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Abstract

In this work we consider various aspects of recurrence times in stochastic
processes and dynamical systems. The first part of the thesis is set in the
context of zero-one stochastic processes. Here, by a zero-one stochastic pro-
cess is meant a sequence of functions on a given set where each function
takes values of either zero or one. The discussion is primarily concerned with
stationary processes and is a rigourous and, in some aspects, a more general
discussion of work of P. Kasteleyn. A connection between notions of recur-
rence in zero-one stochastic processes and dynamical systems admitting an
invariant probability is established. The later part of the thesis presents new
results in some special dynamical systems. These results are mainly to do
with calculating the standard deviation of recurrence times and discussing
the finiteness of the standard deviation, and are related to the existing liter-
ature.
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Chapter 1

Introduction

There are phenomena which occur repeatedly in the natural world and in
human affairs. Some of these phenomena are predictable, such as the rising
of the sun every twenty four hours. However, other phenomena, such as
earthquakes, are not predictable, despite the use of sophisticated technology
in attempts to do so.

In mathematical terms, phenomena of repetition and recurrence may be
studies in terms of stochastic processes (or times series) and, more partic-
ularly, in terms of dynamical systems. A zero-one stochastic processes is a
sequence (Xn) of functions having a common domain, and having a common
co-domain {0, 1}. The parameter n may be interpreted as time. Then, if
Xn(x) = 1, we might say that if the process started in a state x, then “1” is
observed at time n. Then, if m > n and Xm(x) = 1, we might say that “1”
has again been observed, or that “1” has recurred after a further elapse of
time m− n.

In a dynamical system, we are given a set S and a transformation
f : S −→ S. Given x ∈ S, the sequence x, f(x), f 2(x), . . . in S is called the
orbit of x (note that we use the notation fn = f ◦ f ◦ . . . ◦ f , where the
composition is taken n times). Given a subset U ⊆ S, and given x ∈ U , we
can consider whether there is another point fn(x) in the orbit of x that is
also in U . The connection with stochastic processes comes about as follows.
Let χU denote the characteristic function of U , that is

χU(x) =

{
1, if x ∈ U ,

0, if x /∈ U .

Then, define Xn : S −→ {0, 1} by putting Xn(x) = χU

(
fn(x)

)
. Then, (Xn)

is a stochastic process, and recurrence phenomena in the process (Xn) are
equivalent to recurrence phenomena in the dynamical system (S, f).
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CHAPTER 1. INTRODUCTION

One aspect of this thesis is to examine parts of the work of Kasteleyn [18].
The aim here is to present some of Kasteleyn’s work in a more formalised and
mathematically rigorous way, to make explicit the underlying assumptions,
and to provide complete proofs in so doing. Here, the aim also is to generalise
Kasteleyn’s approach in some respects, and produce some efficiencies.

Further, another aim of the thesis is to obtain new results concerning re-
currence, and the standard deviation of recurrence times, for some particular
dynamical systems. Three main types of dynamical systems are considered.

The first type is where the system (S, f) consists of a bounded interval
of real numbers and f : S −→ S is a piecewise linear transformation in the
sense that on each subinterval of S that is in a given partition of S, f has a
graph that is a straight line segment.

The second type of system (S, f) is where S is a finite set and f acts as
a cyclic permutation on S.

Third type of system (S, f) is arising from an infinite “sum” of finite
discrete systems, where S =

⋃
j∈N Sj, the Sj are disjoint sets and f = fj acts

as a cyclic permutation on the whole of Sj, for all j ∈ N. For all of these
systems, new results are obtained for the standard deviation of recurrence
times. This work in places sheds new light on some of the results in Kasteleyn,
and it is also related to earlier work on the moments of recurrence times by
Blum and Rosenblatt [4].

The following now gives an idea of the contents of each Chapter, and a
more detailed view of the structure of the thesis. Detailed definitions and
more technical issues are dealt with in the body of the thesis.

Chapter 2 introduces the notion of a probability and a probability func-
tion. A probability is a finitely additive set function, of total mass 1, on an
algebra of sets. A probability function P is a probability on an algebra B of
sets such that if (An) is a sequence of disjoint sets in B and

⋃∞
n=1An ∈ B,

then

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P (An).

These are introduced to distinguish between different assumptions needed in
the work of Kasteleyn [18] (see also [1], [5], and [11]).

Chapter 3 introduces zero-one stochastic processes and stationary pro-
cesses, which play an important role. Technical preliminary results are de-
rived and the relationship between stochastic processes and dynamical sys-
tems is discussed (see [3], [9], [10], and [17]).

Chapter 4 deals with some basic identities to be used in connection with
the study of recurrence and recurrence times in stochastic processes. These

2



CHAPTER 1. INTRODUCTION

results are due to Kasteleyn [18], but the approach here is more general and
is more explicit in relation to the underlying definitions and assumptions.

Chapter 5 presents some of the main results in Kasteleyn [18] concerning
recurrence. The Poincaré Theorem specifies when an initial state will recur
within a finite time, or maybe approximately recur within a finite time.
Also, Kac’s formula says that the average time for a given event to recur
is inversely proportional to the probability of the event. These results are
derived for stochastic processes and specialised to dynamical systems. Again,
there is an emphasis here on clarifying assumptions and giving complete
proofs. Whereas the recurrence time is an observation of how long it has
taken an event to recur, the standard deviation of recurrence times measures
“how much” the various recurrence times deviate from the average value of
the recurrence time as given by Kac’s formula. Thus, the standard deviation
is related to the “predictability” of the recurrence times (for more discussion
and clarification see [12], [7], [19], [24], [8], and [28]).

Chapter 6 is concerned with work on the standard deviation of recurrence
times, as originally looked at by Blum and Rosenblatt [4] and Kasteleyn [18].
There is also a discussion in [20, pages 270-284]. The discussion depends upon
the technical tools previously developed.

Chapter 7 is concerned with a discussion of dynamical systems where the
underlying set S is an interval and f : S −→ S is a transformation that
is piecewise linear, as previously described. New results are obtained for
estimating the standard deviation in some of these systems. Related ideas

and calculations are presented to obtain new results in a system
(

[0, 1), f
)

where f : [0, 1) −→ [0, 1) is the fractional part of x+1/q, where q ∈ {2, 3, . . .}
is specified in advance.

Chapter 8 deals with a finite dynamical system where the underlying set
S = {u0, u1, . . . , u|S|−1} is a finite set and f : S −→ S is a cyclic permutation
of S. (Here |S| denotes the number of elements in a finite set S.) The system
in Chapter 7 can be regarded more abstractly as a system (S, f), where S is
a finite set and f is a cyclic permutation of S. New results are obtained for
the standard deviation of the recurrence times which relate to Kac’s formula
for the average of recurrence times.

At the end, Chapter 9 deals with a countable “sum” of finite discrete
dynamical systems where S =

⋃
j∈N Sj, put

f : S −→ S by f(x) = fj(x) for all x ∈ Sj,

and fj acts as a cyclic permutation on the whole of Sj. New results are
obtained for the standard deviation of the recurrence times.

3



CHAPTER 1. INTRODUCTION

We now introduce some of the general notations used in the thesis. Others
will be introduced later, as needed.

Given sets A and B, the union of the sets is denoted by A ∪ B, and the
intersection of sets is denoted by A∩B. When A is a subset of B, we denoted
this by A ⊆ B, and the complement of A is denoted by Ac. If A,B are sets,
A∩Bc may be denoted by A−B. The union of sets A1, A2, . . . is denoted by⋃∞
n=1An, and the intersection of sets A1, A2, . . . is denoted by

⋂∞
n=1An. The

empty set is denoted by ∅. If A,B are sets, the Cartesian product of A,B is

A×B =
{

(a, b) : a ∈ A and b ∈ B
}
.

Similarly, if we have sets A1, A2, . . . , An, the Cartesian product of the sets is

A1 × A2 × . . .× An =
{

(a1, a2, . . . , an) : aj ∈ Aj for all j = 1, 2, . . . , n
}
.

A Cartesian product of the form A×A× . . .×A, taken r times, is denoted
by Ar.

The set of positive integers or natural numbers is denoted by N = {1, 2, . . .},
the set of integers is denoted by Z, the set of non-negative integers is denoted
by Z+, and the set of real numbers is denoted by R. If (xn) is a sequence
of non-negative terms, the sum of the sequence is denoted by

∑∞
n=1 xn. A

function mapping domain A into co-domain B is denoted by f : A −→ B, a
transformation f on a set A is a function f : A −→ A, the image of the set
A under function f is denoted by f(A), and the inverse image of the set A
under function f is denoted by f−1(A). Given functions f and g, the com-
position of function f with function g is denoted by f ◦ g, and the nth iterate
of a transformation f is denoted by fn = f ◦ f ◦ · · · ◦ f , where composition
is taken n times. The end of a proof is denoted by �.

4



Chapter 2

Probabilities and probability
functions

2.1 Introduction: notation and definitions

We will give important notation and definitions considering probability in
this section. Also, some properties of probabilities and probability functions
are discussed, as they will be used in later chapters.

Definition 2.1.1.

A family B of subsets of a set S is said to be an algebra of subsets of S
when:

(1) ∅, S ∈ B.

(2) If A ∈ B, then Ac ∈ B.

(3) If A,B ∈ B, then A ∪B ∈ B.

Definition 2.1.2.

Property (3) in definition (2.1.1) immediately implies that B is closed under
finite unions:

⋃n
j=1Aj ∈ B wheneverA1, A2, . . . , An ∈ B.Also, ifA1, A2, . . . , An ∈

B, then
n⋂
j=1

Aj =
n⋂
j=1

(
Acj

)c
=
( n⋃
j=1

Acj

)c
∈ B.

So, a finite intersection of sets in B is also in B.

5



CHAPTER 2. PROBABILITIES AND PROBABILITY FUNCTIONS

If in addition B is closed under countable unions, that is, if

∞⋃
j=1

Aj ∈ B when Aj ∈ B for every j ∈ N,

then B is called a σ − algebra [22, page 102](see also [27, page 308]).

Definition 2.1.3.

Let S be a set and let B be an algebra of subsets of S. A probability P
on B is a function P : B → [0, 1] such that the following hold:

(1) P (S) = 1 and P (∅) = 0.

(2) If we have A,B ∈ B and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

When A ∈ B, we call A an event and P (A) is called the probability of A or,
in other words, the probability of the event A.

Definition 2.1.4.

A probability function on B is a probability on B such that if An ∈ B
for all n ∈ N, An ∩ Am = ∅ for all m 6= n, and

⋃∞
n=1An ∈ B, then

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P (An). (2.1)

A probability is often referred to in the literature as a finitely additive
measure with a total mass of 1. Also, a probability function is often referred
to as a countably additive measure or σ − additive measure with a total
mass of 1.

2.2 Probabilities

In this section, let S be a set, let B be an algebra of subsets of S, and let
P be a probability function on B. Note that if A,B ∈ B and A ⊆ B, then
P (A) ≤ P (B). This fact may be used without explicit reference.

Lemma 2.2.1. Let P be a probability function on B. Then if (An) is a
sequence of sets in B, and if A ∈ B are such that A ⊆

⋃∞
n=1An, then P (A) ≤

∞∑
n=1

P (An).

6



CHAPTER 2. PROBABILITIES AND PROBABILITY FUNCTIONS

Proof. Put V1 = A1 , V2 = A2∩Ac1 and so on, putting Vn = An∩ (
⋃n−1
k=1 Ak)

c.
Now we will show V1 ∩ V2 = ∅ . Let us assume V1 ∩ V2 6= ∅. Let x ∈ V1 ∩ V2
then x ∈ V2 ⇒ x ∈ A2 ∩ V c

1 ⇒ x /∈ V1. As x ∈ V1 and x ∈ V c
1 , we have a

contradiction. Thus, V1 ∩ V2 = ∅.
In the general case we will show that the sets Vn are pairwise disjoint.
We have

x ∈ Vn ⇒ x ∈ An ∩ (A1 ∪ A2 ∪ A3 ∪ . . . ∪ An−1)c,
⇒ x /∈ A1 ∪ A2 ∪ A3 ∪ . . . ∪ An−1,
⇒ x /∈ A1, x /∈ A2, x /∈ A3, . . . , x /∈ An−1,
⇒ x /∈ Aj, for all 1 ≤ j ≤ n− 1,

⇒ x /∈ Vj, since Vj ⊆ Aj.

Thus,
Vn ∩ Vj = ∅, if 1 ≤ j ≤ n− 1. (2.2)

In general for all m,n ∈ N where m 6= n then if m < n, by (2.2), Vn∩Vm = ∅.
Also if m > n, then Vn ∩ Vm = ∅ by (2.2).

Also we will show V1 ∪ V2 = A1 ∪ A2. From the definitions we have

V1 ∪ V2 = A1 ∪ V2
= A1 ∪ (A2 ∩ Ac1)
= (A1 ∪ A2) ∩ (A1 ∪ Ac1)
= A1 ∪ A2.

In general we will show
⋃r
j=1 Vj =

⋃r
j=1Aj. We will use mathematical

induction. The case r = 1 is true as V1 = A1, by definition.
Now we assume the result true for r. Then,

r⋃
j=1

Vj =
r⋃
j=1

Aj.

So for r + 1 we have

V1 ∪ V2 ∪ ... ∪ Vr ∪ Vr+1

= (A1 ∪ A2 ∪ ... ∪ Ar) ∪ Vr+1

=
(
A1 ∪ A2 ∪ ... ∪ Ar

)
∪

(
Ar+1 ∩

( r⋃
j=1

Aj

)c)

=
(
A1 ∪ A2 ∪ ... ∪ Ar+1

)
∩

(
(A1 ∪ A2 ∪ ... ∪ Ar) ∪

( r⋃
j=1

Aj

)c)
= A1 ∪ A2 ∪ ... ∪ Ar+1.

7



CHAPTER 2. PROBABILITIES AND PROBABILITY FUNCTIONS

So the statement holds for r + 1. It is now true by induction that for all
n,

n⋃
j=1

Vj =
n⋃
j=1

Aj.

Therefore, Vj ∈ B and A = A ∩ (
⋃∞
n=1An) = A ∩ (

⋃∞
n=1 Vn) =

⋃∞
n=1A ∩ Vn.

We know that Vn ∈ B and also A ∩ Vn ∈ B , and as P is a probability func-
tion, and the sets A ∩ Vn are disjoint,

P (A) =
∞∑
n=1

P (A ∩ Vn) ≤
∞∑
n=1

P (An).

Example 2.2.1.

In this example we let B be the collection of subsets of R that are either
countable or have countable complements. We show that B is an algebra of
subsets of R.
1) ∅ is countable and so belongs to B. Also the complement of R is countable
and so R belongs to B.
2) There are two cases, the first when A ∈ B is countable. Observe that
(Ac)c = A, and so Ac ∈ B . The second case is when Ac is countable, then
Ac ∈ B by the definition of B.
3) we consider A as the finite union of the sets Aj, where some of the Aj are
countable, and the others have countable complements. Let the sets Aj that
are countable be denoted by Bj, and those that have countable complements
be denoted by Cj. Then, ∪Aj = (∪Bj) ∪ (∪Ck), and Bj, Ck ∈ B for all j, k.

Now we have to show if A,B ∈ B then A ∪ B ∈ B in this case where A
is countable and Bc is countable. Observe that

(A ∪B)c = Ac ∩Bc ⊆ Bc so A ∪B ∈ B.

Thus, B is an algebra.
There are many probabilities on B. For example, if x ∈ R then we put

δx(A) =

{
1, if x ∈ A.

0, if x /∈ A .

For all A ∈ B. Then, δx(A) is probability on B.

8



CHAPTER 2. PROBABILITIES AND PROBABILITY FUNCTIONS

Example 2.2.2.

Let B be the collection of all subsets of R. If A ∈ B, we put

P (A) =

{
1, if Ac is countable.

0, if Ac is uncountable.

We will check whether P is a probability on B where P : B →{0, 1}. We have
R is an uncountable set and Rc is countable because it is the empty set, that
is P (R) = 1. Let A,Ac ⊆ R be uncountable. Then R = A ∪ Ac, where this
union is disjoint. Then, 1 = P (R) 6= P (A) + P (Ac) as P (A) = P (Ac) = 0.
Thus, P is not a probability on B.

Lemma 2.2.2. Let S be a set, let P be a probability function on an algebra
B of subsets of S. Let A1, A2, . . . ∈ B and assume that

A1 ⊇ A2 ⊇ . . . .

Put A =
⋂∞
j=1Aj and assume that A ∈ B. Then P (A) = lim

j→∞
P (Aj).

Proof. Let (Aj) be a decreasing sequence in B and so also we have (P (Aj))
is non-negative and decreasing, so the limj→∞ P (Aj) exists. Now we have

A1 = A ∪ (A1 ∩ Ac2) ∪ (A2 ∩ Ac3) ∪ . . . ∪ (Aj ∩ Acj+1) ∪ . . . ,

and we have P is a probability function on algebra B, so

P (A1) =
∞∑
j=1

P (Aj ∩ Acj+1) + P (A)

=
∞∑
j=1

(
P (Aj)− P (Aj+1)

)
+ P (A).

Since
∞∑
j=1

(
P (Aj)− P (Aj+1)

)
= P (A1)− lim

j→∞
P (Aj),

we have
P (A1) = P (A1)− lim

j→∞
P (Aj) + P (A),

and
0 = lim

j→∞
−P (Aj) + P (A).

Therefore,
P (A) = lim

j→∞
P (Aj).

9



Chapter 3

Stochastic processes and
dynamical systems

3.1 Introduction: stochastic processes

A zero-one stochastic process can be viewed as an infinite sequence of func-
tions X0, X1, . . . , Xn, . . ., where each function takes its values in {0, 1} . That
is, Xn : S −→ {0, 1} is a given function for all n ∈ Z+. The parameter n
may be taken to represent the time, so that if x ∈ S, at time n we make an
observation Xn(x), and we observe either a 0 or a 1. We can take successive
observations X0(x), X1(x), X2(x), . . . , starting from time 0, since we keep x
fixed. General references are [2], [3], [9], [10], and [17].

3.2 Notations and definitions

We will introduce some definitions and examples which relate to stochastic
processes and dynamical systems.

Definition 3.2.1.

Let S be a set and for each n ∈ Z+ let Xn : S → {0,1}. Let B be an
algebra of subsets of S and P a probability on B. Now we say (S,B, (Xn), P ),
or simply (S, (Xn)), is a zero − one stochastic process if for every n ∈ Z+

and d ∈ {0, 1}, the event {x : x ∈ S and Xn(x) = d} ∈ B. Then for every
x ∈ S, (Xn(x)) is a sequence of zeros and ones. Note that P need only be a
probability, not a probability function. Now we assume that d ∈ {0, 1} and
n ∈ Z+. We define A(n|d) by

A(n|d) = {x : x ∈ S andXn(x) = d}.

10



CHAPTER 3. STOCHASTIC PROCESSES AND DYNAMICAL
SYSTEMS

As (S, (Xn)) is a stochastic process, A(n|d) ∈ B. Now let n1, n2, . . . , nr ∈ Z+

with 0 ≤ n1 < n2 < . . . < nr, and let dj ∈ {0, 1} for all j = 1, 2, . . . , r. We
define

A(n1, . . . , nr|d1, . . . , dr) = {x : x ∈ S andXnj
(x) = dj, for all j = 1, 2, . . . , r}.

Observe that

A(n1, . . . , nr|d1, . . . , dr) =
r⋂
j=1

A(nj|dj),

so that A(n1, . . . , nr|d1, . . . , dr) ∈ B, as B is an algebra and as each A(nj|dj) ∈
B. Then we define P (n1, . . . , nr|d1, . . . , dr) by

P (n1, . . . , nr|d1, . . . , dr) = P
(
{x : Xnj

(x) = dj, for all j = 1, 2, . . . , r}
)
.

Thus,

P (n1, . . . , nr|d1, . . . , dr) = P
(
A(n1, . . . , nr|d1, . . . , dr)

)
.

We put
A(d1, d2, . . . , dr) = A(0, 1, 2, . . . , r − 1|d1, d2, . . . , dr),

and
P (d1, d2, . . . , dr) = P

(
A(d1, d2, . . . , dr)

)
.

Now in case d = (d1, d2, . . . , dr), r is called the length of d. In this case
P (d1, d2, . . . , dr) may be denoted by P (d). If d is the empty sequence, then
it has length 0. Also, if we have d = (d1, . . . , dr) and c = (c1, . . . , cs), then
we define (d, c) to be the sequence (d1, . . . , dr, c1, . . . , cs). So for P (d, 0) we
will have

(d, 0) = (d1, d2, . . . , dr, 0),

so that

P (d, 0) = P
(
{x : X0(x) = d1, X1(x) = d2, . . . , Xr−1(x) = dr, Xr(x) = 0}

)
.

(3.1)
And also if we consider P (d, 1),

P (d, 1) = P
(
{x : X0(x) = d1, X1(x) = d2, . . . , Xr−1(x) = dr, Xr(x) = 1}

)
.

(3.2)
Therefore,

P (d, 0)+P (d, 1) = P
(
{x : X0(x) = d1, X1(x) = d2, . . . , Xr−1(x) = dr}

)
= P (d),

11
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because both equations (3.1) and (3.2) involve disjoint unions of two sets in
B. Consequently we will have

P (d) = P (d, 0) + P (d, 1). (3.3)

Similarly, if d is a sequence finite of symbols in {0, 1},

P (d) =
∑

c∈{0,1}r
P (d, c), for all r ∈ N.

This is proved below in Theorem 3.2.1.

Example 3.2.1.

Consider P (2, 3, 4|1, 0, 1). By the definition,

P (2, 3, 4|1, 0, 1) = P
(
{x : X2(x) = 1, X3(x) = 0, X4(x) = 1}

)
.

Example 3.2.2.

If we consider P (0, 1, 2, 11, 14|1, 1, 0, 1, 1), we will have

P (0, 1, 2, 11, 14|1, 1, 0, 1, 1)

= P
(
{x : X0(x) = 1, X1(x) = 1, X2(x) = 0, X11(x) = 1, X14(x) = 1}

)
.

Now, some general calculations are in the following Theorem.

Theorem 3.2.1. Let d = (d1, d2, . . . , ds) where dj ∈ {0, 1}, for all j ∈
{1, 2, . . . , s}. Then,

P (d) =
∑

c∈{0,1}r
P (d, c), for all r ∈ N.

