
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1996

Access control in object-oriented databases
Ahmad Baraani-Dastjerdi
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Baraani-Dastjerdi, Ahmad, Access control in object-oriented databases, Doctor of Philosophy thesis, Department of Computer
Science, University of Wollongong, 1996. http://ro.uow.edu.au/theses/1290

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

T JNIVERSITY
\\ 70LLONGONG

ACCESS CONTROL IN
OBJECT-ORIENTED DATABASES

A thesis submitted in fulfilment of the

requirements for the award of the degree

Doctor of Philosophy
UNlVERCXfY Or ,

_ -ZL - - --"j-r-xzaaJ

from

UNIVERSITY OF WOLLONGONG

by

Ahmad Baraani-Dastjerdi, M.Sc

Department of Computer Science

1996

11

In the name oi God, the Denehcient, the Merciiul

iii

© Copyright 1996

by

Ahmad Baraani-Dastjerdi

All Rights Reserved

Dedicated to

my family

Certificate of Originality

I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written

by another person nor material which to a substantial extent has been accepted

for the award of any other degree or diploma of a university or other institute of

higher learning, except where due acknowledgment is made in the text.

Ahmad Baraani-Dastjerdi

v

Abstract

In a multi-user environment with a large shared database, it is necessary that

the security of data in the database is considered. To enforce security of data

in a database, we start with an access control model. The model defines which

users have what privileges to which information. There are three different types

of access control policies: discretionary access control (DAC)) mandatory access

control (MAC)) and role-based access control (RBAC). A discretionary access

control specifies users' privileges to different system resources, including their

ability to transfer their privileges to other users. In a mandatory access control,

the access of data by users is based on authorized security clearance levels. MAC

policies are of concern in multi-level databases) which are databases that contain

information of different security levels. A role-based access control manages access

to data based on a user's responsibility within an organization. Each role has an

associated collection of privileges. This collection is automatically transferred to

a subject who plays the role

Most of the current access control models in database systems are devel

oped for relational databases. Since the object-oriented database (OODB) model

differs substantially from the relational model, results obtained for relational

databases as well as models proposed for relational databases are not necessarily

applicable to OODB systems. Amongst other issues, inheritance and the encap

sulation of methods in the database information pose challenges in designing new

authorization models for OODB systems. It is therefore necessary to extend the

research on secure databases to include the 0-0 model. This thesis presents a

study of security in OODB systems. Access control protection forms a substantial

component of this work.

Principles from the 0-0 model are used to express rules for computing implicit

privileges from explicit ones. It requires an efficient mechanism which evaluates

implicit rights each time an access IS requested. A cryptographic mechanism

VI

vii

which is based on unique and secure access keys for each entity (object or class)

is proposed. The proposal ensures that access keys for implicit authorizations

were derived from related entities by applying pseudo-random and SIFF functions

during query processing. The security of the system is based on the difficulty of

predicting the output of pseudo-random functions and finding extra collisions for

SIFF functions. Both are known to be computationally difficult.

Another major requirement for the access control model is the implementa

tion of content-dependent authorization. The content-dependent authorization

incorporates the value of attributes in the access control model. The accessible

data are determined by checking the requested attributes. A content-dependent

access control model based on views is proposed. Rules for computing an implicit

authorization from the explicit ones are also formulated.

Finally, a new design approach for a secure multi-level O O D B system based on

views is proposed. The central idea is to provide the user with a multi-level view

derived from a single-level secure O O D B system. Hence the database operations

performed on the multi-level views are decomposed into a set of operations on

the single-level objects. They can then be implemented on any conventional

mandatory security kernel.

Publications From This Thesis

1. A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini, "A Multi-level View

Model for Secure Object-Oriented Databases," Accepted for publication by

Data & Knowledge Engineering, 1996.

2. A. Baraani-Dastjerdi, J. R. Getta, J. Pieprzyk, and R. Safavi-Naini, "A

Cryptographic Solution to Discretionary Access Control in Structurally

Object-Oriented Databases," in Proceedings of the 6th Australian Database

Conference (ADC'95) (R. Sacks and J. Zobel, eds.), vol. 17(2), (Adelaide,

Australia), pp. 36-45, Australian Computer Science Communications, Jan.

1995.

3. A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini, and J. R. Getta, "A

Cryptographic Mechanism for Object-Instance-Based Authorization in Object-

Oriented Database Systems," in Proceedings of The 14th International Con

ference on Object-Oriented & Entity Relationship Modeling (OOER'95) (M. P.

Papazoglou, ed.), vol. 1021 of Lecture Notes in Computer Science, (Queens

land, Australia), pp. 44-54, Springer-Verlag, Dec. 1995.

4. A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini, and J. R. Getta, "A

Model of Authorization for Object-Oriented Databases based on Object

Views," in Proceedings of The 4th International Conference on Deductive

and Object-Oriented Databases (T. Ling, A. Mendelzon, and L. Vieille, eds.),

vol. 1013 of Lecture Notes in Computer Science, (Singapore), pp. 503-520,

Springer-Verlag, Dec. 1995.

5. A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini, "Modeling A Multi

level Secure Object-Oriented Database Using Views." Pre-proceedings of

the Australian Conference on Information Security and Privacy, The Uni

versity of Wollongong, N S W , Australia, May 24-26, 1996 (accepted).

viii

Acknowledgments

First, I would like to express my deepest gratitude to my supervisor Associate

Professor Josef Pieprzyk for his studious guidance and support throughout my

entire period of this study. The next two people whom I would like to thank are

Doctor Reihaneh Safavi-Naini and Doctor Janusz R. Getta who acted as my de

facto supervisors in the absence of A/Professor Pieprzyk. They have been very

generous with their time in helping me with various aspects of my thesis. I held

fruitful discussion with them at different stages of this research.

I would also like to express my appreciation of the support and assistance

provided by the members of the Centre for Computer Security Research in the

Department of Computer Science. In particular, I would like to thank Professor

Jennifer Seberry for her helpful suggestions and encouragement. I am thankful to

the administrative and support staff in the department and the Centre for their

help, in particular Ms. Margot Hall.

I am greatly indebted to my wife and my children who have been a source of

encouragement and support during the difficult times in this work. Their patience

and understanding during the long hours of my work allowed me to finish this

study. I sincerely hope that this experience and achievement will bring positive

happenings to our lives in the future. Other people that I must thank are my

family for their love, encouragement and support in my studies throughout my

school and university years.

Finally, I thankfully acknowledge the financial support provided by the gov

ernment of the Islamic Republic of Iran. I would not have been in this program

without their support.

IX

Contents

Certificate of Originality vi

Abstract viii

Publications From This Thesis ix

Acknowledgements x

1 Introduction 1

1.1 Introduction 1

1.2 Goals and Outline of the Thesis 2

2 Object-Oriented Database System Concepts 5

2.1 Introduction 5

2.2 Object-Oriented Data Model-Concepts 6

2.2.1 Objects and Identity 7

2.2.2 Classes and Types 8

2.2.3 Complex (or Composite) Objects 9

2.2.4 Inheritance and Class Hierarchy 10

2.2.5 Encapsulation 13

2.2.6 Polymorphism and Binding 15

2.2.7 An Example 16

2.3 Object-Oriented Databases 17

2.3.1 Persistence 21

2.3.2 Concurrency and Recovery 21

2.3.3 Object Versions 21

2.3.4 Secondary Storage Management 23

2.3.5 Declarative Language 23

x

CONTENTS xi

2.3.6 Security 23

2.4 A View Model 24

2.4.1 Examples 27

2.5 Summary 31

3 Security In Databases 32

3.1 Introduction 32

3.2 Threats to Database Security 34

3.3 Database Security Requirements 35

3.4 Access Control 37

3.5 Discretionary Access Control Models 39

3.5.1 Access Matrix Model 40

3.6 DAC Models in O O D B Systems 41

3.6.1 DAC in Structurally O O D B Systems 44

3.6.2 DAC in Behaviorally O O D B Systems 52

3.7 Mandatory Access Control Models 56

3.8 M A C Models in RDBS 57

3.9 M A C Models in O O D B Systems 60

3.9.1 Security Models 62

3.9.2 Security Rule Requirements for a Secure O O D B system . . 64

3.9.3 Mandatory Classification Rules 65

3.9.4 Dynamic Labeling 68

3.10 Role-Based Access Control Models 69

3.11 Implementation Strategies 71

3.12 Inference Control 72

3.12.1 Statistical Databases 73

3.12.2 Multi-level Databases 73

3.13 Cryptographic Control 75

3.14 Summary and Remarks 75

4 A Cryptographic Mechanism for Discretionary Access Control

in O O D B Systems 77

4.1 Introduction 77

4.2 Background 79

4.2.1 Sibling Intractable Function Families (SIFF) 79

CONTENTS xii

4.2.2 Sketch of Implementation 80

4.3 Security Policy 80

4.3.1 General Policies 81

4.3.2 Administrative policies 81

4.3.3 Implicit policies 83

4.4 Notations, Assumptions, and Definitions 84

4.4.1 Notations 84

4.4.2 Assumptions 85

4.4.3 Definitions 85

4.5 Proposed Solution 87

4.5.1 Creating 89

4.5.2 Authorization Administration 90

4.6 Validation of Access Requests 92

4.6.1 Access Validation 93

4.7 Object Restructuring 94

4.7.1 Deletion of Objects 95

4.7.2 Addition of Objects 96

4.8 Grouping and Group Updating 96

4.8.1 Deletion of Memberships 97

4.8.2 Addition of New Memberships 97

4.8.3 Replacing 98

4.9 Security of the Authorization System 98

4.10 Complexity of The System 99

4.11 Conclusion and Remarks 101

5 An Authorization Model Based on Views 102

5.1 Introduction 102

5.2 View Model 103

5.3 Inferring the View Hierarchy 104

5.4 Authorization System 108

5.4.1 Access Views 110

5.5 Implication Rules 114

5.5.1 Authorization Users 115

5.5.2 Authorization Access Privileges 117

5.5.3 Authorization Views 118

CONTENTS xiii

5.6 Access Control 119

5.7 Summary 121

6 A Multi-level View Model for Secure OODB Systems 123

6.1 Introduction 123

6.2 A Multi-level secure Databases 126

6.3 View Model 127

6.4 Secure Multi-level View Model 131

6.4.1 View 132

6.4.2 Derivation Rules 136

6.4.3 Updates and Object Creation 137

6.5 Aggregation and Inference 138

6.5.1 Aggregation 138

6.5.2 Inference 138

6.6 Polyinstantiation 139

6.7 Evaluation of the Proposed Model 141

6.8 Conclusions and Remarks 142

7 Summary, Results and Future Directions 144

7.1 Summary 144

7.2 Results 146

7.3 Future Direction 147

A Hardjono et. al.'s Database Authentication based on SIFF 149

B An Improvement of Implementation of k-SIFF 151

Bibliography 153

List of Tables

3.1 Access matrix 40

xiv

List of Figures

2.1 Computer set class 10

2.2 An example of inheritance hierarchy 11

2.3 Example of a database schema: a portion of university database

schema 16

3.1 A sample of role hierarchy 48

3.2 A sample privilege hierarchy 48

3.3 A sample Entity Schema and Entity Hierarchy 49

3.4 An example of representation of simple constraint 61

3.5 An example of representation of a multi-level entity through com

posite objects 62

4.1 A sketch of Implementation of k-SIFF hash function 80

4.2 User groups Hierarchy • 83

4.3 A possible implementation of T M 88

5.1 A sample of user role hierarchy 115

6.1 An example of the representation of simple constraint 124

6.2 An example of the representation of content constraint 124

A.l Using SIFF for Record Authentication 150

B.l Some improvement of implementation of k-SIFF 152

xv

Chapter 1

Introduction

1.1 Introduction

The increasing development of information technology in the last decade has led

to the widespread use of computer systems in various public and private organiza

tions such as banks, universities, manufacturing or service companies, hospitals,

libraries, etc. This means that organizations maintain more and more computer

ized information in databases, and they increasingly depend on that information

for their correct functioning. Hence, information needs protection against unau

thorized access and any possible threats which might be launched by insiders

and outsiders, either malicious or accidental. This explains the need for secure

databases which are of concern to the database security. The database secu

rity aims at preserving the secrecy, integrity, and availability of the information

stored in it. Secrecy ensures that database information is readable to authorized

users only. It ensures the confidentiality of the information. Integrity of in

formation covers methods and techniques which are used to protect information

against illegal or accidental modification. Availability of information ensures

that authorized users can have access to information whenever they need them

[65].

In order to obtain security in a database, Denning [65] lists four kinds of

controls: access control, information flow control, cryptographic control, and in

ference control. The access control ensures that any users access to the system is

authorized according to access rules given by the security policies. The informa

tion flow control makes sure that the protected information "contained" in some

objects does not flow explicitly (through copy) or implicitly to other protected

1

Chapter 1. Introduction 2

objects of lower security levels. It also regulates how the information is accessible

(irrespective where it is stored). The cryptographic control makes data unintelli

gent to anybody except someone who knows the correct cryptographic key. The

inference control protects information against its disclosure via different ways of

deduction.

Research effort regarding secure databases has mainly focused on relational

databases. Since the object-oriented database (OODB) model differs substan

tially from the relational model, results obtained for relational databases as well as

models proposed for relational databases are not necessarily applicable to O O D B

systems. Amongst other issues, inheritance and the encapsulation of methods in

the database information pose challenges in a secure O O D B system. It is there

fore necessary to extend the research on secure databases to include the 0-0

model. Some works have been done so far to address some issues concern of 0-0

model see for example [4, 29, 30, 32, 78, 80, 97, 130, 169].

The access control model for O O D B systems which supports different granu

larity such as class-based, object-based, instance-variable-based, and/or content-

based authorization, still needs more investigation. There is also a need for the

design of a more efficient mechanism to derive implicit privileges during query

processing.

1.2 Goals and Outline of the Thesis

The primary goal of this work is to present the results of my investigation and

study of data security for object-oriented database (OODB) systems, and to de

sign a more efficient mechanism to enforce access control and new security models

for open problems such as instance-based, and content-based authorizations in

O O D B systems. The thesis is arranged as follows.

Chapter 2 deals with the basic concepts of O O D B model. The key concepts

of 0-0 data model (such as types, classes, objects, complex objects, aggregation,

inheritance, encapsulation, and methods) are discussed. Database functionalities

such as persistence, secondary-storage management, security, authorization, con

currency, and recovery are described. The view concept is also introduced in this

chapter.

Chapter 3 provides a brief overview of the database security. Some basic

facts, methods, and terminology are discussed. Security threats, requirements,

Chapter 1. Introduction 3

and problems that arise in the pursuit of meeting these requirements for secu

rity in O O D B systems are illustrated. The chapter also shows how much effort

has been put info the design of access control models. The two major access

control approaches, mandatory access control (MAC) and discretionary access

control (DAC), are illustrated. Access matrix and Bell-LaPadula models as the

most widely used for access control are presented. Then, several proposals for

discretionary and mandatory security models for the protection of conventional

databases and O O D B systems are presented and some drawbacks of the solutions

are pointed out.

Chapter 4 describes a cryptographic mechanism for the discretionary access

control in O O D B systems. The solution applies pseudo-random functions, sibling

intractable function families (SIFF), and an authorization class (instead of access

control lists). Pseudo-random functions and SIFF are used in such a way that

unique and secure access keys for each entity (object or class) can be derived for

the objects which are in relationship or by users who are members of the proper

group. The security of the system is based on the difficulty of predicting the

output of pseudo-random functions and finding extra collisions for SIFF functions,

both of which are known to be computationally difficult.

In Chapter 5, we describe a solution for content-based authorization in O O D B

systems employing views. The chapter provides discretionary security require

ments for authorization systems and presents rules for computing an implicit

authorization from the explicitly defined one along with the three authorization

dimensions, users, access privileges, and views.

Chapter 6 shows how to use the view concept to implement a multi-level se

curity policy on the top of a single-level O O D B system. The chapter describes

the multi-level view, the content and context-classification, and the dynamic clas

sification and ways of their handling in context of the view model. Finally the

aggregation and inference problems are investigated in the view context.

Chapter 7 concludes the thesis and discusses some possible directions for the

future work.

Appendix A describes a method of the authentication of data in database

systems based on the use of pseudo-random functions and the SIFF suggested by

Hardjono, Zheng and Seberry [101].

In Appendix B, a sketch of the implementation of SIFF function is presented.

Parts of this work have been published as references [17, 18, 20, 21, 19]. The

Chapter 1. Introduction 4

papers represent a joint collaboration with my supervisor A/Prof. J. Pieprzyk,

and my co-supervisors, Dr. R. Safavi-Naini and Dr. J. R. Getta. The problem

definition and the preliminary versions of all four papers were the result of my own

works. Further modifications of some technical points and improvements of their

presentations were handled through fruitful discussions with A/Prof. Pieprzyk,

Dr. Safavi-Naini, and Dr. Getta. Hence it would be fair to say that I did at least

85 per cent of the whole works.

Chapter 2

Object-Oriented Database

System Concepts

2.1 Introduction

Since the theme of this thesis is access control methods in the object-oriented

database (OODB) systems, we need an object-oriented (0-0) framework. This

is required by the fact that there is no standard 0-0 data model. Although

ODMG'93 [11, 135] and others are striving to achieve an international agreement

towards acceptable standards, a prospect of working out standards for the 0-0

data model still looks distant. In this chapter, we first present some 0-0 concepts

which, in our view, can be incorporated within any 0-0 data model. It is not

our intention to specify all details of 0-0 data model. W e are going to present

concepts and properties which are used further in our work. The model discussed

here has been widely accepted (see for example [7, 10, 11, 12, 23, 14, 28, 45,

47, 131, 135, 126]) in the 0-0 modeling world. W e discuss key concepts for an

0-0 data model such as types/classes, objects, complex objects, aggregation,

inheritance, encapsulation, and methods.

In recent years there has been considerable efforts in the research and devel

opment of 0-0 databases (ORION [124], O N T O S [164], <92 [74], Objectivity/DB

[159], and V E R S A N T [218]). Despite these efforts, the term O O D B system is

not well defined. The ambiguity in the term O O D B system is largely a result

of different emphasis on either the database or 0-0 programming language side.

Historically, the notion of an O O D B system has its roots in 0-0 programming

5

Chapter 2. Object-Oriented Database System Concepts 6

languages. In fact, some 0-0 languages and their implementations have been

extended to incorporate database functionality such as persistence, secondary-

storage management, security, authorization, concurrency, and versions. Hence,

we discuss database functionalities which every O O D B system must have, and

present a list of features for which O O D B systems may differ and may be used

as a basis for comparison with different systems.

Finally, the concept of a view is discussed because we believe that the use

of views can help in solving some security problems of access control system in

O O D B systems. It is possible to define views with different granularity such as

class-based, object-based, instance-variable-based, and/or content-based autho

rization. In Chapters 5 and 6, we present new models based on views for this

purpose.

2.2 Object-Oriented Data Model-Concepts

Unlike relational database systems whose model was clearly defined by Codd [52],

the O O D B systems do not have any widely accepted model. There are, however,

some basic 0-0 concepts that are generally accepted (see [7, 10, 11, 12, 14, 16,

23, 24, 28, 45, 47, 131, 135, 126]).

The basic concepts of an 0-0 data model include:

• Objects and identities. Each real-world entity is modeled as an object with

a unique identifier.

• Classes and types. A collection of similar objects forms a class. All objects

of one class contain the same properties (or instance-variables). Each object

is an instance of some class.

• Complex (or composite) objects. The internal structure of an object is de

fined by class properties and their domains. The domains of properties

can be complex or simple. In the case of complex domain, the value of a

property can be an object or a set of objects.

• Class hierarchies and inheritance. Classes are organized into a hierarchical

structure. There are two types of hierarchies which are orthogonal to each

other: class-composition hierarchy and class-inheritance hierarchy [126].

The class-composition hierarchy captures the z's-par£-o/relationship between

Chapter 2. Object-Oriented Database System Concepts 7

a parent class and its component classes, whereas a class-inheritance hierar

chy represents the is-a relationship between a superclass and its subclasses.

Properties are inherited by the subclasses of the class in the hierarchy.

• Encapsulation. Each object contains and defines both methods (or proce

dures) and the interface that can be used to access and modify the object

by other objects. The interface of an object consists of the set of opera

tions which can be invoked on the object. Only the methods implementing

operations for the object are allowed to manipulate the state of the object,

i.e., users can only access the values of properties through methods.

• Polymorphism and binding. Different methods can be associated with a sin

gle operation name, leaving the system to determine which method should

be used in order to execute a given operation. The overloading of opera

tions, early binding at compilation time, and late binding at runtime are

allowed.

Now, each of these concepts will be described in more detail.

2.2.1 Objects and Identity

In 0-0 systems, all real world entities are modeled as objects. Every object

encapsulates a state and a behavior. The state of an object is implemented by

properties (or instance-variables), and the behavior of an object is encapsulated in

methods that operate on the state of the object. As a result, an object is something

that owns "resources" and provides some services based on these resources. These

resources are simple data elements (properties), and services are methods (or

behaviors).

Each object is associated with a unique identifier called object identifier (OID)

and may also be given a name.1 The identity of an object exists independently of

the values of the object properties. The system should guarantee that the OID

is never reused and identifies only a single object during its lifetime.

xThe idea of unique system-generated identifiers for objects is necessary to eliminate the

shortcomings of primary keys and value-based models. The use of unique identifiers for objects

has been a feature of semantic data models for a number of years under the name of surrogates

[53]. For the detailed discussion of problems of identifying an entity on the value of an attribute

that is called primary key and advantage of using OIDs over key, the reader is directed to [28, 47].

Chapter 2. Object-Oriented Database System Concepts 8

Object identity generates at least two notions of equality for objects. The first

is identity equality: if they have the same OIDs. The second is value equality: two

objects are equal if they have the same value. Hence, two objects are different if

they have different OIDs even when their properties have the same values.

Definition 2.1 An object o is a quadruple: object identifier, its name, its class,

and its state that is o=(OID, oname, class, state) where OID is the unique object

identifier, oname is the name of the object given by the creator, class specifies

the class of which the object is an instance, and state represents the value of the

object [24, 131, 155]. •

2.2.2 Classes and Types

The primary schema level concepts of database models are types and classes. In

the relational model, tables are considered to be types (the definition of table

attributes includes the type definition while rows of a table are instances of the

type). In 0-0 data models, this issue is ambiguous, i.e., some 0-0 systems

support only types (all systems from the Smalltalk family and derived from LISP

such as Gemstone [43], Orion [124], G-Base [156], etc.); others support only classes

(all systems from the C + + family, like Objectstore [128], 02 [74], etc.), and some

support both.

A type defines the common features of a set of objects with the same char

acteristics. It corresponds to the notion of an abstract data type [24] and has

two roles: (i) to denote structure and (ii) to identify extensions, i.e., domains of

elements. In general, in type-based system, types are mainly used at compilation

time to check the correctness of the program.

A class is a set of objects which have exactly the same internal structure

and therefore the same properties and the same methods. The class defines the

implementation of a set of objects, while a type describes how such objects can

be used.

Often the concepts type and class are used interchangeably. But, when both

are used in the same system, the type refers to the specification of the interface

of a set of objects, whereas the class refers to the implementation [11, 134]. A

class can implement several types. If a class implements a type, it automatically

implements all the supertypes of that type.

Chapter 2. Object-Oriented Database System Concepts 9

Definition 2.2 A class c is a triple: class name, its structure, and its methods,

i.e., c=(cname, class-struct, method-list) where cname is the name of the class,

class-struct is its structure, and method-list is the list of methods that are used to

access and modify instances of the class [24, 155]. •

The class-struct defines the properties of the instances of cname and their

domains. The method-list contains a roster of methods that can access instances

of cname and manipulate them. A method consists of two components: signature

and body. The signature specifies the name of the method, the names and class

of input arguments, and the class of output values as well as any exceptional

conditions [28, 135]. Therefore the signature is the specification of the operation

implemented by the method. The body specifies code (or procedure) to manipulate

the values of input arguments, and to generate output.

2.2.3 Complex (or Composite) Objects

A n object is described by properties (or instance-variables) which make up the

descriptive part of the object. Objects with their descriptive parts only are called

objects. A n object may have internal structure that is composed of low level com

ponents such as relationships, or other objects that together form structural part

of the object. Objects with internal structures are called complex (or composite)

objects.

A complex object can be constructed using: tuples, sets, bags, lists, arrays,

etc. Any system must have at least set, list, and tuple as a constructor. Any

constructor should be applicable to any object. Note that the support of complex

objects also requires that appropriate operators are provided to deal with such

objects. For example, it must be possible to retrieve, copy, or delete an entire

complex object and to maintain referential integrity among related objects.

Definition 2.3 A complex (composite) object is comp = [Pi : Pi(T{),..., Pk •

pk(Tk)}, where Pi is a name of property; T,- is a type name of the respective

property and pi is an optional type constructor, e.g. set-of, collection-of, array-

of, ordered list, etc. The set of type names includes the names of atomic data

types like integer, real, string, etc. as well as the names of classes that have been

defined earlier. •

Chapter 2. Object-Oriented Database System Concepts 10

The domain of a property of a composite class c may be another class c'.

c' can be in turn defined in terms of other classes. The set of classes in the

schema is then organized in a composition (or aggregation) hierarchy [126]. The

composition hierarchy captures the is-part-of relationship among objects. The

class c is a parent of c' or c' is a descendent of c. For example, in Figure 2.1, ex

represent computers in the real world. Computers have central processing units

(CPU), memory units, and I/O units. These facts are modeled in the database

by a hierarchical structure where cx is the root and the classes c2, c3, c4 create

the first level of nodes. This structure can be extended to include classes c5,...,

c8 which are children of c2, c3, c4. The hierarchy forms a composite class in which

the classes c2, c3,..., c8 are parts of the class cx (or they are descendants of class

Ci), and

Ci=[CPU:c2, Memory-unit:set-of (c3), I/0-unit:c4],

c2=[ALU:c6, Control-unit:c5], ...

Computer set

J
2

CPU

ALU v. Control Unit

Memory Unit I/O Unit

Keyboard Printer

Figure 2.1: Computer set class.

It is worth noting that classes in a composition hierarchy can be defined

recursively, so this is not a hierarchy in the strict sense of the word.

2.2.4 Inheritance and Class Hierarchy

The concept of inheritance is a mechanism of reusability. Bancilhon [14] points

out that the inheritance concept is the most powerful concept of 0-0 data model.

One of the most important advantages of inheritance is that it helps to separate

shared specifications and implementations in applications. With inheritance, a

class called a subclass can be defined on the basis of the definition of another

Chapter 2. Object-Oriented Database System Concepts 11

class called a superclass. The subclass inherits the properties, and methods of

its superclass. In addition, a subclass can have its own specific properties, and

methods.

For example, imagine that we must create two classes which contain informa

tion concerning students and employees of a university. The information about

student consists of identity number, name, age, address, sex, subject, start date,

graduate date, and the greatest average point. The information concerning em

ployees are: identity number, name, age, address, sex, rank, hire date, status,

profession, and salary. In the relational model, two relations must be defined,

one for students STUDENT(sidno, name, age, address, sex, subject, start-date,

graduate-date, GAP) and one for employees EMPLOYEE(eidno, name, age, ad

dress, sex, rank, hire-date, status, profession, salary). Using the inheritance con

cept, it is recognized that students and employees are human beings and they then

have certain common features, and other features which differentiate them. First

the class PERSON is introduced. This class has the common properties idno,

name, age, address, and sex. The classes STUDENT and EMPLOYEE contain

only the properties that are different for them. The resulting inheritance hierar

chy is shown in Figure 2.2. The figure shows two arrows from classes STUDENT

PERSON

idno

name

age

address

sex

is-a is-a

iMPLOYEE

rank

profession

salary

STUDENT

subject

Start-Date

Graduate-Dafc

GAP

Figure 2.2: An example of inheritance hierarchy.

and EMPLOYEE to class PERSON. Both STUDENT and EMPLOYEE are sub

classes of PERSON and vice versa PERSONIs the superclass for STUDENT and

3 0009 03178495 7

Chapter 2. Object-Oriented Database System Concepts 12

EMPLOYEE. •

In certain systems, a class can have multiple superclasses. 0-0 data models

which allow an object to have multiple types/classes are called multiple inheri

tance models. Other models that allow a single superclass only are called single

inheritance models. Multiple and single inheritance are useful in reducing the

number and complexity of classes required in a data schema. However, conflicts

may arise if two or more superclasses have the same name for their properties but

are from different domains. Generally, appropriate rules must be in place to solve

such conflicts. Note that the need for multiple inheritance is rarer than the need

for single inheritance [126]. Thus some 0-0 data models do not handle multiple

inheritance. Also the implementation of the multiple inheritance is difficult.

The essential aspect of inheritance is the relationship between: superclass and

its subclasses. The superclass, in turn, can be a subclass of other classes. Classes

can be organized into the inheritance (or generalization) hierarchy , which is an

orthogonal organization with respect to the composition (or aggregation) hierar

chy [41, 126, 197]. The composition hierarchy captures the is-part-of relationship

between a parent class and its component classes, whereas an inheritance hier

archy represents the is-a relationship between a superclass and its subclasses.

The most significant difference of the inheritance hierarchy compared with the

composition hierarchy is that the inheritance graph (representing the hierarchy)

cannot be cyclic. The composition graph (representing the hierarchy) may have

cycles. Inheritance hierarchy can be represented by a directed acyclic graph (or

a lattice) [16]. Inheritance is often called subtyping, and subclassing.

In [10, 28, 47], four types of inheritance are identified: specialization inheri

tance, substitution inheritance, classification (or inclusion) inheritance, and con

straint inheritance. The differences between the various inheritance concepts

depend upon the significance of the class (or the type). For the sake of our

discussion, assume that c is a subclass of a class c'.

1. Specialization inheritance. Subclasses have more properties or methods

than their superclasses. For example, STUDENT or EMPLOYEE are sub

classes of PERSON.2 Each of them has additional properties: STUDENT

has subject, Start-Date, Graduate-Date, and GAP and EMPLOYEE- rank,

2See Figure 2.3 in Section 2.2.7 for the detail specification of STUDENT, EMPLOYEE, and

PERSON.

Chapter 2. Object-Oriented Database System Concepts 13

profession, and salary. If the subclass does not override inherited proper

ties, it may be useful to think of it as the concatenation of its own definition

with the definition of its superclasses.

2. Substitution inheritance. The structure of c and c' is the same. The

only difference is that c' contains more methods. Any occurrence of c' can

be substituted by c.

3. Classification (or inclusion) inheritance. This inheritance happens if

every object of class c is also an object of class c'. This type of inheritance

is based on structure and not on behavior. Subclasses just may be used as

sets to classify objects, i.e., to define different extent. For example, we could

classify an EMPLOYEE as a TECHNICAL-STAFF, ACADEMIC-STAFF,

or PROGRAMMERS even if all three have the same structure and methods

associated with them.

4. Constraint inheritance. Subclasses are defined using class predicates.

A class c is a subclass of a class c' if it consists of all objects of class c'

that satisfy a given constraint. For example, MANAGER is a subclass of

EMPLOYEE because managers don't have any more properties or methods

than employees but they obey of more specific constraints, their profession

are managers (profession = "manager"). As observed, each instance of

MANAGER is an instance of EMPLOYEE. This type of inheritance is a

subclass of the inclusion inheritance.

It is important to note that the different types of generalization are provided

by the same subclass mechanism.

2.2.5 Encapsulation

The idea of encapsulation addresses the following:

1. the need to clearly distinguish between the structural definition of object

(specification) and the implementation of operations;

2. the need of modularity;

3. the need to define a specific set of operations (or methods) for each complex

object type; and

Chapter 2. Object-Oriented Database System Concepts 14

4. the protection of data part of an object from an unauthorized access [10].

Therefore, a number of 0-0 systems allow the definer of a new class not only

to give the structure of that class, but also to determine the set of methods by

which the user can access and manipulate objects of the class. W e can say that

the methods (or operations) are encapsulated with the specification of object. In

other words, a behavioral description of object has been given, i.e., the struc

ture and methods. The properties associated with an object are private, and

only object methods may access or modify these data; the methods are publicly

accessible.3

Some 0-0 systems apply strict encapsulation of object only, so publicly de

fined methods only are visible to users of the system. There are however cases in

which encapsulation is not necessary. The usage of the system can be significantly

simplified if strict encapsulation is not forced. For example, with ad-hoc queries

the need for encapsulation is reduced since queries are very often expressed in

terms of predicates on the values of the attributes. Therefore, some O O D B sys

tems allow direct access to properties and supply system-defined operations to

read and modify the properties. In [28], the authors mentioned two advantages

of direct access to the properties. They are:

• there is no need to develop a large number of generally conventional meth

ods, and

• the efficiency of the applications increases as direct access is implemented

using system-provided operations.

Obviously, the violation of encapsulation can cause problems. Un-authorized

access to the values of properties may occur. Authorization systems can be used

to control access to certain properties and methods.

A problem of considerable importance concerns whether code of methods of

derived classes (subclasses) must have free access to the properties and methods

defined in their superclasses. Where inheritance applies, the set of properties of

3There are two views of encapsulation: the programming language view, and the database

view [10, 28, 145]. Encapsulation in programming language derives from the concept of abstract

data types. In abstract data-type declarations, an object has the interface part and the imple

mentation part. The interface part is the only visible part of the object and provides methods

to access the object. The data structure is part of the implementation and is not visible. In

databases, it is not clear whether the structure is part of the interface or not. Some databases

allows data structure to be in the interface and publicly visible.

Chapter 3

Security In Databases

3.1 Introduction

Information is a critical resource in today's enterprises, whether they are mili

tary, industrial, commercial, educational, medical, etc. These organizations are

now automating not only their basic operational functions, such as invoicing,

payroll, and stock control, but also management-support functions such as sales

forecasting, budgeting, and financial control. In order to support these functions,

enterprises maintain more and more computerized information in databases, and

they increasingly depend on that information for their correct functioning. The

continued successful operation of an enterprise demands that:

1. Confidential data is available only to authorized persons, so that privacy

requirements are satisfied and the sensitive information is protected.

2. The data accurately reflects the state of the enterprise, that is, the data is

protected against either malicious or accidental modification.

These requirements are of the concern of database security. Database secu

rity comprises a set of measures, policies, and mechanisms to provide secrecy,

integrity, and availability of data and to protect the system from possible attacks

which might be launched by insiders and outsiders, either malicious or accidental

[46, 176]. The aim of secrecy (or confidentiality) is to keep information unread

able for outsiders while making it available for authorized users. Integrity of

information covers methods and techniques to protect information against illegal

modification. Availability of information ensures that authorized users can have

32

pp. 15-31 missing from original copies of this thesis

Chapter 3. Security In Databases 33

access to information whenever they require it [65]. To achieve security in the

database environment, it is necessary first to identify threats so later a selection

of proper security policies and mechanisms can be made. Security policies define

what the security system is expected to do [163]. Security mechanisms define how

the security system should achieve the security goals [25].

