
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1994

Scheduling in a generalized transaction/thread
model
Bernhard G. Humm
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Humm, Bernhard G., Scheduling in a generalized transaction/thread model, Doctor of Philosophy thesis, Department of Computer
Science, University of Wollongong, 1994. http://ro.uow.edu.au/theses/1302

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Scheduling in a Generalized
Transaction/Thread Model

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Doctor of Philosophy
(Computer Science)

from

THE UNIVERSITY OF WOLLONGONG

by

Bernhard G. Humm, Dipl.-Inform. (Kaiserslautern)

Department of Computer Science
1994

1

Declaration

I hereby declare that I am the sole author of this thesis. I also declare that the material

presented within is m y own work, except where duly acknowledged, and that I a m not

aware of any similar work either prior to this thesis or currently being pursued.

Bernhard G. H u m m

ii

Abstract

This thesis is about scheduling in object-oriented distributed systems that support nested

transactions. Novel linguistic constructs are introduced that allow the specification of

transaction and thread semantics over messages independently. This so-called "general

ized message scheme" provides a richer set of useful programming abstractions than does

the traditional nested transaction model. For this reason, the scheduling semantics of the

traditional nested transaction model are extended to cover all abstractions provided by

the generalized message scheme. An implementation-independent scheduling mechanism

is presented that satisfies these scheduling semantics. Also, an efficient implementation

of this scheduling mechanism is described.

The mechanisms presented in this thesis have a number of advantages over existing

approaches. Separation of transaction and thread semantics achieve more flexibility dur

ing system development and more efficiency during system execution. Typical features of

object-orientation like reusability, extendibility and maintainability are supported. Pro

grammers can fine-tune the performance of their applications without having to change

the structure or semantics of the code. It is shown that the proposed mechanisms, though

more general than traditional mechanisms, can be implemented as efficiently as traditional

mechanisms.

iii

Acknowledgements

I would like to thank a number of people who have been helpful throughout the years

that I have worked on this thesis. To Greg Doherty I owe the fact that I ended up

in Wollongong. The Telecommunications Software Research Centre (TSRC) has been an

excellent work environment and I am grateful to the director Fergus O'Brien for employing

me as the first member of TSRC. Thanks go to the Australian Government, the University

of Wollongong and Telecom Australia for financial support. Fergus has also been helpful

as a thesis supervisor, together with Neil A. B. Gray. Neil's fundamental knowledge in

object-oriented concepts was an important source.

Special thanks go to m y co-workers at TSRC, Michael Fazzolare and R. David Ranson.

Through many long days and nights of discussions we acquired together the level of

expertise in the field which we have now. This thesis would certainly not be the same if

I hadn't worked in this great group.

I thank Marilyn Cross and all the above mentioned persons for commenting on a draft

version of this thesis. Finally, I must thank m y wife Anke. She has always reminded me

not to neglect m y family even more than I already have. Thank you for putting up with

all this!

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Transactions and Objects in Distributed Systems 3

2.1 Issues in Distributed Systems 3

2.2 Transactions 5

2.2.1 Concurrency Control 6

2.2.2 Recovery 9

2.3 Nested Transactions 11

2.4 Object-Orientation in Distributed Systems 13

2.4.1 The Main Concepts of Object-Orientation 13

2.4.2 Advantages of Object-Orientation 16

2.5 Distributed Systems Supporting Nested Transactions and Objects 18

3 The Hermes/ST Distributed Programming Environment 20

3.1 The Distributed Bank Example 20

3.2 The Hermes/ST Object Model 21

3.2.1 Development Advantages 23

3.3 The Generalized Message Scheme 23

3.3.1 Message Kind and Transaction Parameters 23

3.3.2 Specification of Message Parameters 24

3.3.3 The Weighted Voting Example 25

3.3.4 Additional Message Parameters 25

3.3.5 Specifying Invocation Parameters in Method Interfaces 26

3.3.6 Development Advantages 27

3.4 Concurrency Control 28

3.4.1 Implicit Concurrency Control 28

3.4.2 Explicit Concurrency Control 29

3.4.3 Development Advantages 31

3.5 Hermes/ST Implementation of the Distributed Bank 32

3.6 Evaluation and Comparison to Other Approaches 33

3.6.1 Evaluation 33

3.6.2 Argus 34

3.6.3 Avalon/C-f-+ 35

3.6.4 Venari/ML 36

iv

Scheduling in a Generalized Transaction/Thread Model 37

4.1 Definitions 37

4.1.1 Messages and Message Trees 37

4.1.2 Relationships Between Messages 39

4.1.3 Message Paths and Message Path Elements 40

4.1.4 Regular Expressions for Message Paths 40

4.1.5 Transactions 41

4.1.6 Threads 42

4.1.7 Partial Threads Under Transactions 43

4.1.8 Schedules 44

4.1.9 Cascading Aborts 47

4.1.10 Return Dependencies 47

4.2 The Scheduling Properties 48

4.2.1 Examples for the Scheduling Properties 49

4.2.2 Discussion of the Scheduling Properties 51

4.3 The Schedulability Predicate 53

4.4 Correctness of the Schedulability Predicate 54

4.4.1 Return Dependencies 54

4.4.2 Cascading Aborts 57

4.4.3 The Partition of Cases 58

4.4.4 si = s2 60

4.4.5 mx retDep m2 62

4.4.6 si ̂ s2 and not mx retDep m2 63

4.4.7 mx and m2 Both Non-Transactional 64

4.4.8 mi Transactional and m2 Non-Transactional 64

4.4.9 mx Non-Transactional and m2 Transactional 66

4.4.10 mx and m 2 Both Transactional 66

4.4.11 tlx±tl2 66

4.4.12 tl1 = tl2 68

4.4.13 h = t2 68

4.4.14 h<t2 69

4.4.15 h>t2 71

4.4.16 h<>t2 72

4.5 Implementation of the Scheduling Mechanism 74

4.5.1 System Objects for Scheduling 75

4.5.2 Interaction of System Objects 77

4.6 Implementation of the Schedulability Predicate 82

4.6.1 The Algorithms 83

4.6.2 Correctness of the Schedulability Algorithm 84

4.7 The Wait-By-Necessity Extension 92

4.7.1 Scheduling and Return Dependencies 92

4.7.2 A General Form of Wait-By-Necessity 94

4.7.3 A Less General Form of Wait-By-Necessity 96

4.8 The Non-Serialized Transactional Thread Extension 97

4.9 The Top-Level Extension 98

VI

5 Discussion 99
5.1 Moss'Model 100

5.1.1 Transactions 100
5.1.2 Scheduling 100
5.1.3 Comparison 102

5.2 Argus 107
5.2.1 The Model 107
5.2.2 Generality of the Model 108
5.2.3 Scheduling 108
5.2.4 Serializability of Ancestor and Descendant Transactions 108
5.2.5 Level of Concurrency 109

5.3 Eden HI
5.3.1 The Model HI
5.3.2 Scheduling 112
5.3.3 Comparison 113

5.4 Downward Lock Inheritance 113
5.4.1 Simple Downward Lock Inheritance 113
5.4.2 Controlled Downward Lock Inheritance 113
5.4.3 Analysis 114
5.4.4 Comparison 114

5.5 Venari/ML 115
5.5.1 Generality of the Model 116
5.5.2 Scheduling 116
5.5.3 Seriahzabihty of Ancestor and Descendant Transactions 116
5.5.4 Level of Concurrency 117

5.6 K A R O S 117

5.6.1 The Transaction Model 117
5.6.2 Scheduling 118
5.6.3 Seriahzabihty 118
5.6.4 Efficiency and Concurrency 118

5.7 Performance Analysis 119
5.7.1 Modifying Message Parameters 120
5.7.2 Performance of Schedulability Testing 121
5.7.3 Schedulability Testing versus Overall Transaction Cost 121
5.7.4 Caching versus Asking Scheduling Information 122

6 Conclusions 123

A Hermes/ST Code Examples 125
A.l The Binary Search Tree 125

A.l.l The Tree Class 125
A.1.2 The TreeNode Class 127

A.2 Weighted Voting for Replicated Objects 128
A.2.1 Methods for Concurrent Collection Enumeration 128
A.2.2 The ReplicatedObject Class 129
A.2.3 The Replicalnf o Class 131

A.3 Specification and Overriding of Message Parameters 132
A.3.1 Transfer Method in Class Teller 132
A.3.2 Deposit And Withdraw Methods in Class Branch 132
A.3.3 Transfer Method in Class AutomaticTellerMachine 133

CONTENTS vii

A.4 Programmable Lock Definition and Usage 133

A.4.1 The ProgrammableLock Class 133

A.4.2 The AccountWriteLock Class 134

A.4.3 Deposit Method of Class Branch 135

A.4.4 The SavingsAccountsWriteLock Class 135

A.4.5 Method addlnterest in Class Branch 136

A.5 The Distributed Bank Implementation 136

A.5.1 The Teller Class 136

A.5.2 The HeadOffice Class 137

A.5.3 The AutomaticTellerMachine Class 138

A.5.4 The BankClerk Class 139

A.5.5 The Branch Class 139

A.5.6 The Account Class 141

Bibliography 143

Index 149

List of Figures

2.1 A single inheritance hierarchy for polygon classes 15

3.1 An example binary search tree 29

4.1 An example message tree 38

4.2 Messages belonging to thread ̂ i 42

4.3 Messages belonging to partial thread 5s 43

4.4 Si/T8: Si enters T8 44

4.5 Sio/Tg. 5io is created within Tg 45

4.6 Synchronization of messages 46

4.7 Synchronization of messages and transactions 47

4.8 Return dependency between messages Mx and M3 48

4.9 Avoidance of cascading aborts 57

4.10 Partition of cases 58

4.11 sx = s2, mx <> m2 60

4.12 sx = s2 62

4.13 mx retDep m2 63

4.14 One of the two messages is transactional, the other one is non-transactional. 65

4.15 th / tl2 67

4.16 h=t2 68

4.17 tx <t2 70

4.18 tx>t2 71

4.19 tx < > t2 73

4.20 Scenario of sending and executing a message 78

4.21 Return dependency with long and short message paths 85

4.22 Phases of the schedulability algorithm 87

4.23 mi -< m2 92

4.24 A scenario of wait-by-necessity messages 95

5.1 Accesses are turned into subtransactions 105

5.2 Ancestor/descendant synchronization in Argus 108

5.3 Linked fist example 109

5.4 Lock downward inheritance 114

5.5 Scheduling in K A R O S 119

viii

List of Tables

2.1 Example for two interleaving deposit operations 4

2.2 Example for cascading aborts 7

2.3 Lock compatibility matrix for read/write locking 8

2.4 Example for deadlock 9

5.1 Transactional bank transfer with varying message parameters for deposit

and withdraw 120

5.2 Comparison of the performance of schedulability testing 121

5.3 Cost for schedulability testing in comparison to overall transaction costs. . 122

5.4 Obtaining scheduling information remotely and locally 122

ix

Chapter 1

Introduction

This thesis is about scheduling in object-oriented distributed systems that support nested

transactions. Within the last decade, distributed systems have become increasingly impor

tant. Programming distributed systems is inherently more complex than programming

single-node, sequential systems. It is therefore a goal of distributed systems research

to investigate linguistic mechanisms that allow the construction of reliable and efficient

distributed systems in a convenient and cost-effective manner. One convenient abstrac

tion for reliable computing is that of (nested) transactions (e.g. [GR93]). Transactions

were originally developed in the database area and have since been successfully applied

to distributed systems.

Object-orientation (e.g. [Mey88]) is a programming paradigm that was originally

developed in the simulation area. Its advantages in terms of rapid prototyping, reusability,

extensibility, and maintainability of systems have been widely acknowledged. Today,

object-orientation is used by many computing communities, including the distributed

systems community.

Both technologies, object-orientation and nested transactions, have been integrated

with distributed systems. This research started in the early eighties with the Argus

project [Lis82] (Massachusetts Institute of Technology). The Argus project demonstrated

successfully that both technologies make the development of distributed systems eas

ier. However, Argus has performance drawbacks. Later projects, like Camelot/Avalon

[EME91] (Carnegie Mellon University), were able to overcome these shortcomings. To

day, research into this technology has matured enough so that it has been adopted in

large-scale commercial products. Many such systems are currently available and their

number is increasing rapidly.

All existing object-oriented transactional distributed systems, research prototypes and

commercial systems, provide only a restricted model for concurrency in nested transac

tions. This thesis argues that a generalized transaction/thread1 model allows higher con

currency, a more natural and convenient programming abstraction and other development

advantages which are typical for object-orientation: reusability, extensibility, and main

tainability. This generalized model can be implemented as efficiently as the traditional,

restricted model. The novel aspects of this thesis can be summarized as follows.

• New linguistic constructs are presented that unify transaction creation and thread

creation with messages. With this so-called "generalized message scheme", syn

chronous and asynchronous messages can be specified that do or do not create

transactions. This scheme allows non-transactional threads, top-level transactions,

1 A thread of control or simply thread is a unit of concurrent computation.

1

CHAPTER 1. INTRODUCTION 2

synchronous and asynchronous subtransactions and transactional threads that do

not create a subtransaction.

• New scheduling properties are defined for the generalized message scheme. They

represent a natural and useful extension of existing nested transactions scheduling

semantics. Serializable threads are distinguished from threads that are not serializ-

able due to so-called "return dependencies".

• An implementation-independent scheduling mechanism is described which satisfies

the scheduling properties.

• An algorithm is presented which implements the scheduling mechanism. It is shown

that the algorithm is no more expensive than traditional implementations of the

restricted transaction model.

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of

issues in transactional object-oriented distributed systems. Chapter 3 presents the gen

eralized message scheme and other linguistic constructs of Hermes/ST [FHR94, Faz94,

Ran94, Hum93, FHR93c, FHR93a, FHR93b]. Hermes/ST2 is an object-oriented dis

tributed programming environment that Michael Fazzolare, David Ranson and the author

have developed and implemented in Smalltalk/80 [GR89]. An example application, a dis

tributed bank, is used for demonstration throughout Chapter 3. Chapter 4 presents the

core of this thesis. The scheduling properties, the scheduling mechanisms and its efficient

implementation are described and their correctness is analyzed. Chapter 5 compares the

scheduling mechanism with traditional approaches. It also presents some performance

figures of the implementation in Hermes/ST. Chapter 6 summarized the results of this

thesis and outlines areas of continuing research.

2Hermes/ST is not to be confused with IBM's Hermes system. The postfix stands for the implemen

tation language, Smalltalk.

Chapter 2

Transactions and Objects in
Distributed Systems

This chapter provides an overview of the use of nested transactions and object-orientation

in distributed systems. Section 2.1 describes some issues in developing reliable distributed

systems. Section 2.2 introduces transactions as a concept that addresses these issues.

Nested transactions go further and are presented in Section 2.3. Section 2.4 describes

the main concepts of object-orientation and how they are advantageous in the context of

distributed systems. Finally, Section 2.5 gives an overview of relevant existing academic

and commercial distributed systems that support nested transactions and objects.

Most of the terminology and some descriptions used in this chapter have been adapted

from standard textbooks including [BHG87, GR93, Mey88]. However, this chapter is by

no means a textbook-style introduction to the fields of nested transactions and object-

orientation. Rather, it introduces concepts and terminology that are important for the

understanding of this thesis. For example, concurrency control, and particularly the

concept of seriahzabihty, are discussed in detail since the core of this thesis deals with

concurrency control issues. Recovery, on the other hand, is only mentioned briefly for

completeness.

Furthermore, concepts like seriahzabihty are not defined formally. Rather, this chap

ter tries to convey a fundamental but intuitive understanding of these concepts to the

reader. No prerequisite knowledge of the reader is assumed except an understanding of

the fundamental concepts of computer science.

2.1 Issues in Distributed Systems

A distributed system is a collection of programs that execute concurrently over a set of

computers, in this context called "nodes". A node consists of processor(s), local memory,

possibly some stable storage like disk(s) and I/O ports to connect it with the environment.

Nodes communicate via networks that interconnect their I/O ports. Concurrency and

distribution pose problems that do not exist or exist in a less complex form in sequential,

centralized systems. Some of these problems are discussed below.

Interleaving Operations: Without appropriate concurrency control, concurrent op

erations may interleave in a way that leads to incorrect outcomes. Consider the following

example from the banking domain. The pseudo code below describes the implementation

of an operation that deposits some amount of money into a bank account.

deposit(amount, accountNumber)

3

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 4

{

tmp := read (Accounts[accountNumber]);

tmp := tmp + amount;

write (Accounts[accountNumber], tmp);

}

Now consider the following scenario. The initial balance of a bank account is $1,000.

Two customers deposit money to this account using the deposit operation described above.

The first customer adds $10,000 and the second customer adds $100. In a sequential

system, the account balance will be $11,100 after both deposit operations have finished.

$11,100 is the correct account balance after both deposits. However, a different, i.e.

wrong, outcome is possible in a concurrent system without concurrency control. The two

deposit operations could, then, interleave as shown in Table 2.1.

execution order deposit operation #1 deposit operation #2

1. read balance: $1,000

2. read balance: $1,000

3. write: $1,000 + $10,000

4. write: $1,000 + $100

Table 2.1: Example for two interleaving deposit operations.

The account balance after both deposit operations have finished is $1,100, the value

written by the second deposit operation. The wrong outcome is due to the uncontrolled

interleaving of the two deposit operations. To guarantee the correct outcome in this

case, concurrency control must ensure that both read and write operations of deposit

operation # 1 must be performed either before or after both read and write operations of

deposit operation #2.

Node and Network Failures During Operation Execution: Distribution adds

further complication. At any point in time in a single-node system, the entire system is

either running or it is crashed. In a distributed system, some nodes can be running and

some nodes can be crashed. Also, some communications links may be available and some

links may be unavailable. Operations that visit different nodes can leave the system in an

inconsistent state1 if some of the nodes crash or are unavailable due to network failures

during the execution of those operations.

Consider another example from the banking domain: the transfer of funds from a

source account to a destination account. A transfer operation can be implemented by

performing a withdraw operation on the source account and by performing a deposit

operation on the destination account. Consider the scenario where the withdraw operation

is performed successfully but the deposit operation cannot be performed because the

destination node is crashed or unavailable due to network failure. The transfer operation

then has a wrong outcome, in that money was deducted from the source account but has

not been added to the destination account.

Node Crashes After Operation Execution: Even after a distributed operation has

finished successfully, subsequent node crashes can destroy its effects and can leave the

system in an inconsistent state. Consider the example that the transfer operation of the

'A system is in an inconsistent state if particular domain-specific constraints about system data are

not satisfied. A n example for such a constraint is that all account balances in a bank database must be

positive. The bank database is in an inconsistent state if some account balances are negative.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 5

previous paragraph was performed successfully but a subsequent node crash occurs at the

destination account. Then, the system is left in the same inconsistent state as if the node

failure had occurred during the operation.

To ease the programming of concurrent and distributed systems, convenient abstrac

tions are used that mask problems like the ones mentioned above from the application

programmer. Note that there is no mechanism that masks all possible failures. Consider

a processor failing by exhibiting arbitrary behaviour, e.g. acknowledging to have per

formed an operation when, in actual fact, it has not2. There is no way of detecting such

failures in general. For this reason, failure models [Sch93] have been introduced. Failure

models classify common types of failures. Mechanisms that mask failures are specified

with reference to failure models. These state which kinds of failures can and cannot be

masked by a particular mechanism. A convenient abstractions for reliable computing is

the transaction concept, which is introduced in the following section.

2.2 Transactions

The transaction concept [BHG87, GR93] was originally developed in the database area in

the early seventies [BD72, Bjo73, Dav73]. It ensures reliability under the following failure

model.

• A node consists of volatile and permanent memory and can crash at any time. A

node crash destroys volatile memory but leaves all of the permanent memory intact.

• Nodes do not crash forever.

• Messages between nodes can get lost or they may arrive in arbitrary order. However,

messages are always delivered to the correct receiver and if they arrive, they arrive

intact.

As mentioned above, failures outside this failure model can occur in reality. An

example of such a failure is the corruption of permanent memory. However, a system

can be designed so that the likelihood of failures outside this failure model can be made

arbitrarily small. The likelihood of failure then depends on how much one is willing to pay

for reliability in terms of resources. Some failures outside this failure model are discussed

in Section 2.2.2.

A transaction forms a group of operations that may access (read or write) system data

and that may return a result. A transaction has three properties3:

Atomicity: A transaction either happens in its entirety ("commits") or not at all ("aborts")

Serializability: Operations of concurrent transactions appear to the outside world as if

they do not interleave.

Permanence: If and when a transaction commits then its effects are made permanent

i.e. they are not affected by subsequent node crashes.

2This kind of failure is referred to as Byzantine failure [LSP82].
3 T h e transaction properties are only described intuitively, here. A more complete discussion is per

formed in the following sections. It shall also be noted that other classifications of the transaction concept
can be found in the literature, e.g. in terms of the four properties of atomicity, consistency, isolation and
durability [GR93].

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 6

Transactions deal with all the problems mentioned in the previous section.

• Transaction executions do not interleave in a way that leads to wrong outcomes.

• If some nodes that are visited by a transaction crash during the execution of a

transaction or some nodes cannot be accessed because communication links are

unavailable then the transaction aborts. In this case, all changes to data performed

by the operations of the transaction are undone. Thus, data inconsistencies cannot

occur due to node and network failures during the execution of a transaction.

• If all nodes and communications finks needed for the execution of a transaction are

available and the transaction finishes successfully, then it commits. In this case, all

changes to data performed by the operations of the transaction are made permanent.

Thus, subsequent node node crashes cannot destroy data written by a committed

transaction and hence cannot lead to inconsistencies.

The transactional properties are ensured by mechanisms commonly termed concur

rency control (for seriahzabihty) and recovery (for atomicity and permanence). Both

mechanisms are discussed in the following sections.

2.2.1 Concurrency Control

2.2.1.1 Serializability

Serializability is the definition of correctness of concurrency control in transactional sys

tems [BHG87]. It is therefore the goal of concurrency control to provide serializability in

order to avoid errors caused by interleaving transactions.

Reconsider the deposit example of Section 2.1 where the deposit operation of the first

customer is described as transaction Ti and the deposit operation of the second customer

is described as transaction T2. The problem of incorrect outcome due to execution in

terleaving is avoided trivially if Ti and T2 never interleave, i.e. the two transactions are

scheduled serially. A serial schedule of two transactions Tx and T2 is defined to be that

either all operations of Ti execute before all operations of T2 or all operations of T2 exe

cute before all operations of Tx. The definition does not state in which order Tx and T2

execute as long as they execute in some particular serial order. A serial schedule of a

set of transactions is defined to be that all pairs of transactions in this set are scheduled

serially.

The serial scheduling of all transactions in a system trivially solves the problem of

incorrect outcomes due to interleaving execution, since it does not allow transactions to

interleave at all. However, it has serious drawbacks since it also allows no concurrency

at all. In a distributed system that incorporates many processors, serial execution of

transactions makes poor use of the system's processing resources. Poor performance is a

consequence.

Therefore, the concept of serial schedules is extended to the concept of serializable

schedules, which keeps the advantages of serial schedules while removing their disadvan

tages. The schedule of two transactions Ti and T2 is defined to be serializable if Ti and

T2 have the same effect on system data and return the same result as if they had been

scheduled serially. Consequently, a serializable schedule for a set of transactions requires

serializable schedules for all pairs of transactions in this set. Every serial schedule is also a

serializable schedule but the opposite is not true. Serializable schedules allow interleaving

executions of transactions as long as this does not affect data accesses and return values.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 7

Note that as with serial schedules, no particular execution order is specified for serial

izable schedules. However, sometimes the semantics of an application requires particular

execution orders for transactions. In this case, it is the application program's responsi

bility that the preferred order actually occurs. For example, if a transaction Ti must be

performed before a transaction T2, then T2 should only be started after Ti has committed.

2.2.1.2 Optimistic versus Pessimistic Concurrency Control

The system components performing concurrency control are called "concurrency con

trollers^. Concurrency controllers guard accesses to individual data items to ensure seri

alizability. A concurrency controller controlling access to a data item has three options

when a transaction's operation requests access to this data item. It can:

1. schedule the request immediately,

2. delay the request and schedule it at some later time or

3. reject the request, hence causing the transaction to abort.

Different concurrency control strategies favour different options:

Optimistic concurrency control favours Options 1 and 3. Requested operations are

not delayed but are scheduled immediately (Option 1). Seriahzabihty is tested a

posteriori at transaction commit. However, the system can get into situations in

which there is no possibility of finishing all transactions in a serializable way. The

system then has to reject operations which causes the respective transactions to

abort (Option 3).

Pessimistic concurrency control favours Option 2. Operation requests are delayed until

serializability can be ensured a priori (Option 2). However, the system may get into

deadlock situations in which case some transactions have to be aborted (Option 3).

Optimistic concurrency control potentially allows higher concurrency but it may lead

to a phenomenon called "cascading aborts". Recall that when a transaction aborts then

all effects of the aborting transaction must be undone. They include effects on data as well

as effects on other transactions. Consider the following example from [BHG87]. Suppose

that the initial values of two data items x and y are 1 and transactions Tx and T2 issue

operations that are executed in the order shown in Table 2.2.

execution order Tx T2

1. write(x,2)

2. read(x)

3. write(y,3)

Table 2.2: Example for cascading aborts.

Suppose that T\ aborts. Then, the system undoes Ti's write(x,2) operation, restoring

x to the value 1. Since T2 reads the value of x that has been written by Ti, T2 must

be aborted, too—a cascading abort. Thus, the system must also undo T25s write(y,3)

operation, restoring y to 1.

Cascading aborts are undesirable because they require significant bookkeeping and

entail the possibility of forcing many transactions to abort just because some other trans

action happened to abort.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 8

Pessimistic concurrency control avoids cascading aborts but may lead to deadlocks.

Deadlocks are described in Section 2.2.1.4. Neither of the two concurrency control strate

gies always outperforms the other one. It is merely the characteristics of a particular

application domain which determine which one of the two is more appropriate. In do

mains where transactions rarely conflict, an optimistic approach is more suitable. In

domains where conflicts are common, a pessimistic scheme is preferable [BHG87]. In

addition, other factors like the workload of a system (the number of concurrently exe

cuting transactions) affects the performance characteristics of the two strategies. Almost

all concurrency control mechanisms (see Section 2.2.1.4) have optimistic and pessimistic

versions. In practice, pessimistic concurrency control is more commonly used than op

timistic concurrency control since it has better performance characteristics over a wider

range of parameters [BHG87].

2.2.1.3 Single-Version versus Multiple-Version Concurrency Control

In single-version concurrency control, all transactions access (i.e. read and write) data

items directly. In contrast, in multiple-version concurrency control, each write operation

to a data item causes the creation of a new copy of the data, called a "version". Working

on versions of the data instead of on the data itself, may help the concurrency controller

avoid rejecting operations that arrive late. Without going into details, it shall be noted

that most concurrency control mechanisms (see next section) have been defined for single

and multiple versions.

2.2.1.4 Two-Phase Locking

Three main concurrency control mechanisms can be distinguished: two-phase locking

("2PL"), timestamp ordering and serialization graph testing [BHG87]. 2PL and especially

a particular version called "strict 2PL" is the most popular mechanism in commercial

systems [BHG87] and is introduced below.

In 2PL, data items are associated with locks. The most commonly used lock modes

are read/write locks. Other lock modes are mutual exclusion ("mutex") locks and type-

specific locks. Transactions must acquire "appropriate" locks before they access data;

e.g. they must acquire a read lock before reading a data item and a write lock before

writing to a data item. Transactions hold a lock until they release it. A transaction

cannot acquire a lock as long as it is held by another transaction in a conflicting mode.

