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positioned in the centre of the NLC cell. The amplitude oscillation of fig-

ure 5.4(a) has a short period and it is difficult to see details of the comparison

for the different variational approximations. However, we can see from the

peaks and troughs of the solutions that the chirp method does not match

the period of the full numerical solution, but both modulation solutions do.

This is due to the addition of the shelf height g in the trial function (5.26),

which introduces the shelf area Λ into the averaged Lagrangian, enabling the

period of the amplitude oscillation to be matched with the full numerical

solution. In figure 5.4(b) only a portion of the full propagation evolution is

shown, 0 ≤ z ≤ 150, enabling a proper examination of how the variational

solutions compare with the full numerical solution. The chirp solution’s

oscillation does not compare favourably with the full numerical solution,

although the amplitude evolution is within the correct envelope. Radiation

mass loss added to the modulation theory equations causes the amplitude

oscillation to pick up extra frequencies so that the amplitude decreases and

then increases. However, the period is initially well matched. The modula-

tion theory solution including both radiation mass loss and angular momen-

tum loss maintains nearly a steady amplitude throughout the propagation,

with a period in good agreement with the numerical one. There is a good

overall comparison with the full numerical solution. It should be noted that

the numerical solution shows evidence of a second period due, most likely,

to the independent oscillations of the two axes of the ellipse
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Figure 5.5: Comparison between the full numerical solution (red solid line),

chirp method solution (green dashed line), modulation theory solution in-

cluding radiation mass loss (blue dot-dashed line), and modulation theory

solution including radiation mass loss and angular momentum loss (magenta

dotted line) for (a) amplitude a and (b) x position. The initial values are

a = 2.5, wx = 6, wy = 3, φ = 0, Θ = 0.06194, (ξ, η) = (30, 25), and

(Vx, Vy) = (0, 0), with ν = 200 and (Lx, Ly) = (100, 100).
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Figure 5.5: Comparison between the full numerical solution (red solid

line), chirp method solution (green dashed line), modulation theory so-

lution including radiation mass loss (blue dot-dashed line), and modula-

tion theory solution including radiation mass loss and angular momentum

loss (magenta dotted line) for (c) y position, and (d) (x, y) position for

a square cell. The initial values are a = 2.5, wx = 6, wy = 3, φ = 0,

Θ = 0.06194, (ξ, η) = (30, 25), and (Vx, Vy) = (0, 0), with ν = 200 and

(Lx, Ly) = (100, 100).
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Figure 5.5 depicts a comparison between the full numerical solution (red

solid line) and the chirp (green dashed line), modulation theory solution

including radiation mass loss (blue dot-dashed line), and modulation theory

solution including radiation mass loss and angular momentum loss (magenta

dotted line) for an off-centre input beam in a large, square NLC cell. The

trajectory of the elliptic soliton is in accord with the repulsive nature of the

cell walls found in Chapters 3 and 4 [43, 44, 45, 116]. The amplitude com-

parison is similar to that shown in figures 5.3 and 5.4, with the modulation

theory solution including both radiation mass and angular momentum loss

comparing well with the full numerical solution. This shows that angular

momentum loss is vital to obtain good agreement with numerical solutions

and is driving the evolution. Figure 5.5(a) shows that the numerical solution

has a slightly greater rate of mass loss than that calculated in Chapter 2.

Figures 5.5(b) and (c) show excellent trajectory comparisons for the elliptic

soliton’s path, with little difference between all the various variational solu-

tions. As noted in Chapter 4, the amplitude and width decouple from the

position and velocity oscillations of nonlinear beams in NLC [42, 85, 86, 105],

explaining why the different variational (chirp and extended) methods can

have different amplitude evolutions and yet agree in position. Figure 5.5(d)

shows the helical trajectory of the beam in the z direction, which is into the

page, in agreement with the trajectories found for nematicons and optical

vortices in Chapters 3 and 4, respectively [45, 116].
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5.4 Discussion

Elliptic solitons in finite sized nonlocal NLC cells have been studied. This

work confirms the vital introduction of angular momentum loss on the ellipti-

cal beam evolution, a factor which was not considered in previous work [111].