Proof. To prove this we will use mathematical induction on r. Let
d = (d1, d2, . . . , ds) where dj ∈ {0, 1} for each j.
The case when r = 1 is true by (3.3). We assume the result is true for r.
Now we will check for r + 1. We have

P (d) =
∑

c∈{0,1}r
P (d, c)

=
∑

c∈{0,1}r
P (d, c, 0) + P (d, c, 1), by (3.3),

=
∑

c′∈{0,1}r+1

P (d, c
′
)

=
∑

c∈{0,1}r+1

P (d, c),

so the statement holds for r + 1 in place of r.

12
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3.3 Stationary processes

Definition 3.3.1.

Let (S, B, P, (Xn)) be a zero-one stochastic process. Then the process is
called stationary if for all d1, d2, . . . , dr ∈ {0, 1}, and for all s ∈ Z+, we have

P (d1, d2, . . . , dr) =
∑

c∈{0,1}s
P (c, d1, d2, . . . , dr).

As in [5, page 104] and [10, page 94], this definition means that the probability
of observing the consecutive occurrence of the symbols d1, d2, . . . , dr remains
the same over time. Note that∑

c∈{0,1}s
P (c, d1, d2, . . . , dr) = P (s, s+ 1, . . . , s+ r − 1|d1, d2, . . . , dr).

Consequently, the stationarity of (S, B, P, (Xn)) is equivalently to requiring

P (0, 1, . . . , r − 1|d1, d2, . . . , dr) = P (s, s+ 1, . . . , s+ r − 1|d1, d2, . . . , dr),

for all r ∈ N, d1, d2, . . . , dr ∈ {0, 1}, and s ∈ Z+.
That is,

P (d1, d2, . . . , dr) = P (s, s+ 1, . . . , s+ r − 1|d1, d2, . . . , dr).

From the definition above if we are given a finite sequence (d1, d2, . . . , dr) ∈
{0, 1}r then,

P (0, d) + P (1, d) =
∑

c∈{0,1}

P (c, d) = P (d), by stationarity.

3.4 Relationship between zero-one stochastic

processes and dynamical systems

Definition 3.4.1.

Let f : S → S be a transformation on a set S. Then, (S, f) is called
a dynamical system. As well, given an algebra B of subsets of S and a
probability P on B, then for each U ∈ B we can define a zero-one stochastic
process as follows.

13
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Definition 3.4.2.

If U ⊆ S, we define

χU(x) =

{
1, if x ∈ U ,

0, if x /∈ U .

We call the function χU the characteristic function of U .
So

χU ◦ f(x) = χU(f(x)) =

{
1, if f(x) ∈ U ,

0, if f(x) /∈ U .

Now we use the definition that

f−1(U) = {x : f(x) ∈ U}, where x ∈ f−1(U)⇔ f(x) ∈ U.

Thus,

χU ◦ f(x) =

{
1, if x ∈ f−1(U),

0, if x /∈ f−1(U).

Therefore, χU ◦ f = χf−1(U).

Definition 3.4.3.

Let (S, f) be a dynamical system, let B be an algebra of subsets of S
and let P be a probability on B. Assume that for all U ∈ B, f−1(U) ∈ B.
Then, for a given U ∈ B with (S, f,B, P ) we define an associated zero −
one stochastic process (S,B, (Xn), P ) by putting

Xn(x) = χU(fn(x)), for alln ∈ N andx ∈ S.

That is,
Xn = χU ◦ fn = χf−n(U).

Note that Xn(x) ∈ {0, 1}. Also, note that if d ∈ {0, 1},

{x : x ∈ S and Xn(x) = d}.

We prove below that this set equals either f−n(U) or f−n(U)c, but in either
case the set is in B. Then, by definition (S,B, (Xn), P ) will be a zero-one
stochastic process.

To show that this is a zero-one stochastic process, by definition 3.2.1 we
must show that for each n = 1, 2, . . . and d ∈ {1, 0},

{x : x ∈ S and Xn(x) = d} ∈ B.

14
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Observe that in particular if d = 0 then

{x : x ∈ S and Xn(x) = 0} = {x : fn(x) /∈ U},

and if d = 1 then

{x : x ∈ S and Xn(x) = 1} = {x : fn(x) ∈ U}.

We have to show f−n(U c), f−n(U) ∈ B. However, f−n(U) = f−1
(
f−(n−1)(U)

)
and by mathematical induction on n it will be enough to show f−1(U) ∈ B
wherever U ∈ B. Since, if U ∈ B then

f−1(U) ∈ B, f−1
(
f−1(U)

)
= f−2(U) ∈ B, f−1

(
f−2(U)

)
= f−3(U) ∈ B,

and so on.
Now, for future use, we define

U1 = {x : x ∈ U, f(x) ∈ U},

U2 = {x : x ∈ U, f(x) /∈ U, f 2(x) ∈ U},
and so on. Then

Un = {x : x ∈ U, f(x) /∈ U, . . . , fn−1(x) /∈ U, fn(x) ∈ U}.

In particular, for r ≥ 2,

A (1, 0, 0, . . . , 1)︸ ︷︷ ︸
r times

= {x : x ∈ S, χU(x) = 1, χU(f j(x)) = 0 for j = 1, . . . , r − 2, χU(f r−1(x)) = 1}
= {x : x ∈ U, f(x) /∈ U, . . . , f r−2(x) /∈ U, f r−1(x) ∈ U}
= Ur.

Also, more generally

A(n1, . . . , nr|d1, . . . , dr) = {x : x ∈ S andχU(fnj(x)) = dj for j = 1, 2, . . . , r}.

Example 3.4.1.

Consider (S, f) a dynamical system where f : S → S with S = {a, b, c, d}
and U = {b, c, d} ⊆ S. Let B be the algebra of all subsets of S, and let P
be a probability on B where P (U) is defined as the number of elements in U
divided by 4. Let f(a) = b, f(b) = a, f(c) = d and f(d) = c. Now,

X0(b) = χU(b) = 1 and X1(b) = χf−1(U)(b) = χU(f(b)) = χU(a) = 0,

and
X2(b) = χf−2(U)(b) = χU(f 2(b)) = χU(b) = 1.

That is, X0(b) = 1, X1(b) = 0, X2(b) = 1.
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Definition 3.4.4.

Let (S, f) be a dynamical system, let B be an algebra of subsets of S,
and let P be a probability on B. Assume that f−1(C) ∈ B for all C ∈ B. We
say that f is P -invariant if for all C ∈ B, P (f−1(C)) = P (C).

Theorem 3.4.1. Let S be a set, let B be an algebra of subsets of S, and let
P be a probability on B. Let f : S → S be a P -invariant transformation on
S and let A ∈ B be given. Then, for n ∈ Z+ and x ∈ S put

Xn(x) = χA(fn(x)).

Then, the zero-one stochastic process (S,B, (Xn), P ) is stationary.

Proof. Let d1, d2, . . . , dr ∈ {0, 1} and let s ∈ Z+. Then,

P (s, s+ 1, . . . , s+ r − 1|d1, d2, . . . , dr)

= P
( r−1⋂
j=0

A(s+ j|dj+1)
)
,

= P
( r−1⋂
j=0

{x : Xs+j(x) = dj+1}
)
,

= P
( r−1⋂
j=0

{x : χA(f s+j(x)) = dj+1}
)
,

= P
( r−1⋂
j=0

{x : χA(f j(f s(x))) = dj+1}
)
,

= P
( r−1⋂
j=0

{x : χf−jA(f s(x)) = dj+1}
)
,

= P
( r−1⋂
j=0

f−s{y : χf−jA(y) = dj+1}
)
,

= P
(
f−s
( r−1⋂
j=0

{y : χf−jA(y) = dj+1}
))
,

= P
( r−1⋂
j=0

{y : χf−jA(y) = dj+1}
)
, as f is P-invariant,

= P (0, 1, . . . , r − 1|d1, d2, . . . , dr).

Thus, (S,B, (Xn), P ) is stationary, by definition.
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Note that to apply this Theorem we must first check that f−1(C) ∈ B for
each C ∈ B.

Example 3.4.2.

This example is discussed in more details in [20, page 150]. Take S =[
0, 1
)

, take B to be the algebra of subsets of S that are finite unions of

intervals , and let

f(x) =

{
2x, if 0 ≤ x < 1/2,

2x− 1, if 1/2 ≤ x < 1.

We define a probability P on B by putting, for any interval I, P (I) =
length of I and then extend this in an obvious way to be defined on all
of B. It is possible to show that f is P -invariant (see [20]). If

U = [0, 1/2) ∈ B,

Xn(x) = χU(fn(x)) =

{
1, if the nth digit in the binary expansion of x is 0,

0, if the nth digit in the binary expansion of x is 1.

Now, by using Theorem 3.4.1 the zero-one stochastic process ([0, 1),B, (Xn), P )
is stationary.

17



Chapter 4

Basic identities

4.1 Introduction

In this Chapter we introduce some further definitions concerning probabilities
and stochastic processes. Some properties and identities are discussed and
proved for future use. The discussion is strongly influenced by Kasteleyn
[18], but here there is more emphasis on precise definitions and clarification
of underlying assumptions. Some of the results are more general than the
corresponding results in [18]; in particular Lemma 4.2.1 and also parts of
Theorem 4.3.1.

4.2 Notations and preliminaries

Consider a stochastic process as in Section 3.2 and we note that if d ∈ {0, 1},
then the set

X−1t (d) = {x : x ∈ S and Xt(x) = d} ∈ B, (4.1)

for each t = 0, 1, . . . . If we have a finite number of symbols, d1, . . . , dr ∈
{0, 1}, and we form the set

{x : x ∈ S and X0(x) = d1, X1(x) = d2, . . . , Xr−1(x) = dr}, (4.2)

we observe that this set equals

r−1⋂
j=0

{x : x ∈ S and Xj(x) = dj+1} =
r−1⋂
j=0

X−1j (dj+1). (4.3)

It follows from (4.1) and (4.3) that the set in (4.2) is a finite intersection
of sets in B and so it must be in B because B is an algebra. That is, we have

{x : x ∈ S and X0(x) = d1, X1(x) = d2, . . . , Xr−1(x) = dr} ∈ B.

18
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The set of all finite sequences of zeros and ones is denoted by Σ. Also, the
set of all sequences of zeros and ones, finite or infinite, is denoted by Σ∞.
Thus, if d = (d1, . . . , dr) ∈ Σ, has length r, as in Section 3.2, we put

A(d) =
{
x : Xj(x) = dj+1, for j = 0, 1, 2, . . . , r − 1

}
=

r−1⋂
j=0

X−1j (dj+1).

Note thatA(d) ∈ B as it’s a finite intersection of sets in B. If c = {c1, c2, . . . , cs} ∈
Σ, and d ∈ {0, 1}, then cd∞ ∈ Σ∞ is the sequence {c1, c2, . . . , cs, d1, d2, . . .}.

Now if d ∈ Σ∞, we put

A(d) =
∞⋂
j=0

{x : x ∈ S and Xj(x) = dj+1},

for all j ∈ N. However, we can not say that A(d) ∈ B or that P (A(d)) is
defined. We will show how to extend the definition of P to include such sets.
Observe that if d ∈ Σ, and d is a empty sequence, then d has length zero.
Now, we proceed as above, allowing for the infinite sequence of symbols. The
intersection of sets equals

∞⋂
j=0

{x : x ∈ S and Xj(x) = dj+1} =
∞⋂
j=0

X−1j (dj+1).

Now if d ∈ Σ∞, it may be that A(d) /∈ B. But in this case we observe that
(P (A(d1, . . . , dr))

∞
r=1 is a decreasing sequence and we put

P̃ (A(d)) = lim
r→∞

P (d1, d2, . . . , dr).

Because (P (d1, d2, . . . , dr)) is a decreasing and non-negative sequence, the

limit P̃ (d) exists, for all d ∈ Σ∞. An important property of a probability
function P is that it has a type of continuity property as expressed in equation
(2.1). In the case when A(d) ∈ B, d ∈ Σ∞, and P is a probability function,
we have

A(d) =
∞⋂
n=1

(A(d1, . . . , dn)),

and by Lemma 2.2.2,

P (A(d)) = lim
n→∞

P (A(d1, . . . , dn)),

= P̃ (A(d)).
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Otherwise, if P is just a probability and A(d) ∈ B, we have

P̃ (A(d)) = lim
n→∞

P (A(d1, . . . , dn))

≥ lim
n→∞

P (A(d))

= P (A(d)).

The following Lemma will be used to derive identities concerning the
probability of certain events in stationary zero-one stochastic processes. This
Lemma is a generalization of a result in Kasteleyn [18].

Lemma 4.2.1. Let am ≥ 0 for all m ∈ N, and let a0 = 0. Assume that
0 = a0 ≤ a1 ≤ a2 ≤ a3 . . . . Let there be c0 ≥ c1 ≥ c2 ≥ . . . ≥ 0 and define bm
by

bm = cm−1 − cm, for all m = 1, 2, . . . .

Then,
∞∑
m=1

ambm =
∞∑
m=1

(am − am−1)(cm−1 − lim
s−→∞

cs). (4.4)

Proof. If s ∈ N and q ∈ Z+ with s > q, then

s∑
m=q+1

ambm =
s∑

m=q+1

am(cm−1 − cm)

=
s∑

m=q+1

amcm−1 −
s∑

m=q+1

amcm

=
s∑

m=q+1

(am−1cm−1 − amcm)−
s∑

m=q+1

(am−1 − am)cm−1

= (aqcq − ascs)−
s∑

m=q+1

(am−1 − am)cm−1. (4.5)

Now, in the special case where q = 0, as a0 = 0, equation (4.5) becomes

s∑
m=1

ambm = −ascs −
s∑

m=1

(am−1 − am)cm−1

=
s∑

m=1

(am−1 − am)cs −
s∑

m=1

(am−1 − am)cm−1

=
s∑

m=1

(am − am−1)(cm−1 − cs). (4.6)
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Then, for 1 ≤ q < s, we have

∞∑
m=1

ambm =

q∑
m=1

ambm + lim
s−→∞

s∑
m=q+1

ambm

≥
q∑

m=1

ambm + lim
s−→∞

s∑
m=q+1

aq+1bm

=

q∑
m=1

am(cm−1 − cm) + lim
s−→∞

s∑
m=q+1

aq+1bm

=

q∑
m=1

(am−1cm−1 − amcm) +

q∑
m=1

(am − am−1)cm−1 + lim
s−→∞

s∑
m=q+1

aq+1bm

= −aqcq −
q∑

m=1

(am−1 − am)cm−1 + aq+1 lim
s−→∞

s∑
m=q+1

(cm−1 − cm)

= −aqcq + aq+1cq − aq+1 lim
s−→∞

cs −
q∑

m=1

(am−1 − am)cm−1

= −aq+1 lim
s−→∞

cs −
q+1∑
m=1

(am−1 − am)cm−1

=
( q+1∑
m=1

(am−1 − am)
)

lim
s−→∞

cs −
q+1∑
m=1

(am−1 − am)cm−1

=

q+1∑
m=1

(am − am−1)(cm−1 − lim
s−→∞

cs).

Letting q −→∞ gives

∞∑
m=1

ambm ≥
∞∑
m=1

(am − am−1)(cm−1 − lim
s−→∞

cs). (4.7)
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On the other hand, we can use equation (4.6). Then, we have

∞∑
m=1

ambm = lim
s−→∞

s∑
m=1

ambm

= lim
s−→∞

s∑
m=1

(am − am−1)(cm−1 − cs)

≤ lim
s−→∞

s∑
m=1

(am − am−1)(cm−1 − lim
k−→∞

ck)

=
∞∑
m=1

(am − am−1)(cm−1 − lim
s−→∞

cs). (4.8)

Now, if we compare equation (4.7) and equation (4.8) we have

∞∑
m=1

ambm =
∞∑
m=1

(am − am−1)(cm−1 − lim
s−→∞

cs).

Definition 4.2.1.

Let (xn) be a sequence of numbers. The sequence (∆xn) is given by

∆x1 = x1, and ∆xn = xn+1 − xn, for n ≥ 1.

The sequence ∆xn may be written as (∆xn).

4.3 The main identities

We now apply Lemma 4.2.1 to stochastic processes.

Lemma 4.3.1. Let (S,B, (Xn), P ) be a zero-one stochastic process as in

Section 3.2. Assume that P̃ (10∞) = 0. Then,

∞∑
m=1

mP (10m−11) =
∞∑
m=1

P (0m−11). (4.9)

Also, if the process is stationary, then P̃ (10∞) = 0.
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Proof. We take am = m, for m = 0, 1, 2, . . ., bm = P (10m−11), for m =
1, 2, . . ., and cm = P (10m), for m = 0, 1, 2, . . .

bm + cm = P (10m−11) + P (10m−10) = P (10m−1) = cm−1.

Hence, cm ≤ cm−1 and bm = cm−1 − cm, for m = 1, 2, . . .. Also, we have
a0 = 0, c0 = P (1) and

lim
m−→∞

cm = lim
m−→∞

P (10m) = P̃ (10∞) = 0.

Now, by using equation (4.4) of Lemma 4.2.1 with P̃ (10∞) = 0, we have

∞∑
m=1

mP (10m−11) =
∞∑
m=1

P (10m−1).

Finally, if the process is stationary,

P (10m−1) + P (00m−1) = P (0m−1),

so if we let m −→∞ we have

P̃ (10∞) + P̃ (0∞) = P̃ (0∞),

which gives P̃ (10∞) = 0.

Theorem 4.3.1. Let (S,B, (Xn), P ) be a zero-one stationary stochastic pro-
cess with y ∈ Σ. Then, the following hold:

(i)P (0y) + P (1y) = P (y0) + P (y1) = P (y).

(ii)P (0m1) = P (10m).

(iii) P̃ (y0∞) = 0 if y ∈ Σ and contains at least a single one.

(iv) lim
m→∞

P (0my) = 0 if y contains at least a single one.

(v)
∞∑
m=0

P (0m1) + P̃ (0∞) = 1.

(vi)
∞∑
m=1

mrP (y0m−11) =
∞∑
m=0

∆(mr)
[
P (y0m)− P̃ (y0∞)

]
, for r ∈ N.

(vii)
∞∑
m=1

mrP (10m−1y) =
∞∑
m=0

∆(mr)
[
P (0my)− lim

s−→∞
P (0sy)

]
, for r ∈ N.
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Proof. Proof of (i). The equation P (0y)+P (1y) = P (y) follows immediately
from stationarity. Also,

P (y0) + P (y1) = P
(
A(y0)

)
+ P

(
A(y1)

)
= P

(
A(y)

)
= P (y),

as A(y) = A(y0) ∪ A(y1), and this is a disjoint union in B.

Proof of property (ii). Note that

P (0m) = P (0m1) + P (0m+1).

That is
P (0m1) = P (0m)− P (0m+1).

Also, by using stationarity (see Definition 3.3.1),

P (10m) = P (0m)− P (0m+1).

Thus, the both sides of statement (ii) are equal to P (0m)− P (0m+1).

Proof of property (iii).We may assume that y is of the form (y1, y2, . . . , y`−1, 1),
for some ` ∈ N. Note that

0 ≤ P̃ (y0∞)

= lim
k−→∞

P (y0k)

= lim
k−→∞

P (A(y0k))

= lim
k−→∞

P
(
{x : X0(x) = y1, . . . , X`−1 = y`, X` = 1, X`+1 = 0, . . . , X`+k = 0}

)
≤ lim

k−→∞
P
(
{x : X` = 1, X`+1 = 0, . . . , X`+k = 0}

)
,

by using stationarity,

= lim
k−→∞

P (10k)

= P̃ (10∞). (4.10)

Now, by using Lemma 4.3.1, we obtain P̃ (10∞) = 0. Thus, P̃ (y0∞) = 0 by
using (4.10).

24



CHAPTER 4. BASIC IDENTITIES

Proof of property (iv). Note that

lim
m→∞

P (0my) ≥ 0.

Let y have at least one 1. Then, put y = (0r, d), where d = (1, d2, d3, . . . , d`)
for some r, ` ∈ Z+ and d ∈ Σ. Then, for m ∈ Z+

P (0my) ≤ P (0r+m1) = P (0r+m)− P (0r+m+1).

However, P (0r+m)−P (0r+m+1) −→ 0 as m −→∞. Hence, lim
m→∞

P (0my) = 0.

Proof of property (v). We will use mathematical induction on k to prove

k∑
m=0

P (0m1) + P (0k+1) = 1. (4.11)

For k = 0 equation (4.11) is

P (1) + P (0) = 1,

which is true. Also when k = 1 equation (4.11) is

P (1) + P (01) + P (00) = 1.

Since P (01) + P (00) = P (0), (4.11) is true for k = 1.
We suppose the result is true for k so

k∑
m=0

P (0m1) + P (0k+1) = 1.

Now we will show it is true for k + 1. We want to show

k+1∑
m=0

P (0m1) + P (0k+2) = 1. (4.12)

We have

k+1∑
m=0

P (0m1) =
k∑

m=0

P (0m1) + P (0k+11) = 1− P (0k+1) + P (0k+11), (4.13)

Also we have

P (0k+1) = P (0k+10) + P (0k+11) = P (0k+11) + P (0k+2). (4.14)
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If we compare the result of equation (4.13) and (4.14) with equation (4.12),
then the statement holds for k + 1.

Now letting k −→∞ in equation (4.11) we get

lim
k−→∞

k∑
m=0

P (0m1) + P (0k+1) = 1.

Now, limk−→∞ P (0k+1) = P̃ (0∞) by definition, so we deduce that

∞∑
m=0

P (0m1) + P̃ (0∞) = 1.

Proof of property (vi). We want now to use equation (4.4) of Lemma 4.2.1
to prove it. We take am = mr, bm = P (y0m−11), then

P (y0m−11) + P (y0m) = P (y0m−1).

So if we take cm = P (y0m), we have bm = cm−1 − cm. Also, c0 = P (y), and
a0 = 0. Then equation (4.4) of Lemma 4.2.1 gives

∞∑
m=1

mrP (y0m−11) =
∞∑
m=1

(
mr − (m− 1)r

)[
P (y0m−1)− lim

s−→∞
P (y0s)

]
=

∞∑
m=0

(
(m+ 1)r −mr

)[
P (y0m)− lim

s−→∞
P (y0s)

]
=

∞∑
m=0

∆(mr)
[
P (y0m)− P̃ (y0∞)

]
.