Whether a particular lock mode conflicts with another lock mode is typically defined in a

lock compatibility matrix. The lock compatibility matrix for read/write locking is shown

in Table 2.3, allowing multiple readers but only a single writer. The rows represent the

lock mode of the lock that is requested. The columns represent the lock mode of the lock

that is held. The table entries show the compatibility.

read

write

read

yes
no

write

no
no

Table 2.3: Lock compatibility matrix for read/write locking.

In strict 2PL, transactions may not release any locks before they commit or abort.

[EGLT76] show that strict 2PL ensures serializability. However, strict 2PL may lead to

deadlocks as shown in the example of Table 2.4. Ti and T2 denote two transactions, Dx

and D2 two data items.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 9

execution order Ti

1. acquires read lock on Dx

2. acquires read lock on D2

3. tries to acquire write lock on D2

4. tries to acquire write lock on Dx

Table 2.4: Example for deadlock.

Ti cannot acquire a write lock on D2 unless T2 releases its read lock, i.e. commits or

aborts. Conversely, T2 cannot acquire a write lock on Dx unless Ti releases its read lock,

i.e. commits or aborts. No progress is possible unless at least one of the two transactions

is aborted.

In this example, Tx waits for T2 and T2 waits for Tx. In deadlock literature, the waits-

for relationship between transactions is typically represented as a graph. Deadlock occurs

when there occurs a cycle in the waits-for graph.

There are three main approaches to handling deadlocks, namely prevention, avoidance

and detection.

Prevention: Accesses to data items are globally ordered so that deadlocks cannot occur.

This can, for example, be achieved by having transactions pre-declare the data items

they are going to access. The system can then schedule the transactions accordingly.

Another way of achieving this is to specify a system-wide canonical order over the

data items and have transactions acquire locks according to this order.

Avoidance: There are various mechanisms that abort transactions during execution

when there is the potential of deadlocks being formed. The simplest form is called

"no-waiting": a transaction is always aborted and restarted when it fails to acquire

a lock. More sophisticated mechanisms include cautious waiting and timestamp-

based approaches like wound-wait and wait-die [RSL87].

Detection: While transactions are executing, accesses to data items are recorded, e.g. by

maintaining a waits-for graph. Whenever a cycle is detected in the waits-for graph,

the cycle is broken by aborting one or more transactions. Another simple form of

detection of potential deadlocks is by aborting a transaction when its execution time

exceeds a specified timeout limit.

2.2.2 Recovery

This section deals with mechanisms for recovering from failures. Three kinds of failures

can be distinguished, namely transaction abort, node crash, and catastrophe.

Transaction Abort: Transactions can abort due to node crashes, deadlocks, messages

that cannot be delivered, or explicit software aborts. The atomicity property of

transactions requires that all effects of an aborting transaction must be undone.

Node Crash: The volatile memory and all active processes of a crashing node are lost

but permanent memory stays intact. The permanence property of transactions

requires that committed transactions are not affected by subsequent node crashes.

Catastrophe: The permanent storage of a crashing node gets corrupted. This case

is outside the failure model for transactions and it is therefore not handled by

transaction mechanisms. Other mechanisms must be employed to recover from

catastrophic failures.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 10

Mechanisms for recovery from these kinds of failure are discussed in the following

three sections.

2.2.2.1 Abort Recovery

Abort recovery ensures the atomicity property of transactions. If a transaction aborts

then all effects of the aborting transaction must be undone. This ensures that the trans

action either happens in its entirety or appears not to have happened at all. T w o main

mechanisms for abort recovery are distinguished, namely undo logging and redo logging.

Undo Logging: Write operations to data items are applied to the data items directly.

However, before a data item is written, its value is saved in an undo log. When a

transaction commits, undo log elements created by it are simply discarded. However,

when a transaction aborts, the the undo log elements are used to restore all data

items the transaction has written, to the values they had before the transaction

started.

Redo Logging: Write operations to data items are saved in a redo log but are not

applied to the data items while a transaction is executing. At transaction abort,

the redo log entries of the aborting transaction are simply discarded. However, at

transaction commit, the redo log entries are replayed on the actual data items.

Undo logging outperforms redo logging in applications where read operations are com

mon and transaction aborts are rare. However, redo logging can exhibit better perfor

mance in domains where write and abort operations are common. Most transactional

systems use some form of undo logging.

2.2.2.2 Crash Recovery

Crash recovery deals with the permanence property of transactions. Committing trans

actions must save their changes to permanent storage so that subsequent node crashes

cannot undo their effects. The most commonly used approach to crash recovery is to keep

a log on permanent storage along with the actual system data. Data updates, commits

and aborts of transactions are recorded in this log. The log is used to repair the system

data on permanent storage after a node crash. Two kinds of log records are distinguished.

Update records contain undo and redo information and status records contain commit and

abort information.

The most commonly used protocol to ensure that the commit of a distributed

transaction4 is performed atomically is the two-phase commit protocol (2PC). One node

that has been involved in the committing transaction5 is chosen as the coordinator. All

nodes involved in the transaction (including the coordinator) are called participants. The

two phases of the commit protocol are called "prepare phase" and "commit phase".

Prepare Phase: The coordinator asks all participants to write prepare records to per

manent storage. If they have not crashed since the start of the transaction then they

perform the write operation and reply positively, otherwise they reply negatively.

Once a participant has prepared it cannot commit or abort the transaction on its

own.

4 A distributed transaction is a transactions whose operations visit different nodes.
5 A node has been involved in a transaction if an operation of this transaction has visited this node.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 11

C o m m i t Phase: If all participants have replied positively, the coordinator can decide to

commit. Otherwise it decides to abort. The decision must be written to the log on

stable storage before all participants are informed about it. When the participants

receive the decision then they must write it to their log on permanent storage.

They then reply back to the coordinator. The commit phase finishes only after the

coordinator has received positive replies from all participants.

The 2PC protocol is prone to coordinator node crashes and in this case, participant

locks are held for a potentially long time. More sophisticated, but also more expensive,

mechanisms like the three-phase commit protocol [Ske82] address this issue.

2.2.2.3 Catastrophe

Since catastrophes are outside the failure model for transactions, transaction mechanisms

do not deal with them. However, logging mechanisms similar to the ones presented above

are commonly used to keep the likelihood of data inconsistency and loss as small as desired.

A common approach is to use mirrored disks as backups of the system's permanent storage.

Mirrored disks replicate the system data on different nodes. Increasing the number of

mirrored disks decreases the likelihood of unrecoverable failure. It is a matter of how

much one is willing to pay for reliability in terms of resources and performance.

In this section, mechanisms for concurrency control and recovery have been presented

separately. However, it is worth noting that, strictly speaking, the mechanisms interact

in subtle ways. One cannot discuss the correctness of a concurrency control mechanism

in isolation from recovery mechanisms and vice versa. Consider the example of a rela

tional database system where several relations are stored on a single page on disk. If

concurrency control (e.g. 2PL) is performed on individual relations but abort recovery

(e.g. undo logging) is performed on the page level then the transactional properties can

not be ensured. This is because a committing transaction could make pages permanent

which contain relations that have been written by uncommitted transactions. Conversely,

aborting transactions could undo changes of executing transactions without forcing them

to abort.

2.3 Nested Transactions

The transaction concept as introduced in the last section is a convenient abstraction for

reliable programming. Although transactions were originally developed for databases,

they address problems that also occur in distributed systems. Therefore, transactions

have been adopted for distributed systems programming. However, there are drawbacks

of the simple, single-level transaction concept when used in general distributed systems

programming. The simple transaction concept is only suitable for short and simple trans

actions. This is because it has the following restrictions.

• It does not allow the composition of several simple transactions into more complex

transactions.

• It does not allow concurrency within transactions.

• A single failure like a deadlock causes the whole transaction to abort and possibly

a large amount of work to be undone.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 12

Since database queries and updates tend to be short, the single-level transaction con

cept is normally sufficient for database programming. However, for transactions to be

a convenient abstraction in general distributed programming, the restrictions mentioned

above need to be addressed. Nested transactions [Ree78, Mos81] do exactly this.

In the nested transaction model, transactions can create other transactions called

subtransactions. Subtransactions can execute synchronously or asynchronously. Transac

tion nesting structure can be represented by a transaction tree where nodes of the tree

represent transactions and arcs of the tree represent is-subtransaction-of relationships.

Transaction trees can be arbitrarily deep. The root node of a transaction tree is called

top-level transaction, all inner nodes are called subtransactions. Usual tree notations like

parent, child, ancestor and descendant are used. Note that the ancestor and descendant

relationships are reflexive, i.e. every transaction is its own ancestor and descendant. The

non-reflexive counterparts areAr«*r ancestor andprofti descendant. Various top-level trans

actions executing concurrently in a system form a forest of transaction trees. The three

transactional properties of seriahzabihty, atomicity and permanence are ensured for the

execution of each entire transaction tree.

Atomicity: The execution of an entire transaction tree runs to completion (top-level

transaction commit) or the effects of the entire transaction tree are undone (top-

level transaction abort). All effects of a transaction tree whose top-level transaction

has committed are visible to other transaction trees. Top-level transaction abort

ensures that all descendant transactions have aborted and therefore the effects of

the entire transaction tree are undone.

Serializability: The execution of each transaction tree is serialized with the execution

of every other transaction tree.

Permanence: All changes to system data performed by any transaction in the tree are

made permanent at top-level transaction commit.

Since top-level transaction commit and abort represent the commit and abort of the

entire transaction tree, the term top-level transaction is henceforth used to denote the

entire transaction tree. Subtransactions have different seriahzabihty, atomicity and per

manence properties to top-level transactions.

Atomicity: The execution of a subtransaction subtree6 runs to completion (subtransac-

tion commit) or the effects of the entire subtree are undone (subtransaction abort).

Recall that whenever a top-level transaction has committed, it can never be conse

quently aborted. This is not true for subtransactions. Subtransaction abort ensures

that all descendant transactions have aborted. This means that a committed sub-

transaction can be aborted by an abortingpttftt ancestor transaction. No effects of

a committed subtransaction are visible to other top-level transactions. Also, an

aborting subtransaction does not necessarily cause its parent transaction to abort.

It is the parent transaction's decision to retry or ignore the subtransaction, take

some compensating action or abort itself.

Serializability: The seriahzabihty property is maintained between asynchronous sub-

transactions.

Permanence: Effects of committing subtransactions are conceptually not made per

manent. There are, however, early writing and checkpointing strategies that write

6 A subtransaction subtree consists of the subtransaction and all its descendant transactions.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 13

subtransaction commit log entries to permanent storage before top-level transaction

commit. However, these strategies only reduce the amount of work to be done at

top-level transaction commit or they reduce the likelihood of top-level transaction

aborts due to node crashes. They are not necessary to ensure the semantics of

nested transactions.

Nested transactions address the deficiencies of single-level transactions described above.

• Arbitrary transactions can be composed into larger transactions.

• Concurrency is allowed within subtransactions. Serializability between subtransac

tions ensures that there are no incorrect outcomes due to execution interleaving.

• Failures do not necessarily cause a top-level transaction to abort. Aborting sub-

transactions can be retried or compensating action can be taken which potentially

avoids large amounts of work to be undone.

Two main mechanisms for implementing nested transactions have been proposed:

Reed's mechanism is based on timestamp ordering [Ree78] and Moss' mechanism uses

locking [Mos81]. Moss' design is most commonly used. A brief overview is given below.

Concurrency Control: Moss' concurrency control mechanism is an extension of 2PL.

Data items are associated with locks. Two lock modes are supported: read locks and write

locks. Transactions can acquire locks if for all transactions currently holding this lock the

following is true: either the lock modes are compatible according to the read/write locking

rules (Table 2.3) or the transaction holding the lock is an ancestor of the transaction

requesting the lock. On subtransaction commit, locks held by the transaction are handed

to the parent which then holds the lock7. This process is called upward lock inheritance8.

On subtransaction and top-level transaction abort and on top-level transaction commit,

locks held by the transaction are released. See Chapter 5 for details.

Recovery: Moss uses a form of undo logging for abort recovery. Every transaction

performing a write operation creates an undo log entry. On subtransaction and top-

level transaction abort, all data items written by the aborting transaction and all of its

descendents are restored to their values before the transaction started. All log entries

created by the aborting transaction and all its descendents can then be discarded. On

top-level transaction commit, all log entries of the entire transaction tree can be discarded.

Moss' design uses a 2PC protocol for top-level transaction commit. No early writing

is performed at subtransaction commit. For crash recovery, a simple logging mechanism

is used.

2.4 Object-Orientation in Distributed Systems

2.4.1 The Main Concepts of Object-Orientation

Another technology that has originally been developed in a different area of computer

science, namely simulation, has been applied to distributed systems programming: object-

7Slightly different mechanisms are described in [Mos81] and [Mos85]. Chapter 5 goes into details of

the differences.
8Different terminology has been used for this concept, including "lock inheritance" and "lock anti-

inheritance". In this thesis, the term "upward lock inheritance" is used to easily distinguish this concept

from another concept called "downward lock inheritance". The differences are discussed in Chapter 5.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 14

orientation [Mey88, Boo90, W B W W 9 0 , RBP+91]. The main concept of object-orientation

is the object. A n object is an entity that encapsulates:

• private state information, in form of variables;

• operations, called "methods", that can access (read and modify) the object's vari

ables.

An object's variables are completely protected and hidden from other objects. The

only way an object can be examined or modified is by invoking its methods. This property

is called "encapsulation" and it supports information hiding. Objects communicate by

invoking other objects' methods. This is called "sending messages to objects" and there

fore communication between objects is called "message passing". Sometimes, public and

private methods are distinguished. Only public methods can be invoked by other objects

whereas private methods can only be invoked by the object itself. The implementation of

an object's methods is hidden from other objects. Only the interfaces of public methods

are visible to other objects. The interfaces of all public methods specify a well-defined

interface for the functionality, an object provides.

The class concept is a direct extension of the abstract data type concept. A class acts

as a template from which objects may be created, specifying the objects' variables and

methods. Every object is an instance of some class.

Different classes can be specified to be in a subclass-superclass relationship. A mech

anism called "inheritance" allows commonalities between subclasses to be factored out

and specified once in a superclass. Instances of a subclass encapsulate not only all vari

ables and methods defined in the subclass' definition but also all variables and methods

defined in its superclasses' definitions. If the superclasses have superclasses themselves

then their variables and methods are included as well and so on. The terms descendent

class and ancestor class are used for repeated subclass-superclass relationships. Variables

and methods that have not been defined in a class itself but in one of its ancestor classes

are said to be "inherited" by the class.

A subclass is free to add variables and methods not specified by any of its ancestor

classes. It is also free to modify the implementation of methods which are specified by

ancestor classes. This process is called "overriding" inherited methods. There are different

versions of the inheritance concept.

Single Inheritance versus Multiple Inheritance: Classes and their subclass-super

class relationships form a directed graph where classes form the nodes and the

relationships form the arcs. Single inheritance requires this graph to be a tree

whereas multiple inheritance only requires that the arcs do not form cycles. Multiple

inheritance is more general than single inheritance but it can lead to name clashes

of variable or method names defined in different ancestor classes.

Strict versus Non-Strict Inheritance: Both forms of inheritance allow descendant

classes to add inherited variables and methods and change the implementation of

methods. Non-strict inheritance additionally allows subclasses to remove methods

or change their interfaces. Strict inheritance disallows this. Non-strict inheritance

is more general than strict inheritance but it makes the subclass-superclass relation

ship incompatible with the useful subtype-supertype relationship.

Single-Rooted versus Multi-Rooted Inheritance: Single-rooted inheritance allows,

system-wide, only one class which has no superclass. This class is typically called

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 15

Polygon

points

display
area

Rectangle

Class Name

Variables

Methods

Subclass-Superclass Relationship

Triangle

Figure 2.1: A single inheritance hierarchy for polygon classes

Object. All other classes defined in a system are descended from Object. Multi

rooted inheritance allows several classes to have no superclass. Multi-rooted in

heritance is more general than single-rooted inheritance. However, single-rooted

inheritance conveniently allows common behaviour like copying and printing to be

shared by all system classes by defining it in terms of methods of Object.

Consider the example of a single inheritance hierarchy in Figure 2.1. Instances of class

Polygon represent polygons which are described by a collection of points. The points

describing a polygon are specified in a variable called points. Class Polygon defines

two methods display to display a polygon on a screen and area to return the area of

a polygon. The classes Rectangle and Triangle are defined as subclasses of Polygon.

Due to inheritance, all instances of Rectangle and Triangle have a variable points

and methods display and area. The display method defined in Polygon is sufficient

for Rectangle and Triangle and therefore does not need to be overridden. However,

different formulas for computing the area of rectangles and triangles make overriding the

area method necessary.

Classes that cannot be instantiated themselves, but that have descendant classes that

can be instantiated, are called abstract classes. Polygon could be an example.

The fact that all instances of Polygon and all its descendant classes have an area

method (either via inheritance or via overriding) allows one to write programs in which

general polygon type objects can be sent the message area. General polygon type objects,

here, mean instances of class Polygon itself or any of its descendant classes. The important

point is that such programs can be used for instances of different polygon type objects. It

can be decided at run-time of such a program which type of polygon is actually used and

therefore which implementation of area is to be applied. This ability to write programs

that "take several forms"9 is called "Polymorphism". Polymorphism allows flexibility

in programming and factoring of commonalities and is an important feature of object-

orientation.

In the polygon example, the subclass-superclass relationship is used to express an

is-a relationship that exists between the real-world entities these classes represent: every

'This is the meaning of the term "Polymorphism".

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 16

rectangle is a polygon and every triangle is a polygon. Because of this relationship, the

different entities share common behaviour, e.g. they all can be displayed or have some

area. The usage of inheritance in this context is therefore called "behaviour sharing".

There is another common usage of inheritance which is called "code sharing". Con

sider the example of a class LinkedList which implements the common finked list data

type with methods first, addFirst, removeFirst and isEmpty. Now consider a class

Stack which implements the common stack data type with methods push, pop, top and

isEmpty. Class Stack is defined as a subclass of LinkedList. Method push invokes the

inherited method addFirst, pop invokes removeFirst, top invokes first and isEmpty

is inherited but not overridden. In contrast to the polygon example, there is no is-a

relationship between Stack and LinkedList. The relationship can be rather described

as "is-implemented-by". However, as with behaviour sharing, this usage of inheritance

allows code to be factored out, defined only once and used in various different contexts.

Although there are many different approaches to object-orientation, there are three

fundamental concepts that are common to all of them: the concepts of object, class and

inheritance. W h e n inheritance is left out then the term "object-based'1 is used. Object-

orientation has first been applied to programming languages. Smalltalk-80 [GR89], C + +

[Str86] and Eiffel [Mey88] are prominent examples. Recently, object orientation has

also been applied to the analysis and design phases of software development [Boo90,

W B W W 9 0 , RBP+91, HS91, CY91a, CY91b].

2.4.2 Advantages of Object-Orientation

Reusability: Classes describe behaviour of abstract data types. Classes which are

useful in various different contexts can be defined in reusable class libraries. A lot of

effort can be put into the optimization and validation of classes that are used very often.

Behaviour sharing and code sharing allow common behaviour and code to be factored out

and used in various different contexts. Encapsulation allows classes to be used in different

contexts without the danger of internal implementations interacting in unexpected ways.

Polymorphism facilitates such usage.

Extensibility: Designing object systems involves specifying object interfaces and their

message communications. After object interfaces have been specified, their functionality

can often be implemented rapidly in a prototypical fashion. This allows early validation

of the functional specification of a system. Refining the implementations of objects, e.g.

for minimizing time and space requirements and improving reliability, does not affect the

general system behaviour provided interface specifications are adhered to. Also, adding

new classes and objects does not affect interactions of existing objects. This is because

interactions between objects are reduced to the messages they pass. This allows an incre

mental development methodology where a system is prototyped first and then gradually

extended and refined to the final system.

Maintainability: The fact that the interaction of objects is limited to the messages

they pass makes the maintenance of large object systems easier. Also, using class li

braries in which single components have been validated and optimized increases the reli

ability of a system. Exchanging the implementation of objects during system operation

is unproblematic as long as the old object interfaces are still supported.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 17

These general advantages of object-orientation, reusability, extendibility and maintain

ability, also apply to distributed systems.

Reusability: Distributed systems tend to be very large and therefore expensive to de

velop. Software reuse can reduce such costs.

Extens ibility: Exten ibility features are particularly useful for distributed systems that

tend to evolve during their usage.

Maintainability: Maintaining distributed systems is more complex than maintaining

sequential, single-node systems. The fact that the implementation of objects can be

replaced relatively easily at run-time is a useful feature for maintaining distributed

systems.

Apart from these general advantages of object-orientation, the paradigm is particularly

useful in the context of distributed systems for a number of reasons. An object is a unit of

tightly coupled data and processing, whereas different objects are loosely coupled. This

property is advantageous when objects are distributed with every object residing on only

one node. Then, intra-object computation is always performed locally and only intra-

object communication may require network access. The loose coupling of objects brings

about that expensive network communications are rare.

Objects can be extended naturally to distributed objects where the object is a unit

for many important concepts of transactional and distributed systems.

Remote Access: Message passing between local objects extends naturaUy to message

passing between remote objects as a means of accessing remote nodes. Remote

method invocation can, for example, be implemented via the remote procedure call

[BN84]. This also integrates naturally with the common client/server paradigm

where the sender object acts as a client and the receiver object acts as a server.

Concurrency Control: Encapsulation is beneficial for concurrency control. Concur

rency controllers can be specified on a per-object basis that schedule the invocation

of public methods. Uncontrolled access to an object's state can not occur. This is

because an object's state can be inspected or modified only by invoking its public

methods.

Another useful unit for concurrency control is an object's individual variables. Vari

ables can only be read or written. Therefore, read/write locking can be applied.

Choosing the level of concurrency control (whole object versus individual variables)

is a trade-off between concurrency control cost and the amount of concurrency

gained [Faz94].

Abort Recovery: An object's state is specified by the values of its variables. Like

concurrency control, the object paradigm offers two useful units for abort recovery:

whole objects and individual variables. When performed on the object level, the

effects on all variables must be undone when at least one variable has been written.

When performed on the individual variable level, the effects on all variables that

have been written must be undone.

Recall from Section 2.2 that concurrency control on individual variables and abort

recovery on whole objects is problematic.

Crash Recovery: The object is a natural unit for persistence, allowing recovery from

node crashes. The state of such a persistent object, i.e. the values of its variables,

is mirrored on permanent storage.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 18

Replication: A single logical object can physically be replicated on different nodes.

Replication can be useful for performance or reliability reasons. The fact that

an object's state can only be accessed via its public methods allows the system to

maintain consistency between copies. The system can ensure consistency on method

invocations, e.g. using a quorum mechanism [Gif79].

Migration: Objects as a whole can be migrated between nodes. If message passing is

location transparent10 then migrating objects do not affect system behaviour.

This enumeration shows that the object concept is very beneficial in the context of

distributed systems. Therefore, object-orientation is widely used for distributed systems.

It shall be noted that inheritance, however, although central to providing many of the ad

vantages of object-orientation, is often left out in the context of distributed systems. This

is due to efficiency concerns, since inheritance may require replication of large amounts

of code on different nodes or the performing of remote code lookups at run-time.

2.5 Distributed Systems Supporting Nested Transactions
and Objects

Nested transactions and object-orientation have been applied to distributed systems. The

first major implementation to integrate both technologies was Argus [Lis82, LS83, LCJS87,

Lis88]. Argus supports objects called "guardians". A guardian resides on one node in a

heterogeneous network and encapsulates data elements caUed "objects". These objects

are data structures rather than objects in the sense of object-orientation. Two kinds of

objects are distinguished: atomic objects and non-atomic objects. Atomic objects support

transactional properties and are the unit for concurrency control, abort and crash recovery.

Non-atomic objects are volatile and do not provide concurrency control and recovery.

Guardians are the unit of remote access. Guardians define a set of methods that are

called "handlers". The only way of inspecting or modifying a guardian's object is by

invoking its handlers. Handler invocation is location-transparent. Argus takes care of all

the details for constructing and sending messages. Every handler call implicitly creates

a transaction. Handlers that invoke other handlers create nested transactions. Transac

tions can also be created explicitly. Concurrency between parent and child transactions

is not supported. However, a concurrent loop construct specifies concurrency between

sibling transactions. Transactional properties are ensured as long as transactions access

atomic objects only. Accessing non-atomic objects reduces the cost of transactions since

non-atomic objects do not perform concurrency control and recovery. Therefore, transac

tional properties cannot be ensured in this case. Non-atomic objects allow the application

programmer to explicitly defy serializability or have non-committed transactions commu

nicate in special situations where this is desired.

The Argus project was successful in that it is much easier to develop reliable dis

tributed systems in Argus than in comparable systems which were in use at that time.

Argus has had and still has a great impact on distributed systems research. Many re

search systems followed the Argus example and integrated nested transactions and object

technology with distributed systems11. Examples are Camelot/Avalon [EME91], Locus

10 Location transparency means that there is no syntactic difference between a local method invocation

and a remote method invocation. The system distinguishes the two cases and reacts accordingly.
11 It shall be noted that some of the research systems were developed at the same time as Argus and

there has, of course, been mutual influence.

CHAPTER 2. TRANSACTIONS AND OBJECTS IN DISTRIBUTED SYSTEMS 19

[MMP83], T A B S [SBD+84], Eden [PN85], Clouds [DLAR91], Arjuna [SDP91], Apertos12

[YTM+91], Venari/ML [HKM+94], Karos [GCLR92] and Hermes/ST [FHR94].

Nevertheless, Argus had serious drawbacks. Due to limited personnel, many well

known and obvious optimizations were not implemented and therefore, the overall sys

tem performance was poor. One goal of the Camelot/Avalon project was to provide

the same ease-of-programming advantages as Argus but with acceptable performance.

Camelot/Avalon was carefully designed for this purpose and all known optimizations to

standard protocols were implemented. This lead Gray and Reuter to state that "Camelot

can be taken to be the first proven implementation of nested transactions as a general

facility" [GR93].

Research prototypes like Argus and Camelot/Avalon have matured nested transac

tions and object technology in distributed systems so that, today, this technology is

applied to large-scale commercial systems and the number of these systems is growing

rapidly. Examples are A N S A [Arc91], ObjectStore [Obj], Versant [Ver], Encina13 [Tra91],

K A L A [Pen], PCTE [WN93] and F O R T E [For].

12 Apertos has formerly been called "Muse'".
13 Encina is based on the C programming language but is currently extended to provide object support

[Dix94].

Chapter 3

The Hermes/ST Distributed
Programming Environment

This chapter presents some linguistic constructs of the Hermes/ST distributed program

ming environment. It is in part based on [FHR94]. As in Argus, one goal of Hermes/ST

is to make distributed programming easier. Another important goal is to facilitate the

development of efficient programs. Both goals are approached through strict separation

of concerns via parameterization. For example, the volatility or persistence of objects is

not a class property but an instance property, specified via parameters of the instance

creation. Transaction semantics are not specified explicitly in method code but rather

as parameters of the method invocation. This parameterization supports the general ad

vantages of object-orientation as described in Section 2.4.2: reusability, extensibility and

maintainability. These advantages are discussed individually for the different linguistic

constructs introduced in this chapter.