In order to obtain database protection, Denning [65] lists four kinds of con

trol: access control, information flow control, cryptographic control, and inference

control. An access control ensures that all direct accesses to the system are autho

rized according to access rules given by the security policies. The access control

governs who can access objects. Once the access is granted, the involvement of

the access control ends. Often, leakage of information happens not because of a

defective access control, but as the result of lack of a proper policy about infor

mation flow. The information flow control makes sure that protected information

"contained" in some objects does not flow explicitly (through copy) or implicitly

into less protected objects, and regulates how the information is accessible (irre

spective where it is stored). The cryptographic control makes data unintelligent

to anybody except someone who knows the correct cryptographic key. The in

ference control protects information against its disclosure via different ways of

deduction.

In this chapter, a survey of the access control models is presented. The empha

sis is put on access control models in O O D B systems. The survey discuss neither

the application of cryptographic techniques in databases security nor inference

control. For references, see [3, 46, 65, 103, 132, 166, 168, 191, 224].

Sections 3.2 and 3.3 state threats to database security and the security re

quirements for databases, respectively. Section 3.4 describes the concept of the

access control, the policy choices, and classifies the access control policies. In

Sections 3.5 and 3.6, discretionary access control in conventional databases and

O O D B systems are discussed. Sections 3.7, 3.8, and 3.9 are devoted to mandatory

access control (MAC). The Bell-LaPadula security model, M A C models in con

ventional databases, and M A C models in O O D B systems are presented. A brief

discussion of role-based access control is presented in Section 3.10. Three types

of architecture for multi-level databases are discussed in Section 3.11. Sections

3.12 and 3.13 provide a general concepts of inference control and cryptographic

control. Section 3.14 summaries the chapter.

Chapter 3. Security In Databases 34

3.2 Threats to Database Security

Usually, a threat can be identified with a hostile agent who either accidentally

or intentionally gains an unauthorized access to the protected database resources

[46]. Threats to the database security may be physical or logical. Physical threats

range from a forced disclosure of passwords, a theft, a destruction of physical

storage devices to a power failure. The protection against these threats comprises

a variety of different methods and techniques. The restriction of physical access

to database storage facilities and the database backup and recovery are c o m m o n

protection methods.

Logical threats involve unauthorized logical (i.e. via software) access to in

formation. They can result with: disclosure of confidential information, illegal

modification of data, or destruction of database resource. The logical threats can

be classified as follows [46, 67]:

• Disclosure of information which includes direct or indirect access (by infer

ence) to protected information.

• Illegal modification of data which is caused by improper possibly accidental

data handling or intentional modifications by an illegal user (these threats

relate to all attacks to data integrity).

• Denial of Service which results from the monopolization of system resources

in such a way that other users cannot access them. This involves all attacks

on availability.

These threats can occur intentionally or accidentally. Accidental threats in

clude: natural disasters such as earthquakes or water/fire damage, errors or bugs

in hardware or software, or human errors. Intentional threats can be caused by

authorized users who abuse their privileges and authorities, or by hostile users

who execute some hidden codes within some legitimate functions in order to

violate the security of the system. Trojan Horses, viruses, and trapdoors are

examples of hidden codes. A Trojan Horse is hidden code that under a legiti

mate function collects information which is later used to break the security of

the system. A virus is a code that is able to copy itself and damage permanently

the environment where it resides. Trapdoors are code segments within programs

that allow their owners to skip the protection mechanisms and to access data or

system sources beyond their rights.

Chapter 3. Security In Databases 35

3.3 Database Security Requirements

To eliminate logical threats, it is necessary to define a proper security policy. The

database is considered to be secure if a protection mechanism correctly enforces

the security policy. Note that there can be many security mechanisms which

realize the same security policy.

A security policy must have appropriate security features. These features

should be implemented by a security mechanism. The following list gives a typical

collection of security policies for databases [46, 71, 166].

• Access control policy ensures that all direct accesses to the system ob

jects proceed according to the privileges and the access rules. Access control

policies can be either mandatory or discretionary. A discretionary access

control policy specifies users' privileges to different system resources, in

cluding their ability to transfer their privileges to other users. A mandatory

access control policy restricts the access of users to system objects on the ba

sis of their security clearance and security classification assigned to objects.

Mandatory access control policies are of concern in multi-level databases.

• Inference policy specifies how to protect classified information from dis

closure when the information is released indirectly in the form of statistical

data.

• User identification/authentication policy indicates the requirements

for correct identification of users. The user identification is the basis of every

security mechanism. Users are allowed to access data after the identification

as authorized users.

• Accountability and audit policy provides the requirements for the record

keeping of all accesses to the database. It is an useful deterrent tool for data

physical integrity, as well as it is useful for the analysis of the access profile.

• Consistency policy defines the states in which the database is consid

ered valid or correct and includes operational integrity, semantic integrity,

and physical integrity of database. Operational integrity aims to ensure

the logical consistency of data in a database during concurrent transac

tions. Semantic integrity ensures the logical consistency of modified data

Chapter 3. Security In Databases 36

by checking if data values are in the allowed range. Physical integrity of

database aims to ensure that the database is immune to (or reconstructable

after) physical threats such as power failures.

Most of the effort of the research in the database security has been spent on

the first two issues.

It is crucial to be able to evaluate to what degree the security features have

been incorporated into the mechanism. The evaluation of security (trusted) sys

tems (mechanisms) is an integral part of the design process. Here is a list of the

existing evaluation criteria:

- Trusted Computer System Evaluation Criteria - TCSEC (also known as the

Orange Book), US Department of Defense [73],

- Information Technology Security Evaluation Criteria - ITSEC (also known

as the White Book), Commission of the European Communities [54], and

- Canadian Trusted Computer Product Evaluation Criteria - CTCPEC), Cana

dian System Security Centre [44].

The evaluation of trusted systems (products) can be characterized by:

1. Completeness. This is measured by a list of possible threats against which

the system is immune.

2. Confidence. The degree of trust that the system is immune against the

specified threats.

3. System flexibility. The system should be able to implement different vari

ants of security policies.

4. Ease of use. The system should not impose unnecessary or cumbersome

restrictions.

5. Tamperproof. If a security mechanism itself is protected from unauthorized

modification, then this mechanism is said to be tamperproof. This is an

essential characteristic, since even if a security mechanism was proved to be

correct, any later modifications to it could degrade its security.

6. Low overhead. The difference in performance of the system with and with

out its security mechanism should be as small as possible.

Chapter 3. Security In Databases 37

7. Low operating cost. This includes the cost of special hardware or software,

the cost of security audits, salaries of security officers and others who are

involved in performing security-related functions.

3.4 Access Control

There are two classes of resources in any computer system: (active) subjects

and (passive) objects. The way a subject accesses an object is called the access

privilege (or access mode). Access privileges allow subjects to either manipulate

objects (read, write, execute, etc.) or modify the access control information

(transfer ownership, grant and revoke privileges, etc.).

The correctness of access control heavily relies on the following:

• the proper user identification, and

• the protection of access control mechanism.

The access control may be based on different policies. The choice of a security

policy is important because it influences the flexibility, usability, and performance

of the system [82]. While working out a proper security policy, it is necessary to

proceed with it according to "a good design guide" which includes the following

principles [46, 82, 130]:

M i n i m u m vs m a x i m u m privilege principle. According to the minimum

privilege principle, subjects should be given the minimum set of privileges nec

essary for their activity (also called the least privilege). The opposite of this is

the maximum privilege principle which is based on the principle of the m a x i m u m

availability of data in a database. Subjects are given access to the largest range

of system resources.

O p e n vs closed system principle. In an open system, all accesses that are

not explicitly forbidden are allowed. While in a closed system, all accesses are

allowed only if explicitly authorized. A closed system is inherently more secure.

W h e n security is an important objective, a closed system should be implemented.

Centralized vs decentralized administration principle. The principle

addresses the issues who is responsible for the maintenance and management of

privileges in the access control model. In centralized administration, a single

authority (or group) controls all security aspects of the system, while in a de

centralized system different authorities control different portions of the database.

Chapter 3. Security In Databases 38

The choice between centralized or decentralized administration has to be made.

There are some advantages and disadvantages related to each choice (for detailed

discussion of those, the reader is directed to [34]). There are, however, some inter

mediate choices such as: delegation, owner-based administration, and co-operative

administration.

Delegation can be used in a centralized database system to avoid bottleneck

and support local autonomy in a distributed database system. A central authority

delegates their administrative rights over a subset of the database to the local

authority. The central authority can nominate and dismiss local authorities.

Owner-based administration - the central authority passes all responsibilities

and rights to the owners of objects. The central authority assigned a collection

of system privileges to every user when is admitted to the database system.

Co-operative administration - some privileges are reserved to groups. To ex

ercise the access, a single member of the groups needs to get permission from the

rest of the group.

Granularity principle - a clear specification of size and structure of the

smallest object to which access control can be handled. Five types of granularity

can be distinguished [65, 82]:

1. Name-dependent (also called content-independent). All accessible objects

are identified by their unique names.

2. Content-dependent (also called constraint-based). Accessible objects are

determined by checking the requested attributes. This granularity can be

very fine depending on the selection of the applicable attributes.

3. Context-dependent. The access is granted to the object whose structure is

defined by a rule which checks not only names and attributes but also their

structural relation (context).

4. History-dependent. This is a generalization of the context-dependent granu

larity in which the current access request is checked also against all previous

access requests.

5. Time-dependent. The collection of accessible objects can vary in time (for

instance, a subject may be authorized to read from the class EMPLOYEE

only between 8:00am and 5:00pm).

Chapter 3. Security In Databases 39

Access privilege (or access m o d e) principle. A basic collection of al

lowable access privileges includes: read, write, delete, execute, and create. They

m a y be ordered. So if a user (subject) has a privilege of higher order, this implies

that (s)he has also all privileges of lower order. Users can be assigned explicitly

a collection of suitable privileges for each protected object - this is also called

positive authorizations. O n the other hand, in the negative authorizations, users

are given a collection of privileges which are explicitly denied.

There are three different types of access control: discretionary access control

(DAC), mandatory access control (MAC), and role based access control (RBAC).

A system m a y employ D A C , M A C or their combination of both, or R B A C for

protection.

A discretionary access control specifies privileges of subjects in accessing ob

jects, and the rules whereby subjects can, at their discretion, grant and revoke

their privileges to other subjects.

A mandatory access control identifies the rules whereby subjects can obtain

direct or indirect access to classified data. The rules can also be used for sanitizing

and reclassifying data. The M A C applies only to multi-level databases, which are

databases that contain information of different security classification.

A role-based access control enforces the least privilege and the separation of

duties. This is especially important in some database applications where subjects

(users) can be assigned roles to perform specific tasks (defined by the role). Each

role has an associated collection of privileges. This collection is automatically

transferred to a subject who plays the role.

3.5 Discretionary Access Control Models

Discretionary Access Control (DAC) allows privileges to be granted to other sub

jects by the object owners. In discretionary security the way in which individual

users (subjects) manipulate specific objects is determined explicitly through ac

cess rules. They are fundamental to operating systems (as a means of protecting

files, memory segments, etc.) as well as database systems. D A C has been studied

in the context of the access matrix model.

Chapter 3. Security In Databases 40

3.5.1 Access Matrix Model

The access matrix model was developed by Lampson in 1971 [129] and extended

by Graham and Denning [93]. Later, Harrison, Ruzzo, and Ullman [106] devel

oped a more general version of the model. They defined the safety problem and

showed that it was undecidable. The access matrix model is defined for three

components: subjects (active entities such as users, their processes, etc.), objects

(passive entities such as files, records, classes, instances, views etc.), and the col

lection of privileges (read, write, delete, create, execute, etc.). Note that the class

of objects contains all subjects. Having these three components, it is possible to

define an access matrix A. Rows of A are indexed by all subjects (their names)

(S) and columns - by names of all objects (O). Each entry A[s,o] contains a col

lection of privileges held by subject 5 to object o. A representation of an access

control matrix is shown in Table 3.1.

Subjects

Sx
•

St

*~>n

Objects

Ox
A[sx,Ox,

A[si,ox

A[sn,ox]

o3
A[SX,OJ]

A[si,Oj]

A\sn,o3)

om
A[sx,om]

A[si,om]

s*-[Sn, O m J

Table 3.1: Access matrix

The access control matrix can be used for protection in both operating sys

tems and databases. In databases, access control matrix needs to be extended.

Every entry A[s,o] of the matrix contains (apart from privileges) a suitable con

dition which needs to be satisfied by the subject s to access the object o. The

condition can incorporate different types of access such as content-dependent,

context-dependent, etc. (for full list of access types, see Section 3.4). Fernandez

[81], and Conway [56] showed how to generalize the access matrix model by using

predicates and other components.

Observe that in general, an access control matrix A is sparse. A direct storage

of the matrix A wastes a lot of memory. A simple solution is to store the matrix

A as a sequence of either rows (Capability List) or columns (Access Control List).

Chapter 3. Security In Databases 41

For each subject s, there is the unique capability list (row of A). Each element

of the list indicates an object and the collection of privileges the subject has to

the object. Note that the list does not contain empty entries. If there is no list

entry for a given object, the subject cannot access it. Capability lists (CL) allow

the system to identify quickly the collection of all accessible objects for a given

subject. The opposite, i.e. finding the collection of all subjects who have access

to a given object, is difficult and time consuming. Capability lists are used by

the operating systems only [71].

Access control lists (ACL) are associated with their objects (columns of the

access control matrix A). For a given object, the list consists of all non-empty

entries of the column of A. This implementation allows for quick identification

of subjects who can access an object. On the other hand, the recreation of the

capability list for a subject from ACL is difficult. A C L are used in both operating

systems and database systems [71].

Note that in both implementations the storage requirements increase with the

growth of the number of subjects and objects. In particular, the maintenance of

such lists is expensive in terms of time and consumed computing resources.

However, the access matrix provides a flexible model which can be used to

analyze its security properties. It is known [46, 147] that the general safety

problem is undecidable, i.e., there is no algorithm which can be used to verify

the security of the access control matrix model. But it is still possible to restrict

the model and design an algorithm which can be used to prove some security

properties. Some work has been done to extend the access matrix model to

make the safety problem decidable. This includes the Schematic Protection Model

[9, 178, 179] and the Typed Access Matrix Model [181].

3.6 DAC Models in OODB Systems

In recent years there has been considerable efforts in the research and develop

ment of object-oriented databases. ORION [124], O N T O S [164], 0 2 [74], Objec-

tivity/DB [159], Iris [222], and V E R S A N T [218] are examples of such efforts. The

driving forces behind these efforts are the advantages offered by 0-0 approach

to database modeling. In particular it is possible to represent the composite (or

complex) structure of objects and to simulate the behavior of objects through

Chapter 3. Security In Databases 42

operations encapsulated within the classes. In order to fully exploit the bene

fits of the 0-0 paradigm, it is important to consider how the 0-0 data model

impacts on access control models. To avoid confusion, we will use the term en

tity to refer to a passive item in protection system instead of object, and the

term object has the meaning usually associated with the 0-0 environment. Note

that the term object is usually used in literature for such a passive item. Let

us consider the following important issues related to D A C in 0-0 environment

[34, 46, 144, 199, 206].

• Access privileges (or access modes). One of attractive features of OODB

systems is encapsulation. Encapsulation allows data to be stored as val

ues of properties (or instance-variables) that are encapsulated in an object

and available only through the methods defined for the object. In order to

take advantage of the encapsulation feature, the access control model (or

authorization model) should support privileges to execute these methods

(instead of traditional privileges such as read, write, and create). More

over since methods can call other methods, it would be appropriate also to

consider methods as subjects.

• Propagation of privileges (or authorizations). OODB systems allow that

classes are organized into a hierarchy of classes. There are two types of hi

erarchies which are orthogonal to each other: a class-composition hierarchy

and a class-inheritance hierarchy [126]. The class-composition hierarchy

captures the is-part-of relationship between a parent class and its compo

nent classes. Whereas the class-inheritance hierarchy represents the is-a

relationship between a superclass and its subclasses. There is a question -

how to assign privileges to objects in these hierarchies? In particular we

would like to know whether a privilege the subject has to a class, is valid also

to all descendants of the class for the class-composition hierarchy (visibility

from above [130]). Or whether a privilege to a subclass is valid to the prop

erty values of the superclasses on the higher levels of the class-inheritance

hierarchy (visibility from below [130]). Additionally, O O D B systems must

provide a policy for solving possible authorization conflicts between explicit

privileges (privileges assigned directly) and implicit privileges (privileges

derived through the hierarchies).

Chapter 3. Security In Databases 43

• Authorization administration. In most access control models when a user

(subject) creates a new element, (s)he becomes its owner. The owner con

trols the distribution of privileges to it. So, the unit of ownership cannot be

a class since classes often represent just templates for users to derive their

own instances. Hence, there is a need to allow class instances to be units

of ownerships. Being more specific, the access control policy must clearly

spell out how the class owner can affect the privileges of other users espe

cially in the context of instance-of, class-inheritance, and class-composition

relationships.

• Granularity of authorization. It should be possible to control access to

single object-instances, entire classes, and properties (instance-variables)

[169]. For the class-based authorization, a subject can access a class and

all its instances. For the instance-based authorization, instances of a class

are units of authorizations. A subject may have authorization to a subset

of the instances of a class. For instance-variable-based authorization, access

control on instance-variables or properties is allowed. A subject can be

limited to access only a part of an object. Moreover, the model of access

control should take into account semantic constructions such as composite

objects and versions.

• Content-based authorization. Authorization may be defined in terms of the

ability to invoke a certain method on an object. The access control policy

must specify how we can access the object content for checking the condition

if a method which can access the required properties cannot be invoked?

Access control models for O O D B systems are still being investigated [27].

Although there is an undeniable progress in the area, there are few O O D B systems

only (Orion [169] and Iris [4]) which provide access control models similar to those

provided by the current relational databases.

Dittrich [75] divided O O D B systems into three categories: structurally, be-

haviorally, and fully O O D B systems. Structurally O O D B systems can handle

composite (or complex) object structures (i.e. objects that may result from the

aggregation of other objects) using generic privileges. Behaviorally O O D B sys

tems provide an interface to deal with objects and methods on different levels

of the inheritance hierarchy. Fully O O D B systems combine the properties of

structurally and behaviorally O O D B systems.

Chapter 3. Security In Databases 44

Access control models for these categories of O O D B systems were discussed

in [4, 29, 30, 32, 78, 80, 97, 130, 169, 170]. The models promise to offer some

solutions to the forthcoming issues. However, each of them addresses only some

of the issues, therefore many problems remain open.

3.6.1 DAC in Structurally OODB Systems

In structurally O O D B systems, the privileges are typically generic system-defined

operations such as read, write, delete, and read-definition.

DAMOKLES Access Control Model

Dittrich, Hartig, and PfefTerle [78] developed a D A C model for the D A M O K L E S

system [76]. D A M O K L E S is a structurally O O D B system for C A S E and similar

applications and its data model is called D O D M (design object data model) [77].

Two types of objects are supported by the model: D O D M objects, and D O D M

relationships. The access control allows a user u to grant a privilege to other users

if u is the owner of an object. When a user creates a database object, an object

or a relationship, (s)he becomes the owner of the created object. The ownership

may be transferred (by the owner) to other users or user groups. However, at any

time there is exactly one owner for every object. In other words, the ownership

is transferable but is not transitive. In the model, each access must be explicitly

authorized. The absence of appropriate privileges is interpreted as access not

allowed. The model handles both composite objects and versioned objects as

well.

The model applies the following access privileges:

• Exist - this privilege allows a user to read keys of objects.

• Read - permits a user to read object properties, objects components and

relationships roles.

• Write - allows a user to modify objects properties and roles, to insert new

components /create new versions, and to remove components/delete ver

sions.

• Delete - enables a user to remove objects.

Chapter 3. Security In Databases 45

The privileges are partially ordered. If a user holds a privilege of a higher order,

then they also hold all privileges of lower order. The assumed order is: exist <

read < write < delete.

The triple (s,o,r) specifies a single access rule. It means that a subject s is

assigned an access privilege r to an object o. The subject 5 is a pair s = (u,p)

where u is a user or a group of users and p is a program or program group. The

pair (u,p) can be read as "user u while executing p". The object o is a protection

object (p-object). In D A M O K L E S data model (D O D M) , every object (in the 0-

0 sense) is further broken down into smaller access units called protection objects

(p-objects). These p-objects are: the descriptive part D (object's properties),

the structural part S (the components/composite objects), version part V (the

object's versions), and role part p consisting of the relationship's roles that is

participating objects. Note that the access is explicitly granted to the D part of

a p-object. However once granted, the access extends to all object's properties.

There are two types of authorization: simple and complex. In the simple au

thorization, a p-object o is D, S, V, or p part of a complex object. In the complex

authorization, a privilege is given to an entire object including its components

which belong to the same owner. Thus if an object actually contains components

of various owners, a subject has to get permission from all of them to be able to

work with entire object.

LPGSF Access Control Model

Larrondo-Petrie, Guides, Song, and Fernandez [97, 130] developed an access con

trol model (LPGSF model). The model is based on a set of policies that define

authorization inheritance through class hierarchies. Negative authorizations can

be used to override implied privileges. Predicates (content-dependent) with pos

itive authorization and instances along the class hierarchy can also be applied.

The model allows a decentralized administration of authorizations by users.

The access control model uses the following access entities as elementary pro

tected objects: classes, instances of classes, and their properties (or instance-

variables).

An access rule is a tuple (5, o, r, [c]). The subject 5 is a user or a user group, r

is a privilege or a set of privileges. They can be positive or negative. The object

o is a class, an entire object O or its components, or a set of its properties, i.e.,

Chapter 3. Security In Databases 46

0 = {0.px,0.p2,...}. Properties Pi (i = 1,2,...) must be either defined for the

object 0 or inherited by it. c is a condition that must be satisfied for the object

o so that the subject 5 can use the privilege r. The model enforces the following

policies:

Inheritance policy. A user who has access to a class, is allowed to have the

same type of access to subclasses and to the properties inherited from the class

satisfying the inherited conditions.

Visibility from below policy. The access to a class implies the access to

the properties defined in the class as well as to properties inherited from the higher

classes (this is applicable to the class-relevant values of these attributes only). If

there is more than one ancestor (in the case of multiple inheritance), the access

to the union of the inherited properties is granted. Note that properties defined in

subclasses are not accessible by any of their superclasses.

Visibility from above policy. The access to an object of a composite object

implies the access to all components of the object.

Overriding policy. An explicit positive authorization is a triple (s,o,+r).

An explicit negative authorization is a triple (s,o,—r). An implicit positive au

thorization is a triple [s,o,+r]. An implicit negative authorization is a triple

[s,o,—r] where s is a subject, o is an object, and r is an access privilege. We

have the following order to solve possible authorization conflicts: (s,o,—r) >

(s,o,+r) > [s,o,-r] > [s,o,+r].

ORION Access Control Model

In 1991, Rabitti, Bertino, Kim, and Woelk [169] developed a D A C model which

has been implemented for O R I O N [124]. Their model handles the following types

of authorization: implicit, explicit, positive, negative, strong, and weak. Implicit

authorizations are deduced from explicit authorizations stored in the system.

Positive authorizations grant users access privileges to objects whereas negative

authorizations (or lack of authorizations) deny access privileges to objects for

users. A strong authorization cannot be overridden whereas weak authorizations

can be overridden by a strong or other weak authorizations. Triples (s, o, +r) and

(s,o,—r) denote a strong positive authorization and a strong negative authoriza

tion, respectively. Triples [s,o, +r] and [s,o, —r] are a weak positive authorization

and a weak negative authorization, respectively. As usual, s (subject) is a user

Chapter 3. Security In Databases 47

or a group of users, o is an entity protected by the system, and r is an access

privilege.

In the model, two access bases are defined. The strong access base SAB

contains all explicit strong authorizations including both positive and negative.

The weak access base WAB contains all explicit weak authorizations including

both positive and negative.

A privilege r is granted to an object o for a subject s (or the access request

(s,o,r) is authorized) if the return value of the following function is true.

Function f(s, o, r)

if there exists an explicit or implicit (s,o,-\-r) in SAB

then return True

else if there exists an explicit or implicit (s,o, —r) in SAB

then return False

else if there exists an explicit or implicit [s,o, +r] in WAB

then return True

else if there exists an explicit or implicit

[s,o, -r] in WAB

then return False

end

Note that the function works correctly if there exist at least a weak authorization

for each possible privilege.

The cornerstone of the discussed access control model is the implicit autho

rization which can be propagated along each of the three dimensions (parameters)

of access rules namely: subjects, entities, and access privileges. To reduce the

number of subjects involved in explicit authorizations, users and groups of users

are assigned roles. Roles can be arranged into a role hierarchy (see Figure 3.1).

The following two rules govern the propagation of authorization for roles.

Implication Rule 1 Explicit positive authorizations for roles result in implicit

positive authorizations for all higher-level (upper) roles. •

Implication Rule 2 Explicit negative authorizations for roles result in implicit

negative authorizations for all lower-level roles. •

Chapter 3. Security In Databases 48

Admirynanager

Academic-manager

Academic-c lerks Accounts-clerks

Employee

Figure 3.1: A sample of role hierarchy.

Access privileges also create a privilege hierarchy. An example is given in

Figure 3.2. The next two rules specify how to generate authorizations along the

privilege hierarchy.

Read Create

ReadDefinition

Figure 3.2: A sample privilege hierarchy.

Implication Rule 3 If a positive authorization is given for an access privilege

in the privilege hierarchy, then this implies the right of all access privileges below

it. •

Implication Rule 4 If a negative authorization is given for an access privilege

Chapter 3. Security In Databases 49

in the privilege hierarchy, then this also implies the negative authorization of all

access privileges above it. •

Entities are also organized as the entity hierarchy. The entity hierarchy is the

instantiation of the entity schema. Figure 3.3 shows an example of the entity

hierarchy and the entity schema.

System System [Compa

Datab

Class

Extension

Object

Property

Database [Personal] Database

Class[Person] Class[Employee] Class[Supplier]

ol .name

Figure 3.3: A sample Entity Schema and Entity Hierarchy.

The deduction of authorization in the entity hierarchy depends on not only

the entity but on the mode of privilege involved, as well. For example, the

read and the write access privileges for certain objects require the corresponding

class definitions to be readable. This means that the direction of the implication

is upward in the entity hierarchy. O n the other hand, the read permission on

the extension of a class implies the read permission on all the instances of that

type. In this case, the direction of the implication is downward. Some privileges

do not have any implications, such as creation (definition) of a new class. So

all access privileges can be split into three classes: (1) OpUp contains those

access privileges having upward implications, (2) OpDown includes those access

privileges having downward implications, and (3) OpNil contains those privileges

having no implications.

Implication Rule 5 Let r G OpUP. The explicit right (s,o,r) yields the im

plicit authorization (s,o',r) for any entity o' above o in the entity hierarchy. •

Implication Rule 6 Let r G OpUP. The explicit authorization (s,o,-r) yields

the implicit right (s,o',-r) for any entity o> below o in the entity hierarchy. •

Chapter 3. Security In Databases 50

Implication Rule 7 Letr e OpDown. The explicit authorization (s,o,r) yields

the implicit right (s,o',r) for any entity d below o in the entity hierarchy. •

Implication Rule 8 Let r e OpDown. The explicit right (s,o,-r) yields the

implicit authorization (s,o', -r) for any entity o' above o in the entity hierarchy.

a

Implication Rule 9 Let r € OpNil. The explicit authorization (s,o,r) gener

ates no implicit ones. •

Note that the read right on methods forces the execute privilege. Any ac

cess which is performed during the execution of the method must be authorized

independently. For example, if during the execution of a method invoked by a

subject s, an attempt is made to update a particular property value o of an in

stance, the triple (s,o, write) needs to be verified. Other hierarchical structures

(which are orthogonal to the entity hierarchy) are inheritance, composite, and

version hierarchies.

There are two approaches to give privileges on instances of a subclass. In the

first one, the creator of a class should have no implicit right on the instances of

a subclass derived from the class. This approach encourages the reuse of existing

classes without diminishing privacy. However if a query has the access scope

which is a class and all its subclasses, it will only be evaluated for those classes

for which the user has the read privilege. In the second approach, the creator of

a class should have implicit rights on instances of subclasses. This means that a

query (whose scope of access is a class and a class sub-hierarchy is rooted at the

class) will be evaluated against the class and its subclasses. The first approach is

used as the default while the second one is an option.

Implication Rule 10 A read (or write) privilege on a class of a inheritance

hierarchy implies read (or write) rights on all classes in the inheritance hierarchy.

•

The following rule enforces consistency between the S A B and W A B for positive

and negative authorization in multiple inheritance hierarchy.

Implication Rule 11 The ordering between the access privilege subclass-generator

and other access privileges is: write>subclass-generator> read-definition. So a

user with the privilege write on a class receives implicitly the subclass-generator

Chapter 3. Security In Databases 51

right, i.e., the user can derive subclasses from the class. A user with the privilege

subclass-generator on the class C implicitly receives the read-definition right, i.e.,

the user can read the class definition of C. •

Implication Rule 12 Authorization on a composite class C implies the same

right on all instances of C and on all objects that are components of the instances

of C. Similarly, privilege on a composite object implies the same privilege on each

component of the composite object.U

To solve conflicts caused by the combination of strong/weak, explicit/implicit,

and positive/negative authorizations through the composite hierarchy, the follow

ing order of authorizations is assumed:

(s, o, + r) > (s, o, -r) > (s, o, +r) > (s, o, =r) > [s, o, +r] > [s, o, -r] > [s, o, J¥]

>[s,o, —rj, where r indicates an implicit privilege.

There are suggestions that the composite object should be considered as a

unit of authorization, i.e., giving privilege to a composite object implies the same

privilege to all components of the composite object. T w o types of authorization:

partial and total are defined. The next two rules specify how to enforce partial

and total authorizations.

Implication Rule 13 If a user has total write (read) privileges on a component

of a composite object, then (s)he has the same rights on all descendants, and

partial write (read) rights on all top-level entities in the entity hierarchy. •

Implication Rule 14 If a user has partial write (read) privileges on a compo

nent of a composite object, then (s)he has authorization on the object only, not its

descendants, and the same rights on all top-level entities in the entity hierarchy.

D

There are two ways to bind an object with a versioned object: static and

dynamic. In static binding, the first object directly references the second object.

In dynamic binding, the first object references a generic instance of the second

object. A generic instance maintains the history of the object versions derived so

far. W h e n a generic instance receives a message, the message is forwarded to one

of the versions, which has been designed as the default version. Furthermore, on

the basis of the types of operation that may be allowed on versions, two types of

versions: transient and working can be distinguished. A transient version may be

Chapter 3. Security In Databases 52

modified or deleted by the user who has created it whereas a working version may

be deleted but not updated. A new version cannot be derived from a transient

version. A transient version must first be promoted to a working version before a

new version m a y be derived from it.

Implication Rule 15 An authorization on a set-of-generic-instances implies the

same right on all generic instances of the class. The write privilege on a generic

instances allows the user to modify the generic instance itself . It also implies

authorization on the object versions described by the generic instance. The read

right on a generic instance means that the user has the same right on all versions.

The write privilege on the set-of-versions implies the same right on the versions

described by the generic instance and also gives the right to create a new version

from a working version of the instance. •

The model does not address content-dependent and method-based authoriza

tions. Bertino and Weigand [30] extended the model so it could handle content-

dependent access rules. They introduced two different modes for authorization

administration, centralized and decentralized administrations. In the decentral

ized administration, every user creating an instance of the class is considered to

be the owner of the instance and, therefore, can grant and revoke other users'

privileges to the instance. For the centralized administration, all instances of a

class are considered to have the same owner who is called the class administrator.

Instances of the class created by any user belong to the class administrator (see

[30] for detailed discussion). The main problem of the model is how to efficiently

evaluate conditions associated with authorizations. In particular, the processing

of the conditions could require two references to the object (one to evaluate the

conditions and the second to filter data that satisfy the user query).

3.6.2 DAC in Behaviorally OODB Systems

The models presented so far take into consideration many of the characteristics of

0-0 data models such as inheritance hierarchy, versions, and composite objects.

However, they do not apply encapsulation of the 0-0 model. In a behaviorally

O O D B system, all interactions are conducted through messages that are parts of

object interfaces. A subject invokes an initial method mx which in turn calls m 2 ,

and so on. In an access control model for behaviorally O O D B systems, we are

Chapter 3. Security In Databases 53

concerned with how the subject gets permission for methods in the sequence of

calls.

Faatz-Spooner Access Control Model

Faatz and Spooner [80] describe a D A C model for 0-0 engineering databases. In

the model, objects consist of the structural and operational parts. The structural

part includes instance-variables that hold the data associated with the object.

The operational part contains a set of methods or procedures that can be per

formed on the data in the structural part of the object. Only methods defined

for an object can be used to manipulate the contents of the object instance-

variables. These variables are not visible outside the object. The access control

model applies object interfaces (object views) in order to restrict the number of

messages an object accepts from other objects. Users are allowed to interact with

the objects only by calling methods defined in their interface.

Although the above approach requires no extensions to the 0-0 paradigm, it

provides only a partial solution to the access control. A complete solution has to

handle access control to object classes with hierarchical structure. It also has to

work properly in the context of the inheritance.

Iris Access Control Model

In 1992, Ahad, Davis, Gower, Lyngback, Marynowski, and Onuegbe [4] developed

a D A C model which has been implemented for Iris [222]. In the Iris data model,

both instance-variables and methods are represented as functions. Instance-

variables are defined as stored functions, and methods - as derived functions.

Objects are encapsulated by a set of functions that users can call. The access

control model is based on a concept of the function call control and the evaluation

of calls.

The access entities are: stored functions, derived functions, generic functions,

guard functions, and proxy functions. Stored and derived functions are instance-

variables and methods, respectively. A generic function is the specification of a

function which may have a set of associated specific functions that are defined

for different types. When a generic function is called, a specific function based

on the type of the argument object in the call is selected for execution. If a

function has an associated guard function, the function can be executed only if the

Chapter 3. Security In Databases 54

guard function returns true. Proxy functions provide different implementations

of specific functions for different users. A function may have several associated

proxy functions. When a user calls a function, the appropriate proxy is executed

in place of the original function.

The access control is implemented using functions that are allowed to be called

by a subject (user). An access rule is a triple (u,f,t) where u is the user name,

/ is a function or a set of functions, and t is the type of the argument to the

function. Note that the access of u is limited by the set of functions / the user

is allowed to evaluate. Functions / can be either stored or derived. Access to

derived functions can be static or dynamic. If a user u has a dynamic access

to the derived function /, u must have a permission to call all the underlying

functions. For a static access, the user u dose not need to have call privileges1 to

the underlying functions. While creating a derived function, the user must spec

ify whether the access to the underlying functions should be static or dynamic.