Proof of property (vii). We will use a similar technique of the deriva-
tion for property (vi). Taking am = mr, bm = P (10m−1y), then by using
stationarity

P (10m−1y) + P (0my) = P (0m−1y).

So, if cm = P (0my), we have bm = cm−1 − cm. Now, using equation (4.4) of
Lemma 4.2.1 with c0 = P (y) and a0 = 0,
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we will get

∞∑
m=1

mrP (10m−1y) =
∞∑
m=1

(
mr − (m− 1)r

)[
P (0m−1y)− lim

s−→∞
P (0sy)

]
=

∞∑
m=0

(
(m+ 1)r − (m)r

)[
P (0my)− lim

s−→∞
P (0sy)

]
=

∞∑
m=0

∆(mr)
[
P (0my)− lim

s−→∞
P (0sy)

]
.
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Chapter 5

Recurrence times in stochastic
processes

5.1 Introduction: the notion of recurrence

This chapter introduces the idea of recurrence for stochastic processes. Some
standard results are proved including Poincaré’s Recurrence Theorem. We
also relate the ideas to dynamical system. Some general references which
discuss the topic are [8], [7], [12], [19], [24], and [28].

Let S be a set and for each t = 0, 1, . . . let Xt : S −→ {0, 1}. We interpret
t as time and call Xt(x) the state of the process at time t, given x ∈ S. Points
of S can be thought of as “initial states” of the “system”(S, (Xt)). If x ∈ S,
the (first) arrival time is “how long” it takes to have Xt(x) = 1. The (first)
recurrence time is “how long” it takes to have Xt(x) = 1 for a second time.
We make the following definitions. For x ∈ S,

a1(x) = min{t : t ≥ 0, Xt(x) = 1},

a2(x) = min{t : t > a1(x) and Xt(x) = 1},
and so on. In general

ar(x) = min{t : t > ar−1(x) and Xt(x) = 1}.

Note that if the minimum does not exist, we put ar(x) =∞. We will define
a1(x) to be the first arrival time and a2(x) to be the second arrival time
and so on. That is, for r = 1, 2, . . . ar(x) is the rth arrival time for x. Also,
the differences between successive arrival times, given a state x, are called
recurrence times. That is, if x ∈ S, for k = 1, 2, . . . we define rk

rk(x) = ak+1(x)− ak(x).

28
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Then rk(x) is called the kth recurrence time for x if it is finite. Otherwise,
we put rk(x) =∞. Also, we put a0(x) = 0 and r0(x) = a1(x).

Example 5.1.1.

Let x ∈ S and suppose that X0(x) = · · · = X11(x) = 0, X12(x) = 1.
Let X13(x) = · · · = X22(x) = 0, X23(x) = 1. Then, the first arrival time is
a1(x) = 12, and a2(x) = 23 is the second arrival time. The first recurrence
time is r1(x) = a2(x)− a1(x) = 11 .

5.2 Poincaré recurrence

Let S be a set and let B be an algebra of subsets of S. Let P be a probability
on B and let f : S −→ S, so that (S, f) is a dynamical system. We assume
that f−1(A) ∈ B for all A ∈ B. Then, if U ⊆ S, it was pointed out in
Chapter 3 there is an associated stochastic process (S,B, (Xn), P ), where
Xn(x) = χf−n(U)(x). The notions of arrival and recurrence in (S, (Xn)) can
therefore be interpreted in terms of the dynamical systems (S, f). According
to Poincaré’s Recurrence Theorem [13, page 8], [6, page 13], [23, page 34],
[20, pages 248-255], in a dynamical system under certain conditions, “almost
all” points x of a set will return to the set, or recur, in the sense that fn(x)
will be in the set for some n ∈ N. Some of these points may take a short
time to return but other points may take a long time to return.

Now, let (S,B, (Xn), P ) be a zero-one stochastic process. If we have
c = (c1, . . . , cr), d = (d1, . . . , dt) ∈ Σ, then (c1, . . . , cr, d1, . . . , dt) ∈ Σ. For
any r ∈ N,

P (0r1) = P (0r)− P (0r0) = P (0r)− P (0r+1), by using (3.3).

Also, if the process is stationary,

P (10r) = P (0r)− P (00r) = P (0r)− P (0r+1).

The following Lemma is a consequence of (iii) of Theorem 4.3.1, but is
stated here as the context is different.

Lemma 5.2.1. Let (S, B, (Xn), P ) be a stationary zero-one stochastic pro-
cess. If we have d = (d′, 1, 0k) for some d′ = (d′1, . . . , d

′
`) ∈ Σ and k ∈ Z+,

then P̃ (d, 0∞) = 0.

The following Lemma generalizes of (v) of Theorem 4.3.1.
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Lemma 5.2.2. Let (S, B, (Xn), P ) be a zero-one stochastic process and let
d ∈ Σ be a finite sequence of zeros and ones. Then, for all n = 1, 2, . . . , we
have

P (d) =
n−1∑
k=0

P (d, 0k, 1) + P (d, 0n).

Also,

P (d) =
∞∑
k=0

P (d, 0k, 1) + P̃ (d, 0∞),

and if d has at least one non-zero entry and the process is stationary, then

P (d) =
∞∑
k=0

P (d, 0k, 1), and in particular P (1) =
∞∑
k=0

P (1, 0k, 1). (5.1)

Proof. We will use mathematical induction on n to prove the first statement
of the Lemma but before we start to prove it, note that we interpret the
expression P (d, 00, 1) to be P (d, 1). For n = 1, we have by using equation
(3.3).

P (d) = P (d, 1) + P (d, 0),

so the statement is true for n = 1.
Now we assume the statement is true for some n ∈ N. Thus,

P (d) =
n−1∑
k=0

P (d, 0k, 1) + P (d, 0n). (5.2)

Now we will show the statement is true for n+ 1. Now,

n∑
k=0

P (d, 0k, 1) + P (d, 0n+1)

=
n−1∑
k=0

P (d, 0k, 1) + P (d, 0n, 1) + P (d, 0n+1),

=
n−1∑
k=0

P (d, 0k, 1) + P (d, 0n), since P (d, 0n) = P (d, 0n, 1) + P (d, 0n+1),

= P (d), by using equation (5.2).

Thus, the statement holds for n+ 1. By induction, the statement is true for
all n.
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Now by letting n→∞ and by using the definition of P̃ , we get

P (d) =
∞∑
k=0

P (d, 0k, 1) + P̃ (d, 0∞). (5.3)

Also, if d has at least one non-zero entry, and as the process is stationary,
we have P̃ (d, 0∞) = 0, by Lemma 5.2.1. Thus, in this case,

P (d) =
∞∑
k=0

P (d, 0k, 1).

In particular if d = 1 in this equation, then we have

P (1) =
∞∑
k=0

P (1, 0k, 1).

Definition 5.2.1.

Let P be a probability on an algebra B of subsets of S. A subset Z of S
is called a set of measure zero or a set of probability zero if, for all ε > 0,
there is a sequence (An) of sets in B such that

Z ⊆
∞⋃
n=1

An and
∞∑
n=1

P (An) < ε.

Note that if Z is a set of measure zero, then if does not necessarily mean
that Z ∈ B. A special case is when, for all ε > 0, there is Aε ∈ B such that

Z ⊆ Aε and P (Aε) < ε.

Lemma 5.2.3. Let B be an algebra of subsets of a set S and let P be a
probability on B. Let (An) be a sequence of subsets of S of measure zero.
Then

⋃∞
n=1An is also a set of measure zero.

Proof. Suppose that a sequence A1, A2, A3, . . . of sets of measure zero is given,
and let ε > 0 . Then as each An is set of measure zero, by the definition
above there is a sequence (Bnj)

∞
j=1 of sets in B such that

An ⊆
∞⋃
j=1

Bnj, and
∞∑
j=1

P (Bnj) <
ε

2n
.
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Now consider the sequence

B11, B12, B22, B13, B23, . . . , B1k, B2k, Bkk, . . . .

Rename the above sequence to be C1, C2, C3, . . .. That is,

C1 = B11, C2 = B12, C3 = B22, . . . ,

and so on. Then,

A1 ∪ A2 ∪ A3 ∪ . . . ⊆
∞⋃
n=1

∞⋃
j=1

Bnj =
∞⋃
n=1

Cn.

Thus,
k∑

n=1

P
(
Cn

)
=
∞∑
n=1

( ∞∑
j=1

P (Bnj)
)
<
∞∑
n=1

ε

2n
= ε.

Therefore,
⋃∞
n=1An is a set of measure zero.

Lemma 5.2.4. Let S be a set, let B be an algebra of subsets of S, and let P
be a probability on B. Let A ∈ B, let (An) be a sequence of disjoint sets in B
and let Z be a subset of S that is disjoint from all the sets An such that

A = Z ∪
( ∞⋃
n=1

An

)
and P (A) =

∞∑
n=1

P (An).

Then, Z has measure zero.

Proof. Note that P (A) < ∞ and let ε > 0. Then, as we have P (A) =∑∞
n=1 P (An), there is k ∈ N such that

P (A)−
k∑

n=1

P (An) < ε.

Note now that

Z ⊆ A−
k⋃

n=1

An.

Clearly,

A−
k⋃

n=1

An ∈ B.
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So,

Z ⊆ A−
k⋃

n=1

An ∈ B.

Now by using additivity for finite disjoint unions, we have

P
(
A−

k⋃
n=1

An

)
= P (A)−

k∑
n=1

P (An) < ε.

Thus, Z has measure zero, by the definition 5.2.1.

Theorem 5.2.1. Let B be an algebra of subsets of a set S, let P be a prob-
ability on B, and for n = 0, 1, . . . , let Xn : S → {0, 1}. Assume that
(S,B , (Xn), P ) is a stationary process, and assume d = (d1, d2, . . . , dr) ∈ Σ.
Then, there is subset Z of S that has measure zero such that for all x /∈ Z
we have: if

X0(x) = 1, X1(x) = d1, . . . , Xr(x) = dr,

then there are n ∈ N and r ≥ 0 such that n > r and Xn(x) = 1.

Proof. By using (5.1) in Lemma 5.2.2 and stationarity

P (1, d) =
∞∑
k=0

P (1, d, 0k, 1).

That is,

P
(
A(1, d)

)
=
∞∑
k=0

P
(
A(1, d, 0k, 1)

)
. (5.4)

If we put Aj = A(1, d, 0j, 1) then, we define Z by

Z = A(1, d) ∩
( ∞⋃
j=1

Aj

)c
.

So, noting that Aj ⊆ A(1, d) for all j, we have

A(1, d) = Z ∪
( ∞⋃
j=1

Aj

)
,

and all the sets Z,Aj are mutually disjoint. Then, by applying Lemma 5.2.4,
and using (5.4) we see that Z has measure zero. If x ∈ A(1, d) but x /∈ Z ,
x ∈

⋃∞
j=1Aj so there is j ∈ N such that

x ∈ A(1, d, 0j, 1).
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Therefore,

X0(x) = 1, X1(x) = d1, . . . , Xr(x) = dr, Xr+1(x) = 0, . . . , Xr+j(x) = 0

and Xr+j+1(x) = 1.

Now if we put n = j + r + 1, then n > r and Xn(x) = 1.

The following theorem follows immediately from Theorem 5.2.1. This is
the Poincaré Recurrence Theorem discussed at the start of Section 5.2 (see
[13, page 8], [6, page 13], [23, page 34], [20, pages 248-255], [15, pages10-12]
and [16]).

Theorem 5.2.2. Let S be a set, let B be an algebra of subsets of S, let P be
a probability on B, and for each n = 0, 1, . . . , let Xn : S → {0, 1}. Assume
that (S,B , (Xn), P ) is a stationary zero-one process. Then, there is a subset
Z of S that has measure zero such that: if x ∈ S, x /∈ Zand X0(x) = 1, there
is r > 0 such that Xr(x) = 1.

5.3 Recurrence times in dynamical systems

We return to the discussion of dynamical systems, recalling that if S is a set
and f is a transformation on S then (S, f) is called a dynamical system. We
saw in Section 3.4 that in some circumstances there are zero-one stochastic
processes that can be associated with the dynamical system. We now con-
sider how the notion of the arrival and recurrence times as they occur in a
stochastic process can be interpreted in a dynamical system. Let S be a set,
let B be an algebra of subsets of S and let f be a transformation on S. We
suppose U ⊆ S and we put

Xn(x) = χU(fn(x)), where x ∈ S and n = 0, 1, . . . .

Thus,
Xn(x) = 1⇐⇒ fn(x) ∈ U.

Assume that f−n(A) ∈ B for all A ∈ B and assume further that the set U
above is in B. We assume there is a probability P on B. Then, (S,B, (Xn), P )
is the stochastic process associated with the dynamical system (S, f), given
U ∈ B. We put

U0 = U,

and

Un = {x : x ∈ U, f(x) /∈ U, . . . , fn−1(x) /∈ U, fn(x) ∈ U for n = 1, 2, . . .}.
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That is,

U0 = U and Un = U ∩ f−1(U c) ∩ f−2(U c) . . . ∩ f−n+1(U c) ∩ f−n(U) ∈ B.

Observe that if d = (d1, d2, . . . , dn),

P (d) =P (A(d))

=P
(
{x : X0(x) = d1, X1(x) = d2, . . . , Xn−1(x) = dn}

)
=P
(
{x : χU(f j(x)) = dj+1, j = 0, 1, 2, . . . , n− 1}

)
.

Thus,

P (Un) =P (10n−11)

=P
(
{x : x ∈ U, f j(x) /∈ U, for j = 1, 2, . . . , n− 1, fn(x) ∈ U}

)
=P
(
U ∩ f−1(U c) ∩ . . . ∩ f−n+1(U c) ∩ f−n(U)

)
.

Also,

P (0n) =P
(
{x : x /∈ U, f j(x) /∈ U, for j = 1, 2, . . . , n− 1}

)
=P
(
U c ∩ f−1(U c) ∩ . . . ∩ fn−1(U c)

)
.

Now the arrival times for the process (S, (Xn)) are denoted as in Section 5.1
by an(x) for n = 0, 1, 2, . . . . We see that for x ∈ S,

a1(x) = min{n : n = 0, 1, 2, . . . and fn(x) ∈ U}.

Also, the recurrence times for the process (S, (Xn)) are denoted by rn(x)
for n = 1, 2, . . ., as in Section 5.2. We see that given x ∈ U ,

r1(x) = min{n : n ∈ N and fn(x) ∈ U}.

Thus, in the dynamical system (S, f), if x /∈ U the first arrival time is the
first or minimum value m ≥ 1 such that fm(x) ∈ U . If x ∈ U , then the first
arrival time is 0. The first recurrence time is the first or minimum value of
m such that fm(x) ∈ U , given that x ∈ U . Similar comments apply to the
higher order arrival and recurrence times. The kth arrival time ak(x) for x
is the kth value m such that fm(x) ∈ U ; and the kth recurrence time for x is
ak(x)− ak−1(x).
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5.4 The average of the recurrence time

We saw in Section 5.2 that “almost all” points x of a set will return to the
set, or recur, in a dynamical system under certain conditions. Theorem 5.2.2
says that similar things happen for stationary stochastic process. However,
we did not discuss how long the point takes to return to some state. In this
section, we will examine the average recurrence time where (S,B , (Xn), P )
is a stochastic process and note that we assume P (A(1)) > 0.
Observe that,

A(1) = {x : x ∈ S and X0(x) = 1} ∈ B.
As described in Section 5.1 the first recurrence time is given by, for x ∈ A(1),

r1(x) = min{k : k ∈ N and Xk(x) = 1}.

We now define the the average of the first recurrence time 〈r1|X0 = 1〉 (some-
times called the expectation) of r1 over A(1) as

〈r1|X0 = 1〉 =
1

P (A(1))

∞∑
m=1

mP ({x : x ∈ A(1) and r1(x) = m}). (5.5)

Note that the set {x : x ∈ A(1) and r1(x) = m} equals the set A(10m−11)
which is in B.

Theorem 5.4.1. Let S be a set, let B be an algebra of subsets of S and let P
be a probability on B. Let (S,B, (Xn), P ) be a stationary zero-one stochastic

process, suppose that P̃ (0∞) = 0 and P (A(1)) = q > 0 where

A(1) = {x : x ∈ S and X0(x) = 1} ∈ B.

Then, the average of the first recurrence time over A(1) is

〈r1|X0 = 1〉 =
1

q
.

Proof. We will use Theorem 4.3.1, together with P̃ (0∞) = 0, to prove the
result.

We have by (5.5),

〈r1|X0 = 1〉 =
1

q

∞∑
m=1

mP (10m−11),

and by using (vii) of Theorem 4.3.1 with r = 1 and y = 1 we get

〈r1|X0 = 1〉 =
1

q

∞∑
m=1

[
P (0m1)− lim

N−→∞
P (0N1)

]
. (5.6)
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Now, if we use (iv) of Theorem 4.3.1 we get lim
N−→∞

P (0N1) = 0, so (5.6) gives

〈r1|X0 = 1〉 =
1

q

∞∑
m=1

P (0m1).

However, using (v) of Theorem 4.3.1 now gives
∞∑
m=1

P (0m1) = 1, so we deduce

that

〈r1|X0 = 1〉 =
1

q
,

as required.

5.5 The dynamical systems formulation

In this Section we take the notion and result of the previous Section to derive
the average value of r1 over U for a dynamical system. Suppose we have a
dynamical system (S, f) where S is a set and U is a subset of S. Then, given
x ∈ U , the first recurrence time is given by

r1(x) = min{n ∈ N and fn(x) ∈ U}.

Note that for the corresponding stochastic process, A(1) = U and using
equation (5.5), the average value of r1 over U equals

1

P (U)

∞∑
m=0

mP
(
{x : x ∈ U and r1(x) = m}

)
.

To apply Theorem 5.4.1, we need to have a dynamical system (S, f) together
with an algebra B of subsets of S and a probability P on B for which f is P -
invariant. The condition P̃ (0∞) = 0 in the Theorem 5.4.1 can be interpreted
in this context as

lim
n−→∞

P (U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)) = 0.

Also, the P -invariance of f ensures that the stochastic process associated
with (S, f) is stationary, by Theorem 3.4.1. So, we obtain the following re-
sult.
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Theorem 5.5.1. Let (S, f) be a dynamical system, let B be an algebra of
subsets of S, and let P be a probability on B such that f is P -invariant. Let
U ∈ B with P (U) > 0, and assume that

lim
n−→∞

P (U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)) = 0.

Let r1 be the first recurrence time of f over U . Then, the average value of
r1 over U is

1

P (U)

∞∑
m=0

mP
(
{x : x ∈ U and r1(x) = m}

)
=

1

P (U)
.
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Chapter 6

The standard deviation of the
recurrence time

6.1 Introduction

As we have seen in Chapter Five Section 5.4, given a stationary stochastic
process (S, B,(Xn), P ) with P̃ (0∞) = 0 then the average of the first recur-
rence time r1 over A(1) = {x : x ∈ S and X0(x) = 1}, with P (A(1)) > 0
is

〈r1|X0 = 1〉 =
1

q
, where q = P (A(1)). (6.1)

The “average scattering” of a function is gauged by the standard deviation
of the function. We now define the standard deviation and derive a formula
for it in the case of zero-one stationary stochastic processes. This formula
is originally due J. R. Blum and J. I. Rosenblatt [4], but was proved also
in P. W. Kasteleyn [18] (see also [20, pages 270-282]). The approach taken
here differs from that of [4] and [18], in some respects, in that the formula is
derived under somewhat weaker and more explicit assumptions.

6.2 The standard deviation formula

We now make some important definitions.

Definition 6.2.1.

Let S be a set, let B be an algebra of subsets of S, let P be a probability
on B, and let φ : S −→ Z+ ∪ {∞} be a function such that for each m ∈
Z+, φ

−1(m) ∈ B, and φ−1({∞}) has measure zero. Then, the average (or

39



CHAPTER 6. THE STANDARD DEVIATION OF THE RECURRENCE
TIME

expectation) of φ over a set A ∈ B with P (A) > 0 is

EA(φ) =
1

P (A)

∞∑
m=0

mP (φ−1(m)).

Then, the variance vA(φ) of φ over the set A ∈ B is

vA(φ) =
1

P (A)

∞∑
m=0

(
m− EA(φ)

)2
P (φ−1(m)),

provided that EA(φ) <∞. The standard deviation is defined to be

σA(φ) =
√
vA(φ).

Since we are only going to do the case of r1 over A = A(1), then perhaps we
do not need the general definition.

Note that in our applications to stochastic processes

A = {x : x ∈ S and X0(x) = 1} = A(1),

and in our applications to dynamical system A = U a given subset of S. For
now, we deal with the stochastic processes case.

We assume that q = P (A) > 0. Then r1 : A −→ N∪{∞}, and under the
condition of Theorem 5.2.1, P (r−11 ({∞})) = 0. Observe that

r−11 (m) = A(10m−11), for m ∈ N.

Hence, according to the definition, the average of r1 over A(1) is

EA(1)(r1) =
1

q

∞∑
m=0

mP (r−11 (m))

=
1

q

∞∑
m=0

mP (10m−11),

and by Theorem 5.4.1,

EA(1)(r1) =
1

P (A(1))
=

1

q
.
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Now, the standard deviation of r1 over A(1) is

σA(1)(r1) =

√√√√1

q

∞∑
m=1

(
m− EA(1)(r1)

)2
P (10m−11)

=

√√√√1

q

∞∑
m=1

(
m− q−1

)2
P (10m−11)

=

√√√√1

q

∞∑
m=1

(
m2 − 2q−1m+ q−2

)
P (10m−11). (6.2)

Using (6.2), the aim is to derive the the standard deviation of the first
recurrence time. However, before giving a formal discussion for the standard
deviation of the first recurrence time, we need to prove Lemma below

Lemma 6.2.1. Let S be a set, let B be an algebra of subsets of S and let P
be a probability function on B. Let X ∈ B, let Z be a subset of S of measure
zero, and let (Yn) be a sequence of disjoint sets in B such that

X =
( ∞⋃
j=1

Yj

)
∪ Z.

Then,

P (X) =
∞∑
n=1

P (Yn).

Proof. Let W = X∩
(⋃∞

n=1 Yn

)c
. Then, W ⊆ Z and so W has measure zero.