This chapter is structured as follows. Section 3.1 presents an example application,

a distributed bank, which is used throughout the chapter for demonstration of the lin

guistic constructs. Section 3.2 presents the Hermes/ST object model. The generalized

message scheme is introduced in Section 3.3. Section 3.4 deals with concurrency control.

Then, a complete implementation of a distributed bank application is described in Sec

tion 3.5. Finally, in Section 3.6, the linguistic features of Hermes/ST are evaluated and

compared against the linguistic features of other object-oriented distributed programming

environments that support nested transactions.

3.1 The Distributed Bank Example

The distributed bank has often been used as a test application for distributed program

ming environments [Lis88, EME91, Hew91]. The example described in this section is

derived from the banking system in [Lis88].

An electronic international bank is composed of branches and tellers, which are geo

graphically distributed. Each branch and teller can communicate with any branch. Each

branch stores a collection of accounts. Accounts are identified by their branch code and an

account name, and are either cheque or interest bearing savings accounts. Tellers are used

to open and close accounts, deposit, withdraw and (internationally) transfer money. A

special teller, the main office, has knowledge about all branches in the bank, and provides

special managerial functions such as conducting audits. Other teller types are automatic

teller machines and bank clerks which represent the computer interfaces of human tellers.

20

CHAPTER 3. HERMES/ST 21

3.2 The Hermes/ST Object Model

The Hermes/ST object model is inspired by the Smalltalk object model and, in fact, has

been implemented in Smalltalk. However, it does not depend on any particular feature

of Smalltalk and could as well be implemented in any other object-oriented language.

Hermes/ST classes are defined in a single inheritance hierarchy with a single root

called "HermesObject". A set of special classes are called "constants". They include

numbers, characters, strings and dates. Instances of constants are immutable, i.e. none

of their methods change their internal states.

Class descriptions specify the variables and methods of instances, Hermes/ST objects.

Uniform reference semantics [Mey88] is used for accessing objects, i.e. objects are always

referred to via pointers (so-called "HermesPointers") but are never contained by other

objects. Thus, the Hermes/ST object model is fine-grained1 [CC91]. The state of an

object is determined by the objects its variables refer to. Two kinds of variables are

distinguished: named variables and indexed variable, which are, for example, used for

arrays. Named variables must be accessed through specific read and write access methods,

e.g. accountName (read access) and accountName: (write access) for a variable named

accountName2. The methods at: (read access) and at:put: (write access) are used to

access indexed variables.

Different objects may reside on different nodes in the network but every particular

object resides on only one node. Object replication and migration is (currently) not

supported. Objects communicate via message passing. Sending messages to other objects

is location-transparent. The Hermes/ST message scheme is described in the next section.

T w o kinds of objects are distinguished: volatile objects and transactional persistent

objects, simply called "persistent objects". Every class can be instantiated as both volatile

and persistent objects. Volatility and persistence henceforth refer to the kind of an object.

Similar to Smalltalk, instance creation is performed via a class method in Hermes/ST. The

kind of an object is specified as an instance creation parameter, instantiate :#volatile

returns the reference to a new volatile object, instantiate :#persistent returns the

reference to a new persistent object. The location (if different from the local node), a

symbolic alias (which is registered with a name server), and other features can be specified

via additional instance creation parameters.

Persistent objects support transactional semantics. They perform concurrency control

and recovery. Persistent objects have a mirror image of their persistent state on perma

nent storage. The persistent state of an object includes variables referring to constant

objects and other persistent objects but not variables referring to volatile objects. A

typical example of a volatile object referred to by a persistent object is a window, e.g.

a graphical display of a persistent object representing a bank account. On permanent

storage, variables referring to constant objects are stored by value, variables referring to

persistent objects are stored by reference, and variables referring to volatile objects are

replaced by nil pointers. Special code can be specified to initialize volatile objects referred

to by a persistent object when the persistent object is activated in memory (e.g. after a

node crash).

Volatile objects support no transactional properties. They are not concurrency con-

JThe Hermes/ST object model has recently been extended to allow objects to contain other objects via

nested encapsulation [Faz94]. This allows objects of various granularities: fine-grained, medium-grained,

and large-grained. A description and analysis of this scheme is beyond the scope of this thesis.
2 Smalltalk programmers may wish to note that specific access methods are provided for all Hermes/ST

classes via a set-up routine. Redefining the semantics of the assignment and instance variable read access

would have provided cleaner syntax. However, this would have required modifying the Smalltalk compiler

which is beyond the scope of the Hermes/ST work.

CHAPTER 3. HERMES/ST 22

trolled, perform no recovery and have no mirror image on permanent storage. Volatile

objects are typically used for volatile aspects of persistent objects (e.g. a window), tem

porary variables, message parameters and return values. Since volatile objects exhibit

better performance characteristics than persistent objects they are typically used in all

cases where the integrity of data is not essential. Like non-atomic objects in Argus, volatile

objects can be used to explicitly defy seriahzabihty and have transactions communicate

non-committed data if this is required in special circumstances.

Appendix A.l presents the Hermes/ST code for the classes Tree and TreeNode which

implement the abstract data type of a binary search tree [Knu73]. A binary search tree

is a binary tree where the contents of every node (i.e. the elements of the tree) can be

compared and are in the following relationship: for every node, all elements in the left

subtree are less than the node contents itself and all elements in the right subtree are

greater than the node contents. There are no two nodes with the same contents in the

tree. Traversing the tree in pre-order results in a sorted fist of all elements with the

smallest element first and the largest elment last. The binary search tree is used by

branches of the distributed bank to efficiently store accounts, sorted according to their

account number. The classes Tree and TreeNode specify the definition of both volatile

and persistent binary search trees.

A binary search tree represents a sorted collection of items. Class Tree is there

fore descended from classes HermesCollection, HermesSequenceableCollection and

HermesSortedCollection (in root-to-leaf order). Its ancestor classes define a complete

interface for general collections, sequenceable collections and sorted collections. The in

terface includes methods for enumerating all collection elements, such as, do:, collect:

and select:, methods for finding elements, such as detect:, and methods for printing a

collection, such as printString. Tree's responsibility is simply to add some basic meth

ods which support the complete interface. These methods include do: for enumerating

all tree elements, add: if Existing: for adding new elements and remove: if Absent: for

removing elements.

The class definitions and documentation and the implementation of the methods can

be found in Appendix A.l. They represent a short and elegant text-book style imple

mentation of binary search trees. The fact that these classes can be used to instantiate

transactional persistent objects does not add to the complexity of the implementation.

hermesSelf refers to the hermes object receiving a particular message. It is analogous to

self in Smalltalk. Flexibility of the instantiation is achieved in method add: if Existing:

by using hermesSelf kind. Method kind returns the kind of an object, either #volatile

or #persistent. Whenever a new element is added to the search tree, objects of the same

kind as their tree parents are created. This ensures that if a volatile empty tree is created

via Tree instantiate :#volatile then every added tree element will be volatile. Con

versely, if a persistent empty tree is created via Tree instantiate :#persistent then

every added tree element will be persistent. Such a persistent search tree provides all

transactional properties. Particularly, it is implicitly concurrency controlled and supports

a high degree of concurrency as described in Section 3.4. remove: if Absent: explicitly

deletes the tree nodes it removes. This is because automatic garbage collection, although

performed for volatile objects by the Smalltalk system, is not supported for persistent

objects in the current version of Hermes/ST.

CHAPTER 3. HERMES/ST 23

3.2.1 Development Advantages

3.2.1.1 Reusability

The binary search tree is a good example for the kind of software reuse facilitated by the

Hermes/ST object model. Classes or sets of classes that are useful in different contexts—

sequential, non-transactional programming and distributed transactional programming—

can be defined once and used in these various contexts. This is facilitated because volatil

ity and persistence are not class features but features of individual instances. This is

achieved via parameterization of the instance creation.

3.2.1.2 Extensibility

The Hermes/ST object model also supports extendibility which makes the system partic

ularly well suited to incremental development. This approach was used successfully in the

implementation of the distributed bank, described in Appendix A.5 and various other,

much larger projects[CCM+93, RHR+93].

The development strategy is as follows. After completing the design of the distributed

application, a single-machine sequential prototype of the application is first implemented

using volatile objects. Since this implementation presents a centralized prototype of a

distributed design, distributed aspects can be implemented as well. This prototype is

debugged, and the design is at least partially validated. Detection and removal of design

and implementation errors, many of which are not directly related to the distributed, con

current or fault-tolerant nature of the application, are performed. The debugging/design

validation process at this stage is greatly eased because it is performed on a single machine

without concurrency, distribution and its potential problems (see Section 2.1).

This validated prototype is then extended. Implicit concurrency control, recovery

and permanence are added by changing instantiation parameters from #volatile to

#persistent. Structural changes to the code, and the errors that these tend to in

troduce, are avoided through Hermes/ST's parameterised instantiation approach. After

testing of this new prototype, distribution can be added likewise, or explicit concurrency

and fault tolerance properties can be added to the application (see Sections 3.3 and 3.4).

The implementation of the distributed bank example and its validation was completed

in a few days. In particular, the implementation of the binary search tree classes and their

validation was performed within a few hours.

3.2.1.3 Maintainability

Separation of concerns increases the maintainability of objects. Changing the kind of

an object from #volatile to #persistent or vice versa does not affect the functional

behaviour of the object. All that changes is the performance and reliability characteristics

of the object. This means that a change in the kind of an object is localized to the object

itself and does not affect other objects, which is advantageous in terms of maintainability.

3.3 The Generalized Message Scheme

3.3.1 Message Kind and Transaction Parameters

Hermes/ST objects communicate via passing messages. Message arguments and return

values are generally passed by reference. Only constant objects are passed by value since

they are immutable. Methods can access (i.e. read and write) the receiver's variables and

can, in turn, invoke other methods. Three kinds of messages are supported: synchronous,

CHAPTER 3. HERMES/ST 24

asynchronous and wait-by-necessity messages. They are henceforth referred to as the kind

of a message.

Synchronous: In a synchronous message, the sender is always suspended until the re

ceiver has finished execution and has returned the message result3.

Asynchronous: An asynchronous message creates a new thread of control that executes

concurrently with the sender's thread. The sender is not suspended and is not

returned a message result.

Wait-By-Necessity: A wait-by-necessity message4 is a mixture between a synchronous

and an asynchronous message. The message creates a new thread of control that

executes concurrently with the sender's thread. As in the asynchronous case, the

sender's thread is not suspended. However the wait-by-necessity message does re

turn a result immediately after invocation—or rather a placeholder for the actual

message result called a "voucher"5. The actual result is eventually returned into the

voucher and can then be used by the sender. If the sender attempts to use the result

before it has been returned, the sender is suspended until the result is returned.

Every kind of message can create a transaction. Hermes/ST then ensures the trans

actional properties for the execution of the message itself and all messages that it sends,

directly or indirectly via other messages. When a message that creates a transaction

sends other messages that create transactions then Hermes/ST ensures nested transac

tion properties.

The three kinds of messages and the fact that each message can create a transaction

provides six types of messages: synchronous messages that do or do not create transac

tions, asynchronous messages that do or do not create transactions and wait-by-necessity

messages that do or do not create transactions. All these six types can be arbitrarily mixed

and nested. For example, a synchronous transaction creating message may send an asyn

chronous non-transaction creating message which, in turn, may send a wait-by-necessity

message that creates a (nested) transaction. All asynchronous and wait-by-necessity mes

sages can execute concurrently with their sending threads6, regardless of whether they

create transactions or not. This allows, for example, sibling transactions and ancestor

and descendent transactions to execute concurrently. Chapter 4 defines the semantics of

such messages.

3.3.2 Specification of Message Parameters

In all object-oriented languages, messages are specified by the receiver object, the method

name and the method arguments. For example, in the Smalltalk message branch deposit:

amount to:account, the receiver is branch, the method name is deposit :to: and the

arguments are amount and account. In order to allow the specification of the three kinds

of methods, transaction creation and other message properties, Hermes/ST extends the

As in Smalltalk, the case of a synchronous procedure call, i.e. a synchronous message where the sender

is not interested in the result, is not handled explicitly. The application programmer can in this case

return a d u m m y result, e.g. nil.
4There are various terms used for this concept in concurrent and distributed programming. The term

"wait-by-necessity" was introduced by Caromel [Car90]. Other examples are "implicit futures" [Hal85] or

" F U T U R E " [Lie87], " H U R R Y " [YT87] and "future type message passing" [YSTH87],
5Again, other terms have been used, including "awaited object" [Car90], "implicit future" [Hal85],

"future variable" [GCLR92] and "CBox" [YT87].
6This is provided there are no conflicting data accesses.

CHAPTER 3. HERMES/ST 25

standard message specification scheme to allow optional message parameters. Message pa

rameters are conceptually different from the arguments of a message. They describe prop

erties of a message, i.e. a method invocation rather than the properties of a method itself.

Syntactically, the message parameters are specified between the receiver and the method

name, separated by semicolons7. If no message parameters are specified then defaults are

assumed. For example, branch deposit:amount to:account describes a synchronous

message that does not create a transaction. In contrast, branch asynchronously;

transactionCreating; deposit:amount to:account describes an asynchronous mes

sage that creates a transaction.

3.3.3 The Weighted Voting Example

A good example for the usefulness of the various types of messages is the implementation of

Gifford's weighted voting for replicated objects [Gif79]. In the bank example, replication

is used for daily interest and exchange rates which are replicated at every branch for high

availability. Gifford's mechanism is used to ensure consistent updates. The Hermes/ST

code can be found in Appendix A.2.

The implementation uses methods for concurrently enumerating collections, namely

doInParallel:, doInParallelAndWait:, and collectlnParallel: (see Appendix A.2.1)

doInParallel: allows the sending of a number of asynchronous messages where the in

voking thread is not suspended. doInParallelAndWait: is equivalent to the concurrent

loop which Argus and Camelot/Avalon provide. A number of asynchronous messages are

sent but the invoking thread is suspended until all messages have returned. collect

lnParallel : is a most useful generalization of the wait-by-necessity concept where a

number of messages is sent in parallel. The sender of the messages then continues and

can, at a later time, collect the results in order of their arrival. All three mechanisms

can be used transactional^ and non-transactionally and are implemented easily with the

Hermes/ST message constructs.

For the implementation of Gifford's weighted voting, collectlnParallel: is used

to concurrently collect the required number of votes for reading or writing variables in a

replicated object (Appendix A.2.2). The access methods (read: and write:to:) start

collecting the incoming votes and test whether a quorum is reached. As soon as a quo

rum is reached, they continue execution, performing the actual read or write operations.

write:to: uses doInParallelAndWait: for this task to make sure that all write opera

tions have actually been performed. Votes arriving after the respective quorum has been

reached can be handled in different ways, read: simply discards them, write:to: uses

them to update out-of-date replicas. Since this update is not critical for the correctness

of the write operation, it is performed using doInParallel:. See Appendix A.2 for class

and method code and comprehensive comments.

Both access methods, read: and write:to: can be invoked with or without mes

sage parameter transactionCreating. If an access method or a method invoking an

access method is specified to create a transaction, then Hermes/ST ensures transactional

properties.

3.3.4 Additional Message Parameters

Messages that create a transaction can specify a range of additional parameters. They

include mode:, retries : and timeout:.

Smalltalk programmers may wish to note that this is an unusual application of the cascading construct

(;). The reason for this choice is a compromise between the wish to specify message parameters in a concise

way and the wish to avoid changing Smalltalk's syntax and hence Smalltalk's compiler.

CHAPTER 3. HERMES/ST 26

• T w o main transaction modes are distinguished: abortlf Fail and perf ormlf Fail.

abortlf Fail specifies that an aborting subtransaction causes its parent transaction

to abort, perf ormlf Fail specifies that an aborting transaction does not cause its

parent transaction to abort—instead, a specified exception is executed.

• retries: allows the specification of how many times to retry a failed transactional

message before it is aborted.

• In Hermes/ST, network, node and software failures are not distinguished. Further

more, Hermes/ST does not prevent deadlocks. A timeout mechanism is used to

detect deadlocks, software and hardware failures. The specification of timeout val

ues can be critical for the overall performance of a system. Because of the dynamic

nature of transaction nesting, it can be hard for a programmer to statically specify

a timeout value for a message that creates a transaction. Therefore, Hermes/ST

provides accumulative timeouts. Every transaction is assigned a timeout value that

can be specified via the message parameter timeout:. Whenever a subtransaction

starts, the parent transaction's timeout value is increased by the child's timeout

value. Thus, timeouts accumulate over nested transactions. When a transaction's

timeout value is exceeded, it fails, which may lead to a transaction abort, depending

on the specified mode: and retries:parameters.

Another important Hermes/ST message parameter is the lock: parameter, lock:

allows methods to be invoked using type-specific, user-defined concurrency control. Sec

tion 3.4.2 gives a description of such concurrency control specifications. Other message

parameters are provided which are not discussed here. See [FHR93c] for details.

3.3.5 Specifying Invocation Parameters in Method Interfaces

Note that not all message parameters concern the receiver of a message. For example,

the sender of a message is responsible for thread creation for asynchronous and wait-by-

necessity messages and for retrying failed transactions. Transaction objects are concerned

with messages that create transactions. The receiver object is concerned with lock param

eters. Often, particular methods are always invoked with the same message parameters.

For example, a distributed bank transfer is always invoked transactionally.

Hermes/ST allows message parameters to be specified as part of the public interface in

the definition of a method8. The syntax is as follows. Between method header (consisting

of method name and arguments) and method body (consisting of the statements), the

message parameters are specified enclosed by double quotes, following the class name

MessageParameters and separated by semicolons9. Example:

transfer: amount from: account 1 to: account2

"MessageParameters transactionCreating; timeout: 2"

...method body...

In this example, every invocation of method transf er :f rom: to: creates a transaction

with timeout value of 2 seconds unless specified otherwise.

Recall that Hermes/ST classes are defined in an inheritance hierarchy. Message pa

rameters can be specified for all methods of Hermes/ST classes. When methods are

8Note that a client object invoking a method on a server object knows the method's public interface.
9 Smalltalk programmers may wish to note that a special message parameter compiler has been imple

mented that runs over method comments. This way of specifying message parameters does not require a

change of the Smalltalk method declaration syntax and therefore a modification of the Smalltalk compiler.

CHAPTER 3. HERMES/ST 27

overridden in subclasses, all message parameters specified by ancestor classes are inher

ited individually and can be overridden individually. Message parameters for a particular

method that are not explicitly specified in the method definition and are not explicitly

specified in the definition of the method in any ancestor class are determined by a default

value. The default for the message kind is synchronous, the default for lock is NoLock

(a lock type which does not conflict with any other lock type), the default for transaction

creation is nonTransactionCreating, the default for transaction mode is #abortIf Fail,

the default for retries is 0 and for timeout is 1 (second).

The public interface of Hermes/ST methods conceptually includes the values for all

message parameters, determined either by explicit specification, inheritance or default

values. Clients that invoke a Hermes/ST method may override message parameters spec

ified in its interface. So, the precedence for message parameters is as follows. Parameters

specified at method invocation override parameters specified at method definition. Param

eters specified in method definitions of descendant classes override parameters specified

in definitions of ancestor classes. Parameters specified in the definition of classes override

defaults.

See the example of a transfer method and auxiliary withdraw and deposit methods

in Appendix A.3. The methods deposit:to: and withdraw:from: of class Branch are

specified to create a new transaction when invoked. By default, invocations of deposit:

to: and withdraw:from: are synchronous. This is because the semantics of the deposit

and withdraw operations require that they be performed synchronously and create a

transaction when invoked from a teller.

Method transfer:from:name:to:name: of class Teller invokes the deposit and

withdraw methods but it overides two of its message parameters at invocation. The

transfer method itself creates a transaction, as specified by the transaction parameter in

its definition. For performance reasons outlined in the next section, the transfer method

invokes the deposit and withdraw methods asynchronously and non-transaction creat

ing. Thus, the message parameters specified in the public interfaces of the deposit and

withdraw methods are overridden in two ways. The message kind parameter is changed

from its default value synchronously to asynchronously and the transaction parameter

is changed from the parameter specified at definition, trans act ionCreating, to non-

Trans act i onCr e at ing.

The transfer method in class AutomaticTellerMachine inherits all message param

eters specified in class Teller. It can override individual parameters. In this case, the

timeout parameter is changed to 2 seconds (see Appendix A.5.3).

3.3.6 Development Advantages

3.3.6.1 Reuse

By separating message parameters from method code, the Hermes/ST generalized message

scheme supports convenient reuse of methods in various contexts. Examples are the

withdraw and deposit methods, which create a transaction when invoked directly from a

teller, and do not create a transaction when invoked from within a transfer operation.

3.3.6.2 Extensibility

The Hermes/ST generalized message scheme supports an incremental development strat

egy for reliable distributed systems particularly well. A system developer can design

methods with transactions in mind but implement them non-transactionally first. These

non-transactional methods are easier to debug since no underlying transactional system

CHAPTER 3. HERMES/ST 28

masks software failures. After functional validation of these non-transactional methods,

transactions can arbitrarily be put in place where data integrity is important. This pro

cess only requires changing message parameters—no structural changes need to be made.

The transactional system can be tested, its performance can be monitored and bot

tlenecks can be detected. Since transactions are expensive, fine tuning may need to be

performed to resolve bottlenecks.

One way of decreasing transactional expense is to cut down transactional nesting depth

where possible. Consider the transfer example above. Note that transfer:from:name:

to-.name: is always invoked transactionally and the whole transaction should abort if

either the withdraw or deposit operation fails. Further note that the transfer transaction

is relatively short so that the level of recovery introduced by nested transactions is not

necessary. Therefore, for performance reasons, the withdraw and deposit operations are

not performed as subtransactions. See the performance figures presented in Section 5.7.

Another way of decreasing transactional expense is to increase concurrency. The

transfer method, again, serves as an example of this. One can combine both approaches,

cutting down transactional depth and increasing concurrency, due to the separation of

transaction and thread semantics in Hermes/ST. The way message parameters can be

specified at method definition and overridden at declaration makes this fine-tuning step

relatively easy.

For longer transactions, the probability of success can be increased by using nested

transactions, retries: and perf ormlf Fail allow parent transactions to continue when

subtransactions fail. Transient failures and deadlocks can be managed through retries10.

Longer failures can be managed by specifying appropriate compensating actions using

performlfFail.

3.3.6.3 Maintainability

Maintainability is increased by the strict separation of concerns that Hermes/ST provides.

Changing individual message parameters does not affect other parameters. Take, again,

the transfer implementation as an example. Individual changes of the message kind and

transaction parameters of the deposit and withdraw messages do not affect the functional

behaviour of the transfer method. This allows localized changes to methods which is

advantageous for maintainability.

3.4 Concurrency Control

3.4.1 Implicit Concurrency Control

The easiest way for an application developer to prescribe concurrency control in a Her

mes/ST application is to use system-defined implicit locking. Hermes/ST methods do not

have to be specified as "readers" or "writers". Furthermore there is no need for dedicated

lock acquisition code to be included in the specification of a method11.

Implicit locking has been implemented in Hermes/ST via a mechanism called "min

imal locking" [FHR93b]. Minimal locking acquires read/write locks before accesses to

individual persistent object variables. Lock acquisition is performed automatically by

the Hermes/ST system. Lock release is also performed by the Hermes/ST system, either

immediately after the access (for non-transactional messages) or at transaction commit

and abort (for transactional messages). In combination with Hermes/ST's small-grained

10 A more effective way of combating deadlocks is described in Section 3.4.2.
11 W h e n and if such code is needed, it can, however, be specified. See Section 3.4.2.

CHAPTER 3. HERMES/ST 29

Figure 3.1: An example binary search tree.

object model (see Section 3.2), minimal locking always ensures correct locking. All data

items read are read locked and all data items written are write locked. Minimal locking

always locks the minimal amount of data accessed—hence its name. Minimal locking

achieves what is termed "maximal concurrency" in [FHR93b]. Providing "maximal con

currency" can be expensive in terms of time (for the acquisition and release of locks)

and space (for lock objects). Therefore, minimal locking has recently been refined to a

variable locking mechanism that allows implicit concurrency control on a coarser grain

[Faz94]. This coarser-grain locking decreases concurrency but it also decreases scheduling

expense and the probability of deadlocks. A discussion of this scheme is beyond the scope

of this thesis.

The code for the binary search tree, introduced in Section 3.2, demonstrates implicit

locking (recall Appendix A.l). When class Tree is instantiated as a persistent object, then

all instances of Tree and TreeNode are persistent and concurrency controlled. Implicit

locking allows concurrent "add" and "remove" operations to different parts of the tree.

Consider the example tree in Figure 3.1 containing values 4, 6 and 8. Insertions of the

values 2 and 5 can be performed concurrently, even if they belong to different transactions,

since they affect different parts of the tree. More concretely, the insertion of value 2 read

locks the left variables of nodes 6 and 4 and only write locks the root variable of the

left subtree of node 4. Insertion of value 5 read locks the left variable of node 6 and the

right variable of node 4 and write locks the root variable of the right subtree of node 4.

Thus, lock conflict does not occur (see Table 2.3).

The same is true for concurrent removal of the value 4 and an insertion of the value 7.

However, the removal of the value 4 and the insertion of the value 1 cannot be performed

concurrently since both operations modify the same part of the tree. More concretely,

removal of value 4 write locks the root variable of the left subtree of node 6. Insertion of

value 1 attempts to write lock the same variable. A lock conflict occurs (see Table 2.3).

Implicit locking delays one of the requested operations until after the other operation has

finished (for non-transactional messages) or its transaction has committed or aborted.

3.4.2 Explicit Concurrency Control

Hermes/ST explicit concurrency control is achieved through the programmable lock ap

proach [FHR93b]. In the programmable lock approach, type-specific concurrency control

is defined in the class specifications of programmable locks. Programmable locks form a hi

erarchy with the abstract class ProgrammableLock as the root. Hermes/ST provides a set

of system-defined programmable lock classes. They include classes for mutual exclusion,

traditional read/write locking, fair read/write locking and bounded buffer synchroniza

tion.

The class ProgrammableLock defines two methods, isSchedulable : and isCompatible-

With:, which return boolean values, in this case true (see Appendix A.4.1). These

methods can be overridden by subclasses. The method isSchedulable: allows a pro-

CHAPTER 3. HERMES/ST 30

grammable lock to make scheduling decisions on the basis of persistent object state. The

method isCompatibleWith: defines a programmable lock's "compatibility" with other

programmable locks.

Programmable locks are associated with Hermes/ST methods via the lock: message

parameter (see Section 3.3) and are instantiated when a persistent object receives a mes

sage. Arguments can be passed to lock: which are stored as internal variables of the

ProgrammableLock object and thus can be used by isSchedulable: and isCompatible

With:. Arbitrary objects can be passed. However, two particular types shall be mentioned

here. They are the message arguments and guard methods.

3.4.2.1 Passing the Message Arguments to a Programmable Lock

Consider the example of programmable lock class AccountWriteLock which is subclassed

from WriteLock (see Appendix A.4.2 and A.4.3). AccountWriteLock is the lock param

eter specified at the definition of method deposit:to: in class Branch. The lock asso

ciation in deposit:to: specifies that the argument accountName is passed to Account

WriteLock. This means that whenever a Branch object receives a deposit :to: message,

an instance of AccountWriteLock is created and the actual argument accountName is

stored as one of its internal variables. accountName is used by AccountWriteLock's

isCompatibleWith: method to test whether otherLock refers to the same account as

the lock itself. AccountWriteLock weakens the compatibility predicate of its superclass

WriteLock by invoking its isCompatibleWith: method (super isCompatibleWith:

otherLock) and using a disjunction (or: [self account ~= otherLock account]). Log

ically, AccountWriteLock implements a write lock for an individual account rather than

the whole branch. Lock compatibility is not tested by an individual Account's concur

rency controller but rather by the Branch's concurrency controller. The usefulness of

AccountWriteLock to avoid deadlocks is described in Section 3.4.2.3.