Note that the creator of the derived function must have call privileges to all the

underlying functions. The access control model supports time-dependent and

content-dependent authorizations using guard and proxy functions, respectively.

Derived functions can also be used to support content-dependent authorizations

including conditions.

The concept of ownership is supported as well. A user who creates a function

is its owner. The owner of a function automatically has a call privilege to the

function. If the dynamic access is specified while the object is created, the owner

can freely grant call privileges for other users. By contrast, for static access,

the owner cannot grant a call privilege unless he has grant privilege to all the

underlying functions. Access to a function can be granted and revoked to/from

other users by users who have grant privilege over that function.

The model supports also the database administrator (DBA) concept. The

system may have a D B A or a group D B A who has the privileges implied by the

owners of functions. Moreover (s)he can grant call privilege to functions with

static access to selected users.

1 A user who has a call privilege on a function is authorized to evaluate the function.

Chapter 3. Security In Databases 55

Bertino Access Control Model

An interesting example of another access control model is given by Bertino in [32].

The model uses methods such as a tool to control the access to objects. This is

why it is also called the Data-hiding model. There are two types of methods:

private and public. Private methods can be invoked by other methods only when

they present in the list associated with the method. The list is called invocation

scope of the method. On the other hand, a public method can be called by all

users and methods.

The access control can have two levels: external or internal. For the external

access control, a triple (s, o, m) indicates that a user s can call the method m on

the object o. The internal access control is content-dependent and is implemented

as a part of the method. Users can have privileges to public methods only. For

instance, if a user u invokes a method mx on o which in turn calls m2, then mx

has to be public and u has to have execution right for mx. If m 2 is public, the

entry (u,o,m2) must exist. If m2 is private, m x must belong to the invocation

scope of m2.

A user u can grant the execution right on an object if u is the owner of the

object. An object may have several owners. Only the creator may grant/revoke

ownership authorizations to/from other users. However, the creator may grant

the creator privilege to a user u. When the creator does so, u becomes the

only creator of the object. The old creator looses all privileges on the object.

Sometimes it is useful to enable a user to execute a method m without giving

him/her the execute rights on all public methods that are invoked by m. The

model introduces the notion of protection mode. If the user u grants the user u'

the right to execute method m in the protection mode, then all invocations of

public methods made by m are checked for authorizations against u (instead of

u') when u' executes m.

The reader is directed to [32], for formal definition of the model and its de

tailed discussion. The main problem with the model is the lack of flexibility as

content-dependent authorizations are parts of method implementations. Changes

in authorizations would require a change in the specification of the methods. As

pointed out in [206], the impact of inheritance hierarchy on the model needs more

investigation.

Chapter 3. Security In Databases 56

3.7 Mandatory Access Control Models

Some databases contain sensitive or classified data. A record (tuple) may be

composed with elements of different security level (or classification). The security

of entity can be classified on n levels (in practice n = 4) and can be further

subdivided into compartments by category. For example, multi-level databases

store data with different security classification (or security classes). The security

class is a pair (L, C) where L represents a security level and C denotes a category.

The security level can be unclassified, confidential, secret, and top secret. Note

that they are partially ordered by the the relation ">". The category can be

the name of the application that the entity is associated with. In general, they

have no ordering, but may be further subdivided. There are two hierarchies for

both security classification of stored data and users of the database. Users are

classified according to their clearance.

Unlike the discretionary access control, the mandatory access control (MAC)

makes sure that the flow of information complies with a well-defined security

policy. M A C enforces that users with their clearance can only access entities on

"proper" security levels. The mandatory access control is also called the multi

level access control.

Bell and LaPadula in [26] introduced their M A C model. This is an extension

of the access matrix model. The Bell-LaPadula model is based on two properties:

the simple security property and the ̂ -property. According to the simple security

property, a subject (or an active entity) is allowed to read information from

an object (or a passive entity) if the clearance level of the subject dominates the

security level of the entity. The *-property requires that a subject has write access

to an object if the subject clearance level is dominated by the security level of the

entity. Informally, a subject can read-down (simple security property) and can

write-up (*-property). For example, consider two security classes X = (LI, Cl)

and Y = (L2, C2). X dominates Y (denoted by X > Y) if and only if LI > L2

and Cl is a compartment of C2 or is equal to C2 (Cl C C2). X strictly dominates

Y (denoted by X > Y) if and only if LI > L2 and Cl C C2. The set of possible

access privileges (or access modes) in the model is determined by the combinations

of these properties. The privileges are: neither observe nor alter, observe only

(READ-ONLY), alter only (APPEND), observe and alter (WRITE), execute a

program (EXECUTE).

Chapter 3. Security In Databases 57

A generalization of the Bell-LaPadula M A C model was suggested by Denning

[65, chapter 5] and called the information flow system. It is based on a lattice

of security levels. Information in an entity is allowed to flow (either directly or

indirectly) only to entities with higher security levels.

The application of the Bell-LaPadula model to the protection of database

systems introduces new security requirements such as entity integrity, referential

integrity, and polyinstantiation integrity. Entity integrity requires that no tuple

can have null values for any primary key attribute. Referential integrity insists

that no tuple in a relation can refer to a nonexistent tuple. Polyinstantiation

means that one record can appear (be instantiated) many times, with different

security levels. In order to deal with these new security requirements, extensions

of the Bell-LaPdula model have been proposed for multi-level security databases

(MLS/DBS). The relational data model has dominated much of the work on

MLS/DBS [59, 69, 79, 99, 109, 112, 116, 117, 118, 141, 184, 188, 200, see for

example]. MLS/DBS have been developed not only as prototypes but also as

products [142, 208]. Security issues have also been investigated in other systems

such as O O D B systems [33, 38, 39, 114, 123, 149, 150, 210], entity relationship

systems [87] and knowledge based systems [212] among others. A detailed report

on the recent development in database security is given in [211].

3.8 MAC Models in RDBS

A multi-level relational database system (ML/RDBS) supports data with different

security levels (or classifications) and users with different security clearances.

The granularity of a multi-level system is the smallest unit of data which has

its own security level. Sometimes, data may be classified at the attribute level

(all the data associated with a particular attribute has the same security level);

at the tuple level (every tuple has a single security level); at the relation level

(all the data in the relation has the same security level); at the data element

level; or combination of these (we have the following order: relation level < tuple

level < attribute level < element level). A relation with these security levels is

called a multi-level relation. A multi-level relation R is represented by a schema

R(Ax, Ci,..., An, Cn), where each data attribute Ai has a corresponding security

level attribute d- Multi-level security affects the data model because not all data

seen differently by users with different clearances).

Chapter 3. Security In Databases 58

Now consider how entity integrity, referential integrity, and polyinstantiation are

resolved in M L / R D B S .

For a tuple, all the primary key elements must have the same security level or

be at least as low as the security levels of other elements in the tuple. Otherwise,

a user with low clearance would see nulls for the primary key which violates entity

integrity.

In a M L / R D B system, referential integrity means that a tuple of a low security

level cannot reference a tuple of a high security level because the referenced tuple

would appear to be nonexistent to users with a low clearance.

Polyinstantiation emerges in the form of: polyinstantiated relations, polyin-

stantiated tuples, and polyinstantiated elements [69]. A polyinstantiated relation

occurs when two subjects with different views of the real world entity try to create

a relation of the same name [210]. A polyinstantiated tuple happens when a user

inserts a tuple that has the same primary key value as the existing but invisible

tuples (because they have higher security levels). A polyinstantiated element is

created if a user writes a new element in a tuple. The entry which corresponds

to it is seen as a null before the write operation. The element is not null and it

contains data with a higher security level. Thus a second tuple is added to the

relation with the same primary key but a different security level [144].

Several mandatory access control models for R D B S have been proposed so

far [68, 69, 88, 99, 110, 117, 141, 142, 148, 200]. The main difference among the

models is the way they solve the integrity and polyinstantiation problems. Let

us consider three such models whose security evaluation classification was aimed

to be at Class Al 2 level. They are as follows.

• SeaView. The SeaView project has its roots in the Summer Study on

Multi-level Data Management Security held by the Committee on Multi

level Data Management Security of the U.S. Air Force Studies Board [55].

The project was a three-year joint work by SRI International, Gemini Com

puters, and Oracle Corporation sponsored by the U.S. Air Force, Rome

Laboratory. The SeaView was developed at SRI by Lunt, Denning, Schell,

Shockley, Heckman, and Neumann and provided element-level labeling with

Class Al assurance for mandatory security. SeaView generates virtual

2In the evaluation criteria defined by U S Department of Defense (D O D) [73], security systems

is classified on four hierarchical division (D, C, B, A) . Class Al specifies a system whose security

has been formally verified.

Chapter 3. Security In Databases 59

multi-level relations from physical single-level relations. The physical re

lations are stored in segments managed by an underlying mandatory se

curity kernel. SeaView uses G E M S O S Trusted Computing Base (TCB) as

the kernel [187]. G E M S O S enforces the mandatory security policy using a

label-based mechanism. Whenever a subject attempts to retrieve a phys

ical object, a label comparison is performed. SeaView supports element,

tuple, and relation polyinstantiation. A multi-level query language called

M S Q L is used in SeaView to define and manipulate multi-level data. Fur

thermore, to deal with the polyinstantiation, M S Q L provides the following

functions: highest-class, highest-tuple, most-recent-tuple, and most-recent.

The function highest-class returns the tuple with the highest security level

for a potentially polyinstatiated element. The highest-tuple function returns

the tuple with the highest tuple level from among a set of polyinstantiated

tuples. The function most-recent-tuple retrieves the most recently updated

or inserted tuple from among a set of polyinstantiated tuples. The most-

recent function returns the tuple with the most recently updated or inserted

value for a potentially polyinstantiated element. For a detailed discussion

of the model, the reader is directed to [141, 142] [46, Section 10 of Chapter

2].

• Lock Data Views (LDV). The L D V is a M L / R D B system that was devel

oped by a group at Secure Computing Technology Corporation (SCTC). It

is designed to run on SCTC's LOgical Coprocessor Kernel (LOCK) Trusted

Computing Base (TCB) [37]. LDV's security policy builds on the security

policy of LOCK. Its design is based on three assured pipelines for the query,

update, and meta-data management operations. It allows an application to

specify classification constraints for how incoming and outgoing data are to

be labeled. L D V supports the tuple polyinstantiation. Tuples are polyin

stantiated based on their maintenance levels. The maintenance level of a

tuple is a security level at which the tuple was inserted into the database.

However because of classification constraints, some of data elements that

make up a tuple could be stored at security level above the tuple security

level. T C B enforces the constraint that the level at which data is stored is

the lowest security level at which the data can be retrieved. See [200, 201]

for detailed discussion.

Chapter 3. Security In Databases 60

• ASD-Views. The ASD-Views is a prototype developed at T R W Defense

System Group. The main aim for the ASD-Views project was to achieve a

suitably-sized Trusted Computing Base (TCB) that would meet the crite

ria for evaluation of class B2 and above. The main feature of the project

is that the ASD allows an interconnection between the mandatory and

discretionary access control. Moreover, only one copy of the shared data

is stored within the system. This copy is accessible to users at different

security levels. The ASD allows to create a subset of rows (tuples) and

columns (attributes) from a singular underlying base relation. Joins, ag

gregate functions and arithmetic expressions are excluded, as they do not

support polyinstantiations [88, 110].

3.9 MAC Models in OODB Systems

A number of security models for OODB systems have been proposed ([33, 39,

114, 121, 122, 123, 143, 144, 149, 150, 160, 210, 215, as examples]). Nonetheless,

the design of an 0-0 multi-level security model is still an active research topic

and there is no dominant design. The main difference among various models is

the way how they assign security levels to data stored in objects.

Some proposals consider single-level objects. That means that for every object,

a unique security level is assigned and this level applies to all components of the

object (properties and methods) [33, 114, 149, 210]. This approach is attractive

for its simplicity and compatibility with the security kernel. Its most important

advantage is that the security kernel is small enough so that it can be verified.

Moreover there is no need to handle the multi-level update problem [210].

However in the real world, there are situations when it is necessary to classify

instance-variables of an object at different security levels. That is, the security

model has to support multi-level objects. There have also been proposals that

introduce a finer grain of classification by assigning a security level to each in

stance variable of an object [122, 140, 160]. Unfortunately, these proposals require

a trusted enforcement mechanism on the object layer and a complex security ker

nel.

In order to maintain the security kernel compatibility of the single-level ob

ject and to overcome the difficulties of the handling of multi-level objects, some

Chapter 3. Security In Databases 61

researchers proposed to design a schema which manages various security con

straints (simple, content, and context constraints) [114, 149, 210]. For example,

if we want the GAP instance-variable of the class STUDENT3 to be secret, we

need to create a class STUDENT HAP with security level S E C R E T to be a

subclass of the class STUDENT (see Figure 3.4). The main drawback of this

STUDENT(U)

subject

Start-Date

Graduate-Date

takes*

1 \

is-a

STUDENT-GAP (S)

GAP

Comp-GAP()

COURSE (U)

Figure 3.4: An example of representation of simple constraint.

approach is that it requires information to be replicated at different levels. Thus

the problem of data consistency starts to play a crucial role.

An alternative approach for modeling multi-level entities through single-level

objects were proposed independently by Bertino and Jajodia in [33], and Boulahia-

Cuppens, Cuppens, Gabillon, and Yazdanian in [38]. Bertino's approach is based

on the use of composite objects. Instead of replicating low security level data in

higher security level objects, a reference to the object containing the low level data

is inserted in the higher level object. The class STUDENT-GAP has a compos

ite property say Student-Specification whose domain is the class STUDENT

(see Figure 3.5). Note that in this approach properties of a multi-level entity are

stored in different objects. Thus if a user wants to see the entity, more objects

must be accessed.

Boulahia-Cuppens and his group used the decomposition of a multi-level entity

into single-level entities. Data on each level are stored in a single-level database.

Dynamic links are also created between the objects of these single-level databases

for properties with low security levels. For instance a multi-level object O, which

3The specification of STUDENT is shown in Figure 2.3 in Section 2.2.7 of Chapter 2

Chapter 3. Security In Databases

STUDENT-GAP(S)

GAP

Student Specification

ASSIFTED

ET

is-part-of

STUDENT(U)

subject

Start-Date

Graduate-Date

takes* COURSE (U)

Figure 3.5: An example of representation of a multi-level entity through composite
objects.

is an instance of a multi-level class STUDENT, will be decomposed to U-0, C-0,

and S-0 levels. Each of them is actually a single-level object corresponding to

unclassified, confidential, and secret levels which are physically stored in single-

level databases. In the S-0 level there are pointers to the confidential properties

stored at the C-0 level and consequently in the C-0 level, there are pointers to

unclassified properties. This means that if an classified user updates the unclassi

fied properties of the U-0 level, this update will be automatically propagated to

the instances at both C-0 and S-0 levels. Note that the values of the properties

which point to low-level objects can be updated by the users cleared to access

them. If this happens, the pointer to the low-level database is broken, and the

value of the object at the low-level database is considered to be a cover story.

By employing a view model mechanism, we also propose a new design ap

proach to model multi-level entities through single-level objects (see Chapter 6).

The central idea behind our approach is to provide the user with a multi-level view

derived from a single-level secure O O D B system. Hence the database operations

performed on the multi-level views are decomposed into a set of operations on

single-level objects. The operations can be implemented with any conventional

mandatory security kernel. The detailed discussion is presented in Chapter 6.

3.9.1 Security Models

Some of the proposed security models for O O D B systems are discussed briefly.

For detailed discussion, the reader is directed to the cited papers.

62

Chapter 3. Security In Databases 63

Jajodia-Kogan Security Model

Jajodia and Kogan [114] proposed a security model for O O D B systems that

controls access by using the encapsulation characteristic of 0-0 systems. In 0-0

systems, communication between two objects can be done via the exchange of

messages only. The model controls the information flow by filtering the messages

transmitted between objects. That is why it is also called the message filter model.

The model is defined in terms of subjects and entities. Entities are objects which

may have dual roles of either entity or subject. An active object can act as a

subject by sending messages. A security level is assigned to each object at the

creation time, and is fixed for the life-time of an object. In the model, all objects

are single-level ones. Every message exchanged between objects is done via the

message filter. The message filter decides how to handle the message based on

the security levels of the sender and receiver, and security level of information

encountered in a chain of method executions. The list of possible actions that the

message filter can undertake, includes: leaving the message unaltered, blocking

the message, and enforcing restriction on the execution of the method invoked by

the message.

SORION Security Model

SORION is a security model proposed by Thurainsingham [210] to incorporate

a secure access control into the ORION model [16, 124]. The SORION model

is defined in terms of subjects, entities, and access privileges. A subject is any

user of the system. Every user is assigned a security level (clearance). Entities in

the system are classes, objects, properties, and methods. Object may be primitive

objects or composite objects. The model allows the read, write, and execute access

privileges. The access to an entity is controlled by checking security level of the

subject (who wants to access the entity) and the security level of the entity which

is computed according to the security rules of the system. For full detail and

the list of security rules, the reader is referred to [210]. The model requires all

objects to be single-level ones. However, as we have already observed, real-world

entities are often multi-level. The representation of multi-level entities through

single-level objects are then proposed to design the schema which handles various

security constraints (simple, content, and context constraints).

Chapter 3. Security In Databases 64

Millen-Lunt Security Model

Another security model that enforces a mandatory security policy in O O D B sys

tems is that proposed by Millen and Lunt [149]. Their security model is defined

in terms of subjects, entities, and access privileges. A subject is an active entity

that executes methods upon reception of messages and can also send messages.

Entities are classes, and objects. Access privileges axe create, delete, addmessage,

getvar, and setvar. The model requires all objects to be single-level ones. Each

request from a subject to execute a method or to write/read instance-variables

is allowed only if it satisfies the security properties. A list of security properties

that must be satisfied by the system is provided (see [149]).

SODA Security Model

SODA, proposed by Keefe, Tsai, and Thurainsingham [121, 123], is a security

model for O O D B systems with multi-level entities. The model is based on the

Smalltalk model [91]. The S O D A model is defined in terms of subjects, and

entities. A subject is any user of the system. Entities are objects or properties

(instance-variables). Objects may be entities or subjects. Objects or properties

(instance-variables) are assigned ranges of security levels. Subjects are assigned

clearance levels. Every message that travels through the system carries with it a

current security level and a clearance level of the subject. The current security

level is the least upper bound of all security levels of information the message

has read or has access to, and is adjusted whenever an object or property with

higher security is accessed. Classification rules (based on the current security

level and clearance level of a message and on an object or property security level)

determine whether a method should be allowed to access an object or property.

3.9.2 Security Rule Requirements for a Secure OODB

system

Olivier, Sebastiaan and Von Solms [160, 161] gave a taxonomy for secure O O D B

systems. They specified security issues and properties that are relevant to the

modeling and implementation of a secure O O D B system. The taxonomy identi

fies eight major design parameters every designer of a multi-level secure O O D B

system must consider. These eight parameters are grouped into three categories:

Chapter 3. Security In Databases 65

labeling semantics, structural labeling, and dynamic labeling. The first group

(which consists of two first design parameters) answers the two following ques

tions. What is a protected entity? How is an entity protected? The structural

labeling talks about protected entities, the way security labels are assigned to

them, and specifies the restrictions imposed on security labels by the relation

ship among the entities. The last group of parameters ensures that the secrecy

is not compromised by activities in an O O D B system. For detailed discussion,

the reader is directed to [160, 161]. In the next section, we use this taxonomy

and represent some security classification rules that must be satisfied for a secure

O O D B system. Note that the term labeling refers to the assignment of a security

levels to an entity.

In any secure model, it must first be clarified what is exactly protected. It

is possible to protect (control) the access to an entity (called access protection

model) or to hide the fact of existence of an entity (called existence protection

model). Note that in an existence protection model, since the existence of a

high security-level entity is hidden from lower-clearance subjects it is possible

that the entity is re-created by the subjects. The system must therefore support

polyinstantaition.

3.9.3 Mandatory Classification Rules

In general, an O O D B system consists of a non-homogeneous collection of entities

(objects, methods, instance-variables, classes, class methods, class variables, etc.).

These entities are related by relationships such as encapsulation, instantiation,

inheritance, composition, association, and data structure membership.

• Encapsulation - the relationship that exists between an object and its facets.

• Instantiation - the relationship that exists between a class and its objects.

Each object is an instance of a class.

• Inheritance - the relationship that exists between a class and its subclasses.

• Composition - the relationship between objects that are combined into a

large object.

• Data structure membership - the relationship that exists between data struc

ture (such as a list) and member of the data structure.

Chapter 3. Security In Databases 66

• Association - the relationship that exist for an object associated with other

objects.

In this section, the influence of the structure of data on the classification of

entities is considered. Denote by L U B the least upper bound, G L B the greatest

lower bound. The function Level(e) displays the security level of an entity e. The

function class(e) returns the class of an entity e. c and o denote a class and an

object, respectively. Denote by sup(e) the set of superclasses of an entity e, and

< x, c > a facet x of a class c where x can be a property or a method.

Security Classification Rules

The first classification rule that we consider are imposed by the encapsulation

of an object. A n object encapsulates everything inside it. This implies that an

encapsulated facet cannot be accessed by a subject who is not allowed to access

the corresponding object.

Classification Rule 1 (Encapsulation property) The security level of a facet of

an object (class) dominates the security level of the object (class)

(Vo(Vx e o))[Level(< x,o >) > Level(o)]

or

(Vc(Vx G c))[Level(< x,c>)> Level(c)].D

The second group of classification rules is imposed by instantiation.

Classification Rule 2 (Instantiation property) The security level of an instance

must dominate the security level of its class either in an existence protection model

or in an access protection model, i.e.,

(\/o)[Level(o) > Level(class(o))].a

Classification Rule 3 (Facet property) The security level of a facet in an in

stance must dominate the security level of the facet in the class and must also

dominate the security level of the instance itself. This is expressed by

(\/o(Wx e o))[Level(< x,o >) = LUB(Level(< x,class(o) >),Level(o))}

(for existence protection) or

(Vo(V:r e o))[Level(< x,o >) > LUB(Level(< x,class(o) >),Level(o))}

(for access protection). •

Chapter 3. Security In Databases 67

A class may have several subclasses. The following properties regulate the

classification of subclasses and inherited facets.

Classification Rule 4 (Inheritance property) The security level of any subclass

must dominate the security level of its superclass(es)

(Vc(Vo?G sup(c)))[Level(c) > Level(d)].U

Classification Rule 5 (Facet inheritance property) In the case of the access

protection, if any class c inherits a facet x from a superclass d G sup(c), then

Level(< x,c>)> LUB(Level(< x,d >),Level(c)).

In the case of the existence protection, one of the following must be held:

1. if a class c inherits a facet < x,c>, the security level of < x,c > may only

be different from its security level in the superclass when

Level(< x,c>) ~ Level(c)

2. if a facet is defined in the one only superclass of a given class c (or the class

c has the one only superclass, or the 0-0 model allows single inheritance

only), that facet may be inherited provided

Level(< x,c>) > LUB(Level(c), Level(sup(c)))

3. if a facet x is redefined in c, then the security level of < x,c > must be

dominated by the security level of every liked-named facet (facet with the

same name x) in any superclass of c (whenever the security level of the

facet dominates the security level of c) and

(\/d G sup(c))[Level(c) < Level(< x, c >) < LUB(Level(< x, d >), Level(c))]

4- if x is inherited from a specific superclass dl G sup(c), then for every super

class d G sup(c) that has a facet x,

LUB(Level(< x,d' >),Level(c)) < Level(< x,c >)

and

Level(< x,c >) < LUB(Level(< x,d >),Level(c))

Chapter 3. Security In Databases 68

5. the security level of an inherited facet < x,c> must be dominated by the

security level of all like-named facets in superclasses of c, whenever the

security level of the like-named facet dominates the security level of c. •

The last point of the rule above indicates two strategies in the existence pro

tection that can be used to resolve the conflict caused by multiple inheritance.

The strategies are:

1. the like-named facet with the lowest security level is always inherited, or

2. the security level of the class is an upper bound for the security levels of all

concerned facets in superclasses.

If an object o is constructed from objects Ox,o2,... ,on by using array or set,

then the following classification property must be satisfied.

Classification Rule 6 (Data structure membership property)

If array-like structure (or homogeneous structure) is used to construct o, then

all members of the array must have the same security level in the existence pro

tection, i.e.,

Level(o) — Level(ox) = Level(o2) = ... = Level(on).

If o is a set-object, the security level of o is the least upper bound of the security

levels of the element objects,

Level(o) > LUB(Level(ox), Level(o2),..., Level(on)).0

Classification Rule 7 (Association property) If an association R is defined be

tween objects ox and o2, then the security level of R must satisfy

Level(R) > LUB(Level(ox,o2).0

3.9.4 Dynamic Labeling

As long as an encapsulated object moves as a unit from one to another location

in the system (probably as a parameter of a message), security of information will

not be compromised. For example, suppose that S A L A R Y object has PrintSalary

method. A subject that obtains SALARY from E M P L O Y E E object will still not

be able to invoke the PrintSalary method if it is not authorized even though the

Chapter 3. Security In Databases 69

subject accessed the SALARY. Encapsulation feature of 0-0 model, combined

with security level labels, provides very natural mechanism of protection.

However if, in the example above, the salary was not encapsulated in a

S A L A R Y object, but rather stored as a real number, the value would have no

natural protection once it leaves the E M P L O Y E E object. A similar problem

occurs when methods return values of instance-variables. Therefore, a secure

system must impose some restrictions on the flow of authorizations and the flow

of information to ensure that the security will not be compromised.

• Authorization flow restrictions. Messages act on behalf of a subject and

therefore the clearance of a message depends on that of the subject. The

system must specify how the clearance (or authorization) of a message is

determined, and how the security level of a message is determined.

• Information flow restrictions. If some of the classified information con

tained in a message is stored in variables of the receiving object, it must be

ensured that an unauthorized subject cannot now access the information

in this object. The system should indicate any flow restrictions and any

conventions for reclassification.

For full details of how the clearance of a message is determined, how clearances

are combined, and possible strategies to control the flow of information, the reader

is referred to [160, 161].

3.10 Role-Based Access Control Models

Like military agencies, civilian government agencies and commercial firms are very

much concerned with the confidentiality of their information. This includes the

protection of personal data, marketing plans, product announcements, formulas,

manufacturing and development techniques. Many of these organizations have

even greater concern with integrity of information [49]. Integrity is particularly

relevant to such applications as funds transfer, clinical medicine, environmental

research, air traffic control, avionics, etc.

Each organization has unique security requirements, which are often difficult

to enforce using traditional access control policies such as M A C and DAC. In

many organizations, the end users do not "own" the system objects. In these

Chapter 3. Security In Databases 70

organizations, the corporation or agency is actual the "owner" of system objects

as well as the programs that process them. The control is often based on the

employees' position with in the organization hierarchy rather than their data

ownership rights. Access control decisions are often determined by the roles

individual users take on as a part of their jobs. The roles are usually specified by

user responsibilities, and qualifications. For each user, a role-based access control

(RBAC) policy determines the collection of roles the user is allowed to perform

(undertake) within the organization. With each role, there is a associated set

of functions (transactions) which are allowed to be executed by a holder of the

role. The user cannot pass access permissions to other users [84]. This is the

fundamental difference between R B A C and DAC.

A role can be thought of as a set of transactions that a user or set of users

can perform within an organization. A transaction can be considered as a trans

formation procedure (TP) (a program or portion of a program) plus a set of data

items accessed by the TP. Each role has an associated set of individual members.

The set of roles and their association with transactions is defined by the system

administrator. Moreover, the membership in a role is granted and revoked by the

system administrator [84].

The usual grouping mechanism of D A C can be used to implement roles [182].

The difference between groups and roles is the same as the one between a security

policy and a security mechanism. Two very important differences between groups

and roles are as follows [183]:

1. Groups are essentially a discretionary mechanism whereas roles are non-

discretionary. The ability to assign permissions to a group is usual dis

cretionary. On the other hand, the allocation of permissions to a role, as

well as determination of membership in a role, are both intended to be

non-discretionary.

2. The nature of permissions allocated to a role is significantly different than

the usual read, write, execute, etc.

A common challenge in the design of roles is to ensure separation of duties.

This requires that for particular sets of transactions, no single individual is al

lowed to execute all transactions from the set. The separation of duties can be

either static (being built directly into the role definitions) or dynamic (with ac

cess constraints based on the previous access history of the affected entities) [2].

Chapter 3. Security In Databases 71

The static separation requirements can be implemented simply by the assignment

of individuals to roles and allocation of transactions to roles. A more difficult

case is the dynamic separation of duty, where the compliance with requirements

can only be determined during the system operation. For example, the dynamic

policy will allow an individual to take on both the initiator and authority roles

for payment, with an exception that no one could authorize payments they had

initiated. The system must use both the role and the user ID to check access

to transactions based on audit records of previous accesses. The audit records of

previous accesses introduce the following problems. How long must audit records

be retained? How are they managed in a distributed environment? Sandhu [180]

discusses an automated separation of duties with the use of roles and transactions

control expressions (TCE).

For detailed discussion of the definition of RBAC, different possible approaches

for role organization, and different proposed solutions for separation of duties, the

reader is directed to [8, 49, 83, 84, 85, 90, 108, 152, 154, 165, 180, 183, 185, 186,

193, 206, 207, 214, 215].

3.11 Implementation Strategies

The 1982 Air Force Summer Study [55] suggested two architectures for building

secure multi-level database management systems (DBMS): Trusted Subject Ar

chitecture and Woods Hole architectures. The Woods Hole architectures are the

Kernelized, the Replicated architectures, and the Integrity Lock. In the Trusted

Subject Architecture both a trusted D B M S and a trusted operating system (OS)

are used, while in the Woods Hole architectures, an untrusted D B M S is employed

with an additional trusted filter. Thus, the Trusted Subject Architecture requires

either the development of a new D B M S from scratch, or the extension of the se

curity features of an existing D B M S . In the following, we present a brief review of

these architectures. For detailed discussion, the reader is directed to [46, chapter

4]-
In the Kernelized D B M S , the multi-level database is partitioned into single-

level databases which are stored separately. A trusted OS which is responsible for

the physical access to data in the database is used to enforce the mandatory access

control. The decomposition and recovery algorithms must be properly defined to

guarantee the correctness and system efficiency. The decomposition algorithm

Chapter 3. Security In Databases 72

partitions a multi-level database into several single-level databases [38, 69, 115,

see for example]. The recovery algorithm is performed on single-level entities

when they are retrieved to generate a multi-level entity containing only the data

the user is cleared to access [119, as an example]. This architecture is used by

SeaView [141, 142], the commercial D B M S Oracle [46], and in the most current

secure databases [33, 38, 149, 210, as examples].

In the replicated architecture, there is a database at each security level which

contains all data whose classification are less or equal to the database security

level. Each database is associated with a separate D B M S . In this architecture,

we need to replicate lower security-level data in all database containing higher

security-level data. There are only a few research projects which are based on

this architecture [58, 59, 146].

In the Integrity Lock, each data element is assigned a checksum that indicates

its security level which initially is on either secret or confidential level. The In

tegrity Lock consists of three main components: the Untrusted Front End (UTFE),

the Trusted Front End (TFE), and the untrusted D B M S . The T F E authenticates

and verifies a user, updates tuples, and handles all projections and creations of

new data entities. The U T F E handles parsing query, formatting output, and

computations. The untrusted D B M S handles searches of the database, selects

requested tuples, inserts data tuples into the database, reorganizes database, and

manages the storage. Integrity Lock can provide security at the record, attribute,

or data element level. This architecture is vulnerable to Trojan Horse attacks,

and inference attacks (see [67, 114]). Denning [67] proposes a new approach called

a commutative filter. The commutative filter is inserted between the users and

the D B M S in order to assure the elimination of the inference attack provided that

the D B M S is free of Trojan Horses that leak data. The implementation of the

integrity lock design was done in the MISTRESS database management system

with the Unix operating system [94].

3.12 Inference Control

The word "inference" means "forming a conclusion from premises". Users of

any database can draw inferences from the information they have obtained from

the database and from some prior additional information (called supplementary

knowledge) they have. The inference can lead to information disclosure if the

Chapter 3. Security In Databases 73

user is able to deduce the information they are not authorized to access. This

is the inference problem in the database security. Thus for database systems

that can contain sensitive information about individuals or companies, (such as

statistical databases or multi-level security databases), information flow controls

may be inadequate. New solutions and mechanisms are required to deal with the

inference problem.

3.12.1 Statistical Databases

A statistical database (SDB) is a database that is used for statistical queries (for

example, averages, counts) on subsets of the database entities. Inference in an

SDB allows to reveal confidential information of single entities by the analysis

of statistical queries [46]. A lot of work (see [65, chapter 6], [46, chapter 5], [3])

has been done and many solutions are proposed to make SDB secure against

inference. The solutions can apply different mechanisms to restrict the access

and prevent against inference. Typically, these mechanisms are based on query

restriction, data perturbation (or masking), output perturbation, and conceptual

restriction. For detailed discussion of these mechanisms, the reader is directed to

[3, 46, 65].

3.12.2 Multi-level Databases

In multi-level security database systems (MLS/DBS), the inference problem arises

whenever some low-level data x can be used to derive partial or exact information

about some other high-level data y. In some cases, even the learning of the

existence of the information may be unacceptable. An inferential link that may

allow information to flow from a high security class to a low security class is called

an inference channel or a covert channel. Wiseman [224] identifies four aspects

of the inference in multi-level security databases: addressing inference channel,

relationship inference channel, aggregation problem, and architectonic problem.

The addressing inference channel arises through the data role in addressing

rather than from it being accessed. In the access protection model, labeling does

not prevent the data from being addressed, only prevents from being seen directly.

A user can receive the unauthorized information by addressing the data using the

query mechanisms and inferring its existence from the result [35, 68, 223].

Chapter 3. Security In Databases 74

The relationship inference channel arises whenever system objects are clas

sified lower than the relationships between the objects. To protect a database

against the relationship inference channel, the control mechanism should allow

users with a low clearance to access information only if the relationship with a

higher classification cannot be deducted [132, 168].

The aggregation problem arises when a user can form aggregates of related

unclassified data that infers classified data. Here, the collection of low classified

information has a higher security classification. So it often requires us to assign

a higher security level to the collection [60, 98, 139].

The architectonic problem arises when the structural information of the database

objects (database schema) is classified lower than the database objects. Users

with a lower clearance can use the structure information of database together

with authorized information to deduce information with higher security [198].

Proposed Solutions

Recently some solutions have been proposed to handle the inference problem. The

inference problem can be dealt during the database design [69, 138, 195, 198, 213],

or during the query processing [120, 209, 212].