A method based on averaging a Lagrangian representation of the gov-

erning equations (5.1) and (5.2) laid the foundations for the semi-analytical

approach used to study the elliptic nematicon’s evolution. To achieve this

averaging, a combination of an exact solution and a trial function was used.

The exact solution of Poisson’s equation (5.2) describes the director per-

turbation and was found in the form of a Fourier series. This solution,

equation (5.7), proved to be suitable for both the chirp and modulation

theory methods as the optical beam’s electric field envelope is the same for

both approximations.

The introduction of orbital angular momentum by way of an asymmet-

ric phase term related to the rotation of the elliptic soliton introduced ad-

ditional, previously unsolved effects. The main new effect is the angular

momentum evolution of the beam as it slows down to a stationary circular

beam.

The chirp method is the traditional variational method used to analyse

optical phenomena [68, 111]. Quadratic corrections are added to the phase

for the electric field envelope, thus “chirping” the solution. However, there

is no known way to extend the chirp method to include the effect of shed
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diffractive radiation. An alternative variational method, termed modulation

theory, can be extended to include the effects of this radiation [60].

Further, in this chapter it was found that accounting for angular momen-

tum loss in the modulation equations derived using the trial function (5.26)

increased the accuracy of the solution when compared with the full numerical

solution. The angular momentum loss was derived in section 5.2.4 exam-

ining the spiral waves emitted by the spinning elliptic soliton. Including

both radiation mass and angular momentum loss in the modulation equa-

tions using the modulation theory trial function, dramatically improved the

amplitude comparison with the full numerical solution. This demonstrates

the critical role of angular momentum loss in elliptical beam evolution, the

effect of which cannot be incorporated in the chirp method, leading to its

poor agreement with numerical solutions.



Chapter 6

Conclusions

6.1 Summary of research

The study of the propagation of optical beams in nonlocal, nonlinear soft

matter, specifically nematic liquid crystals, formed the basis of the primary

research presented in this thesis. NLCs exhibit a highly nonlocal response,

whereby the medium response extends far beyond the beam, due to elastic

forces. The optically induced rotation of the NLC molecules alters the re-

fractive index of the medium. This nonlocal, nonlinear response is highly

tunable. Under the correct beam conditions (above the Freédericksz thresh-

old) a nematicon can be created due to the NLC’s ability to balance linear

diffraction and nonlinear self-focusing, to form a self-trapped beam. Due to

the robust nature of solitary waves, and the waveguide induced by them,

nematicons can support the transmission of probe beams. This has lead

182
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to their proposed use in data transmission. Further, a nematicon can be

steered within the NLC by exploiting both the properties of the nematic

and the optical beam, leading to the possibility of switching and logic gates

in all-optical devices [29].

The numerous experimental advancements within the field of nemati-

cons has pushed the mathematical modelling forward to maintain pace, and

to enable mathematicians to provide valuable assistance with future ex-

plorations in this field. These mathematical developments have lead to a

greater understanding of the underlying physics that drive the evolution of

a nematicon. To gain this understanding, new asymptotic approximation

techniques are required, or existing methods extended to capture the new

and varying mechanics presented by nonlinear optical beams in NLC. Much

of this mathematical work would not have been achieved if it was not for

the dedication of various scientists all of whom have aided accurate mathe-

matical descriptions to experimental results.

Nematicons in finite sized NLC cells have been explored experimen-

tally [44] and theoretically in (1+1)D [30]. Chapter 3 presented an extension

of the (1+1)D study into (2+1)D, which is a physically more realistic math-

ematical model. In this case the nematic has a logarithmic response to the

presence of the optical beam [45]. The NLC cell boundaries act repulsively

towards the nematicon during propagation, and asymptotically a nematicon

was found to spiral into the centre of the cell for large propagation distances,
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matching the experimental predictions [44].