Also,

X = W ∪
( ∞⋃
n=1

Yn

)
,

and this union is disjoint. Then for ε > 0 there is a sequence (Jn) in B such

that W ⊆
⋃∞
n=1 Jn, and

∞∑
n=1

P (Jn) < ε. We now have

X ⊆
( ∞⋃
n=1

Yn

)
∪
( ∞⋃
n=1

Jn

)
and

∞∑
n=1

P (Jn) < ε.
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Now, by using Lemma 2.2.1,

P (X) ≤
∞∑
n=1

P (Yn) +
∞∑
n=1

P (Jn) <
∞∑
n=1

P (Yn) + ε.

As this holds for all ε > 0,

P (X) ≤
∞∑
n=1

P (Yn). (6.3)

Now note that as P is a probability,

r∑
n=1

P (Yn) = P
( r⋃
n=1

Yn

)
, since the sets Yn are disjoint,

≤ P (X).

Letting r −→∞ we obtain

∞∑
n=1

P (Yn) ≤ P (X). (6.4)

Clearly, from (6.3) and (6.4) we have

P (X) =
∞∑
n=1

P (Yn).

Theorem 6.2.1. Let (S, B, (Xn), P ) be a stationary stochastic process, sup-

pose that P̃ (0∞) = 0 with P a probability function on B. Let r1 : A(1) −→ N
be the function which is the first recurrence time. Put q = P (A(1)) and
assume q > 0. Then the standard deviation of r1 over A(1) is

σA(1)(r1) =

√√√√q−1 − q−2 + 2q−1
∞∑
m=1

P (0m).

Equivalently,

σA(1)(r1) =

√√√√3q−1 − q−2 − 2 + 2q−1
∞∑
m=2

P (0m).

Consequently, if the serie
∑∞

m=1 P (0m) is divergent, σA(1)(r1) is infinite; oth-
erwise it is finite.
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Proof. By using (6.2) we have

σA(1)(r1) =

√√√√1

q

∞∑
m=1

(
m2 − 2q−1m+ q−2

)
P (10m−11).

The goal now is to calculate the terms under the square root. Observe that

1

q

∞∑
m=1

(
m2 − 2q−1m+ q−2

)
P (10m−11)

=
1

q

[ ∞∑
m=1

m2P (10m−11)︸ ︷︷ ︸
first term

−2q−1
∞∑
m=1

mP (10m−11)︸ ︷︷ ︸
second term

+q−2
∞∑
m=1

P (10m−11)︸ ︷︷ ︸
third term

]
.

(6.5)

We will show that the second and third terms are convergent and obtain a
simple expression for the first term. For the first term, using Theorem 4.3.1
property (vii) with y = 1 and r = 2, the first term of (6.5) is

∞∑
m=1

m2P (10m−11) =
∞∑
m=0

(
(m+ 1)2 −m2

)[
P (0m1)− lim

s−→∞
P (0s1)

]
.

Now observe that P (0m1) = P (0m)− P (0m+1), so taking limits gives

lim
m−→∞

P (0m1) = 0.

It follows that

∞∑
m=1

m2P (10m−11) =
∞∑
m=0

(1 + 2m)P (0m1)

=
∞∑
m=0

P (0m1) + 2
∞∑
m=0

mP (0m1). (6.6)

Now by using Theorem 4.3.1 property (vi) with y = 0 and r = 1 gives

∞∑
m=0

mP (0m1) =
∞∑
m=0

[
P (0m+1)− P̃ (0∞)

]
=

∞∑
m=1

P (0m). (6.7)
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Also,

∞∑
m=0

P (0m1) = P (1) +
∞∑
m=1

[
P (0m)− P (0m+1)

]
= P (1) + P (0)− P̃ (0∞)

= P (S)

= 1. (6.8)

We now see from (6.6),(6.7), and (6.8) above that the first term in (6.5) is

∞∑
m=1

m2P (10m−11) = 1 + 2
∞∑
m=1

P (0m). (6.9)

We now consider the second term. It is immediately from Theorem 5.4.1
that the second term of (6.5) becomes

∞∑
m=1

mP (10m−11) = 1. (6.10)

Finally, we show that the third term gives
∑∞

m=1 P (10m−11) = q. We
consider

∞∑
m=1

P (10m−11) =
∞∑
m=0

P (10m1).

Observe that

A(1) =
( ∞⋃
m=0

A(10m1)
)
∪ A(10∞).

We first prove that A(10∞) has measure zero. We have

P (10m) = P (0m)− P (0m+1),

and
A(10∞) ⊆ A(10m).

We know by Theorem 4.3.1 property (iii), limm−→∞ P (10m) = 0 and as

P (10m) = P
(
A(10m)

)
, we see that A(10∞) is a set of measure zero.

Now,

A(1) =
( ∞⋃
m=0

A(10m1)
)
∪ A(10∞),
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so as A(10∞) has measure zero, Lemma 6.2.1 gives

P (A(1)) =
∞∑
m=0

P
(
A(10m1)

)
=

∞∑
m=0

P (10m1).

Therefore, the third term of (6.5) will be

∞∑
m=1

P (10m−11) = P (A(1)) = q. (6.11)

Now putting (6.9), (6.10), and (6.11) in (6.5) gives[
σA(r1)

]2
=

1

q

[
1 + 2

∞∑
m=1

P (0m)− 2q−1 + q−2(q)
]

= q−1 − q−2 + 2q−1
∞∑
m=1

P (0m).

Hence, the standard deviation is

σA(r1) =

√√√√q−1 − q−2 + 2q−1
∞∑
m=1

P (0m).

Note that P (0) = 1−P (1) = 1− q so the standard deviation is also equal to

σA(r1) =

√√√√q−1 − q−2 + 2q−1
[
1− q +

∞∑
m=2

P (0m)
]

=

√√√√3q−1 − q−2 − 2 + 2q−1
∞∑
m=2

P (0m).
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6.3 The standard deviation in dynamical sys-

tems

In this section, we will discuss the special form of Theorem 6.2.1 in the case
of certain dynamical systems. Let (S, f) be a dynamical system with P
a probability function on an algebra B of subsets of S. Let U ∈ B with
P (U) > 0. We assume that f is P -invariant. Then, if we consider the
associated stationary stochastic process, (S,B, (Xn), P ), as in Theorem 3.4.1,

the condition P̃ (0∞) = 0 is equivalent to having

lim
n−→∞

P (U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)) = 0.

The following Theorem is the interpretation of Theorem 6.2.1 in the dy-
namical systems context.

Theorem 6.3.1. Let (S, f) be a dynamical system, let B be an algebra of
subsets of S, and let P be a probability function on B and assume f is P -
invariant. Let U ∈ B with P (U) > 0. Let r1 be the first recurrence time of f

over U and suppose P̃ (0∞) = 0. The standard deviation can be infinite but
it is finite if and only if

∞∑
m=1

P
(
U c ∩ f−1(U c) ∩ . . . ∩ f−m(U c)

)
<∞.

In this case, the standard deviation of r1 over U is finite and equals
σU(r1) =√
−P (U)−2 + 3P (U)−1 − 2 + 2P (U)−1

∑∞
m=1 P

(
U c ∩ f−1(U c) ∩ . . . ∩ f−m(U c)

)
.

Proof. It follows from Theorem 6.2.1 with P̃ (0∞) = 0 that if we take P (U) >
0 in place of q and under the conditions of Theorem 3.4.1 then,

σU(r1) =

√√√√P (U)−1 − P (U)−2 + 2P (U)−1
∞∑
m=1

P (0m).

Now observe that

P (0m) = P
(
{x : X1(x) = 0, X2(x) = 0, . . . , Xm−1(x) = 0}

)
,

= P
(
{x : x /∈ U, f(x) /∈ U, . . . , f (m−1)(x) /∈ U}

)
,

= P
(
U c ∩ f−1(U c) ∩ . . . ∩ f−(m−1)(U c)

)
.
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That is, σU(r1)

=

√√√√P (U)−1 − P (U)−2 + 2P (U)−1
∞∑
m=0

P
(
U c ∩ f−1(U c) ∩ . . . ∩ f−m(U c)

)

=

√√√√−P (U)−2 + 3P (U)−1 − 2 + 2P (U)−1
∞∑
m=1

P
(
U c ∩ f−1(U c) ∩ . . . ∩ f−m(U c)

)
.

Note that this formula above tells us that the standard deviation depends
on the subset U of S.
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Chapter 7

Piecewise linear functions and
their dynamical systems

7.1 Introduction

A main aim of this chapter is to introduce piecewise linear functions and
study their behaviour in dynamical systems. If X is an interval and
f : X −→ R is a function, then f is a piecewise linear function if there is a
partition of X into a finite number of subintervals such that, on each interval
J in the partition, f is given by x 7−→ ax+ b, for suitable constants a and b
that generally depend on J .

In this Chapter, for a piecewise linear function of the type in Figure
7.1, some properties are derived which are used to obtain new estimates
for the standard deviation of recurrence times in the associated dynamical
systems. There is also a related discussion of some examples that are of use
in subsequent parts of the thesis (for more discussion and clarification see
[20]).

7.2 Piecewise linear functions

Definition 7.2.1.

Let X be a set. A partition of X is a family X1, X2, . . . , Xk of non-empty
disjoint subsets of X such that

X =
k⋃
j=1

Xj.
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Definition 7.2.2.

Let X be an interval. A function g : J → R, where J is a subinterval of
X, is called linear if there are a, b ∈ R such that g(x) = ax+ b, for all x ∈ J.
A function f : X → R is called piecewise linear if there is a partition of X
into subintervals of positive length such that f is a linear on each of these
subintervals.

0 1

1

1
4

1
3

1
2

f

Figure 7.1. This illustrates the graph of a piecewise linear function

on [0, 1). The interval [0, 1) is partitioned into the four subintervals

[0, 1/4), [1/4, 1/3), [1/3, 1/2), and [1/2, 1). On each of these subintervals,

f is linear in the sense that it is given by x 7−→ ax+ b, for a suitable choice

of a and b. Note that the range of f on each interval in the partition is [0, 1).

The transformation f is an example of a completely stretching piecewise

linear transformation, see the main text for the definition.

Definition 7.2.3.

Let f : X → X be a transformation on X where X is an interval of length
1. Now we define a completely stretching piecewise linear transformation.
If there is r ∈ N with r ≥ 2 and a partition X1, X2, ..., Xr of X into r
subintervals such that, for each j ∈ {1, 2, ..., r}, f is linear on Xj and its
range on Xj is either X or X less one or two endpoints.

See Figure 7.2 for different examples of piecewise linear functions. On
the right of Figure 7.2, the transformation is completely stretching but on
the left of Figure 7.2, it is not.
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Note that if f is completely stretching and is not linear on the whole of
its domain, then f is not one-to-one.

0 1

1

0.25 0.4 0.7

0.5

f

Figure 7.2 0 1

1

1/4 1/2 3/4

g

Figure 7.2. On the left, the Figure illustrates a continuous piecewise lin-

ear function that is linear on each of intervals [0, 0.25), [0.25, 0.4), [0.4, 0.7)

and [0.7, 1]. Note that ([0, 1], f) is a dynamical system. On the right, the

Figure illustrates a completely stretching piecewise linear function g on

[0, 1). The function g is linear on [0, 1/4), [1/4, 1/2), [1/2, 3/4) and [3/4, 1)

and on each of these the restriction of g has range [0, 1). Also, ([0, 1), g) is

a dynamical system.

Let f be a completely stretching piecewise linear function as in Definition
7.2.3. Let k ∈ N be given and for each choice n1, n2, . . . , nk of k numbers in
{1, 2, . . . , r}, put

Xn1n2...nk
= {x : x ∈ Xn1 , f(x) ∈ Xn2 , . . . , f

k−1(x) ∈ Xnk
} =

k⋂
j=1

f−j+1(Xnj
).

(7.1)
In the case k = 1, (7.1) gives Xn1 , and there is no ambiguity. The set
Xn1n2...nk

can be thought of as the set of initial states which lead to a pre-
scribed evolution of the system over the first k time units. The requirement
that f j−1(x) ∈ Xnj

for all j = 1, 2, . . . , k means that after the elapse of j− 1
time units, the system is in a state lying in the prescribed set Xnj

for all
j = 1, 2, . . . , k.
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Lemma 7.2.1. Let X be an interval of length 1 and let X1, X2, . . . , Xr be a
partition of X into r subintervals of positive length. Let k ∈ N, and let f be
a completely stretching piecewise linear transformation on X. Then, the set
Xn1n2...nk

is a subinterval of X for all n1, n2, ..., nk ∈ {1, 2, ..., r}. Also, the
restriction of fk to Xn1n2...nk

is a linear function whose range is either X, or
X less one or two endpoints.

Proof. The approach of the proof will be by mathematical induction. Let
int(J) denote the interior of any interval J , and let k ∈ N. Consider the
following statements:

(i)Xn1n2...nk
is a subinterval of X for all n1, n2, ..., nk ∈ {1, 2, ..., r}.

(ii) fk is linear on Xn1n2...nk
for all n1, n2, ..., nk ∈ {1, 2, ..., r}.

(iii) fk maps int(Xn1n2...nk
) onto int(X) for all n1, n2, ..., nk ∈ {1, 2, ..., r}.

If fk is linear on Xn1n2...nk
and maps int(Xn1n2...nk

) onto int(X), then fk maps
Xn1n2...nk

onto X or X less one or two endpoints. Hence, if (i), (ii) and (iii)
are true for some k, then the Lemma is also true for that value of k. However,
(i), (ii) and (iii) are true when k = 1, because of the assumed properties of
the transformation f . So we proceed by mathematical induction.
Assume that (i), (ii) and (iii) hold for k. Then,

Xn1n2...nknk+1
=
{
x : x ∈ Xn1 , f(x) ∈ Xn2 , . . . , f

k−1(x) ∈ Xnk
, fk(x) ∈ Xnk+1

}
=
{
x : x ∈ Xn1n2...nk

and fk(x) ∈ Xnk+1

}
.

Hence, Xn1n2...nknk+1
is an interval because it is assumed that fk is linear on

Xn1n2...nk
. That is, (i) holds with k + 1 in place of k.

Now observe that

x ∈ Xn1n2...nknk+1

=⇒ x ∈ Xn1 , f(x) ∈ Xn2 , . . . , f
k−1(x) ∈ Xnk

, fk(x) ∈ Xnk+1

=⇒ f(x) ∈ Xn2 , f
(
f(x)

)
∈ Xn3 , . . . , f

k−2
(
f(x)

)
∈ Xnk

, fk−1
(
f(x)

)
∈ Xnk+1

=⇒ f(x) ∈ Xn2n3...nknk+1
.

Hence, f : Xn1n2...nknk+1
−→ Xn2n3...nknk+1

and fk is linear on Xn2n3...nknk+1

by assumption (ii). However, as f is linear on Xn1 , f is linear on the smaller
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set Xn1n2...nknk+1
. So we have

f : Xn1n2...nknk+1
−→ Xn2n3...nknk+1

and fk : Xn2n3...nknk+1
−→ X,

where both f and fk are linear. Since the composition of linear functions is
linear, it follows that fk+1 = fk ◦ f is linear on Xn1n2...nknk+1

, thus showing
that (ii) holds with k + 1 in place of k.

Now, let z ∈ int(X). By the induction assumption (iii), there is y ∈
int(Xn2n3...nknk+1

) such that fk(y) = z. Then, as f maps Xn1 onto either X
or X less one or two endpoints, there is x ∈ int(Xn1) such that f(x) = y.
then,

fk+1(x) =
(
fk ◦ f

)
(x) = fk

(
f(x)

)
= fk(y) = z.

Therefore, x ∈ Xn1n2...nknk+1
, and it follows that fk+1 maps int(Xn1n2...nknk+1

)
onto int(X), so that (iii) holds with k + 1 in place of k. Thus, the Lemma
follows by mathematical induction.

Now, let X be an interval of length 1 and let B be the algebra of subsets
of X consisting of finite unions of subintervals of X. For each subinterval
A of X we define µ(A) = length of A. If A ∈ B and A =

⋃n
j=1Aj, where

this is a disjoint union of intervals, then if we put µ(A) =
∑n

j=1 µ(Aj), µ is
well defined on B and µ(X) = 1. For future use, note that µ is a length-
preserving (see Definition 7.3.1 and [20]). Note that if f is a piecewise linear
transformation on X, then f−1(C) ∈ B for all C ∈ B. Note that a completely
stretching piecewise linear function is a length-preserving transformation(see
[20, pages 245-246]).

Lemma 7.2.2. Let X be an interval of length 1 and let X1, X2, . . . , Xr be a
partition of X into r ≥ 2 subintervals of positive length. Let f be a completely
stretching piecewise linear transformation and Xn1n2...nk

defined as in (7.1).
If k ∈ N, Xn1n2...nk

is a subinterval of X for all n1, n2, ..., nk ∈ {1, 2, ..., r}.
Then,

µ(Xn1n2...nk
) =

k∏
j=1

µ(Xnj
).

Furthermore, if ρ = max{µ(Xj) : 1 ≤ j ≤ r}, then 0 < ρ < 1 and

µ(Xn1n2...nk
) ≤ ρk,

for all k ∈ N and all n1, n2, ..., nk ∈ {1, 2, ..., r}.
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Proof. We will use mathematical induction to prove the Lemma. Consider
the first statement. If k = 1, the result is true. Assume the result is true for
some k. We use the result of Lemma 7.2.1 that fk is linear on Xn1n2...nk

and
the range of f on Xn1n2...nk

is X, or X less one or two endpoints. Then,

µ(Xn1n2...nknk+1
) = µ

(
{x : x ∈ Xn1 , f(x) ∈ Xn2 , . . . , f

k−1(x) ∈ Xnk
, fk(x) ∈ Xnk+1

}
)

= µ
(
{x : x ∈ Xn1n2...nk

and fk(x) ∈ Xnk+1
}
)

= µ(Xn1n2...nk
).µ(Xnk+1

)

= µ(Xnk+1
).

k∏
j=1

µ(Xnj
), by the inductive assumption,

=
k+1∏
j=1

µ(Xnj
).

Thus, if the result holds for k, it holds also for k + 1. So the first statement
is true for all k ∈ N by induction.

Now, as r ≥ 2, and as X1, X2, . . . , Xr partition X and have positive
length, we have 0 < µ(Xj) < 1 for all j ∈ {1, 2, . . . , r}. So, 0 < ρ < 1 and it
follows that

µ(Xn1n2...nk
) =

k∏
j=1

µ(Xnj
) ≤ ρk, for all k ∈ N and n1, n2, ..., nk ∈ {1, 2, ..., r}.

Lemma 7.2.3. Let X be an interval of length 1 and let f be a completely
stretching piecewise linear transformation on X. Let X1, X2, . . . , Xr be a
partition of X into r subintervals of positive length. Let k, s ∈ N and for
each j ∈ {1, 2, . . . , s}, suppose there are given n1j, n2j, ..., nkj ∈ {1, 2, . . . , r}
and put Yj = Xn1jn2j ...nkj

. Then,

µ(Y1 ∩ f−k(Y2) ∩ . . . ∩ f−(s−1)k(Ys)) =
s∏
j=1

µ(Yj).

Proof. We will prove from the definitions of Xn1jn2j ...nkj
and Yj that

Y1 ∩ f−k(Y2) ∩ . . . ∩ f−(s−1)k(Ys) = Xn11...nk1n12...nk2n13...nks−1n1s...nks
. (7.2)
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We have

x ∈ Xn11...nk1n12...nk2n13...nks−1n1s...nks

⇐⇒ x ∈ Xn11 , . . . , f
k−1(x) ∈ Xnk1

, . . . , fk(s−1)(x) ∈ Xn1s , f
sk−1(x) ∈ Xnks

⇐⇒ x ∈ Xn11...nk1
, . . . , fk(x) ∈ Xn12...nk2

, . . . , fk(s−1)(x) ∈ Xn1s...nks

⇐⇒ x ∈ Y1, x ∈ f−k(Y2), . . . , x ∈ f (s−1)k(Ys)

⇐⇒ x ∈ Y1 ∩ f−k(Y2) ∩ . . . ∩ f (s−1)k(Ys).

Hence, clearly now the statement (7.2) has been proven.
Now by Lemma 7.2.2,

µ(Y1∩f−k(Y2)∩. . .∩f (s−1)k(Ys)) = µ(Xn11) . . . µ(Xnk1
) . . . µ(Xnks−1

)µ(Xn1s) . . . µ(Xnks
).

Also, by using Lemma 7.2.2 again,

µ(Y1 ∩ f−k(Y2) ∩ . . . ∩ f (s−1)k(Ys)) =
s∏
j=1

µ(Yj).

Lemma 7.2.4. Let X be an interval of length 1. Let f : X −→ X be
a piecewise linear transformation of X, where f is linear on each of the
intervals X1, X2, . . . , Xr which form a partition of X. Let each Xj have
positive length. Put

Pk =
{
Xn1n2...nk

: n1, n2, . . . , nk ∈ {1, 2, . . . , r}
}
,

for k = 1, 2, 3, . . .. Then, Pk is a partition of X. If f is completely stretching,
Pk contains of rk disjoint intervals of positive length.

Proof. We have X1, X2, . . . , Xr partitioning X and f : X −→ X is piecewise
linear transformation of X. Let x ∈ X. Then, given k ∈ N, there are
n1, n2, . . . , nk ∈ {1, 2, . . . , r} such that

x ∈ Xn1 , f(x) ∈ Xn2 , . . . , f
k−1(x) ∈ Xnk

.

Then, x ∈ Xn1n2...nk
. Then, the union of sets in Pk, for a given k, is X. If

x ∈ Xn1n2...nk
∩Xm1m2...mk

, then

x ∈ Xn1 ∩Xm1 =⇒ n1 = m1

f(x) ∈ Xn2 ∩Xm2 =⇒ n2 = m2

. . .

fk−1 ∈ Xnk
∩Xmk

=⇒ nk = mk.
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Hence, n1 = m1, n2 = m2, . . . , nk = mk, and it follows that

Xn1n2...nk
= Xm1m2...mk

.

We deduce that the sets in Pk partition X. Note that Pk contains of rk

intervals when f is completely stretching (see Lemma 7.2.2).