In the first approach, security constraints during the database design are

handled in such a way that security violations via inference cannot occur. So

many inference problems can be overcome through a good design. The SeaV

iew [144, 141], ASD-Views [88], and S W O R D [177] projects are examples of this

approach. Other works have also been done to provide tools which allow data

designers to analyze a database schema for potential inference problems and re

move those. DISSECT [89, 168], Multilevel Semantic Net [213], IAT [111], and

Database Inference Controller [42] are examples. There are some non-reference

formal models which can be used to verify any good design against them as well.

The works of [198], [204], [111], [36], and [132] are examples.

In the second approach, the query processor is augmented with a logic-based

inference engine to handle inferences during query processing. The inference en

gine will attempt to prevent users from the disclosure of the protected informa

tion. Some researchers argue that inferences can be the most effectively handled

and thus prevented during query processing because the most users build their

supplementary knowledge from responses they receive by querying the database.

Chapter 3. Security In Databases 75

L D V [98] is an example of this approach.

3.13 Cryptographic Control

The information is protected against the disclosure by providing a reliable operat

ing system and a secure access control mechanism for database system. Unfortu

nately, there is a great deal of evidence that even sufficiently complex operating

and database management systems may have security holes or Trojan Horses

which could be a potential threat to the information security. Better protection

of information can be obtained by using several security measures simultaneously.

The use of cryptographic techniques to protect database systems represents

an important security mechanism. Through these techniques, secrecy of informa

tion is assured by making data unreadable to anyone but authorized users with

cryptographic keys [65]. In general, cryptographic techniques might be used: to

provide user authentication, to maintain the integrity (data authenticity) and

the secrecy of data, to protect information during transition and during process

ing from disclosure, to protect private data from an unauthorized access in the

hierarchical access control, etc.

Application of cryptography has the potential to solve both the problem of

data integrity and the problem of data confidentiality. However, encryption has

some disadvantages particularly in databases. These are: inability of record

searching (particularly in the case of pattern or partial-match and range queries

as the structure of data is lost due to encryption), the necessity of key generation,

data expansion, impossibility to compute statistical data from the encryption

information, and the overhead related to encryption and decryption operations.

The application of cryptography for database security has been a main topic in

[6, 62, 66, 65, 92, 96, 103, 104, 105, 166, 178, 191, 216, see for example]. For

detailed discussion of cryptography and its applications in database security, the

reader is directed to [65, 103, 166].

3.14 Summary and Remarks

In this chapter, we have illustrated security requirements, threats, and discre

tionary and mandatory security models for the protection of conventional database

systems and O O D B systems. W e have also discussed security issues and concerns

Chapter 3. Security In Databases 76

that are being expressed for O O D B systems. Several proposals for discretionary

and mandatory security models for the protection of conventional and object-

oriented databases have been presented and some of their drawbacks have been

discussed. The models offer some solutions to the protection of O O D B systems.

However, each of them addresses only some of the security issues, therefore leaving

many questions unanswered. The following topics need further work:

• Design a more efficient mechanism for the access control on the instance-

level. When the number of objects grows, the support of protection matrix

and the search at the granularity of object-instances is extremely hard and

time consuming. Finding implicit authorizations will be even harder.

• Design a general discretionary access control model with flexible and practi

cal solutions to problems such as content-dependent and context-dependent

authorizations with positive and negative authorizations.

• Design an extended multi-level access control model which allows to use the

class, object instance, or the instance-variables as the unit of authorization

and labeling.

• Design a formal verification protocol to check the correctness of the access

control model.

Chapter 4

A Cryptographic Mechanism for

Discretionary Access Control in

OODB Systems

4.1 Introduction

In an OODB system model classes, inheritance, and composite data structures

allow to express rules for computing implicit authorizations from explicit ones.

Hence, an access request to O O D B objects may require to apply authorization

rules on explicit privileges to derive implicit authorizations. An important ques

tion is whether implicit authorizations must be evaluated each time an access

request is processed, or they should be computed and stored as redundant autho

rizations. If the implicit authorizations are stored, the size of protection matrix

gets too big. As the result, the support of protection matrix and the process

of access requests become inefficient. In this chapter, we are going to suggest a

solution to this problem. The solution applies cryptographic hashing.

Inheritance (inclusion relation) and composite data structure (is part of re

lation) create hierarchical structures in O O D B systems [219]. An interesting

question is how to extend the known cryptographic solutions for hierarchical ac

cess control in O O D B systems. Two solutions were published in the literature.

One was based on the RSA cryptosystem [5] and the other applied one way hash

functions [225].

The main drawback of the first solution is that it is only applicable to a fixed

77

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 78

known hierarchy with no provision for possible changes to the hierarchy. More

over, the integer values associated with the nodes of the hierarchical structure

become extremely large when the number of nodes is large. W e use the second

solution, proposed by Zheng, Hardjono, and Pieprzyk [225], which is based on

the sibling intractable function families (SIFF), and we show how to develop a

cryptographic solution for discretionary access control (DAC) in O O D B systems.

The solution applies pseudo-random functions, SIFF, and an authorization class

(instead of access control lists or protection matrix). The advantages of our

approach are as follows.

1. Pseudo-random functions and SIFF are used to produce a pair of unique

and secure access keys and passwords for each database object (instances

or classes) and its owner. Access keys and passwords for implicit autho

rizations may also be derived from related database objects during query

processing.

2. An authorization class (AC) is employed instead of access control lists (or

protection matrix). A C stores the current state of authorizations and use

SIFF to derive authorization-instance identifiers associated with users. This

results in a system that is more efficient and practical. This is true because

any alteration of the membership of user groups requires manipulation of

AC only rather than checking all access control lists in the database. More

over, because of data structure consistency, database system operation can

be used to manipulate AC. Hence, an access request may be verified during

query processing.

3. The security of the system relies on the indistinguishability of pseudo

random functions from the truly random one and the difficulty of finding

collisions for SIFF, both of which are known to be difficult [225].

4. Operations such as grant, revoke, propagation of rights, and the required

changes due to the alterations of the user groups and of the class structure

are relatively easy to perform.

5. The existence of multiple owners of a database object (instances and classes)

is possible.

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 79

4.2 Background

Denote by & the set of all positive integers, n the security parameter,]C the

alphabet {0, 1} and l(n), k(n), and m(n) polynomials in n from N to N.

4.2.1 Sibling Intractable Function Families (SIFF)

Zheng, Hardjono, and Pieprzyk [225] introduced the notion of sibling intractable

function family (SIFF) which is a generalization of the concept of the universal

one-way hash function defined by Naor and Yung [151]. A universal one-way

hash function is a class of hash functions with the property that the number of

functions that map any collection of r distinct input strings to the same hash value

is fixed. SIFF is the universal one-way hash function family with the additional

property that given a set of colliding sequences, it is computationally infeasible

to find another sequence that collides with the initial sets. This means that if a

SIFF function h maps the bit string xx, x2,..., xt- to the same string, it must be

computationally infeasible to find another string x' such that

h(x') = h(xx) = ... = h(xi).

In the following, we give the definition of SIFF [103, 225] which is used in this

chapter. For detailed discussion, the reader is directed to [103, 225].

Let x €/? X denote an element x which is randomly chosen from the set X

with the uniform probability. A sibling finder F is a probabilistic polynomial time

algorithm that is given an input X = {xx,x2,... ,X{} and the description of h,

where x{ G £
/(n) and h is a hash function that maps x1}x2,... ,x{ to the same

string. The finder F outputs either "?" ("I cannot find") or a string x' 6 £/(n)

such that x' £ X and h(x') = h(xx) = ... = h(xi).

Definition 4.1 Let k(n) be a polynomial with k(n) > 1 and H = {Hn\n €

N} be a family of functions that are computable in polynomial time and sam-

plable. Moreover they have the collision accessibility property and map l(n)-

bit input into m(n)-bit output strings Hn = {h\h : £/(n) ->]Tm(n)}. Assume

X - {xx,x2,...,Xi} be a set of i initial strings, where 1 < i < k(n). H is a k-

sibling intractable function family (or k-SIFF) if for all 1 < i < k(n), any sibling

finder F, any polynomial Q(n), and for all sufficiently large n,

1
Pr{F(X,h)^}< QW

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 80

where h is chosen randomly and uniformly from H* C Hn. H* is the set of all

functions that map Xx,x2,...,Xi to the same strings in YT
{n)• The probability

Pr{F(X,h) ^?} is computed over H* and the sample space of all finite strings

of coin flips that F could have tossed [103, 225]. •

4.2.2 Sketch of Implementation

As mentioned in [225], SIFF can be constructed from any universal one-way hash

function family (OW H F) . Figure 4.1 illustrates a possible construction of a k-

SIFF hash function.

OWHF : OneWay Hash Function

k-UHF: k-Universal Hash Function

Figure 4.1: A sketch of Implementation of k-SIFF hash function.

The OWHF can be any one-way hash function such as MD4, MD5 [172, 173],

or H A V A L [226] for which a fast hardware implementation is available. Note that

the security of M D 4 , M D 5 , or HAVAL has not been proved formally, however no

major weaknesses of these functions have been reported. As stated in [220, 225],

a possible candidate for a k-universal hash function family (k-UHF) with the

collision accessibility property are polynomials over finite fields.

4.3 Security Policy

The specification of access control may involve a range of policies choices. The

choice of policies for security is important because it influences the flexibility,

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 81

usability, and performance of the system [82]. In this chapter, our considerations

are restricted to the D A C .

4.3.1 General Policies

In the authorization system for an OODB system, the granularity of the control,

i.e., the smallest unit of authorization, may be a class, an object-instance, or a

property (or instance variable) [169]. W e choose the units of authorization to be

classes and instances of classes. It means that one user m a y be granted access to

a complete class, while another user may be granted access to its instance. W e

will use the term entity to refer to either a class or an instance of a class.

A n authorization system allows a number of possible access privileges on the

protected entities. W e assume the following set of privileges in the authorization

system: read-definition, read, write, delete, execute, and create. The privileges

are partially ordered such that authorization to access privileges of higher order

implies authorization to access privileges of lower order. The assumed order is:

write > execute > read > read-definition,

create > execute > read > read-definition, and

delete > read > read-definition.

It is worth noting that the execute privilege is used to call and execute methods

associated with the class of an object, and implies read and read-definition rights.

It means that the method can access the required definitions and value of instance-

variables and objects, and the holder of the execute privilege can access the return

result of the method as well. The state of the object will not change. In order to

change the state of an object, the privilege write is required.

Our authorization system is chosen to be a closed system, i.e., each privilege

must be explicitly authorized. Hence, the absence of appropriate authorizations

is interpreted as "access not allowed".

4.3.2 Administrative policies

Administrative policies determine who is allowed to grant and revoke authoriza

tions to entities (classes or objects). There are two approaches: centralized and

decentralized administrations. In centralized administration, the grant and re

vocation of authorizations are done by a special user or users called database

administrator or security officers. The centralized administration is sometimes

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 82

too restrictive. In decentralized administration, users are allowed to grant and

revoke authorizations by applying ownership policy or other mechanisms. Here,

we use the decentralized administration and allow each entity to have its owner.

Users are grouped and each group has its sponsor who gives authorizations to

members of the group. The database administrator (security officers) duties in

clude admitting new users to the database system and revoking/replacing the

ownership.

Each entity (object or class) has its owner. Whenever a user creates an entity,

(s)he will be its owner and have the full authority over it. The owner of the entity

grants and revokes privileges for other users. The owner authority is limited to

the entity (s)he created. The owner has only implicit read-definition, read, and

execute privileges to the entities which has relationships with the owner entity.

The owner must get permission explicitly for other privileges such as write, delete,

and create. The ownership can also be granted and revoked by the creator of the

object.

It is worth noting three points. First, each class has its owner and the owner

can be different from the owners of the class instances. Owners of classes have full

authority over their classes, and have implicit read-definition, read, and execute

authorization rights on relevant instances of classes. Second, an authorization on

a class propagates to instances only when the grantor has the same rights or is

their owner. Third, a user must have create privilege in order to create an object

of a class.

A group is defined as a set of users or a collection of smaller groups. Groups

are not necessarily disjoint. This means that a user may be a member of more

than one group. Groups may be members of other groups provided they do

not belong (directly or indirectly) to any of its members. The resulting group

hierarchy has to be a directed acyclic graph. Figure 4.2 shows an example of a

group hierarchy.

Each group has its sponsor who administers it. The sponsor can add new

members to the group or remove members from the group. Any user who has the

sponsorship privilege may create a new group and grant the sponsorship privilege

to other users.

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 83

Figure 4.2: User groups Hierarchy.

4.3.3 Implicit policies

There are two different types of object hierarchies in O O D B systems: class-

composition and class-inheritance hierarchy [126]. To access the full information

regarding an entity, a user requires to have the same authorizations along the

hierarchies. There are two policies: visibility from above and visibility from below

that define how an explicit authorization may propagate along the hierarchies

[130].

In the object-composition hierarchy, the root corresponds to a complex object

and other objects in the hierarchy define its internal structure. If users are autho

rized to access the root, they should also be authorized to access all information

of the descendants of the root. This is called visibility from above.

The classes can also be organized in the inheritance (class/subclass) hierarchy.

In this case, the access to a subclass implies the access to all objects of the

superclasses in the inheritance hierarchy.

In order to indicate how privileges are propagated along the hierarchy, different

types of authorization should be identified. T w o possible types of authorization

are: partial and full [169].

In the object-composition hierarchy, a user with the full authorization for a

set of privileges (can be read-definition, read and/or execute) over an entity has

the same rights to the components of the entity, i.e., the entities that form the

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 84

structural part of the entity. In the case of the partial authorization, the access

to an entity does not extend to its components.

In the inheritance hierarchy, when users have the full authorization for a set

of privileges (the set can include read-definition, read and execute) over an object

of a subclass, they have implicitly the same rights to the relevant objects of the

superclasses. In the case of the partial authorization, a user can access the object

only. However, users that are given authorizations to an object of a class, will

not be authorized to access the objects of subclasses of that class unless they are

authorized explicitly or are the owners of the objects of those subclasses.

Note that for other privileges such as create, write, and delete, the user must

be explicitly authorized by the owner of the related objects, unless the two objects

have the same owner.

4.4 Notations, Assumptions, and Definitions

4.4.1 Notations

• Oi and 01 Di are the names of the i-th object and the i-th object identifier,

respectively. C; is the name of the i-th class. Ei denotes the i-th entity

name (object or class) which can be either Oi or Ci. Uj denotes the j-th

user login-name. ACIDj^^k is the authorization-instance identifier of the

user Uj for the object Ei granted by Uk- W e use an n-bit string to represent

OIDl, 0{, Ci, Uh and ACIDjti,k.

• PSj denotes the login password of the user Ur This password is chosen by

Uj. It is long enough and is kept secret by Uj.

• || and © denote concatenation and exclusive-or (XOR), respectively.

• TM and DBMS denote a tamper-proof module, and a database management

system, respectively.

• Kdb is the database cryptographic key which is kept in a secure place and

is only accessible to TM. {x}Kdb stands for the ciphertext of x generated

using the key Kdb-

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 85

4.4.2 Assumptions

1- F = {-Fn|w G N} is a pseudo-random function family, where Fn = {/K|/A- :

En - En, tf e En}-

2. H = {Hn\n e N}, where # n = {/i|ft : £
2 " -> £"} is a k-SIFF mapping

2n-bit inputs to n-bit output strings. A: is a parameter which is chosen in

such a way that no database entity has more than k relevant entities and

no group has more than k users.

3. Random n-bit strings Krd, Kr,Kw, Ke, Kd, Kc correspond to read-definition,

read, write, execute, delete, and create, respectively. They are accessible to

TM only.

4.4.3 Definitions

Each class and object in our system has the following specification.

Definition 4.2 A class C is represented by a tuple:

(CNAME, PNAME, "class-struct", "method-list", SECURITY-INFO).

CNAME is a unique name of C given by its creator. PNAME is the parent name

of C. The "class-struct" is its structure, and "method-list" is the list of methods

that can be executed by users if they have the execute privilege. SECURITY-INFO

specifies class authorization information which is an aggregation of the CKEYS-

LIST and H-FUNCTION. CKEYS-LIST is a pair of access keys (Kf,Kf) cor

responding to partial and full authorization. H-FUNCTION describes the hash

function that must be used by the related classes to derive the access key Kf. •

Definition 4.3 The class-struct is [Pi : pi(Ti),..., Pk : pk(Tk)}, where Pi is a

name of property, T,- is a type name of the respective property and pi is an optional

type constructor, e.g. set-of, collection-of, array-of, ordered list, etc. The set of

type names includes the names of atomic data types like integer, real, string, etc.

as well as the names of classes that have been pre-defined. •

Definition 4.4 An object O is a tuple:

(OID, ONAME, CNAME, "state", SECURITY-INFO). OID is the identifier of

the object and created by DBMS. ONAME is the name of the object given by its

creator. CNAME indicates the name of the class to which O belongs, "state" is

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 86

the associated state of the object. SECURITY-INFO specifies object authorization

information which is an aggregation of the OKEYS-LIST and H-FUNCTION.

OKEYS-LIST is a pair of access keys (Kf,Kf) corresponding to partial and full

authorization. H-FUNCTION indicates the hash function that must be used by

the related classes or objects to derive the access key Kf of the object O. •

The definitions of superclass and ancestor are as follows.

Definition 4.5 Ancestor of class d is any class Ck such that either

(l)Ck = [...,Pl:Pl(Cl),...} or

(2) Ck = [... ,Pj : Pj(Cj),...] and Cj is ancestor of d. •

Definition 4.6 Superclass of d is any class Ck such that either

(1) d = (Ci,Ck,...) or

(2) Ck = (Ck, Cj,...) and Cj is a superclass of Ci. •

In order to enforce D A C security requirements and to protect an entity against

unauthorized accesses, the authorization system has to know the exact user priv

ileges. This can be accomplished by storing the explicit privileges and necessary

DAC information in the authorization class (AC).

Definition 4.7 An Authorization Class (AC) is a tuple:

(GRANTEE, ENAME, GRANTOR, MEMBER-LIST, DAC-INFO).

GRANTEE indicates the user who is authorized to access the entity. ENAME

specifies the entity which can be a class name or an object identifier. GRANTOR

names the user who has authorized the GRANTEE to access the entity. MEMBER-

LIST is the list of users who are the members of the group whose sponsor is the

GRANTEE. DAC-INFO specifies DAC information and has the form

(OP-RIGHTS, AUTH-TYPE, SPONSORSHIP, OWNERSHIP, H-FUNCTION,

PSWORD). OP-RIGHTS indicates the list of privileges which the GRANTEE has

on the entity (it could be read-definition, read, write, execute, delete, create, and

all; the word "all" is used to indicate all possible access privileges). AUTH-TYPE

(F or P) specifies full or partial authorization. SPONSORSHIP (YES or NO)

indicates if the GRANTEE can be the sponsor of a group (or groups) (indicated

by the GRANTOR), and is able to propagate their privileges to the group mem

bers. OWNERSHIP (YES or NO) specifies whether GRANTEE has ownership

privilege. H-FUNCTION indicates the hash function that must be used to derive

the grantor's password. PSWORD stores the user password. •

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 87

Note that the values of the DAC-INFO and SECURITY-INFO are encrypted

with the Kdb by TM.

4.5 Proposed Solution

Our main goal is to design a cryptographic mechanism for discretionary access

control in O O D B systems. Thus we will not consider other security issues such

as authentication and secrecy of stored data. To enforce authentication and

secrecy, the scheme proposed by Hardjono, Zheng and Seberry [101, 102] for

database authentication based on SIFF can be applied. A discussion of their

scheme is presented in Appendix A. W e assume that the user authentication is

done by the underlying operating system, and is secure. Also, we use a tamper

proof module (TM) to perform all necessary cryptographic operations, to generate

needed cryptographic elements, and to verify the validity of access attempts. The

security of T M relies on the security of underlying operating system and D B M S .

T M can be an interface between the user and the database system, or between

the database and physical layer, or a separate function in the database system.

Figure 4.3 shows the position of T M when it is a separate function in D B M S .

D B M S provides essential authorization information such as the entity identi

fier and access privileges in plain form and user password, access key, and SIFF

in encrypted form to TM. Then T M evaluates the request according to the algo

rithms described in this section and Section 4.6, and passes the result to D B M S .

To protect an entity against unauthorized accesses, the authorization system

needs to know the users authorization rights. There are two possible approaches

to accomplish this. In the first, all authorizations either explicit or implicit are

stored. In the second, only explicit authorizations are stored, and implicit ones

are derived each time when the access request is processed. The first approach

is inefficient and time consuming when the number of object-instances is large.

The second approach is even worse if we use access control lists to store explicit

authorizations. Here, we show how to improve the second approach. To do so, we

propose a cryptographic mechanism using SIFF to evaluate implicit authoriza

tions from explicit authorizations stored in the Authorization Class (AC) each

time for checking validity of access request which is relatively straight forward

and efficient.

To allow access to an entity i (object or class), we must be able to produce

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 88

User Interface User Interface

l •'

"

Database Management System

DBMS

r_TM _
1 DBKey '

|_ O P Keys _,

Generate K & h
Encryption
Decryption

Obtain key

Checks

T M : Tamper-proof Module

D B Key : Database Key

O P Keys: Access Privileges Keys

Entity

Authorization instance

Figure 4.3: A possible implementation of TM.

access keys Kf and Kf for the entity. Kf and Kf correspond to the partial

and the full authorization, respectively. Kf can be derived from the access key

of the related objects. The relationship can be either the inheritance (is-a) or

the aggregation (is-part-of). In the case of the inheritance, the access key Kf

can be derived from the access keys of the instances of subclasses of the entity

i. Inheritance takes on four different forms specified in Chapter 2. Whereas in

the case of the aggregation, the Kf can be computed from the access keys of the

objects of ancestors of the entity i. In other words, the access key Kf guarantees

partial explicit authorization access, and Kf insures implicit authorization rights

along the hierarchies: inheritance, and composite. Every time a user requests the

access to a specific entity i either Kf or Kf is computed and compared with the

stored one by T M . If they match, the access is permitted otherwise denied.

Next, we discuss algorithms for the generation of access keys (Kf, Kf),

passwords, and SIFF associated with entities and users.

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 89

4.5.1 Creating

When a user Uj (with login password PSj) creates an entity Ei by running create

command, access keys for this entity are generated. Note that the entity can be

either a class C,- or an object Oi.

Case 1. Partial authorization.

Step 1. T M calculates the password njti = fps3(Uj © E{) of the user Uj for the

entity E{.

Step 2. T M selects at random the access key Kf for the entity Ei (Kf ER E n)

for partial authorization.

Step 3. T M selects at random a SIFF hash function hf ER Hn for partial au

thorization. The function has the following collisions:

hf(nh,\\K
rd) = hf(n3A\K

r) = hf(n^\K^) = hf(nJtl\\K
w) = hf(nj,t\\K

d) =

hf(n],l\\K<) = Kf (1)

TM also encrypts DAC-INFO, {("a//", "F", "yes", "yes" ,hf,nJti)}Kdb. The word

all is used to indicated all possible access privileges.

Step 4. D B M S creates the object (U3,Ei,U3, MEMBER-LIST, DAC-INFO)

which is an instance of the Authorization Class (AC).

Case 2. Full authorization.

Suppose that objects 0\x, 0\2,..., Oip with access keys Kf, Kf,..., Kf are re

lated to the object Oi (via either inheritance or aggregation).

Step 1. T M selects at random the access key Kf for the object Oi (Kf £# E n)

for full authorization.

Step 2. T M selects at random a SIFF hash function hf ER Hn for the full

authorization. The function has the following collisions:

hf (KfJK^) = hf(Kf\\IC) = hf(Kf\\K*) = hf(Kf2W
d) = hf(KfW) =

h!(Kf2\\K*) = ... = hf(Kfp\\K
rd) = hf(Kfp\\I<r) = hf(Kfp\\K<) = Kf (2)

Clearly, users who have access to related objects 0is (1 < s < p), can also access

the object Oi. The access to the object Oi is granted only if T M can regenerate

Kf from a pair (a related object keys 0\s and a suitable privilege key (K
rd,KT,

and Ke))- Note that in the case of inheritance, 0\s (1 < s < p) are instances of

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 90

subclasses of the object Oi. Whereas in the case of aggregation, Ois (1 < s < p)

are objects of ancestors of the object Oi.

Step 3. D B M S appends the hash function {hf) to the H-FUNCTION of the

object Oi.

Note the following two points. In the case of the full authorization of a class,

the associated access key Kf is computed first, then the full authorization keys

associated with the related to the class objects are derived from its instances. If

the owner of an entity is replaced by a new one or if the login password of the

owner has been changed, then in both cases the process prescribed above must

be done again.

4.5.2 Authorization Administration

To be complete, an authorization system must include mechanism for the autho

rization handling. Here, we present algorithms to perform the grant, revoke, and

ownership transfer operations.

Granting

Suppose that the grantor Uj has the password n^; for the entity E{. Assume Uj

wants to give access to Ei for m grantees f//15 U\2,..., Uim (with login passwords

P5/j, PSi2,..., PSim). If Uj runs the grant command, the following steps will be

completed. Uj can be the owner of Ei or the sponsor of a group.

Step 1. T M calculates the password niSjij = fpsh(^i ® Uj) of the grantee Uis

for the entity Ei, s = 1,..., m.

Step 2. T M selects at random a SIFF hash function hjti ER Hn such that

hjAnh,i,j) = hjAnh,ij) = • • • = hjAnim,u) = ACIDj^k

This step ensures that all grantees Uh,Ui2,..., Ulm (the grantees are member of

the group whose sponsor is the grantor Uj) can directly compute the ACIDj^^

of the Uj and access the authorization-instance related to the Uj for the entity

Ei granted by Uk-

Step 3. T M encrypts the DAC-INFO, {("access privileges", "P/F", "yes/no",

"yes/no", hj,i,ni,titj)}Kdb.

Step 4. D B M S creates the object (Uh,Et,Uj, MEMBER-LIST, DAC-INFO) as

an instances of the class A C (ACIDi^ij) for s = 1,..., m.

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 91

Step 5. DBMS updates the MEMBER-LIST of the authorization-instance re

lated to the grantor Uj.

Revoking

If a grantor Uk wants to revoke Uj authorization over the entity Ei, the following

steps have to be completed.

Step 1. D B M S deletes the associated authorization-instance ACIDjiitk from AC.

Step 2. T M selects a new SIFF with one less collision for the group whose

sponsor is Uk (the user Uj does not belong to the group anymore).

Step 3. T M replaces the old SIFF in the authorization-instance associated with

users in the MEMBER-LIST of the sponsor with the new one.

Step 4. D B M S updates the MEMBER-LIST associated with Uk.

Section 4.8 discusses in detail the impact of the group updating on the autho

rization system.

Ownership Transfer

An entity (class or object) can have several owners who may act independently.

Suppose that the creator of Ei is Uj and Uj wants to grant the ownership of Ei to

users Ur and Us by executing transfer-own command. The following steps must

be completed.

Step 1. T M computes passwords nTii = fpsr{Ur © Ei) and nSti = fpss(Us © Ei)

for new owners.

Step 2. T M selects a new SIFF hash function with the following collisions:

hf(njti\\K
rd) = hf(nJtt\\K

r) = *f(n*||#e) = hf(n3,%\\K
w) = ^ffcll^) =

hf(n3A\K
c) = hf(nT,\\K

rd) = hf(nrA\K
r) = hf(nr,\\K

e) = hf(nr,t\\K
w) =

hf(nr,\\K
d) = hf(nr,t\\K

c) = hf(ns,\\K
rd) = hf(ns,\\K

r) = hf(ns,\\K
e) =

hf(nsA\K-) = hf(ns,\\K
d) = hf (nsA\K

c) = Kf

Step 3. D B M S updates the instance in the A C for Uj and creates new instances

for Ur and Us.

Note that if the creator of Ei wants to revoke the ownership of Ei from the

user Us by executing revoke-own command. It is sufficient that T M selects a new

SIFF hash function with the following collisions:

hf(nhi\W
d) = hf(ndA\K

r) = hf (n^||/^) = h^niti\\K
w) = ti(nj<i\\K

d) =

hf(Ujtl\\K
c) = hf(nr,i\\K

rd) = hf(nrA\K
r) = hf(nr,\\K

e) = hf(nr,\\K
w) =

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 92

hf(nrA\K
d) = hf(nr,t\\K

c) = Kf

As the result, all privileges granted by Us to other users will be deleted as well.

If O W N E R S H I P is on and both G R A N T E E and G R A N T O R are U3, then U3

is considered the creator of the Ei.

4.6 Validation of Access Requests

The processing of a user query starts by checking if the user has appropriate

privileges to the entities specified in the query. This is done by the authorization

system.

In O O D B systems, the hierarchical structure of an entity may, or may not, be

included in the evaluation of the query and hence there are two forms of query:

simple queries and hierarchical queries. A simple query has the following form:

• retrieve Target-clause [from Entry-clause] [where Qualification-clause];

Target-clause denotes target entity names to be retrieved. Entry-clause

(from) denotes sets of entities through which the target entity can be ac

cessed. If the target entity is an object of a complex object, the Entry-clause

may denote any of the ancestors of the target entity. In the case of inher

itance hierarchy, the Entry-clause may denote any instance of subclasses

of the target entity. It is worth noting that if a user does not have an ex

plicit right to the target entity then it is essential for the Entry-clause to

be specified. Qualification-clause (where) specifies Boolean combination of

predicates that must be satisfied by the retrieved objects.

For a hierarchical query, the scope of the query also includes the hierarchical

structure of the target object. This is specified by putting "*" immediately after

the name of the object. A hierarchical query has the following form.

• retrieve Target-clause* [from Entry-clause] [where Qualification-clause]:

The syntax of the query is similar to a simple query. "*" indicates that the

hierarchy must be included in the evaluation of the query, i.e., the value of

all properties (or objects) of the entity specified in the Target-clause and

its relevant entities must be retrieved.

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 93

4.6.1 Access Validation

The access validation of a query is done in two phases. First, the authority of the

user who issues the query is checked, i.e., it must be checked whether the user

has proper authorization rights to entities which are requested. This is the user

validation phase. Second, the specified privileges to the entity retrieved by the

query are forced. This is the access validation phase.

Without loss of generality, we assume that the user Ui issues the query:

retrieve Ej* from Ei;

Phase 1. User validation.

Step 1. Retrieve the authorization instance related to the user Ui for the entities

Ej or Ei.

retrieve A C where

(GRANTEE = Ui and ENAME = E3 and PSWORD = fPSl(E3 © GRANTOR))

or

(GRANTEE = Ui and ENAME = Et and PSWORD = fPSl(Ei@ GRANTOR));

The verification that

(PSWORD - fPSl(Ei © GRANTOR)), or (PSWORD = fPSl(E3 © GRANTOR))

is done by T M . If there is no such instance of the Authorization Class A C then

the system rejects the request. Suppose that the verification has been successful

and the extracted instance is

(Ut,Ek,Uv, MEMBER-LIST,

{("access privileges", "F", "yes/no", "yes/no", hVtk,niti>tk)}Kdb) where k is either

j or i.

Step 2. Derive the password of the owner of the entity Ek, say Uw, i.e.,

whi\e(OWNERSHIP ^ "yes")do retrieve hVtk(PSWORD);

If OWNERSHIP is not on, T M obtains ACIDr,kfW = h[ljk(PSWORD). Then

D B M S retrieves the AClD\>,k,w instance of AC. Suppose that the derived pass

word and SIFF for the owner Uw of Ek are nWfk and hf, respectively (k is either

j or i). Then we enter the access validation phase.

Phase 2. Access validation.

Assume that

hp is SIFF hash function associated with a class,

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 94

hpK and hF are SIFF hash functions used for an object (partial and full),

Kp and KF are access keys used for a class (partial and full), and

Kp and KF are access keys associated with an object (partial and full).

The validation proceeds as follows.

Step 1. One of the following retrieve statements is executed (this depends on

the type of the entity (object or class)).

• If Ej is an object Oj, then

retrieve Od where

(hp0(nw,3\W) = Kp°)or

(hp°(nwA\K
r) = Kf° and AUTH-TYPE = "Fn and hf (Kf°\\Kr)=Kf°);

J \ C II / J / >

• If Ej is a class Cj, then

do (for all object 0S is in Cj)

retrieve 0S where

(hF(nv,j\\K') = Kfc)or
(hpC(nwA\K

r) = Kf° and AUTH-TYPE = "F" and hf° (Kf°\\Kr)=Kf°);

Step 2. Retrieve the objects which are in relation with the entity Ej (via either

inheritance or aggregation). Let 0S denote such an object.

retrieve 0S where

(hp°(nWJ\\K
r) = Kp° and AUTH-TYPE ="F" and hf° (KF°\\Kr)=Kf°)

or

(hpC(nWiJ\\K
r) = KpC and AUTH-TYPE ="F" and hf°(Kf°\\Kr)=Kf°);

After all 0S have been retrieved, the process finishes. In the above steps, all

checks are done by T M .

Note that the access key of instances of descendants (in the case of the compos

ite object) or the access key of instances of superclasses (in case of the inheritance

hierarchy) can only be derived from the access key of the entity. This ensures

that the access to the instances which are not related to the entity will never oc

cur. Furthermore, in the case of the partial authorization, the request for indirect

access will fail because the checks in Steps 1 and 2 are not satisfied, .

4.7 Object Restructuring

In an OODB system, objects or relationships might be deleted, added, or modi

fied. In this section, we consider the impact of these changes on our authorization

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 95

system.

4.7.1 Deletion of Objects

Objects in OODB systems can be deleted indirectly by altering database schema

or directly by using the delete privileges. For the indirect deletion, all objects of

database system has to be reorganized according to the new schema. For direct

deletion, we consider three possibilities: deletion from a leaf node, deletion from

an intermediate node, and deletion of a relationship. Deletion of an object from a

leaf node requires the authorization-instances corresponding to the deleted object

to be deleted from AC. Deletion of an intermediate object which is a part of the

composite object causes that the descendants of the deleted object become the

descendants of the parent of the deleted object. This requires the generation of a

new SIFF function that satisfies Equation (2) of Section 4.5.1 and replaces the old

SIFF function. If the deleted object is an instance of a subclass in the inheritance

hierarchy, it is logical to delete all objects of the lower subclasses of the deleted

object. Otherwise the objects of the subclass of the deleted object become the

objects of the superclass of the deleted object. New SIFF hash function which

satisfy Equation (2) of Section 4.5.1 must be produced for all objects of the

superclasses of the deleted object and replace the old ones. In both cases, it is

also necessary that the authorization-instances which correspond to the deleted

object have to be deleted from AC.

In an O O D B system, there are three types of relationship: (i) aggregation

relationship; (ii) generalization (or is-a) relationship, and (iii) association rela

tionship such as teaches, is-taught-by, supplies, is-supplied-by, etc. [174]. Note

that the modification of the data model may cause deletion of relationships ag

gregation and generalization. The deletion of the association relationship may

occur if the object is not associated with any objects.