Continuing with the effect the boundaries of the NLC cell have on opti-

cal beam propagation, Chapter 4 examined at optical beams with a central

phase singularity, known as optical vortex solitary waves, which are experi-

mentally generated using a holographic film containing a phase ramp which

winds the optical beam around the phase singularity. Optical vortices are

stable in NLC. However, if the phase singularity is disturbed by an inter-

action with a boundary, this was shown to destroy the optical vortex and

result in the formation and propagation of two nematicons. The instabil-

ity break-up of the optical vortex has been noted in previous experimental

results [50, 99] and theoretical results [102].

Chapter 5 examined the propagation of an elliptically-shaped cross-

section optical beam and the formation of an elliptic soliton in a finite sized

NLC cell. Elliptic solitons are unstable due to the major and minor axis

which undergo periodic oscillations and evolve to equal lengths and so a

circular nematicon. These different axis lengths result in the immediate

diffraction of the optical beam. However, it was found that the nonlocality

of the NLC helped to stabilise the elliptic soliton as the nonlocal nematic

response to the optical beam resulted in a symmetric medium response. It

was shown that the shedding of angular momentum in diffractive radiation

was the main driving force for the evolution of the elliptic nematicon.

To explore each of the problems presented in Chapters 3, 4 and 5, equa-
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tions (2.14) and (2.16) govern the propagation of each of the different optical

beam types needed to be derived. In each of the three cases, the same gov-

erning equations and boundary conditions could be used to determine the

evolution of the solitary waves. Full numerical simulations of the governing

equations were run and used to validate the approximations made during

the semi-analytical solution process. The important point to note here is

that different initial optical beam profiles for the electric field envelope were

approximated and used for each of the optical beam types. This was the

key to obtaining good comparisons with the full numerical solutions.

The semi-analytical approach was based on an extended variational method

first introduced by Kath and Smyth [60] which included a shelf of diffractive

radiation that accumulated under an evolving solitary wave. The existence

of the radiation shelf was shown using perturbed inverse scattering [60, 73].

This extension required an additional term to be added to the trial function

to account for the radiation shelf. A system of modulation equations was

derived from an averaged Lagrangian representation of the governing equa-

tions, which were then solved using the standard RK4, with radiation loss

numerically calculated at each z step. The result was an approximation to

the dynamical behaviour of the optical beam.

The governing equations (2.14) and (2.16) were numerically solved using

standard second order centred differences for the Laplacian and Jacobi iter-

ation was used to solve the resulting beam system for the director angle. A
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predictor-corrector method based on second order Runge–Kutta was used

to obtain the solution for the electric field envelope of the optical beams.

The results found from the approximate equations in each chapter were

compared with full numerical solutions. A combination of semi-analytical

and full numerical solutions was able to give deep insights into the mecha-

nisms that drove the beam dynamics and evolution. Good agreement was

generally found between the approximate solutions and the full numerical

solutions. However, the best agreement was achieved by the nematicon so-

lution presented in Chapter 3, as the beam contained features that could be

effectively captured by a simple trial function unlike the optical beams in

Chapters 4 and 5. Further, when the solutions of the approximate equations

did not agree with full numerical solutions, this provided additional insights

into the mechanisms that were missing from the model, such as optical beam

deformation (Chapter 4) and losses due to angular momentum (Chapter 5).