Lemma 7.2.5. Let f be a completely stretching piecewise linear transforma-
tion on interval X of length 1. Let W be a set that is a union of sets in the
partition

Pk =
{
Xn1n2...nk

: n1, n2, . . . , nk ∈ {1, 2, . . . , r}
}
.

Then, for m = 1, 2, . . . ,

µ
(
W ∩ f−k(W ) ∩ f−2k(W ) ∩ . . . ∩ f−(m−1)k(W )

)
= µ(W )m.

Proof. There are disjoint sets Y1, Y2, . . . , Ys in Pk such that W =
⋃s
j=1 Yj.

Then,

µ
(
W ∩ f−k(W ) ∩ f−2k(W ) ∩ . . . ∩ f−(m−1)k(W )

)
= µ

[( s⋃
j=1

Yj

)
∩ f−k

( s⋃
j=1

Yj

)
∩ f−2k

( s⋃
j=1

Yj

)
∩ . . . ∩ f−(m−1)k

( s⋃
j=1

Yj

)]
= µ

[( s⋃
j=1

Yj

)
∩
( s⋃
j=1

f−k(Yj)
)
∩
( s⋃
j=1

f−2k(Yj)
)
∩ . . . ∩

( s⋃
j=1

f−(m−1)k(Yj)
)]

= µ
[ ⋃
j0,j1,j2,...,jm−1∈{1,2,...,s}

Yj0 ∩ f−k(Yj1) ∩ f−2k(Yj2) ∩ . . . ∩ f−(m−1)k(Yjm−1)
]

=
∑

j0,j1,j2,...,jm−1∈{1,2,...,s}

µ
[
Yj0 ∩ f−k(Yj1) ∩ f−2k(Yj2) ∩ . . . ∩ f−(m−1)k(Yjm−1)

]

=
∑

j0,j1,j2,...,jm−1∈{1,2,...,s}

m−1∏
t=0

µ(Yjt), by Lemma 7.2.3,

=
( s∑
j=1

µ(Yj)
)m

= µ(W )m.
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7.3 The standard deviation for some piece-

wise linear transformations

Here, we are going to use the previous results to derive an estimate for
standard deviation of the first recurrence time in a dynamical system (X, f)
where X is a unit interval and f is a completely stretching piecewise linear
transformation in X.

Theorem 7.3.1. Let X be an interval of length 1 and let X1, X2, . . . , Xr be
a partition of X into subintervals of X of positive length with r > 1. Let f be
a completely stretching piecewise transformation on X that is linear on each
interval Xj. Put ρ = max{µ(Xj) : 1 ≤ j ≤ r}, and let U be a subinterval
of X of positive length. Then, in the dynamical system (X, f), the mean of
the recurrence time rU over U is µ(U)−1, and the standard deviation σ(rU)
of rU is finite. In fact, if we put

k = 1 + the integer part of
( log(µ(U)/2)

log(ρ)

)
,

then

σ(rU) ≤

√
− 1

µ(U)2
+

3

µ(U)
− 2 +

k(1 + 2ρk − µ(U))

µ(U)− 2ρk
.

Proof. It is clear that the mean recurrence time is µ(U)−1 by Theorem 5.5.1.
If U = X except possibly for end points, the standard deviation is zero

and is finite, so we may assume that 0 < µ(U) < 1. Using Lemma 7.2.2,
as ρ < 1 we see that the maximum length of an interval in the partition Pk
tends to 0, as k −→ ∞. So, there is k ∈ N and a set Y that is finite union
of sets in Pk such that Y ⊆ U. Later we will chose k as small as we can so
that this still happens. The complement of Y in X is a set W that is also
a finite union of sets in Pk such that U c ⊆ W (see Figure 7.3). Note that
0 < µ(W ) < 1.
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0 1
( ( ) )

U

YW = Y c W = Y c

. . .

Figure 7.3. This illustrates ideas in part of the argument

used in proving Theorem 7.3.1. The set Y is a finite union of

intervals which are subsets of U . The set W is the comple-

ment of Y and U c ⊆ W . The partition of [0, 1) into subin-

tervals come from intervals in Pk, where k is as in the main

text, and the maximum possible length of an interval in Pk
is ρk < 1 .

Having chosen k as described and having chosen W as defined,

∞∑
n=1

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)

)

=
∞∑
`=1

 `k∑
n=(`−1)k+1

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)

)
≤

∞∑
`=1

 `k∑
n=(`−1)k+1

µ
(
W ∩ f−1(W ) ∩ . . . ∩ f−n(W )

) , as U c ⊆ W,

≤
∞∑
`=1

 `k∑
n=(`−1)k+1

µ
(
W ∩ f−1(W ) ∩ . . . ∩ f−[(`−1)k+1](W )

) ,

as some terms in the intersection have been omitted,

≤
∞∑
`=1

 `k∑
n=(`−1)k+1

µ
(
W ∩ f−k(W ) ∩ . . . ∩ f−(`−1)k(W )

) ,

again by omitting some terms in the intersection,

=
∞∑
`=1

kµ(W )`, by Lemma 7.2.5,

=
kµ(W )

1− µ(W )
(7.3)

<∞.

As
∞∑
n=1

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)

)
<∞,
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lim
n−→∞

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)

)
= 0.

Now, if we interpret the dynamical system (X, f) as a stochastic process
(X, B, (Xn), P ) as explained in Section 3.4, this means that the condition

that P̃ (0∞) = 0 in Theorem 6.2.1 is satisfied. Hence, by (7.3), the standard
deviation σ(rU) of rU is finite. Note that for the estimate(7.3) for a given k
we would achieve the best estimate when we pick µ(Y ) as large as possible
to get a minimum value of µ(W ). Also k should be as small as possible.

The estimate in (7.3) may be made more explicit as follows. The sets
in Pk partition X into intervals whose maximum possible length is ρk, by
Lemma 7.2.2. Thus, if k > log(µ(U)/2)

log(ρ)
, that is if µ(U) > 2ρk, there is a non-

void set Y that is finite union of sets in Pk and is contained in U , and Y is
maximal with respect to these properties. The estimate (7.3) applies to the
complement W of Y . However, as at most two elements of Pk have points in
both U and U c, we have

µ(Y ) + 2ρk ≥ µ(U) =⇒ 1− µ(W ) + 2ρk ≥ µ(U)

=⇒ 1 + 2ρk − µ(U) ≥ µ(W )

=⇒ 1 > 1 + 2ρk − µ(U) ≥ µ(W ), (7.4)

where we have used the fact that µ(U) > 2ρk.

Putting (7.4) into (7.3) and after using the fact that x
1−x is increasing for

0 < x < 1, we have

∞∑
n=1

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−n(U c)

)
≤ k(1 + 2ρk − µ(U))

µ(U)− 2ρk
.

Hence, the final parts of the result will follow from applying the formula of
Theorem 6.3.1 for the standard deviation in dynamical systems. Therefore,

σ(rU) ≤

√
− 1

µ(U)2
+

3

µ(U)
− 2 +

k(1 + 2ρk − µ(U))

µ(U)− 2ρk
.
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Example 7.3.1.

Consider a completely stretching piecewise transformation in the dynam-
ical system (see Figure 7.4) ([0, 1), f) where

f(x) =

{
2x, if 0 ≤ x < 1

2

2x− 1, if 1
2
≤ x < 1.

Now the second iterate of f (see Figure 7.5) is given by

f 2(x) =


4x, if 0 ≤ x < 1

4

4x− 1, if 1
4
≤ x < 1

2

4x− 2, if 1
2
≤ x < 3

4

4x− 3, if 3
4
≤ x < 1.

In general, the nth iterate of f is

fn(x) =


2nx, if 0 ≤ x < 1

2n

2nx− 1, if 1
2n
≤ x < 2

2n

. . .

2nx− 2n + 1, if 2n−1
2n
≤ x < 1.

Now let U = [1
2
, 1) ⊆ [0, 1). We apply Theorem 7.3.1, we find µ(U) = 1

2

and ρ = 1
2
. To find k,

k = 1 + the integer part of
( log(µ(U)/2)

log(ρ)

)
= 1 + the integer part of

( log((1
2
)/2)

log(1
2
)

)
= 1 + the integer part of

( log(1
2
)2

log(1
2
)

)
= 1 + the integer part of (2).

Thus, k = 3. Now, by substituting µ(U) = ρ = 1
2

and k = 3 in Theorem
7.3.1 we will have

σ(r[ 1
2
,1)) ≤

√√√√− 1

(1
2
)2

+
3

(1
2
)
− 2 +

3
(

1 + 2(1
2
)3 − (1

2
)
)

(1
2
)− 2(1

2
)3

, so

σ(r[ 1
2
,1)) ≤

√
−4 + 6− 2 + 3(3), and

σ(r[ 1
2
,1)) ≤ 3.
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0 1

1

1/2

f

Figure 7.4. The Figure shows the graph of a special com-
pletely stretching piecewise transformation in a dynamical
system ([0, 1), f) where f is given by

f(x) =

{
2x, if 0 ≤ x < 1

2

2x− 1, if 1
2 ≤ x < 1.

0 1

1

1/4 1/2 3/4

f

Figure 7.5. The Figure shows the graph of the second iterate
of the function f in Figure 7.4, which is given by

f2(x) =


4x, if 0 ≤ x < 1

4

4x− 1, if 1
4 ≤ x <

1
2

4x− 2, if 1
2 ≤ x <

3
4

4x− 3, if 3
4 ≤ x < 1.
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Definition 7.3.1.

Let f : X −→ X be a transformation on X where X is an interval
of length 1. Let B be the algebra of subsets of X. Then, f is called
length preserving transformation if for all J ∈ B,

f−1(J) ∈ B, and µ(f−1(J)) = µ(J).

Example 7.3.2.

In connection with the analysis above, we take another example (see [20,
pages 281-282 ]) to compare the results. In this example, the formula for the
standard deviation (see also [18, page 822 ]) was derived by assuming f is a
length preserving transformation on a bounded interval S and is given by√√√√−µ(S)2

µ(U)2
+ 3

µ(S)

µ(U)
− 2 +

2

µ(U)

∞∑
n=1

µ
(
U c ∩ f−1(U c) ∩ . . . ∩ f−(n−1)(U c) ∩ f−n(U c)

)
.

(7.5)
Note that the formula of (7.5) is similar to the formula in Theorem 6.3.1.
Consider 0 ≤ a ≤ 1

2
with V = [0, a) and assume f is given by

f(x) =

{
2x, if 0 ≤ x < 1

2

2x− 1, if 1
2
≤ x < 1.

Now observe that

V ∩ f−1(V ) = [0, a) ∩
( [

0,
a

2

)
∪
[

1

2
,
a+ 1

2

))
=
[
0,
a

2

)
,

and

V ∩ f−1(V ) ∩ f−2(V ) =V ∩ f−1
(
V ∩ f−1(V )

)
= [0, a) ∩ f−1

([
0,
a

2

))
= [0, a) ∩

([
0,
a

4

)
∪
[

1

2
,
a+ 2

4

))
=
[
0,
a

4

)
,

and so on. We will get

V ∩ f−1(V ) ∩ f−2(V ) ∩ . . . ∩ f−n(V ) =
[
0,
a

2n

)
.
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Hence,

∞∑
n=1

µ
(
V ∩ f−1(V ) ∩ f−2(V ) ∩ . . . ∩ f−n(V )

)
=
∞∑
n=1

µ
( [

0,
a

2n

))
=
∞∑
n=1

a

2n
= a.

Now putting U = V c = [a, 1), so U c = V , µ(U) = 1 − a and the standard
deviation of the recurrence time of rU over U is√

− 1

(1− a)2
+

3

1− a
− 2 +

2a

1− a
=

√
a(3− 4a)

1− a
.

Thus, if we put U =
[
1
2
, 1
)
⊆ S = [0, 1) , then the standard deviation equals√

2 exactly. Hence, we can compare the result of this example with esti-
mated value in the previous example where

√
2 ≤ 3. This is because the

estimate of the standard deviation of the recurrence time of rU over U in
Theorem 7.3.1 drops some of the terms and also only applies to completely
stretching piecewise linear transformations rather than just length preserving
transformations.

Example 7.3.3.

Let f : [0, 1) −→ [0, 1) be a dynamical system (see exercise 10 [20, page
284]) defined by

f(x) = frac(x+ 1/q),

where q ∈ N is given with q > 1 and 0 ≤ x < 1.
We want first to show this function is length preserving. Observe that

f(x) =

{
1
q

+ x, if 0 ≤ x < (q − 1)/q

x− (q−1)
q
, if (q − 1)/q ≤ x < 1.

Now

f(x) =

{
f1(x), if 0 ≤ x < (q − 1)/q

f2(x), if (q − 1)/q ≤ x < 1,

where f1(x) = 1/q + x, f2(x) = x − (q−1)
q
, so that f1(x) : [0, q−1

q
) −→ [1

q
, 1)

,and f2(x) : [ q−1
q
, 1) −→ [0, 1

q
).

That is, f−11 (x) = x− 1/q and f−12 (x) = x+ (q− 1)/q. There are three cases
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to show this function is length preserving.
Case one (see Figure 7.6 ): if we take U = [a, b] ⊆ [1

q
, 1) then,

f−1(U) = f−11 (U) = [a− 1/q, b− 1/q].

Hence, µ(U) = b− a = µ
(
f−1(U)

)
.

0 1

1

1/q

q−1
q

f1(x) = x+ 1/q

f2(x) = x+ 1/q − 1

a

b

U

f−11 (U)
Figure 7.6

Figure 7.6. The Figure shows the graph of the transforma-
tion f on [0, 1) which is given by

f(x) =

{
f1(x) = x+ 1/q, if 0 ≤ x < (q − 1)/q

f2(x) = x+ 1/q − 1, if (q − 1)/q ≤ x < 1.

Also, if an interval U = [a, b] ⊆ [1q , 1), then f−1(U) = f−11 (U)

which has the same length as the interval U .

Case two (see Figure 7.7 ): Observe that U = [a, b] ⊆ [0, 1
q
) so

f−1(U) = f−12 (U) = [a+ (q − 1)/q, b+ (q − 1)/q].

Thus, µ(U) = b− a = µ
(
f−1(U)

)
.
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0 1

1

1/q

q−1
q

f1(x) = x+ 1/q

f2(x) = x+ 1/q − 1
a

b
U

f−12 (U)
Figure 7.7

Figure 7.7. The Figure illustrates the inverse image of the

interval U = [a, b] ⊆ [0, 1q ) under f is f−1(U) = f−12 (U).

Final case (see Figure 7.8 ): we have a ≤ 1/q ≤ b and U = U1 ∪U2 where
U1 ⊆ [1

q
, 1) and U2 ⊆ [0, 1

q
). Now we have

U1 = U ∩
[1

q
, 1
)

and U2 = U ∩
[
0,

1

q

)
.

That is, U1 ∩ U2 = ∅ then,

f−1(U) =f−1(U1 ∪ U2)

=f−11 (U1) ∪ f−12 (U2),

and this union is disjoint. Thus,

µ
(
f−1(U)

)
=µ
(
f−11 (U1)

)
+ µ
(
f−12 (U2)

)
=µ(U1) + µ(U2), by cases one and two,

=µ(U).

64



CHAPTER 7. PIECEWISE LINEAR FUNCTIONS AND THEIR
DYNAMICAL SYSTEMS

0 1

1

1/qU

q−1
q

f1(x) = x+ 1/q

f2(x) = x+ 1/q − 1

b

U1

a

U2

Figure 7.8

Figure 7.8. The Figure shows the inverse image of the in-

terval U which is the union of the intervals U1 and U2.

So, the length of any interval is preserved and this means that f is a length
preserving transformation (see [14, Chapter 8]).

Now, we return to find the standard deviation in this example. We will
take the interval U with three different cases to show how the standard
deviation depends upon the distribution of U .

Case I: We take U =
[
0, 1

q

)
and µ(U) =

1

q
. Note that r1(x) = q(x) for all

x ∈
[
0, 1

q

)
so the standard deviation is 0 (see also the later discussion). We

have U c =
[
1
q
, 1
)

=
[
1
q
, q
q

)
.

Now,

f−1(U c) ={x : f(x) ∈ U c},

=

[
0,

1

q

)
∪
[

1

q
,
2

q

)
∪ . . . ∪

[
q − 2

q
,
q − 1

q

)
,

=

[
0,
q − 1

q

)
.

So,

U c ∩ f−1(U c) =

[
1

q
,
q − 1

q

)
.
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Also,

U c ∩ f−1(U c) ∩ f−2(U c) =U c ∩ f−1
(
U c ∩ f−1(U c)

)
,

=

[
1

q
, 1

)
∩ f−1

([1

q
,
q − 1

q

))
,

=

[
1

q
, 1

)
∩
[
0,
q − 2

q

)
,

=

[
1

q
,
q − 2

q

)
,

and so on. In general, for j ≤ q − 2

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c) =

[
1

q
,
q − j
q

)
.

Now if j ≥ q − 1 then

U c ∩ f−1(U c) ∩ . . . ∩ f−(j)(U c) ⊆ U c ∩ f−1(U c) ∩ . . . ∩ f−(q−1)(U c).

That is,

U c ∩ f−1(U c) ∩ . . . ∩ f−(q−1)(U c) =

[
1

q
,
1

q

)
= ∅.

Therefore,

∞∑
j=1

µ
(
U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c)

)
=

q−2∑
j=1

µ
([1

q
,
q − j
q

))
,

=

q−2∑
j=1

q − j − 1

q
,

=

q−2∑
k=1

k

q
,

=
(q − 2)(q − 1)

2q
.

By the argument above P (0n) = 0 if j > q − 2 therefore P̃ (0∞) = 0 and for-
mula (7.5) will apply. Now, by putting this in the formula (7.5) the standard
deviation will be √

−q2 + 3q − 2 + 2q
(q − 2)(q − 1)

2q
= 0.
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That verifies by means of the earlier formula that the recurrence time is
constant and equals q. Of course, we do have

f(U) =

[
1

q
,
2

q

)
, f 2(U) =

[
2

q
,
3

q

)
, . . . , f q−1(U) =

[
q − 1

q
, 1

)
, f q(U) =

[
0,

1

q

)
= U.

Case II: We take U =
[
0, 2

q

)
and µ(U) = 2/q. So, U c =

[
2
q
, 1
)

and

f−1(U c) =

[
1

q
,
2

q

)
∪ . . . ∪

[
q − 2

q
,
q − 1

q

)
,

=

[
1

q
,
q − 1

q

)
.

So,

U c ∩ f−1(U c) =

[
2

q
,
q − 1

q

)
.

Also,

U c ∩ f−1(U c) ∩ f−2(U c) =U c ∩ f−1
(
U c ∩ f−1(U c)

)
,

=

[
2

q
, 1

)
∩ f−1

([
2

q
,
q − 1

q

))
,

=

[
2

q
, 1

)
∩
[

1

q
,
q − 2

q

)
,

=

[
2

q
,
q − 2

q

)
.

and so on. In general,

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c) =

[
2

q
,
q − j
q

)
, for 1 ≤ j ≤ q − 2.

Observe that if j = q − 2, then

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c) = ∅.

In particular, we have

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−(q−3)(U c) =

[
2

q
,
3

q

)
.
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It follows that

∞∑
j=1

µ
(
U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c)

)
=

q−3∑
j=1

µ

([
2

q
,
q − j
q

))
,

=

q−3∑
j=1

q − j − 2

q
,

=

q−3∑
k=1

k

q
,

=
(q − 2)(q − 3)

2q
.

Again by the argument above note that for j ≥ q− 2 is equivalent to having
P (0n) = 0 for n > q so P̃ (0∞) = 0 and formula (7.5) will apply. By using

the formula (7.5) the standard deviation of f over U =
[
0, 2

q

)
will be√

−q2/4 + 3q/2− 2 +
(q − 3)(q − 2)

2
=
√
−q2/4 + 3q/2− 2 + q2/2− 5q/2 + 3

=
√
q2/4− q + 1

=

√
1

4
(q − 2)2

=
1

2
(q − 2).

Case III: Take U =
[
0, 1

q

)
∪
[
2
q
, 3
q

)
and µ(U) = 2/q.

So,

U c =

[
1

q
,
2

q

)
∪
[

3

q
, 1

)
.

Now,

f−1(U c) =

[
0,

1

q

)
∪
[

2

q
,
q − 1

q

)
.

So,

U c ∩ f−1(U c) =

([
1

q
,
2

q

)
∪
[

3

q
, 1

))
∩
([

0,
1

q

)
∪
[

2

q
,
q − 1

q

))
=

[
3

q
,
q − 1

q

)
.
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Hence,

U c ∩ f−1(U c) ∩ f−2(U c) =U c ∩ f−1
(
U c ∩ f−1(U c)

)
,

=

([
1

q
,
2

q

)
∪
[

3

q
, 1

))
∩ f−1

([
3

q
,
q − 1

q

))
,

=

([
1

q
,
2

q

)
∪
[

3

q
, 1

))
∩
[

2

q
,
q − 2

q

)
,

=

[
3

q
,
q − 2

q

)
,

and so on. In general,

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c) =

[
3

q
,
q − j
q

)
, for j ≤ q − 3.

If j ≥ q − 3 then

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−(q−3)(U c) =

[
3

q
,
3

q

)
= ∅.

Hence, in particular

U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−(q−4)(U c) =

[
3

q
,
4

q

)
.

Thus,

∞∑
j=1

µ
(
U c ∩ f−1(U c) ∩ f−2(U c) ∩ . . . ∩ f−j(U c)

)
=

q−4∑
j=1

µ

([
3

q
,
q − j
q

))
,

=

q−4∑
j=1

q − j − 3

q
,

=

q−4∑
k=1

k

q
,

=
(q − 4)(q − 3)

2q
.
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From above P (0n) = 0 if j ≥ q − 3 so P̃ (0∞) = 0, in the context of (7.5).
Hence, after applying formula (7.5), the standard deviation of f over U =[
0, 1

q

)
∪
[
2
q
, 3
q

)
will be√

−q2/4 + 3q/2− 2 + q
((q − 4)(q − 3)

2q

)
=

√
1

4

(
(q − 4)2

)
=

(q − 4)

2
, for q ≥ 4.

We will generalize the preceding examples and calculate the standard
deviation for f on a more general set U as follows.

Let q ∈ N, q > 2 and 0 ≤ x < 1. Let f : [0, 1) −→ [0, 1) be given by

f(x) = frac

(
x+

1

q

)
.