Deletion of a aggregation relation may affect the composite object in two ways.

First, the deletion causes that a part of the component has been removed. In

this case, A C must be updated if the deleted part does not exist in the database

schema any more. Otherwise, due to the changes in the structure of the deleted

part, new SIFF functions for all objects of the deleted part must be regenerated.

A C is left intact. Second, the deletion may cause the changes in the hierarchy of

ancestors. In this case, new SIFF functions for all the objects of the descendants

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 96

must be reproduced.

The deletion of a generalization relationship may affect the hierarchy of objects

in two ways. First, deletion causes the superclasses of the low-level classes to

change. This requires that new SIFF functions for all objects of the superclasses

be reproduced. Second, the deletion causes that the hierarchy of the object is

removed. Hence the authorization-instance of the deleted object must be deleted

from AC. If the changes affects both the subclasses and the superclasses, new

SIFF for objects of the associated superclasses must be reproduced. A C is left

intact. Finally if a relationship with one or more objects is removed. New SIFF

functions with one less collision must be selected. SIFF functions are replaced by

the new ones.

4.7.2 Addition of Objects

An object might be added to the database as an instance of an existing class, or

as a new object of a new class. In the first case (a new object of the old class), it is

sufficient to complete the process described in Section 4.5.1. In the second case (a

new object of the new class), we can distinguish the following three possibilities:

(i) a new class is added to a leaf, (ii) a new class is added to an intermediate

level, and (iii) a new relationship is created.

If a class is added as a new leaf, then a process similar to the one described

in Section 4.5.1 must be completed for all objects of the new class. Moreover,

since the subclasses of the superclasses have changed, new SIFF functions for all

object instances of superclasses must be regenerated.

If a class is added to an intermediate node, first, the process described in

Section 4.5.1 must be completed for objects of the new classes. Next, new SIFF

functions must be regenerated (see Step 2 of Phase 2 of Section 4.5.1).

In the case of the addition of new relationships, a new SIFF function as

described in Step 2 of Phase 2 of Section 4.5.1, must be regenerated for all objects

of its descendants or superclasses.

4.8 Grouping and Group Updating

When users have the grant authorization (specified by SPONSORSHIP), they can

create user groups and become the sponsors of them. They can give the privileges

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 97

to the members of the group by running the grant command (see Section 4.5.2).

Members of a group with the grant option (i.e., if SPONSORSHIP is on) can

propagate privileges to other users. They have a user group hierarchy similar to

the one shown in Figure 4.2. An important issue in the group hierarchy is the

group updating. W e can distinguish three possible cases of group modification:

1. a member of a group, who is the sponsor of the group, is deleted,

2. a new user or a group is added, and

3. a member of the group (or the sponsor of the group) is replaced by another

one.

The impact of above mentioned modifications on the group organization and

the updates they necessitate, are discussed below.

4.8.1 Deletion of Memberships

Deletion of memberships, in a group structure, is done by revoking the users

authorizations by the sponsor of the group that (s)he is a member of.

The deleted user is just a member of the group. It is required that the as

sociated authorization-instance is removed from AC, and a new SIFF function,

with one less collision is selected. The new SIFF function replaces the old one

in the authorization-instance associated with users in the MEMBER-LIST of the

sponsor. The MEMBER-LIST must be updated too.

The deleted user is the sponsor of a group. In this case, the authorization-

instance of the user and entries associated with the users (all members of the

group) must be deleted from AC. Note that even if the entries associated with

the users who are granted access by the deleted sponsor are not deleted, the

access to the entity by these users will be denied immediately after the deletion

of the sponsor. The same process, described before, must be done for the group

in which the deleted user is a member (a new SIFF function for the rest members

of the group must be regenerated).

4.8.2 Addition of New Memberships

A user who has the sponsorship privilege can grant his/her privileges to other

users who can be either an individual or a group sponsor. In any case, it is

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 98

required that the process described in Section 4.5.2 be completed.

4.8.3 Replacing

A member in a group can be replaced by a new member, or the login password of a

member in the group can be changed. The member can be the sponsor of a group

or a normal user. It is required that a new password for the member is selected

and then the associated authorization-instance of the member is updated. A new

SIFF for the group which the user is a member, is regenerated. If the replaced

user was the sponsor of the group, a new SIFF function would also be regenerated

for the group.

4.9 Security of the Authorization System

The authorization system is considered secure if it is computationally infeasible

for an insider/outsider to gain unauthorized access.

Proposition 4.1 Assume that the tamper-proof module (TM) is secure and is

run by DBMS only, and the computational power of an outsider is polynomi-

ally bounded. If the authorization system can be broken, then either the SIFF

scheme, or the pseudo-random functions, or the user authentication scheme, or

the cryptosystem used for encryption is insecure.

Sketch of the Proof:

The proposed authorization system is secure if it is computationally difficult

or simply "impossible" for an intruder to discover necessary information required

for request validity check in Step 1 of Phase 2 in Section 4.6 (this information is

secure).

More precisely, an intruder can gain the access to a protected entity in the

system if (s)he can provide the required secret information. The intruder has the

following possible options for the attack.

1. The intruder generates valid access key and an associated SIFF function,

and an access privilege key for entity j, Kf, hp, and K°v. This means that

the intruder is able to predicate the output of the pseudo-random function

and to find collisions for the SIFF function. This contradicts the assumption

that the pseudo-random function and SIFF are secure.

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 99

2. The intruder can guess or disclose the login password of the owner or one

of the grantees of entity j, say Ui, so the intruder can compute nij =

fps{(Ui © Ej), and access the authorization-instance associated with £//.

This means that the user authentication system is insecure.

3. The intruder modifies his/her own privileges or someone else's. For example,

the intruder modifies a partial authorization to a full authorization, changes

ownership, etc. If this happens, the ability of the intruder is equivalent to

breaking the cryptosystem which is used for DAC-INFO encryption. This

contradicts our assumptions.

4. The inside intruder who is authorized to access a component of the object

hierarchy, accesses high-level objects. This means that the intruder has

succeeded to invert the SIFF function which contradicts to the one-wayness

of the hash function.

4.10 Complexity of The System

As discussed before, there are two hierarchies in an 0-0 data model: inheritance

and composite hierarchy. D B M S evaluates the authorizations along the object

hierarchies. The most efficient way of the evaluation is to employ the proposed

hierarchical access control. There are two different approaches to the solution

of hierarchical access control problem. The first is based on RSA cryptosystem.

The second uses one-way hash functions.

In 1982, Akl and Taylor [5] were the first who proposed a solution to the hier

archical access control problem. Their solution is based on the RSA cryptosystem

[171]. There are several problems with this scheme. The scheme can work only

with rigid hierarchical structures and cannot be used in O O D B systems where

the database schema may evolve. Each node stores two integers. First integer

is a prime assigned to the node and the second integer is a product of primes

associated with other nodes that are not descendants of the given node. The

average length of the second component is large and hence expensive in terms

of the storage. Moreover, the entire system must be predefined by the trusted

central authority, and there is no way to expand or modify according to changes

of the hierarchy. Some other solutions to overcome these problems were pro

posed in [48, 104]. A common drawback of these solutions is that they are based

Chapter 4- A Cryptographic Mechanism for DAC in OODBS 100

on the difficulty of breaking the RSA cryptosystem, and make heavy use of the

underlying algebraic properties of the crypto-function.

The SIFF solution has several attractive features. The SIFF construction is

based on the assumption of the existence of a one-way function. So the SIFF

can be based on fast hashing algorithms such as M D 4 (M D 5 or HAVAL) instead

of very slow RSA system. Each node in the hierarchical structure needs to keep

only one key of the length n (n — 128 bits), and hence the required storage is

low. Moreover, expansion of SIFF according to the change of the hierarchy is

straightforward and easy.

Let us give a brief comparison of the time and space complexity of the SIFF

construction with the RSA one. Let k be the number of objects in the hierarchi

cal structure. Let n be the length of keys. Assume that M D 5 and polynomials of

degree k over finite fields GF(2n) (n = 128) are used to construct the SIFF hash

function. The system based on the SIFF requires O(log k) modular multiplica

tions of 128 bits long for key derivation (see Appendix B). Note that because

computation time of the pseudo-random function and M D 5 is negligible, it is ig

nored. If the RSA approach is used for authorization derivation and generation,

the time complexity of the system will be 0((k + l)\ogk) modular multiplica

tions of n bit long integer; n must be at least 512 bits long, that is four times

more. If the computation time of integers associated with objects is added up,

then the time complexity will be much higher. For example, if a typical size of

objects in the hierarchical structure is k — 210 then RSA would consume 1025.10

= 10250 modular multiplications of 512 bits while SIFF would take 10 modular

multiplications of 128 bits.

Let rn be the entire number of objects in the database. Each object in the

proposed system holds two keys and a hash function. Hence, the proposed SIFF

approach requires 0(3ran) space in total. Since n bit strings are compressed by

M D 5 , then it is sufficient that the length n be chosen close to 128 bits long. In

the RSA approach, each object holds a key. However the public parameters such

as integers must be stored too, then the total space is 0(3nmlog£;). Note that

n must be at least 512.

Finally, in order to increase the efficiency of the system and to benefit from the

order of access privileges, the lower access privilege can be inferred from higher

access privileges without the necessity of their storage. The access privilege keys

(Krd, Kr,..., Kc) can be chosen such that lower keys are computable from higher

Chapter 4. A Cryptographic Mechanism for DAC in OODBS 101

keys. This results in a shorter list of privileges. Also the SIFF function has a

smaller number of collisions. For example, Equation (1) in Section 4.5.1 can be

simplified as:

hf(n3A\K
w) = hf(n3il\\K

c) = hf(nhi\\K
d) = Kf.

4.11 Conclusion and Remarks

This chapter proposes a cryptographic mechanism for discretionary access con

trols in O O D B systems. The mechanism is based on unique and secure access

keys for each entity (object or class). Owners and user groups are identified by

their unique passwords. Pseudo-random functions and SIFF are applied in such

a way that access keys can be derived by the objects which have relationship with

or by the user who are members of the group. W e use an authorization class (AC)

to store security information, the A C information is used during query processing

to evaluate access request and enforce the security policy. The security of the

system is based on the difficulty of predicting the output of pseudo-random func

tions and finding extra collisions for SIFF functions, both of which are known to

be computationally difficult.

Object-instances based authorization system presents a finer granularity than

class-based authorization system and enables the control to be imposed for in

dividual objects. Note that as the numbers of users and objects in the system

grow, the number of instances in the Authorization Class A C will increase and the

security enforcement and manipulation of the object structure become resource

expensive. To alleviate this problem, view mechanism can be used to define views

which contain objects with same owners or grantees. Views can be applied as the

units of authorization in the system.

Chapter 5

An Authorization Model Based

on Views

5.1 Introduction

A view or a virtual class can be used for protection by allowing subsets of data

to be seen/manipulated by users with required privileges. Views can be used

to provide the desired level of granularity if a powerful enough query language

is used for their definition. They can also provide an object content-dependent

authorization.

Several authorization models for O O D B systems, which support discretionary

or mandatory access control, have been defined [17, 78, 80, 114, 123, 130, 144,

149, 169, 160, 210](see Chapter 3 for detailed discussion). However, none of them

support content-based access control on instances of a class. Recently, several

authorization models based on methods, which support content-based authoriza

tion, have been proposed [4, 32]. This approach has the drawback that method

specification depends on authorizations. Therefore a change of the authorizations

requires a change in the specification of the methods. Bertino and Weigand [30]

used a constraint language to provide content-dependent authorizations for the

authorization model [169]. The main problem of this solution is how to efficiently

evaluate conditions associated with authorizations in the model implementation.

In particular, enforcing the conditions expressed in the authorizations by filter

ing the data prior to user access requires a double access to the object (one to

102

Chapter 5. An Authorization Model Based on Views 103

evaluate the conditions and the other to evaluate the user query). A way to pro

vide content-based authorizations is to define views containing conditions on the

values of specific instance-variables of the classes. In relational database systems,

queries are modified by adding the conditions expressed in the authorization to

the user query (this is known as the query modification mechanism). The view

based authorization ensures that the protection requirements are satisfied. At the

same time the access control is not overloaded. Moreover different levels of gran

ularity (such as class-based, object-based, method-based, and instance-variable

based authorizations) can be provided by suitable view definitions which can be

adjusted to the user needs.

The purpose of this chapter is to discuss views in O O D B systems and their

application to enforce discretionary access control policies. In particular, we

are going to address the problem of time and content-dependent authorizations.

To improve the flexibility of the view model and consequently guarantee the

operational security of the system, parameterized views are introduced. Such

views extend the view model given by Bertino [31] with parameters which are fixed

at the time of a view evaluation. Four types of inheritance between base classes

(or views) and derived views are considered: specialization inheritance, constraint

inheritance, strict constraint inheritance, and proper specialization inheritance.

This chapter is organized as follows. Section 5.2 provides an overview of the

view model proposed by Bertino in [31]. Section 5.3 discusses how view hier

archies can be inferred from class hierarchies and view definitions. In Section

5.4, the access view as a tool for the access control is introduced and security

requirements for the discretionary access control are given. Section 5.5 formu

lates implicit authorization rules for each domain of authorization (user, view,

privilege). Section 5.6 presents the way how the validity of an access request can

be checked. Finally, Section 5.7 summarizes the chapter.

5.2 View Model

In the relational data model, a view is defined as a virtual relation derived by a

query on one or more stored relations. The relational operations join, select, and

project may be used to define a view. Views can be used in (almost) any query

where relations can also be applied. Furthermore, privileges may be granted and

Chapter 5. An Authorization Model Based on Views 104

revoked on views as on ordinary stored relations. This feature allows the content-

based authorization on stored relations. Therefore, views can be used for both:

data protection and user convenience.

Views in an O O D B system model have been considered in a number of papers

[1, 31, 63, 107]. However, there is no consensus about the form of the view

model for O O D B systems. Until such standard becomes available, the choice of

a view model is to some extend arbitrary. Here, we consider the view model

which was developed by Bertino [31] and describe how security properties might

be incorporated into such model. Note that while the authorization model is

developed in the context of the view model proposed in [3.1], the essential ideas

are widely applicable.

In [31], Bertino provides a view model for O O D B systems that extends typical

view models of relational databases. In Bertino's model, as in relational systems,

a view is defined by a query on one or more classes, called base class(es). To

make the view model suitable for usage in O O D B systems, several additional

features are provided. Views with additional properties that are not derived from

the base classes are introduced (additional-properties). The view model is not

restricted to a structural model but also has behavioral features, i.e., a view may

have methods (methods). A method can be derived from the base class(es),

with the same or different name, or it can be created for the view. In order to

re-use existing view definitions in the specification of a new view, a new view

may be defined as a subview of other views (these views are called superviews).

For detailed discussion of the view model and its usage for user convenience, the

reader is referred to the Section 2.4 of Chapter 2.

5.3 Inferring the View Hierarchy

From Bertino's view model [31], two types of view hierarchies may be constructed.

The first is the composite (or is-part-of) hierarchy. An instance variable specifica

tion (provided with the keyword additional-properties) consists of the variable

name and the domain where the domain can be a class or a view. Then an in

stance of a view may be the aggregation of a set of objects, each of which belongs

to some class or view. Such an aggregate view is sometime called a composite

object, and we call it a composite view.

The second view hierarchy is the inheritance (or is-a) hierarchy. A view

Chapter 5. An Authorization Model Based on Views 105

hierarchy can be defined for a view (using superviews), as well as being derived

from the view definitions which is called implicit (inferring) view hierarchy. In

this section, we develop and formalize the idea of derived view hierarchies.

As pointed out in [1], a view can be constructed in two distinct ways: top-down

or bottom-up. In the top-down approach, large classes are divided into smaller

ones via specialization (a similar operation in relational systems is the selection

operation). In the bottom-up approach, small classes are combined to form larger

classes via generalization (the analogous operation in relational systems is the

union operation). The following two examples illustrate the construction of a view

using the top-down or bottom-up approach. Note that for examples presented in

this chapter, the university database schema shown in the Section 2.2.7 of Chapter

2 is used.

Example 5.1 Construct a view which returns the information of postgraduate

students who are from Australia. It is required that name, idno, subject, Gradu

ate-Date, and country are visible. •

One possible declaration of the view is as follows:

create-view Australian_Graduate_Students

select F.idno, F.name, F.Subject, F.GraduateJDate, F.country

from F-.FOREIGN

where F.status - "graduate" and F.country-"Australia";

This example shows how to construct a view using the top-down approach.

It illustrates the application of view mechanism that restricts the set of visible

object instances of a class (this is analogous to selection operation in the relation

systems). The view Australian-Graduate-Students contains a subset of object

instances of the class FOREIGN. It also illustrates the possible usage of view

mechanism that restricts properties which are visible. This is similar to the

projection operation in the relational systems.

Example 5.2 Define three separate views such that the first two views contain

software supporters and programmers, respectively and the third one contains both.

•

One possible way to define such views is as follows:

Chapter 5. An Authorization Model Based on Views 106

create-view Software_Supporters create-view Programmers

select E select E

from E: EMPLOYEE from E: EMPLOYEE

where E.profession= "software-supporter"; where E.profession=

"programmer";

The views Software-Supporters and Programmers contain object instances of

the class EMPLOYEE that are software supporters and programmers, respec

tively. They are examples of the top-down approach without projection opera

tion. The next view contains object instances of both views. It is an example of

the bottom-up approach.

create-view Technical_Staff

select P, S

from P:Programmers, S:Software_Supporters;

In general, a view defined using top-down or bottom-up approach can be cat

egorized as follows.

T. Top-down Approach. Suppose that a view V is derived from a class (or

a view) C. Then the view V:

Tl. inherits all properties of C, and the set of instances of V is a

subset of instances of C;

T2. has more properties and/or methods than C;

T3. has fewer properties and more methods (or vice versa) than C;

and

T4- has fewer properties and methods than C.

B. Bottom-up Approach. Suppose that the view V is defined over classes

(or views) Cx,..., Cn. Then one of the following cases may happen.

BI. V inherits all common properties and methods of the base classes

(or views). It contains all common instances of C\,... ,Ck, and se

lected instances of Ck+x,- • •, Cn. Note that if Ci,...,Ck are not re

quired to have the same properties, then the view V may have fewer

properties and/or methods than the base classes (or views).

Chapter 5. An Authorization Model Based on Views 107

B2. V inherits all properties and methods of the base classes (or

views) ifCx,. ..,Ck have the same properties. V includes all instances

of Cx,... ,Ck, and selected instances of Ck+X,... ,Cn.

B3. V contains all instances of Cx,...,Ck, and selected instances

of Ck+1,... ,Cn. V has more properties and/or methods than base

classes (or views).

Based on the above discussion, we can distinguish four types of inheritance

relationship among classes (or views) and derived views.

1. Specialization inheritance.

Views inherit all the properties of the base classes (or views), and they also

have some additional properties and/or methods. Examples are cases T2,

and B3. In the case T2, the view V is a specialization of C, or in other

words V is a subclass (or subview) of C. In the case B3, each Ci is a

subview (or specialization) of V for 1 < i < k. Moreover, if a class (or

view) D is a superclass (superview) of base class(es) (or views) then D is

also a superclass (superview) of V.

2. Constraint inheritance. Views consist of all instances of base classes (or

views) that satisfy given constraints (cases Tl, and B2). In other words,

every instance of the view is also an instance of the base classes (or vice

versa). Hence, the view is a subview of base class (or vice versa). For

example in case Tl, V is a subview of C as every instance of V is an

instance of C. In case B2, Ci (1 < i < k) is a subview of V since every

instance Ci (1 < i < k) is an instance ofV.

3. Strict constraint inheritance. Views not only consist of all instances of

the base classes (or view) that satisfy given constraint, but there are fewer

properties and methods than in the base classes (or views). In other words,

the view not only filters out the instances of the base classes (or views) but

also projects the properties (see cases T4 and BI). V is a strict subview of

C (case T4). In the case BI, V is a strict subview of d for 1 < i < k.

4- Proper specialization inheritance. Derived views filter out the in

stances of the base classes and project the properties. They also contain

new additional properties or methods (see the case T3). Views consist of

Chapter 5. An Authorization Model Based on Views 108

all instances of the base classes (or views) that satisfy the given constraint.

They do not inherit all properties or methods of the base classes (this contra

dicts the principle that a subclass must inherit all properties and methods of

superclasses). They have new additional properties or methods. Therefore,

derived views cannot be specialization of the base classes because they do not

inherit all properties of base classes. Moreover, they cannot be strict sub-

views of base classes since they have additional properties and/or methods.

Hence, the view V is a proper specialization of C.

5.4 Authorization System

As described in the previous section, view definitions use predicates on the val

ues of properties of a class, and combine the object values of several classes to

access objects that meet the specified conditions. If authorization is granted on

a view, the access is restricted to the object instances that are filtered by the

view. Hence, views provide a powerful and flexible mechanism for authorization

based on database contents. They can be used to provide the desired levels of au

thorization granularity such as class, object, instance-variable, or method-based.

Examples 5.3-5.6 show how a view model can be applied to provide different levels

of granularity.

E x a m p l e 5.3 Define a view Students Jnfo which contains all information related

to all students (class-based authorization) .•

create-view StudentsJnfo

select S

from S: STUDENT;

Example 5.4 Define a view which contains information related to a particular

student, say student with id number 9272860 (object-based authorization). •

create-view Student_9272860

select S

from S: STUDENT

where S.idno=9272860;

E x a m p l e 5.5 Define a view which contains name, subject, and Start-Date re

lated to all students (instance-variable based authorization). •

Chapter 5. An Authorization Model Based on Views 109

create-view Students_Name_Subject

select S.name, S.subject, S.Start_Date

from S: STUDENT;

Example 5.6 Define a view which contains the method associated with class

STUDENT, Comp-GAP(). The method outputs the greatest average point (method-

based authorization). •

The method Comp-GAPQ computes the associated value with the instance

variable GAP related to each student. Then, it is possible to define a view

Computing-GAP as follows:

create-view Computing_GAP

methods Comp-GAP()

from STUDENT;

The view Computing-GAP can access only the method Comp-GAPQ. If a user

has execute right on the view Computing-GAP, (s)he can execute the method as

sociated with the view. Therefore, a view model provides the facility which creates

different interfaces for a class and views can be used as units of authorizations.

Furthermore, views provide a useful mechanism for efficient access control

with less storage in an authorization system based on object instances. This is

true because view mechanism provides a facility to group objects which share

the same access control list. Hence, the maintenance of authorizations becomes

easier.

The access rule in a database with views, can be formally defined as follows.

Definition 5.1 An access rule is a triple (u,v,r) where

u G U, U is the set of users/roles in the system;

v G V, V is the set of views defined in the system; and

r G R, R is the set of privileges. •

The triple (u, v, r) means that a user/role u has an access right r on a view v.

Before we discuss the use of views in object-oriented databases to enforce the

discretionary access control, we need to answer the following questions: "who is

a user?", "what is the unit of authorization?", "what is the set of privileges?",

"who can grant/revoke authorizations?", "which security requirements must be

considered?", "how to enforce the security requirements?", etc.

Chapter 5. An Authorization Model Based on Views 110

To answer these and other questions, we first introduce the notion of access

view. Later, we use access views to give answers to the above questions. W e also

consider the impact of the hierarchical structure of each domain of access rule

(user, view, privilege) on the authorization system.

For the rest of the chapter, we assume that the proposed authorization system

uses positive authorization policy which requires explicit specification of allowable

access privileges. The lack of authorization for a user to a view implies no access

to the view. W e denote by u a user/role identity, v a view, r a privilege, t an

authorization type, op an access privilege (access mode), V the set of views, U

the set of users, and R the set of privileges.

5.4.1 Access Views

In order to enforce security requirements and to protect an object against an

unauthorized access, the authorization system has to know the exact users privi

leges. This can be accomplished by the creation of access views. An access view is

an extended view that in addition to the view specification has an authorization

list for the discretionary access control.

Definition 5.2 An access view is a view that includes the view specification plus

a discretionary access control list. The format of the access view is as follows:

access-view Viewname[parameters]

- view specification as described in Section 2-4 of Chapter 2

Auth-Spec authorization-information

Viewname is the name of the access view, and must be different from the

names of other access views and classes. Auth-Spec specifies authorization in

formation which is an aggregation of the ownid and A C L . ownid denotes the

identity of the view owner and A C L indicates the access control list associated

with the view. •

To increase the flexibility of the view model and to provide possibility to define

time-dependent authorizations, we allow parameterized access view. Parameters

are bounded to the actual values at the time when the view is evaluated. Suppose

that we want every employee to be able to access their own personal information.

One way to do so is to define a view (see Example 5.4) for each employee. When

Chapter 5. An Authorization Model Based on Views 111

the number of employees are large, this implementation of access control is ineffi

cient. A better way is first to define a view and later to create a role (or a group)

which specifies the collection of all employees who are authorized to access the

view.

Example 5.7 Let a user Ux create a view Personal-Info which consists of idno,

name, address, age, and spouse. The user Ux gives privileges (t, read) to a role

(or a group) Employee. •

access-view PersonaLInfo(CurrentJdno)

select P.idno, P.name, P.address, P.age, P.spouse

from P:PERSON*

where P.idno = Current Jdno

Auth-Spec.ownid ux

Auth-Spec.ACL {(Employee, (t, read))};

The instance of the above view is based on the CurrentJdno which gives the

current identity number of an employee who uses it. If employees are allowed to

access their information only during working hours (9 am to 5 pm), the following

modification of the above view is sufficient. Time gives the current system time.

access-view Personal_Info(Current Jdno, Time)

select P.idno, P.name, P.address, P.age, P.spouse

from P:PERSON*

where P.idno = CurrentJdno and Time > 9 and Time < 17

Auth-Spec.ownid ux

Auth-Spec.ACL {(Employee,(t,read))};

The authorization specifications can be read by users who have access to the

view but they can only be modified by the owner of the view, or users who have

the grant or revoke authorization.

In general, the meta-data of a database system in the view model consist of

two classes of data. Conceptual data are mapped to the stored data. In the

case of object-oriented databases, these are called classes which are mapped to

the stored objects. Each object is an instance of a class. Views are declared (or

created) based on the classes or pre-defined views. Therefore, there can be two

classes of users: those who are allowed to access/manipulate classes, and those

who are authorized to access objects through views only.

Chapter 5. An Authorization Model Based on Views 112

Authorization Rule 1 There are two classes of users: security officers and

normal users. Security officers supervise the entire database activities and are

responsible for creating views based on classes. Furthermore, they create classes

and perform schema changes. Normal users can only access data through access

views. •

Users may want to create subviews or superviews. They can create new views

based on pre-defined views if they have create-view or ownership privileges on the

base views.

Authorization Rule 2 A user can create an access view over other views if the

user owns the views, or has the create-view authorization on the base views. •

When a user creates a view, (s)he becomes its owner. This is specified by the

ownid. The owner has the full authorization to the view and determines who

can access it and how.

W e assume that there are two sets of privileges: view privileges, and view-

instance privileges. View privileges are used to manipulate the view definitions

and typically are: delete-view, create-view, modify-view, grant, and revoke. View-

instance privileges are used to access and manipulate the instances of a view. A

typical collection of privileges is: read-definition, read, write, and delete (see

Section 5.5.2).

Authorization Rule 3 The creator of a view is its owner. The owner of the

view specifies other user privileges for all view privileges but the owner can grant

other users only view-instance privileges that are authorized on based views. •

Authorization Rule 4 The ownership is transferable to other users. However,

at any time a view has a unique owner. •

The authorization system must check if users have suitable authorizations to

perform the requested operations on views. Hence for each view, a unique A C L

is defined. It lists who and how users can access the view.

Definition 5.3 The access control list (ACL) of a view v is a list of pairs (u,r)

where u is the identity of a user(or role) and r is a privilege granted to the view

v. •

Chapter 5. An Authorization Model Based on Views 113

Views (consequently access views) can have additional properties whose types

can be pre-defined views or classes (composite views). Also we m a y have a query

whose scope of access can be a view (class) and its subviews (subclasses). In such

cases, it is essential to determine whether an authorization to the root of a view

is to be extended to all its constituents.

Rabitti, Bertino, Kim, and Woelk [169] distinguished two types of authoriza

tion for composite objects and class-hierarchy object access. They called them

full and partial authorizations.

The full authorization implies the same privileges on each component of the

composite object or on each class of the hierarchy. However, the partial autho

rization does not extend privileges to the descendants of composite (or class-

hierarchy) objects. W e here employ the same concept.

Definition 5.4 A privilege r has a form of (t,op) where t denotes the type of

authorization, and op indicates the access privilege such as read-definition, read,

write, delete, execute, create-view, modify-view, delete-view, grant, and revoke. •

An access rule (u,v,(t,op)) states that a user u is authorized to execute an

access privilege op of type t on a view v.

There are three types of hierarchy: user-role, view, and composite hierarchy.

For every hierarchy, it is required to determine whether privileges to the root node

of hierarchy should be extended to its descendants. Consider the authorization

type t and how it can be extended. It is reasonable to assume that full (F) or

partial (P), can be applied to all three types of hierarchy. This approach is simple

but is not flexible. Alternatively, we can determine authorization type t for each

hierarchy independently. In this case, the authorization type t will become a

triple such that each element determines the associated authorization type for

the three possible hierarchies. W e have chosen the second approach.

Definition 5.5 An authorization type t is a triple (tx,t2,tz) where tx indicates

the type of authorization for user-role hierarchy, t2 - for view-hierarchy, and £3 -

for composite hierarchy. t{ (i = 1,2,3,) can be either F (full) or P (partial). •

We assume that partial (P) authorization for each type of hierarchy will be

come effective unless full (F) authorization is explicitly specified, i.e., the partial

authorization is the default option.

Chapter 5. An Authorization Model Based on Views 114

Example 5.8 Let a user ux create a view Adult. Assume that Ux gives the fol

lowing authorizations ((P, F, F), read), write, and ((, F, P), read) to users u2,u3,

and U4, respectively. •

The access view Adult may look like the following:

access-view Adult

select P

from P:PERSON*

where P.age > 21 and P.age < 95

Auth-Spec.ownid Ux

Auth-Spec.ACL { (u2, ((P, F, F), read)), (u3, ((P, P, P), write)),

(u4,((P,F,P),read))};

The view Adult is declared on the composite class P E R S O N (the components of

the class P E R S O N are classes N A M E and A D D R E S S and the component of the

class A D D R E S S is the class TEL). Therefore, the full read authorization for the

user w2 implies that if2 can not only read the view Adult and consequently the

class P E R S O N but can also read the components of the class P E R S O N (AD

DRESS, N A M E , and TEL). The users u3 and u4 can only access the view Adult

and consequently the class PERSON. Moreover as indicated by "*" in the view

definition, the view population might be all hierarchical instances of the class

PERSON. So the full authorization implies the same right on all instances of the

view subclasses (or subviews). As the result, the view population includes all

hierarchical instances. Otherwise, it would just include the object instances of

the root node of the hierarchy only. For instance, users u2 and w4 can read all

constrained instances of the class P E R S O N including students, employees, sup

pliers, etc. However, the user u3 can only access constrained instances of the class

PERSON.

5.5 Implication Rules

In this section, we look at the impact of hierarchical structure (order) of domains

of the access rule (if, v, r) on the authorization system. W e employ these hierar

chical structures to provide deductive rules which improve the efficiency of the

authorization system. By applying deductive rules, implicit authorizations can

be derived from explicit ones .

Chapter 5. An Authorization Model Based on Views 115

5.5.1 Authorization Users

To reduce the number of explicit authorizations in the system, we can group users

according to their roles. The roles are usually organized in some hierarchical

structure [13, 169]. Therefore an explicit inclusion of the same authorization for

more special (or higher-level) roles can be removed, because the higher-level roles

will inherit authorization from those given to more general (or lower-level) roles.

This is a result of the principles of generalization and specialization. In many

situations, a natural hierarchy of roles exists (see Figure 5.1). A node of the graph

Admirwnanager

Academic-manager

Academic-clerks Accounts-clerks

Employee

Figure 5.1: A sample of user role hierarchy.

represents a role, and a directed arc from one role to another indicates that the

authorizations for the higher-level role subsume the authorizations for the lower-

level role. For example, the privileges for the role Personal-manager subsume

the privileges of the roles Academic-manager, Staff-manager, Academic-clerks,

PersonaLclerks, and Employee (see [169] for formal definition of role hierarchy).

Consider Example 5.7, having an explicit authorization rule (Employee, ((P, P,

F), read)) implies that all members of the role Employee can read Personal-Info.

It is clear that all higher-level roles must be allowed to read the view. If the

explicit authorization is the only way to allow users to access data, then the read

privilege must be replicated for all higher-level roles. The existence of many such

authorizations may lead to inefficiency. Therefore, this is a good idea to allow

higher-level roles to have all rights associated with lower-level roles. To derive

Chapter 5. An Authorization Model Based on Views 116

implicit authorization for roles, we can use the following rule.

Implication Rule 1 An explicit authorization for a role results in implicit au

thorizations for all higher-level roles. •

In our example from Figure 5.1, all higher-level roles, Academic-clerks, Personal-

clerks, Accounts-clerks, Accounts-employee, Academic-manager, etc., have read

privilege on the Personal-Info implicitly, by the above rule.

Because a role contains a set of users, it is possible to give privilege on a view

v to a role, rather than giving it individually to all members of the role.

Definition 5.6 The first element u in access rule (u, v, r) is either a user identity

or a role identity. If the role identity is determined, all users of the role u will

have the privilege r on the view v. Otherwise the specific user has the privilege.

•

Suppose the following view that contains information about casual employees

payments is defined. The required information are idno, name, rank, Hourly-Wage,

Weekly-Hours, and Weekly-Wage.

access-view CasuaLPayment(Current Jdno)

select C.idno, Cname, Crank, C.HourlyJWage, C.WeeklyJiours,

Weekly_Wage

from C C A S U A L

where C.idno = CurrentJdno

methods(numeric Weekly_Wage())

Auth-Spec.ownid ux

Auth-Spec.ACL {(Account-employee, ((P, P, P), read))};

where the method Weekly-Wage () computes the weekly payment of an employee.

read privilege for the role Account-employee means that members of roles

Account-employee, Account-manager, and Admin-manager can access the infor

mation (see Figure 5.1). Suppose we want that employees be allowed to access

their own information. If we grant read privilege to the role Employee (in fact

the tuple (Employee, ((P,P,P),read)) is added to Auth-Spec.ACL), then all

higher-level roles can also access it by Rule 1. The only way to solve this is to

grant read privilege to all individual employees. If the negative read authorization

for authorized roles is specified, conflicting authorizations may arise.

Chapter 5. An Authorization Model Based on Views 117

However, in our model, the role identity is given, and the first element of

the authorization type t will determine the type of authorization associated to

the role hierarchy. Therefore, by assigning full read authorization to the role

Account-employee ((Account-employee, ((F, P, P), read))), the same right will

be implied for the role Employee.

