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Abstract

In this paper we explore different structures for cost of living adjustments (COLA),
based on Hardy et al. (2020)’s five significant criteria: affordability, sustainability, ef-
ficiency, adequacy, and fairness. Full COLA protects plan members’ real income after
retirement but leads to high costs and solvency risks. A two-tier COLA method, as an
alternative, moderates the risks and protects low-paid members’ benefits. We provide a
new insight using a heterogeneous pension plan model, consisting of equal populations of
blue-collar (lower-paid) and white-collar (higher-paid) members. We further modify the ex-
isting benefit structure of the heterogeneous plan to achieve a DB pension plan conforming
to the five criteria.
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Chapter 1

Introduction

A traditional Defined Benefit (DB) plan provides guaranteed pensions to employees on
their retirement. The benefit amount is commonly expressed as a multiple of an accrual
rate, the average years of service, and the final average salary of the employee. Under
this plan, employers, or sponsors are the ones who take the responsibility (possibly with
employees if contributions are shared) to ensure that retirees can obtain promised benefit
amounts.

Even though two-thirds of pension plan membership in Canada is in DB, the percentage
change in DB pension plan membership is declining in the private sector compared to the
change in Defined Contribution (DC) plans (Statistics Canada, 2020). The unpopularity
of DB pension plans is due to various factors. One is market performance. By the end of
2008, the average funding ratio had reduced to 75% (Sheikh and Sun, 2013). Longevity
improvements also accelerated the decline of DB pension plans. The underestimation of
plan members’ life expectancy in DB pension plans can lead to severe financial consequences
and even bankruptcy. U.S. private DB pension liabilities were undervalued by $84 billion
due to overestimation in the valuation mortality assumptions in 2007, while plan sponsors
were responsible for making up the extra liabilities by making additional contributions
(Kisser et al., 2012). These factors resulted in pension underfunding. From the 2018
Report on the Funding of Defined Benefit Pension Plans in Ontario, 984 DB plans of the
1,364 plans were underfunded under a solvency valuation (Financial Services Commission
of Ontario, 2019).

Despite the decline in private sector DB plans, Dobson (2017) found that DB plans are
still Canadians’ preferred pension plan, according to the Pension and Retirement Income
Preferences Survey results, as they offer guaranteed and predictable lifetime incomes. The
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survey respondents want their retirement benefits to keep up with inflation and they are
willing to achieve these properties by paying additional contributions.

In this paper we explore DB plan design alternatives. The plan design is based on the
following criteria (Hardy et al., 2020).

• Affordable: Although members are willing to contribute more, the plan should have
an average total contribution rate acceptable to members.

• Sustainable: The volatility of total contribution rates is not too high.

• Adequate: The plan provides predictable and sufficient benefits.

• Efficient: The plan collects a proper amount of contributions and uses them effec-
tively to maintain the adequacy of the plan and to avoid excessive surplus, contribu-
tion holidays, or excessive benefits.

• Fair: The plan treats different members equitably.

M’Lauchlan (1907) was one of the first authors who published a simulated pension fund
model. The demographics in his model started with 1,000 members entering at age 20 and
the same population at same age kept up entering each year. He applied factors, including
retirement rates, mortality rates, withdrawal rates, salary increase rates, contribution rates,
and interest rates, to generate the fund accumulated for decennial periods. Manly (1911)
extended M’Lauchlan’s research by exploring the factors’ influences on pension liabilities.

The Pension Liability and Asset Simulation Model (PLASM) proposed by Winklevoss
(1982) is similar to the design of our DB pension plan model. It also used Monte Carlo
simulation to project stochastic salaries, contributions, pension liabilities and assets. Win-
klevoss (1982) also gave a brief introduction of some benefit structure parameters which
affect the model results. One of the parameters is the cost of living adjustments (COLA),
which offsets inflation. Jennings et al. (2016) demonstrated the effects of COLA protection
on protecting retirement income. In this paper our first benefit structure is assumed to
offer full COLA for the pension in payment, and we subsequently explore different bene-
fit structures by implementing different methods of applying COLA. The incentive is to
reduce cost and to pay attention to the impact on low-paid members.

Hardy et al. (2020) considered a heterogeneous plan membership, including salaried
and non-salaried (e.g., hourly paid) members. Under the separate DB plans, non-salaried
members had lower default risk and contribution rate than salaried members. However,
little published research exists that combines heterogeneous groups. In this paper, we
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combine low-paid (blue-collar) and high-paid (white-collar) members in a DB pension plan
and investigate the effects of different benefit structures on the different populations.

This paper is structured as follows. In Chapter 2 we introduce the basic framework
for a traditional DB pension plan with full COLA and demonstrate the simulation results.
We examine different COLA methods and consider the impact on low-paid members in
Chapter 3. Chapter 4 introduces a heterogeneous plan including both blue-collar and
white-collar members in the same DB pension plan and compares the influences under
different methods of applying COLA. The last chapter concludes.
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Chapter 2

Defined Benefit Pension Plan Model

2.1 Economic Scenario Generator

The valuation of liabilities of retirement benefits is sensitive to the valuation assumptions.
By processing different valuation assumptions, subsequent variables alter along with the
variation in the valuation liability. To obtain reliable results, we have used Wilkie’s Eco-
nomic Scenario Generator for all economic factors, fitted to U.S. 1951-2014 data (Zhang
et al., 2018) to simulate 1,000 paths. The generated series are

• Return on equity ye(t),

• Return on long-term bond yb(t),

• Actual inflation rate jsraw(t),

• Yield-To-Maturity (YTM) on risk free bonds Y (t).

We put a restriction on js(t), of a 3% maximum for plan COLA. Moreover, the actual
salary growth gs(t) is 50 basis points above js(t).

js(t) = min (jsraw(t), 3%) , (2.1)

gs(t) = js(t) + 0.005 (2.2)

For the valuation assumptions, we have
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• Valuation interest rate i(t):

We set i(t) based on the YTM on bonds. We allow for a basis point spread between
i(t) and long term risk free bonds. The notation for the basis point spread is β, so
that

i(t) = Y (t) + β. (2.3)

We will discuss the impact of the basis points on the pension plan in Section 2.7.
We set the value of β, for all t, by setting the expected value of i(t) to be equal to
the expected value of the rate of return, based on the 1,000 paths. The expected
value based on the 1,000 paths is estimated using the average throughout time T of
the 1,000 paths. We use notation ye(i, t) as ye(t) under the ith simulation path, and
similarly for yb(i, t), Y (i, t), and i(i, t). Then

ȳe =

∑1000
i=1

∑T
t=1 ye(i, t)

1000T
, (2.4)

ȳb =

∑1000
i=1

∑T
t=1 yb(i, t)

1000T
, (2.5)

Ȳ =

∑1000
i=1

∑T
t=1 Y (i, t)

1000T
, (2.6)

ī =

∑1000
i=1

∑T
t=1 i(i, t)

1000T
. (2.7)

The proportion of assets invested in equities is w. From above, we set

ī = Ȳ + β, (2.8)

ī = w × ȳe+ (1 − w)ȳb, (2.9)

β = w × ȳe+ (1 − w)ȳb− Ȳ . (2.10)

We set w = 0.6 based on the rule of thumb in pension plan portfolios (Gerber and
Shiu, 2000). Later we will consider other w values. From Equation (2.10), the added
basis points β = 0.0081. A simple moving average with a lag of 5 years is used to
smooth i(t).

• Valuation inflation rate j(t)

We set j(0) to be

j(t) = min (max (i(t) − 0.0255, 0%) , 3%) . (2.11)
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This implies, approximately, a real return of 2.55% on investment. Note that the
3% cap and 0% floor are assumed limits imposed by the plan rules. Because of the
5-year moving average need for i(t), j(t) would be smoothed similarly.

• Valuation salary growth rate g(t)

We assume g(t) is 200 basis points below i(t) with a minimum of 1%,

g(t) = max (i(t) − 0.02, 1%) . (2.12)

2.2 Plan Design

We explore DB pension plan design and funding using the model plan described here. The
time horizon is 30 years, and 65 is the retirement age. We do not allow early retirement
in our plan.

• The pension plan offers an accrual rate α of 1.8% of final average salary FAS(x, t)
for each year of service.

• We apply the actual salary growth factor gs(t) in the salary calculation and s(x, 0)
represents a merit salary scale excluding inflation, so that

s(x, t) = s(x, t− 1)(1 + gs(t)) for 25 ≤ x ≤ 65. (2.13)

• The final average salary FAS(x, t) is defined as the average salary over the five years
of employment up to age x at time t, and is calculated

FAS(x, t) =
1

5

5∑
i=1

s (max(25, x− i),max(0, t− i)) (1 + gs(0))min(0,t−i) (2.14)

• The pension in payment is assumed to increase by the actual inflation rate, js(t) per
year for COLA and js(t) is capped at 3%.

• The pension is paid as a whole life annual annuity due.

• All new entrances and exits, including deaths and withdrawals, are assumed to occur
midway through the year.