6.2 Review of methodology

The methodology used throughout this thesis was based on the extended

variational method of Kath and Smyth [60], which provides a distinct ad-

vantage over the standard variational method [59, 68], as evidenced in Chap-

ter 5. The extended variational method is able to provide a deeper insight

into the optical beam dynamics as it included loss to shed radiation. To

use the variational method, the full coupled PDE governing equations are
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required to be approximated, taking limits for the nonlocality and optical

beam profile. Within this method, the assumption that the shelf of ra-

diation remains flat within the vicinity of the evolving nematicon is not

necessarily true, as can be seen in the tails of the electric field profile in

figure 3.1(a). However, if the shelf was able to vary it would over complicate

the mathematics, and one would be lost in the mathematical details, rather

than investigating the overarching role the shelf plays in the evolution of the

optical beam. Also, the approximation of the shelf as it stands works well.

Two equivalent methods were used to solve the director equation (2.16)

for the optical beam profiles. These methods were an eigenfunction expan-

sion (Fourier series) and the method of images (MoI). The MoI contained

integrals which could not be evaluated exactly, which required an approx-

imation to be made in order to evaluate them. A Dirac delta function

approximation of the optical beam’s electric field envelope was used and

proved a success. Both solutions for the director perturbation were given

in terms of an infinite series. However, in the numerical evaluation these

series were truncated at the 10200th term. The series solutions were also

truncated at the fundamental and first harmonic of the Fourier series, and

the eight nearest neighbour images surrounding the point source in the MoI.

These approximations of the series illuminated the MoI as an accurate and

computationally quick method with little discernible difference between the

solution with eight neighbouring images and the 10200 images. Addition-
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ally, it compared well with the full numerical solution. In contrast, the

fundamental and first harmonic truncation of the Fourier series, resulted in

reasonable trajectory comparisons with the full numerical solution, but poor

amplitude comparisons.

The chosen trial functions were required to capture the main features of

the optical beams, while maintaining simplicity as they propagated within

the NLC cell [59], in addition to returning meaningful results for the optical

beam’s dynamics. The director solutions were dependent upon the accuracy

of the trial function as well. The results presented in Chapters 3, 4 and 5,

indicated that the trial functions chosen to represent a nematicon, an optical

vortex and an elliptic soliton were good choices.

The extended variational method [60] allowed fundamental conclusions

to be drawn about the dynamical behaviour of the optical beams during

propagation. This is because it allows losses to radiation to be included,

allowing the solitary wave to approach the steady state solution. The am-

plitude oscillations can thus dampen and accurately match those of the full

numerical solution [72]. However, for complicated dynamics, such as those

presented by the elliptic soliton, mass losses due to radiation alone were

not sufficient and another mechanism was sort to improve comparisons with

numerical solutions. The elliptic soliton carried an orbital angular momen-

tum, and simulations and experiments [109, 110] highlighted a reshaping of

the optical beam due to loss of angular momentum. A term due to angu-
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lar momentum loss was included in the analysis and shown to be the vital

step towards obtaining good comparisons with full numerical solutions. The

flexibility of the extended variational method has allowed for losses such as

radiation and angular momentum to be incorporated into the solution with

ease, while still maintaining the overall simplicity of the original approxi-

mate method, in contrast to other variational methods, such as the chirp

method.

To summarise, the extended variational method involves two key factors

which enable good agreement with full numerical solutions to be obtained.

Firstly, the trial function chosen to model the profile of the optical beam’s

electric field envelope portrays the optical beam parameters, so that good

agreement of the parameter oscillations with full numerical solutions can

result. The inclusion of the radiation shelf in the trial functions is also

important as the shelf evolves with the optical beam, aiding in the agreement

with full numerical solutions. Secondly, the inclusion of radiation loss in the

modulation solution is vital to allow the solution to evolve to the steady state

solution. The effect radiation loss has on the optical beam’s propagation is

only noticeable at large propagation distances z ∼ O(100).

If these two main criteria are met, the extended variational method can

be applied to optical beam problems in NLC. Further, this method is ap-

plicable to many other optical scenarios where governing equations model a

slowly varying electric field with a nonlinear response, such as optical beam
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propagation in thermal media [118, 119, 120].