For j = 1, 2, . . . , r let kj,mj ∈ {0, 1, . . . , q} be such that

0 ≤ k1 < m1 < k2 < m2 < . . . < kr < mr.

Then, for j = 1, 2, . . . , r put

Jj =

[
kj
q
,
mj

q

)
⊆ [0, 1) .

The intervals J1, J2, . . . , Jr are disjoint (see Figure 7.9) and

µ(Jj) =
mj − kj

q
.

0

[
1

)
k1
q

m1

q
k2
q

m2

q

. . . . . .
kr
q

mr

q

Figure 7.9

Figure 7.9. The Figure shows the interval
[
0, 1
)

with a

finite number of disjoint intervals with different lengths where[
k1
q ,

m1
q

)
∪ . . . ∪

[
kr
q ,

mr
q

)
⊆
[
0, 1
)

.
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We put V =
⋃r
j=1 Jj =

⋃r
j=1

[
kj
q
,
mj

q

)
and we have

µ(V ) =
r∑
j=1

µ(Jj) =
1

q

r∑
j=1

mj − kj ≤ 1.

Now put Lj = mj − kj ≥ 1 so that

µ(Jj) =
Lj
q

and µ(V ) =
1

q

r∑
j=1

Lj.

Case one: If k1 ≥ 1, then

f−1(V ) =
r⋃
j=1

[
kj − 1

q
,
mj − 1

q

)
,

and

V1 = V ∩ f−1(V ) =
r⋃
j=1

[
kj
q
,
mj − 1

q

)
. (7.6)

Note that V1 has the same form as V except that the right hand end point
of each of the j intervals has reduced by 1/q. Also, if kj = mj − 1, then the
jth interval is empty.
Now put

V2 =V1 ∩ f−1(V1)
=V ∩ f−1(V ) ∩ f−1(V ∩ f−1(V ))

=V ∩ f−1(V ) ∩ f−2(V ).

The same type of calculation as above gives

V2 =
r⋃
j=1

[
kj
q
,
mj − 2

q

)
.

Now, the interval j is empty when Lj ≤ 2.
In general, we can use induction and get

Vs+1 =Vs ∩ f−1(Vs) = V ∩ f−1(V ) ∩ . . . ∩ f−(s+1)(V ),
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and we get

Vs =
r⋃
j=1

[
kj
q
,
mj − s
q

)
,

and we see Vs =
⋃r
j=1

[
kj
q
,
mj−s
q

)
, where an interval

[
kj
q
,
mj−s
q

)
is empty if

Lj ≤ s. Then,

µ(Vs) =
1

q

r∑
j=1

max{Lj − s, 0}.

Case two: If k1 = 0 and mr < q then,

f−1(V ) =

[
q − 1

q
, 1

)
∪
[
0,
m1 − 1

q

)
∪

r⋃
j=2

[
kj − 1

q
,
mj − 1

q

)
,

so,

V ∩ f−1(V ) =

[
0,
m1 − 1

q

)
∪

r⋃
j=2

[
kj
q
,
mj − 1

q

)

=
r⋃
j=1

[
kj
q
,
mj − 1

q

)
,

and this is the same formula as (7.6) so µ(Vs) = 1
q

∑r
j=1 max{Lj − s, 0}, as

in case one.

Case three: If k1 = 0 and mr = q then, L1 + Lr = mr + q − kr = L∗1,
where this is a definition of L∗1.
Hence,

V ∩ f−1(V ) =

[
0,
m1 − 1

q

)
∪
r−1⋃
j=2

[
kj
q
,
mj − 1

q

)
∪
[
kr
q
, 1

)
.

Then, if s < m1,

V ∩ f−1(V ) ∩ . . . ∩ f−(s)(V ) =

[
0,
m1 − s
q

)
∪
r−1⋃
j=2

[
kj
q
,
mj − s
q

)
∪
[
kr
q
, 1

)
.

(7.7)
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The sum of the lengths of the first interval plus the last interval in (7.7) will
be

1

q

[
m1 + q − kr − s

]
=

(L∗1 − s)
q

.

Now if s = m1 , the first interval of (7.7) is empty, and

V ∩ f−1(V ) ∩ . . . ∩ f−(s)(V ) =
r−1⋃
j=2

[
kj
q
,
mj − s
q

)
∪
[
kr
q
,
m1 + q − s

q

)
.

So, here the lengths of the first (empty) interval plus the last interval will
be again (L∗1 − s)/q. In this case three, if we identify 0 and 1 as length the
same point then the first interval has left end point 0 and the last interval
has right point 1. Together they really form one interval of length L1 + Lr.

If we do that then V is a union of (r− 1) intervals and Vs is also a union
of (r − 1) intervals with length decreased until 0.

We have the same formula for µ(Vs) as in case one except that there are
only (r − 1) intervals, and L1 is replaced by L∗1 = L1 + Lr.
Putting

m = max{L1, L2, . . . , Lr} ≤ q,

we note Vs = ∅ if s ≥ m. Now consider
∞∑
s=1

µ(Vs) =
1

q

m∑
s=1

r∑
j=1

max{Lj − s, 0}

=
1

q

r∑
j=1

m∑
s=1

max{Lj − s, 0}.

Now
m∑
s=1

max{Lj − s, 0} =(Lj − 1) + (Lj − 2) + · · ·+ 2 + 1

=
Lj(Lj − 1)

2
.

Hence,
∞∑
s=1

µ(Vs) =
1

q

r∑
j=1

Lj(Lj − 1)

2

=
1

2q

r∑
j=1

L2
j −

1

2
µ(V ).
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Now by using the formula (7.5) with U c = V and p = µ(U) = 1− µ(V ). We
have

σU =

√√√√− 1

p2
+

3

p
− 2 +

2

p

∞∑
s=1

µ(Vs)

=

√√√√− 1

p2
+

3

p
− 2− (1− p)

p
+

1

pq

r∑
j=1

L2
j

=

√√√√− 1

p2
+

2

p
− 1 +

1

pq

r∑
j=1

L2
j .

Thus,

σU =

√√√√− 1

p2
+

2

p
− 1 +

1

pq

r∑
j=1

L2
j . (7.8)

Now, we apply the formula (7.8) above in the case III of example 7.3.3.
Observe that

U =

[
0,

1

q

)
∪
[

2

q
,
3

q

)
,

p = µ(U) = 2/q and

V = U c =

[
1

q
,
2

q

)
∪
[

3

q
, 1

)
.

Consider

J1 =

[
1

q
,
2

q

)
and J2 =

[
3

q
, 1

)
That is, µ(J1) = 1/q so L1 = 1 and µ(J2) = (q − 3)/q so L2 = q − 3. Now,
by using the formula (7.8), we get noting that pq = 2,

σV =

√
−q4/4 + q − 1 +

1

2

(
1 + (q − 3)2

)
=
√
−q4/4 + q − 1/2 + q2/2− 3q + 9/2

=
√
q4/4− 2q + 4

=

√
1

4
(q − 4)2

=
(q − 4)

2
,

exactly the same result we got before.
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Chapter 8

Recurrence and standard
deviation in a finite dynamical
system

8.1 Introduction

The purpose of this Chapter is to discuss the variation of recurrence times
in a finite dynamical system. This is related to the predictability and un-
certainty of the recurrence times. In the preceding Chapter, one dynamical

system considered was
(

[0, 1), f
)

, where f : [0, 1) −→ [0, 1) was the trans-

formation x 7−→ frac(x + 1/q), where q was a given element of N, q > 1.
That system can be regarded more abstractly as a system (S, f), where S is
a finite set and f is a cyclic permutation of S. In this Chapter, we obtain
more extensive results in such systems, relating to Kac’s formula and the
variation of recurrence times for a set A in relation to the “geometry” and
distribution of the points of A in S. Let (S, f) be a dynamical system where
S is a finite set and f is a cyclic permutation of S. It should be noted that
every dynamical system (T, g), where T is a finite set, contains a dynamical
system of this type. In any such dynamical system (T, g), we have

T ⊇ g(T ) ⊇ g2(T ) ⊇ . . . .

If T is finite this sequence of inclusions must terminate with equality, so there
is a least value n ∈ N such that

gn(T ) = gn+1(T ).

If we put Y = gn(T ) we see that g : Y −→ Y and that

g(Y ) = g(gn(T )) = gn+1(T ) = Y.
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However, as Y is finite, so g is a permutation on Y. But every permutation
is a composition of cycles, so g acts as a cyclic permutation on some subset
of Y (note that this set may consist of a single point).

8.2 Preliminaries

If A is a finite set, |A| will denote the number of elements in A. For the finite
set S, we assume that |S| ≥ 2. We introduce a probability P on the algebra
of all subsets of S = {u0, u1, . . . , u|S|−1} by putting

P (A) =
|A|
|S|

, for all A ⊆ S.

Then, for x ∈ S, P ({x}) = 1/|S| and so P ({x}) is the same for all x ∈ S.

Note that for A ⊆ S, P
(
f−1(A)

)
= P (A), so that f is length-preserving.

Let f : S −→ S be the cyclic permutation on S given by

f(uj) =

{
uj+1, for 0 ≤ j ≤ |S| − 2,

u0, for j = |S| − 1.
(8.1)

Note that we choose a point u0 ∈ S, then

u1 = f(u0), u2 = f(u1), . . . , u|S|−1 = f(u|S|−2),

and note that f(u|S|−1) = u0.
Now, S may be visualised as consisting of q points, where q = |S|, on

the unit circle T in the complex plane, starting with 1 and, proceeding anti-
clockwise, equally spaced around the circumference of T. That is, S may be
identified with the qth roots of unity, with uj = e2πij/q for j = 0, 1, . . . , q−1. In
this visualisation, f corresponds to an anticlockwise rotation through 2π/q.

Definition 8.2.1.

A subset A of S is called an arc if it is of the form {uj, uj+1, . . . , uk} for
some 0 ≤ j ≤ k ≤ q − 1, or of the form {uj, . . . , uq−1, u0, . . . , uk} for some
0 ≤ k ≤ j ≤ q − 1. In each of these cases we call uj the beginning point of
the arc, and uk the endpoint of the arc.
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Definition 8.2.2.

Given two arcs J and K, we say that K is consecutive to J if f maps
the endpoint of J to the beginning point of K.

Definition 8.2.3.

We say that two arcs J,K of S are separated if their union is not an
arc. This notion of an arc in S coincides with the usual meaning when we
regard S as a subset of T consisting of equally spaced consecutive points as
we move in an anti-clockwise direction around T (see Figure 8.1). Distance
is meaning in an anti-clockwise direction. Then the distance from J to K is
not the same the distance from K to J .

Definition 8.2.4.

Any non-empty subset A of S may be written uniquely in the form

A =
t⋃

j=1

Jj, (8.2)

where t ∈ {1, 2, . . . , q}, and J1, J2, . . . , Jt are separated non-empty arcs. The
sets J1, J2, . . . , Jt are also called the components of A. The expression of A in
the form (8.2) is called the decomposition of A. Also, provided both A and
Ac are non-empty, the complement Ac has a decomposition into t disjoint
arcs, let’s say

Ac =
t⋃

j=1

Kj. (8.3)

The arcs Jj and Kj in (8.2) and (8.3) may be numbered so that the arcs
J1, K1, J2, K2, . . . , Jt, Kt, J1 are consecutive. That is, in the circle interpre-
tation, starting with J1 as we proceed anti-clockwise around the circle T,
we encounter J1, K1, J2, K2, . . . , Jt, Kt and J1 in that order. We will always
assume that the arcs have been numbered in this way.

Definition 8.2.5.

We call Kj in (8.3) the gap between Jj and Jj+1 for j = 1, 2, . . . , t−1 and
also we call Kt the gap between Jt and J1. The length of the gap is taken to
be |Kj|.

In Figure 8.1 below, the set on the left is decomposed into nine separated
arcs, each of which is a single point; while the set on the right is decomposed
into three separated arcs, having respectively three, four and five points.
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Note that since each arc contains at least one point and if a subset A of
S has t components, then t ≤ |A|, t+ |A| ≤ |S| and t ≤ |S|/2.

Figure 8.1. In each of the left and the right, the black and grey points

together comprise the set S, in this case the 18th roots of unity. The

transformation f corresponds to an anticlockwise rotation through 20o.

On the left, the black points define a subset A of S with |A| = 9, and the

decomposition of A is into 9 arcs. The recurrence time for every point of

A is 2, because the points of A are equally spaced. So, for the set A, the

recurrence times are completely predictable. On the right, the black points

define a subset B of S, with |B| = 12 and the decomposition of B is into 3

arcs. The points of B have a recurrence time of 1, 2, 3 or 4. So, if all we

know is that a point is in B, its recurrence time is not predictable.

8.3 Recurrence times and the average in a

finite dynamical system

Given a non-empty subset A of S, and given x ∈ A, there is n ∈ N such that
fn(x) ∈ A, and we consider the recurrence times as described in Section 5.3:

rA(x) = min{n ∈ N and fn(x) ∈ A}, (8.4)

where f is a cyclic permutation of S as in described (8.1). Note that for
x ∈ A, f(x) ∈ f(A) and

rf(A)

(
f(x)

)
= rA(x).

Thus, A and f(A) have the same recurrence properties, and we say that re-
currence phenomena are invariant under f .
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Now the recurrence times of points in a subset A of S are determined by
the lengths of the arcs in the decomposition of S, and by the gaps between
the arcs. Thus, if A =

⋃t
j=1 Jj is the decomposition of A as in (8.2), and if

x ∈ Jj but x is not the endpoint of A, then rA(x) = 1; but if x is the endpoint
of Jj, rA(x) is 1 plus the length of the gap between x and the beginning point
of the next arc in the decomposition. The following gives us an idea of the
possibilities for the recurrence times, by expressing in (8.5) and (8.6) below
estimates for the proportion of points having a given recurrence time.

Theorem 8.3.1. Let S be a finite set with |S| ≥ 2, let A ⊆ S and let f be
permutation on S as in (8.1). Then, the following statements hold.
(i) The recurrence times for all points in A are in {1, 2, . . . , |S|} and for all
k ∈ {2, 3, . . . , |S|},

1

|A|

∣∣∣{x : x ∈ A and rA(x) = k
}∣∣∣ ≤ 1

k − 1
· |A

c|
|A|

. (8.5)

If there is a point of A with recurrence time |S|, and we put k = |S| in (8.5),
then equality holds.
(ii) The inequality (8.5) is sharp, in the sense that for any given k ∈ N, the
set S may be chosen together with a subset A of S such that equality will
hold.
(iii) If the subset A has a decomposition with t components, then

1

|A|

∣∣∣{x : x ∈ A and rA(x) = 1
}∣∣∣ = 1− t

|A|
, (8.6)

and the maximum possible recurrence time for a point in A is |S|−|A|−t+2.
This is attained when there is a gap of length 1 between t− 1 components of
the decomposition of A and the remaining gap is of length |S| − |A| − t+ 1.

Proof. (i) As f |S|(x) = x for all x ∈ S, it is clear that rA(x) ∈ {1, 2, . . . , |S|}.
If there is a point of A with recurrence time |S|, we see that |A| = 1 and the
result holds for k = |S| with both sides of (8.5) being equal to 1.
(ii) Let k ∈ {2, 3, . . . , |S|} and suppose there are ` elements in A such that
rA(x) = k. Then, from earlier remarks we have |Ac| ≥ `(k − 1), from which
(8.5) follows. To see that the estimate in (8.5) is sharp, let k ∈ N be given
and let |S| be divisible by k. Let A be a subset of S in which every element
has recurrence time k. Then, equality will hold in (8.5).

(iii) When A has t components,
∣∣∣{x : x ∈ A and rA(x) = 1

}∣∣∣ = |A| − t and

(8.6) follows.
The final statement is immediate on realising that the maximum recur-

rence time comes from having a gap of maximum possible length in the
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decomposition, and then the calculating the length of the gap and the cor-
responding recurrence time.

Here, because the system is finite, we can give a very quick derivation
based on counting the recurrence times of the elements of the subset to
obtain the average recurrence time. The following result gives a version of
Kac’s recurrence formula for a finite dynamical system (for more discussion
see [16]).

Theorem 8.3.2. Let (S, f) be a finite dynamical system and suppose that f
acts as a cyclic permutation on S. Let A be a non-empty subset of S. Then
the average of the recurrence time of rA over A equals |S|/|A|. That is,

1

|A|
∑
x∈A

rA(x) =
|S|
|A|

.

Proof. We write the decomposition of A as

A =
t⋃

j=1

Jj,

where J1, J2, . . . , Jt are arcs as in (8.2). The complement Ac also has a
decomposition into t arcs as in (8.3), say

Ac =
t⋃

j=1

Kj.

If we renumber the arcs K1, K2, . . . , Kt, if necessary, we can see that for
x ∈ Jj, rA(x) = 1 or rA(x) = |Kj| + 1, and the latter occurs for a single
x ∈ Jj. Thus, the average of rA(x) over A equals

1

|A|
∑
x∈A

rA(x) =
1

|A|

[ t∑
j=1

|Jj| − 1 + |Kj|+ 1
]

=
1

|A|

[ t∑
j=1

|Jj|+ |Kj|
]

=
|S|
|A|

.

Note that the formula above shows that the average of the recurrence
time depends only upon the number of points in the set A, and not upon
how the points are distributed in S. However, when considering the variation
of recurrence times, the distribution of the points of A in S affects the amount
of variation.
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8.4 The standard deviation of the recurrence

time

We consider a finite dynamical system (S, f) where f is acting as a cyclic
permutation. If A is a non-empty subset of S and rA : A −→ N is the function
giving the recurrence time for points in A, then the standard deviation (as
in Section 6.2 ) of rA(x) over A is

σA =

√√√√ 1

|A|
∑
x∈A

(
rA(x)− |S|

|A|

)2

. (8.7)

Recall that the standard deviation is a measure of how much the recurrence
times r(x) vary from their average value |S|/|A|. Note that if A = S, then
rA = 1 and σA = 0. So, our discussion assumes that A is a non-empty but
proper subset of S and we assume that its decomposition consists of t arcs.
Then, the decomposition of Ac also consists of t arcs, say K1, K2, . . . , Kt.
Using (8.7) we see that

σ2
A =

1

|A|

|A|−t∑
j=1

(
1− |S|
|A|

)2

+
t∑

j=1

(
|Kj|+ 1− |S|

|A|

)2
 ,

so that

σA =

√√√√(1− t

|A|

)(
1− |S|
|A|

)2

+
1

|A|

t∑
j=1

(
|Kj|+ 1− |S|

|A|

)2

. (8.8)

Note that σA depends upon the lengths of the arcs in the decomposition of Ac.
Equivalently, σAc depends upon the lengths of the arcs in the decomposition
of A. Note that |S| is even if |A| = |Ac| = |S|/2.

Now, let us compare the formula (8.8) above with the formula (7.8) in
Chapter 7. We have from (8.8) that

σA =√√√√(1− t

|A|

)(
1− |S|
|A|

)2

+
1

|A|

t∑
j=1

|Kj|2 +
2

|A|

(
1− |S|
|A|

) t∑
j=1

|Kj|+
t

|A|

(
1− |S|
|A|

)2

.

(8.9)

We mentioned in the introduction that the set-up in this Chapter is an
extension of a particular example considered in Chapter 7. We will now check
that formula (8.9) is consistent with the formula (7.8) in Chapter 7 .
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In Chapter 7, we considered the system
(

[0, 1), f
)

, where

f(x) = frac(x+ 1/q),

for 0 ≤ x < 1, and q ∈ N is given with q > 1. We considered a union
of subintervals U of [0, 1) whose length was a multiple of 1/q and we put
µ(U) = p, so in (7.8) we put

|S| = q, |A| = µ(U)

1/q
= pq, t = r, |Kj| = Lj, and

t∑
j=1

|Kj| = q − pq.

Now, we put terms the above into the formula (8.9) above for the standard
deviation to get

σA =

√√√√(1− r

pq

)(
1− 1

p

)2

+
1

pq

r∑
j=1

L2
j +

2

pq

(
1− 1

p

)
(q − pq) +

r

pq

(
1− q

pq

)2

=

√√√√(1− 1

p

)2 [
1− r

pq
+

r

pq

]
+

2(q − pq)
pq

(
1− 1

p

)
+

1

pq

r∑
j=1

L2
j

=

√√√√(1− 1

p

)2

+
2(q − pq)

pq

(
1− 1

p

)
+

1

pq

r∑
j=1

L2
j

=

√√√√(1− 1

p

)[
1− 1

p
+

2

p
− 2

]
+

1

pq

r∑
j=1

L2
j

=

√√√√(1− 1

p

)(
1

p
− 1

)
+

1

pq

r∑
j=1

L2
j

=

√√√√− 1

p2
+

2

p
− 1 +

1

pq

r∑
j=1

L2
j ,

which is exactly the formula (7.8) in Chapter 7.
The following result is essentially a special case of known results concern-

ing extreme values of convex functions, (see [25, pages 122-126], for example).
It is included here to make the exposition as complete and as elementary as
possible.
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Lemma 8.4.1. Let t ∈ N, b ≥ t and C be the subset of Rt given by

C =
{

(x1, x2, . . . , xt) : x1, x2, . . . , xt ≥ 1 and
t∑

j=1

xj = b
}
.

Let a ∈ R. Let f : C −→ [0,∞) be the function given by

f(x1, x2, . . . , xt) =
t∑

j=1

(xj − a)2.

Then f attains a maximum and a minimum over C. The maximum occurs
precisely at the t points of the form (1, . . . , 1, b − t + 1, 1, . . . , 1) and equals
(b − t − a + 1)2 + (t − 1)(a − 1)2. The minimum occurs at a unique point
which is (b/t, b/t, . . . , b/t) and it equals t(b/t− a)2.

Proof. Clearly, f is continuous on C and so attains a maximum and a mini-
mum over C, since C is closed and bounded in Rt (see [21, page 114] or [26,
pages 115 and 119 ]). A property of f we will use is the symmetry property:
if (x1, x2, . . . , xt) ∈ Rt and if (y1, y2, . . . , yt) ∈ Rt is obtained by writing the
coordinates x1, x2, . . . , xt in a different order, then f has the same value at
both (x1, x2, . . . , xt) and (y1, y2, . . . , yt).