• Deaths and withdrawals before age 65 receive a lump sum with the value equal to
deferred benefits at retirement age 65.
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2.3 Demographics

The age group is from x = 25 to 105. Members are active from age 25 to 64. The initial
data is given in the appendix. We show part of the table of active members’ information.

x L(x, 0) NE(x) ny(x, 0) s(x, 0) p
(τ)
x

25 17 17 0.5 32.0 0.8998
26 32 17 0.97 33.0 0.8997

63 97 0 22.93 98.2 0.9953
64 97 0 23.93 99.2 0.9947

Table 2.1: Active membership information at time 0, salary in $000s.

Because age 25 is the earliest entrance age, the number of members at age 25 at any
time equals the number of new entrants at age 25, i.e., L(25, t) = NE(25) for all t. We

use the probability that a member stays in the pension plan, tp
(τ)
x , to calculate L(x+ 1, t+

1). Similarly, the average years of service of a member at age 25 at any time under the
assumption is 1

2
, i.e., ny(25, t) = 1

2
for all t. The remaining L(x, t) and ny(x, t) when

t = 1, 2, ..., 30 follow

L(x, t) = L(x− 1, t− 1) p
(τ)
x−1 +NE(x) for x ≤ 65, (2.15)

ny(x, t) =
(L(x, t) −NE(x)) (ny(x− 1, t− 1) + 1) + 1

2
NE(x)

L(x, t)
for x ≤ 65. (2.16)

Here is part of the initial information for retired members.

x L(x, 0) b(x, 0) px x L(x, 0) b(x, 0) px
65 96 44.4 0.9941 104 0 14.0 0.5795
66 94 43.1 0.9934 105 0 13.6 0.0000

Table 2.2: Retired membership information at time 0, benefit amount in $000s.

There are no more new entrants from age 56 to 105. After retirement, instead of using
p
(τ)
x , we apply the probability that a member is still alive, tpx, for L(x+ 1, t+ 1). Members

age 65 have one more year of average years of service than when they were 64. For retired
members, average service is no longer tracked.

L(x, t) = L(x− 1, t− 1) × px−1 for x ≥ 66 (2.17)
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2.4 Valuation Methodology

We use the Traditional Unit Credit (TUC) funding method for the valuation of benefits
in this paper, meaning there is no salary projection. An active member’s accrued benefit
is a multiple of the accrual rate, the final average salary, and the average years of service
at age x. Given that COLA applies, we take the actual capped inflation rate js(t) into
consideration for the accrued benefit for a retired member. Therefore, the average accrued
benefit for a member at age x at time t can be computed as follows,

b(x, t) = α FAS(x, t) ny(x, t) for x ≤ 65, (2.18)

b(x, t) = b(x− 1, t− 1)(1 + js(t)) for x ≥ 66. (2.19)

The total accrued benefit at time t is

B(x, t) = L(x, t)b(x, t), (2.20)

BSUM(t) =
∑
x≥65

B(x, t). (2.21)

The liability for retired members at age x at time t is based on the guaranteed benefits
and the whole life annuity due. The expected present value of the annuity for a member
at age x at time t with the valuation interest rate i(t) and the valuation inflation rate j(t)
is

ä(x,t) =
105−x∑
k=0

kpx
(
1 + i(∗)(t)

)−k
. (2.22)

Due to the existence of COLA, 1 + i(∗)(t) = 1+i(t)
1+j(t)

.

For active members, both the probability of surviving to the retirement age and the
interest rate are used to discounted the liability.

V (x, t) = B(x, t) 65−xp
(τ)
x (1 + i(t))−(65−x) ä(65,t) for x ≤ 65, (2.23)

V (x, t) = B(x, t) ä(x,t) for x ≥ 66. (2.24)

The total liability for all members at time t would be

V SUM(t) =
∑
x

V (x, t). (2.25)
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The normal contributions are paid by members in service, and we assume all contri-
butions are paid by employees. Under the TUC funding approach, the aggregate normal
contributions for members at age x at time t is

NC(x, t) = V (x, t)

(
FAS(x+ 1, t)(1 + g(t)) (ny(x, t) + 1)

FAS(x, t) ny(x, t)
− 1

)
for x ≤ 64. (2.26)

The total normal contributions at time t are

NCSUM(t) =
∑
x≤64

NC(x, t). (2.27)

We assume new entrants’ normal contributions from time t− 1 to t are a proportion of the
normal contributions at t− 1. That is

NCNE(t) =
∑
x

1

2
NE(x)

NC(x− 1, t− 1)

L(x− 1, t− 1)
. (2.28)

The number of members who exit between time t−1 to t is assumed to be L(x, t)(1 − p
(τ)
x ),

including deaths and withdrawals. By our assumption that exit happens midway through
the year, ny(x, t) increases by 1

2
while FAS(x, t) remains the same. The lump sum exit

benefits paid for withdrawals and deaths is

Wb(x, t) = α FAS(x, t)

(
ny(x, t) +

1

2

)
(1 + i(t))−(65−(x+ 1

2
)) ä(65,t). (2.29)

Then the total cost of exit benefits from t− 1 to t is

WSUM(t) =
∑
x≤64

L(x, t)(1 − p(τ)x )Wb(x, t). (2.30)

The accumulation factor for the assets, from time t − 1 to t, based on the proportion
of assets invested in equity w is

R(t) = w(1 + ye(t)) + (1 − w)(1 + yb(t)). (2.31)

At t = 0, we assume that the asset pool is formed equal to the value of the liability. At
the beginning of each year, benefits are paid to all retired members and contributions are
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collected from members in service. The notation A(t) is the asset value immediately after
the cash flow at the beginning of year t. Then let

Abf(0) = V SUM(0), (2.32)

A(0) = Abf(0) −BSUM(0) +NCSUM(0). (2.33)

After investing the assets for one year, paying withdrawal benefits, and collecting new
entrants’ contributions at the middle of the year, the assets brought forward next year
would be

Abf(t+ 1) = A(t)R(t) −WSUM(t)R(t)
1
2 +NCNE(t)R(t)

1
2 , (2.34)

A(t) = Abf(t) −BSUM(t) +NCSUM(t). (2.35)

So the asset liability ratio at time t is,

ALR(t) =
Abf(t)

V SUM(t)
. (2.36)

Besides asset liability ratios, we also pay attention to normal contribution rates in order
to evaluate the plan. It is a scale to measure the input ratio of a participating member’s
normal contributions to the member’s average salary. The normal contribution rate at t is

NCR(t) =
NCSUM(t)∑
x≤64 L(x, t)s(x, t)

. (2.37)

We expect normal contribution rates to lie in the range 15% to 20%.

We introduce additional contributions as an adjustment in our plan. When deficits
happen, i.e., ALR(t) < 1, additional contributions fund part of the gap. The additional
contributions would be paid by the members in service and are added to the assets. By
that, both the asset liability ratio and the total contribution would rise for the next year.
On the other hand, when there is a large surplus, we decrease the contribution amount from
members in service. In other words, the additional contributions will be negative, though,
the total contributions are bounded by 0. The total contributions drop and the asset
liability ratio returns to a smaller figure. By involving additional contributions, we expect
that the asset liability ratio is maintained within an acceptable range, while the total
contribution rate fluctuates. As an adjustment, the amount of additional contributions
needs to be defined and we will discuss this in more detail in Section 2.6.
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2.5 Plan Results
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Figure 2.1: Defined benefit plan results of 1,000 simulations; without additional contri-
butions; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio and 20
sample paths.

Quantiles at t = 30 Asset Liability Ratio Normal Contribution Rate
5% 0.254 (0.196, 0.289) 0.165 (0.159, 0.173)
25% 0.571 (0.538, 0.604) 0.208 (0.205, 0.211)
50% 0.871 (0.832, 0.918) 0.227 (0.226, 0.228)
75% 1.294 (1,254, 1.373) 0.231 (0.230, 0.231)
95% 2.128 (2.118, 2.441) 0.238 (0.237, 0.240)

Table 2.3: Defined benefit plan results of 1,000 simulations; without additional contribu-
tions; 95% confidence intervals in parentheses.

We demonstrate the result of the asset liability ratios and the normal contribution rates
under the simulation of the 1,000 paths in Figure 2.1. The thick lines from bottom to top
correspond to 5%, 25%, 50%, 75%, and 95% quantiles. The grey dashed line is the mean
asset liability ratio over the time period. The black lines are 20 randomly chosen paths
to illustrate the volatility behind the quantile plots. We use the same 20 paths for every
quantile plot in this paper.

In Figure 2.1a, we see that both the 75% quantile line and the 95% quantile line of the
asset liability ratio have an upward trend. The other three quantile lines decline. The 50%
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quantile line is 0.871 at t = 30 from Table 2.3. The mean ends slightly above 1 at t = 30,
with the 95% confidence interval (0.986, 1.070). The difference between the mean and the
median also indicates that some paths have significantly high asset liability ratios in the
end. In Figure 2.1b, the range of the normal contribution rate is from about 16.5% to
24.0%. The median tends to be flat and levels off to 22.7% when t = 30. Most of the paths
lie in between 22% and 24%. This plan is designed that the liability should be adequately
financed by the normal contributions, but overall, the liability goes up faster than the
assets. The plan is easily to be underfunded and we need additional contributions.