6.3 Future research

Throughout this thesis the propagation of different optical beam types (cir-

cular, doughnut shaped and elliptical) in finite NLC cells have been anal-

ysed. A natural extension of this work is to investigate the behaviour and

evolution of two or more interacting beams propagating within a finite NLC

cell. Examples of these are optical vortex - optical vortex propagation and

nematicon - optical vortex propagation, but this is not an exhaustive list.

The interaction of an optical vortex - optical vortex would have stability

complications. An additional complication is that each optical vortex could

have a different charge, thus creating new solution scenarios.

Continuing with multiple beam propagation in NLC, the formation of

two nematicon waveguides could be used to propagate probing linear optical

beams. The problem of interest is the switching of the probe beams between

waveguides. To achieve this, a separation distance of the nematicons is

required so that attraction and repulsion of the beams is negligible.

The governing equations (2.14) and (2.16) for optical beam propagation

in NLC are applicable to other media, such as thermal media [120]. How-

ever, the nonlinearity in thermal media is temperature dependent and not a

molecular rotation. Therefore, applying different thermal boundary condi-

tions to the medium will allow for the control of the optical beam [120]. The
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extended variational method has had very little use within thermal media

and is an attractive and relatively novel area of research with a large body

of unexplored problems.

In summary, the extended variational method used in this thesis has

potential application to many other optical beam phenomena and shows

promise to make significant contributions to many fields of optics to which

it is applied.



Appendix A

List of integrals and alegbraic

equations Chapter 2

This appendix contains the list of integrals and alegbraic equations refered

to in Chapter 2 [72].

A = 2I2/
√

Ix32, B =
√

2I2,

192
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where

I2 =

∫ ∞

0
x sech2 x dx = ln 2,

Ix32 =

∫ ∞

0
x3 sech2 x dx = 1.352301002 . . . ,

I22 =

∫ ∞

0
x sech2 x tanh2 x dx =

1

3
ln 2 +

1

6
,

I1 =

∫ ∞

0
x sechx dx = 2C,

I42 =

∫ ∞

0
x sech4 x tanh2 x dx =

2

15
ln 2 +

1

60
,

I4 =

∫ ∞

0
x sech4 x dx =

2

3
ln 2− 1

6
,

where C is the Catalan constant C = 0.915965594 . . . [75].

The algebraic equations that appear in the shelf radius calculation are

given by

Θ =
2I22D

2â−A2B2Dβ̂2ŵ2â(2α̂+ Γ1â)

A2B2β̂ŵâ2(2A2α̂β̂3 + Γ2Dβ̂ŵ + 2B2Γ3α̂ŵ3)
,

Q = Q1 −
I22

2A2B4α̂β̂2ŵ4
[Q2 +ΘQ3],

Q1 =
I22
2ŵ2

(

1− 2â

ŵ
Θ

)

, Q2 = α̂2β̂2ŵ2 + Γ1β̂
2ŵ2â,

Q3 = 2α̂β̂2ŵâ+ Γ2β̂
2ŵ2â+ 2Γ3α̂β̂ŵ

2â− 4D−1α̂β̂2ŵ2â(A2Γ3β̂ +B2ŵ),

Γ1 =
2A2B4ŵ4â

qI4D2
, Γ2 =

4A4B4β̂ŵ3â2(β̂ − Γ3ŵ)

qI4D3
,

Γ3 =
B2ŵ(qI4β̂

2 + 4νI3)

qI4β̂(2A2β̂2 −B2ŵ2)
, D = A2β̂2 +B2ŵ2.
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ferences, the author of this thesis has also co-authored the following articles

- Minzoni, A.A., Sciberras, L.W., Smyth, N.F., andWorthy, A.L., “Prop-

agation of optical spatial solitary waves in bias-free nematic liquid

crystal cells,” Phys. Rev. A, 84, 043823 (2011)