3.4.2.2 Passing Guard Methods to Programmable Locks

Guard Methods [Atk91] are read-only methods that allow programmable locks to in

spect object state. Consider the example of the programmable lock class Savings-

AccountsWriteLock which is subclassed from WriteLock (see Appendix A.4.4 and A.4.5).

SavingsAccountsWriteLock is the lock parameter specified at the definition of method

addlnterest of class Branch, addlnterest accesses all savings accounts of a branch to

add any outstanding interest. SavingsAccountsWriteLock conceptually locks all savings

accounts of a branch in write mode to allow addlnterest to be performed without inter

ference from other operations that modify savings accounts. SavingsAccountsWriteLock

isCompatibleWith: checks the type of otherLock's account (#cheque or #savings) us

ing the guard method typeCheckMethod. This guard method is passed as a parameter

to SavingsAccountsWriteLock in the lock message parameter specification of method

addlnterest.

Strictly speaking, passing typeCheckMethod to SavingsAccountsWriteLock is not

necessary. It could have been hard-coded in its isCompatibleWith: method. However,

parameterizing the type-check method increases the reusability of SavingsAccounts

WriteLock, making it applicable for classes with different type-check methods.

3.4.2.3 Using Programmable Locks for Deadlock Avoidance

Hermes/ST implicit locking may cause deadlock if, for example, a branch-internal transfer

operation from one savings account to another savings account interferes with an add-

CHAPTER 3. HERMES/ST 31

Interest invocation. Associating addlnterest with a SavingsAccountsWriteLock and

associating withdraw:from: and deposit:to: (the two methods invoked in the transfer

method) with an AccountWriteLock avoids such a deadlock. This is because Savings

AccountsWriteLock conceptually locks all savings accounts of a particular branch in

write mode. A SavingsAccountsWriteLock is incompatible with every AccountWrite

Lock that controls the access to a savings account. Thus, in case of a conflict, the

execution of one of the operations (transfer or addlnterest) is delayed until after the

other operation's transaction has committed or aborted.

3.4.3 Development Advantages

3.4.3.1 Reusability

The fact that concurrency control is not specified within method code allows implicitly

concurrency controlled methods to be conveniently used in a non-concurrent and concur

rent context. The binary search tree implementation of Section 3.2 serves as an example.

The Hermes/ST explicit concurrency control mechanism does not only support the

reuse of methods that are explicitly concurrency controlled. It also facilitates reuse of

concurrency control specifications themselves.

• The association of programmable locks and Hermes/ST methods is separated from

the method definition. This allows one to conveniently use a method in both a

sequential and concurrent context.

• The concurrency control specification for a Hermes/ST class is composable: sub

classes that add and/or override methods can individually add/change programmable

lock associations. Composability is achieved by a combination of separating the pro

grammable lock association from method definition and associating programmable

locks with methods individually.

• Programmable locks are specified separately from the Hermes/ST classes in which

they are applied. This allows a common concurrency control behaviour (e.g. mutual

exclusion) to be applied in different classes where appropriate.

• Since programmable locks are defined in an inheritance hierarchy, concurrency con

trol behaviour can be reused through programming by difference. Examples are

the implementations of SavingsAccountsWriteLock and AccountWriteLock, which

utilize the locking behaviour of their superclass WriteLock and weaken the compat

ibility predicate using a logical "or" operator.

3.4.3.2 Extensibility

Hermes/ST implicit locking allows the transition from (non-concurrent) volatile objects

to fully concurrency controlled persistent objects without changing method definitions

or adding concurrency control specifications. However, if it is necessary to add explicit

concurrency control to an implicitly concurrency controlled Hermes/ST application, the

incremental strategy still applies. First, simple system-defined programmable locks like

mutual exclusion locks or read/write locks can be employed. Performance analysis of the

simple concurrency controlled system may detect bottlenecks. These bottlenecks can then

be alleviated by the introduction of more sophisticated application-specific programmable

locks such as SavingsAccountsWriteLock and AccountWriteLock.

CHAPTER 3. HERMES/ST 32

3.4.3.3 Maintainability

Separating the concurrency control specification from the functional specification of a

method has advantages in terms of maintainability. Both aspects can be modified indi

vidually without affecting the other. Also, validation can be performed for each aspect

individually.

3.5 Hermes/ST Implementation of the Distributed Bank

This section describes important classes and methods of the Hermes/ST implementation

of the distributed bank. The code can be found in Appendix A.5.

Class Teller (Appendix A.5.1) is an abstract class with three subclasses HeadOff ice,

AutomaticTellerMachine and BankClerk. The class definition for Teller specifies

three variables name, currencyTable and interface, name uniquely specifies a teller,

currencyTable is used for international transfers as described below and interface

refers to a window, a graphical user interface. For Automat icTellerMachine, this is the

interface that a bank customer uses at an automatic teller machine. For BankClerk, it

is the interface that a bank clerk uses when serving customers. For HeadOff ice it is

the interface that administrators use in the head office of the bank, interface refers

to a volatile object. When a node crashes, then user interfaces are lost. Windows are

re-opened when the node comes up again. This is specified in special initialization code

which is not included in Appendix A.5.1.

The method transfer:from.•name."to:name: performs a traditional fund transfer

as described in Section 3.3. The method internationalTransferFrom:name:to:name:

implements a more complex international transfer operation that involves a currency

exchange. This method is interesting since it uses all three message kinds, synchronous,

asynchronous and wait-by-necessity. Every branch keeps a currency table in variable

currencyTable for all traded currencies. This can be slightly out of date. A currency

table which always keeps the exact current exchange rate can be remotely accessed at

the head office. Assume that for small transfers, i.e. transfers that do not exceed a

particular limit, the locally stored exchange rate can be used, whereas for large transfers,

the exact rate must be used. In order to optimize the performance of the transfer method,

the exchange rate request to the head office is performed concurrently with the amount

request to the source branch—using a wait-by-necessity and a synchronous invocation. If

the amount to transfer does not exceed the limit, then the actual transfer can go ahead

without waiting for the exact exchange rate to be returned. The exact rate is only used

when necessary. For performance reasons outlined in Section 3.3.6, the actual transfer is

performed concurrently using asynchronous invocations without creating subtransactions.

The HeadOff ice class (Appendix A.5.2) additionally provides methods for creating

and deleting branches and tellers and to perform audits.

The Branch class (Appendix A.5.5) defines a variable accounts which is initialized to

an empty persistent binary search tree in the Branch instance creation method (see the

class protocol instance creation). All accounts contained in a particular branch are

stored in accounts, ordered according to their accountName.

Methods like deposit:to: and withdraw:from: use an auxiliary method lookUp:.

lookUp: descends the accounts tree to return a Hermes/ST object reference to the spec

ified account. If the account cannot be found, abort CurrentTrans act ion: is invoked.

In the case of a transactional invocation, this causes the current transaction to abort and

the specified symbol #noSuchAccount to be passed to the client of the aborting trans

action. In the case of a non-transactional invocation, an exception is raised. Methods

CHAPTER 3. HERMES/ST 33

deposit :to: and addlnterest are explicitly concurrency controlled using programmable

lock classes AccountWriteLock and SavingsAccountsWriteLock, as described in Sec

tion 3.4.2. Methods openAccount: and closeAccount: allow new accounts to be opened

or accounts to be closed.

The class Account (Appendix A.5.6) defines three variables name, type and balance.

name uniquely identifies a particular account, e.g. via an account number, type distin

guishes chequing from savings accounts, balance stores the current account balance.

Methods for depositing and withdrawing money are provided.

3.6 Evaluation and Comparison to Other Approaches

3.6.1 Evaluation

The linguistic constructs introduced in this chapter integrate transactional and distributed

features into an object-oriented language without compromising important features of

object-orientation: reusability, extendibifity and maintainability. The following compari

son sections show that this is not the case for many existing object-oriented distributed

systems supporting nested transactions.

Hermes/ST is a prototype implementation of concepts described in this chapter and

elsewhere [Faz94, Ran94]. Its purpose is to test the validity of these concepts. Hermes/ST

is implemented in ObjectWorks\Smalltalk-80 V4.1 [Par92] and is currently running on Sun

SparcStations, connected via a local area network. It includes the Hermes/ST language

extension to Smalltalk-80 and development tools like class browsers and a distributed

debugger. It also includes the execution environment with a name server, concurrency

controllers, transaction, communications, persistence and recovery handlers. For details

see [FHR93c].

To test the validity of the concepts introduced in this chapter, a number of projects

have been developed in Hermes/ST. A smaller project was the implementation of the

distributed bank as an example application for [FHR94] and this thesis. The distributed

bank was implemented by the author within a few days. Two larger projects developed

in Hermes/ST are " Universal Personal Telecommunications" [CCM+93] that implements

an advanced telecommunications service [CCI91] and a reliable distributed name server

[RHR+93]. The projects were developed by six and five final-year computer science stu

dents respectively over one year. Both systems make extensive use of Hermes/ST's dis

tribution and transaction facilities and provide comprehensive graphical user interfaces.

The algorithms that have been used are, in part, based on [HF92a, HF92b].

In all projects developed in Hermes/ST, an incremental development strategy was

used. The complete systems, including all user interfaces, were first implemented with

volatile objects. They were tested and debugged and then presented to the respective

clients. Clients were then able to suggest modifications that were taken into account

at this stage. Persistence, distribution, concurrency control and transactions were then

added successively. This step was performed by modifying instance creation and message

parameters only. No structural changes to classes or methods were needed. AU graphical

user interfaces remained unchanged. Also, clients did not require any modifications to

the systems at this stage.

Both stages of the projects, the development of the sequential, single-node prototype

and the extension to the final system took about half of the total development time. The

incremental development strategy was appreciated by the developers as a controlled way

of building complex systems and was employed successfully for these experiments.

This chapter is only concerned with Hermes/ST's linguistic features, not their imple-

CHAPTER 3. HERMES/ST 34

mentation or performance. Chapters 4 and 5 deal in part with these issues. Consequently,

the following comparison of Hermes/ST with other object-oriented distributed systems

supporting nested transactions addresses linguistic aspects only. Three systems are com

pared: the well-known systems Argus and Avalon/C-f + whose linguistic constructs cover

a large class of other systems, and Venari/ML, a relatively new system with a number of

novel linguistic constructs.

3.6.2 Argus

Argus [Lis82] is a distributed object-based programming system that supports nested

transactions. Argus is built on top of the C L U programming language [Lis81]. Guardians

contain atomic or non-atomic objects. Atomic objects in Argus are analogous to persistent

objects in Hermes/ST; non-atomic objects relate to volatile objects. Since object kind

is not an instance property, a data type like a binary search tree must be implemented

twice when it is to be used in a transactional and non-transactional context. Since Argus

is object-based, code sharing via inheritance is not supported.

There are two ways in which transactions are created in Argus. Firstly, every handler

call (i.e. invocation of a guardian's method) implicitly creates a transaction. Secondly,

synchronous nested transactions can be created explicitly via the enter action. . .end

construct. Only a limited form of thread creation is supported. Threads can only be

created via a loop construct (coenter.. .end) for concurrent nested transactions. This

construct suspends the parent transaction until all child transactions have committed or

aborted. Thus, no ancestor/descendant concurrency between transactions is supported.

In contrast, Hermes/ST permits threads to be created independently of transactions.

This allows non-transactional threads, transactional threads that do or do not create sub-

transactions, sibling and ancestor/descendant concurrency in transactions. Argus'limited

transaction/thread model makes it difficult to implement concepts like voting, where a

thread creates a number of new threads to collect votes concurrently but continues im

mediately after the required number of votes has been obtained. The implementation

in Hermes/ST is straight forward and allows the required amount of concurrency (see

Section 3.3). In Argus, the same amount of concurrency can only be achieved by artifi

cially making the vote counting thread a sibling of the voting threads. This has several

disadvantages. Firstly, the code must be obscured in order to alleviate the deficiencies of

the language. Secondly, sibling threads have to communicate, e.g. via shared variables.

Thirdly, turning parts of the parent thread into a child thread changes the seriahzabihty

semantics of the parent thread, as outlined in Section 5.2.

Apart from creating subtransactions from within transactions, Argus allows the cre

ation of new top-level transactions from within transactions via the enter topaction. .

.end construct. This is a convenient mechanism. However, it should be used with care

since it allows non-committed transactions to exchange data and therefore may defy the

transactional properties. Section 4.9 presents an extension to the linguistic constructs

described in this chapter that not only allows top-level transactions, but also top-level

threads and synchronous messages to be created from within a transaction. Like the

topaction construct in Argus, it should be used with care for the same reasons.

Argus does not provide implicit concurrency control. Locks are acquired explicitly

in method code via the read_lock and write_lock primitives. The system performs

the release of locks at transaction commit and abort. In contrast, implicit locking in

Hermes/ST is convenient since the programmer does not have to reason over concurrency

control and the lack of concurrency control statements in the code increases reusability of

methods in concurrent and non-concurrent contexts. It is also safe, since data is always

CHAPTER 3. HERMES/ST 35

locked before being accessed. Furthermore, due to the maximal concurrency property, it

often exhibits good performance. However, implicit locking in Hermes/ST may lead to

deadlocks. It can exhibit poor performance due to a large number of lock acquisitions and

does not always produce the optimal level of concurrency control for particular data types.

Argus addresses the deadlock and performance issues via explicit read/write locking and

the concurrency control issue via type-specific locking. In Hermes/ST, all three issues are

addressed via the programmable lock approach. Type-specific locking in Argus [WL85]

is more sophisticated than Hermes/ST's programmable lock approach in that it allows

higher concurrency than strict 2PL. However, programming type-specific locks in Argus is

complex [WL85]. Hermes/ST, on the other hand, does not attempt to leave the boundaries

of strict 2PL. Rather, issues of convenience, composability, reusability, extensibility and

maintenance are emphasized.

3.6.3 Avalon/C-I—\-

Avalon/C++ [EME91] is the distributed programming language built on top of the

Camelot distributed operating system. Therefore, Hermes/ST's linguistic constructs are

compared with Avalon/C+ + 's rather than Camelot's linguistic constructs. Avalon/C++

is an extension to the C + + programming language [Str86] and supports single inheritance,

like Hermes/ST.

Analogous to guardians in Argus, Avalon/C++ defines servers that encapsulate ob

jects. The kind of an object is a class property, determined via inheritance from one of

three base classes: recoverable, atomic and subatomic. The instances of the three base

classes are comparable to Hermes/ST's persistent objects. Instances of recoverable have

a mirror image on permanent storage but do not perform concurrency control and abort

recovery, atomic and subatomic are subclassed from recoverable and hence inherit its

properties. In addition, they add concurrency control and abort recovery so that they

ensure transactional properties, atomic allows a quick and convenient way to define new

transactional objects, while subatomic provides primitives to give programmers more

detailed control over the objects' synchronization and recovery mechanisms.

Hermes/ST currently only provides an equivalent to instances of the atomic base

class: persistent objects. An extension to allow more kinds of objects, e.g. persistent

only objects, is currently being developed [Ran94]. Since object kind is a class property

in Avalon/C++, abstract data types like the binary search tree, must be implemented

several times when used in several contexts: non-recoverable, recoverable, and atomic.

The introduction of multiple inheritance in Avalon/C++ could alleviate this problem.

Subclasses of tree classes could then multiply inherit from the respective base classes to

add the required behaviour. A drawback of this approach is that for every kind supported,

a new subclass must be created.

Avalon/C++ provides a richer transaction/thread model than Argus does. It allows

the creation of synchronous nested transactions (via start transaction! •••}), concur

rent transactions (via costartjtransaction.. .}) and the creation of top-level threads

and top-level transactions (via toplevel) like in Argus. Additionally, it allows concurrent

threads within transactions (via costart{.. .}). In the costart construct, the invok

ing thread is suspended until all invoked threads have finished, i.e. ancestor/descendant

concurrency is not provided. In contrast, Hermes/ST allows both siblings and ances

tor/descendant concurrency. Non-transaction creating threads in Avalon/C++ are not se

rialized. In contrast, Hermes/ST allows both serialized and non-serialized non-transaction

creating threads (see Chapter 4).

Like Argus, Avalon/C++ only supports explicit lock acquisition in method code via

CHAPTER 3. HERMES/ST 36

the read_lock() and write_lock() methods of class atomic. The subatomic class is

a starting point for classes with type-specific concurrency control. The mechanisms for

type-specific concurrency control in Avalon/C++ are more sophisticated than those in

Hermes/ST in that they allow the implementation of objects with higher concurrency.

Via inheritance, concurrency control specifications can be reused in different subclasses.

However, since concurrency control is specified within a class, it cannot be applied to

classes that belong to different inheritance hierarchies. The separation of concurrency

control specifications from classes and methods in which they are used in Hermes/ST

allows higher reusability, extensibility and maintainability of concurrency control speci

fications than does Avalon/C++.

3.6.4 Venari/ML

Venari/ML [NW91, WFMN92, HKM+94] is a concurrent, functional programming sys

tem, supporting nested transactions, that has been developed at Carnegie Mellon Univer

sity. Venari/ML is neither distributed nor object-oriented. The novel linguistic constructs

for specifying transactions and threads however do support reusability, extern ibility and

maintainability, and are worth comparing to Hermes/ST.

Venari/ML is implemented on top of the S M L functional programming language

[MTH90]. Like Hermes/ST, Venari/ML allows transactions to be specified independently

from threads. Transactions and threads are specified over function calls via the higher

order functions transact and fork. This scheme is similar to Hermes/ST's general

ized message scheme and hence provides the same flexibility. Transactions can create

synchronous and asynchronous subtransactions and can create non-transaction creating

threads. Such threads can be either serialized or non-serialized. Sibling concurrency as

well as ancestor/descendant concurrency is supported.

In addition, Venari/ML supports the separation of the transactional properties se

riahzabihty, atomicity and permanence. Thus, threads can be specified to exhibit only

some of the three properties. The specification of all three properties provides full nested

transaction semantics. As with full transactions, such weaker transactions are specified

via higher order functions that are applied to function calls.

This separation of transactional properties allows more sophisticated fine-tuning of

applications. As in Hermes/ST, changing transactional specifications of function calls

changes only their performance and reliability characteristics but not their functional

behaviour in the absence of failures.

Venari/ML is the only system, of which the author is aware, that provides simi

lar support for reusability, extendibility and maintainability in terms of transaction and

thread specification, as Hermes/ST does. However, there are major differences between

Venari/ML and Hermes/ST in terms of the semantics and implementation of transac

tion/thread scheduling. Section 5.5 presents details.

Chapter 4

Scheduling in a Generalized
Transaction/Thread Model

Chapter 4 represents the core of this thesis. This is reflected in its size relative to

other chapters and the fact that it is titled like the thesis itself. In this chapter, novel

scheduling semantics are defined for the generalized message scheme. An implementation-

independent schedulability predicate is presented that satisfies the scheduling semantics.

Furthermore, an efficient implementation of the schedulability predicate is described. A

simpler version of this work has been published in [Hum93]. The correctness of both the

schedulability predicate with respect to the scheduling semantics and the algorithms with

respect to the schedulability predicate are discussed. However, no formal proofs are given.

Instead, the concepts and their justifications are explained in an intuitive way. A large

number of figures and examples supports this approach. This is also true for definitions.

Definitions are only formal where necessary. They are informal if the intuitive meaning

is clear. Definitions for transactional properties are not repeated in this chapter. Rather,

references to their introduction in Chapter 2 are given.

Although the correctness analyses are not formal, they are rigorous and very compre

hensive. More than twenty pages of this chapter are devoted to correctness discussions.

Readers that are solely interested in the mechanisms can safely skip these sections without

missing information that is necessary for the understanding of the following sections.

Chapter 4 is structured in the following way. Section 4.1 presents all definitions

necessary for the understanding of the mechanisms, described in this chapter. Section 4.2

defines the scheduling properties for the generalized message scheme. The schedulability

predicate is defined in Section 4.3 and its correctness is analyzed in Section 4.4. A general

design for the implementation of the scheduling mechanism is described in Section 4.5.

Efficient algorithms for the schedulability predicate and their correctness are discussed in

Section 4.6. The last three sections describe useful extensions to the generalized message

scheme. The introduction of wait-by-necessity messages is performed in Section 4.7.

Scheduling for non-serialized transactional threads is described in Section 4.8. Finally,

Section 4.9 describes an extension that allows sending top-level messages from within

nested messages.

4.1 Definitions

4.1.1 Messages and Message Trees

In this section and following sections, a subset of the generalized message scheme, in

troduced in Section 3.3, is defined more formally. Since this chapter and this thesis are

37

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 38

mainly concerned with scheduling issues, only three message parameters are included: the

parameters describing the message kind, transaction characteristics and lock specification.

To simplify the concepts presented in this chapter, only two message kinds are taken into

account first: synchronous and asynchronous. Section 4.7 presents an extension to include

wait-by-necessity messages.

A message1 is specified by a receiver object, message parameters, a method name

and arguments. Message parameters describe the kind of a message (either synchronous

or asynchronous), its transaction characteristics (transaction creating or non-transaction

creating) and its lock type. Every message can access (read and write) the receiver object's

variables and send other messages, either to the receiver object or other objects. Messages

can be described as nodes in a message tree where the arcs represent message-submessage

relationships, i.e. the relationships between messages and the messages they send.

See Figure 4.1 for an example message tree which is referred to throughout this

chapter2. In this figure and all other figures of message trees, the following notations

are used.
Messages, the nodes of the tree, are represented by boxes. Message-submessage rela

tionships, the arcs of the tree, are represented by lines. For example, the messages labeled

with 2, 6, 7 and 8 are submessages of the message labeled with 1 (the root of the tree).

Boxes are numbered. Such a number can be used in various contexts for different con

cepts. Prefixed by an upper case letter M, it represents a message identifier, prefixed by

an upper case letter T it represents a transaction identifier and prefixed by an upper case

letter S it represents a thread identifier. For example, the root node represents message

Mi.
Lower case letters are used to denote placeholders for message, transaction and thread

*A11 definitions are emphasized by italics.
2In order to avoid going back to Figure 4.1 for numerous examples, a loose page with this figure is

inserted for the reader's convenience at the end of this thesis.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 39

identifiers: m,mx,m2,... for message identifiers, t,tx,t2,... for transaction identifiers and

s,sx,s2,... for thread identifiers.

The kind and transaction parameters of messages are indicated by the texture of

boxes and fines in the figures (see the legend in Figure 4.1). White boxes represent non-

transaction creating messages while shaded boxes represent transaction creating messages.

For example, messages M2, Ms and M 9 are transaction creating whereas messages M3, M4

and M5 do not create a transaction. Synchronous messages are represented by solid lines

while asynchronous messages are represented by broken lines. For example, messages

M5, M s and Mx^ are synchronous while messages M2, M3 and MQ are asynchronous.

Lock parameters are not represented in the figures since they are rather tangential to the

following discussions.

All messages being sent in a system's execution form a forest of message trees. Every

top-level message, i.e. root of a message tree, is sent by a client, e.g. a user interface.

Like other messages, top-level messages can either be synchronous or asynchronous and

therefore, there is an arc leading to the root node.

4.1.2 Relationships Between Messages

Usual tree notations are used to describe the relationships of messages in a message tree.

• The parent-child relationship is equivalent to the message-submessage relationship.

For example, Mx is parent of M2 and M2 is child of Mi, but Mi is not parent of

M3.

• The ancestor (<) and descendant (>) relationships are the transitive closures of

the parent and child relationships. The ancestor and descendant relationships are

reflexive, i.e. each message is its own ancestor and descendant. For example, Mi <

M3 and M8 < M8 but M u $, M 5 . Conversely, Mxo > M8 and Mx4 > MX4 but

M9 t Mn.

• faoJ ancestor (<) and^f».l descendant (>) are the non-reflexive counterparts of

ancestor and descendant. For example, M2 < M3 and M 9 < Mn but M i 4 </ M14.

Conversely, M 4 > Mi and Mi 5 > MX4 but M 2 /• M1 4.

• Two messages are incomparable (<>) if they are neither in an ancestor nor de

scendant relationship. Any two messages belonging to different message trees are

incomparable. Also, M3 <> M& and Mxo <> Mxs but M 8 </> Mx3.

• Two messages mx and m2 are conflicting (mi conflicts with m2) if they have the

same receiver object and their lock types are incompatible according to a lock com

patibility matrix (see, for example, Figure 2.3 for the read/write lock compatibility

matrix).

A message m is a common ancestor of messages mx and m2 iff m < mi and m < m2.

For example, Mi is common ancestor of M n and Mx2, M 9 is common ancestor of

M 9 and MX3 but M 8 is not common ancestor of M 9 and Mi.

For two messages mi and m2 that have a common ancestor there is exactly one least

common ancestor message m defined (m = LCA(mi,m2)). m is a common ancestor

of mi and m2 and for all other common ancestors m! of mx and m2: m' < m. For

example, Mi0 = LCA(M1UM12), M 9 = LCA(M9,MX3) but Mi ± LCA(Mn,Mi2).

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 40

4.1.3 Message Paths and Message Path Elements

A message path is a data structure that describes the parameters and the position of a

particular message in a message tree. A message path is a non-empty sequence of message

path elements that contain a message's identifier and its kind and transaction parameters.

This sequence includes all messages from the root of a message tree down to the particular

message. For example, [M9, synch, trans]
z is the message path element for message M 9

and [Mi,synch,nonTrans][M8,synch, trans][M9,asynch,trans] is the message path for

MQ. Every message path is unique in the entire execution of a system.

In order to simplify presentation, the message identifier (e.g. M 9) is used instead of

its message path whenever the path is obvious from the context. This is the case for all

examples in this chapter since they refer to figures. The message identifier can, in this

case, be seen as an alias for the message path.

4.1.4 Regular Expressions for Message Paths

Special classes of message paths are described via regular expressions. The primitives to

describe message paths are types of message path elements.

• trans stands for a transaction creating message path element (no matter whether it

is synchronous or asynchronous). nonTrans stands for an non-transaction creating

one.

• synch stands for a synchronous message path element (transaction creating or non-

transaction creating), asynch stands for an asynchronous one.

• Both parameters can be combined with a dash, e.g. synch-nonTrans stands for

a synchronous, non-transaction creating message path element. The other three

combinations are used analogously.

• any stands for any message path element, synchronous or asynchronous, transaction

creating or non-transaction creating.

Regular expressions are constructed by sequencing these elements. For example, Mg

matches the following regular expression: synch synch asynch since M i is synchronous,

M 8 is synchronous and M 9 is asynchronous. Meta symbols are used to describe occurrence

patters. Square brackets ([]) denote a group of optional elements, i.e. elements that occur

either not at all or only once. A star (*) denotes an element to be repeated arbitrarily,

i.e. any number of times (including 0).

Consider the example where mi and m2 denote two message paths, i.e. mi and m2

act as placeholders for sequences of message path elements. Then, the equation m2 — mx

synch-nonTrans* [synch-trans any*] denotes that m2 starts with all elements of mx. An

arbitrary number of synchronous non-transaction creating elements may follow. Then,

optionally, a single synchronous transaction creating element may follow, followed by an

arbitrary number of elements of any type. For example, mi = M i and m2 = M i 3 match

the description.