2.6 Additional Contributions

We apply additional contributions to this plan as a modifying approach. We have intro-
duced the basic idea of additional contributions in Section 2.4 and will explain further in
this section.

When a plan’s assets are smaller than the liabilities at time t, i.e., Abf(t) < V SUM(t),
the fund is in deficit. At this time, additional contributions totalling AC(t) are collected
from the members in service. The amount is the difference between the liabilities and
the assets, divided by a coefficient k1, indicating a target of k1 years for eliminating the
deficit (ignoring interest). On the other side, when the assets exceed the liabilities by
a lot, e.g., Abf(t) > 1.2V SUM(t), it is inefficient to hold too many assets. Additional
contributions can still be the difference between the liabilities and the assets, divided by
a coefficient k2. The negative additional contributions are regarded as a reduction for the
plan members’ total contributions. The total contributions at t are the sum of the original
normal contribution NCSUM(t) and AC(t). The total contributions will not be negative,
so the floor of AC(t) is −NCSUM(t).

AC(t) =
V SUM(t) − Abf(t)

k1
when ALR(t) ≤ 1.0, (2.38)

AC(t) = max

(
1.2 V SUM(t) − Abf(t)

k2
,−NCSUM(t)

)
when ALR(t) ≥ 1.2. (2.39)

After receiving the additional contributions, we have

A(t) = Abf(t) −BSUM(t) +NCSUM(t) + AC(t). (2.40)

Total contributions include additional contributions and the employees cover all the cost.
Compared with normal contributions, total contributions are larger when the funding is in
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deficit and smaller when in surplus. The total contribution rate at t would be

TCR(t) =
NCSUM(t) + AC(t)∑

x≤64 L(x, t)s(x, t)
. (2.41)

The degree of the asset liability ratio’s rise and the volatility of the total contribution
rate both depend on the amount of additional contributions, i.e., the size of the repayment
relating to the coefficients k1 and k2. To have a clear recognition of the effects of additional
contributions, we apply different coefficients, k1 = 10 and k2 = 5, and k1 = 20 and k2 = 10.
We show the comparison in Figure 2.2, and specific results in Table 2.4

Quantiles at t = 30 with Additional Contributions with k1 = 10 and k2 = 5
Quantiles Asset Liability Ratio Quantiles Total Contribution Rate
5% 0.720 (0.698, 0.741) 95% 0.400 (0.391, 0.415)
25% 0.882 (0.861, 0.898) 75% 0.288 (0.279, 0.299)
50% 1.043 (1.023, 1.066) 50% 0.228 (0.227, 0.230)
75% 1.262 (1.234, 1.288) 25% 0.153 (0.128, 0.171)
95% 1.742 (1.640, 1.820) 5% 0.000 (0.000, 0.000)

Quantiles at t = 30 with Additional Contributions with k1 = 20 and k2 = 10
Quantiles Asset Liability Ratio Quantiles Total Contribution Rate
5% 0.611 (0.581, 0.630) 95% 0.346 (0.340, 0.353)
25% 0.802 (0.783, 0.823) 75% 0.279 (0.271, 0.288)
50% 0.987 (0.966, 1.013) 50% 0.230 (0.229, 0.233)
75% 1.243 (1.211, 1.294) 25% 0.176 (0.160, 0.187)
95% 1.739 (1.684, 1.843) 5% 0.000 (0.000, 0.000)

Table 2.4: Defined benefit plan results of 1,000 simulations; with different additional con-
tributions; 95% confidence intervals in parentheses.

By adding the additional contributions with k1 = 10 and k2 = 5, we can see that the
asset liability ratios improve significantly from Figure 2.2c. The difference between the
quantile lines narrows down, especially between the 75% quantile and the 95% quantile.
The median is flat with the additional contributions, and it is closer to the mean. The 20
paths have little autocorrelation. Increasing k1 and k2 allows recovery over longer time.
From Figure 2.2e, this brings less improvements to the asset liability ratio. The 50%
quantile at t = 30 with k1 = 20 and k2 = 10 is slightly below 1.0, ending at 0.987 with the
95% confidence interval (0.966, 1.013), from Table 2.4.
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(a) Asset Liability Ratio without AC
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(b) Normal Contribution Rate
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(c) Asset Liability Ratio with AC
k1 = 10 and k2 = 5
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(d) Total Contribution Rate
k1 = 10 and k2 = 5
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(e) Asset Liability Ratio with AC
k1 = 20 and k2 = 10
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(f) Total Contribution Rate
k1 = 20 and k2 = 10

Figure 2.2: Defined benefit plan results of 1,000 simulations; with different additional
contributions; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio and
20 sample paths.
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The improvement in the asset liability ratio from the additional contributions is at the
expense of substantial additional volatility in the total contribution rate. From Figure 2.2a,
with k1 = 10 and k2 = 5, we can tell that deficits are much more likely. The range of the
total contribution rate explodes with the additional contributions, although the quantile
lines become flat during the later time periods. In Figure 2.2d, the median stays around
23% and the 25% quantile line declines from t = 12. The 95% quantile line hovers around
40.0%, with the 95% confidence interval (39.1%, 41.5%). The 5% quantile line reaches 0
at t = 7 and remains there to the end of the period. Increasing k1 and k2 to 20 and 10
respectively, the total contribution rate reduces, as we can see from Figure 2.2f. The 5%
quantile line reaches 0 at t = 16 and the 95% quantile line ends at about 34.6%. From
Table 2.4, we see that the 25% quantile and the 50% quantile rise but the 75% quantile
drops compared with the smaller k1 and k2. The overall total contribution rate becomes
less volatile with the increase in k1 and k2, but the asset liability risk is increased.

We note that 0% total contribution rate is inconsistent with fairness. It means that
the current workers don’t have to pay anything, but will still receive their pension benefit
after they retire. In other words, the current active members get a free lunch.

2.7 Sensitivity Tests

We change the valuation interest rate margin, β, to see the effect on valuation and funding.
The margin β is 0.0081 when w = 0.6, so to assess the sensitivity, we set the margin to
be 0.001, 0.008, and 0.015, and keep w = 0.6. We keep k1 = 10 and k2 = 5. We show
the result of one path in Figure 2.3, and the result of 1,000 simulations in Table 2.5, along
with the 95% confidence intervals in parentheses.

By increasing β, we observe directly the increase in i(t) for each path from Equation
(2.3). The assets at t = 0 would also decrease along with the liabilities as we assume the
plan is 100% funded at the start of the projection. From Figure 2.3, both the asset liability
ratio and the total contribution rate are the largest for β = 0.015 from t = 0 to 10, even
though the plan is in surplus. Both are the smallest for β = 0.015 from t = 20 to the end.
From Table 2.5, the increase in β leads to the overall decrease in the asset liability ratio,
except that the 95% quantile is highest when β = 0.008. For the total contribution rate,
the 5% quantiles are all 0; the 25% quantile increases with the rise in β, and both the
50% and the 75% quantiles are similar for different values of β. The 95% quantile is the
smallest when β = 0.008. By applying Equation (2.10) to get β = 0.0081, we get a plan
for which the median of the asset liability ratio is over 1 and the total contribution rate is
relatively concentrated under 40%.
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Figure 2.3: Sensitivity test on valuation interest rate margin, β, about defined benefit plan
results of one simulation; with k1 = 10 and k2 = 5.

Margin 0.001 0.008 0.015
Asset Liability Ratio Quantiles at t = 30
5% 0.726 (0.702, 0.741) 0.720 (0.698, 0.741) 0.708 (0.681, 0.722)
25% 0.885 (0.869, 0.901) 0.882 (0.861, 0.898) 0.860 (0.847, 0.882)
50% 1.047 (1.028, 1.067) 1.043 (1.023, 1.066) 1.025 (1.008, 1.048)
75% 1.275 (1.248, 1.301) 1.262 (1.234, 1.289) 1.237 (1.213, 1.270)
95% 1.728 (1.668, 1.886) 1.741 (1.640, 1.821) 1.689 (1.605, 1.782)
Total Contribution Rate Quantiles at t = 30
5% 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)
25% 0.152 (0.125, 0.174) 0.153 (0.128, 0.171) 0.163 (0.136, 0.178)
50% 0.228 (0.227, 0.231) 0.228 (0.227, 0.230) 0.227 (0.222, 0.229)
75% 0.288 (0.279, 0.302) 0.288 (0.279, 0.299) 0.289 (0.279, 0.299)
95% 0.405 (0.396, 0.418) 0.400 (0.391, 0.415) 0.401 (0.389, 0.414)

Table 2.5: Sensitivity test on the valuation interest rate margin, β, defined benefit plan
results of 1,000 simulations; with k1 = 10 and k2 = 5; 95% confidence intervals in paren-
theses.