URL: http://link.aps.org/doi/10.1103/PhysRevA.84.043823

- Minzoni, A.A., Sciberras, L.W., Smyth, N.F., andWorthy, A.L., “Non-

linear optical beams in bounded nematic liquid crystal cells,” ANZIAM

Journal, 53, C373–C386 (2011)

URL: http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5076

- Minzoni, A.A., Sciberras, L.W., Smyth, N.F., and Worthy, A.L., “Vor-

tices in Nematic Liquid Crystals,” Nematicons: Spatial Optical Soli-
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- Minzoni, A.A., Sciberras, L.W., Smyth, N.F., and Worthy, A.L., “Op-

tical vortex solitary wave in a bounded nematic-liquid-crystal cell,”

Phys. Rev. A, 87, 013810 (2013)

URL: http://link.aps.org/doi/10.1103/PhysRevA.87.013810

http://link.aps.org/doi/10.1103/PhysRevA.87.013810


Bibliography

[1] J. Scott Russell, “Report on waves,” Fourteenth meeting of the British

Association for the Advancement of Science, 1844.

[2] N. Zabusky and M. Kruskal, “Interaction of “solitons” in collisionless

plasma and the recurrence of initial states,” Phys. Rev. Lett., vol. 15,

pp. 240–243, 1965.

[3] L. Rayleigh, “On waves,” Phil. Mag. ser. 5, vol. 1, pp. 257–279, 1876.

[4] D. Korteweg and G. de Vries, “On the change of form of long waves

advancing in a rectangular canal and on a new type of long stationary

waves,” Phil. Mag., vol. 39, pp. 422–443, 1895.

[5] E. Fermi, J. Pasta, and S. Ulam, “Studies of nonlinear problems: Doc-

ument la-1940,” Los Alamos Scientific Laboratory, 1955.

[6] C. Gardner, J. Greene, M. Kruskal, and R. Miura, “Method for solving

the Korteweg-deVries equation,” Phys. Rev. Lett., vol. 19, pp. 1095–

1097, 1967.

196



BIBLIOGRAPHY 197

[7] A. Newell, Solitons in mathematics and physics. Society for Industrial

and Applied Mathematics (SIAM), 1985.

[8] R. Miura, “Korteweg-de vries equation and generalisations. i. a

remarkable explicit nonlinear transform,” J. Math. Phys., vol. 9,

pp. 1202–1204, 1968.

[9] P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of op-

tical harmonics,” Phys. Rev. Lett., vol. 7, pp. 118–119, 1961.

[10] A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear

optical physics in dispersive dielectric fibers. I. anomalous dispersion,”

Appl. Phys. Lett., vol. 23, pp. 142–144, 1973.

[11] A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear

optical physics in dispersive dielectric fibers. II. normal dispersion,”

Appl. Phys. Lett., vol. 23, pp. 171–172, 1973.

[12] L. Mollenauer, R. Stolen, and J. Gordon, “Experimental observation

of picosecond pulse narrowing and solitons in optical fibers,” Phys.

Rev. Lett., vol. 45, pp. 1095–1098, 1980.

[13] M. Segev, “Optical spatial solitons,” Opt. & Quantum Electron.,

vol. 30, pp. 503–533, 1998.

[14] J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Hael-

terman, “Time dependence of soliton formation in planar cells of ne-



BIBLIOGRAPHY 198

matic liquid crystals,” IEEE J. Quantum Electron., vol. 41, pp. 735–

740, 2005.

[15] C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Soli-

tons in nonlinear media with an infinite range of nonlocality: first

observation of coherent elliptic solitons and of vortex-ring solitons,”

Phys. Rev. Lett., vol. 95, p. 213904, 2005.

[16] C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range in-

teractions between optical solitons,” Nat. Phys., vol. 2, pp. 769–774,

2006.

[17] A. Dreischuh, D. Neshev, D. Peterson, O. Bang, and W. Królikowski,
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