Implication Rule 2 Explicit full authorization for a role results in an implicit

authorization for all associated lower-level roles. •

For example, if the Academic-manager has full read privilege on a view v

(v can be considered to contain research area and grants associated with the

academic staff) then, all descendant roles of the Academic-manager such as Aca

demic-clerks, and academic employees will implicitly have the same authorization

on v.

W e assume that partial authorization right for roles will become effective

unless full authorization right is explicitly specified.

5.5.2 Authorization Access Privileges

As observed, a privilege r in our authorization system is of the form (t, op) where t

denotes the authorization type, full or partial, and op denotes the access privilege.

So we first define allowable access privileges (access modes) and then consider the

effect of authorization type t on the authorizations.

W e assume that an O O D B system provides two sets of system-defined methods

(called access privileges): view, and view-instance privileges. A typical collection

of privileges for view are create-view, modify-view, delete-view, grant, and revoke.

A view-instance privileges are: create, delete, write, execute, read, and read-

definition.

A create-view privilege is used to create views. A modify-view privilege is used

to change the definition of a view. A delete-view privilege is used to delete the

definition of a view, grant and revoke privileges are used to grant and revoke both

the view privileges, and view-instance privileges to and from users, respectively.

The grant and revoke authorizations cannot be propagated. This means that

only the owner of a view is allowed to give the privileges grant and revoke to

other users, read and read-definition privileges are used to read the instances of

a view and read the definition of a view, respectively. A n execute privilege is

Chapter 5. An Authorization Model Based on Views 118

used to perform the methods associated with a view. In other words, the execute

privilege can be considered as an invoker that can call methods associated with

a view. Write and create privileges are used to modify and to create an instance

of a view, respectively. A delete privilege is used to delete an object instance of

a view.

Definition 5.7 The set of privileges includes read-definition, read, write, delete,

execute, create-view, delete-view, modify-view, grant, revoke. We assume these

privileges are partially ordered and:

create-view > read-definition

modify-view > delete-view > read-definition

grant > revoke

write > execute > read > read-definition

create > execute > read > read-definition

delete > read > read-definition. •

This means that the holder of an access privilege of a higher order possesses

privileges of the lower order. For instance execute implies that its holder (a user)r

has both read and read-definition privileges because the user must be able to read

the values and definitions associated with the parameters of a method in order to

execute the method. To delete an object instance, a user must first access it and

later remove if. This implies read and read-definition authorizations. The access

right modify-view implies that the rights delete-view, and read-definition are also

allowed.

Using the above order and the following rule, it is sufficient to specify explicit

authorization only for the highest access privilege.

Implication Rule 3 // an authorization is given for an access privilege in the

privilege hierarchy, then this implies the authorization of all privileges below it.

a

Implication Rule 4 The full authorization for a privilege implies the partial

authorization for the same privilege. •

5.5.3 Authorization Views

In Section 5.3, we considered four types of inheritance among views. They were:

constraint, strict constraint, specialization, and proper specialization inheritance.

Chapter 5. An Authorization Model Based on Views 119

In general, if the base views contain more information than the derived views, it

is reasonable to assume that a user u has the privilege r on the derived view v

whenever the user has the privilege r on the base view w (constraint inheritance

and proper specialization inheritance).

However, in the case of the specialization inheritance and proper specialization

inheritance to preserve the view privacy, a privilege on a superview does not imply

the same privilege on the derived views because they contain more information

than the base views. If the full authorization for the superview is indicated, the

same authorization implies on the derived views as well. The following two rules

deal with this point.

Implication Rule § If a view v relates to a view w via either constraint inher

itance or strict constraint inheritance, then explicit authorizations on the view w

generates the same implicit right on the view v. •

The user has the same right on Software-Supporters and Programmers views

as the views relate to Technical-Staff'via the constraint inheritance (see Example

5.2).

Implication Rule 6 Assume that two views v and w are related via (proper or)

specialization inheritance, or composition. The explicit full authorization on the

view w results in the implicit authorization on the view v with same collection of

privileges. •

For example, the role Employee has the full read authorization on the view

Personal-Info (see Example 5.7). When the view is evaluated, the components

of the class PERSON (ADDRESS and NAME) are authorized for retrieval too.

5.6 Access Control

In the proposed system, the user's access to the database is controlled by a set

of access views (AV).

Definition 5.8 Let AV be the set of all access views. AV may only be accessed

or manipulated by the authorization system via the following commands:

grant(w,i>,r) - adds the pair (u,r) to the A C L of the view v.

revoke(u, v, r) - removes the (u,r) from the A C L of the view v.

Chapter 5. An Authorization Model Based on Views 120

Own(vJ - retrieves the owner's identity of the view v.

change-own (v) - changes the owner of the view v.

Accesslist (v) - retrieves the authorization list associated with the view v

for every v G AV. •

The only possible way for all users (except security officers) to access data in

the database is via AV.

Definition 5.9 An access request is a triple (u,v,r) where u G U is a user who

requires the access r G R to a view v G AV where U is the set of users/roles, and

R is the set of privilege in the system. •

Authorization Rule 5 An access request (u,v,r), v G AV, u G U, r G R is

valid, if the entry of the view v is in AV, and the pair (u,r) exists in the A C L

of the view v or can be derived by applying the implication rules 1-6. •

An access request (u, v, r) is valid if and only if the following function returns

true.

function Access(w,i>,r)

begin

If u= Own(v) V (u->r) £ Accesslist(i>)

then return true

else return(Implicit_Access(u, v,r));

end

function Implicit_Access(u,i;,r))

begin

/* checking access request against user authorization and privilege

hierarchies */

If V u3 role of the user u 3 (UJ, r) G Accesslist(u) V

V Uj descendant of the role of the user u

3 (uj,r) G Accesslist(i>) V

\/UJ ancestor of the role of the user if

Chapter 5. An Authorization Model Based on Views 121

3 (u3,((F,,),op)) G Accesslist(v) V

V opj higher-level of the privilege op3(u,(t, op3)) G Accesslist(u)

then return true

/* checking access request against view authorization hierarchy */

else If 3w that v is (strict) constraint inheritance of w A

3(it,r) G Accesslist(u;)

then return true

else If 3u; that v is (proper) specialization inheritance of

w f\ 3(w,r) G Accesslist(w;) f\t2 = F

then return true

else If 3w that v is component of w /\

B(u,r) G Accesslist(u;) /\t3 = F

then return true

else return false;

end

Where V stands for "for all", V - OR logical operation, 3 - exist, and /\ - AND

logical operation.

5.7 Summary

The chapter discusses the use of views in OODB systems for the discretionary

access control. Special attention has been placed on time and content-dependent

authorizations. Parameterized views have been introduced to increase the flexi

bility of the view model. It has been shown how a view hierarchy can be inferred

from views. The inheritance hierarchies among views have been discussed. W e

have also defined access views as the mechanism for access control. W e have dis

cussed discretionary security requirements for authorization systems. Rules for

computing an implicit authorization from the explicit ones have been formulated.

Chapter 5. An Authorization Model Based on Views 122

The impact of three authorization dimensions, users, access privileges, and views

on the access views has been examined. Finally, we have presented the form of a

valid access request and how the validity of requests can be verified.

Chapter 6

A Multi-level View Model for

Secure OODB Systems

6.1 Introduction

Several secure models for OODB systems are discussed in [33, 39, 114, 121, 122,

123, 143, 144, 149, 150, 160, 210, 215]. The majority of models consider single-

level objects only. This means that for every object, a unique security level is

assigned which applies to the entire object [33, 114, 149, 210]. This approach is

attractive for its simplicity and its compatibility with the security kernel. More

over the multi-level update problem [210] does not exist.

However in the real world, there are situations where it is necessary to classify

instance variables of an object at different security levels. That is, the security

model has to support multi-level objects. There are also models write a finer

grain of classification - the security level is assigned to each instance variable of

an object [122, 140, 160]. Unfortunately, these proposals require both a trusted

enforcement mechanism on the object layer and a complex security kernel.

In order to maintain the security kernel compatibility and to overcome the

difficulties with multi-level objects, some researchers proposed to design a schema

which handles various security constraints [114, 149, 210]. For example, if we want

the GAP instance variable of the class STUDENT1 to be secret, we need to cre

ate a class STUDENT-GAP with security level SECRET. STUDENT-GAP

is a subclass of the class STUDENT (see Figure 6.1). If the security level of

^ h e specification of STUDENT and E M P L O Y E E have been shown in Figure 2.3 in Sub

section 2.2.7 of Chapter 2

123

Chapter 6. A Multi-level View Model for Secure OODB Systems 124

U: UNCLASSIFIED

S: SECRET

STUDENT (U)

subject

Start-Date

Graduate-Date

takes*

is-a

STUDENT-GAP (S)

GAP

Comp-GAP()

COURSE (U)

Figure 6.1: An example of the representation of simple constraint.

instance variable address depends on the value of instance variable profession of

the class EMPLOYEE (the security level of address is secret if the employee is a

chancellor or vice-chancellor, and otherwise is unclassified), then we shall create

two classes S-ADDRESS and U-ADDRESS to be subclasses of EMPLOYEE.

Each of them contains addresses related to secret or unclassified employees, re

spectively (see Figure 6.2).

U: UNCLASSIFIED

S: SECRET

EMPLOYEE (U)

rank

profession

TEL (S)

std

te!-no

•

S-ADDRESS (S)

no

street

city

state

zip-code

phone

U-ADDRESS (U)

city

zip-code

phone

TEL (U)

std

tel-no

is-parl-of

Figure 6.2: An example of the representation of content constraint.

There are several problems with this approach. If the value of an instance

variable is changed dynamically, the schema evolution should then reflect the

change. As object instances do not have to be at the same security level as their

Chapter 6. A Multi-level View Model for Secure OODB Systems 125

class, it may happen that there are object instances at levels higher than the level

of the corresponding class. Therefore, certain object instances might end up in

unexpected locations and be inaccessible to authorized users. For example, if a

secret address object is created as an instance of U-ADDRESS by a secret user,

no reference to it would appear in the instance variables in the U-ADDRESS

object. As the result, secret subjects would fail to find it in the expected place

under the secret subclass S-ADDRESS.

The view update problem disappears and views can almost freely be updated

in an O O D B system when a query language used for view definitions preserves

object identities [190]. Recall that in relational databases, views containing the

key of their (one) underlying base relation can be updated. W e assume that the

query language used for view definitions has the object preservation property.

The advantages of the usage of view approach are as follows:

1. View definitions can be regarded as subclasses, or superclasses of the base

classes (virtual subclasses or superclasses) [1, 21, 190]. Therefore, views

provide the facility for a dynamic modification of the database schema but

yet they retain their older versions. They also provide a tool to handle

various security constraints.

2. Views may be defined on arbitrary sets of classes and other views with

different security levels. These views are called multi-level views. So by

defining a multi-level view for unclassified and secret users, the possibility

of storing certain data in an unexpected location which is not accessible to

authorized users is eliminated.

3. A view definition can also be regarded as a constraint relating derived data

to other data (stored or derived). It can be used to restrict the user access

to the data that they actually need. Thus the view approach allows to

handle inference and aggregation problems or at least minimize difficulties

associated with them.

4. View definitions are independent of the underlying data. If the database

contents changes, it will not be necessary to reclassify the database because

views will enforce the required classification rules. For example, if an un

classified employee becomes a vice-chancellor or chancellor, his related data

Chapter 6. A Multi-level View Model for Secure OODB Systems 126

must be reclassified to secret. Having declared views U-ADDRESS and

S-ADDRESS, it is not necessary to reclassify the data.

The objective of this chapter is to show how the view concept can be used to

implement a multi-level security policy on the top of a single-level O O D B sys

tem. In Section 6.2, we describe the basic concept of multi-level secure databases.

In Section 6.3, we discuss the essential features of the view model proposed by

Bertino [31]. Later we present possible extensions of the view model to incor

porate the mandatory label-based security policy. W e show how the multi-level

view, the content, context, and dynamic classification can be supported by the

model. In Section 6.4, we develop a security model for O O D B systems based on

object views. Aggregation and inference problems are addressed in Section 6.5.

Polyinstantiation is discussed in Section 6.6. Section 6.7 provides an evaluation

of the model. Section 6.8 concludes the chapter.

6.2 A Multi-level secure Databases

A multi-level secure database contains information with different security (or

sensitivity) levels. The security levels may be assigned to the data depending

on the content, context, aggregation, or time. An effective security policy for

multi-level databases must ensure that users have a suitable clearance before

they access the information. To fulfill this requirement, each entity is assigned

a security attribute. Attributes associated with active entities (or subjects) are

called clearance levels while attributes associated with passive entities (or ob

jects) are termed security (sensitivity or classification) levels. Subjects are not

allowed to modify these attributes and their values. The modification of these at

tributes can only be done by the system security officers. The set of security and

clearance levels form a partially ordered lattice with ordering relation ">" (for

example, UNCLASSIFIED < CONFIDENTIAL < S E C R E T < TOP-SECRET).

For security levels Lx and L2 , Lx > L2 means that security level L1 dominates

security level L2 (if Lx > L2, it means that Lx strictly dominates L2).

The security attributes may be extended to include non-hierarchical cases that

incorporate the need-to-know requirements. For example, we may have a secu

rity level named [SECRET,ASIACRYPT] - users with clearance S E C R E T and

members of ASIACRYPT can access it. In other words, not all S E C R E T users

Chapter 6. A Multi-level View Model for Secure OODB Systems 127

are allowed the access. Such divisions create so-called compartments (or cate

gories). In O O D B systems, the encapsulation feature combined with the security

labels provides a natural protection for objects. However after the value leaves

the protection of the encapsulated object, the security cannot be guaranteed. To

ensure that the security will not be compromised, the flow of information has to

be restricted in some way. A number of models have proposed, the earliest and

the best known is the Bell-LaPadula model [26] (see also Section 3.7).

The Bell-LaPadula model is based on two properties: the simple security

property and the *-property. According to the simple security property, a subject

is allowed to read information from an object (or a passive entity) if the clearance

level of the subject dominates the security level of the object. The *-property

requires that a subject has the write access to an object if the subject clearance

level is dominated by the security level of the object. Informally, a subject can

read-down (simple security property) and can write-up (*-property). A number of

extensions to the Bell-LaPadula security model were proposed [69, 87, 114, 122,

140, 149, 160, 210, 223]. These extensions address some specific problems related

to database systems, for instance inferring unauthorized information from the

legitimate responses and the information flow that occurs as a result of inheritance

and the message passing in O O D B systems.

6.3 View Model

Smith in [196] identifies three "dimensions" of the protection:

1. the data itself may be classified,

2. the existence of the data may be classified, and

3. the reason for classifying the data may be classified.

W e define access-views to deal with the first two dimensions of the protec

tion, The third security dimension is addressed by the introduction of security-

constraints. The sets of access views and security constraints constitute meta-

classes ACCESS-VIEWS and SECURITY-CONSTRAINTS, respectively. The

meta-class ACCESS-VIEWS is used to enforce of the mandatory access con

trol, and the meta-class SECURITY-CONSTRAINTS (which specifies restric

tions that the view must satisfy) is used to control the security levels of views.

Chapter 6. A Multi-level View Model for Secure OODB Systems 128

Note that Bertino's conceptual model [31] is proposed for a context not relevant

to security. An instance of the ACCESS-VIEWS has the following format:

access-view Viewname [parameters]

- view specification as described in Section 2.4 of Chapter 2

[avJevel view_security_level]

[av_range upper_andJower_securityJevel]

[mac-constraint set-of <SECURITY-CONSTRAINTS> macmames]

The Viewname is the unique name of the access view and must be different

from the names of other access views, security constraints, and classes. Pa

rameters are fixed to the actual values at the time the view is evaluated, and

corresponding objects are evaluated dynamically.

av_range imposes restrictions on the range of security levels of base classes

(views) and properties used in the definition of a view. avJevel indicates the

security level of the name of the view. If the range is not indicated, then the

view can contain the single-level properties and base classes (or views) that is

indicated by avJevel.

mac-constraint stands for mandatory access control constraints and consists

of the set of security rules that the view must satisfy. Each element in this set is

an instance of the class SECURITY-CONSTRAINTS.

The concepts are illustrated on two examples which use a university database

shown in Figure 2.3 in Section 2.2.7 of Chapter 2.

Example 6.1 Define the multi-level class STUDENT whose instance variable

GAP is classified SECRET and others are UNCLASSIFIED. •

The class STUDENT can be represented as two views: a view UStudent with

security level UNCLASSIFIED (containing the unclassified instance variables)

and a view SStudent with security level S E C R E T containing the secret instance

variable GAP and superview UStudent.

access-view U_Student

select S.idno, S.name, S.age, S.status, S.address, S.spouse, S.sex,

S.subject, S.Start-Date, S.Graduate-Date, S.takes

from S:STUDENT

avJevel UNCLASSIFIED

Chapter 6. A Multi-level View Model for Secure OODB Systems 129

access-view S_Student

properties [Greatest Joint, SECRET]

select S.GAP

from S-.STUDENT

superview UJStudent

avJevel SECRET

av_range [UNCLASSIFIED, SECRET]

The access view UStudent is a single-level view, and contains all variable

instances of the base class S T U D E N T except GAP. It is labeled UNCLASSIFIED.

The access view SStudent which is defined on top of UStudent is a multi-level

view because in addition to secret instance variable Greatest-Point it inherits all

properties of superview UStudent which are unclassified.

Example 6.2 Define the class EMPLOYEE such that the instance variable "ad

dress" is classified SECRET if the value of the instance variable "profession" is

a "chancellor" or a "vice-chancellor" otherwise is UNCLASSIFIED. •

One possible representation of that is to create two views, U-Employee and

SJEmployee, labeled UNCLASSIFIED and SECRET, respectively.

access-view UJEmployee

select E

from E: EMPLOYEE

where not (E.profession = "chancellor" or E.profession = "vice-chancellor")

avJevel UNCLASSIFIED

access-view S-Employee

select E

from E: E M P L O Y E E

where (E.profession ="chancellor" or E.profession ="vice-chancellor")

avJevel SECRET

As shown in the above examples, the enforcement of security constraint has

been done without the redesign of the schema.

There is a problem with the above examples. Because the security level of

the view U-Employee is unclassified, unclassified users will know that there are

Chapter 6. A Multi-level View Model for Secure OODB Systems 130

expected employees who are classified at a higher level. In order to hide the

classification constraint but still enforce it (and also to simplify verification and

assurance process), we introduce the meta-class SECURITY-CONSTRAINTS

whose instances have the following format.

security-constraint sc-name [parameters]

[predicates] [property-name.level = property_securityJevel]

[predicates] [view-name.level = view_securityJevel]

[sc Jevel sc_securityJevel]

The sc-name is the unique name of the security constraint (it must be dif

ferent from the names of other security constraints, classes, and access views).

Parameters are fixed at the time the view is evaluated. So when the values of the

parameters are determined, the corresponding security constraints are evaluated

for the view and its properties.

sc Jevel indicates the security level of the security constraint. Note that the

security level of properties and views can be indicated either in the access view

definitions or in the security constraint definitions.

Constraints can be simple, content, and aggregate security ones [79]. A simple

constraint classifies an entire view property or view. For example, the view prop

erty Greatest-point in view SStudent of Example 6.1 is secret (all Greatest-point

values will be secret). The view SStudent can be redefined as follows.

access-view S_Student security-constraint Sc_S_Student

properties [Greatest Joint] Greatest_Point.level= S E C R E T

select S.GAP S.Sfudenf.avJevel S E C R E T

from S:STUDENT

superview U_Student

mac-constraint set-of < SECURITY-CONSTRAINTS > mac_S-Student

av_range [UNCLASSIFIED, SECRET]

If the statement SStudent.macSStudent = insert (ScSStudent) is executed,

the address of ScSStudent will be added to the set of macSStudent automati

cally.

A content-based constraint provides a means of classifying data at the object

or property value level by using a predicate based on the values of some objects

and/or properties. For example, the security-constraint Sc-Employee classifies the

Chapter 6. A Multi-level View Model for Secure OODB Systems 131

view Av-Employee at either secret or unclassified level depending on the value of

the property profession. Using the security constraint definition, Example 6.2

can be redefined as follows.

access-view Av^Employee

select E

from E: EMPLOYEE

mac-constraint set-of < SECURITY-CONSTRAINTS > macJEmployee

security-constraint ScJCmployee

if (E.profession ="chancellor" or E.profession ="vice-chancellor")

then Av Employee, level = SECRET

else AvJmployee.level = UNCLASSIFIED

If the statement Av-Employee.mac-Employee = insert (Sc-Employee) is executed,

then the address of Sc-Employee will be added to the set of mac-Employee au

tomatically. Whenever the view Av-Employee is evaluated, the view is classified

secret if it contains instances with profession "chancellor" or "vice-chancellor",

otherwise is unclassified.

An aggregate constraint classifies a collection of property values (say ten or

more/less) or relationship among data at a higher security level. For example, if

we define a view which retrieves accessories supplied by a specific supplier, the

associated security constraint can be declared. If the number of the accessories

is more than ten, the view is classified at a higher level say SECRET.

6.4 Secure Multi-level View Model

Let us emphasize two points. First, our design supports multi-level objects at

the view layer only. The multi-level views will be mapped onto single-level ob

jects. Second, our design for mandatory access control relies on the underlying

mandatory security kernel. An O O D B system is considered secure if (see [160]):

1. no subject is able to obtain information without authorization,

2. no subject is able to modify information without authorization,

3. no mechanism exists whereby a subject authorized to obtain information

can communicate that information to a subject not authorized to obtain it,

and

Chapter 6. A Multi-level View Model for Secure OODB Systems 132

4. no subject is able to execute a method without authorization.

Requirements (1), (2), and (4) are usually addressed by the discretionary ac

cess control while properties (1) and (3) are normally addressed by the mandatory

access control. Our concern in this chapter is to enforce mandatory security pol

icy using a secure multi-level view object model. Discretionary access control

through view object models is discussed in Chapter 5.

W e assume that the entities of the security classification are all kinds of ob

jects. The entities include access views, security constraints, classes, objects,

methods, and instance variables. Each entity in the database (except atomic

objects) and each user has an associated security level. W e also assume that the

following methods are available to retrieve security information associated with

an entity e.

Level(e) - displays the security level of entity e.

Lower(e) - displays the lower level range of entity e.

Upper(e) - displays the upper level range of entity e.

Denote by L U B the least upper bound, and G L B the greatest lower bound.

6.4.1 View

In general, a view can be constructed in two distinct ways [1, 21]: top-down or

bottom-up. In the top-down approach, large classes (or views) are divided into

smaller ones via specialization (a similar operation in relational systems is to

define a view by selecting a subset of tuples from a large table). In the bottom-

up approach, small classes (or views) are combined to form larger classes via

generalization (the analogous operation in relational systems is to define a view

as the union of several tables). A view constructed in the latter case may contain

more information of various levels of security and hence, it must be classified at

the highest of these levels.

Classification Rule 1 (View Property). If an access view v is constructed on

classes (or views) Vx,v2, ...,vn, the security level of v must satisfy:

v.avJevel > LUB{vx.avJevel,v2.avJevel,... ,vn.avJevel}.

The view range must contain the security level of v,

Lower(u) < v.avJevel < Upper(t>).D

Chapter 6. A Multi-level View Model for Secure OODB Systems 133

From now on we refer to properties and methods of an access view as view

facets. View facets can be derived from the base views or classes, or can be defined

independently. Moreover, the security level associated with each facet can also

be derived or defined.

Classification Rule 2 (View Facet Property). If x is a facet of a view v and is

derived from a base view w, the security level of x must satisfy both

Level(t;.x) > v.avJevel,

and

Leve\(v.x) > Leve\(w.x).

If x is defined or redefined in v, the security level of x must dominate the security

level ofv, i.e.,

Level(u.x) > v.avJevel. •

Classification Rule 3 The security range of a view must contain the security

level of all facets contained in the view, i.e., if xi,x2,... ,xn are facets ofv, then

the following must be held:

GLB{Level(v.xx), Level(u.a:2),..., Level(v.xn)} > Lower(v).

and

L(/5{Level('u.a:i),Level(t>.a;2),...,Level(t;.xn)} < Upper(u).D

A view name is the external representation of an access view. When a user

wants to access a view definition, they must first be authorized to access view

name. Every access view v is defined by a view specification which has a security

level, avJevel. A user is able to access the view if the security level of the view

is dominated by the security level of the user.

Classification Rule 4 (Subject Property). A user u can access an access view

v if one of the following holds:

a) if the view v is a single-level view, and the security level of the user u dominates

the security level of the access view v, i.e., (v.avJevel < Leve\(u));

b) if the view v is a multi-level view, and the lowest security range of the view v

is dominated by the security level of the user u (Xower(v) < Level(u),j.

The user u is able to access facet x of the view v if the security level of x is

dominated by the security level of the user u, i.e., Level(v.x) < Level(w). •

Chapter 6. A Multi-level View Model for Secure OODB Systems 134

Rule 4 is the simple security property specified in the Bell-LaPadula model.

Only the read-up is permitted. Users with security level lower than the security

level of a view are not able to access the view definition and consequently the

view instances.

Classification Rule 5 (View-instance Property). If a view v consists of objects

Ox, o2,..., on, then the security level of the view v must satisfy:

v.avJevel > LUB{Leve\(ox), Level(o2),..., Level(on)}.D

The set of database objects contained in the view instance is controlled by

the view specification and a set of associated security constraints. Every security-

constraint is defined by a set of constraints, and a security level (sc Jevel).

Classification Rule 6 (Security-Constraint Property). If Xx, x2,..., xn, and

Si, 52,..., sm are facets and their nominated security levels contained in the security-

constraint sc, respectively then the following must be held:

a) The nominated security levels Si (1 < i < n) for the facets contained in con

straints of a security-constraint must dominate the security levels of the facets,

i.e., Si > Level(xj) for all i, 1 < i < n;

b) the security level of the security-constraint is the least upper bound of the

security levels of all facets and all nominated security levels contained in the con

straints, i.e.,

5c.scJevel > Z,t/I?{Level(xi),Level(2:2), • ••, Level(xn),5i,52,... ,sm},

and

Level(sc) > Level(u)

where v is the view associated with sc. •

The above rule indicates that the security level of a security constraint must

be at least equal to the least upper bound of security levels of information con

tained by the constraints. Moreover, the security level of this must dominate the

security level of the associated view. For example, by applying the above rule to

Sc-Employee in Example 6.2 of Section 6.2, the security level of the Sc-Employee

must be at least SECRET. If the sc Jevel is not indicated by the user, the com

puted security level will be considered for sc Jevel.

Chapter 6. A Multi-level View Model for Secure OODB Systems 135

Classification Rule 7 A user u can access a security constraint sc if the se

curity level of sc is dominated by the security level of the user u, Level(u) >

sc.scJevel. D

There are four types of inheritance among views: constraint, strict constraint,

proper specialization, and specialization inheritance (for detailed description see

Chapter 5). In the constraint inheritance, views consist of all object instances of

base classes (or views) that satisfy given constraints. W e only use selection op

eration. In the strict constraint inheritance, not only the set of database objects

contained by a view is constrained, but the base classes (or views) properties are

also projected. W e apply selection and projection operations. In the specializa

tion inheritance, not only views inherit all the properties of the base classes (or

views), but they also have some new additional properties and methods. In the

proper specialization inheritance, views filter out the object instances of the base

classes and project the properties. They also contain new additional properties

or methods.

In the case constraint and strict constraint inheritance, the amount of infor

mation provided by a sub-view is smaller than the information contained in the

base view. So the security level of the sub-view may be the same as the security

level of the base view.

Classification Rule 8 (Hierarchy Property). Suppose a view v is derived from

a view w, then their security levels must satisfy one of the following:

Level(f) = Level(u>); if the relationship is the strict constraint or constraint

inheritance,

or Level(u) > Level(iu), if the relationship is the proper specialization or

specialization inheritance.

The set of the constraints of the view v must contain the set of constraints of

the view w. •

A view may inherit or derive the facets from one or more super-views or the

base-views. In the case of a conflict, the following rule will be used to resolve the

conflict.

Classification Rule 9 (Multiple Inheritance). Assume a view v inherits the

facet x from views v1:v2,... ,vn, then the security level of x in v must dominate

Chapter 6. A Multi-level View Model for Secure OODB Systems 136

the least upper bound of the security levels of x in Vi (1 < i < n),

Level(t>.;r) > LUB{Leve\(vx.x),Level(v2.x),..., ~Level(vn.x).}

The view v inherits the facet x with the highest security level in Vi (1 < i< n).

If there are more than one such x, then a priori rule2 must be enforced to resolve

the conflict. •

It is possible to define composite (or aggregation) hierarchy on views. The

domain of the instance variable can be a view or a class. The instance variable is

provided with the keyword additional-properties for a view property. A view

v may then be a composite of views vx, v2,..., vn.

Classification Rule 10 (Composite Property). Let a view v be a composite view

of the views (or classes) Vx,v2,... ,vn, then the security level ofv must satisfy:

v.avJevel > LUB{vx-avJevel, v2.avJevel,..., t>n.avJevel}.•

6.4.2 Derivation Rules

The next two rules are needed to obtain a view from a single-level database.

Classification Rule 11 (Single-level View Instantiation). If an object in the

database has a security level dominated by the security level of a view, the object

may be derived as an instance of the view. •

Note that a view may be evaluated dynamically [31]. Then view instances are

created only if a user or process requests it.

Classification Rule 12 (Multi-level View Instantiation). If the security level of

the view property dominates the security level of the corresponding property value

of an object in the database, then that object is derived as an instance of the view

from the database. •

All derived single-level objects corresponding to the view properties are joined

to instantiate a multi-level view. As said in Rule 5, the security level of derived

data is greater than or equal to the least upper bound of the security levels

associated with the derived data. Those derived data will be presented to a user

whose security levels are dominated by the security level of the user.

2For example, the facet x associated with the view which is closer to the view v, dominates

other views.

Chapter 6. A Multi-level View Model for Secure OODB Systems 137

6.4.3 Updates and Object Creation

In relational databases, updates of any views are impossible due to the so-called

view update problem (if views only contain the key of their (one) underlying base

relation; they can be updated). As shown by Scholl, Laasch and Tresch in [190],

the view update problem disappears in O O D B systems, if the query language

preserves object identities. This happens because objects have an identity inde

pendent of their associated values. Views can almost freely be updated since the

objects contained in the result of a query are the base objects. For detailed dis

cussion of the properties of the query language that allows the updates of views,

the reader is directed to [190].

Classification Rule 13 (Insertion). The security level of the inserted object is

computed according to a set of security constraints associated with views. If the

computed security level for the entire object is unique, then the single security level

is assigned to the object and the single-level object is stored into the database. If

the computed security levels are different for every properties, the inserted datum

is decomposed to single-level objects according the computed security levels, and

then stored. •

According to the above rule, if the inserted object is multi-level (note that the

underlying database is single-level), the object must be decomposed into several

single-level objects. The solution to the object decomposition was proposed in

[38].

Classification Rule 14 (Updating). For every view property value, the value

with the computed security level is stored back into the database if either

1) the computed security level dominates the security level associated with the user

on whose behalf it was computed, and the computed security level is equal to the

security level of the corresponding property in the database; or

2) the downgrade of the property value is authorized and confirmed by the security

officer. •

Chapter 6. A Multi-level View Model for Secure OODB Systems 138

6.5 Aggregation and Inference

6.5.1 Aggregation

The aggregation problem occurs when a user can collect some data of low security

classification and deduce other data with higher security classification.

Example 6.3 Personal specification and monthly wage of the academic staff are

unclassified, but the association of a particular monthly wage with a specific in

dividual academic staff is classified secret. •

One possible solution is that the unclassified view U-AcademicStaff iox per

sonal specification of the academic staff and the unclassified view

U-Monthly-Wage for monthly wage of the academic staff are declared. The secret

view S-Academic-Monthly-Wage is declared to protect the association of academic

staff with their monthly wages.

Note that, by declaring the above views, the protection against inference may

still fail. For example, if there were only a few academic staff members and their

rank was known or could be guessed, the association could be reconstructed. In

such cases, the preferred solution would be to classify one of the two entities in

the relationship at the higher level. For example, putting the monthly wages in a

separate view at the secret level would protect the association, but it would also,

in effect, classify the monthly wages.

If a view v is the aggregate of views Vx, v2,..., vn and the security level of v

strictly dominates the security level of all Vi (1 < i < n), then the aggregation

problem occurs, and v.avJevel > u;.avJevel for all i, 1 < i < n. To solve that,

the following rule must be fulfilled.

Classification Rule 15 // a view v is the aggregate of views Vx, v2,..., vn, then

there should exist at least a single Vi such that its security level is equal to the

security level of the v and v.avJevel = ^-.avJevel for some i, 1 < i < n. •

6.5.2 Inference

The inference problem occurs when a user can deduce (or infer) information

from a collection of individual inquires. Solutions to the inference problem were

proposed in [70, 60, 111, 209] in the context of statistical and relational databases.

Some typical approaches to handle the problem are:

Chapter 6. A Multi-level View Model for Secure OODB Systems 139

1. the introduction of restrictions on the set of allowable queries generated by

a user,

2. the addition of "noise" to the data, and

3. the augmentation of a database with a logic-based inference engine to detect

security violations.

Views provide exactly the right basis to address the inference problem or at

least to decrease the "size" of the inference problem. If properly used, views im

pose restrictions on the derived data which are extracted from the base data. The

derived data are visible to the user (via the view) and can be tailored to the user

needs. Views represent the real-world semantic relationship among data. This re

lationship is usually exploited during the inference process. A user is constrained

to a smaller portion of the database through the proper use of the views. This

reduces the number and types of queries issued by the user. Therefore views can

be used to impose the first and the second approaches of handling the inference

problem (the introduction of restriction on the set of allowed queries and the

addition of noise to the data). The multi-level security model can be augmented

with logical-based inference engine which will detect security violations.

Note that some researchers believe that aggregation and inference are the

different faces of the same problem [132].

6.6 Polyinstantiation

Polyinstantiantion generally occurs when two subjects at different security levels

see two different forms of a single entity in the real world. In a multi-level view

model, the different forms of an entity could relate to different view definitions, to

the same view-name with different security-levels, and to different entity values.

So we have three possible polyinstantiations.

• View-definition polyinstantiation. A view may contain different facets with

different security-levels. For instance, an unclassified user sees a view v

which contains the properties (idno, name) and has a method change-name.

A secret user sees v which contains (idno, name, salary), and has two

methods change-salary and change-name.

Chapter 6. A Multi-level View Model for Secure OODB Systems 140

• View-name polyinstantiation. An actual view is identified by the pair: a

view-name v and the security-level (av-level). So that there may be several

views identified by the same view-name v which correspond to different

security-levels.