Even though the 60/40 equity/bond portfolio is classic, we can modify the proportion
of assets invested in equity, w (Gerber and Shiu, 2000). We keep β the same to keep the
same i(t) under Equation (2.10), so that the liabilities would also be the same. By just
changing w, we perform a sensitivity test to explore the relationship between w and the
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Figure 2.4: Sensitivity test on w about defined benefit plan results of 1,000 simulations;
with k1 = 10 and k2 = 5; 5%, 25%, 50%, 75%, and 95% quantiles at t = 30.

plan performance.

In Figure 2.4a, we observe that the range of the asset liability ratio quantiles gets larger
when w ≥ 0.2. The asset liability ratio range expands around the median in some degree

17



as w rises. It is expected that more assets invested in equity would bring more returns and
risks. There is an increase in all quantiles from w = 0 to w = 0.2.

Since increasing the proportion of assets invested in equity increases the volatility of
the asset liability ratio, the total contribution rate is also expected to be more volatile as w
increases. From Figure 2.4b, 5% quantile of the total contribution rate at t = 30 decreases
to 0 when w = 0.3. The 25% quantile line is also declining. The 50% quantile decreases for
low values of w, and keeps flat for w ≥ 0.4. The 75% quantile displays a convex pattern
with the minimums occurring at w = 0.4, and the 95% quantile minimum is at w = 0.2.
Overall, our benchmark will still be w = 0.6, but we recognise that lower values would
decrease the default risk.
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Chapter 3

Alternative Methods of Applying
Cost of Living Adjustments

In this chapter, we consider whether different COLA methods can reduce the costs and
risks.

• The first method is straightforward, reducing COLA from 100% to 80%. We improve
the pension plan security, but make the pension benefits less adequate.

• The second method is applying a two-tier COLA. In this method, we set a salary
threshold which divides the pension benefit into two components. We apply full
COLA on benefits based on final average salary up to the threshold, and partial
COLA for the above-threshold part. If a member’s final average salary is below the
threshold, the member will still receive full COLA.

The Yearly Maximum Pensionable Earnings (YMPE) is used for the threshold. It
is the maximum amount of earnings which are used for the Canada Pension Plan,
and is already embedded in most Canadian DB plans. It is set by the Canadian
government. The YMPE increases every year in proportion to average earnings. The
threshold at time t is denoted YMPE(t), and we set YMPE(0) to be the current
value. Then

YMPE(t) = YMPE(t− 1) (1 + gs(t)) . (3.1)

We assume that benefits based on salary up to the YMPE are awarded full COLA
with 3% cap, while benefits based on salary over the YMPE are only eligible for 50%
COLA.
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Compared with the original plan with full COLA, the two methods both reduce members’
benefits and the liabilities. However, they generate different results for low-paid and high-
paid members’ benefits. Applying 80% COLA decreases a member’s real income regardless
of the salary. But there are differences between the benefits for the members with high and
low salaries with the two-tier COLA method. The low-paid members who earn salaries
lower than the YMPE will still receive full COLA on their benefits under the two-tier COLA
method. This is appropriate for the low-paid members because they lack discretionary
savings. The two-tier COLA method protects their purchasing power of their benefits.
For high-paid members, who earn the salaries exceeding the YMPE, part of their benefits
increases by 50% COLA. By guaranteeing the below-YMPE benefit part can be increased
by full inflation, the high-paid members’ purchasing power is also guaranteed up to the
pension based on YMPE. Even though their real income declines, their higher income
provides them with more flexibility.

For example, we assume that a member’s average years of service at retirement is 30,
and the accrual rate is α = 1.8%. We set the inflation rate js(t) = 2.5% and YMPE(0) =
60, 000. We set the member’s final average salary FAS(65, 0) to be 50,000, 100,000, or
150,000 to see the effects of the different methods of applying COLA on real income with
the different salaries. The results are shown in Figure 3.1. When full COLA is applied,
real incomes are constant, as indicated by the blue lines in Figure 3.1. Using 80% COLA
reduces real income at the same declining rate for members with different salaries, indicated
by the orange lines.

However, by using the two-tier COLA method

• The member with FAS(65, 0) = 50,000 will have the same real income as applying
full COLA.

• The member with FAS(65, 0) = 100,000 will have a similar declining real income as
when applying 80% COLA.

• The member with FAS(65, 0) = 150,000 will have a faster decline in real income
compared with applying 80% COLA.

However, the starting benefit for the low-paid member is 27,000 compared with the high-
paid member’s 81,000. The diminishing benefits by offering reduced COLA may not be
adequate to meet the minimum needs for the the low-paid members. In contrast, the
two-tier COLA method provides full protection for low-paid members’ real income after
retirement.
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Figure 3.1: Real income with different benefit structures of retired members with different
salary scales.
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3.1 Plan Design

The benefit in payment using 80% COLA is

b(x, t) = b(x− 1, t− 1)(1 + 0.8 × js(t)) for x ≥ 66 (3.2)

compared to Equation (2.19). The liabilities are updated to

V (x, t) = L(x, t)b(x, t) 65−xp
(τ)
x (1 + i(t))−(65−x) ä

(∗)
(65,t) for x ≤ 65, (3.3)

V (x, t) = L(x, t)b(x, t) ä
(∗)
(x,t) for x ≥ 66, (3.4)

where

ä
(∗)
(x,t) =

105−x∑
k=0

kpx

(
1 + i(t)

1 + 0.8 × j(t)

)−k

. (3.5)

The two-tier COLA method separates b(x, t) into two elements. We set

bbelow(x, 0) =
α× min (FAS(x, 0), Y MPE(0)) × ny(x, 0)

(1 + gs(0))max(x−65,0)
, (3.6)

babove(x, 0) =
α× max (FAS(x, 0) − YMPE(0), 0) × ny(x, 0)

(1 + gs(0))max(x−65,0)
. (3.7)

Similarly, b(x, t) for x ≤ 65 and t ≥ 1,

bbelow(x, t) = α× min (FAS(x, t), Y MPE(t)) × ny(x, t), (3.8)

babove(x, t) = α× max (FAS(x, t) − YMPE(t), 0) × ny(x, t). (3.9)

By having the two different benefit parts, we can apply different COLA,

bbelow(x, t) = bbelow(x− 1, t− 1)(1 + js(t)) for x ≥ 66, (3.10)

babove(x, t) = babove(x− 1, t− 1)(1 + 0.5 × js(t)) for x ≥ 66. (3.11)

The liabilities are the sum of the two parts,

V (x, t) =L(x, t)
(
bbelow(x, t) 65−xp

(τ)
x (1 + i(t))−(65−x) ä(65,t)

)
+L(x, t)

(
babove(x, t) 65−xp

(τ)
x (1 + i(t))−(65−x) ä

(∗∗)
(65,t)

)
for x ≤ 65,

(3.12)

V (x, t) =L(x, t)
(
bbelow(x, t)ä(65,t)

)
+ L(x, t)

(
babove(x, t)ä

(∗∗)
(65,t)

)
for x ≥ 66, (3.13)
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where

ä
(∗∗)
(x,t) =

105−x∑
k=0

kpx

(
1 + i(t)

1 + 0.5 × j(t)

)−k

. (3.14)

The withdrawal benefits will be separated similarly to the benefits under the two-tier
COLA method.

If a member’s final average salary at age 65 is below the YMPE(t), full benefit is
always inflated with full COLA up to the 3% cap. However, if the final average salary is
above the YMPE(t), we would have two parts of the benefit. Part of the going benefits is
inflated with 50% COLA.

3.2 Plan Results

We set k1 = 10 and k2 = 5 for the additional contributions. In 2020, the YMPE is $58, 700
(Government of Canada, 2020). We apply YMPE(0) = 60 for convenience, noting that
our units are $000s. In our model demographics, the average salary exceeds the YMPE(0)
by age 42 at time 0.

Method 100% COLA 80% COLA Two-Tier COLA
Asset Liability Ratio Quantiles
5% at t = 15 0.724 (0.709, 0.744) 0.726 (0.707, 0.738) 0.727 (0.711, 0.742)
5% at t = 30 0.720 (0.698, 0.741) 0.718 (0.693, 0.736) 0.724 (0.702, 0.744)
50% at t = 15 1.034 (1.015, 1.053) 1.035 (1.014, 1.052) 1.040 (1.020, 1.060)
50% at t = 30 1.043 (1.023, 1.066) 1.039 (1.014, 1.057) 1.051 (1.025, 1.068)
Total Contribution Rate Quantiles
50% at t = 15 0.231 (0.229, 0.233) 0.220 (0.218, 0.222) 0.225 (0.224, 0.227)
50% at t = 30 0.228 (0.227, 0.230) 0.218 (0.216, 0.219) 0.223 (0.222, 0.224)
95% at t = 15 0.384 (0.379, 0.400) 0.365 (0.358, 0.380) 0.372 (0.363, 0.384)
95% at t = 30 0.400 (0.391, 0.415) 0.383 (0.368, 0.394) 0.387 (0.374, 0.401)

Table 3.1: Defined benefit plan results of 1,000 simulations; with k1 = 10 and k2 = 5; with
different benefit structures; 95% confidence intervals in parentheses.