Since m 2 starts with all elements of mi, mi is a prefix of m2. This means that mi

and m2 are defined in the same message tree. This also means that all messages between

the root of the message tree and mx are also between the root of the message tree and

m2. Therefore, mi is an ancestor of m2 (mx < m2)
4

3synch stands for synchronous, asynch stands for asynchronous, trans stands for transaction creating

and nonTrans stands for non-transaction creating. See also Section 4.1.4.
4The prefix relationship between ancestors and descendants motivates the < notation, e.g.

[Mi, synch, nonTrans] < [Mi, synch, nonTrans][Ms, synch, trans][Ms, asynch, trans].

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 41

4.1.5 Transactions

Transaction creating messages form tree structures within message trees. The message

tree of Figure 4.1 incorporates two such transaction trees, one with M 2 as the root and

one with M 8 as the root. Transaction identifiers are generated with an upper case letter T

and the number of the message that created the transaction, e.g. the transaction created

by M2 is called T2 and the transaction created by M 8 is called T8.

•

•

•

•

Since each transaction is associated with exactly one message in a message tree,

the relationships between messages defined in Section 4.1.2 (<,<,>,>,<>) can

be extended to transactions. Two transactions are in one of the relationships if

the messages that created them are in the same relationship, e.g. T8 < T9 since

M 8 < M 9 ; T2 < > T8 since M 2 < > M 8 .

To simplify presentation, a transaction creating message and its transaction identi

fier are used interchangeably if it is clear from the context, which concept is meant.

This also allows for mixed relationships between messages and transactions. For

example, T2 < M3 since M2 < M3.

A message is called "transactionaF if there is at least one transaction creating

message in its message path; otherwise it is called "non-transactionaF5, e.g. M 4 ,

M 8 and M n are transactional but Mi, MQ and My are non-transactional.

A transaction t is the top-level transaction of a message m if t is the first6 trans

action creating message in m's message path7. One says "m belongs to top-level

transaction t". For example, T8 is the top-level transaction of Mi2; M i 2 belongs to

top-level transaction T8.

A transaction t is the transaction of a message m if t is the last transaction creating

message in m's message path. One says "m belongs to transaction t"8. For example,

Tio is the transaction of Mi2; M i 2 belongs to transaction T10. But M i 2 does not

belong to transaction T9.

For two messages mi and m2 which have a transactional least common ancestor

message m, there is exactly one least common ancestor transaction t defined (t —

LCAT(mi,m2)) where t is the transaction of m, e.g. Tio = LCAT(Mu, Mi2),

T9 = LCAT(MU,MX3) but T8 / LCAT(MXX,MX3).

Let mi and m2 be two messages for which /' = LCAT(mx,m2) is defined. Let

ti and t2 be the transactions of mi and m 2 and tx ̂ t2. Then, there is exactly

one transaction t one level below least common ancestor of mx and m2 defined

(t = lLBLCAT(mx,m2)) where t is the subtransaction of f with t < mx.

Pictorially, t is the first transaction found when descending from f towards mi.

Note that the definition of 1LBLCAT is not symmetric, i.e. ILBLCAT(mx,m2) ^

ILBLCAT(m2,mx), e.g. ILBLC AT (MXX,MX5) = T9 ± TX4 = ILBLCAT(MX5,MXX).

ILBLCAT(M3,M5) is not defined.

5 "Transactional" and "non-transactional" is not to be confused with "transaction creating" and "non-

transaction creating", e.g. A/13 is transactional but not transaction creating.
6 From left to right, i.e. from root to leaf.
7 This is an example where transactions and messages are used interchangeably where it is clear from

the context, that a transaction is meant. The "correct" description is: "t is the transaction created by

the first transaction creating message of m's message path".
8Note that, according to this definition, a message belongs to at most one transaction, even if this is

a subtransaction.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 42

4.1.6 T h r e a d s

Every asynchronous message in a message tree creates a new thread. By default, the top-

level message of a message tree also creates a thread, no matter whether it is synchronous

or asynchronous. Thread identifiers are generated with an upper case letter S and the

number of the message that created the thread, e.g. the thread created by M i is called

Sx and the thread created by Mio is called 5*10. Definitions for threads are similar to

definitions for transactions.

• Since each thread is associated with exactly one message in a message tree, the

relationships between messages defined in Section 4.1.2 (<,<,>,>,<>) can be

extended to threads.

• To simplify presentation, a thread creating message and its thread identifier are

used interchangeably if it is clear from the context, which concept is meant. This

also allows for mixed relationships between messages and threads. For example,

Sx < MX4 since M i < M i 4 . Furthermore, mixed relationships between threads and

transactions are used in the same way, e.g. Sx < T8 since M i < M 8 .

• A thread s is the thread of a message m if s is the last asynchronous message in

m's message path. If there is no asynchronous message in m's message path then s

is the top-level message. One says "message m belongs to thread s".

For example, £1 is the thread of messages M x , M 7 , M 8 , M i 4 and M 1 5 ; conversely

messages M i , M 7 , M 8 , M i 4 and M i 5 belong to thread Si (see Figure 4.2). MX2
belongs to Sio and M 3 belongs to 5"3 but Mx0 does not belong to S8.

Since the top-level message of a message tree always creates a thread, every message

in a message tree belongs to exactly one thread. A thread can be seen as the set of

messages that includes the thread creating message, its synchronous children, their

synchronous children and so on.

• Two messages in a message tree are synchronous with respect to each other if they

belong to the same thread. Conversely, two messages are asynchronous with respect

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 43

(

JC

i)tb (J)

J
l)

wSMk
{ 9 Mj£^

m(A*)
Figure 4.3: Messages belonging to partial thread S8.

to each other if they belong to different threads9.

4.1.7 Partial Threads Under Transactions

As pointed out in Section 3.3, transaction creation and thread creation are independent

of each other. This means that there can be threads created within transactions (e.g. S3

within T2) and transactions within threads (e.g. T8 within Si). The fact that transactions

and threads are specified independently of each other does not mean that there are no

interactions between the two concepts. In order to deal with such interactions, the thread

concept is extended to a concept of called "partial thread".

• The definition of a partial thread is equivalent to the definition of a thread with

one exception. Every message in a message tree creates a partial thread, not only

asynchronous ones.

Every thread is also a partial thread but the opposite is not true. Like with threads,

identifiers for partial threads are created with an upper case S and the number of

the message that creates it. For example, partial thread 5s is created by message

M 8 and messages M 8 , M i 4 and M i 5 belong to it (see Figure 4.3). All messages

belonging to a partial thread always also belong to one particular thread, e.g. all

messages belonging to partial thread S8 belong to thread 5i
10. The definition of a

partial thread is used for the following important definition.

• Thread s under transaction t (s/t) is defined if there are messages in a message tree

that belong to both thread s and transaction t or any of its descendant transactions.

s/t is a partial thread with

»/t =
*n if s < t

otherwise

9Note that for two messages to be asynchronous with respect to each other, neither of the two messages

needs to be asynchronous itself.
10So, a partial thread is conceptually a part of a thread—hence its name.
11 In this context, t refers to the partial thread which is created by the message that created t.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 44

Messages belonging to s/t belong to both thread s and transaction t and all its

descendant transactions. Pictorially, if thread s "enters" transaction t then the
part of it which belongs to transaction t and its descendant transactions is used,

e.g. 5i/T8 = S8 (see Figure 4.4). Otherwise, if s is created within t or any of its

descendant transactions, then the whole of thread s is used, e.g. Sio/T8 = Sio (see

Figure 4.5).

4.1.8 Schedules

4.1.8.1 Serial Schedules

Serial Schedules are defined for messages, (partial) threads and (nested) transactions.

Central to the definitions is the concepts of the start and finish of the execution of a

message.

• A message starts execution at the moment when the first fine of its method's code

starts execution. It finishes execution after the last fine of its method's code has fin

ished execution or a return statement is reached. Sending a message to the receiver

on a possibly remote node, waiting for schedulability conditions to be satisfied and

sending a result back to the sender are not included in the time span between start

and finish of the execution of a message. A synchronous message can only return

a result after it has finished execution. A synchronous, transaction creating mes

sage can only return a result after the transaction that it creates has committed or

aborted.

• Two messages mi and m2 are scheduled serially (are in a serial schedule) iff either

m x finishes execution before m 2 starts execution or m 2 finishes execution before m i

starts execution.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 45

Figure 4.5: SXo/T8: SXo is created within Tg. The two areas show messages that belong

to SXo and messages that belong to T8 and its descendant transactions. The intersection

(Sio/T8) contains all messages that belong to SXo.

• Two (partial) threads sx and s2 are scheduled serially (are in a serial schedule) iff

their thread creating messages are scheduled serially.

Note that when a message that creates a (partial) thread s finishes execution then it

is ensured that all messages belonging to s have finished execution. This is because

messages belonging to s are all synchronous children of s, their synchronous children

and so on. Therefore all these children return a result after they have finished

execution and their respective parents cannot continue before the return.

Further note that this definition does not specify the scheduling of threads that are

created by any children of messages belonging to sx or s2. For example, if threads

Si and S2 in Figure 4.1 are scheduled serially then the definition of serial execution

does not pose any restrictions on the scheduling of S9 or 5io.

• Two transactions tx and t2 (no matter whether they are top-level transactions or

subtransactions) are scheduled serially (are in a serial schedule) iff iff either tx

commits or aborts before t2 starts execution or t2 commits or aborts before tx starts

execution. For conditions on the commit and abort of top-level transactions and

subtransactions refer back to Sections 2.2 and 2.3.

4.1.8.2 Serializable Schedules

• Two (partial) threads sx and s2 are serialized (are in a serializable schedule) iff their

variable accesses (i.e. variables read and written by all messages belonging to «i and

s2) are the same as if sx and s2 were in some serial schedule.

• Two transactions tx and t2 are serialized (are in a serializable schedule) iff their

variable accesses (i.e. variables read and written by all messages belonging to *i and

t2 and their descendant transactions) are the same as if ti and t2 were in some serial

schedule.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 46

Legend:

asynchronous

[J non-transaction creating

\r\\\,\\\y transaction creating

Figure 4.6:

f
t

HO

[¥j©©®
Synchronization of messages.

4.1.8.3 Synchronized Schedules

The concept of a synchronized schedule is similar to the concept of a serialized schedule

but it is weaker—it is a local property. In the definition of serializability, a set of messages

is involved that visit a set of objects (for threads, the set of messages that belong to the

threads; for transactions the set of messages that belong to the transactions and their

descendant transactions). In the definition of synchronized schedules, there are only two

messages and one object involved.

• Two messages mx and m2 with the same receiver object o are synchronized (are

in a synchronized schedule) iff their variable accesses (i.e. variables of o read and

written by mi and m2) are the same as if m x and m 2 were in some serial schedule.

Consider the example message tree of Figure 4.6. Assume that both messages

M 3 and M 7 have an object Oi as receiver and both messages M 4 and M 6 have

another object 02 as receiver. M 3 conflicts with M 7 and M 4 conflicts with M 6

and they execute in the order M 3 , M 6 , M 4 , M 7 , i.e. M 3 finishes before M 6 starts,

which finishes before M 4 starts which finishes before M 7 starts. Then, both pairs

of messages are synchronized: M 3 and M 7 on Oi and M 4 and M 6 on 02. However,

the two threads S2 and £5 are not serialized.

• Let m be a message and t a transaction where there are messages m! that belong

to t and have the same receiver object o as m. Message m and transaction t are

synchronized (are in a synchronized schedule) iff their variable accesses to object o

(i.e. variables of o read and written by messages m and m') are the same as if m

and t were in some serial schedule12.

Consider the example of Figure 4.7. Assume that messages M2, M3, M 5 and M 6 all

have an object 0 as their receiver object and they are all mutually conflicting. If

the messages execute in the order M2, M5, M 6
1 3 then M 2 and T4 are synchronized.

This is not the case if the messages execute in order M5, M2, M6. The serialization

of M 2 and T 4 is independent of the scheduling of M 3 . If the messages execute in

order M2, M5, M3, M 6 then the serialization condition between M 2 and T4 is not

violated.

12Either message m finishes execution before transaction t starts execution or t commits or aborts before

m starts execution.
1 3 M 2 finishes execution before Mb starts execution which, in turn, finishes execution before M 6 starts

execution.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 47

Legend:

synchronous

asynchronous

[J non-transaction creating

\ J transaction creating

Figure 4.7: Synchronization of messages and transactions.

Serializability and synchronization properties can be implemented via 2PL. In all cases,

appropriate locks (e.g. read/write locks) are acquired before data accesses and are released

at some appropriate time after data accesses. For serializability, locks are acquired for

all messages belonging to a thread or transaction and its descendant transactions and

are released at the finish of execution or transaction commit/abort. For synchronized

schedules, appropriate locks are only acquired for the receiver object. They are released

at the finish of message execution or at (top-level) transaction commit/abort.

4.1.9 Cascading Aborts

H a transaction ti reads variables that a non-committed transaction t2 has written, and

t2 aborts subsequently, then tx must be aborted as well (see Section 2.2.1.2). Such an

abort is called a "cascading abort". There is one exception for nested transactions. If

t2 < tx and ti reads variables, t2 has written and subsequently, t2 aborts then ti must

be aborted as well. However, this is not called a "cascading abort" since the abort is not

due to the interleaved variable accesses but due to the semantics of nested transactions.

H a transaction aborts then all its descendant transactions must be aborted as well (see

Section 2.2.1.2).

4.1.10 Return Dependencies

Let mi and m2 be two messages where mi cannot finish execution successfully
14 unless m2

has finished execution. m x is return dependent on message m 2 (mi and m2 are in a return

dependency) if this dependency is caused by the semantics of the return of messages15

and the semantics of (nested) transactions16'17.

The simplest example of a return dependency is a synchronous message. For example,

if a message m x sends a message m 2 synchronously, then m x cannot finish execution before

m 2 has finished execution. This is due to the semantics of the return of messages and is

independent of whether m x and m 2 are conflicting or not. Hence, mx and m2 are in a

return dependency.

A more subtle example is shown in Figure 4.8. In this case, Mi is return dependent

14Successfully means here "without the involvement of aborts".
16 A message sending a synchronous message waits until the child has finished execution and has returned

a value. A message sending an asynchronous message does not wait. See Section 3.3.
16 A transaction cannot commit before it has finished execution and all descendant transactions have

committed or aborted. A synchronous transaction does not return a result before it has committed or

aborted. See Sections 2.2 and 2.3.
17This means in particular that the dependency is not caused by conflicting messages that lead to

deadlock.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 48

Legend:

——— synchronous

asynchronous

1 J non-transaction creating

\ J transaction creating

Figure 4.8: Return dependency between messages M i and M 3 .

on M2 although Mi and M2 are asynchronous with respect to each other. Mi cannot

finish before M 2 has returned, due to the semantics of the return of synchronous mes

sages. M 2 cannot return before T2 has committed
18 due to the semantics of (top-level)

transactions. T2 cannot commit before all subtransactions (here T3) have committed, due

to the semantics of nested transactions. T3 cannot commit unless M 3 has executed, due

to the semantics of transactions. This is why M i and M 3 are in a return dependency.

4.2 The Scheduling Properties

The scheduling mechanism for the generalized message scheme, presented in this thesis,

has the following four properties.

1. Schedules

(a) Serializability of Top-Level Transactions: For all pairs ti and t2 of top-

level transactions in the execution of a system: if ti and t2 are not in a return

dependency then tx and t2 are serialized.

(b) Serializability of Transactional Partial Threads: Let m x and m2 be two

messages that are asynchronous with respect to each other and that belong to

the same top-level transaction. Let sx and s2 be the threads of mi and m 2,

respectively. Then, for all such mi, m 2, sx and s2 in the execution of a system:

if si ILC AT(mi,m2) and s2/LCAT(mi,m2) are not in a return dependency

then they are serialized.

(c) Synchronization of Non-Transactional Messages and Top-Level Trans

actions: For all non-transactional messages m and top-level transactions t in

the execution of a system: If there is a message belonging to top-level transac

tion t that has the same receiver object as m and there is not return dependency

between m and t or vice versa, then m and t are synchronized.

(d) Synchronization of Non-Transactional Messages: For all two non-

transactional messages m x and m 2 in the execution of a system: if mi and

m 2 have the same receiver object and there is no return dependency between

mi and m2 then they are synchronized.

18The abort case is not considered here since the definition of return dependencies deals with the

successful finish of methods only. Of course, T% can also abort. But the concept of return dependencies

has been introduced to consider the important question whether a transaction can possibly commit.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 49

2. Return Dependencies: For Properties la-d: if there are return dependencies

between messages then schedulability is guaranteed.

3. Cascading Aborts: Scheduling does not lead to cascading aborts.

4. Concurrency: With pessimistic scheduling, the mechanism achieves the highest

possible concurrency under Properties 1-3 without employing application-specific

knowledge. This means that the schedulability of messages is guaranteed as soon

as it is ensured that Properties 1-3 cannot possibly be violated.

4.2.1 Examples for the Scheduling Properties

4.2.1.1 Schedules

Serializability of Top-Level Transactions: For all examples presented in this sec

tion, refer to Figure 4.1. Consider the example that messages M i 2 and M 4 are conflicting

and M i 2 starts execution before M 4 is sent. Note that this scenario is possible since M i 2

and M 4 are asynchronous with respect to each other.

The scheduling mechanism determines the schedulability of M 4 according to the

scheduling properties. M i 2 and M 4 belong to different top-level transactions (T8 and

T2). Since T8 and T2 are not in a return dependency
19, Property la requires top-level

transactions T8 and T2 to be serialized. Therefore, M 4 cannot be scheduled unless either

of the following two events has happened. The transaction of M i 2 (Tio) has aborted
20 or

the top-level transaction of M i 2 (T8) has committed.

In the abort case, serializability is not defied since if Tio aborts, all of its effects are

undone. The schedule in the commit case is equivalent to the serial schedule "T8 before

T2". This is because M 4 is not scheduled before top-level transaction T8 has committed.

If M 4 was scheduled before either of the two events (e.g. immediately after Tio has

committed) then other conflicting messages that belong to top-level transaction T8 could

execute subsequently. In this case, either seriahzabihty is defied or cascading aborts are

necessary.

Serializability of Transactional Partial Threads: Consider the example that mes

sages M J 4 and M i 2 are conflicting and M i 4 starts execution before Mx2 is sent. The

two messages belong to different threads (5*1 and Sxo, respectively), are not in a return

dependency and belong to the same top-level transaction, T8. Property lb requires that

5*8 = Sx/T8 and Sio = Sio/T8 be serialized. Therefore, M i 2 cannot be scheduled unless

S8 has finished execution. This is the serial schedule "S8 before Sio"-

This example demonstrates why Property lb requires si/LCAT(mi,m2) and

s2/LCAT(mi,m2) to be serialized rather than Si and s2 to be serialized. In the

case where one of the two threads, say, Si enters LCAT(mi,m2) (i.e. the case where

si/LCAT(mi,m2) / si) there is a return dependency between si and s2. Therefore,

there cannot be a serial schedule between si and s2 and thus, si and s2 cannot possibly

be serialized. In this example, Si = Si, s2 = Sio and LCAT(mi,m2) = T8. Si starts

execution before Sio because Si < Sio- However, Si cannot finish execution before Sio

has executed. This is because M i waits for T8 to commit before it returns a value. T8

cannot commit before all of its descendant threads have finished execution, including Sio-

Thus, there is a return dependency between Si and Si0. However, there cannot be a

return dependency between Si/T8 and Sio/T8.

19Section 4.4.1 examines in general when two messages are in a return dependency.
20Note that the abort of any ancestor transaction of Tio (Tg, T9) causes Ti 0 to be aborted, too.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 50

Synchronization of Non-Transactional Messages and Top-Level Transactions:

Consider the example that messages M 6 and M i 2 are conflicting and M 6 starts execution

before M 1 2 is sent. MX2 is transactional and M 6 is non-transactional. Property 1c requires

M 6 and the top-level transaction of M 1 2 , T8, to be synchronized. This is ensured if MX2
is not scheduled unless M 6 has finished execution.

Now consider the reverse case. M 1 2 starts execution before M 6 is sent
21. To ensure

Property lc, M 6 is not scheduled unless either of the following two events has happened.

1. The transaction of Mi2, Ti0, aborts. Then, all effects of Tio are undone, as if Tio

had not happened at all.

2. The top-level transaction of Mi2, T8, commits. This schedule is equivalent to the

serial schedule "T8 before Mi2".

Synchronization of Non-Transactional Messages: Consider the example that mes

sages M6 and M7 are conflicting. M 6 has started execution before M 7 . Property Id

requires M 6 and M 7 to be synchronized. This is ensured if M 7 is not scheduled unless

Me has finished execution. This is the serial schedule " M 6 before M7".

4.2.1.2 Return Dependencies

Consider the example that messages Mi and Mi3 are conflicting. Since Mi is an ancestor

of MX3, it starts execution before M i 3 is sent. This example has similarities with the

example for Property lc. Mi is non-transactional and M13 is transactional. However,

there is an important difference. M i is return dependent on the top-level transaction of

M13, T8. This is because T 8 is a synchronous child of Mi, the simplest form of return

dependency. For this reason, there cannot possibly be a serial schedule between M i and

T8. Mi cannot execute before T8 because Ti waits for T8 to return a result; T8 cannot

execute before M i since it is a descendant. This is why Property lc does not require Mi

and T8 to be serialized in this case.

Instead, Property 2 allows M13 to progress so that T8 has a chance of finishing suc

cessfully. Note that, although M i and T8 are technically not synchronized, there is no

danger that the two methods concurrently access variables in a conflicting way. This is

because M i is suspended until T8 commits or aborts.

4.2.1.3 Cascading Aborts

Consider the example that messages Mn and M15 are conflicting and Mn starts exe

cution before M15 is sent. M n and M15 belong to different transactions (Xii and Ti5,

respectively) that are descended from the same top-level transaction, T8. Property 3 re

quires that cascading aborts be prevented. This is ensured if T15 is not scheduled unless

either of the two events has happened: T n aborts of T9 commits.

If Tn aborts then all its effects are undone. Therefore, T15 cannot see uncommitted

state and aborts cannot cascade. However, if Tn commits then cascading aborts are not

necessarily avoided. Consider the case that T n commits, M15 is scheduled subsequently

and reads state that has been written by Tn. Then, Tio aborts, in turn causing its

descendant T n to be aborted. Then, T15 has to be aborted as well since it has seen state

written by Tn—a cascading abort.

The same argument holds when M15 is scheduled after Tio has committed. However,

the argument does not hold if M15 is scheduled after T9 has committed. This is because

Since Me and A/12 are asynchronous with respect to each other, both cases can occur.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 51

the only way, T9 can be aborted after it has committed is when any of its ancestor

transactions aborts. But all of its ancestor transactions (here: only T8) are also ancestor

transactions of T15. Therefore, an abort of T8 would cause an abort of T15 anyway—aborts

do not cascade.

Note that T 8 = ILBLC AT (Mn,Mi5). Requiring the transaction one level below the

least common ancestor to have committed prevents cascading aborts.

4.2.1.4 Concurrency

In all examples for Properties 1-3, messages are not scheduled unless the possibility of

one of the Properties 1-3 to be violated can be ruled out completely without employ

ing application-specific knowledge. This policy decreases concurrency but ensures the

scheduling properties. However, schedulability is guaranteed as soon as such a violation

can be ruled out. This means that concurrency is only restricted as much as necessary to

ensure scheduling properties but no further. Hence, using pessimistic scheduling, highest

possible concurrency is achieved under the restrictions, Properties 1-3 pose.

4.2.2 Discussion of the Scheduling Properties

4.2.2.1 Schedules

Serializability of Top-Level Transactions: This property is equivalent to the seri

ahzabihty condition in the traditional nested transaction model [Mos81].

Serializability of Transactional Partial Threads: This property reflects the ex

tension to Moss' model. Recall that in Moss' model, threads can only be created via

asynchronous subtransactions. Asynchronous subtransactions of the same parent trans

action are serialized with respect to each other. The generalized message scheme allows

transactional threads that do create a subtransaction and others that don't. Property lb

ensures that all threads with the same parent are serialized with respect to each other, no

matter whether they create a subtransaction or not. In addition, it ensures that all other

threads belonging to a top-level transaction are serialized with respect to each other. This

also ensures, for example, that ancestor and descendant transactions be serialized.

Property lb ensures serializability for all transactional threads that can be scheduled

serially. For threads that cannot possibly be serialized in full, only their partial threads

that actually can be serialized are considered. This is why Property lb only considers

threads under common transactions. No thread entering a transaction can be serialized

with a thread that is created within the transaction or any of its descendant transactions

(refer back to the example for Property lb). However, the threads under the common

transaction can be serialized. Like the example for Property lb suggests, there is no

danger of interleaving conflicting accesses between the "outside parts" of threads, entering

a transaction and threads created within the transaction. This is, because these "outside

parts" are suspended until the transaction commits or aborts.

The semantics provided are intuitive and easy to understand by application program

mers. The system ensures that there is no interleaving of any kind of transactional

threads, no matter whether they create subtransactions or not. Furthermore, it ensures

that every thread has the chance of finishing successfully.

Transactional threads that do not create a subtransaction allow higher concurrency

than transactional threads that do create a subtransaction. This is although both types

of threads are serialized. Reconsider the example for Property 3. M n and Mu are

conflicting and M n starts execution before M15 is sent. In order to avoid cascading

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 52

aborts, M i 5 cannot be scheduled unless T9 has committed
22. Serializability between the

threads Sio = Sio/T8 and S8 = Si/T8 is also ensured since Sio has finished execution by

the time T9 commits. Now imagine that T8 was not nested, i.e. M 9 , M x o , M n , M 1 4 and

M15 were all non-transaction creating messages. In this case, M15 can be scheduled after

Sio has finished execution. This still ensures seriahzabihty. Cascading aborts cannot be

caused by the scheduling of M15 since both messages M n and M i 5 belong to the same

transaction T8. Higher concurrency is achieved in the non-nested case since M15 can be

scheduled at an earlier time.

In the generalized message scheme, the application programmer has the choice between

two kinds of transactional threads that both support serializability—subtransaction cre

ating ones and non-subtransaction creating ones. The difference between the two kinds

lies in their expense, level of concurrency and level of recovery. In the non-nested trans

action case, a failure of any message causes the top-level transaction T8 to abort. In the

nested transaction case, the parent transaction of the aborting transaction has alterna

tives to aborting. It can retry the subtransaction, try another message or simply ignore

the abort of its child. On the other hand, nested transactions provide less concurrency

(as shown above) and are more expensive due to recovery related work. With this choice

between two kinds of transactional threads that support serializability, the application

programmer can explicitly trade-off the expense and level of concurrency with the level

of recovery.

Other systems (e.g. Encina or Venari/ML) provide even less expensive kinds of trans

actional threads than serialized, non-transaction creating threads. These threads do not

provide seriahzabihty semantics at all. Such threads can be useful if the application pro

grammer knows that due to the semantics of the application, particular threads cannot

interleave. Take the example of a bank transfer. No serializability semantics are required

to protect the deposit and withdraw operations from interleaving. This is because because

the deposit and withdraw operations are performed on different accounts and therefore

cannot possibly interleave. The advantage of such inexpensive transactional threads is

that no performance penalty has to be paid for the unnecessary serialization of threads.

To keep the scheduling rules simpler, such threads are not included in the definition of

the generalized message scheme. An extension to the scheduling mechanism that allows

non-serialized transactional threads is presented in Section 4.8.