Now, let’s suppose f attains a maximum at x = (x1, x2, . . . , xt) ∈ C with,
say x1 > 1 and x2 > 1. Put x′ = (x1+x2−1, 1, x3, . . . , xt) ∈ C. Then, x′ ∈ C
and we have

f(x′)− f(x) =(x1 + x2 − 1− a)2 + (1− a)2 − (x1 − a)2 − (x2 − a)2

=x21 + 2x1x2 + x22 − 2x1 − 2x2 − 2ax1 − 2ax2 + 2− x21 + 2ax1 − x22 + 2ax2

=2x1x2 − 2x1 − 2x2 + 2

=2(x1x2 − x1 − x2 + 1)

=2(x1 − 1)(x2 − 1)

>0,

so that f(x′) > f(x). This contradicts the assumption that f has a maximum
over C at x. Thus, by the symmetry property of f , we see that the points in
C where f attains its maximum are precisely those of the form

(1, . . . , 1, b− t+ 1, 1, . . . , 1),

where b − t + 1 is in position j for some j ∈ {1, 2, . . . , t}. Also, we see that
the maximum of f over C is the value of f at each of these points, which is
(b− t− a+ 1)2 + (t− 1)(a− 1)2, as stated.
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In considering the minimum of f over C, we show first that this occurs
at a unique point in C. Then, the symmetry property of f implies that all
coordinates of the point where the minimum occurs must be equal. So, let’s
assume that f has a minimum value m at points u, v ∈ C where u 6= v. We
use the fact that for α, β ∈ R.

α2

2
+
β2

2
=
(α + β

2

)2
+
(α− β

2

)2
.

Thus, putting u = (u1, . . . , ut) and v = (v1, . . . , vt), and noting that f(u) =
f(v) = m, we have

m =
1

2
f(u) +

1

2
f(v)

=
t∑

j=1

[
(uj − a)2

2
+

(vj − a)2

2

]

=
t∑

j=1

(uj + vj
2

− a
)2

+
t∑

j=1

(uj − vj
2

)2
=f
(u+ v

2

)
+

t∑
j=1

(uj − vj
2

)2
>f
(u+ v

2

)
, since u 6= v.

This contradicts the assumption that m is the minimum value of f over C.
Thus, f assumes its minimum at a unique point, all coordinates of this point
must be equal by symmetry, so the minimum is assumed at (b/t, b/t, . . . , b/t).
We also see that the minimum value is t(b/t− a)2.

We will use the preceding result to show that under the given conditions,
the maximum of the standard deviation of the recurrence times, taken over a
subset A with a given number of points and a given number of components,
is attained when the components are as close together as possible, but with
two components having a larger gap, in general. The corresponding minimum
is attained when the components have the same number of points and are
equally spaced.

Theorem 8.4.1. Let (S, f) be a finite dynamical system where f acts as a
cyclic permutation on S and |S| ≥ 2. Let t, s ∈ {1, 2, . . . , |S| − 1} be given
with t ≤ s. Let A(t, s) consist of all subsets A of S such that |A| = s and
the decomposition of A consists of t arcs. Then,
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max
A∈A(t,s)

σA

=

√(
1− t

s

)(
1− |S|

s

)2

+
1

s

(
|S| − s− t− |S|

s
+ 2

)2

+
t− 1

s

(
−|S|
s

+ 2

)2

.

(8.10)

Now, assume further that t divides |S| − s. Then,

min
A∈A(t,s)

σA =

(
|S|
s
− 1

)√
s

t
− 1. (8.11)

The maximum in (8.10) is attained at any set A in A(t, s) such that, for the
arcs in the decomposition of A, the length of the gap between t−1 consecutive
arcs is 1, while the length of the remaining gap is |S| − t − s + 1. The
minimum in (8.11) is attained at any set A in A(t, s) such that, for the arcs
in the decomposition of A, the length of all the gaps between consecutive arcs
is (|S| − s)/t.

Proof. Observe that we have |S| = |A|+ |Ac| = s+
∑t

j=1 |Kj|, so that

t∑
j=1

|Kj| = |S| − s. (8.12)

The idea is to use Lemma 8.4.1. Observe that, because of (8.8) and (8.12)
the problem is equivalent to finding the maxima and minima of the function
f : Rt −→ [0,∞] given by

f(x1, x2, . . . , xt) =
t∑

j=1

(
xj + 1− |S|

s

)2

, (8.13)

subject to the conditions that

xj ≥ 1 for j = 1, 2, . . . , t and
t∑

j=1

xj = |S| − s. (8.14)

However, note that for the maxima and minima of the standard deviation
over A(t, s) we need to have them occurring for positive integer values of
x1, x2, . . . , xt .
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Now, the conditions on (x1, x2, . . . , xt) in (8.14) define a subset C of Rt

and, in fact, we see that Lemma 8.4.1 now applies to f over C as given in
(8.13) with

a =
|S|
s
− 1 and b = |S| − s.

By Lemma 8.4.1, the maximum of f over C occurs at the points e1, e2, . . . , et
where

ej = (1, 1, . . . , |S| − s− t+ 1, 1, 1, . . . , 1),

and |S| − s − t + 1 is in position j. Note that the coordinates of ej are all
positive integers. Also, this maximum value is(
b−a−t+1

)2
+(t−1)

(
a−1

)2
=

(
|S| − s− t+ 2− |S|

s

)2

+(t−1)

(
|S|
s
− 2

)2

.

Consequently, using (8.8) and (8.13) we see that the maximum value of σ2
A

over A(t, s) is(
1− t

s

)(
1− |S|

s

)2

+
1

s

(
|S| − s− t− |S|

s
+ 2

)2

+
t− 1

s

(
−|S|
s

+ 2

)2

,

and so the conclusion (8.10) follows.

Lemma 8.4.1 applies also to considering the minimum, and we see that f
has a minimum over C at the point(

|S| − s
t

,
|S| − s
t

, . . . ,
|S| − s
t

)
,

and note that because we are assuming that t divides |S|−s, the coordinates
of this point are positive integers and so will give a minimum for the standard
deviation, not just a minimum for f . The value of this minimum is

t

(
b

t
− a
)2

= t

(
|S| − s
t

+ 1− |S|
s

)2

.

Thus, again using (8.8) and (8.13) we see that the minimum value of σ2
A over

A(t, s) is

(
1− t

s

)(
1− |S|

s

)2

+
t

s

(
|S| − s
t

+ 1− |S|
s

)2

=
(

1− t

s

)(
1− |S|

s

)2

+
t

s

(s
t
− 1
)2( |S|

s
− 1

)2
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=

(
|S|
s
− 1

)2(
1− t

s
+
t

s
(
s

t
− 1)2

)
=

(s
t
− 1
)( |S|

s
− 1

)2

.

This proves (8.11).

A special case of Theorem 8.4.1 is when t = |S| − s, which is when the
lengths of the gaps in the decomposition of A all equal 1. In this case the
standard deviation is the same for all elements of A(t, s), so the maximum
and minimum in (8.10) and (8.11) should both equal to√(

|S|
s
− 1

)(
2− |S|

s

)
.

We now check this for the maximum. We have

σA =

√(
2− |S|

s

)(
1− |S|

s

)2

+
1

s

(
2− |S|

s

)2

+
|S| − s− 1

s

(
2− |S|

s

)2

=

√(
2− |S|

s

)(
1− |S|

s

)2

+

(
2− |S|

s

)2(
1

s
+
|S|
s
− 1− 1

s

)

=

√(
2− |S|

s

)(
|S|
s
− 1

)2

+

(
2− |S|

s

)2( |S|
s
− 1

)

=

√(
|S|
s
− 1

)(
2− |S|

s

)(
|S|
s
− 1 + 2− |S|

s

)

=

√(
|S|
s
− 1

)(
2− |S|

s

)
,

which was obtained by applying the formula (8.10) for the case t = |S| − s.
Also, the minimum in (8.11) will be

σA =

√(
|S|
s
− 1

)2(
2s− |S|
|S| − s

)

=

√(
|S|
s
− 1

)(
2− |S|

s

)
.
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Note also that in Theorem 8.4.1 the expression for the maximum value
looks complicated compared with the one for the minimum value. This is not
too surprising, as the minimum is attained when the points in the minimising
set are equally spaced, but for the maximising set the points are irregularly
spaced (see Figure 8.2).

Figure 8.2. On the left and the right the set S consists of the 18th roots

of unity, as in Figure 8.1. On the left, the set A given by the black dots

has 12 elements and 3 components, and we observe that A ∈ A3,12. Note

that 3 divides into 18 − 12 = 6. The components of A are equally spaced

and so the set A minimises the standard deviation of the recurrence time

over the sets in A3,12. On the right, the set B indicated by the black dots

is also in A3,12. This time the components are placed as close together as

possible, but of necessity leaving a larger gap between 2 of the components.

So, the set B maximises the standard deviation of the recurrence time over

the sets in A3,12.

Also, a case of special interest in Theorem 8.4.1 is when t = s. This
restriction means that the components of the sets in A(t, s) = A(t, t) consist
of single points, and we must have t ≤ |S|/2. When t = s and |S| is even, the
minimum in (8.11) is 0, and arises from having |S|/2 points equally spaced
around the unit circle, if we interpret the system as in Figure 8.1.

Now, for the maximum, (8.10) gives that the maximum of σA with A ∈
A(t, t) is √

1

t

(
|S| − 2t− |S|

t
+ 2
)2

+
t− 1

t

(
− |S|

t
+ 2
)2
,

which upon simplification is

√
t− 1

(
|S|
t
− 2

)
. (8.15)
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1 2 3 4 5 6 7 8 9 10 11 12
Value of t

Maximum of
{σA : A ∈ At,t}
with |S| = 24

Figure 8.3. The graph illustrates how the maximum of the standard
deviation for sets in A(s, t) varies when |S| = 24 and t = s. The latter
condition is equivalent to requiring that the components of any set A ∈ At,s
consist of single points. In accordance with (8.15), the graph is of the
function

t 7−→
√
t− 1

(
24

t
− 2

)
.

If we restrict ourselves to discrete values only, as needed in a discrete con-

text, the function maximum is at t = 2.

Figure 8.3 illustrates how the maximum of the standard deviation varies
when |S| = 24 and t = s. In the general case, still with t = s but where
|S| is given but arbitrary, the maximum occurs again for t = 2. An intuitive
interpretation is as follows. When t = 1, the recurrence time is constant and
so the standard deviation is 0. When one point is added to give t = 2, one
point has recurrence time 2, the other has recurrence time |S| − 2. As more
points are added the recurrence times decrease, and there is “less room” to
deviate from the average value. More precisely, the maximum of the function

t 7−→
√
t− 1

( |S|
t
− 2
)
,

occurs at (−|S|+
√
|S|2 + 16|S|)/4, which is less than 2 and approaches 2 as

|S| −→ ∞. So, when considering only discrete values, the maximum must
occur at t = 2 regardless of the value of |S|.
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1 2 3 4 5 6 7 8

Value of t

Maximum of
{σA : A ∈ At,16}
with |S| = 24

Figure 8.4. The graph is of the function

t 7−→
√

1

4

(
1− t

16

)
+

1

16

(17

2
− t
)

+
1

4

( t− 1

16

)
,

which comes from (8.10) taking |S| = 24 and s = 16. It shows how the

maximum of σA over subsets A with |A| = 16 and A having t gaps decreases

as more gaps are allowed in the decomposition of the set A.

Now, let S be a given finite set, and let s ∈ {2, 3, . . . , |S|} be given.
Considering (8.10) the maximum of σA over sets A ∈ A(t, s) is given by the
function f where

f(t) =

√(
1− t

s

)(
1− |S|

s

)2
+

1

s

(
|S| − s− t− |S|

s
+ 2
)2

+
t− 1

s

(
− |S|

s
+ 2
)2
.

Allowing t for the moment to take on real values, a calculation of the deriva-
tive shows that

f ′(t) = − 1

2sf(t)

(
1 + 2(|S| − s− t)

)
.

This implies that f is decreasing as a function of t, because s+t ≤ |S| and so
f ′(t) ≤ 0. Intuitively, we can interpret this as follows. As t increases, there
are more gaps in the decomposition of sets in A(t, s) . This generally causes
the recurrence times to decrease, and they have a narrower range of values
which causes the standard deviation to decrease. Alternatively, as t increases
the sets in A(t, s) become more “ spread out” in S so the recurrence times
have a “less extreme” behavior. Even so, it may happen if A ∈ A(t, s) and
B ∈ A(t+ 1, s), σA < σB, as illustrated in the following example.

Example 8.4.1.

Let A ∈ A(2, 3) and B ∈ A(3, 3) with |S| = 18 (see Figure 8.5). The
recurrence times of A ∈ A(2, 3) are 1, `1 + 1, `2 + 1, hence `1 + `2 + 3 = 18 so
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`1 + `2 = 15. Note that by using Theorem 8.3.2 the average of the recurrence
time is 6. Thus, the standard deviation of rA over A is

σA =

√
1

3

(
(1− 6)2 + (`1 + 1− 6)2 + (`2 + 1− 6)2

)
=

√
1

3

(
25 + (`1 − 5)2 + (`2 − 5)2

)
,

if we take `1 = 7 and `2 = 8, then

σA =

√
1

3
(25 + 4 + 9)

=

√
38

3
.

Now, the recurrence times of B ∈ A(3, 3) are 2, 2, k + 1 (see Figure 8.5),
hence k + 2 + 3 = 18 so k = 13. The average of the recurrence time is also
6. Thus, the standard deviation of rB over B is

σB =

√
1

3

(
(2− 6)2 + (2− 6)2 + (14− 6)2

)
=

√
1

3
(32 + 64)

= 4
√

2.

Therefore, σA < σB.
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`1`2

k

`1 = 7`2 = 8

k = 13

Figure 8.5. At the top left of the Figure, the black points define a

subset A of S and A ∈ A(2, 3). The recurrence times for points in A are

1, `1+1, `2+1. At the top right, the black points define a subset B ∈ B(3, 3)

of S, whose points have a recurrence time of 2, 2, k + 1. However, the

bottom left and right of the Figure illustrate the special cases where we

take `1 = 7, `2 = 8 with A ∈ A(2, 3) and k = 13 with B ∈ B(3, 3).

Now, consider that happens when the number of gaps is kept fixed, but
the number |A| of elements in a subset A of S varies. Figure 8.6 illustrates
what happens to the minimum of the standard deviation over set in A(6, s)
when we consider the case where |S| = 48. In general, if t is given by (8.11)
the minimum of σA taken over sets A ∈ A(t, s) is the minimum of the function

s 7−→
(
|S|
s
− 1

)√
s

t
− 1,

taken over t ≤ s ≤ |S| − t.
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6 42

(9.94, 3.1)

Value of s

Minimum of
{σA : A ∈ A6,s}
with |S| = 48

Figure 8.6 The graph is of the function

s 7−→
(

48

s
− 1

) √
s

6
− 1,

which comes from (8.11) taking |S| = 48 and t = 6. For s ∈
{6, 12, 18, 24, 30, 36, 42} the function value is the minimum of σA, over sub-

sets A ∈ A6,s. So, the graph shows how the minimum of the standard

deviation σA, taken over A ∈ A6,s, varies with s. Note that because we

only consider subsets having 6 components, we must have s ≤ 42.

A calculation shows the minimum occurs at

s0(t) =
4t|S|

|S|+
√
|S|2 + 8|S|t

· (8.16)

A way of thinking about this is that if a set A ∈ At,s has a small number of
elements and a small standard deviation, as points are added one-by-one to
the set, the minimum possible standard deviation may increase for a while
but, as points continue to be added, the set becomes more “crowded”, the
recurrence times are reduced regardless of how the points are added, and so
beyond the point s0(t) in (8.16) the minimum standard deviation decreases.
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Chapter 9

Standard deviation of
recurrence times in infinite
discrete systems

9.1 Introduction

In Chapter 8, we considered some questions concerning the standard devi-
ation in finite dynamical systems. In this Chapter, we consider further a
class of dynamical systems, arising from an infinite “sum” of finite systems.
Whereas for finite systems the standard deviation of a recurrence time is fi-
nite, in the case considered here the standard deviation of a recurrence time
may be infinite. The technique depends upon finding the standard deviation
of a countable sum of finite systems in terms of the standard deviations in
the individual systems. Any finite dynamical system that arising from a per-
mutation on a finite set is a “sum” of subsystems on which the permutation
acts cyclically. So, in this sense, the work in this Chapter encompasses the
case of an arbitrary permutation of a finite set.

9.2 Finite sums of dynamical systems

In this Section, we motivate later work by considering a special case of two
finite systems, and introduce some ideas for later use. Suppose (S1, f1) and
(S2, f2) are two finite dynamical systems. We assume that the transforma-
tions f1 : S1 −→ S1 and f2 : S2 −→ S2 act as cyclic permutations on S1

and S2 respectively. Then, f1 and f2 are one-to-one and onto. We assume
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S1 ∩ S2 = ∅, and put S = S1 ∪ S2. We define f : S −→ S by

f(x) =

{
f1(x), if x ∈ S1,

f2(x), if x ∈ S2.

Then, (S, f) is a dynamical system. Note that f is not a cyclic permutation
on S but is one-to-one and onto.

We define a probability P1 on the algebra of all subsets of S1 by putting

P1(A) =
|A|
|S1|

, for any A ⊆ S1,

where |A| is the size of the set A. Note that P ({x}) = 1/|S1| for all x ∈ S1.
Using the fact that f1 is a one-to-one and onto on S1, we will show

P1

(
f−11 (A)

)
= P1(A), for all A ⊆ S.

This is because ∣∣∣∣P1

(
f−11 (A)

)∣∣∣∣ =
|f−11 (A)|
|S1|

=
|A|
|S1|

= P1(A).

Then, f1 is “measure preserving” on S1 (a formal definition is below). Simi-
larly, we define P2 by

P2(A) =
|A|
|S2|

, for any A ⊆ S2,

and the corresponding property holds and f2 is “measure preserving” on S2.
We now define a probability P on the family of all subsets of S by putting,

for A ⊆ S,

P (A) =
1

2

[
P1(A ∩ S1) + P2(A ∩ S2)

]
.

Note that P (S) = 1. Observe that, for A ⊆ S,

f−11 (A ∩ S1) ⊆ S1 and f−12 (A ∩ S2) ⊆ S2,

and so as f1 and f2 are “measure preserving”,

P1

(
f−11 (A ∩ S1)

)
= P1(A ∩ S1),
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and similarly for P2,

P2

(
f−12 (A ∩ S2)

)
= P2(A ∩ S2).

Also,
f−1(A) = f−11 (A ∩ S1) ∪ f−12 (A ∩ S2).

Hence,

P
(
f−1(A)

)
=

1

2

[
P1

(
f−11 (A ∩ S1)

)
+ P2

(
f−12 (A ∩ S2)

)]
=

1

2

[
P1(A ∩ S1) + P2(A ∩ S2)

]
, as f1 and f2 are “measure preserving”,

= P (A), by using the definition of P .

We now consider P (0m) for m ≥ 1. By definition this is P (Bm) where

Bm = {x : x ∈ Ac, f(x) ∈ Ac, . . . , fm−1(x) ∈ Ac}.

Now,

P (Bm) =
1

2

[
P1(Bm ∩ S1) + P2(Bm ∩ S2)

]
.

Observe that if A = ∅, Bm = S for all m ∈ N. If A = S,Ac = ∅ and we see
that Bm = ∅ for all m ∈ N. So, assume that A 6= S and A 6= ∅. Assume that
A ∩ S1 6= ∅ and let x ∈ A ∩ S1. As f1 acts as a cyclic permutation on S1,
there is 0 ≤ k ≤ |S1| − 1 such that fk(x) ∈ A ∩ S1. Then, x /∈ Bk+1. Hence,
if x ∈ A ∩ S1 we see that x /∈ B|S1|−1. So, if m ≥ |S1| − 1, then

S1 ∩Bm = ∅. (9.1)

Similarly, we find that if A ∩ S2 6= ∅ and m ≥ |S2| − 1, then

S2 ∩Bm = ∅. (9.2)

Now, if A ⊆ S1 and A 6= ∅, as above we have, form ≥ |S1|−1, S1∩Bm = ∅.
However, if x ∈ S2, then

x /∈ A, f2(x) /∈ A, . . . , fk2 (x) /∈ A, . . . ,

and we see that
S2 ⊆ Bm, for all m ∈ N. (9.3)

Similarly, if A ⊆ S2 and A 6= ∅, we have S2 ∩Bm = ∅, for m ≥ |S2| − 1, and

S1 ⊆ Bm, for all m ∈ N. (9.4)
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Summarizing, the above may be immediately deduced from (9.1), (9.2), (9.3),
and (9.4):

if A = ∅, then P (Bm) = 1, for all m ∈ N,

or
if A = S, then P (Bm) = 0, for all m ∈ N,

or

if A 6= ∅, and A ⊆ S1 with m ≥ |S1| − 1, then P (Bm) = 1/2, for all m ∈ N,

or

if A 6= ∅, and A ⊆ S2, with m ≥ |S2|−1, then P (Bm) = 1/2, for all m ∈ N,

or if A 6= ∅, and A ∩ S1 6= ∅ and A ∩ S2 6= ∅, then

P (0m) = P (Bm) = 0, for all m ≥ max{|S1| − 1, |S2| − 1}.

A similar argument applies to any finite collection of finite dynamical
systems. When we consider a finite number of dynamical systems, an inves-
tigation along the preceding lines gives Theorem 9.2.1 below. We first give
a formal definition of a measure preserving transformation for our context.

Definition 9.2.1.

Let S be set and suppose P is a probability on the algebra of all subsets
of S. In this case, we may simply say that P is a probability on S. Let
f : S −→ S be a transformation on S. Then, f is called measure preserving
if

P
(
f−1(A)

)
= P (A), for all A ⊆ S.

This is a special case of the definition in Halmos [14, page 164], for example.
Note that if A is a finite set, if P is a probability on S, and f : S −→ S

acts as cyclic permutation on S, then f is measure preserving on S, and we
must have

P
(
{x}
)

=
1

|S|
, for all x ∈ S.

Note that this idea of measure preserving is exactly the same as the pre-
vious notion of P -invariant as saying that P is P -invariant on the algebra
of all subsets of S, as in Definition 3.4.4 in Chapter 3.
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Theorem 9.2.1. Suppose (Sj, fj) are finite dynamical systems for j = 1, . . . , n
such that the sets Sj are disjoint and each fj is a cyclic permutation on Sj.
Suppose Pj is a probability on Sj such that fj is measure preserving. Put
S = S1 ∪ S2 ∪ · · · ∪ Sn, and define f : S −→ S by

f(x) = fj(x), for all x ∈ Sj.