In Figure 3.2 we show the quantiles and sample paths for the asset liability ratios and
the total contribution rates for the three different benefit structures. The asset liability
ratios are very similar. We mainly focus on the 5% and the 50% quantiles of the asset
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(e) Asset Liability Ratio
with Two-Tier COLA
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Figure 3.2: Defined benefit plan results of 1,000 simulations; with k1 = 10 and k2 = 5;
with different benefit structures; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset
liability ratio and 20 sample paths.
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liability ratio. By taking a closer look, in Table 3.1, we can see that both quantiles increase
at t = 15 but decrease at t = 30 when we reduce COLA. When we use the two-tier COLA
method, the asset liability ratio rises. Also, we see that reducing COLA from 100% to 80%
generates slightly lower 5% and 50% quantiles than applying the two-tier COLA method
at t = 15, though the values are close.

When it comes to the total contribution rate, we see in Figure 3.2 that the quantiles
and the sample paths are still quite similar. The 95% quantiles under the two methods are
below 40.0%. From Table 3.1, we see that the median total contribution rate also drops.
Reducing COLA and using the two-tier COLA method generate similar total contribution
rates, and reducing COLA has a slightly lower total contribution rate.

Even though applying either the 80% COLA or the two-tier COLA achieve similar
results in terms of improving the plan management, the impacts on the members’ benefits
may be totally different. We investigate and track the real income of an active member
age 45 at t = 0, who stays in the pension plan until the retirement age 65, and survives to
age 75. The income before retirement would be the salary minus the total contributions,
and after retirement, the income is the pension benefit.

In Figure 3.3, we show 100 randomly chosen paths of the inflation-adjusted income of
a member under the different benefit structures. We use the same 100 paths for every
income plot in this paper. Although the incomes are inflation adjusted, the income before
retirement shows an upward trend because we have the salary scale, and the actual salary
growth gs(t) is 50 basis points above the actual inflation rate js(t) for each t. The incomes
before retirement are similar for the three methods of applying COLA. According to the
total contribution rate in Table 3.1, the 95% quantile with 100% COLA is highest among
the three methods. Also, the 5% quantiles all end at 0% contribution, from Figure 3.2.
When the salary is fixed, the incomes depend on the total contributions. High total
contribution rates would decrease incomes. The top income before retirement in each plot
is the same with 0% contribution, and the bottom has a slight increase using the reduced
COLA method or the two-tier COLA method. Overall, the volatility of income before
retirement is the lowest with 80% COLA, then with the two-tier COLA, and then with
100% COLA.
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Figure 3.3: Real income of defined benefit plan results of 100 simulations; with k1 = 10
and k2 = 5; with different benefit structures; for an active member starting from x = 45,
in $000s, using time 0 money values.
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Method Mean Real Income at Age 65 Mean Real Income at Age 75
100% COLA 42.222 (1.848%) 41.138 (2.103%)
80% COLA 42.222 (1.848%) 39.448 (2.154%)
Two-Tier COLA 42.222 (1.848%) 39.776 (2.112%)

Table 3.2: Mean real income of defined benefit plan results of 1,000 simulations; with
k1 = 10 and k2 = 5; with different benefit structures; for an active member starting from
x = 45, in $000s, using time 0 money values; estimated standard errors in parentheses.

To have a closer look at the inflation-adjusted income, we also plot the real income
after retirement for each benefit structure. With the inflation adjustment, the benefit after
retirement is mostly flat with full COLA in Figure 3.3b because the benefit is inflated with
3% maximum. In Figure 3.3d and Figure 3.3f, the benefits show a decline. We can see the
mean real incomes at age 65 and 75 under the different benefit structures in Table 3.2. The
incomes at age 65 are the same, and reducing the COLA leads to the benefit decreasing
more than under the two-tier COLA method. By setting different thresholds, and COLA
deduction rates, the effects would be different. For example, if the threshold is a smaller
figure, more of the benefits is increased by the lower COLA. Or instead of 50% COLA, we
could apply 20% COLA on the above-threshold part of the benefit. Therefore, the total
benefits would be smaller.

Overall, applying 80% COLA and the two-tier COLA method have similar results on
the whole plan. Both the solvency risk and the cost risk decrease slightly. The costs,
in terms of median contributions, are very similar. Moreover, the two-tier COLA method
protects the benefits of the members with low salaries. In the next chapter, we will consider
a heterogeneous workforce and compare the different experiences of lower-paid (blue-collar)
and higher-paid (white-collar) members in one plan.
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Chapter 4

A Heterogeneous Plan

We used general aggregated membership information, summarized in Appendix A in the
previous chapters. We now separate blue-collar (lower-paid) and white-collar (higher-paid)
members, and assume they are in the same DB pension plan, and that blue-collar and
white-collar members are treated equally within the plan. In this chapter, we follow the
two-tier COLA method with YMPE(0) = 60 as the threshold, with 100% COLA applied
below the YMPE and 50% COLA applied above the YMPE based on the final average
salary. When we include additional contributions, we set k1 = 10 and k2 = 5.

4.1 Demographics

We modify the general membership information in response to the demographic of blue-
collar and white-collar members and run the DB pension plan model for the two groups
separately. For both groups, we keep the same number of members L(x, 0), the number
of new entrants NE(x), and the average years of service ny(x, 0). The differences are as
follows, and the data is given in the appendix.

For the blue-collar members,

• Their average salary s(x, 0) is lower than the general members’, and their salary
growth is flat from age 35. We set s(25, 0) = 28.0 and s(65, 0) = 35.0, compared with
s(25, 0) = 32.0 and s(65, 0) = 100.2 in the general plan. Their average salary never
exceeds the YMPE, which is growing at the same rate as the salary growth rate.
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Figure 4.1: Defined benefit plan result of 1,000 simulations; with two-tier COLA method
for blue-collar; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio and
20 sample paths; real income of 100 simulations for an active blue-collar member starting
from x = 45, in $000s, using time 0 money values.
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• Their initial benefit after retirement is 15.5 compared with 44.4 for the general plan.
The replacement rate is 44.3% in both plans.

• We assume that the active blue-collar members have a higher probability of staying
in the plan than the general plan membership.

• We assume that the blue-collar members have a higher mortality rate after retirement.
The data is from RP-2014 Mortality Tables Report.

Because the blue-collar members’ salaries are not high, their benefits are inflated with
full COLA. The asset liability ratios for the blue collar members, assuming a seperate plan,
are shown in Figure 4.1a and 4.1b. In Figure 4.1a, the 5% quantile line ends at about 0.35
and the 50% quantile line is close to 1.0. The reason why the blue-collar members demand
less additional contributions is because their salary growth is low. With the additional
contributions, the median is above 1.0 at t = 30 and almost coincides with the mean in
Figure 4.1b. The 5% quantile is about 0.75. In Figure 4.1c, the quantile lines of the normal
contribution rate are smaller as we expected. The median total contribution rate stays level
in Figure 4.1d. The total contribution rate is less volatile than the general plan and the
95% quantile is below 30%. From Figure 4.1e and 4.1f, we see the real income with the
additional contributions is volatile before retirement because of the variations in the total
contributions. The income after retirement is flat because the blue-collar members’ final
average salary is below the YMPE. The two-tier COLA method protects the blue-collar
members’ benefit real value after retirement.

For white-collar members,

• Their average salary at age 25 is the same as the general members’, where s(25, 0) =
32.0. The growth rate is higher and s(65, 0) = 108.5. Their average salary would be
over the YMPE from age 41.

• Their benefit b(65, 0) increases to 48.0. The replacement rate is 44.3% in both plans.

• We assume higher withdrawal rates at young ages and lower withdrawal rate at ages
before the retirement age than the general plan membership.

• We assume that the white-collar members have a lower mortality rate after retire-
ment. The data is from RP-2014 Mortality Tables Report.

From Figure 4.2a, the white-collar members’ pension plan’s asset liability ratio is more
volatile than the blue-collar members’. The 5% quantile line is near 0.1, and this would be
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Figure 4.2: Defined benefit plan result of 1,000 simulations; with two-tier COLA method
for white-collar; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio
and 20 sample paths; real income of 100 simulations for an active white-collar member
starting from x = 45, in $000s, using time 0 money values.
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unsustainable. In Figure 4.2c, the normal contribution rate is higher than the blue-collar
members’. After we apply the additional contributions and the results are shown in Figure
4.2b and 4.2d, the asset liability ratio is similar to the blue-collar members’ but the total
contribution rate is very volatile. The 95% quantile is over 40% and one path hits 50% in
Figure 4.2f. The income after retirement in both Figure 4.2e and 4.2f shows a decline due
to 50% COLA on benefits based on the final average salary above the YMPE.