Synchronization of Non-Transactional Messages and Top-Level Transactions:

Non-transactional messages are unreliable but efficient and can be used for aspects of an

application where reliability and data integrity is not important. By using transactional or

non-transactional messages, the application programmer can explicitly trade-off reliability

versus performance. The idea is to make non-transactional messages as cheap as possible

but also as expensive as necessary in order to maintain the integrity of transactions.

If non-transactional messages did not acquire any locks at all they could interfere with

transactions in an uncontrolled way, violating the semantics of transactions.

Property lc ensures that this cannot happen. Non-transactional messages acquire

appropriate locks (e.g. read locks if they only read the receiver's variables or write locks

if they write to the receiver's variables) before the start of execution and release them

straight after the end of execution. Note that a non-transactional message can execute

for a long time (e.g. if it sends synchronous, transaction creating messages) or for a very

short time (e.g. if it only accesses a single variable). The application programmer can

explicitly determine the length of time, locks are held by non-transactional messages by

setting appropriate locks at appropriate levels in a message tree.

22 Only the successful execution of messages is considered here, not the abort case.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 53

4.2.2.2 Return Dependencies

If two messages are in a return dependency, then the threads and transactions they create

cannot be serialized. This is because two messages that are in a return dependency cannot

be scheduled serially. One approach is to treat aU return dependencies as programming

errors and cause a deadlock in this case. This approach is considered too restrictive and

is therefore not taken in this scheduling mechanism. If two messages are in a return

dependency then it is guaranteed that their respective threads and transactions have a

chance of finishing successfully. Note that this approach is not problematic in terms

of interleaving of conflicting messages. This is because, as the example for Property 3

suggests, messages are always suspended until all messages, they are return dependent

on, have finished execution.

4.2.2.3 Cascading Aborts

It has been shown in performance studies that pessimistic concurrency control without

cascading aborts exhibits better performance than optimistic concurrency control over

a wide range of parameters (see Section 2.2.1.2). This is why this approach has been

chosen. It is in line with the concurrency control strategy used in [Mos81].

4.2.2.4 Concurrency

High concurrency is generally desirable in a distributed system since it allows a proper

use of the system's resources. As described in Chapter 2, there are certain problems with

concurrency if it is uncontrolled. This is why concurrency is restricted by a distributed

system so that useful properties, like, e.g. serializability, can be ensured. Properties 1-3

describe such useful properties. They state that concurrency is restricted at least as much

as is necessary to ensure them, but possibly more. Property 4 says that concurrency is not

restricted unnecessarily—only as much as is necessary to ensure Properties 1-3 without

employing additional, application-specific knowledge.

4.3 The Schedulability Predicate

This section defines a schedulability predicate that satisfies the scheduling properties

presented in the last section. This is done in terms of two predicates "is schedulable" and

"is schedulable with respect to". First, an auxiliary definition "retDep" is made.

• For two messages mi and m2: mi retDep m2 iff the message paths for mi and m2 are

in the following relationship. m2 = mi synch-nonTrans* [synch-trans any*]. retDep

is simply used as an alias for the relationship described by the regular expression.

In Section 4.4 it is shown that retDep is equivalent to the return dependency rela

tionship.

• A message m2 is schedulable iff for all conflicting messages mx that have started

execution23 in a system, m2 is schedulable with respect to mi24.

• Let mi and m2 be two messages where mi has started execution and m2 has been

sent but has not yet started execution. Let si be the thread of mi and, if mi is

transactional, tx the transaction and tlx the top-level transaction of mi. Let s2 be

the thread of m2 and, if m2 is transactional, t2 the transaction and tl2 the top-level

mi might even have finished execution.

The indexes of mi and iri2 indicate the order in which the two messages start execution.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 54

transaction of m2. Message m2 is schedulable with respect to message mx iff sx = s2
or mi retDep m 2 or the following three predicates are satisfied.

1. if mi is non-transactional then the execution of mi must have finished;

2. if mx is transactional and m2 is non-transactional then tx must have aborted

or tlx must have committed;

3. Otherwise (i.e. if both mi and m2 are transactional) then the following two

predicates must be satisfied.

(a) if tlx 7̂ ̂ 2 then ti must have aborted or tli must have committed;

(b) Otherwise (i.e. if tli = tl2) then the following four predicates must be

satisfied.

i. if *i = t2 then the execution of si/ti must have finished;

ii. \ftx < t2 then the execution of Si/ti must have finished or Si/ti retDep

iii. if ti > t2 then ILBLC AT (mi, m2) must have committed and the

execution of si/t2 must have finished;

iv. Otherwise (i.e. if n < > t2) then ILBLC AT (mi, m2) must have com

mitted and either the execution of si/LCAT(mi,m2) has finished or

si/LCAT(mi,m2) retDep s2/LCAT(mi,m2).

4.4 Correctness of the Schedulability Predicate

H all messages of different threads and transactions have different receiver objects then

they can be scheduled immediately and there is no danger of violating any scheduling

predicates of Section 4.2. The same is true if the lock types of messages with the same

receiver object never conflict, e.g. if only read accesses are performed to shared data. This

is why for the schedulability of a message m2, only conflicting messages mx need to be

considered, that have started execution25.

Before the correctness of the schedulability predicate with respect to the scheduling

properties is analyzed, two lemmas are shown. Section 4.4.1 shows that retDep is equiv

alent to the return dependency relationship. Section 4.4.2 shows that cascading aborts

are avoided if the transaction one level below the least common ancestor has committed.

4.4.1 Return Dependencies

4.4.1.1 Dependency Rules

The following five rules describe dependency relationships between the execution and

return of messages.

1. A message sending a synchronous message waits until the synchronous submessage

returns a result. Therefore, the finish of execution of a message depends on the

return of synchronous submessages.

2. A message sending an asynchronous message is not suspended. Therefore, the finish

of execution of a message does not depend on the finish of execution of asynchronous

submessages.

25Since the schedulability predicate does not make use of application-specific knowledge, messages that

are going to be sent in future cannot be considered.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 55

3. A synchronous non-transaction creating message returns immediately after it has

finished execution. Therefore, the return of a synchronous transaction creating

message depends only on the finish of execution.

4. A synchronous transaction creating message returns after the transaction it creates

has committed or aborted. Therefore, the return of a synchronous transaction

creating message depends on the commit or abort of the transaction it creates.

5. Transaction commit entails the finish of execution of the message itself, finish of

execution of all threads that belong to it and the commit or abort of all descen

dant transactions. Therefore, the commit of a transaction depends on the finish of

execution of all descendant messages.

These five rules describe all relevant dependency relationships in the generalized mes

sage scheme that are due to the semantics of the return of messages and nested transac

tions. However, this is only the case for the restriction of the generalized message scheme

to two message kinds: synchronous and asynchronous. With wait-by-necessity messages,

there are more complex dependency relationships (see Section 4.7).

It is worth noting that in these rules, dependencies occur only between ancestor and

descendant messages and not between descendant and ancestor messages or between in

comparable messages. As pointed out in Section 4.7, this is not necessarily the case for

wait-by-necessity messages.

Before the equivalence of retDep and the return dependency relationship is shown, a

lemma is shown.

4.4.1.2 The Partition Lemma

Let mpi and mp2\tv/o templates for message paths with mpi = synch-nonTrans* [synch-

trans any*] and mp2 = synch-nonTrans* asynch any*. Then, mpi and mp2 partition

the set of all message paths, i.e. every message path either matches mpi or mp2 but none

matches both.

To show this, the set of all message paths is partitioned into two subsets A and B. A

contains all message paths that do not have an asynchronous message path element. B

contains all message paths that have at least one asynchronous message path element.

Obviously, none of the elements of A are matched by mp2. Furthermore, all elements

of A are matched by mpi. This is because there is only two kinds of synchronous message

path elements. Ones that create a transaction and ones that don't, mpi matches message

paths that contain synch-nonTrans message path elements only (optional elements do not

occur), message paths that contain synch-trans message path elements only (if the first

"star" denotes zero occurrences and optional elements occur) and arbitrary mixing of the

two (via "any").

Now consider set B. Set B is is further partitioned into two subsets C and D. C

contains message paths that have have only synch-nonTrans message path elements (pos

sibly zero) before their first asynch message path element. D contains messages that

have at least one synch-trans message path elements before their first asynch message

path element.

Obviously, all elements of C are matched by mp2. Furthermore, no element of C can

be matched by mpi since it requires at least one synch-trans message path element before

an asynch message path element.

Obviously, no element of D is matched by mp2. Furthermore, all elements of D are

matched by mpi. This is because the only synchronous message path element that does

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 56

not match synch-nonTrans is synchTrans. mpi allows a synch-trans message path element
before the first asynch message path element.

4.4.1.3 Equivalence of retDep and Return Dependency

In the following, it is shown that two messages mi and m2 are in a return dependency iff

mi retDep m2, i.e. mi < m2 and m2 = mi synch-nonTrans* [synch-trans any*]. This is

shown in two parts.

1. if mi retDep m2 then mi is return dependent on m2;

2. if not mi retDep m2 then mi is not return dependent on m2.

mi retDep m2: To show: if mi < m2 and m2 = mi synch-nonTrans* [synch-trans any*]

then mi is return dependent on m2. Two cases are distinguished:

1. m2 = mi synch-nonTrans* (i.e. the optional part does not occur);

2. m2 = mi synch-nonTrans* synchTrans any* (i.e. the optional part occurs).

m2 = mi synch-nonTrans*'. This is a trivial case since mi is a descendant of m2
and mi is synchronous with respect to m2. Therefore, mi cannot finish execution before

m 2 has returned a result (Rule 1).

m2 = mi synch-nonTrans* synchTrans any*: mi cannot finish before the first syn

chronous transaction has returned a result (Rule 1). The synchronous transaction cannot

return a result before it has committed (Rule 4)26. The transaction cannot commit be

fore all messages that belong to it and any of its descendant transactions have executed,

including m2 (Rule 5). Thus, mi is return dependent on m2.

Now consider the second case.

not mi retDep m2: If neither mi < m2 nor m2 - mi synch-nonTrans* [synch-trans

any*] then mi is not in return dependency with m2. Two subcases are distinguished.

1. mi ^ m2;

2. mi < m2 but m2 ^ mi synch-nonTrans* [synch-trans any*].

mx£m2: As noted above, two messages can only be in a return dependency if they

are in an ancestor/descendant relationship.

™>\ < ™2 but m2 /- mx synch-nonTrans* [synch-trans any*]: As follows directly

from the partition lemma, this condition is equivalent to the condition m 2 = mi synch-

nonTrans* asynch any*.

If m2 = mi synch-nonTrans* asynch any* then there is no return dependency between

mi and m2. synch-nonTrans messages return immediately after they finish execution

(Rule 3). The first asynch message returns immediately (Rule 2). Therefore, mx can

finish execution independently of any descendant of the first asynch message, in particular

m2. Thus, there is no return dependency between mi and m 2 in this case.

In the following two sections, useful lemmas about return dependencies are shown.

2 6The abort case is not considered here since the return dependency definition deals with successful

schedules of messages only.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 57

LCAT

Legend:

——— synchronous

asynchronous

kind irrelevant

{) non-transaction creating

transaction creating

lUJLCAn

tl t2

ml m2

Figure 4.9: Avoidance of cascading aborts.

4.4.1.4 Transitivity of retDep

retDep is transitive, i.e. if for three messages mi, m2 and m3: mi retDep m2 and m2

retDep m3 then mi retDep m3.

This is obvious from the definition of a return dependency and the fact that retDep

is equivalent to the return dependency predicate.

4.4.1.5 Return Dependencies of Intermediate Messages

For three messages mi, m2 and m3: if mi retDep m3 and mi < m2 < m3 then mx retDep

m2.

Since mi retDep m 3, m 3 = mi synch-nonTrans* [synch-trans any*]. Since mi <

m2 < m 3, m 2 is either of the form mx or mx synch-nonTrans* or mi synch-nonTrans*

synch-trans or mi synch-nonTrans* synch-trans any*. In any case, m 2 matches the

criterion for mi retDep m2.

4.4.2 Cascading Aborts

Consider the case that messages mx and m 2 are conflicting, e.g. m2 reads one of its

receiver's variables that mx has written. An abort of tx may then cause a cascading abort

of t2. In this section it is shown that a cascading abort cannot occur if such a message

m 2 is never scheduled unless the following events have happened.

1. in case tlx / tl2: tlx has committed;

2. in case tlx = tl2: ILBLC AT (mx,m2) has committed.

4.4.2.1 tlx ^ tl2

This case is trivial. A top-level transaction or any of its descendant transactions cannot

abort after it has committed.

4.4.2.2 tlx = tl2

See Figure 4.9. All figures of message trees in this and following sections demonstrate

relationships between mx,m2,tx,t2, tlx and tl2. Boxes are labeled with these placeholders

for identifiers. To increase the generality of the figures, the meaning of lines is extended.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 58

r~

V

4.4.7

ml, m'2
non-transactional

r~

v_
4.4.13

tl = t. I

AAA
si = s2

J

y

f

messages ml, m2

threads si, s2
[transctions tl, t2, til,

4.4.8

4.4.5

ml retDep m2

ml transactional

r
ml

^

tli)

^

4.4.9

4.4.6

wot /si = &2 or
mi retDep m2]

^

non-transactional
l m2 non-transactional J \ m2 transactional J

r

K

r

V

4.4.11
not [til = *Z27

4.4.14
«J<«2

J

^

y

r

r

V

4.4.12

tll =

4.4

rf2

.15
«i>«2

^

y

^

y

y

y

V

y

4.4.10
mi, m2

transactional

4.4.16

tl <> t2

A

J

\

J
Figure 4.10: Partition of cases.

Solid lines denote that two messages are synchronous with respect to each other, i.e.

they are finked via an arbitrary number of synchronous messages, not necessarily only

one. Analogously, a broken fine denotes that two messages are asynchronous with respect

to each other, i.e. that they are finked via at least one asynchronous message, not only

necessarily one. Grey fines are used if the kind of messages is irrelevant for a particular

case.

The only way, tx can be aborted after ILBLC AT has committed is via the abort

of LCAT(mx,m2) or any of its ancestor transactions. However, LCAT(mx,m2) and its

ancestor transactions are also ancestors of t2. Therefore, their abort causes the abort of

t2 due to the semantics of nested transactions. This is not a cascading abort.

4.4.3 The Partition of Cases

In the following sections, the correctness of the schedulability predicate is shown with

respect to the scheduling properties. To cope with the complexity of the correctness anal

ysis, the set of all pairs of messages, mx and m 2, that can be compared for schedulability

is broken down into a large number of subsets. This division into subcases is performed

such that it is easy to see that all cases are covered. Also, the scheduling properties can

be shown relatively easily for each individual subcase. Figure 4.10 shows the partition

of cases examined. Section numbers indicate the sections in which particular cases are

analyzed. It is suggested that the section numbers are used as a guidance through the

large number of cases.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 59

First examine the separation into the three main cases sx = s2, mx retDep m2 and

-i[si = s2 V mi retDep m2]. This separation is not a partition, i.e. there are pairs of

messages that are covered by both the first and the second case. However, the fact that

the third case is the negation of the disjunction of the first two cases makes it obvious that

all cases are covered. The third case is further separated into four subcases. Messages mi

and m2 can be either transactional or non-transactional. This makes four combinations

which are considered individually. The case that both messages are transactional is further

separated into two subcases: tlx ̂ tl2 and tlx = tl2. Again, it is obvious that this covers

all cases. tlx = tl2 is separated into four subcases ti = t2, ti < t2, ti > t2, ti < > t2. The

definitions of these relationships make it obvious that all cases are covered. Recall that

mi < > m 2 is defined as neither mi < m 2 nor m2 < mx.

Figure 4.10 does not actually show the separation into all subcases. Some cases

are even split up further. Whenever a separation into subcases is performed, it is easy

to see that all possible cases are covered. For each individual case, it is shown that

the schedulability predicate satisfies the five scheduling properties and in particular the

following.

Schedules:

Serializability of Top-Level Transactions: if mi and m2 are both transactional

and tli # ^2 and not tli retDep tl2 then tli and tl2 are serialized.

Serializability of Partial Transactional Threads: if mi and m 2 are both trans

actional and tli = ^2 and not mi retDep m2 then si/LCAT(mi,m2) and

s2/LCAT(mi,m2) are serialized.

Synchronization of Non-Transactional Messages and Top-Level Transactions:

if mi is non-transactional and m 2 is transactional and not mi retDep tl2 then

mi and tl2 are synchronized. If m a is transactional and m 2 is non-transactional

and not tli retDep m2 then tli and m2 are synchronized.

Synchronization of Non-Transactional Messages: if both mx and m 2 are non-

transactional and not m a retDep m2 then m x and m2 are synchronized.

Return Dependencies: If there is a return dependency in the previous four subcases

then m 2 is schedulable.

Cascading Aborts: An abort of tx can not cause a cascading abort of t2.

Concurrency: A weaker schedulability predicate potentially violates any of the Proper

ties 1-3.

Initially, consider three cases.

1. sx = s2

2. mi retDep m2

3. neither sx = s2 nor mx retDep m2.

Note that although some pairs of messages mx and m2 may fall into Cases 1 and 2,

the fact that Case 3 is the negation of Cases 1 and 2 ensures that all message pairs are

covered.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 60

til) [m2j [mlJ [t!2

ml m2
mlj [m2

(b) (c) (d)

Figure 4.11: sx = s2, mx <> m2.

AAA sx = s2

In this case, the schedulability predicate for m 2 is satisfied unconditionally.

4.4.4.1 Schedules

Consider three subcases.

I < 1
mi < > > m 2

I <> J
mx < m2: Since mx < m2 and mx and m2 are synchronous with respect to each other
(sx = s2), mx retDep m2.
Serializability of Top-Level Transactions: This property does not need to be
considered in this case. Since mx < m2, both messages cannot belong to different top-level
transactions.

Serializability of Transactional Partial Threads: This property does not need

to be considered in this case. Since sx = s2, both messages cannot belong to different

threads.

Synchronization of Non-Transactional Messages and Top-Level Transac

tions: m x transactional and m 2 non-transactional is not possible since mx < m2. There

fore, assume that mi is non-transactional and m 2 is transactional. Then, mx < tl2 < m2.

Since mx retDep m2, also mx retDep tl2, according to the lemma of Section 4.4.1.5. Thus,

Property lc does not require synchronization.

Synchronization of Non-Transactional Messages: Since mi retDep m2, Prop

erty Id does not require synchronization.

mx> m2: This case is not possible. mx cannot have started before m2 if mx > m2.

mx <> m2: See Figure 4.11.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 61

Serializability of Top-Level Transactions: See Figure 4.11 (a). Assume tlx ^

tl2. Since sx = s2, tlx must have committed before tli has returned a result, in particular

before tl is sent. This is a serial schedule "tli before tl2".

Serializability of Transactional Partial Threads: This property does not need

to be considered in this case since sx = s2.

Synchronization of Non-Transactional Messages and Top-Level Transac

tions: See Figure 4.11 (b). If mi is transactional and m 2 is non-transactional then tlx

has committed before m 2 is sent. This is a serial schedule "tlx before m2'.

See Figure 4.11 (c). If mi is non-transactional and m 2 is transactional, then mi has

finished execution before tl2 is sent. This is a serial schedule "mi before tl2".

Synchronization of Non-Transactional Messages: See Figure 4.11 (d). mi has

finished execution before m 2 is sent. This is the serial schedule "mi before m!2 .

4.4.4.2 Cascading Aborts

Cascading aborts can only occur if both mx and m2 are transactional. Consider the

following subcases.

>V\ tU
tlx ̂ tl2: tlx has committed or aborted before tl2 (and for that reason m 2) is sent. This

is because synchronous transaction creating messages return only after they commit or

abort. Therefore, tl2 cannot see uncommitted state of tlx.

tlx = tl2: Consider four subcases.

ti
<
>
<>

)h

tx = t2: A n abort of tx is equivalent to an abort of t2.

h <t2: If ti aborts then t2 must be aborted, too. Since it is a descendant transaction,

this is not a cascading abort.

tx > t2: See Figure 4.12 (a). Since mx and m2 are synchronous with respect to

each other, ILBLC AT (mx,m2) must have returned. Since transaction creating syn

chronous message return only after they have committed, ILBLCAT(mx,m2) has com

mitted. Therefore, cascading aborts are avoided (refer back to Section 4.4.2).

ti <> t2: See Figure 4.12 (b). Since mi and m2 are synchronous with respect to

each other, ILBLCAT(mx,m2) must have returned and therefore committed. Cascading

aborts are avoided.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 62

Legend:

• synchronous

kind irrelevant

[j non-transaction creating

V .y transaction creating

(tll=

ILBLCAT ^

C tl J

(ml)

(a)

Figure

=tl2

4.12

[m2j

: sj = s2.

tll =
\
/

(LCAT)

lLBLC^l

,JXJ

(ml)

1

*

h)

1
=tl2)

(ta.)

(m2j

4.4.4.3 Return Dependencies

m is schedulable unconditionally. Therefore schedulability is guaranteed in the return

dependency case.

4.4.4.4 Concurrency

m is schedulable unconditionally. This is trivially the earliest possible schedule.

4.4.5 mi retDep m2

In this case, the schedulability predicate for m 2 is satisfied unconditionally. See Fig

ure 4.13.

4.4.5.1 Schedules

Serializability of Top-Level Transactions: See Figure 4.13 (a), mi < m 2 since

m x retDep m2. Therefore, if both mi and m 2 are transactional, tli = t/2. Therefore,

serializability between tli and tl2 is not required.

Serializability of Transactional Partial Threads: See Figure 4.13 (b).

1. Since s2/LCAT(mi,m2) is synchronous with respect to mi, sx/LCAT(mx,m2)

retDep mx.

2. Since mx retDep m2 and mx < $2/LCAT(mx,m2) < m2,mx retDep s2/LCAT(mx,m2).

3. Since (1) and (2), sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2).

4. Since (3), no serializability is required.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 63

Legend:

synchronous

™™K™™WW kind irrelevant

[J non-transaction creating

y) transaction creating

(ai-ti^

&iJ

F

\

fm2]

gure

(a)

4.13:

(si)

mi

\

[tl J

(ml)

\

fs2)
\
\

(m2)
(b)

retDep m2.

(mlj

(tl2j

\

©
<c>

Synchronization of Non-Transactional Messages and Top-Level Transactions:

See Figure 4.13 (c). The case that mi is transactional and m2 is non-transactional is not

possible since mi < m2. Therefore, consider the case that mi is non-transactional and

m 2 is transactional. Since mi retDep m 2 and mi < tl2 < m2, mx retDep tl2. Therefore,

synchronization is not required.

Synchronization of Non-Transactional Messages: Since mi retDep m2, synchro

nization is not required.

4.4.5.2 Return Dependencies

The schedulability condition is satisfied unconditionally.

4.4.5.3 Cascading Aborts

Assume that both mi and m2 are transactional. Then, tx < t2 since mx < m2. If tx

aborts then t2 must be aborted due to the semantics of nested transactions—a cascading

abort can not occur.

4.4.5.4 Concurrency

Since the schedulability condition is satisfied unconditionally, m 2 can be scheduled im

mediately which is the earliest possible schedule.

4.4.6 sx ^ s2 and not mi retDep m2

Consider four subcases.

1. mi and m2 are both non-transactional;

2. mi is transactional and m2 is non-transactional;

3. mi is non-transactional and m2 is transactional;

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 64

4. mi and m2 are both transactional.

4.4.7 mx and m2 Both Non-Transactional

In this case (si / s2, not mi retDep m2, mi and m2 non-transactional), the schedula

bility predicate for m 2 is satisfied if the execution of mi has finished (Condition 1 of the

schedulability predicate).

4.4.7.1 Schedules

Serializability of top-level transactions, serializability of transactional partial threads and

synchronization of non-transactional messages and top-level transactions are not applica

ble since both mi and m 2 are non-transactional.

Synchronization of Non-Transactional Messages: Scheduling m2 after mi has

finished execution is the serial schedule "mi before m2".

4.4.7.2 Return Dependencies

Not mi retDep m2.

4.4.7.3 Cascading Aborts

Since mi and m 2 are non-transactional, aborts are not an issue.

4.4.7.4 Concurrency

Assume a weaker schedulability predicate, i.e. m 2 is scheduled before mi has finished

execution. Then, without using application-specific knowledge, it cannot be ruled out

that variable accesses of mx and m 2 interleave in a way that defies synchronization.

For example, mx may read a variable that has been written by mx but that has been

overwritten by m2.

4.4.8 mi Transactional and m2 Non-Transactional

In this case (sx ± s2, not mi retDep m2, mx transactional, m2 non-transactional), the

schedulability predicate for m 2 is satisfied if ti has aborted or tlx has committed (Condi

tion 2 of the schedulability predicate). See Figure 4.14 (a).

4.4.8.1 Schedules

Since mi is transactional and m x is non-transactional, serializability of top-level transac

tions, serializability of transactional partial threads and synchronization of non-transactional

messages are not applicable.

Synchronization of Non-Transactional Messages and Top-Level Transactions:

If ti aborts then all of its effects, including the effects of mx, are undone as if tx had not

happened at all. If tlx commits then this schedule is equivalent to the serial schedule "tlx

before m2".

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 65

Legend:

—

CD

synchronous

asynchronous

kind irrelevant

non-transaction creating

transaction creating

tl

m l

til m 2 Z\
ml tl2

tl2

m2

ml

1 tl2
tI2

m2

(a) (b) (c)

Figure 4.14: One of the two messages is transactional, the other one is non-transactional.

4.4.8.2 Return Dependencies

Consider three subcases.

mi < >

< >

> m 2

mx < m2: This case is not possible. If mi < m 2 then m 2 must be transactional, too.

mi > m2: This case is not possible. If mi > m2 then m-i could not have started

execution before m2.

mi <> m2: See Figure 4.14 (a) again. Since m2 is non-transactional and mi <> m2,

also tlx < > m2. Return dependencies can only occur between ancestor and descendant

messages.

4.4.8.3 Cascading Aborts

Cascading aborts are not an issue in this case since m2 is non-transactional.

4.4.8.4 Concurrency

Assume a weaker schedulability predicate and consider two cases.

1. ti aborts and m2 is scheduled before the abort of tx. Without employing application-

specific knowledge, it cannot be ensured that all effects of the aborting transaction

ti are undone. For example, m 2 may read a variable that has been written by mi.

2. tlx commits and m2 is scheduled before the commit of tlx. Without employing

application-specific knowledge, it cannot be avoided that variable accesses of tx

and m 2 interleave in a way that violates synchronization. For example, m 2 may

overwrite a variable that has been written by mx which is, subsequently, read by

another message m'x which belongs to tlx or any of its descendant transactions.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 66

4.4.9 mi Non-Transactional and m2 Transactional

In this case (sx / s2, not mi retDep m2, mx non-transactional, m2 transactional), the

schedulability predicate for s2 is satisfied if the execution of mi has finished (Condition 1

of the schedulability predicate). See Figure 4.14 (b)

4.4.9.1 Schedules

In this case, serializability of top-level transactions, seriahzabihty of transactional partial

threads and synchronization of non-transactional messages are not applicable since mi is

non-transactional and m2 is transactional.

Synchronization of Non-Transactional Messages and Top-Level Transactions:

m 2 is not scheduled before mi has finished execution. This schedule is equivalent to the

serial schedule "mx before t/2".

4.4.9.2 Return Dependencies

See Figure 4.14 (c). In this case, mi cannot be in return dependency with t/2 since mi is

not in return dependency with m2.