Suppose α1, α2, . . . , αn are positive numbers with α1 +α2 + . . .+αn = 1, and
for any set A ⊆ S put

P (A) =
n∑
j=1

αjPj(A ∩ Sj).

Then, (S, f) is a finite dynamical system, P is a probability on the family of
all subsets S, and f is measure preserving on S. Further, if m ≥ max{|S1| −
1, |S2| − 1, . . . , |Sn| − 1}, then

P (0m) =
∑

A∩Sj=∅

αj.

Proof. We give a proof of the last statement. We have

P (0m) = P
(
{x : x ∈ Ac, f(x) ∈ Ac, . . . , fm−1(x) ∈ Ac}

)
= P

( n⋃
j=1

{x : x ∈ Sj, x ∈ Ac, f(x) ∈ Ac, . . . , fm−1(x) ∈ Ac}
)

=
n∑
j=1

αjPj

(
{x : x ∈ Sj, x ∈ Ac, f(x) ∈ Ac, . . . , fm−1(x) ∈ Ac}

)
=

n∑
j=1

αjPj

(
{x : x ∈ Sj, x ∈ Sj ∩ Ac, f(x) ∈ Sj ∩ Ac, . . . , fm−1(x) ∈ Sj ∩ Ac}

)
.

(9.5)

Now, by above if Sj ∩ A 6= ∅ and m ≥ |Sj| − 1, then

Pj

(
{x : x ∈ Sj, x ∈ Sj ∩ Ac, f(x) ∈ Sj ∩ Ac, . . . , fm−1(x) ∈ Sj ∩ Ac}

)
= ∅.

From (9.5) we see that if m ≥ max{|S1| − 1, |S2| − 1, . . . , |Sn| − 1},

P (0m) =
∑

A∩Sj=∅

αjPj(Sj)

=
∑

A∩Sj=∅

αj, by using the fact that Pj(Sj) = 1.
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9.3 Countable sums of finite dynamical sys-

tems

We now look at the case of an infinite but countable collection of systems.

Definition 9.3.1.

Let Sj be a non-empty finite set, for each j ∈ N, and let fj be a cyclic
permutation on the whole of Sj. Suppose further that Si ∩ Sj = ∅ for all
i 6= j, let S =

⋃
j∈N Sj, and define f : S −→ S by f(x) = fj(x) for all x ∈ Sj.

Then, (S, f) is called the sum of the dynamical systems (Sj, fj). Note that
each system (Sj, fj) is of the type considered in the previous Chapter.

Definition 9.3.2.

Suppose we are given a sequence (wj), with wj > 0 for all j and∑
j∈Nwj = 1. We defined a weighted probability P on S by putting

P (A) =
∑
j∈N

wjPj(A ∩ Sj), for A ⊆ S,

where Pj(A∩ Sj) = |A∩ Sj|/|Sj|. It is easy to see that P has the properties
expected of a probability, in this context. That is we have:

(i) If A ⊆ S, then 0 ≤ P (A) ≤ 1.

(ii) If A1, A2, . . . are disjoints subsets of S then P
(⋃∞

j=1Aj

)
=
∑∞

j=1 P (Aj).

(iii) P (S) = 1.

Note that for all points x ∈ Sj, P
(
{x}
)

has the same value. That is,

P
(
{x}
)

=
wj
|Sj|

, for all x ∈ Sj. (9.6)

Now we will show that f is measure preserving. Note that

f−1(A ∩ Sj) ⊆ Sj, and f−1(A) =
∞⋃
j=1

f−1(A ∩ Sj),
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which is a disjoint union. We have

f−1(A) ∩ Sj = f−1(A ∩ Sj), so that

P
(
f−1(A)

)
=
∑
j∈N

wjPj

(
f−1(A) ∩ Sj

)
=
∑
j∈N

wjPj

(
f−1j (A ∩ Sj)

)
=
∑
j∈N

wjPj(A ∩ Sj), as fj is measure preserving on Sj,

= P (A), by using the definition.

Thus, f is measure preserving. �
Note that for x ∈ A we define the recurrence time rA(x) as in (8.4). That

is,
rA(x) = min{n ∈ N and fn(x) ∈ A}.

Also, note that the expectation or average of rA over A is given by

EA(rA) =
1

P (A)

∑
x∈A

rA(x)P
(
{x}
)
, (9.7)

as in [11, page 207].
The following result demonstrates the validity of Kac’s formula in the

case of finite and infinite sums of finite dynamical systems.

Theorem 9.3.1. Let Q denote either the set N or a finite set. For each
j ∈ Q, let Sj be a non-empty finite set and let fj be a cyclic permutation on
Sj such that Si ∩Sj = ∅ for all i 6= j. Let (S, f) be the sum of the dynamical
systems (Sj, fj)j∈Q. Let weights (wj)j∈Q be given as in the definition above,
and let the probability of a subset A of S be given by

P (A) =
∑
j∈Q

wjPj(A ∩ Sj).

Then, if A ⊆ S is such that A∩Sj 6= ∅, for all j ∈ Q, the average EA(rA) of
rA over A is given by

EA(rA) =
1

P (A)
.

Further, if A ⊆ S is such that A ∩ Sn = ∅, for some n ∈ Q, then

EA(rA) <
1

P (A)
.
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Proof. If A ⊆ S and A 6= ∅, put Y = {j : j ∈ Q and A ∩ Sj 6= ∅}. Then, by
(9.7),

EA(rA) =
1

P (A)

∑
x∈A

rA(x)P
(
{x}
)

=
1

P (A)

∑
j∈Y

∑
x∈A∩Sj

rA(x)P
(
{x}
)

=
1

P (A)

∑
j∈Y

∑
x∈A∩Sj

rA(x)
wj
|Sj|

, by using (9.6),

=
1

P (A)

∑
j∈Y

wj
|Sj|

( ∑
x∈A∩Sj

rA∩Sj
(x)

)
=

1

P (A)

∑
j∈Y

wj, by using Theorem 8.3.2. (9.8)

Now, there are two possibilities. If A ∩ Sj 6= ∅, for all j ∈ Q, then in this
case

∑
j∈Y wj = 1, so (9.8) implies that EA(rA) = 1/P (A). However, if

A∩Sn = ∅, for some n ∈ Q, then (9.8) gives EA(rA) < 1/P (A). Thus, Kac’s
formula remains true if A ∩ Sj 6= ∅, for all j ∈ Q, otherwise it fails.

9.4 Recurrence and standard deviation in a

sum of systems

Let Q denote either the set N or a finite set. For each j ∈ Q, let Sj be a
non-empty finite set and let fj be a cyclic permutation on Sj. Assume that
Si∩Sj = ∅ for all i, j ∈ Q with i 6= j. Let (S, f) be the sum of the dynamical
systems (Sj)j∈Q. Let wj > 0 for all j ∈ Q, such that

∑
j∈Qwj = 1. Then, for

A ⊆ S, put

P (A) =
∑
j∈Q

wj
|A ∩ Sj|
|Sj|

and Pj(A) =
|A ∩ Sj|
|Sj|

.

Let rA denote the recurrence time overA in the system (S, f). The standard deviation
of rA in (S, f) is defined by σA, where

σ2
A =

1

P (A)

∑
x∈A

∣∣∣∣rA(x)− EA(rA)

∣∣∣∣2P({x}), (9.9)
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as in [11, page 213], where EA(rA) given by (9.7). We have seen in (9.8) that
if P (A) > 0,

EA(rA) =
1

P (A)

∑
A∩Sj 6=∅

wj.

So, (9.9) gives

σ2
A =

1

P (A)

∑
x∈A

∣∣rA(x)− 1

P (A)

∑
k,A∩Sk 6=∅

wk
∣∣2P({x}). (9.10)

It follows from (9.10) that if A ⊆ S and j ∈ Q with A ∩ Sj 6= ∅, then
in the system (S, f)

σ2
A∩Sj

=
1

P (A ∩ Sj)
∑

x∈A∩Sj

∣∣∣∣rA(x)− |Sj|wj
wj|A ∩ Sj|

∣∣∣∣2 wj|Sj|
=

|Sj|
wj|A ∩ Sj|

 ∑
x∈A∩Sj

(
rA(x)− |Sj|

|A ∩ Sj|

)2 wj
|Sj|

=
1

|A ∩ Sj|
∑

x∈A∩Sj

(
rA(x)− |Sj|

|A ∩ Sj|

)2
. (9.11)

Now, note that if j ∈ Q is given, the system (Sj, fj) is of type (S, f)
where S is finite and f is a cyclic permutation of S. Note in this case that if
A ⊆ S and A ∩ Sj 6= ∅, then

rA(x) = rA∩Sj
(x), for all x ∈ A ∩ Sj.

Using the definition in (9.9), now for A∩Sj in place of A and (Sj, fj) in place
of (S, f) we now find that if A ∩ Sj 6= ∅, and denoting the expectation and
standard deviation of rA∩Sj

in (Sj, fj) by EA∩Sj
(rA∩Sj

) and σA∩Sj
respectively,

EA∩Sj
(rA∩Sj

) =
1

Pj(A ∩ Sj)
=

|Sj|
|A ∩ Sj|

=
wj

P (A ∩ Sj)
, (9.12)
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and

σ2
A∩Sj

=
1

Pj(A ∩ Sj)
∑

x∈A∩Sj

∣∣∣∣rA(x)− |Sj|
|A ∩ Sj|

∣∣∣∣2Pj({x})
=

|Sj|
A ∩ Sj

1

|Sj|
∑

x∈A∩Sj

∣∣∣∣rA(x)− |Sj|
|A ∩ Sj|

∣∣∣∣2
=

1

|A ∩ Sj|
∑

x∈A∩Sj

∣∣∣∣rA(x)− |Sj|
|A ∩ Sj|

∣∣∣∣2. (9.13)

Now, (9.8) and (9.12) show that the expectation of rA over A ∩ Sj is
the same in either system (S, f) or (Sj, fj). Consequently, the expressions
EA∩Sj

(rA) has no ambiguity.
Also, (9.11) and (9.13) show that the expression σ2

A∩Sj
is the same, in

either system (S, f) or (Sj, fj). Then, σ2
A∩Sj

has no ambiguity.
The following result expresses the relationship between the standard de-

viation σA of recurrence times in the system (S, f), which is a sum of systems
(Sj, fj), in terms of the standard deviations σA∩Sj

of the component systems
(Sj, fj).

Theorem 9.4.1. Let Q denote either the set N or a finite set. For each
j ∈ Q, let Sj be a non-empty finite set and let fj be a cyclic permutation on
the whole of Sj such that Si∩Sj = ∅ for all i 6= j. Let (S, f) be the sum of the
dynamical systems (Sj, fj)j∈Q. Let weights (wj)j∈Q be given as in Definition
9.3.2, and let the probability of a subset A of S be given by

P (A) =
∑
j∈Q

wjPj(A ∩ Sj).

Then, if A ⊆ S is such that A∩ Sj 6= ∅ for all j ∈ Q, the standard deviation
of rA over A is given by σA, where

σ2
A =

1

P (A)

(∑
j∈Q

wj
|A ∩ Sj|
|Sj|

σ2
A∩Sj

)
+

1

P (A)

∑
j∈Q

wj
|Sj|
|A ∩ Sj|

− 1

P (A)2
. (9.14)
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Proof. By using (9.9) and Theorem 9.3.1 we have

σ2
A =

1

P (A)

∑
x∈A

∣∣∣∣rA(x)− 1

P (A)

∣∣∣∣2P({x})
=

1

P (A)

∑
x∈A

(
r2A(x)− 2rA(x)

P (A)
+

1

P (A)2

)
P
(
{x}
)

=
1

P (A)

∑
x∈A

r2A(x)P
(
{x}
)
− 2

P (A)2

∑
x∈A

rA(x)P
(
{x}
)

+
1

P (A)3

∑
x∈A

P
(
{x}
)

=
1

P (A)

∑
x∈A

r2A(x)P
(
{x}
)
− 2

P (A)2
+

1

P (A)2
, by using Theorem 9.3.1, (9.6), and (9.7),

=
1

P (A)

∑
x∈A

r2A(x)P
(
{x}
)
− 1

P (A)2

=
1

P (A)

∑
j∈Q

( ∑
x∈A∩Sj

wjr
2
A(x)

|Sj|

)
− 1

P (A)2

=
1

P (A)

∑
j∈Q

wj
|Sj|

( ∑
x∈A∩Sj

r2A(x)

)
− 1

P (A)2

=
1

P (A)

∑
j∈Q

wj
|Sj|

( ∑
x∈A∩Sj

[(
rA(x)− |Sj|

|A ∩ Sj|

)2]

+
2|Sj|
|A ∩ Sj|

∑
x∈A∩Sj

rA(x)−
∑

x∈A∩Sj

|Sj|2

|A ∩ Sj|2

)
− 1

P (A)2

=
1

P (A)

∑
j∈Q

wj
|Sj|

( ∑
x∈A∩Sj

[(
rA(x)− |Sj|

|A ∩ Sj|

)2]
+

2|Sj|2

|A ∩ Sj|
− |Sj|2

|A ∩ Sj|

)
− 1

P (A)2

=
1

P (A)

∑
j∈Q

wj
|Sj|

( ∑
x∈A∩Sj

[(
rA(x)− |Sj|

|A ∩ Sj|

)2]
+
|Sj|2

|A ∩ Sj|

)
− 1

P (A)2

=
1

P (A)

(∑
j∈Q

wj
|A ∩ Sj|
|Sj|

σ2
A∩Sj

)
+

1

P (A)

∑
j∈Q

wj
|Sj|
|A ∩ Sj|

− 1

P (A)2
.

Note that by Theorem 9.3.1 if A 6= ∅ the average of rA over A is finite.
However, the standard deviation may be infinite, as we shall see.
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Theorem 9.4.2. For each j ∈ N, let (Sj, fj) be a finite dynamical system
where fj acts as a cyclic permutation on Sj. Assume that the sets Sj are
disjoint and let (S, f) be the sum of the systems (Sj, fj). Let wj be a sequence
of positive numbers such that

∑∞
j=1wj = 1, and let P be the probability on S

given by

P (A) =
∞∑
j=1

wj
|A ∩ Sj|
|Sj|

, for all A ⊆ Sj.

Let A ⊆ S be such that |A ∩ Sj| = 1, for all j ∈ N. Put, for all m = 1, 2, . . .

0m = {x : x ∈ Ac, f(x) ∈ Ac, . . . , fm−1(x) ∈ Ac}.
Then, limm−→∞ P (0m) = 0, and

∞∑
m=1

P (0m) = −1

2
+

1

2

∞∑
m=1

wj|Sj|.

Also,

σ2
A =

1

P (A)

∑
j∈N

wj|Sj| −
1

P (A)2
, for all A ⊆ Sj. (9.15)

Proof. We have, as S =
⋃∞
j=1 Sj

P (0m) =
∞∑
j=1

P (0m ∩ Sj). (9.16)

Now, A ∩ Sj consists of a single point, so we see that

|01 ∩ Sj| = |Sj| − 1, |02 ∩ Sj| = |Sj| − 2, . . . , |0m ∩ Sj| = |Sj| −m.
In general,

|0m ∩ Sj| = max{|Sj| −m, 0}.
Hence, by (9.16)

P (0m) =
∞∑
m=1

wj
max{|Sj| −m, 0}

|Sj|
. (9.17)

Using (9.17) we have

P (0m) =
∑

j,|Sj |≥m

wj
|Sj|

(
|Sj| −m

)
=

∑
j,|Sj |≥m

wj
(
1− m

|Sj|
)

≤
∑

j,|Sj |≥m

wj.

(9.18)
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Now, let ε > 0 and let M0 be such that

∞∑
j=M0+1

wj < ε. (9.19)

Put
Km = {j : j ∈ N and |Sj| ≥ m}.

Then, there is m0 such that

m ≥ m0 =⇒ Km ⊆ {M0 + 1,M0 + 2, . . .}.

Consequence, if m ≥ m0,∑
j,|Sj |≥m

wj =
∑
j∈Km

wj ≤
∞∑

j=M0+1

wj < ε, by using (9.19).

We deduce from (9.18) that limm−→∞ P (0m) = 0.
Also, from (9.17)

∞∑
m=1

P (0m) =
∞∑
j=1

∞∑
m=1

wj
max{|Sj| −m, 0}

|Sj|

=
∞∑
j=1

wj
|Sj|

( |Sj |−1∑
m=1

(
|Sj| −m

))

=
∞∑
j=1

wj
|Sj|

|Sj |−1∑
k=1

k

=
∞∑
j=1

wj
|Sj|
|Sj|
2

(
|Sj| − 1

)
=

1

2

∞∑
j=1

wj
(
|Sj| − 1

)
= −1

2

∞∑
j=1

wj +
1

2

∞∑
j=1

wj|Sj|

= −1

2
+

1

2

∞∑
j=1

wj|Sj|.

Now, consider when we have finite disjoint systems (Sj, fj), 1 ≤ j ≤ n
and when |Sj| = mj for all 1 ≤ j ≤ n and |A∩ Sj| = 1 for all j = 1, 2, . . . , n.
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Then, rA(x) = mj for all x ∈ A ∩ Sj, and

σ2
A∩Sj

=
1

|A ∩ Sj|
∑

x∈A∩Sj

∣∣∣∣rA(x)− |Sj|
|A ∩ Sj|

∣∣∣∣2
=

∑
x∈A∩Sj

(mj −mj)
2

= 0.

Now using (9.14) of Theorem 9.4.1 we get in the system (S, f),

σ2
A =

1

P (A)

n∑
j=1

wjmj −
1

P (A)2
.

Note that this should be compared with the corresponding condition in
Section 6.3 of Chapter 6.

Example 9.4.1.

A special case of Theorem 9.4.2 is when |Sj| = j, in which case we have

σ2
A =

1

P (A)

n∑
j=1

jwj −
1

P (A)2
.

In this example because the system (S, f) is finite the average of rA over A
is finite and also the standard deviation of rA over A is finite.

Example 9.4.2.

Consider when we have an infinite sum of finite systems (Sj, fj)j∈N, where
the sets Sj are disjoint. Let (S, f) be the sum of the systems (Sj, fj)j∈N. Let
A ⊆ S be such that |A ∩ Sj| = 1 for all j ∈ N. Then, rA(x) = |Sj| in (S, f),
whenever x ∈ A ∩ Sj. By using (9.13) we have

σA∩Sj
= 0 for all j ∈ N.

Then, by using (9.15) of Theorem 9.4.2 we have, as above,

σ2
A =

1

P (A)

∑
j∈N

wj|Sj| −
1

P (A)2
.
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Now, if wj = 1/2j and |Sj| = j, then
∑

j∈Nwj|Sj| < ∞, that is σA < ∞.

However, if we take wj = 1/2j and |Sj| = 2j, then
∑

j∈Nwj|Sj| = ∞, that
is σA = ∞. Thus, in this example, we see that in an infinite sum of finite
systems, the standard deviation of the recurrence time over a subset A of S
may be infinite. For this example, P (0m) −→ 0 as m −→∞ but

∑∞
j=1 P (0m)

diverges. Also, in the case of an infinite sum, we do not have a counting
measure but a measure with an infinite number of weights.
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Conclusion

Summary. In this work we have considered various aspects of recurrence
times in stochastic processes and dynamical systems. The work up to and
including Chapter 6 was set in the context of zero-one stochastic processes.
Note that by a zero-one stochastic process is meant a sequence (Xn) of
functions on a given set S where each function Xn takes values in {0, 1}.
The discussion was primarily concerned with stationary processes and was
a rigourous and, in some aspects, a more general discussion of some work
of Kasteleyn [18]. A connection between notions of recurrence in stationary
zero-one stochastic processes and dynamical systems admitting an invariant
probability was established. Chapters 7, 8 and 9 presented, almost in their
entirety, new results in some special dynamical systems. These results were
mainly to do with the standard deviation of recurrence times.

Conclusion details. The approach in chapters 2 to 6 was based on the
work of Kasteleyn, but the intention was to put Kasteleyn’s work on a more
rigourous and systematic mathematical basis, as well as to give some general-
izations coming out of this approach. Thus, the assumptions made at various
points that are needed in the proofs were identified and specific definitions
made. Chapters 2 and 3 primarily set out this more structured approach,
introducing such notions as probabilities, probability functions, stationary
processes and the connection between dynamical systems and zero-one pro-
cesses, especially in relation to recurrence phenomena. The connection be-
tween recurrence in stationary processes and in dynamical systems with an
invariant probability was discussed and made explicit in a way that seems to
be currently lacking in the literature.

Chapter 4 contained basic identities and preparatory material which in
some cases are more general than the approach of Kastelyn (See for exam-
ple, Lemma 4.2.1) and its subsequent application.) Chapter 5 developed
some of the results concerning recurrence times in certain types of zero-one
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stochastic processes. The treatment aimed to be systematic, spelling out
precise assumptions and adhering to strict standards of proof. Chapter 6
investigated the standard deviation of the recurrence times in zero-one pro-
cesses. The question of the standard deviation of recurrence times seems to
be little-studied in the literature and was looked at in specific detail in some
dynamical systems in subsequent chapters.

Chapter 7 presented some new results and estimates for the standard
deviation of recurrence times in dynamical systems (S, f), where S was a
unit interval of real numbers and f was a certain type of piecewise linear
transformation on S. The new results here can be compared with some of
the results and discussion in Chapter 4 of [20].

Chapter 8 presented new results on the standard deviation of recurrence
times in a finite dynamical system, upon which a transformation f acts as
a cyclic permutation. These results show up some of the subtleties of what
might be expected in more complex systems and were open, in some cases,
to clarifying intuitive interpretations.

In Chapter 9, the results of Chapter 8 were used to obtain new results
in discrete but infinite dynamical systems obtained as a “sum” of finite sys-
tems. Some of these results clarified the conditions needed for the standard
deviation to be finite, and related such conditions to the stochastic processes
context in earlier chapters, illuminating the condition P̃ (0∞) = 0 in Theo-
rem 6.2.1. In a sense, for the systems described in this chapter, this section
clarifies the relationship between the finiteness of the standard deviation and
condition (4.38) in [20, page 275], by realizing condition (4.38) in a very
concrete way.
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