4.2 Plan Results

We now assume the blue-collar and white-collar members form equal numbers in one plan,
and that all contributions are paid by members. The heterogeneous plan model follows the
same assumptions as in Section 4.1. To first have a general observation of the heterogeneous
plan, we assume there are no additional contributions.

In Figure 4.3a and Figure 4.3b we show the quantiles and sample paths of the asset
liability ratio and the normal contribution rate for the heterogeneous plan. Compared
with the plots for two groups having their own individual pension plans, the heterogeneous
plans’ plots resemble the weighted average of two individual plan’s plots. By t = 30, the
5% quantile line is about 0.198, with the 95% confidence interval (0.147, 0.238). The 50%
quantile line is lower than 1.0. We still have substantial solvency risk in this plan, so
additional contributions are necessary. We show the results in Figure 4.3c and Figure 4.3d.
The asset liability ratio is well-controlled with additional contributions, where the median
is over 1.0, and the 5% quantile is 0.717 with the 95% confidence interval (0.694, 0.734).
Nevertheless, the total contribution rate is volatile. The 5% quantile is 0, and the 95%
quantile is 35.3%, with the 95% confidence interval (34.2%, 36.6%). In Figure 4.3d, one
path’s peak is over 40% and some paths’ falling to 0. Most paths lie between 20% and
35%, and the range brings the potential risk of affordability that members cannot afford
the high total contributions. The overall total contribution rate for the members in the
heterogeneous plan is higher than the blue-collar members’ and lower than the white-collar
members’.

Next, we plot the real income after adding the additional contributions for the two
groups and compare with the income when they are in individual plans. In Figure 4.4a
and 4.4b, the red lines are the white-collar members’ real income and the blue lines are
the blue-collar members’. The benefit is the same for both groups since we don’t change
the benefit structure. But the homogeneous plan has different impacts on income before
retirement.
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Figure 4.3: Heterogeneous defined benefit plan result of 1,000 simulations; with two-tier
COLA method; 5%, 25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio
and 20 sample paths.
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Figure 4.4: Real income of defined benefit plan result of 100 simulations; with k1 = 10
and k2 = 5; with two-tier COLA method; for an active member individually and hetero-
geneously starting from x = 45, in $000s, using time 0 money values; red is white-collar,
blue is blue-collar.
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Mean Real Income
In Individual Plan In Heterogeneous Plan

White Collar at age 45 57.144 (0.000%) 61.298 (0.000%)
White Collar at age 64 102.418 (3.801%) 105.686 (5.835%)

Blue Collar at age 45 31.242 (0.000%) 27.087 (0.000%)
Blue Collar at age 64 32.939 (1.232%) 30.223 (4.143%)

Table 4.1: Mean real income of defined benefit plan result of 1,000 simulations; with
k1 = 10 and k2 = 5; with two-tier COLA method; for an active member individually and
heterogeneously starting from x = 45, in $000s, using time 0 money values; estimated
standard errors in parentheses.

For the blue-collar members, the income risk before retirement is worse in the hetero-
geneous plan. Both the 50% and the 95% quantile of the total contribution rate increase
from Figure 4.1d to Figure 4.3d. The high contribution rates then decrease the blue-collar
members’ income before retirement. The downside income is much lower in Figure 4.4b
compared with Figure 4.4a. The highest income boundary is stable. The 5% quantile
lines of the total contribution rate both end with 0, so there are no contributions but only
salaries. The thickest cluster also falls off because of the increase in the total contribution
rate’s median. From Table 4.1, the incomes at age 45 and age 64 both decrease when the
blue-collar members are in the heterogeneous plan. Even though the income growth rate
from age 45 to 64 based on the mean income increase, the standard error for the income
at age 64 also is higher in the heterogeneous plan. For the white-collar members, on the
contrary, the downside of income shrinks up. The volatility of income before retirement
decreases in the heterogeneous plan.

4.3 Benefit Structure Alternative

The conclusion of the previous section is that when blue-collar members share one pension
plan with white-collar members, their income before retirement has more downside risk,
compared with a separate pension plan. That is, blue-collar members would prefer to have
their own pension plan rather than share one with white-collar members.

To mitigate this problem, and attempt to improve fairness in the heterogeneous plan,
we add a cap on the final average salary. The cap at t is denoted FCAP (t), and increases
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in line with general earnings.

FCAP (t) = FCAP (t− 1) (1 + gs(t)) , (4.1)

FAS(x, t)cap = min (FAS(x, t), FCAP (t)) . (4.2)

While the two-tier COLA method applies partial COLA on the above-threshold part,
setting the cap larger than the threshold in the two-tier COLA method restricts the amount
of that part. We now have two thresholds, YMPE(t) and FCAP (t). The pensionable
salary is limited to the cap, and the contributions which are based on the pensionable
earnings are also limited. The members can still invest by themselves to provide benefits
on the salary above the cap. We set FCAP (0) = 85 initially, and will consider other values
below.

Quantiles at t = 30
Asset Liability Ratio Total Contribution Rate

No Cap

5% 0.717 (0.694, 0.734) 95% 0.353 (0.342, 0.366)
25% 0.880 (0.857, 0.892) 75% 0.250 (0.242, 0.262)
50% 1.045 (1.019, 1.062) 50% 0.196 (0.195, 0.197)
75% 1.261 (1.237, 1.294) 25% 0.125 (0.101, 0.145)
95% 1.772 (1.694, 1.874) 5% 0.000 (0.000, 0.000)

Have Cap

5% 0.710 (0.688, 0.732) 95% 0.330 (0.320, 0.343)
25% 0.876 (0.851, 0.890) 75% 0.233 (0.224, 0.243)
50% 1.035 (1.014, 1.058) 50% 0.180 (0.179, 0.180)
75% 1.255 (1.231, 1.290) 25% 0.111 (0.090, 0.132)
95% 1.791 (1.681, 1.912) 5% 0.000 (0.000, 0.000)

Table 4.2: Heterogeneous defined benefit plan result of 1,000 simulations; with k1 = 10
and k2 = 5; with two-tier COLA method; with or without cap on final average salary; 95%
confidence intervals in parentheses.

We present the asset liability ratio and the total contribution rate under this benefit
structure in Figure 4.5. We also show the end points of all quantiles at t = 30 in Table
4.2, along with the 95% confidence intervals in parentheses. By adding the cap on final
average salary, we observe that all the quantiles of the asset liability ratio slightly decrease
expect the 95% quantile. From Figure 4.5d, the median decreases to 18.0% compared with
Figure 4.5b. From Table 4.2, all quantiles of the total contribution rate decrease because
of the decrease in the liabilities by setting the cap.
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(c) Asset Liability Ratio with
FCAP (0) = 85
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(d) Total Contribution Rate with
FCAP (0) = 85,

Figure 4.5: Heterogeneous defined benefit plan result of 1,000 simulations; with k1 = 10
and k2 = 5; with two-tier COLA method; with or without cap on final average salary; 5%,
25%, 50%, 75%, and 95% quantiles, with mean asset liability ratio and 20 sample paths.
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without Cap

45 50 55 60 65 70 75
Age

0

20

40

60

80

100

120

Re
al
 In

co
m
e 
(in

 0
00

s)

(b) Members in Heterogeneous Plan
with FCAP (0) = 85

Figure 4.6: Real income of heterogeneous defined benefit plan result of 100 simulations;
with k1 = 10 and k2 = 5; with two-tier COLA method; with or without cap on final average
salary; for an active member in starting from x = 45, in 000s, using time 0 money values;
red is white-collar, blue is blue-collar.
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Mean Real Income
Collar Age No Cap Have Cap

White Collar

45 61.298 (0.000%) 62.148 (0.000%)
64 105.686 (5.835%) 106.218 (5.691%)
65 45.047 (1.971%) 39.565 (1.424%)
75 42.228 (2.263%) 37.415 (1.703%)

Blue Collar

45 27.087 (0.000%) 27.937 (0.000%)
64 30.223 (4.143%) 30.755 (3.921%)
65 15.349 (0.673%) 15.349 (0.673%)
75 14.954 (0.766%) 14.954 (0.766%)

Table 4.3: Mean real income of heterogeneous defined benefit plan result of 100 simulations;
with k1 = 10 and k2 = 5; with two-tier COLA method; with or without cap on final average
salary; for an active member in starting from x = 45, in 000s, using time 0 money values;
estimated standard errors in parentheses.