Assume the opposite, i.e. that mi was in return dependency with tl2. Then, tl2 must

be in the following relationship with mi: tl2 = mi synch-nonTrans synchTrans. Note

that tl2 is top-level and therefore the first transaction creating message in m2's message

path. Since t/2 < m2, m2 = tl2 any*. Thus, m 2 = mx synch-nonTrans synchTrans any*,

a contradiction to not mi retDep m2.

4.4.9.3 Cascading Aborts

Since mi is non-transactional, cascading aborts are not an issue.

4.4.9.4 Concurrency

Assume a weaker schedulability predicate, i.e. m2 is scheduled before mi has finished

execution. Then, without employing application-specific knowledge, it cannot be ruled

out that conflicting variable accesses of mx and m 2 violate the synchronization property,

e.g. m 2 may write a variable that has been written by mx and is subsequently read by

mi.

4.4.10 mi and m2 Both Transactional

Consider two subcases.

«i { t] *h

4.4.11 th ± tl2

In this case (sx / s2, not mx retDep m2, mx and m 2 transactional, tlx /• tl2), the schedu

lability predicate for m 2 is satisfied if tx has aborted or tlx has committed (Condition 3a

of the schedulability predicate). See Figure 4.15.

CHAPTER 4. SCHEDULING IN A GEN. TRANS ACTION/THREAD MODEL 67

Legend:

asynchronous

kind irrelevant

I J non-transaction creating

\ j transaction creating

L
T

[tn]
/

ro

©

)
\

f tl2
v y

c t2~)
'

Figure 4.15: t/x / t/2.

4.4.11.1 Schedules

Serializability of Top-Level Transactions: Consider two cases.

1. If ti aborts then all of its effects are undone, including the effects of mi, as if ti had

never executed.

2. K tli commits then m2 is not scheduled before tli has committed. This schedule is

equivalent to the serial schedule "tlx before t/2".

In this case, serializability of transactional partial threads, synchronization of non-

transactional messages and top-level transactions and synchronization of non-transactional

messages are not an issue since both mi and m 2 are transactional but belong to different

top-level transactions.

4.4.11.2 Return Dependencies

tlx <> tl2, since tlx /• tl2. Otherwise, one of the two transactions would be a descendant

of the other and therefore not be top-level. Since there can only be a return dependency

between an ancestor and a descendant, tlx and t/2 cannot be in a return dependency.

4.4.11.3 Cascading Aborts

In case of an abort of tx, all effects of tx are undone and therefore tl2 cannot see uncom

mitted state of tli—cascading aborts cannot occur.

After a top-level transaction has committed, it cannot be subsequently aborted-

cascading aborts cannot occur.

4.4.11.4 Concurrency

Assume a weaker schedulability condition and consider two cases.

1. Assume that tx aborts and m2 is scheduled before tx has aborted. Then, serializabil

ity of th and t/2 cannot be ensured without employing additional application-specific

knowledge. For example, m 2 may read a variable that mi has written.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 68

/

(ml)

^l=tl^

U=t2J

)
\
\

®
(a)

(tl=t2)

(si)

/

(ml)

CP1

(b)

\

M
Figure 4.16

(si)

/

ftl=t2)

/

(ml)

tl

f s2%

©
(c)

= t2.

(si

/

(ml)

c

\

1
1

0

£li=tl^

N

)

(s2)

\

(m2)

(d)

2. Assume that tli commits and m2 is scheduled before tli has committed. Then, seri
alizability of tli and tl2 cannot be ensured without employing additional application-

specific knowledge. For example, m 2 may read a variable that mi has written.

4.4.12 tlx = th

Consider four subcases.

h<
<
>

<>

4.4.13 t, = U

In this case (si / s2, not m x retDep m 2 , m x and m 2 transactional, tli = tl2,h =t2), the

schedulability predicate for m 2 is satisfied if si/ti has finished execution (Condition 3(b)i

of the schedulability predicate). See Figure 4.16.

4.4.13.1 Schedules

In this case, serializability of top-level transactions, synchronization of non-transactional

messages and top-level transactions and synchronization of non-transactional messages

are not an issue since tli = t/2.

Serializability of Transactional Partial Threads: Since ti = t2, LCAT(mi,m2) =

tj. m 2 is not scheduled before sx/tx (= sx/LCAT(mx,m2)) has finished execution. This

schedule is equivalent to the serial schedule "sx/LCAT(mx,m2) before s2/LCAT(mx, m 2) " .

4.4.13.2 Return Dependencies

In this case, there cannot be a return dependency between sx/LCAT(mx,m2) and s2/LCAT(mx,m

Consider three subcases.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 69

<

$1 <i > } $2

<>

Si < s2: Consider two subcases.

si > tx: See Figure 4.16(b). In this case, si/LCAT(mi, m2) = si and s2/LCAT(mi,m2)

s2. Si and s2 are in the following relationship: s2 = si synch-nonTrans* asynch any*.

Therefore, not «i retDep s2 (see Section 4.4.1).

si < tx: See Figure 4.16 (c). In this case, si/LCAT(mi,m2) — tx and s2/LCAT(mx,m2) •

s2. tx and s2 are in the foUowing relationship: t2 — sx synch-nonTrans* asynch any*.

Therefore, not si retDep s2 (see Section 4.4.1).

sx > s2: This case is not possible. Since mx has started execution, it cannot be a

descendant of m 2 which has not yet started execution.

si <> s2: See Figure 4.16 (d). si/LCAT(mi,m2) = sx, s2/LCAT(mi,m2) = s2. Since

there can only be a return dependency between ancestors and descendants, sx/LCAT(mx,m2)

and s2/LCAT(mx,m2) are not in a return dependency.

4.4.13.3 Cascading Aborts

Since ti = t2, cascading aborts are not an issue.

4.4.13.4 Concurrency

Assume a weaker schedulability predicate, i.e. m 2 is scheduled before sx/tx has finished

execution. Then, seriahzabihty between sx/LCAT(mx,m2) and s2/LCAT(mx,m2) can

not be ensured, without employing application-specific knowledge. For example, mx may

have written a variable, m 2 overrides this variable and another message m[that belongs

to mx/tx subsequently reads this variable.

4.4.14 ti < t2

In this case (sx ± s2, not mi retDep m2, mx and m 2 transactional, tlx = tl2, tx < t2), the

schedulability predicate for m2 is satisfied if sx/tx has finished execution or sx/tx retDep

m2 (Condition 3(b)ii of the schedulability predicate). See Figure 4.17.

4.4.14.1 Schedules

In this case, serializability of top-level transactions, synchronization of non-transactional

messages and top-level transactions and synchronization of non-transactional messages

are not an issue since tlx = tl2.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 70

Serializability of Transactional Partial Threads: Since ti < t2, LCAT(mx,m2) =

ti. Consider two subcases.

1. sx/tx retDep s2/tx;

2. not 5i/ti retDep s2/tx.

si/ti retDep s2/tx: In this case, sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2) and there

fore serializability is not required.

not si/ti retDep s2/tx: In this case, m2 is not scheduled before sx/tx has finished

execution. This schedule is equivalent to the schedule "sx/LCAT(mx,m2) before

s2/LCAT(mx,m2)".

4.4.14.2 Return Dependencies

If sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2) then the schedulability predicate for m 2

is satisfied.

4.4.14.3 Cascading Aborts

If ti aborts then t2 must be aborted, too, due to the semantics of nested transaction

aborts—no cascading aborts can occur.

4.4.14.4 Concurrency

Consider two subcases.

1. 5i/ti retDep s2/tx;

2. not sx/tx retDep s2/ti.

CHAPTER 4. SCHEDULING IN A GEN. TRANS ACTION/THREAD MODEL 71

sx/tx retDep s2/ti: In this case, m 2 is schedulable immediately which is trivially the

earliest possible schedule.

not si/ti retDep s2/ti: Consider a weaker schedulability predicate, i.e. m 2 is schedu

lable before Si/ti has finished execution. Then, the seriahzabihty of sijLCAT(mi,m2)

and s2/LCAT(mi,m2) cannot be ensured without using application-specific knowledge.

For example, mi may write to a variable which m 2 overrides and another message m[

belonging to sx/tx subsequently reads this variable.

4.4.15 tx > t2

In this case (sx ^ s2, not mi retDep m2, mx and m2 transactional, tlx = tl2, tx > t2),

the schedulability predicate for m 2 is satisfied if ILBLC AT (mx,m2) has committed and

the execution of sx/t2 has finished (Condition 3(b)iii of the schedulability predicate). See

Figure 4.18.

4.4.15.1 Schedules

In this case, seriahzabihty of top-level transactions, synchronization of non-transactional

messages and top-level transactions and synchronization of non-transactional messages

are not an issue since tlx — tl2. See Figure 4.18.

Serializability of Transactional Partial Threads: Since tx > t2, LCAT(mx,m2) =

t2. m2 is not scheduled unless si/t2 has finished execution. This schedule is equivalent

to the serial schedule "sx/LCAT(mx,m2) before s2/LCAT(mx,m2)".

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 72

4.4.15.2 Return Dependencies

Figures 4.18 (a) and (b) show all possible positions of sx and s2. Note that because mx

has started execution and m 2 has not, mi > m 2 is not possible and therefore, Figure 4.18

(c) describes an impossible case. Consider two subcases in which return dependencies

may occur.

Sl{<}52
sx > s2: See Figure 4.18 (a). If s2/t2 retDep sx/t2 then the schedulability predicate is

satisfied. Note that in this case, LCA(mx,m2) < ILBLCAT(mx,m2) < sx. There is no

transaction creating message between L C A and t2. Otherwise this message would be t2.

Also, ILBLCAT(mx,m2) is synchronous with respect to LCA(mx,m2). Otherwise, there

could not be a return dependency between s2/t2 and sx/t2. Also, ILBLCAT(mx,m2)

has committed. Otherwise, m 2 could not have been sent. This satisfies one part of the

scheduling condition. Therefore, all descendants of ILBLCAT(mx,m2) have finished,

including si/t2. This satisfies the other part of the scheduling condition.

sx < s2: See Figure 4.18 (b). In this case, si/t2 cannot be in return dependency with

s2/t2 for the following reason. There is no transaction creating message between t2 and

*LCA(mi,m2) and LCA(mi,m2) and m2. Otherwise, this would be t2. Therefore, si/t2

and s2/t2 are in the relationship s2/t2 = si/t2 non-Trans* asynch and therefore not Si/t2

retDep s2/t2.

4.4.15.3 Cascading Aborts

Since it is ensured that ILBLCAT(mx,m2) has committed before m 2 is scheduled, cas

cading aborts are avoided.

4.4.15.4 Concurrency

Assume a weaker schedulability predicate, i.e. m 2 is schedulable before ILBLCAT(mi,m2)

has committed or before si/t2 has finished. Then, in both cases, it cannot be rules out

without employing application-specific knowledge, that scheduling properties are violated.

1. Assume that m2 is scheduled before ILBLCAT(mx,m2) has committed. Then, m2

can read variables that have been written by mi. If then tx aborts subsequently due

to the abort of ILBLCAT(mx,m2) or any of its descendant transactions, then t2

must be aborted as well because it has seen uncommitted state of ti—a cascading

abort.

2. Assume that m2 is scheduled before sx/t2 has finished. Then, m2 could overwrite

variables written by mx which are subsequently read by another message m[that

belongs to si/t2. Then, seriahzabihty of sx/LCAT(mx,m2) and s2/LCAT(mx,m2)

is defied.

4.4.16 tx <> t2

In this case (sx / s2, not mi retDep m2, mx and m 2 transactional, tlx = tl2, tx < >

t2), the schedulability predicate for m 2 is satisfied if ILBLC AT (mx,m2) has committed

and either the execution of sx/LCAT(mx, m2) has finished or sx/LCAT(mx,m2) retDep

s2/LCAT(mx,m2) (Condition 3(b)iv of the schedulability predicate). See Figure 4.19.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 73

4.4.16.1 Schedules

In this case, serializability of top-level transactions, synchronization of non-transactional

messages and top-level transactions and synchronization of non-transactional messages

are not an issue since tlx = tl2.

Serializability of Transactional Partial Threads: If sx[LCAT(mx,m2) retDep

s2/LCAT(mx,m2) then serializability of sx/LCAT(mx,m2) and s2/LCAT(mx,m2) is

not required.
Hnot sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2) then m 2 is not scheduled before

sx/LCAT(mx,m2) has finished execution. This schedule is equivalent to the schedule

"sx/LCAT(mx,m2) before s2/LCAT(mx,m2)".

4.4.16.2 Return Dependencies

Consider two subcases.

1. sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2);

2. s2/LCAT(mx,m2) retDep sx/LCAT(mx,m2).

si/LCAT(mi,m2) retDep s2/LCAT(mi,m2): See Figure 4.19 (a). Then, sx < s2. Oth

erwise, sx/LCAT(mx,m2) and s2/LCAT(mx,m2) could not be in a return dependency.

Also, sx < LCA(mx,m2) and sx is synchronous with respect to LCA(mx,m2). Otherwise,

si would not be the thread of mx. Also, LCA(mx,m2) is synchronous with respect to

ILBLCAT(mx,m2). Otherwise sx would not be the thread of mi. Also, LCA(mx,m2)

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 74

is synchronous with respect to ILBLC AT (m2,mx). Otherwise sx/LCAT(mx,m2) would

not be in return dependency with s2/LCAT(mx,m2). This means that ILBLC AT (mx,m2)

was sent and returned before ILBLCAT(m2,mx) was sent. Otherwise, mi would not

have started execution before m 2 was sent. Therefore, ILBLCAT(mx,m2) has commit

ted. Thus, schedulability of m 2 is guaranteed in this case.

s2/LCAT(mx,m2) retDep sx/LCAT(mi,m2): The reasoning is similar to the first case.

See Figure 4.19 (b). s2 < sx. Otherwise, s2/LCAT(mi,m2) and si/LCAT(mi,m2) could

not be in a return dependency. Also, s2 < LCA(mi,m2) and s2 is synchronous with re

spect to LCA(mi,m2). Otherwise, s2 would not be the thread of m2. Also, LCA(mi,m2)

is synchronous with respect to ILBLCAT(m2, mi). Otherwise s2 would not be the thread

of m2. Also, LCA(mi,m2) is synchronous with respect to ILBLCAT(mi,m2). Other

wise s2/LCAT(mi,m2) would not be in return dependency with si/LCAT(mi, m2). This

means that ILBLCAT'(mi,m2) was sent and returned before ILBLCAT(m2,mx) was

sent. Otherwise, mi would not have started execution before m 2 was sent. Therefore,

ILBLCAT(mx,m2) has committed. Thus, schedulability of m 2 is guaranteed in this case.

4.4.16.3 Cascading Aborts

The condition that ILBLCAT(mx,m2) has committed prevents cascading aborts.

4.4.16.4 Concurrency

Assume a weaker schedulability predicate, i.e. m 2 is scheduled either before

ILBLCAT(mx,m2) has committed or, in case that not sx/LCAT(mx,m2) retDep

s2/LCAT(mx,m2) before sx/LCAT(mx,m2) has finished. Then, in both cases, it cannot

be ruled out without employing application-specific knowledge, that scheduling properties

are violated.

1. K m2 is scheduled before ILBLC AT (mx,m2) has committed then m2 might read a

variable that has been written by mx. If ILBLCAT(mx,m2) aborts subsequently,

then ti must be aborted as well since it is a descendant transaction. In this case,

t2 must be aborted as well since it has seen uncommitted state of ti—a cascading

abort.

2. If not sx/LCAT(mx,m2) retDep s2/LCAT(mx,m2) and s2 is scheduled be

fore sx/LCAT(mx,m2) has finished execution then serializability between

sx/LCAT(mx,m2) and s2/LCAT(mx,m2) may be violated. For example, m 2 may

override a variable that has been written by mi and subsequently, another message

m[that belongs to sx/LCAT(mx,m2) may read this variable.

4.5 Implementation of the Scheduling Mechanism

This section presents the design for an efficient implementation of the scheduling mecha

nism. All objects and methods described in this section are implemented as part of the

Hermes/ST transaction handler. However, only objects and methods that are relevant to

scheduling are described here. For other aspects of the Hermes/ST transaction handler

refer to [FHR93c].
Since remote messages are much more expensive than local messages (see Section 5.7),

this design minimizes network communications that are needed for scheduling. This is

achieved via lazy information propagation and caching techniques.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 75

Section 4.5.1 presents some important classes of this design. Section 4.5.2 shows how

objects of these classes interact.

4.5.1 System Objects for Scheduling

4.5.1.1 Transactions

Transaction handlers are modelled as Hermes/ST objects of class Transaction. There

is exactly one Transaction object for each transaction created in the execution of a sys

tem. This Transaction resides on one node of the network and coordinates the possibly

distributed transaction. Transactions have the following variables27.

path represents an identifier for the transaction and its position in the transaction tree,

including references to the parent transaction and top-level transaction (if the trans

action is not top-level itself).

status iwcffeo-^-es the status of a transaction at a particular point in time, represented

by the symbols #executing and #committed28.

threads is a dictionary that includes the partial thread of the transaction creating mes

sage and all threads that belong to the transaction29. The keys of this dictionary are

thread identifiers and the values are the status symbols #executing and #f inished.

subtransactions is a set of references to Transactions if the transaction has any sub-

transactions.

4.5.1.2 TransactionCaches

There is exactly one Transaction object per transaction in the execution of a system.

However, there may be many Trans act ionCache objects for one transaction, but at

most one per node. As their name suggests, TransactionCaches cache information of

a Transaction—information that is needed to determine the schedulability of messages.

TransactionCaches have a subset of variables of Transactions.

status contains information about the transaction's status represented by the symbols

#?, #executing and #committed.

threads is a dictionary with thread identifiers as keys and status symbols (#?, #executing

and #f inished) as values.

Additionally, status contains a set objectsToInform of local Hermes/ST objects

that requested to be informed about the commit of the transaction. This is the case if

the schedulability of messages that are sent to these objects depend on this transaction

to have committed (Conditions 3(b)iii and iv of the schedulability predicate).

Status symbol #? represents the lack of information. This information must first

be obtained from the Transaction which the Trans act ionCache represents. Status

symbol #executing indicates that the Transaction has been asked about its status

and the reply was #executing. It also indicates that the Transaction will inform the

"Transactions in Hermes/ST have many more variables. However, only the variables relevant for

scheduling are described here.
28 Again, there are more states which are not discussed here.
"Threads that belong to descendant transactions are not included here but are stored in the descendant

Transactions.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 76

TransactionCache whenever its status changes from #executing to #committed. Status

symbol #committed indicates that the status of the Transaction is #committed. This is

known either via direct inquiry or via informing by the Transaction.

The meaning of the status symbols for threads is analogous. Also, the TransactionCache

keeps sets objectsToInf orm for status and each thread entry. objectsToInform con

tains a set of Hermes/ST objects whose ConcurrencyControllers requested to be in

formed about the commit of the transaction or the finish of execution of a thread.

Analogously, the Transaction keeps sets nodesToInf orm for status and each thread

entry. nodesToInf orm contains a set of nodes that requested to be informed about the

commit of the transaction or the finish of execution of a thread.

4.5.1.3 ConcurrencyControllers

Hermes/ST objects can have concurrency controllers that schedule incoming messages

according to the schedulability predicate. A concurrency controller is an instance of class

ConcurrencyController. It has two variables.

pending is a queue30 that contains messages which are not schedulable at a particular

point in time and are waiting to become schedulable.

granted is a set of schedulable messages that have started execution31.

4.5.1.4 Messages, MessagePaths and MessagePathElements

Messages are represented by Message objects which encapsulate the following variables.

messagePath is a MessagePath object, a structure that identifies a message and Wico-J-es

its position in a message tree.

receiver refers to the receiver object of the message.

methodName is a symbol that represents the name of the method to be invoked.

arguments is a list of method arguments. The length of this fist must match the number

of arguments requested by method methodName.

lock is the lock specification of the message. This can be a ProgrammableLock object

(see Section 3.4.2).

A MessagePath is a list of MessagePathElements. A MessagePathElement has three

variables.

identifier is a symbol or a number that identifies a message.

kind is a symbol that describes the kind of a message, #synchronous or #asynchronous.

transactionCharacteristics is a symbol that describes the transaction characteristics

of a message: either #transactionCreating or #nonTransactionCreating.

30The pending queue differs from the queue data type in that elements can be de-queued from any

position of the queue, not only from the head. #«*£«•*, e'««"«h«** •*'/ £« yvtiefi>'» *+ +1* Metf-U* y****.
31They might even have finished execution. s "»p ** •

CHAPTER 4. SCHEDULING IN A GEN. TRANS ACTION/THREAD MODEL 77

MessagePathElements for top-level messages have system-wide unique identifiers,

e.g. the IP address of the node on which the message is sent, concatenated with a node-

wide unique number. All children are identified uniquely, e.g. via following numbers.

The same applies for their children and so on. Thus, every MessagePath is system-wide

unique.

Whenever an asynchronous message or a transaction creating message or a top-level

message is sent, a new MessagePath is created. Nested synchronous, non-transaction

creating messages are identified by their parent's MessagePath32.

From a MessagePath, one can determine whether a message is transactional or non-

transactional. Furthermore, one can deduce the MessagePaths of the thread, transaction

and top-level transaction, a message belongs to.

4.5.2 Interaction of System Objects

fiots,j>le
To demonstrate the interactions of the system objects for scheduling, e«c<i. scenario of

sending and executing a message is examined in detail. See Figure 4.20. Consider that a

Message m with receiver f red and methodName print is sent on a node called #harpo.

m can be either sent from a client, e.g. a graphical user interface or from another message

whose receiver object resides on #harpo. In the first case, m is top-level. In the second

case, m is nested. If m is top-level, transaction creating or asynchronous, then a new

MessagePath mp is created. Otherwise, m "inherits" its senders MessagePath.

4.5.2.1 Transaction Creation

Consider the case that m is transaction creating. Then, a new Transaction is created. In

case that m is top-level or its sender is non-transactional, a new TopLevelTransaction33 is

created via newTopLevelTransaction:m. Otherwise, the message newSubtransaction:

m is sent to the parent Transaction34. The parent Transaction then makes a new

Subtransaction and includes it in its set of subtransactions. The new Transaction

has its variables initialized to the following values.

path is initialized with mp.

status is initialized with #executing.

threads : is initialized with a Dictionary that contains one entry. The key of this entry

is mp35 and the value is #executing.

subtransactions is initialized with an empty Set.

4.5.2.2 Thread Creation

Consider the case that m is asynchronous. If m is also transactional, but not transaction

creating then the message executionStarted:mis sent to its Transaction, i.e. the object

that represents the transaction^ m belongs to. It includes mp into its dictionary threads

with status #executing.

"Section 4.6.2.1 shows why the schedulability predicate can be implemented correctly although synch-

nonTrans messages are not assigned a new MessagePath.
33Class Transaction has two subclasses, TopLevelTransaction and Subtransaction.
34 Note that the parent transaction's MessagePath can be generated from m's MessagePath mp. A refer

ence to the parent Transaction can be created from its MessagePath so that messages can be sent to the

Transaction.
35In this case, mp represents the partial thread that is created by m.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 78

V

X
u cd
fl

2-2
CJ

te

H

6
rH

AI„
r-l O ™ HH~i

i< -8 a>

1?l O- IB

!

Figure 4.20: Scenario of sending and executing a message.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 79

For transaction creating messages, mp is included into threads at initialization of the

new Transaction, as explained above. Thus, executionStarted:m need not be sent in

this case.

The sender of the asynchronous message is now allowed continue its execution. Note

that it is important that asynchronous transactional messages make a Transaction or

register their thread identifier with their Transaction before their sender is allowed to

continue its execution. This is necessary for the following two reasons.

A*

1. Consider the case of a subtransaction creating asynchronous message. If the sender
is allowed to continue before the creation of the subtransaction is known to the

parent Transaction then the the following race condition can happen. The parent

Transaction can then commit before the subtransaction has committed, even before

it has started execution.

2. Consider the case of a transactional, asynchronous, but non-transaction creatine

message. If the sender is allowed to continue before the new thread is registered with

its Transaction then the following race condition can happen. The Transaction

can commit before the thread has finished execution, even before it has started

execution.

4.5.2.3 Sending the Message

In case m is local, i.e., f red resides on #harpo, m is handed to f red's Concurrency-

Controller for schedulability testing. In case m is remote, e.g., f red resides on #chico,

a Proxy object for f red on #harpo handles the remote invocation transparently36.

fred's Proxy hands m to a CommunicationsHandler. The CommunicationsHandler

marshals m37 and sends it to #chico where it is unmarshaled.

4.5.2.4 Concurrency Control

Once m arrives at fred, it is passed on to fred's ConcurrencyController to check for

schedulability. Schedulability testing is performed by comparing the incoming message

m against all messages in granted, m is schedulable if for all messages m2 in granted

that are conflicting (i.e., whose locks are incompatible with m's lock), message m is-

SchedulableWithRespectTo :m2 returns true. Section 4.6 describes the implementation

of isSchedulableWithRespectTo: in detail.

To determine the schedulability of m with respect to a conflicting granted message,

the MessagePaths of the two messages are compared. Two types of information may

have to be obtained remotely: information about the commit of a transaction and the

finish of execution of a thread. To find out whether a transaction tl has committed,

tl's local TransactionCache on #chico is sent the message hasCommittedElselnform:

#f red. If such a local TransactionCache does not yet exist then it is now created. The

TransactionCache has three options to respond to this request.

1. status = #?. In this case, the TransactionCache has no information about the

commit status of the transaction it represents and has not yet attempted to obtain

any information. It then sends the message hasCommittedElselnform:#chico to

36In fact, fred or fred's Proxy also initiate the transaction creation and thread creation as described

above.
"Marshalling refers to the transformation of an object into a representation which can be sent over the

network, typically a byte stream.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 80

the Transaction, which resides on #groucho. If the transaction actually has com

mitted, i.e., its status is #committed, then the Transaction returns true to the

TransactionCache. The TransactionCache then sets its status to #committed

and returns true to fred's ConcurrencyController.

Otherwise, i.ê if the Transaction's status is not #committed, then the Transaction

inserts #chico into its set nodesToInform for status and returns false to the

TransactionCache. The TransactionCache then inserts f red into its set objects-

Tolnf orm for status and returns false to fred's ConcurrencyController.

2. status = #executing. This indicates that the Transaction has already been

asked whether it has committed and false was returned. It also implies that

the Transaction has included #chico into its set of nodesToInform for status.

Therefore, a further access to the Transaction is not necessary. Instead, fred is

added to the TransactionCache's set objectsToInformfor status and false can

be returned to fred's ConcurrencyController immediately.

3. status = #committed. This indicates that the Transaction has been asked

whether it has committed and true was returned. In this case, no further access

to the Transaction is necessary and true can be returned immediately to fred's

ConcurrencyController.

When tl finally commits, • it sends the message nowCommitted:tl to +t»t

TransactionCaches on all nodes specified in nodesToInform. These TransactionCaches

then set their status variable to #committed. In turn, they send the message now-

Committed:tl to all objects specified in objectsToInform.

Requests about the finish of execution of a particular thread, are processed by the

TransactionCache of the Trans act ion ""the thread belongs to, in an analogous way, via

messages hasThread:s finishedElseInform:fred,hasThread:s finishedElselnform:

#chico and threadNowFinished:s.

4.5.2.5 Scheduling

K m is not schedulable then it is enqueued in pending and possibly re-tested for schedu

lability at a later time. Otherwise, i.e., if m is schedulable, then m is added to granted

and its execution is started. After m has finished execution, the following operations are

performed.