• View-instance polyinstantiation. An object is identified by an object iden

tifier (OID) and an associated security-level, so that a multi-level view

m a y contain several object instances for an OID corresponding to differ

ent security-levels.

A polyinstantiated view-name may arise whenever an unclassified (or confi

dential) user requests to use the same name for defining a view which is already

used by a secret user. To handle this type of polyinstantiation, we suggest that

a view n a m e associated with the security-level of the user is used to name the

view. For instance, for a view v, the unclassified user will use U-v and the secret

user will use S-v.

A polyinstantiated view-definition may occur whenever an unclassified user

modifies the view definition and includes the same facets which already exist at

higher security level. This type of polyinstantiation will not occur in our model

as the security level of a view must be the least upper bound of the security levels

of all facets contained in the view (Rule 1). The view can be accessed by a user

u if the security level of u dominates the security level of the view (Rule 4).

A polyinstantiated view-instance may happen if two subjects at different se

curity levels request the same identifier for two different objects which represent

two different entities. Therefore, if globally unique object identifiers are used to

identify objects, the polyinstantiation will not occur in the model.

Boulahia-Cuppen et. al. in [38] presented a decomposition algorithm for

O O D B systems which provides the possibility of choosing globally unique object

identifiers (by partitioning the set of object identifier into several pairwise disjoint

subsets associated with each security level). For instance a multi-level object 0,

which is an instance of a multi-level view SStudent, will be decomposed to U-0,

C-0, and S-0. Each of them is actually a single-level object corresponding to

unclassified, confidential, and secret which is physically stored in a single-level

database. Dynamic links are also created between these objects. For example, in

the S-0, there are pointers to the confidential properties stored in the C-0. In

the C-0, there are pointers to unclassified properties of the U-0. This means that

Chapter 6. A Multi-level View Model for Secure OODB Systems 141

if a classified user updates the unclassified properties of U-0, the update will be

automatically propagated to the instances of C-0 and S-0. Note that the values

of the properties which point to low-level objects can be updated by the users

cleared to access them. If this happens, the pointer to the low-level database is

broken, and the value of the object in the low-level database stands as a cover

story. For detailed discussion, the reader is directed to [38].

Therefore by employing the above approach to decompose multi-level views

into single-level objects and selecting object identifiers corresponding to each

security levels, view-instance polyinstantiation does not occur in our model. Fur

thermore, there is no referential ambiguity as all references to an object use the

unique OID.

Note that although there is no view-instance polyinstantiation because OIDs

are unique, but it is possible that the value of the property idno is not unique. One

way of avoiding this is the use of security constraints that requires all instances

of PERSON to have the same security level.

6.7 Evaluation of the Proposed Model

Gajnak in [87] chooses a view of a multi-level secure database as a set of associated

facts, and presents three general principles for a well formed multi-level secure

database. They are: the granularity principle, the dependency principle, and the

determinacy principle. The granularity principle states that the finest level of

granularity for the protection purpose should be a structure which correspond to

atomic facts. The dependency principle requires that the security level of a fact

dominate the security level of any other fact it depends upon. The determinacy

principle states that factual dependencies should not be ambiguous.

A fact is an encapsulated unit of information. Facts which do not depend on

other facts, are called atomic. Six types of atomic facts can be distinguished in

the multi-level view model. They are:

1. the fact of the object existence (which is presented by the object identifier),

2. the association between an object and the values of its properties,

3. the association between an object and a view-instance,

4. the association between a view definition and a view name,

Chapter 6. A Multi-level View Model for Secure OODB Systems 142

5. the association between a view definition and the corresponding security

constraint, and

6. the hierarchical association (inheritance or composite).

The following four factual dependencies also exist among these facts.

1. The fact of association of a property value with an object depends on the

existence of the object.

2. The fact of association of a view-instance with object depends on the exis

tence of objects.

3. The fact of association of a view-name with a view-definition depends on

the existence of the view definition.

4. The fact of association of a security constraint with a view definition de

pends on the existence of the view definition.

Now, consider the three principles, granularity, dependency, and determinacy.

The granularity principle states that the finest level of labeling granularity must

cover all the above mentioned facts. This is exactly the entities that we have

assumed for labeling.

The dependency principle states that the security level of an association must

dominate the security level of its components. Rules 1-2, 5-6, and 8-10 take care

of that.

The determinacy property addresses the problem of interpreting the database

in the face of polyinstantiation. As discussed before because we assume that

globally unique object identifiers (OID) are used to identify objects, then the

polyinstantiation will not occur in the model.

W e believe that the proposed multi-level view model is practical as it maps

its components to the set of associated facts and it directly supports the three

principles of multi-level data: granularity, dependency, and determinacy.

6.8 Conclusions and Remarks

In this chapter, our objective was to provide a multi-level view model derived

from a single-level secure O O D B system. The model allows us to use the existing

Chapter 6. A Multi-level View Model for Secure OODB Systems 143

security kernel. It also overcomes the difficulties of handling OODB systems with

multi-level objects. One distinct advantage of our approach is that the multi

level view model relies on an underlying security kernel for the enforcement of

mandatory security properties.

Our model can be seen as an extension of the view model proposed in [31]. W e

have introduced the notion of security constraint which is associated with each

view. W e have also discussed the usage of views and security constraints to handle

simple, content-dependent, and context-dependent classifications. W e have then

described the multi-level security properties for a secure multi-level view model

based on a secure single-level O O D B system. Finally, we have discussed issues

such as aggregation, inference, and polyinstantiation.

Note that two types of users require access to views: the database security

officers and users. It is clear that the security officers require unrestricted access

to the views in order to define and maintain the database. Users require some

access to the view definitions in order to be able to query the database. Two

policies of access control have been proposed. The first one allows users to browse

through the external schema. The second policy assigns discretionary access

rights to views. As the first policy violates the least privilege principle, the

second policy is recommended. In other words, the discretionary access control

should be implemented on the top of the multi-level view model.

Chapter 7

Summary, Results and Future

Directions

7.1 Summary

The main goal of the thesis was to investigate the access control model for object-

oriented databases. The motivation for the project was the lack of an acceptable

O O D B model which could be used for the access control. Chapter 2 presented

key concepts of 0-0 models such as types/classes, objects, complex objects, ag

gregation, and discussed 0-0 properties such as inheritance, encapsulation, and

methods. Persistence, secondary-storage management, security, authorization,

concurrency, and transactions in O O D B systems were also examined. Chapter 2

was concluded by a survey of view models in O O D B system. Their properties

were also pointed out.

Review of security in databases was given in Chapter 3. Security models for

relational and object-oriented databases were presented. Common threats to the

database and possible countermeasures were also considered. A security policy

specifies security requirements which must be satisfied by database management

system. A list of security policies for the design of the access control were pro

vided. The two major access control models, mandatory access control (MAC)

and discretionary access control (DAC) were described. The access matrix and

Bell-LaPadula models were presented. The security issues in the 0-0 environ

ment such as access privileges (or access modes), propagation of authorizations,

degree of granularity, control of authorizations, etc. were also discussed. The

144

Chapter 7. Summary, Results and Future Directions 145

ORION, Irish, DAMOKLES, SORION, SODA and several other access control

models were presented. Those models were selected as they, in our view, of

fer some partial solutions to the security issues present in O O D B systems. W e

also discussed common security drawbacks of those models. A list of classifica

tion rules for secure O O D B systems were provided. Examples of architecture to

construct secure multi-level databases were given. They were: Trusted Subject,

Kernelized, Replicated, and Integrity Lock.

The 0-0 concept allows expression of rules for computing implicit authoriza

tions from the explicit ones. It is necessary to have an efficient mechanism to

evaluate implicit authorizations each time an access request is checked for valid

ity. Chapter 4 provided a cryptographic mechanism which was based on unique

and secure access keys for each access entity (object or class). In this mechanism,

owners and user groups are identified by their unique passwords. Access keys

and passwords for implicit authorizations are derived from related entities by

applying pseudo-random and SIFF functions during the query processing. The

security of the system is based on the difficulty of predicting the output of the

pseudo-random function and finding extra collisions for the SIFF function, both

of which are known to be computationally difficult.

Chapter 5 addressed content-dependent authorizations in O O D B systems. W e

used the view model proposed by Bertino and showed how discretionary security

requirements for authorization systems can be incorporated into the model. Pa

rameterized views were discussed. W e described how a view hierarchy could

be inferred from views. Four types of inheritance among views were discussed:

constraint, strict constraint, proper specialization, and specialization inheritance.

Rules for computing implicit authorizations from the explicit ones were also for

mulated.

In Chapter 6, a new design approach for a secure multi-level object-oriented

database system based on views were proposed. The central idea was to provide

the user with a multi-level view derived from a single-level secure object-oriented

database. The database operations performed on the multi-level views are decom

posed into a set of operations on the single-level objects which can be implemented

on any conventional mandatory security kernel. W e also presented security prop

erties for a secure multi-level view model. W e showed that this approach allowed

us to overcome the difficulties of handling content and context dependent classifi

cation, dynamic classification, aggregation and inference problems in multi-level

Chapter 7. Summary, Results and Future Directions 146

object-oriented databases.

7.2 Results

Results achieved during the work over the project have been published or sub

mitted for publication. The complete list of papers published or submitted is as

follows:

• "A Cryptographic Solution to Discretionary Access Control in Structurally

Object-Oriented Databases," based on Chapter 4 (published in Proceedings

of the 6th Australian Database Conference (ADC'95) (R. Sacks and J. Zobel,

eds.), vol. 17(2), (Adelaide, Australia), pp. 36-45, Australian Computer

Science Communications, Jan. 1995);

• "A Cryptographic Mechanism for Object-Instance-Based Authorization in

Object-Oriented Database Systems," based on Chapter 4 (published in Pro

ceedings of The 14th International Conference on Object-Oriented & Entity

Relationship Modeling, Queensland,(M. P. Papazoglou, ed.), vol. 1021 of

Lecture Notes in Computer Science, (Queensland, Australia), pp. 44-54,

Springer-Verlag, Dec. 1995);

• "A Model of Authorization for Object-oriented Databases based on Object

Views, based on Chapter 5 (published in Proceedings of The 4th Interna

tional Conference on Deductive and Object-Oriented Databases, Singapore

(T. Ling, A. Mendelzon, and L. Vieille, eds.), vol. 1013 of Lecture Notes in

Computer Science, (Singapore), pp. 503-520, Springer-Verlag, Dec. 1995);

and

• "A Multi-level View Model for Secure Object-Oriented Databases," based

on Chapter 6 (accepted for publication by the Journal of Data & Knowledge

Engineering, 1996).

• "Modeling A Multi-level Secure Object-Oriented Database Using Views",

based on Chapter 6 (Pre-proceedings of the Australian Conference on In

formation Security and Privacy, The University of Wollongong, N S W , Aus

tralia, May 24-26, 1996 (accepted)).

Chapter 7. Summary, Results and Future Directions 147

7.3 Future Direction

Some aspects of the research presented in this thesis need further investigation.

This section outlines some of these directions which need to be addressed.

1. Implementation and Experimentation

In Chapter 4, a cryptographic mechanism for O O D B systems was proposed.

Since a normal proof of the mechanism is impractical and impossible to

achieve for the scale and difficulty of the problem, there is a need to im

plement a prototype of the cryptographic access control mechanism to in

vestigate its applicability, efficiency, and performance. Also a more robust

database management system needs to be implemented to experiment with

authorization administration. This will give a clearer picture on how com

plex the administration becomes in real life. Moreover, an insight may be

gained into what other requirements are essential for a successful crypto

graphic access control mechanism. W e assumed that there were two types

of access: partial and full. In the full authorization, a lower-node is accessed

by all higher-level nodes of the hierarchical structure. In the partial autho

rization, a specific node is accessed only. There is also a need for further

study of a situation where a lower-level node in the hierarchical structure

may be accessed only by some higher-level nodes.

2. View-based Protection and Negative Authorization

Positive authorizations only were considered in the view-based authoriza

tion model proposed in Chapter 5. Our consideration could be extended by

taking into account negative authorizations as well. Access control models

with both positive and negative authorizations are lacking the consistency

and completeness of the authorizations. This is due to the fact that sat

isfaction of the conditions in the views depends on the values of object

properties that can change over time. Suppose that a user ux has a positive

read privilege on a view vx which contains all students with start date later

than "Feb 19, 1993". The user ux is forbidden to access all foreign students.

The user ux has a negative read privilege on a view v2 which contains all

foreign students. If no foreign student with start date later than "Feb 19,

1993" exists, the access control state is consistent. However, since prop

erty values can change and new objects can be added, access control may

Chapter 7. Summary, Results and Future Directions 148

become inconsistent. Therefore, the need for consistency and completeness

criteria, and mechanisms to enforce them requires more investigation.

3. Inference Detection and Elimination

Chapter 6 mentioned a number of ways in which views may be used to

restrict the inference problem (for example, we may impose restrictions on

the set of allowable queries generated by a user, or to add noise to the

data). But these solutions are not sufficient to protect database against all

inference threats. Therefore, there is a need for a further study of how to

augment the secure multi-level view model with a logical-based inference

engine as to provide protection against security violations during query

processing.

4. Implementation Strategies

Any security model adds overhead costs to the operation of a database

system. If the security model adds too much overhead costs, the model

is not practical. The security model must be simple to implement. Only

if simple implementation strategies exist, it will be possible to trust that

the implementation accurately reflects the model. Hence, there is a need

for a study to find implementation strategies that economically and cor

rectly implement the security model proposed in Chapter 6. Examples of

implementation strategies for conventional databases are found in [127].

This is a sample only of possible directions future work in this area. We hope

that contributions presented in this thesis, will encourage and stimulate other

researchers working in the area to advance the theory and practice of the access

control in 0-0 environments.

Appendix A

Hardjono et. al.'s Database

Authentication based on SIFF

Hardjono, Zheng and Seberry [101, 102] have suggested a method of the authen

tication of data in database systems based on the use of pseudo-random function

families and the SIFF. The scheme employs a trusted central authority (or party)

which holds a database secret key Kdb and the secret information Sdb necessary

for the checksum generation and validation and for the encipherment and deci

pherment of data in the record. In addition it is assumed that record i has a

unique record identifier Ri and field j has a field identifier Fj. Mi3 denotes the

actual value of field j in record i. Let H = {Hn\n £ K} be a (t-hl)-SIFF mapping

n-bit input to n-bit output strings. Furthermore, assume that F = {Fn\n £ H}

is a pseudo-random function family, where F = {fxlfx • E'^n) —*• J2n,K £ £ n }

and each function fix £ Fn is specified by a n-bit string K.

To construct authenticator (checksum) for each record i, an instance of SIFF

hi is chosen uniformly and randomly from Hn such that:

hi(f.JRi\M) = ht(fKdb(Mtx\\R%\\Fx)) = ... = hiUK^MitWIUWFt)) = £,

where S; is a randomly chosen n-bit string, the checksum for record i. Figure A.l

shows this process.

One advantage of the method is that the checksum is calculated for each

record. However, it is possible the authentication of each data element M4J(1 <

j < t) is performed by checking

hiifKjMijWRiWFj)) = Si.

149

Appendix A. Hardjono et. al.'s Database Authentication based on SIFF 150

Field IDs

Record
ID • E

11 Concatenation

Figure A.l: Using SIFF for Record Authentication.

Another advantage is the possibility to place the description of the instances

of SIFF associated with each record in the same storage as records. Finally, the

authentication of data elements could be done without any secret cryptographic

information. For a detailed discussion, the reader is directed to [101, 102]

Appendix B

An Improvement of

Implementation of k-SIFF

Assume that a polynomial P(x) of degree k over finite GF(2n) has k colliding

points.

P(x) = a0 + axx + ... + ak-xx
k~l = (x + b0)(x + bx)... (x + bk-i)

where a0, ax,... ,ak-x, b0, bx,..., bk-x £ GF(2
n).

When it is evaluated, the evaluation costs k modular multiplications, O(k). In

order to convert P(x) in such a way that the number of modular multiplications

is reduced, we can apply the approach depicted in Figure B.l. The O W H F is

any one-way hash function such as M D 4 , M D 5 [172, 173], or H A V A L [226]. The

U H F is any universal hash function with the collision accessibility - this is our

polynomial P(x)

In the first layer, polynomials of degree two are defined or in other words they

have two collisions. It is then required to calculate k/2 polynomials Plf2(x), P3t4(x),

..., P{k~x),(k)(x) such that Px,2(dx) = A,2(4) = 1̂,2, ̂ 3,4(4) = ^3,4(4) = 4,4, • • •,

In the second layer, again k/A polynomials of degree two are defined such that

they collide each pair outputs of the polynomials of the first layer, i.e., the poly

nomials PX,2,Z,A(X),PS,6,7,S(X),..., P(k-3),(k-2),(k-l),(k)(x) SUch that Pi,2,3,4(dl,2) =

-^1,2,3,4(4,4) = 4,2,3,4,-^5,6,7,8(4,6) = -^5,6,7,8(4,8) = 4,6,7,8, • • •

If this is continued, the resulting last polynomial will generate the key K.

Thus, the above approach provides this possibility to get the same number of

collisions (k) while derivation for a given key will take O(log A;) modular multi

plication (each polynomial has degree two so its calculation takes 0(1) modular

151

Appendix B. An Improvement of Implementation of k-SIFF 152

K
1

K7.

K 3

K A
4

K
k-1

K k

»

»

OWHF

OWHF

OWHF

OWHF

OWHF

OWHF

1

1

k-UHF (Polynomial P(x))

d
1
2-UHF

d 2
d,„

d7 —
i

— H
— - I

d 4

2-UHF

2-UHF - *

—,
d, .
3,4

d(k-3),(k-2)

d
k-1
W 2-UHF

d >v '

2-UHF —-
,, -

d(k-l)Jc

\
2-UHF --

O W H F : OneWay Hash Function

2-UHF: 2-Univereal Hash Function

Figure B.l: Some improvement of implementation of k-SIFF.

multiplication).

There is however one problem to be solved; as there are many different poly

nomials and only one "path" is used, the system must know which key is being

used. To clarify this, P(x) generates the proper key as long as we plug in the

correct key (one from Ki,K2,. • -,Kk)- In order for key K{ the proper path is

chosen, it is suggested that if i is odd, Pz^i+x)(x) is used. In case that i is even,

P(i-i),i(x) is used.

Bibliography

[1] S. Abiteboul and A. Bonner, "Objects and Views," in Proceedings of the

1991 ACM SIGMOD International Conference on Management of Data

(J. Clifford and R. King, eds.), pp. 238-247, SIGMOD RECORD, A C M

Press, 1991.

[2] M. D. Abrams, "Role-Based Access Control Position Paper," in Proceedings

of the 17th National Computer Security Conference, vol. 2, (Baltimore,

Maryland), p. 491, Oct. 1994.

[3] N. R. Adam and J. c. Wortmann, "Security-Control Methods for Statisti

cal Databases: A Comparative Study," ACM Computing Surveys, vol. 21,

pp. 515-556, Dec. 1989.

[4] R. Ahad, J. davis, S. Gower, P. Lyngbaek, A. Marynowski, and E. Onuegbe,

"Supporting Access Control in an Object-Oriented Database Language,"

in Proceedings of the 3rd International Conference on Extending Database

Technology, EDBT'92, vol. 580 of Lecture Notes in Computer Science, (Vi

enna), pp. 184-200, Springer-Verlag, Mar. 1992.

[5] S. G. Akl and P. D. Taylor, "Cryptographic Solution To A Multilevel Se

curity Problem," in Advances in Cryptology Proceedings of CRYPTO'82

(D. Chaum, L. Rivest, and A. T. Sherman, eds.), pp. 237-250, Plenum

Press, NY, Aug. 1982.

[6] S. G. Akl and P. D. Taylor, "Cryptographic Solution To A Multilevel Se

curity Problem," ACM Transactions on Computer Systems, vol. 1, no. 3,

pp. 239-248, 1983.

153

BIBLIOGRAPHY 154

[7] A. Albano, G. Gheli, G. Occhiuto, and R. Orsini, "Galileo: A Strongly

Typed Interactive Conceptual Language," ACM Transactions on Database

Systems, vol. 10, June 1985.

[8] P. E. Ammann and R. S. Sandhu, "Implementing Transaction Control Ex

pressions by Checking for Absence of Access Rights," in 8th Annual Com

puter Security Applications Conference, pp. 131-140, IEEE Computer So

ciety Press, 1992.

[9] P. E. Ammann and R. S. Sandhu, "The Extended Schematic Protection

Model," Journal of Computer Security, vol. 1, no. 3,4, 1992.

[10] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, and K. Dittrich, "The

Object-Oriented Database System Manifesto," in Proceedings of First Inter

national Conference on DOOD89, (Research Park, Kyoto, Japan), pp. 223-

240, Elsevier Science Publishers B. V. (North-Holland) IFIP, Dec. 1989.

[11] T. Atwood, J. Dubl, G. Ferran, M. Loomis, and D. Wade, The Object

Database Standard: ODMG-93. Morgan Kaufmann Publishers, R. G. G.

Cattell (ed), Release 1.1, CA, ISBN 1-55860-302-6 ed., 1994.

[12] T. Atwood, "ODMG93: The object DBMS standard," Object Magazine,

pp. 37-44, Sept. 1993.

[13] R. W. Baldwin, "Naming and Grouping Privileges to Simplify Security

Management Databases," in Proceedings of the 1990 IEEE Symposium on

Security and Privacy, pp. 116-132, IEEE Computer Society Press, 1990.

[14] F. Bancilhon, "Object-Oriented Database Systems," in Proceedings 7th

ACM Symposium on Principles of Database Systems, ACM, Mar. 1988.

[15] F. Bancilhon and N. Spyratos, "Update Semantics of Relational Views,"

ACM Transactions on Database Systems, vol. 6, Dec. 1981.

[16] J. Banerjee, H.-T. Chou, J. F. Garza, W. Kim, D. Woelk, and N. Ballou,

"Data Model Issues for Object-Oriented Applications," ACM Transaction

on Office Information Systems, vol. 5, pp. 3-26, Jan. 1987.

[17] A. Baraani-Dastjerdi, J. R. Getta, J. Pieprzyk, and R. Safavi-Naini, "A

Cryptographic Solution to Discretionary Access Control in Structurally

BIBLIOGRAPHY 155

Object-Oriented Databases," in Proceedings of the 6th Australian Database

Conference (ADC'95) (R. Sacks and J. Zobel, eds.), vol. 17(2), (Adelaide,

Australia), pp. 36-45, Australian Computer Science Communications, Jan.

1995.

[18] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini, "A Multi-level View

Model for Secure Object-Oriented Databases," Accepted for publication by

Data &'Knowledge Engineering, 1996.

[19] A. Baraani-Dastjerdi, J. Pieprzyk, and R. Safavi-Naini, "Modeling A Multi

level Secure Object-Oriented Database Using Views," in Pre-proceedings of

the Australian Conference on Information Security and Privacy (accepted),

(The University of Wollongong, N S W , Australia), May 1996.

[20] A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini, and J. R. Getta,

"A Cryptographic Mechanism for Object-Instance-Based Authorization in

Object-Oriented Database Systems," in Proceedings of The 14th Inter

national Conference on Object-Oriented & Entity Relationship Modeling

(OOER'95) (M. P. Papazoglou, ed.), vol. 1021 of Lecture Notes in Com

puter Science, (Queensland, Australia), pp. 44-54, Springer-Verlag, Dec.

1995.

[21] A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini, and J. R. Getta, "A

Model of Authorization for Object-Oriented Databases based on Object

Views," in Proceedings of The Fourth International Conference on Deduc

tive and Object-Oriented Databases (T. Ling, A. Mendelzon, and L. Vieille,

eds.), vol. 1013 oi Lecture Notes in Computer Science, (Singapore), pp. 503-

520, Springer-Verlag, Dec. 1995.

[22] P. J. Barclay and J. B. Kennedy, "Viewing Objects," in Advances in

Databases, Proceedings 11th British National Conference on Databases

(BNCOD) (M. Worboys and A. Grundy, eds.), vol. 696 of Lecture Notes

in Computer Science, (Keele, UK) , pp. 93-110, Springer-Verlag, July 1993.

[23] D. K. Barry, " O D B M S Feature Listing," Object Magazine, pp. 48-53, Jan.

1993.

[24] C. Beeri, "Formal Model for Object-Oriented Databases," in Proceedings

of First International Conference on DOOD89, (Research Park, Kyoto,

BIBLIOGRAPHY 156

Japan), pp. 223-240, Elsevier Science Publishers B. V. (North-Holland)

IFIP, Dec. 1989.

[25] D. E. Bell, "Lattices, Policies, and Implementations," in Proceedings 13th

National Computer Security Conference, Oct. 1990.

[26] D. Bell and L. LaPadula, "Secure Computer System: Unified Exposition

and Multics Interpretation," Technical Report MTR-2997, M I T R E Corpo

ration, Bedford, M A , July 1975.

[27] E. Bertino, S. Jojodia, and P. Samarati, "Access Controls in Object-

Oriented Database Systems: Some Approaches and Issues," in Advanced

Database Concepts and Research Issues (N. Adam and B. Bhargava, eds.),

vol. 759 of Lecture Notes in Computer Science, Springer-Verlag, 1993.

[28] E. Bertino and L. Martino, Object-Oriented Database Systems: Concepts

and Architectures. Addison-Wesley ISBN 0 201 624397, 1993.

[29] E. Bertino, F. Origgi, and P. Samarati, "A New Authorization Model for

Object-Oriented Databases," in Database Security VIII (A-60) (J. Biskup,

M. Morgenstern, and C. E. Landwehr, eds.), pp. 199-222, Elsevier Science

Publishers B. V. (North-Holland) IFIP, 1994.

[30] E. Bertino and H. Weigand, "An Approach to Authorization Modeling in

Object-Oriented Database Systems," in Data & Knowledge Engineering

(P. P. Chen and R. P. V. de Riet, eds.), pp. 1-29, Elsevier Science Publishers

B. V. (North-Holland) IFIP, 1994.

[31] E. Bertino, "A View Mechanism for Object-Oriented Databases," in Pro

ceedings 3rd International Conference on Extending Data Base Technology

(EDBT), vol. 580 of Lecture Notes in Computer Science, (Vienna, Austria),

pp. 136-151, Springer-Verlag, Mar. 1992.

[32] E. Bertino, "Data Hiding and Security in Object-Oriented Databases,"

in Proceedings of the Eight International Conference on Data Engineering

(F. Golshani, ed.), pp. 338-347, IEEE Computer Society Press, 1992.

[33] E. Bertino and S. Jajodia, "Modeling Multilevel Entities Using Single Level

Objects," in Proceedings of the Deductive and Object-Oriented Databases,

BIBLIOGRAPHY 157

Third International Conference, DOOD'93, vol. 760 of Lecture Notes in

Computer Science, (Phoenix, Arizona, USA), pp. 415-428, Springer-Verlag,

Dec. 1993.

[34] E. Bertino and P. Samarati, "Research Issues in Discretionary Authoriza

tions for Object Bases," in OOPSLA '93 Workshops on Security for Object-

Oriented Systems, pp. 183-199, A C M SIGPLAN Notices, Oct. 1993.

[35] L. J. Binns, "Inference and Cover Stories," in Database Security VI (B. M.

Thuraisingham and Landwehr, eds.), pp. 169-178, Elsevier Science Pub

lishers B. V. (North-Holland) IFIP, 1993.

[36] L. J. Binns, "Inference Through Secondary Path Analysis," in Database Se

curity VI(B. M. Thuraisingham and Landwehr, eds.), pp. 195-208, Elsevier

Science Publishers B. V. (North-Holland) IFIP, 1993.

[37] W. E. Boebert, W. D. Young, R. Y. Kain, and S. A. Hansohn, "Security Ada

Target: Issues, System Design and Verfication," in Proceedings of the 1985

IEEE symposium on security and privacy, pp. 176-184, IEEE Computer

Society Press, Apr. 1985.

[38] N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, and K. Yazdanian, "De

composition of Multilevel Objects in an Object-Oriented Database," in

Computer Security ESORICS 94, Third European Symposium on Research

in Computer Security, vol. 875 of Lecture Notes in Computer Science,

pp. 375-402, Springer-Verlag, Nov. 1994.

[39] N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, and K. Yazdanian, "Vir

tual View Model to Design a Secure Object-Oriented Database," in Proceed

ings of the 17th National Computer Security Conference, vol. 2, (Baltimore,

Maryland), pp. 66-76, Oct. 1994.

[40] A. W . Brown, Object-Oriented Database Applications in Software Engineer

ing. McGraw-Hill, 1991.

[41] K. B. Bruce and P. Wegner, "An Algebraic Model of Subtype and Inheri

tance," in Advances in database programming languages (F. Bancilhon and

P. Buneman, eds.), pp. 75-96, A C M Press ; Reading, Mass.: Addison-

Wesley Co., 1990.

BIBLIOGRAPHY 158

[42] L. J. Buczkowski, "Database Inference Controller," in Database Security III

(D. L. Spooner and Landwehr, eds.), pp. 311-322, Elsevier Science Pub

lishers B. V. (North-Holland) IFIP, 1990.

[43] P. Butterworth, A. Otis, and J. Stein, "The Gemstone Object Database

Management System," Communications of the ACM, vol. 34, pp. 65-77,

Oct. 1991.

[44] Canadian System Security Centre Communications Security Establishment

Government of Canada, The Canadian Trusted Computer Product Evalua

tion Criteria (CTCPEC). Version 3.0e, ftp.cse.dnd.ca, Jan. 1993.

[45] M. Carey, D. DeWitt, and S. Vandenberg, "A Data Model and Query Lan

guage for EXODUS," in Proceedings of the ACM SIGMOD Conference,

(Chicago), June 1988.

[46] S. Castano, M. Fugini, G. Martella, and P. Samarati, Database Security.

Addison-Wesley, A C M press., 1995.

[47] R. G. G. Cattell, Object Data Management:object-oriented and extended

relational database systems. Addison-Wesley, 1992.

[48] G. C. Chick and S. E. Tavares, "Flexible Access Control With Master

Keys," in Advances in Cryptology Proceedings of CRYPTO'89 (G. Bras

sard, ed.), pp. 316-322, Springer-Verlag, 1990.

[49] D. D. Clark and D. R. Wilson, "A Comparison of Commercial and Mili

tary Computer Security Policies," in Proceedings IEEE Computer Society

Symposium on Security and Privacy, (Oakland, CA.), pp. 184-194, 1987.

[50] B. G. Claybrook, "Using Views in A Multilevel Secure Database Manage

ment System," in Proceedings of the 1983 IEEE symposium on security and

privacy, pp. 4-17, IEEE Computer Society Press, Apr. 1983.

[51] B. G. Claybrook, A. M. Claybrook, and J. Williams, "Defining Database

Views as Data Abstractions," IEEE Transactions on Software Engineering,

vol. 11, Jan. 1985.

[52] E. F. Codd, "A Relation Model for Large Shared Data Banks," Communi

cations of the ACM, vol. 13, pp. 377-387, June 1970.

ftp://ftp.cse.dnd.ca

BIBLIOGRAPHY 159

[53] E. F. Codd, "Extending the Database Relational Model to Capture More

Meaning," ACM Transactions on Database Systems, vol. 4, Dec. 1979.

[54] Commission of the European Communities, "Information Technology Se

curity Evaluation Criteria," tech. rep., Brussels, Sept. 1992.

[55] Committee on Multilevel Data Management Security, "Multilevel Data

Management Security," technical report, Washington, D. C: Air Force

Studies Board, National Research Council, National Academy Press, 1983.

For Official Use Only.

[56] R. W. Conway, W. L. Maxwell, and H. L. Morgan, "On the Implementa

tion of Security Measures in Information Systems," Communications of the

ACM, vol. 15, Apr. 1974.

[57] S. S. Cosmadakis and C. H. Papadimitriou, "Updates of Relational Views,"

Journal of the ACM, vol. 31, Oct. 1984.

[58] O. Costich, "Transaction Processing Using an Untrasted Scheduler in a

Multilevel Database with Replicated Architecture," in Database Security V

(S. Jajodia and C. Lanwehr, eds.), pp. 173-191, Elsevier Science Publishers

B. V. (North-Holland) IFIP, 1992.

[59] 0. Costich and J. McDermott, "A Multilevel Transaction Problem for Mul

tilevel Secure Database Systems and its Solution for Replicated Architec

ture," in Proceedings of IEEE computer Society Symposium on Research

in Security and Privacy, (Oakland, CA.), pp. 192-203, IEEE Computer

Society Press, May 1992.

[60] F. Cuppens, "A Model Logic Framework to Solve Aggregation Problems,"

in Database Security V(C. E. Landwehr and S. Jajodia, eds.), pp. 315-333,

Elsevier Science Publishers B. V. (North-Holland) IFIP, 1992.

[61] C. J. Date, An Introduction to Database Systems, vol. I. Addison-Wesley,

5 ed., 1991.

[62] G. I. Davida and Y. Yeh, "Cryptographic Relational Algebra," in Proceed

ings of the 1982 IEEE Symposium on Security and Privacy, pp. 111-116,

IEEE Computer Society Press, 1982.

BIBLIOGRAPHY 160

[63] U. Dayal, "Queries and views in an Object-Oriented Data Model," Inter

national Workshop on Data Base Programming Languages, vol. 2, 1989.

[64] U. Dayal and P. A. Bernstein, "On the Correct Translation of Update Op

erations on Relational Views," A CM Transactions on Database Systems,

vol. 8, Sept. 1982.

[65] D. E. Denning, Cryptography and Data Security. Addison-Wesley Publish

ing Company, 1983.

[66] D. E. Denning, "Cryptographic Checksums for Multilevel Database Secu

rity," in Proceedings of the 1984 IEEE symposium on security and privacy,

pp. 52-61, IEEE Computer Society Press, Apr. 1984.

[67] D. E. Denning, "Commutative Filters for Reducing Inference Threats in

Multilevel Database Systems," in Proceedings of the 1985 IEEE symposium

on security and privacy, pp. 134-146, IEEE Computer Society Press, Apr.

1985.

[68] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern,

P. G. Neumann, and R. R. Schell, "Views for Multilevel Database Security,"

IEEE Transactions on Software Engineering, vol. SE-13, pp. 129-140, Feb.

1987.

[69] D. E. Denning and T. F. Lunt, "A Multilevel Relational Data Model," in

Proceedings of Symposium on Computer Security and Privacy, (Oakland,

CA.), pp. 220-234, IEEE Computer Society Press, 1987.

[70] D. E. Denning and J. Schlorer, "Inference Control for Statistical

Databases," Computer, vol. 16, pp. 69-82, July 1983.

[71] D. E. Denning, "Database Security," Annual Reviews Inc., vol. 3, pp. 1-22,

1988.