We also show the income for blue-collar and white-collar members. Because FCAP (0) =
85, which is larger than the blue-collar members’ final average salary, it does not influence
the blue-collar members’ income after retirement. The overall income before retirement
increases because the contributions decrease. The lower total contribution rate controls
the downside risk of the income before retirement. For white-collar members, the income
before retirement also increases. They already had a less volatile income before retirement
in the heterogeneous plan. So we pay attention to the income after retirement. Setting
the cap on the final average salary reduces white-collar members’ benefit to around 40.
Because less part of the benefits is inflated with half COLA, the decline of the white-
collar members’ income after retirement is slower in Figure 4.6b than in Figure 4.6a. Even
though the white-collar members’ income after retirement drops, the white-collar members
can invest the non-pensionable earnings by themselves to supplement their benefits.
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Quantiles at t = 30
FCAP (0) Asset Liability Ratio Total Contribution Rate

80

5% 0.708 (0.686, 0.731) 95% 0.320 (0.309, 0.332)
25% 0.874 (0.852, 0.891) 75% 0.225 (0.216, 0.236)
50% 1.032 (1.012, 1.058) 50% 0.173 (0.172, 0.174)
75% 1.254 (1.231, 1.289) 25% 0.109 (0.866, 0.127)
95% 1.793 (1.686, 1.920) 5% 0.000 (0.000, 0.000)

85

5% 0.710 (0.688, 0.732) 95% 0.330 (0.320, 0.343)
25% 0.876 (0.851, 0.890) 75% 0.233 (0.224, 0.243)
50% 1.035 (1.014, 1.058) 50% 0.180 (0.179, 0.180)
75% 1.255 (1.231, 1.290) 25% 0.111 (0.090, 0.132)
95% 1.791 (1.681, 1.912) 5% 0.000 (0.000, 0.000)

90

5% 0.713 (0.691, 0.733) 95% 0.340 (0.330, 0.354)
25% 0.877 (0.853, 0.891) 75% 0.240 (0.231, 0.251)
50% 1.038 (1.016, 1.058) 50% 0.187 (0.186, 0.188)
75% 1.257 (1.233, 1.292) 25% 0.117 (0.094, 0.137)
95% 1.781 (1.687, 1.890) 5% 0.000 (0.000, 0.000)

Table 4.4: Sensitivity test on cap on final average salary about defined benefit plan result of
1,000 simulations; with k1 = 10 and k2 = 5; with two-tier COLA method; 95% confidence
intervals in parentheses.
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Mean Real Income
FCAP (0) Age White Collar Blue Collar

80

45 62.470 (0.000%) 28.258 (0.000%)
64 106.430 (5.616%) 30.967 (3.818%)
65 37.238 (1.341%) 15.349 (0.673%)
75 35.374 (1.597%) 14.954 (0.766%)

85

45 62.148 (0.000%) 27.937 (0.000%)
64 106.218 (5.691%) 30.755 (3.921%)
65 39.565 (1.424%) 15.349 (0.673%)
75 37.415 (1.703%) 14.954 (0.766%)

90

45 61.813 (0.000%) 27.602 (0.000%)
64 106.001 (5.765%) 30.538 (4.023%)
65 41.892 (1.508%) 15.349 (0.673%)
75 39.456 (1.809%) 14.954 (0.766%)

Table 4.5: Sensitivity test on cap on final average salary about mean real income of defined
benefit plan result of 1,000 simulations; with k1 = 10 and k2 = 5; with two-tier COLA
method; for an active member starting from x = 45, in $000s, using time 0 money values;
estimated standard errors in parentheses.

We test values of FCAP (0) from 80 to 90 to do a sensitivity test on the FCAP (0)
salary. In Table 4.4, we observe that a smaller FCAP (0) decreases the overall asset liability
ratio except the 95% quantile. The 95 quantile of the total contribution rate drops to 32%
when FCAP (0) = 80, with the 95% confidence interval (30.9%, 33.2%). The required
contributions decrease will lead to a further increase in the income before retirement. In
Table 4.5, a smaller FCAP (0) generates a higher income before retirement for both the
blue-collar and white-collar members. Though the white-collar members’ benefit decreases,
the decline rate from age 65 to 75 is slower when FCAP (0) decreases.

We set the cap on final average salary not only to incentivise blue-collar members to
stay in the heterogeneous pension plan, but also to increase fairness. The income before
retirement has a lower volatility and a higher mean for the blue-collar members. As long
as the FCAP (0) is smaller than their salary, the adjustments will not hurt their income
after retirement. However, adding a relatively small FCAP (0) damages the plan funding.
Small FCAP (0) generates both low 5% and 50% quantiles, increasing the default risk
and inadequacy. Moreover, it brings a high 95% quantile but an inefficient funding. The
heterogeneous plan also leaves some other unanswered questions. From Table 4.4, the
problem of free lunch still exists as long as the 5% quantile line of the total contribution
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rate ends with 0. By increasing the recovery time for surplus, this problem could be
mitigated and the asset liability ratio would increase. However, the 95% quantile when
FCAP (0) = 80 is almost 1.8. We would end up with a larger number when we increase
surplus recovery time. Based on our criteria, it is inefficient for the plan to have a large
surplus. How to deal with these questions needs future research.
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Chapter 5

Conclusion

This paper first demonstrates that the traditional DB pension plan offering full COLA has
significant solvency risk under reasonable assumptions, based on the 1000 simulated paths
generated by the Wilkie’s Economic Scenario Generator. The high solvency risk violates
the adequacy criterion because of the default risk. We include additional contributions in
the plan. Even though the inclusion of additional contributions improves the asset liability
ratio, it introduces cost risk. The total contribution rate is volatile, with the highest values
reaching about 50% and the lowest falling to 0. It is not sustainable, affordable, or fair.

This paper provides two different methods of applying COLA. The first is reducing 100%
COLA to 80%. The second is the two-tier COLA method. We use YMPE as the threshold,
with below-YMPE benefit eligible for 100% COLA, and above-YMPE benefit eligible for
50% COLA. The two methods both decrease the liabilities and mitigate the solvency risk
and the cost risk, but the effects are not very substantial. Even though the two methods
generate similar results, they have different impacts on members’ income, especially for
low-paid members. The two-tier COLA method protects income after retirement for the
members who earn below YMPE.

We then follow the two-tier COLA method and give a new perspective of including blue-
collar (lower-paid) and white-collar (higher-paid) members in one heterogeneous pension
plan. The member populations are the same for the two groups. We follow the fairness
criterion by treating the two groups equally. But the heterogeneous plan brings lower and
more volatile income before retirement for the blue-collar members, because they need to
share the large liabilities created by the white-collar members. We further set different
caps on the pensionable final average salary. A lower cap on the final average salary results
in lower asset liability ratio and total contribution rate. Even though the white-collar
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members receive fewer benefits, because of the cap, they can invest their non-pensionable
earnings individually. However, the heterogeneous plan leaves some unanswered questions
such as inefficiency or inadequacy.

Although the heterogeneous plan looks more fair, it still favors the white-collar mem-
bers. The blue-collar members take the cost risk brought by the white-collar members.
The two-tier COLA, and setting the caps on the final average salary, help to reduce the
unfairness, but maybe not enough. We could impose a lower final average salary to fur-
ther reduce the risks and increase affordability and fairness, but it becomes inefficient and
inadequate. Or we can lower the equity weighting in investment to pursue sustainability,
but it will push up costs. The challenge remains to balance members’ interests and achieve
the five criteria.
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Appendix A

General Members’ Information

A.1 Active Members

x L(x, 0) NE(x) ny(x, 0) s(x, 0) (in 000s) p
(τ)
x

25 17 17 0.50 32.0 0.8998
26 32 17 0.97 33.0 0.8997
27 45 16 1.45 35.3 0.8997
28 55 15 1.92 36.7 0.8997
29 64 14 2.39 38.2 0.8997
30 70 12 2.89 39.7 0.8997
31 74 11 3.39 41.3 0.8997
32 77 10 3.88 42.9 0.8997
33 78 9 4.38 44.6 0.9097
34 78 7 4.94 46.4 0.9197
35 75 5 5.58 48.1 0.9296
36 76 5 6.18 49.7 0.9396
37 78 5 6.75 51.5 0.9496
38 79 5 7.29 53.3 0.9496
39 80 5 7.80 55.1 0.9495
40 81 5 8.29 57.1 0.9495
41 82 5 8.75 59.1 0.9495
42 83 6 9.09 60.8 0.9494
43 85 6 9.41 62.7 0.9494
44 87 6 9.73 64.5 0.9593
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x L(x, 0) NE(x) ny(x, 0) (in 000s) s(x, 0) p
(τ)
x

45 89 6 10.04 66.5 0.9693
46 93 6 10.36 68.5 0.9792
47 97 6 10.69 70.5 0.9791
48 100 6 11.01 72.3 0.9790
49 104 6 11.35 74.1 0.9789
50 107 5 11.80 76.0 0.9788
51 110 5 12.24 77.9 0.9787
52 111 4 12.78 79.8 0.9786
53 113 4 13.31 81.8 0.9784
54 112 2 14.06 83.8 0.9782
55 111 1 14.93 85.5 0.9780
56 108 0 15.93 87.2 0.9778
57 106 0 16.93 89.0 0.9776
58 103 0 17.93 90.7 0.9773
59 101 0 18.93 92.6 0.9770
60 98 0 19.93 94.4 0.9866
61 98 0 20.93 96.3 0.9962
62 98 0 21.93 97.3 0.9958
63 97 0 22.93 98.2 0.9953
64 97 0 23.93 99.2 0.9947
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A.2 Retired Members

s(65, 0) = 100.2

x L(x, 0) b(x, 0) (in 000s) px x L(x, 0) b(x, 0) (in 000s) px
65 96 44.4 0.9941 86 23 23.8 0.9354
66 94 43.1 0.9934 87 19 23.1 0.9278
67 92 41.8 0.9926 88 15 22.5 0.9192
68 91 40.6 0.9917 89 12 21.8 0.9097
69 89 39.4 0.9907 90 9 21.2 0.8991
70 86 38.3 0.9896 91 6 20.6 0.8873
71 84 37.1 0.9883 92 4 20.0 0.8743
72 81 36.1 0.9869 93 3 19.4 0.8599
73 78 35.0 0.9853 94 1 18.8 0.8439
74 75 34.0 0.9836 95 1 18.3 0.8264
75 72 33.0 0.9816 96 0 17.7 0.8071
76 68 32.0 0.9793 97 0 17.2 0.7860
77 64 31.1 0.9768 98 0 16.7 0.7629
78 60 30.2 0.9740 99 0 16.2 0.7377
79 56 29.3 0.9709 100 0 15.8 0.7104
80 51 28.5 0.9673 101 0 15.3 0.6809
81 47 27.6 0.9634 102 0 14.9 0.6493
82 42 26.8 0.9590 103 0 14.4 0.6154
83 37 26.1 0.9540 104 0 14.0 0.5795
84 32 25.3 0.9485 105 0 13.6 0.0000
85 28 24.6 0.9423
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Appendix B

Blue-Collar Members’ Information

B.1 Active Members

x L(x, 0) NE(x) ny(x, 0) s(x, 0) (in 000s) p
(τ)
x

25 17 17 0.50 28.0 0.9326
26 32 17 0.97 29.3 0.9317
27 45 16 1.45 30.6 0.9308
28 55 15 1.92 32.0 0.9298
29 64 14 2.39 33.5 0.9289
30 70 12 2.89 35.0 0.9280
31 74 11 3.39 35.0 0.9270
32 77 10 3.88 35.0 0.9261
33 78 9 4.38 35.0 0.9354
34 78 7 4.94 35.0 0.9447
35 75 5 5.58 35.0 0.9540
36 76 5 6.18 35.0 0.9633
37 78 5 6.75 35.0 0.9725
38 79 5 7.29 35.0 0.9715
39 80 5 7.80 35.0 0.9705
40 81 5 8.29 35.0 0.9695
41 82 5 8.75 35.0 0.9685
42 83 6 9.09 35.0 0.9675
43 85 6 9.41 35.0 0.9665
44 87 6 9.73 35.0 0.9756
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x L(x, 0) NE(x) ny(x, 0) s(x, 0) (in 000s) p
(τ)
x

45 89 6 10.04 35.0 0.9847
46 93 6 10.36 35.0 0.9938
47 97 6 10.69 35.0 0.9927
48 100 6 11.01 35.0 0.9916
49 104 6 11.35 35.0 0.9904
50 107 5 11.80 35.0 0.9893
51 110 5 12.24 35.0 0.9882
52 111 4 12.78 35.0 0.9870
53 113 4 13.31 35.0 0.9858
54 112 2 14.06 35.0 0.9846
55 111 1 14.93 35.0 0.9834
56 108 0 15.93 35.0 0.9822
57 106 0 16.93 35.0 0.9809
58 103 0 17.93 35.0 0.9796
59 101 0 18.93 35.0 0.9782
60 98 0 19.93 35.0 0.9868
61 98 0 20.93 35.0 0.9951
62 98 0 21.93 35.0 0.9946
63 97 0 22.93 35.0 0.9940
64 97 0 23.93 35.0 0.9933
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B.2 Retired Members

s(65, 0) = 35.0

x L(x, 0) b(x, 0) (in 000s) px x L(x, 0) b(x, 0) (in 000s) px
65 96 15.5 0.9893 86 23 8.3 0.9156
66 94 15.0 0.9883 87 19 8.1 0.9061
67 92 14.6 0.9872 88 15 7.9 0.8956
68 91 14.2 0.9860 89 12 7.6 0.8839
69 89 13.8 0.9847 90 9 7.4 0.8709
70 86 13.4 0.9832 91 6 7.2 0.8569
71 84 13.0 0.9815 92 4 7.0 0.8424
72 81 12.6 0.9797 93 3 6.8 0.8273
73 78 12.2 0.9776 94 1 6.6 0.8118
74 75 11.9 0.9753 95 1 6.4 0.7959
75 72 11.5 0.9728 96 0 6.2 0.7795
76 68 11.2 0.9699 97 0 6.0 0.7627
77 64 10.9 0.9668 98 0 5.8 0.7451
78 60 10.6 0.9633 99 0 5.7 0.7267
79 56 10.2 0.9594 100 0 5.5 0.6999
80 51 9.9 0.9550 101 0 5.3 0.6708
81 47 9.7 0.9501 102 0 5.2 0.6396
82 42 9.4 0.9446 103 0 5.0 0.6063
83 37 9.1 0.9385 104 0 4.9 0.5709
84 32 8.8 0.9317 105 0 4.7 0.0000
85 28 8.6
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Appendix C

White-Collar Members’ Information

C.1 Active Members

x L(x, 0) NE(x) ny(x, 0) s(x, 0) (in 000s) p
(τ)
x

25 17 17 0.50 32.0 0.8680
26 32 17 0.97 33.1 0.8689
27 45 16 1.45 35.4 0.8697
28 55 15 1.92 36.9 0.8706
29 64 14 2.39 38.5 0.8714
30 70 12 2.89 40.1 0.8723
31 74 11 3.39 41.8 0.8732
32 77 10 3.88 43.5 0.8740
33 78 9 4.38 45.3 0.8846
34 78 7 4.94 47.2 0.8952
35 75 5 5.58 49.1 0.9059
36 76 5 6.18 50.8 0.9165
37 78 5 6.75 52.7 0.9272
38 79 5 7.29 54.7 0.9281
39 80 5 7.80 56.7 0.9290
40 81 5 8.29 58.8 0.9299
41 82 5 8.75 61.0 0.9308
42 83 6 9.09 62.9 0.9317
43 85 6 9.41 65.0 0.9326
44 87 6 9.73 67.0 0.9433
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C.2 Active Members

x L(x, 0) NE(x) ny(x, 0) s(x, 0) (in 000s) p
(τ)
x

45 89 6 10.04 69.2 0.9540
46 93 6 10.36 71.4 0.9648
47 97 6 10.69 73.7 0.9657
48 100 6 11.01 75.7 0.9666
49 104 6 11.35 77.7 0.9675
50 107 5 11.80 79.9 0.9684
51 110 5 12.24 82.1 0.9693
52 111 4 12.78 84.2 0.9702
53 113 4 13.31 86.5 0.9710
54 112 2 14.06 88.8 0.9719
55 111 1 14.93 90.8 0.9727
56 108 0 15.93 92.8 0.9735
57 106 0 16.93 94.9 0.9743
58 103 0 17.93 96.9 0.9751
59 101 0 18.93 99.1 0.9758
60 98 0 19.93 101.2 0.9865
61 98 0 20.93 103.5 0.9972
62 98 0 21.93 104.8 0.9968
63 97 0 22.93 105.9 0.9965
64 97 0 23.93 107.2 0.9960

55



C.3 Retired Members

s(65, 0) = 108.5

x L(x, 0) b(x, 0) (in 000s) px x L(x, 0) b(x, 0) (in 000s) px
65 96 48.0 0.9959 86 23 25.8 0.9430
66 94 46.6 0.9953 87 19 25.1 0.9355
67 92 45.3 0.9947 88 15 24.3 0.9272
68 91 44.0 0.9940 89 12 23.6 0.9178
69 89 42.7 0.9932 90 9 22.9 0.9072
70 86 41.4 0.9923 91 6 22.3 0.8954
71 84 40.2 0.9912 92 4 21.6 0.8822
72 81 39.1 0.9900 93 3 21.0 0.8673
73 78 37.9 0.9887 94 1 20.4 0.8507
74 75 36.8 0.9872 95 1 19.8 0.8323
75 72 35.8 0.9855 96 0 19.2 0.8119
76 68 34.7 0.9836 97 0 18.7 0.7894
77 64 33.7 0.9814 98 0 18.1 0.7648
78 60 32.7 0.9789 99 0 17.6 0.7396
79 56 31.8 0.9761 100 0 17.1 0.7122
80 51 30.8 0.9730 101 0 16.6 0.6827
81 47 29.9 0.9694 102 0 16.1 0.6509
82 42 29.1 0.9653 103 0 15.6 0.6170
83 37 28.2 0.9607 104 0 15.2 0.5810
84 32 27.4 0.9555 105 0 14.7 0.0000
85 28 26.6 0.9496
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