[72] D. E. Denning, "An Evolution of Views," in Discussions of topics presented

at a Workshop held at the Vallombrosa, Conference and Retreat Centre,

Research Directions in Database Security (T. F. Lunt, ed.), (Menlo Park,

C A May 1988), pp. 91-95, Springer-Verlag, 1992.

BIBLIOGRAPHY 161

[73] Department of Defense, "Department of Defense Trusted Computer System

Evaluation Criteria," Technical Report D O D 5200.28-STD, Department of

Defense, Dec. 1985.

[74] 0. Deux, "The 02 System," Communications of the ACM, vol. 34, pp. 34-

48, Oct. 1991.

[75] K. Dittrich, "Object-Oriented Database Systems: The Notations and

Issues," in Proceedings of the First International Workshop on Object-

Oriented Database Systems, (Pacific Grove, CA.), IEEE Computer Society

Press, Sept. 1986.

[76] K. R. Dittrich, W. Gotthard, and P. C. Lockemann, "Complex Entities for

Engineering Applications," in Entity-Relationship Approach (S. Spaccapi-

etra, ed.), North-Holland, 1987.

[77] K. R. Dittrich, W . Gotthard, and P. C. Lockemann, " D A M O K L E S - The

Database System for the UNIBASE Software Engineering Environment,"

in IEEE Data Engineering, vol. 10(1), 1987.

[78] K. R. Dittrich, M. Hartig, and H. Pfefferle, "Discretionary Access Control in

Structurally Object-Oriented Database Systems," in Database Security II:

Status and Prospects (C. E. Landwehr, ed.), pp. 105-121, Elsevier Science

Publishers B. V. (North-Holland) IFIP, 1989.

[79] P. A. Dwyer, G. D. Jelatis, and M. B. Thuraisingham, "Multilevel Security

in Database Management Systems," Computers & Security, vol. 6, pp. 252-

260, June 1987.

[80] D. B. Faatz and D. L. Spooner, "Discretionary Access Control in Object-

Oriented Engineering Database Systems," in Database Security IV (S. Ja

jodia and C. Lanwehr, eds.), pp. 73-83, Elsevier Science Publishers B. V.

(North-Holland) IFIP, 1991.

[81] E. B. Fernandez, R. C. Summers, and C. D. Coleman, "An Authorization

Model for a Shared Database," in Proceedings of the 1975 ACM SIGMOD

International Conference, A C M Press, 1975.

[82] E. B. Fernandez, R. C. Summers, and C. Wood, Database Security and

Integrity. Addison-Wesley Publishing Company, 1981.

BIBLIOGRAPHY 162

[83] E. B. Fernandez, J. Wu, and M. H. Fernandez, "User Group Structures in

Object-Oriented Database Authorization," in Database Security VIII (A-

60) (J. Biskup, M. Morgenstern, and C. E. Landwehr, eds.), pp. 57-76,

Elsevier Science Publishers B. V. (North-Holland) IFIP, 1994.

[84] D. Ferrailo and R. Kuhn, "Role-based Access Controls," in Proceedings

of the 15th National Computer Security Conference, vol. II, (Baltimore,

Maryland), pp. 554-563, Oct. 1992.

[85] D. F. Ferraiolo, J. A. Cigini, and D. R. Kuhn, "Role-Based Access Control

(RBAC): Features and Motivations," in Proceedings of The 11th Annual

Computer Security Applications Conference, (New Orleans, USA), pp. 241-

248, IEEE Computer Society Press, Dec. 1995.

[86] A. Furtato and M. Casanova, "Updating Relational Views," in Query Pro

cessing in Database Systems (Kim, Reiner, and Batory, eds.), Lecture Notes

in Computer Science, Springer-Verlag, 1985.

[87] G. E. Gajnak, "Some Result from the Entity/Relationship Multilevel Secure

D B M S Project," in Discussions of topics presented at a Workshop held at

the Vallombrosa, Conference and Retreat Centre, Menlo Park, CA May

1988, Research Directions in Database Security (T. Lunt, ed.), pp. 173-

190, Springer-Verlag, 1992.

[88] C. Garvey and A. Wu, "ASD-Views," in Proceedings of the 1988 IEEE Sym

posium on Security and Privacy, Washington, pp. 85-95, IEEE Computer

Society Press, 1988.

[89] T. D. Garvey, T. F. Lunt, X. Qian, and M. E. Stickel, "Toward a Tool

to Detect and Eliminate Inference Problems in the Design Of Multilevel

Databases," in Database Security VI (B. M. Thuraisingham and Landwehr,

eds.), pp. 149-167, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1993.

[90] L. Giuri, "A New Model for Role-Based Access Control," in Proceedings

of The 11th Annual Computer Security Applications Conference, (New Or

leans, USA), pp. 249-255, IEEE Computer Society Press, Dec. 1995.

BIBLIOGRAPHY 163

[91] A. Goldberg and D. Robson, SMALLTALK-80 The Language and Imple

mentation. Addison-Wesley, Reading, MA, 1983.

[92] L. Gong, Cryptographic Protocols for Distributed Systems. PhD thesis, Jesus

College, University of Cambridge, United Kindom, 1990.

[93] G. S. Graham and P. J. Denning, "Protection- principles and practice," in

Proceedings of the Spring Joint Computer Conference, vol. 40, (Montvale,

New York), AFIPS Press, 1972.

[94] R. D. Graubart and K. J. Duffy, "Design Overview for Retrofitting

Integrity-lock Architecture onto a Commercial DBMS," in Proceedings of

the 1985 IEEE symposium on security and privacy, pp. 147-159, IEEE

Computer Society Press, Apr. 1985.

[95] N. A. B. Gray, Programming with class : a practical introduction to object-

oriented programming with C++. Wiley, 1994.

[96] E. Gudes, H. S. Koch, and F. A. Stahl, "The Application of Cryptography

for Database Security," National Computer Conference, pp. 97-107, 1976.

[97] E. Gudes, H. Song, and E. B. Fernandez, "Evaluation of Negative, Predi

cate, and Instance-based Authorization in Object-Oriented Databases," in

Database Security /V(S. Jajodia and C. Lanwehr, eds.), pp. 85-98, Elsevier

Science Publishers B. V. (North-Holland) IFIP, 1991.

[98] J. T. Haigh, R. C. O'Brien, P. D. Stachour, and D. L. Toups, "The LDV

Approach to Database Security," in Database Security III (D. L. Spooner

and Landwehr, eds.), pp. 323-339, Elsevier Science Publishers B. V. (North-

Holland) IFIP, 1990.

[99] J. T. Haigh, R. C. O'Brien, and D. J. Thomsen, "The LDV Secure Rela

tional D B M S Model," in Database Security IV (S. Jajodia and C. Lanwehr,

eds.), pp. 265-279, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1991.

[100] B. Hailpern and B. Ossher, "Extending Objects to Support Multiple In

terfaces and Access Control," IEEE Transactions on Software Engineering,

vol. 16, no. 11, pp. 1247-1257, 1990.

BIBLIOGRAPHY 164

[101] T. Hardjono, Y. Zheng, and J. Seberry, "A New Approach to Database Au

thentication," in Research and Practical Issues in Databases: Proceedings

of the Third Australian Database Conference (Database'92), pp. 334-342,

1992.

[102] T. Hardjono, Y. Zheng, and J. Seberry, "Database authentication revis

ited," Computers & Security, vol. 13, no. 7, pp. 573-580, 1994.

[103] T. Hardjono, Applications of Cryptography for the Security of Database and

Distributed Database Systems. PhD thesis, University College, University

of N S W , Sydney, Australia, 1991.

[104] L. Harn, Y.-R. Chien, and T. Kiesler, "An Extended Cryptographic Key

Generation Scheme For Multilevel Data Security," in Proceedings of the

IEEE Computer Society Symposium on Security and Privacy, (Oakland,

CA.), IEEE Computer Society Press, May 1990.

[105] L. Harn and H. Y. Lin, "A Cryptographic Key Generation Scheme for

Multilevel Data Security," Computers & Security, vol. 9, no. 6, pp. 539-

546, 1990.

[106] M. A. Harrison, W . L. Ruzzo, and J. D. Ullman, "Protection in Operating

Systems," Communications of the ACM, vol. 19, Aug. 1976.

[107] S. Heiler and S. Zdonik, "Object Views: Extending the Vision," in Proceed

ings 6th Data Engineering Conference, pp. 86-93, IEEE Computer Society

Press, 1990.

[108] W . R. Herndon, "An Interpretation of Clark-Wilson for Object-Oriented

DBMSs," in Database Security VII (T. F. Keefe and Landwehr, eds.),

pp. 65-85, Elsevier Science Publishers B. V. (North-Holland) IFIP, 1994.

[109] H. R. Hinke, C. Garvey, N. Jensen, J. Wilson, and A. Wu, "Al Secure

D B M S Design," in Proceedings of the 11th National Computer Security

Conference, (Baltimore, Maryland), Oct. 1988.

[110] T. Hinke, "Inference Aggregation Detection in Database Management Sys

tems," in Proceedings of the IEEE Symposium on Security and Privacy,

(Oakland, CA.), IEEE Computer Society Press, Apr. 1988.

BIBLIOGRAPHY 165

[111] T. H. Hinke and H. S. Delugach, "AERIE: An Inference Modeling and

Detection Approach For Databases," in Database Security VI (B. M. Thu

raisingham and Landwehr, eds.), pp. 179-193, Elsevier Science Publishers

B. V. (North-Holland) IFIP, 1993.

[112] D. K. Hsiao, M. J. Kohler, and S. W. Stround, "Query Modifications as

Means of Controlling Accesses to Multilevel Secure Databases," in Database

Security IV(S. Jajodia and C. Lanwehr, eds.), pp. 221-240, Elsevier Science

Publishers B. V. (North-Holland) IFIP, 1991.

[113] H. Ishikawa, Y. Izumida, N. Kawato, and T. Hayashi, "An Object-Oriented

Database System and its View Mechanism for Schema Integration," in Fu

ture Databases'92, Proceedings 2nd Far-East Workshop on Future Database

Systems (Q. Chen, Y. Kambayashi, and R. Sacks-Davis, eds.), vol. 3 of

Advanced Database Research and Development Series, (Kyoto, Japan),

pp. 194-200, Apr. 1992.

[114] S. Jajodia and B. Kogan, "Integrating an Object-Oriented Data Model with

Multilevel Security," IEEE Computer Society Press, pp. 76-85, 1990.

[115] S. Jajodia and R. Sandhu, "A Novel Decomposition of Multilevel Relations

into Single-level Relations," in IEEE Symposium on Research in Security

and Privacy, (Oakland, CA.), 1991.

[116] S. Jajodia and R. Sandhu, "Polyinstantiation Integrity in Multilevel Re

lations Revisited," in Database Security IV (S. Jajodia and C. Lanwehr,

eds.), pp. 297-307, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1991.

[117] S. Jajodia and R. Sandhu, "Toward a Multilevel Relational Data Model,"

in Proceedings of the 1991 ACM SIGMOD International Conference on

Management of Data (J. Clifford and R. King, eds.), S I G M O D R E C O R D ,

A C M Press, 1991.

[118] S. Jajodia and B. Kogan, "Transaction Processing in Multilevel Secure

Databases Using Replicated Architecture," in Proceedings 1990 IEEE Sym

posium on Research in Security and Privacy, pp. 360-368, IEEE Computer

Society Press, 1990.

BIBLIOGRAPHY 166

[119] I. E. Kang and T. F. Keefe, "Recovery Management for Multilevel Secure

Database Systems," in Database Security VI (B. M. Thuraisingham and

Landwehr, eds.), pp. 225-249, Elsevier Science Publishers B. V. (North-

Holland) IFIP, 1993.

[120] T. F. Keefe, M. B. Thuraisingham, and W. T. Tsai, "Secure Query Pro

cessing Strategies," IEEE Computer Society Press, vol. 22, pp. 63-70, Mar.

1989.

[121] T. F. Keefe and W. T. Tsai, "Security Model Consistency in Secure Object-

Oriented Systems," in 5th Annual Computer Security Applications Confer

ence Tucson, Arizona, pp. 290-298, IEEE Computer Society Press, Dec.

1989.

[122] T. F. Keefe and W. T. Tsai, "Prototyping the SODA Security Model," in

Database Security II (D. L. Spooner and C. E. Landwehr, eds.), pp. 211-

235, Elsevier Science Publishers B. V. (North-Holland) IFIP, 1990.

[123] T. F. Keefe, W . T. Tsai, and M. B. Thuraisingham, "A Multilevel Security

Model For Object-Oriented Systems," in Proceedings of the 11th National

Computer Security Conference, (Baltimore, Maryland), pp. 1-9, Oct. 1988.

[124] W . Kim, N. Ballou, J. Banerjee, H.-T. Chou, J. F. Garza, and D. Woelk,

"Features of The ORION Object-Oriented Database System," in Proceed

ings of the 13th International VLDB Conference, pp. 319-329, 1987.

[125] W . Kim and F. H. L. (Eds.), Object-Oriented Concepts, Databases, and

Applications. Addison-Wesley, Reading, Massachusetts, 1988.

[126] W . Kim, "Object-Oriented Databases: Definition and Research Direc

tions," IEEE Transactions on Knowledge and Data Engineering, vol. 2,

pp. 327-341, Sept. 1990.

[127] C. Laferriere, "A Discussion of Implementation Strategies for Secure

Database Management Systems," Computers & Security, vol. 9, pp. 235-

244, 1990.

[128] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, "The Objectstore

Database System," Communications of the ACM, vol. 34, pp. 50-63, Oct.

1991.

BIBLIOGRAPHY 167

[129] B. W. Lampson, "protection," in Proceedings of the 5th Princeton Sympo

sium on Information Science and Systems, (Reprinted in A C M operating

System Review, Vol. 8 (1). Jan. 1974), Mar. 1971.

[130] M. M. Larrondo-Petrie, E. Guides, H. Song, and E. B. Fernandez, "Security

Policies in Object-Oriented Databases," in Database Security III (D. L.

Spooner and Landwehr, eds.), pp. 257-269, Elsevier Science Publishers B.

V. (North-Holland) IFIP, 1990.

[131] C. Lecluse, P. Richard, and F. Velez, "02, an Object-Oriented Data

Model," in Advances in Database Programming Languages (F. Bancilbon

and P. Buneman, eds.), (New York), pp. 257-276, A C M Press ; Reading,

Mass. : Addison-Wesley Pub., 1990.

[132] T. Y. Lin, "Inference Secure Multilevel Databases," in Database Security VI

(B. M. Thuraisingham and Landwehr, eds.), pp. 317-333, Elsevier Science

Publishers B. V. (North-Holland) IFIP, 1993.

[133] G. M. Lohman, B. Lindsay, H. Pirahesh, and K. B. Schiefer, "Extensions

to Starburt: Objects, Types, Functions, and Rules," Communications of

the ACM, vol. 34, pp. 94-109, Oct. 1991.

[134] M. E. S. Loomis, "Object and Relational Technologies," Object Magazine,

pp. 35-43, Jan. 1993.

[135] M. E. S. Loomis, T. Atwood, R. Cattell, J. Duhl, G. Ferran, and D. Wade,

"ODBMS: The O D M G object model," Journal of Object-Oriented Program

ming, pp. 64-69, June 1993.

[136] R. Lorie and W. Plouffe, "Complex Objects and their Use in Design Trans

action," in Proceedings of the ACM SIGMOD Conference Database Week,

1983.

[137] J. J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian, "Efficient Main

tenance of Materialized Mediated Views," in Proceedings of the 1995 ACM

SIGMOD International Conference on Managemant of Data, vol. 24(2),

(San Jose, California), pp. 340-351, SIGMOD RECORD, A C M Press, May

1995.

BIBLIOGRAPHY 168

[138] T. F. Lunt, "Access Control Policies For Database Systems," in Database

Security II: Status and Prospects (C.E. Landwehr, ed.), pp. 41-52, Elsevier

Science Publishers B. V. (North-Holland) IFIP, 1989.

[139] T. F. Lunt, "Aggregation and Inference: Facts and Fallacies," in Proceed

ings of the IEEE Computer Society Symposium on Security and Privacy,

(Oakland, CA), pp. 102-109, IEEE Computer Society Press, May 1989.

[140] T. F. Lunt, "Multilevel Security for Object-Oriented Database Systems,"

in Database Security III (D. L. Spooner and Landwehr, eds.), pp. 199-209,

Elsevier Science Publishers B. V. (North-Holland) IFIP, 1990.

[141] T. F. Lunt, "SeaView," in Discussions of topics presented at a Workshop

held at the Vallombrosa, Conference and Retreat Centre, Menlo Park, CA

May 1988, Research Directions in Database Security (T. F. Lunt, ed.),

pp. 2-32, Springer-Verlag, 1992.

[142] T. F. Lunt and P. K. Boucher, "The SeaView Prototype: Project Sum

mary," in Proceedings of the 17th National Computer Security Conference,

vol. 2, (Baltimore, Maryland), pp. 88-102, Oct. 1994.

[143] T. F. Lunt, D. E. Denning, R. R. Schell, W. R. Shockley, and M. Heckman,

"The SeaView Security Model," IEEE Transactions on Software Engineer

ing, June 1990.

[144] T. F. Lunt and E. B. Fernandez, "Database Security," SIGMOD RECORD,

ACM Press, vol. 19, pp. 90-97, Dec. 1990.

[145] N. M. Mattos, K. Meyer-Wegener, and B. Mitschang, "Grand Tour of

Concepts for Object-Orientation from a Database Point of View," Data

& Knowledge Engineering, vol. 9, pp. 321-352, 1992.

[146] C. McCollum and L. Notargiacomo, "Distributed Concurrency Control with

Optional Data Replication," in Database Security F(S. Jajodia and C. Lan

wehr, eds.), pp. 149-173, Elsevier Science Publishers B. V. (North-Holland)

IFIP, 1992.

[147] J. Mclean, "The Specification and Modeling of Computer Security," Com

puter, Jan. 1990.

BIBLIOGRAPHY 169

[148] C. Meadows, "Constructing Containers Using A Multilevel Relational Data

Model," in Database Security III (D. L. Spooner and Landwehr, eds.),

pp. 127-141, Elsevier Science Publishers B. V. (North-Holland) IFIP, 1990.

[149] J. K. Millen and T. F. Lunt, "Security for Object-Oriented Database Sys

tems," in Proceedings of IEEE computer Society Symposium on Research

in Security and Privacy, (Oakland, CA.), pp. 260-272, IEEE Computer

Society Press, May 1992.

[150] M. Morgenstern, "A Security Model for Multilevel Object With Bidirec

tional Relationships," in Database Security IV: Status and Prospects (S. Ja

jodia and C. E. Landwehr, eds.), pp. 53-71, Elsevier Science Publishers B.

V. (North-Holland) IFIP, 1991.

[151] M. Naor and M. Yung, "Universal one-way hash functions and their cryp

tographic applications," in Proceedings of the 21st ACM Symposium on

Theory of Computing, pp. 33-43, A C M Press, 1989.

[152] L. Notargiacomo, B. T. Blaustein, and C. D. McCollum, "A Model of In

tegrity and Dynamic Separation of Duty for a Trusted DBMS," in Database

Security VII (T. F. Keefe and Landwehr, eds.), pp. 237-246, Elsevier Sci

ence Publishers B. V. (North-Holland) IFIP, 1994.

[153] L. Notargiacomo, "Metadata and View Classification," in Discussions of

topics presented at a Workshop held at the Vallombrosa, Conference and

Retreat Centre, Research Directions in Database Security (T. F. Lunt, ed.),

(Menlo Park, C A May 1988), pp. 243-247, Springer-Verlag, 1992.

[154] G. M. Nyanchama, Commercial Integrity, Roles and Object Orientation.

PhD thesis, Department of Computer Science, Faculty of Graduate Studies

, University of Western Ontario, London, Ontario, Canada, 1994.

[155] M. Nyanchama and S. Osborn, "Role-Based Security, Object Oriented

Databases and Separation of Duty," SIGMOD RECORD, ACM Press,

vol. 22, pp. 45-51, Dec. 1993.

[156] Object Database Corporation, Cambridge, Massachusetts, GBase Refer

ence Manual, 1990.

BIBLIOGRAPHY 170

[157] Object Design Ine, Burlington, M A 01803, Objectstore Reference Manual

and Objectstore User Guide, 1990.

[158] Object Design Ine, Burlington, M A 01803, Objectstore Technical Overview,

1990.

[159] Objectivity, Inc., Menlo Park, CA, Objectivity Database System Overview,

1990.

[160] M. S. Olivier and S. H. V. Solms, "A Taxonomy for Secure Object-Oriented

Databases," ACM Transactions on Database Systems, vol. 19, pp. 3-46,

Mar. 1993.

[161] M. S. Olivier, Secure Object-Oriented Databases. PhD thesis, Computer

Science, Faculty of Natural Sciences, R A N D Afrikaans University, Johan

nesburg, South Africa, Dec. 1991.

[162] F. Olken and D. Rotem, "Maintenance of Materialized Views of Sampling

Queries," in Proceedings of the Eight International Conference on Data

Engineering (F. Golshani, ed.), pp. 632-641, IEEE Computer Society Press,

1992.

[163] I. Olson and A. Marshall, "Computer Access Control Policy Choices," Com

puters & Security, vol. 9, no. 8, 1990.

[164] Ontologic, Inc., Billerica, Massachusetts, ONTOS Reference Manual, 1989.

[165] R. Pascale and J. R. M. Enerney, "Using T H E T A to Implement Access Con

trol for Separation of Duties," in Proceedings of the 17th National Computer

Security Conference, vol. 2, (Baltimore, Maryland), pp. 47-55, Oct. 1994.

[166] C. P. Pfleeger, Security in Computing. Prentice-Hall, Inc., 1989.

[167] W . J. Premerlani, M. R. Blaha, J. E. Rumbaugh, and T. A. Varwing,

"An Object-Oriented Relational Database," Communications of the ACM,

vol. 33, Nov. 1990.

[168] X. Qian, M. E. Stickel, P. D. Karp, T. F. Lunt, and T. D. Garvey, "De

tection and Elimination of Inference Channels in Multilevel Relational

Database Systems," in Proceedings 1993 IEEE Symposium on Research in

Security and Privacy, pp. 196-205, IEEE Computer Society Press, 1993.

BIBLIOGRAPHY 171

[169] F. Rabitti, E. Bertino, W . Kim, and D. Woelk, "A Model of Authorization

for Next-Generation Database Systems," ACM Transactions on Database

Systems, vol. 16, pp. 88-131, Mar. 1991.

[170] F. Rabitti, D. Woelk, and W. Kim, "A Model of Authorization for Object-

Oriented and Semantic Databases," in Proceedings of International Con

ference on Extending Database Technology, vol. 303 of Lecture Notes in

Computer Science, pp. 231-250, Springer-Verlag, Mar. 1988.

[171] R. L. Rivest, A. Shamir, and L. Adleman, "A Method For Obtaining Digital

Signatures And Public-Key Cryptosystems," Communications of the ACM,

vol. 21, no. 2, pp. 120-128, 1978.

[172] R. L. Rivest, "The MD4 Message Digest Algorithm," in Advances in Cryp

tology, Proceedings of CRYPTO'90, pp. 281-291, Springer-Verlag, 1990.

[173] R. L. Rivest, "The MD5 Message Digest Algorithm." MIT Laboratory for

Computer Science and RSA Data Security, Inc., Request for Comments

(RFC), 1992.

[174] J. Rumbaugh, M. Blaba, W. Premerlani, F. Eddy, and W. Larensen, Object-

Oriented Modeling and Design. Printice Hall Inc., 1991.

[175] E. A. Rundensteiner, Object-Oriented Views: A Novel Approach for Tool

Integration in Design Environments. Technical report 92-83, University of

California, Irvine, USA, 1992.

[176] D. Russell and G. T. Gangemi, Computer Security Basic. O'Reill & Asso

ciates, 1991.

[177] S. Wiseman et. al., "The Trouble with Secure Database," in Proceedings of

MILCOMP 89, pp. 164-170, Sept. 1989.

[178] R. S. Sandhu, "Cryptographic Implementation of A Tree Hierarchy For

Access Control," Information Processing Letter, vol. 27, no. 2, pp. 95-98,

1988.

[179] R. S. Sandhu, "Expressive Power of the Schematic Protection Model," Jour

nal of Computer Security, vol. 1, 1992.

BIBLIOGRAPHY 172

[180] R. Sandhu, "Separation of Duties in Computerized Information Systems,"

in Database Security IV (S. Jajodia and C. Lanwehr, eds.), pp. 179-189,

Elsevier Science Publishers B. V. (North-Holland) IFIP, 1991.

[181] R. S. Sandhu, "The Typed Access Matrix Model," in Proceedings of IEEE

computer Society Symposium on Research in Security and Privacy, (Oak

land, CA.), pp. 122-136, IEEE Computer Society Press, May 1992.

[182] R. S. Sandhu, "Role-Based Access Control: A position Statement," in Pro

ceedings of the 17th National Computer Security Conference, vol. 2, (Balti

more, Maryland), p. 492, Oct. 1994.

[183] R. S. Sandhu and H. Feinstein, "A Three TIER Architecture for Role-Based

Access Control," in Proceedings of the 17th National Computer Security

Conference, vol. 2, (Baltimore, Maryland), pp. 34-46, Oct. 1994.

[184] R. S. Sandhu and S. Jajodia, "Referential Integrity in Multilevel Security

Databases," in Proceedings of the 16th National Computer Security Con

ference, (Baltimore, Maryland), pp. 39-52, Sept. 1993.

[185] R. S. Sandhu and P. Samarati, "Access Control: Principles and Practice,"

IEEE Communications Magazine, vol. 9, pp. 40-48, Sept. 1994.

[186] R. S. Sandhu, "Recognizing Immediacy in an N-Tree Hierarchy and Its

Application to Protection Groups," IEEE Transactions on Software Engi

neering, vol. 15, pp. 1518-1525, Dec. 1989.

[187] R. R. Schell and T. F. Tao, "Microcomputer-based Trusted Systems for

Communication and Workstation Applications," in Proceedings of The 7th

DOD/NBS Computer Security Conference, pp. 277-290, Sept. 1984.

[188] L. M. Schlipper, J. Filsinger, and V. M. Doshi, "A Multilevel Secure

Database Management System Benchmark," in Proceedings of the 15th

National Computer Security Conference, vol. II, (Baltimore, Maryland),

pp. 399-408, Oct. 1992.

[189] M. H. Scholl, C. Laasch, and M. Tresch, "Views in Object-Oriented

Databases," in Proceedings 2nd Workshop on Foundations of Models and

Languages of Data and Objects, pp. 37-58, Sept. 1990.

BIBLIOGRAPHY 173

[190] M. H. Scholl, C. Laasch, and M. Tresch, "Updatable Views in Object-

Oriented Databases," in Proceedings of the Deductive and Object-Oriented

Databases, Second International Conference, DOOD'91 (C. Delobel,

M. Kifer, and Y. Masunga, eds.), vol. 566 of Lecture Notes in Computer

Science, (Miinchen, FRG), pp. 189-207, Springer-Verlag, Dec. 1991.

[191] J. Seberry and J. Pieprzyk, CRYPTOGRAPHY: An Introduction to Com

puter Security, Advances in Computer Science Series. Prentice Hall Inc.,

1989.

[192] J. J. Shilling and P. F. Sweeney, "Three Steps to Views: Extending

the Object-Oriented Paradigm," in Proceedings International Conference

on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA), (New York), pp. 353-361, A C M Press, Oct. 1989.

[193] W. R. Shockley, "Implementing The Clark/Wilson Integrity Policy Using

Current Technology," in Proceedings of the 11th National Computer Secu

rity Conference, (Baltimore, Maryland), pp. 29-37, Oct. 1988.

[194] A. Silberschatz, M. Stonebraker, and J. Ullman, "Database Systems:

Achievements and Opportunities," Communications of the ACM, vol. 34,

pp. 110-120, Oct. 1991.

[195] G. Smith, "Modeling Security-Relevant Data Semantics," in Proceedings of

the IEEE Computer Society Symposium on Security and Privacy, (Oakland,

CA.), IEEE Computer Society Press, May 1990.

[196] G. W. Smith, "Identifying and Representing the Security Semantics of an

Application," in Proceedings of the Fourth Aerospace Computer Security

Applications Conference, , Dec. 1988.

[197] J. M. Smith and D. C. P. Smith, "Database Abstraction: Aggregation and

Generalization," ACM Transactions on Database Systems, vol. 2, pp. 105-

133, June 1977.

[198] B. Sowerbutts and S. Cordingley, "Data Base Architectonics and Inferen

tial Security," in Database Security IV (S. Jajodia and Landwehr, eds.),

pp. 309-324, Elsevier Science Publishers B. V. (North-Holland) IFIP, 1991.

BIBLIOGRAPHY 174

[199] D. L. Spooner, "The Impact of Inheritance On Security In Object-Oriented

Database Systems," in Database Security II(C. E. Landwehr, ed.), pp. 141-

150, Elsevier Science Publishers B. V. (North-Holland) IFIP, 1989.

[200] P. D. Stachour and B. Thuraisingham, "Design of LDV: A Multilevel Secure

Relational Database Management System," IEEE Transactions on Knowl

edge and Data Engineering, vol. 2, pp. 190-209, June 1990.

[201] P. Stachour, "LOCK Data Views," in Discussions of topics presented at

a Workshop held at the Vallombrosa, Conference and Retreat Centre, Re

search Directions in Database Security (T. F. Lunt, ed.), (Menlo Park, CA

May 1988), pp. 63-80, Springer-Verlag, 1992.

[202] M. Stonebraker and G. Kemnitz, "The POSTGRES Next Generation

Database Management System," Communications of the ACM, vol. 34,

pp. 78-92, Oct. 1991.

[203] M. Stonebraker and L. A. Rowe, "The design of POSTGRES," in Proceed

ings of the ACM SIGMOD conference, (Washington D.C.), 1986.

[204] T.-A. Su, "Multivalued Dependency Inference in Multilevel Relational

Database Systems," in Database Security III(D. L. Spooner and Landwehr,

eds.), pp. 293-300, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1990.

[205] S. M. Thatte, "A Modular and Open Object-Oriented Database System,"

SIGMOD RECORD, ACM Press, vol. 20, Mar. 1991.

[206] R. K. Thomas and R. S. Sandhu, "Discretionary Access Control in Object-

Oriented Database: Issues and Research Directions," in Proceedings of

the 16th National Computer Security Conference, (Baltimore, Maryland),

pp. 63-74, Sept. 1993.

[207] R. K. Thomas and R. S. Sandhu, "Conceptual Foundations for a Model of

Task-based Authorization," IEEE Computer Security Foundations Work

shop, vol. 7, pp. 66-79, 1994.

[208] D. J. Thomsen, W. T. Tsai, and M. B. Thuraisingham, "Prototyping as a

Research Tool for MLS/DBMS," in Database Security II (C. E. Landwehr,

BIBLIOGRAPHY 175

ed.), pp. 63-84, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1989.

[209] M. B. Thuraisingham, "Security Checking in Relational Database Manage

ment System Augmented with Inference Engines," Computers & Security,

vol. 6, Dec. 1987.

[210] M. B. Thuraisingham, "Mandatory Security in Object-Oriented Database

Systems," in Proceedings International Conference on Object-Oriented Pro

gramming Systems, Languages, and Applications (OOPSLA), (New Or

leans), pp. 203-210, Oct. 1989.

[211] M. B. Thuraisingham, "Recent Developments in Database Security," in

Tutorial Proceedings of the IEEE COMPSAC Conference, (Orlando, FL),

Sept. 1989.

[212] M. B. Thuraisingham, "Towards the Design of a Secure Data/Knowledge

Base Management System," Data & Knowledge Engineering, vol. 5, Mar.

1990.

[213] M. B. Thuraisingham, "The Use of Conceptual Structures for Handling The

Inference Problem," in Database Security V(C. E. Landwehr and S. Jajodia,

eds.), pp. 333-362, Elsevier Science Publishers B. V. (North-Holland) IFIP,

1992.

[214] T. C. Ting, "A User-Role Based Data Security Approach," in Database

Security: Status and Prospects (C. E. Landwehr, ed.), pp. 187-208, Elsevier

Science Publishers B. V. (North-Holland) IFIP, 1988.

[215] T. C. Ting, S. A. Demurjian, and M. Y. Hu, "Requirements, Capabilities,

and Functionalities of User-Role Based Security for an Object-Oriented

Design Model," in Database Security V: Status and Prospects (S. Jajodia

and C. E. Landwehr, eds.), pp. 275-296, Elsevier Science Publishers B. V.

(North-Holland) IFIP, 1992.

[216] H.-M. Tsai and C.-C. Chang, "A Cryptographic Implementation for Dy

namic Access Control in a User Hierarchy," Computers & Security, vol. 14,

pp. 159-166, 1995.

BIBLIOGRAPHY 176

[217] J. D. Ullman, Principles of database and knowledge-base systems. Rockville,

Md.: Computer Science Press, 1988.

[218] Versant Object Technologies, Inc., Menlo Park, CA, VERS ANT Technical

Overview, 1990.

[219] Y. Wand, "A Proposal for a Formal Model of Objects," in Object-Oriented

Concepts, Databases, and Applications (W. Kim and F. H. Lochovsky, eds.),

pp. 537-559, Addison-Wesley, Reading, Massachusetts, A C M Press, 1989.

[220] M. N. Wegman and J. L. Carter, "New Hash Functions and Their Use in

Authentication and Set Equality," Journal of Computer and System Sci

ences, vol. 22, pp. 265-279, 1981.

[221] G. Wiederhold, "Views, Objects, and Databases," IEEE Computer, pp. 37-

44, Dec. 1986.

[222] K. Wilkinson, P. Lyngbaek, and W. Hasan, "The Iris Architecture and

Implementation," IEEE Transactions on Knowledge and Data Engineering,

vol. 2, Mar. 1990.

[223] J. Wilson, "Views as the Security Objects in a Multilevel Secure Relational

Database Management System," in Proceedings of Symposium on Computer

Security and Privacy, (Oakland, CA.), IEEE Computer Society Press, Apr.

1988.

[224] S. R. Wiseman, "On the Problem of Security in Databases," in Database

Security III (D. L. Spooner and Landwehr, eds.), pp. 301-311, Elsevier

Science Publishers B. V. (North-Holland) IFIP, 1990.

[225] Y. Zheng, T. Hardjono, and J. Pieprzyk, "The Sibling Intractable Function

Family (SIFF): Notation, Construction and Applications," IEICE Trans

actions, Fundamentals, vol. E76-A, pp. 4-13, Jan. 1993.

[226] Y. Zheng, J. Pieprzyk, and J. Seberry, "HAVAL- A One-Way Hashing Algo

rithm with Variable Lenght of Output (Extended Abstract)," in Advances

in Cryptology, Proceedings of AUSCRYPT'92, vol. 718 of Lecture Notes in

Computer Science, pp. 83-104, Springer-Verlag, 1992.