If m is non-transactional then it is removed from granted and the result is returned to

the sender (in case m is synchronous). The removal of a non-transactional message from

granted after it has finished execution is compatible with the schedulability predicate.

Note that in the schedulability predicate, a finished non-transactional message m x never

causes a message m2 not to be schedulable.

If m is transactional, then two cases are distinguished.

1. m is asynchronous;

2. m is synchronous.

m is asynchronous: In this case, the message executionFinished:m is sent to

its Transaction via its local TransactionCache. Both the TransactionCache and

Transaction objects change the status for thread m from #executing to #f inished.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 81

m is synchronous: In this case, the result is returned to the sender. If m additionally is

transaction creating, then the message executionFinished:m is sent to the Transaction

after the value has been returned.

The Transaction starts the prepare phase of the 2PC protocol when the following

two conditions are satisfied.

1. All subtransactions have committed.

2. All threads, including the partial thread that created the transaction, have finished.

For this reason, it is important that for synchronous, transaction creating messages,

the result is returned first before executionFinished:m is sent. Otherwise the following

race condition could happen. The Transaction could commit without the result of the

message actually being delivered38.

When a Transaction t commits or aborts then all objects that belong to t and

all its descendant transactions are informed about this event via the messages top-

LevelTransactionCommit :t, topLevelTransactionAbort :t or subtransactionAbort:

t. Apart from recovery related activity, these messages provide scheduling information

for the visited object's ConcurrencyControllers. All messages that belong to t or any

of its descendant transactions are removed from both pending and granted.

The removal of these messages from granted is compatible^'tne schedulability predi

cate. Note that in the schedulability predicate, a message mi that belongs to a committed

or aborted top-level transaction or that belongs to an aborted subtransaction never causes

a message m2 not to be schedulable,

4.5.2.6 Rescheduling Pending Requests

There are four situations in which messages are removed from pending.

1. A top-level transaction commits.

2. A top-level transaction aborts.

3. A subtransaction aborts.

4. A non-transactional message finishes execution.

Furthermore, there are two events that Transactions inform ConcurrencyControllers

about via TransactionCaches.

1. A transaction commits.

2. A (partial) thread finishes execution.

All six events may have an impact on the schedulability of messages in pending.

Therefore, they all trigger re-testing of messages in pending for schedulability. This test

is performed from the head to the tail of the queue pending so that messages that have

been waiting the longest are tested first.

38 Another approach is to notify the Transaction about the two events independently, namely the finish

of execution of the partial thread that created the Transaction and the delivery of the result. However,

this approach requires an additional network communication and is therefore not preferable.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 82

4.5.2.7 Broadcasting versus Asking

The lazy information propagation and caching techniques presented in this section have

the potential for large savings in network communications for obtaining scheduling in

formation remotely. Scheduling information is information about the commit of sub-

transactions and the finish of execution of transactional (partial) threads. Note that if

scheduling information is needed by a ConcurrencyController on a particular node then

this information is obtained exactly once. If scheduling information is not needed by any

ConcurrencyController on a particular node, then it is not obtained at all.

To obtain scheduling information, either one or two messages neeof to be sent. Only

one message is needed if the awaited event39 has already happened. If this is not the

case then two messages are needed. The first message gets the negative reply and ensures

that ConcurrencyControllers are informed after the event has happened. The second

message informs ConcurrencyControllers that the event has happened.

The alternative to an asking mechanism is a broadcast mechanism. Whenever such an

event happens then scheduling information is broadcast to all nodes that are potentially

interested in it. In the scheduling context, broadcasting is not a vi&kte alternative to

asking. This is because it is very hard to determine the group of nodes that are potentiaUy

interested in scheduling information.

Take the event that a subtransaction t has committed. This information might be

needed to determine the schedulability of a message m2 that belongs to the same top-

level transaction than t. This is the case if t = ILBLCAT(mx,m2) where mx is a

message that belongs to t or any of its descendant transactions. In order to ensure that

the ConcurrencyController that schedules m2 obtains the information about fs commit

locally, t must broadcast this information at least to all nodes of aU objects that have been

visited by fs top-level transaction and any of its descendant transactions—a potentially

large number of nodes. However, it still does not cover the set of all nodes that are poten

tially interested in this scheduling information. This is because fs top-level transaction is

still executing and more nodes can be visited after the commit event. In short, in order to

ensure that all nodes are informed that potentially need this scheduling information, this

information must be broadcast to all nodes in the entire network. Similar arguments hold

for the scheduling information about the finish of execution of a transactional (partial)

thread.

Thus, broadcasting scheduling information is not a workable approach if the dis

tributed system contains a large number of nodes. This is even more so considering

the fact that, from the experience of real-world applications like the distributed bank,

obtaining scheduling information remotely is rarely necessary.

4.6 Implementation of the Schedulability Predicate

This section describes algorithms for the schedulability predicate that are both efficient

and easy to implement. Two algorithms schedulable and returnDependent are pre

sented in pseudo code, schedulable implements the predicate "schedulable with respect

to" and returnDependent implements the return dependency predicate.

3 9The transaction has committed or the transactional (partial) thread has finished execution.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 83

4.6.1 The Algorithms

4.6.1.1 Data Structures

The main data structure used in schedulable and returnDependent is the Message-
Path, an array of MessagePathElements. An individual MessagePathElement e of a
MessagePath m is accessed by e : = m[i] where i is an Index running from 1. . depth(m).
MessagePathElements can be compared for equality (=), it can be checked whether they
are synchronous (synch) or asynchronous (asynch), transaction creating (trans) or non-
transaction creating (nonTrans).

4.6.1.2 schedulable

01 schedulable(ml, m2: MessagePath)

02-C
03 LCAT := 0; (* index of LCAT(ml, m2) *)
04 LCA := 0; (* index of LCA(ml, m2) *)
05 ILBLCAT := 0;(* index of lLBLCAT(ml, m2) *)
06 LCAS := 1; (* index of least common thread of ml and m2 *)
07 S := 0; (* index of last thread of ml which is not shared by m2 *)

08 for i := 1 to depth(ml) do
(* 1st phase: descend common subpath between ml and m2 *)

09 if ml[i] = m2[i] then (* elements are the same *)

10 {
11 LCA := i;
12 if trans(ml[i]) then LCAT := i;
13 if asynch(ml[i]) then LCAS := i;
14 } else (* elements are different *)

15 -C
16 if LCAT = 0 then

(* either ml, m2 not both transactional or not til = tl2 *)

17 return false;
18 else (* ml, m2 both transactional with tl = t2 *)

19 {
20 for j := i to depth(ml) do

(* 2nd phase: descend subpath of ml not shared by m2 *)

21 {
22 if trans(ml[j]) and ILBLCAT = 0 then ILBLCAT := j;
23 if asynch(ml[j]) then S := j;
24 };

(* 3rd phase: descend subpath of m2 which is not shared by ml *)
25 if S = 0 and returnDependent(m2, LCA) then

(* return dependency between sl/LCAT and m2 *)

26 return true
27 else (* no return dependency between sl/LCAT and m2 *)
28 return finishedExecution(max(LCAS, S, LCAT), ml)

and (1LBLCAT=0 or committed(ILBLCAT, ml))

29 } (* end else *)
30 } (* end else *)
31 }; (* end for loop -> ml < m2 *)

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 84

(* 3rd phase: descend subpath of m2 which is not shared by ml *)
32 if returnDependent(m2, LCA) then

33 return true; (* return dependency between ml and m2 *)

34 else (* no return dependency between ml and m2 *)

35 if LCAT = 0 then (* ml is non-transactional *)
36 return false;

37 else (* til = tl2 *)

38 return finishedExecution(max(LCAS,LCAT), ml)

39 }

committed(idx:Index, m:MessagePath) and finishedExecution(idx:Index, m:

MessagePath) perform potential network communications to ask a Transaction whether

it has committed or whether a (partial) thread has completed. Caching on the node level

is performed as described in the previous section.

4.6.1.3 returnDependent

Conceptually, returnDependent has two MessagePaths ml and m2 as arguments with ml

< m2. Because of therpa/ ancestor relationship, it is enough to pass m2 and an index idx

such that ml = m2[l] . . .m2[idx] .

returnDependent(m: MessagePath, idx: Index)

{
01 for i := idx + 1 to depth(m) do
02 {
03 if synch-trans(m[i]) then return true;
04 if asynch(m[i]) then return false
05 }
06 return true

}

4.6.2 Correctness of the Schedulability Algorithm

4.6.2.1 Long MessagePaths versus Short MessagePaths

A message path as defined in Section 4.1.3 includes message path elements for all messages

from the root of a message tree down to the message^he path describes. The definition

of the schedulability predicate and its correctness analysis are based on this definition of a

message path. However, a MessagePath object, as described in Section 4.5.1 is shorter. It

only contains MessagePathElements for transaction creating messages or asynchronous

messages. The fact that MessagePaths are short is important for the efficiency of the

scheduling algorithms, both in space and time. This section shows why it is enough

to use short MessagePaths and still be able to implement the schedulability predicate

correctly.
All rules of the schedulability predicate deal only with threads and transactions except

the test for return dependency. Therefore, in this section, it is analyzed whether the return

dependency test for long message paths (i.e. paths including synch-nonTrans elements)

is equivalent to the return dependency test for respective short paths (i.e. paths with

synch-nonTrans elements removed). Unfortunately, this is not the case. However, it

can be shown that in the context of the schedulability predicate and its implementation,

differences do not lead to wrong results in the schedulability test.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 85

Consider two conflicting messages mx and m2 where mx has started execution be

fore m2 is sent. Assume that mx retDep m2. Let smx = smx[l]...smx[k] and sm2 =

smx[l]...smx[k]sm2[k + l]...sm2[k + I] be the corresponding short message paths, i.e. the

paths with all synch-nonTrans message path elements removed. See Figure 4.21. It is

easy to see that since mx retDep m2, also smx retDep sm2. This is because the relation

ship between return dependent message paths mx and m2 is m2 = mx synch-nonTrans*

[synchTrans any*]. If synch-nonTrans messages are deleted that match the part synch-

nonTrans* of the regular expression then this does not cause the predicate not to be
satisfied. The same is true if synch-nonTrans messages are deleted that match the part

any of the regular expression.
Now, it is examined whether the opposite is true. Assume that smx retDep sm2. Is

m!x retDep m'2 for all long message paths m[and m2 whose corresponding short paths

are smx and sm21
Consider a message path m'2 whose short path is sm2. See Figure 4.21. If smx retDep

sm2 then mx retDep m'2. This is because of the transitivity of the return dependency rela

tionship and the fact that sm2[k +1] is return dependent on m2, since they are connected

via synch-nonTrans messages.

CHAPTER 4. SCHEDULING IN A GEN. TRANS ACTION/THREAD MODEL 86

Now consider a message path m[whose short path is smx. See Figure 4.21. If smx

retDep sm2 then not necessarily m[retDep m2. This is the case if m[•£. m2.

This causes potential problems for the implementation of the scheduling mechanism

since it only considers short message paths. returnDependent may return true for two

short MessagePaths when, in actual fact, their respective long message paths are not in a

return dependency. Fortunately, it can be shown that in all cases where returnDependent

returns the wrong result, schedulable still returns the correct result. Consider two

subcases.

1. m'j is sent after mx (this case is denoted as m" in Figure 4.21).

2. mx is sent before mx (this case is denoted as m[in Figure 4.21).

m'x is sent after mi: This case cannot occur in reality. This is because in this case, m'x

cannot have started execution before m2, i.e. the schedulability of m2 with respect to m\

is never tested. This is because mi and m2 are in a return dependency, thus mi cannot

finish execution before m2 has executed. Also, m[cannot start execution before mi has

finished execution since they are synchronous with respect to each other and mi is sent

before m\. Therefore, m'x cannot have started execution before m2

m'j is sent before mx: Consider two subcases.

1. m'j is non-transactional.

2. mi is transactional.

m'x is non-transactional: In this case, mi has finished execution before m2 is sent.

This is because m'x and mi are synchronous with respect to each other and m[is sent

before mi. Therefore, according to the schedulability predicate (Condition 1), m2 is

schedulable with respect to m\.

m\ is transactional: If m'x is transactional then smx[k] must be transactional

as well, since they are connected via synch-nonTrans message path elements. Since

smx [k] < mx < m2, mx and m 2 are transactional as well. Let t[be the transaction

of m[, tx the transaction of mx and t2 the transaction of m2. Then, t[= tx <t2. Thus,

LCAT(m[,m2) = tx. Let sx' be the thread of m[and sx the thread of mx. Then, .si - sx

since m\ and mx are synchronous with respect to each other. Recall that smx[k] retDep

m2. Since s'x/tx is synchronous with respect to smx[k], also s'x/tx retDep m2. There

fore, m 2 is schedulable with respect to mi (Conditions 3(b)i and ii of the schedulability

predicate).

4.6.2.2 The First Phase

In this section and the following sections, it is shown that for conflicting messages mi and

m2, where mx has started execution before m2 is sent, schedulable (ml, m2) returns

true exactly if mi is schedulable with respect to m2.

schedulable consists of three main phases. In the first phase (8-14)40 mi and m 2 are

descended on their common subpath if such a common subpath exists. See Figure 4.22.

The first phase finishes when the first element mx[i] is found which is not equal to m2[i]

(14). During this loop, LCA is set to the loop index i (11). Therefore, after the finish of

"Numbers in brackets refer to line numbers in the code for schedulable and returnDependent.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 87

} first phase

(LCA)
second phase { I \j third phase

n̂ll fm2

Figure 4.22: Phases of the schedulability algorithm.

the first phase, LCA can have two kinds of values. If mi and m2 belong to different message

trees then LCA is 0 (the initial value). Otherwise, LCA is the index of the last element

that is common to mi and m 2, hence LCA(mx,m2). Analogously, LCAT is assinged an

index when a common transaction creating message is detected (12) and otherwise is still

0. LCAS is assigned an index if a common asynchronous message is detected (13) and

otherwise is still l41.

When the first element is detected where mi and m 2 are different then the first phase

finishes (14). If no transaction creating request has been detected during the

first phase (LCAT = 0) then false is returned. This is compatible with the schedulability

predicate for the following reasons.

The fact that there is no least common ancestor transaction between mi and m 2 in

dicates that either not both messages are transactional or their top-level transactions

tli a n d tl2 are different. Since mi has not been removed from set granted of the

ConcurrencyController, none of the following conditions have happened yet.

• mi is non-transactional and has finished execution.

• mi is transactional and its transaction has aborted.

• mi is transactional and its top-level transaction has committed.

Conditions 1, 2 and 3a of the schedulability predicate are not satisfied in this case.

This is, provided, that m x and m 2 are neither synchronous nor in a return dependency.

Both cases can be ruled out as is shown below.

If mi and m 2 were synchronous then mi would have been removed from granted at

the latest when its ancestor returned to LCA(mi,m2). This is true no matter whether mi

is transactional or not. If mi is non-transactional then it has finished before its ancestor

has returned to LCA(mi,m2). Non-transactional messages are removed from granted

after they have finished execution. If mi is transactional, then its top-level transaction is

a descendant of LCA(mi,m2). Otherwise, LCA(mx,m2) would have been transactional,

too. This top-level transaction has committed or aborted before its ancestor has returned

to LCA(mx,m2). Thus, mi has been removed from granted in this case.

mi and m 2 cannot be in a return dependency in this case, since mx £ m2. This is

because there is at least one message path element in mi which is not shared by m2.

LCAS is initialized to 1 for reasons outlined below.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 88

4.6.2.3 The Second Phase

If there is a common transaction between mx and m2 then the second phase of the

algorithm starts. In the second phase (20-24), the subpath of mx which is not shared by

m2 is descended, if such a subpath exists. See Figure 4.22.

While descending this subpath, the index of the first transaction creating message is

stored in ILBLCAT. The criterion for assigning the index j to variable ILBLCAT is that

mi[j] is transaction creating and ILBLCAT has not been assigned a value yet except the

initial value 0. If ILBLCAT is assigned a value then it is the index of ILBLCAT(mx,m2).

This is because it is the subtransaction of LCAT(mx,m2) and it is an ancestor of mx.

Furthermore, the index of the last asynchronous message in this subpath is stored in

variable S. This is performed by assigning the index j to S whenever mx[j] is asynchronous.

4.6.2.4 The Third Phase

The third phase of schedulable is performed by function returnDependent (25). It

descends the subpath of m 2 which is not shared by mi to detect a return dependency

between LCA(mi,m2) and m2.

returnDependent has two arguments, a MessagePath m and an Index idx. It returns

whether m[l]...m[irfx] retDep m[l]...m[idx]m[idx-r l]...m[depth(m)]. It is easy to see that

returnDependent returns the correct result.

m is descended from idx (excluding) to its last element (including) to check whether

this subpath matches the regular expression synch-nonTrans* [synch-trans any*]. If a

synch-trans element is detected (3) then true is returned since any message type is

allowed to follow. If an asynch element is detected (4) then false is returned since

the regular expression is not matched. If a synch-nonTrans element is detected then

descending continues (implicit). When the for loop finishes then this indicates that aU

messages in the subpath are synch-nonTrans. true is returned in this case (6).

4.6.2.5 S = 0 and returnDependent(m2, LCA)

In Line 25 of function schedulable, is tested whether S = 0 and returnDependent (m2,

LCA). This condition is equivalent to si/LCAT(mi, m2) retDep m2. This is shown in two

parts.

1. IfS = 0 and returnDependent (m2, LCA) then sx/LCAT(mx, m2) retDep m2.

2. If not (S = 0 and returnDependent(m2, LCA) then not sx/LCAT(mx,m2) ret

Dep m2

S = 0 and returnDependent (m2, LCA): S = 0 indicates that there is no asynchronous

message in the subpath of mi which is not shared by m2. Thus, sx/LCAT(mx,m2) <

LCA(mx,m2). Note that sx/LCAT(mx,m2) retDep LCA(mx,m2). This is because there

are only synch-nonTrans messages between sx/LCAT(mx,m2) and LCA(mx,m2). Since

returnDependent(m2, LCA) returns true, LCA(mx,m2) retDep m2. With transitivity of

the return dependency relationship it follows that sx/LCAT(mx,m2) retDep m2.

not (S = 0 and returnDependent (m2, LCA): Consider two subcases.

1. not S = 0.

2. S = 0 but returnDependent(m2, LCA) returns false.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 89

not S = 0: The fact that S has been assigned an index in the third phase of

schedulable indicates that there is an asynchronous message in the subpath of mx which

is not shared by m2. Therefore, si > LCA(mx,m2) and therefore, sx/LCAT(mx,m2) -

sx. Also, Si ̂ m2. Therefore, not sx/LCAT(mx,m2) retDep m2.

S = 0 but returnDependent(m2, LCA) returns false: Examine messages in the

subpath between si/LCAT(mx,m2) and LCA(mx,m2). There cannot be a transaction

creating message in this subpath, otherwise this message would be LCAT(mx,m2). Also,

there cannot be an asynchronous message in this subpath, otherwise this message would

be sx. Hence, all messages between sx/LCAT(mx,m2) and LCA(mx,m2) are synch-

nonTrans. Therefore, testing for return dependency can start from LCA(mx,m2), since

an arbitrary number of synch-nonTrans message path elements can be ignored by the

return dependency test. Since returnDependent(m2, LCA) returns false in this case,
not sx/LCAT(mx,m2) retDep m2.

If there is a return dependency between sx/LCAT(mx,m2) and m2 then true is re

turned (26). This is compatible with the schedulability predicate. Consider two subcases.

1. ILBLCAT = 0.

2. not ILBLCAT = 0.

ILBLCAT = 0: Since there is no transaction creating message in the subpath of mi which

is not shared by m2, tx < t2. Since sx/LCAT(mx,m2) retDep m2, Conditions 3(b)i and

ii of the schedulability predicate are satisfied in this case42.

not ILBLCAT = 0: In this case, tx may be incomparable with t2. Condition 3(b)iv

requires that in addition to sx/LCAT(mx,m2) retDep m2, ILBLCAT(mx,m2) must

have committed. This can be ensured for the following reasons. There is no asyn

chronous message in subpath of mi which is not shared by m2, since S = 0. Also, the

child of LCA(mx,m2) which is an ancestor of mx has been invoked before the child of

LCA(mx,m2) which is an ancestor of m2. This is because otherwise m x could not have

started execution before m 2 was sent
43. Since synchronous transaction creating mes

sages return only after the transaction has committed44, ILBLCAT(mx,m2) must have

committed.

4.6.2.6 Not [S = 0 and returnDependent(m2, LCA)]

Now consider the case that not sl/LCAT(mx, m2) retDep m2 (27). In this case, f inished-

Execution(max(LCAS, S, LCAT), ml) and (1LBLCAT=0 or committed(ILBLCAT, ml))

is returned. The following two observations can be made. First, mx cannot be in return

dependency with m 2 since the two paths have different elements and hence mx </. m2.

Second, mx cannot be synchronous with m 2 since then sx/LCAT(mx,m2) would be in a

return dependency with m2. Consider two subcases.

1. ILBLCAT = 0.

2. not ILBLCAT = 0.

"Note that in Condition 3(b)i, the disjunction si/h retDep m2 has been omitted since it can not occur

in this particular case.
43Note that LCA(mi,m2) retDep m,2.
"Note that if ILBLCAT(mi,m2) aborts then mi is removed from granted.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 90

ILBLCAT = 0: In this case there is no subtransaction creating message in the subpath

of mi which is not shared by m2. Then, tx = LCAT(tx,t2). In this case, tx and t2 can

be in either of the two relationships.

1. tx = t2. This is the case if there is also no transaction creating message in the

subpath of m 2 which is not shared by mx.

2. tx <t2. This is the case if there is a transaction creating message in the subpath of

m 2 which is not shared by mi.

Under the assumption that not si/LCAT(mi,m2) retDep m2, the schedulability pred

icate for both cases is the same (Conditions 3(b)i and ii): m 2 is schedulable with respect

to mi if the execution of sx/tx (hence si/LCAT(mi,m2)) has finished.

If S = 0 then there is no asynchronous message in the subpath of mi which is not

shared by m2. Then, LCAS is the the index of sx. Note that LCAS is initialized to 1.

This reflects the fact that the thread of a message is the top-level message if there is no

asynchronous element in its message path. If not S = 0 then S is the index of the last

asynchronous message in the subpath of of mi which is not shared by m2. Hence S is the

index of si in this case.

Note that if not S = 0 then its value is larger than LCAS. This is because it represents

the index of an element further down the message path of mi. Therefore, max (LCAS, S),

which computes the maximum of both indices, is the index of sx-

Recall the definition of s/t. If s < t then s/t — t otherwise s/t = s. Therefore, the

index of s/t can be determined by the maximum of the index of s and the index of t.

Therefore, theindex of Si/jLCAT(mi,m2)ismax(max(LCAS, S) , LCAT) = max (LCAS,

S, LCAT). schedulable returns f inishedExecuting(max(sl, s3, LCAT) in this case

since ILBLCAT = 0 (28).

not ILBLCAT = 0: If not ILBLCAT = 0 then there is a transaction creating message in

the subpath of mi which is not shared by m2. In this case, ti and t2 can be in either of

the two relationships.

1. tx > t2. This is the case if there is no transaction creating message in the subpath

of m 2 which is not shared by mi.

2. tl <> tl . This is the case if there is a transaction creating message in the subpath

of m 2 which is not shared by mi.

Considering that si/LCAT(mi,m2) and m2 are in no return dependency, the Prop

erties 3(b)iii and iv of the schedulability predicate are satisfied if the execution of

Sx/LCAT(mx,m2) is finished and ILBLCAT(mx,m2) has committed.

As argued above, finishedExecut ion (max (LCAS, S, LCAT), ml) returns true

if sx/LCAT(mi,m2) has finished execution. Since ILBLCAT is the index of

ILBLCAT(mi,m2), committed(lLBCAT, ml) returns true if \LBLCAT(mx,m2) has

committed.

4.6.2.7 mi < m2

The for loop of Lines 8-31 can only terminate without being pre-empted by a return

statement if the else statement in Line 14 is never reached. This is the case if all

elements of mx are shared by m 2 and hence mi < m2
4 5. In particular, LCA(mx,m2) is

Per definition, roi ^m.2-

file:///LBLC

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 91

the last element of mx. In this case, the third phase of the algorithm is started by invoking

the returnDependent function (32). In the third phase, the subpath of m 2 which is not

shared by mi is descended to check for return dependency between mx and m2. If such a

return dependency is detected then true is returned (33), according to the schedulability

predicate.

Note that if such a dependency cannot be detected then mx and m 2 cannot be syn

chronous with respect to each other since mx < m2. Two subcases are distinguished.

1. LCAT = 0;

2. not LCAT = 0.

LCAT = 0: This indicates that mi is non-transactional. In this case, Condition 1 of the

schedulability predicate requires the execution of m x to be finished. Since mi is not yet

removed from granted, it can be deduced that this is not yet the case. Therefore, false

is returned in this case (36).

not LCAT = 0: This indicates that mi is transactional. In this case, either tx = t2

or ti < t2. This is because mi < m2. Considering that there is no return dependency

between si/LCAT(mi,m2) and m 2, Properties 3(b)i and ii of the schedulability predicate

are identical. m 2 is schedulable with respect to mi if the execution of sx/tx has finished.

Since LCAT is the index of tx, executionFinished(max(LCAS, LCAT) , ml) returns true

in this case (38).

4.6.2.8 Termination and Complexity

It is easy to see that schedulable returns a boolean result for every pair of message

paths mi and m 2. schedulable has three distinct phases that are performed at most

once. Phase one descends the subpath of mi that is shared by m 2 if such a subpath exists.

Phase two descends the subpath of mx which is not shared by m 2 if such a subpath exists.

Phase three descends the subpath of m 2 which is not shared by mi if such a subpath exists.

At the end of phases one and two, either a result is returned or another phase is started.

At the end of phase three, a result is returned.

The analysis above has shown that whenever the algorithm returns a value it is com

patible with the schedulability predicate. Since the algorithm returns a value for all pairs

of message paths mi and m 2, the algorithm is correct with respect to the schedulability

predicate.

It is easy to see that the algorithm is linear in the sum of the depth of mx and m2.

This is because the first phase is linear in the minimum of the depth of mx and m2. The

second phase is linear in the length of mx. The third phase is linear in the depth of m2.

Furthermore, phases one, two and three are performed at most once. More precisely, the

schedulable algorithm descends the MessagePaths of mi and m 2 at most once.

4.6.2.9 Additional Optimizations

Section 4.5.1 describes a generator for NamePathElement identifiers. Top-level messages

are assigned a network-wide unique identifier, e.g., composed of the IP address of the node

where it is sent and a node-wide unique number. Its children are named by successive

integer number, in the order in which they are sent. The same strategy is used for their

children and so on.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 92

Legend:

synchronous

asyncfironous

kind irrelevant

[^ J non-transaction creating

\) transaction creating

/

^

(LCAJ

II,CBLC^T(t2]

/

[ml) (m2)

Figure 4.23: mi -< m2.

For MessagePaths constructed in such a way, a lexicographic order -<46 defines a total

order over all messages belonging to a particular message tree. Note that for all messages

mi and m 2 that are synchronous with respect to each other and mi -< m2, m 2 is sent

after mi has finished execution. Particularly, if mi is transaction creating then m2 is sent

after mi has committed.

The ordering of messages in a message tree is a piece of information that neither

the schedulability predicate nor its implementation utilize as described so far. Order

ing information can be used by the schedulability algorithm to further reduce network

communications for obtaining scheduling information.

Consider the example in Figure 4.23. Property 3(b)iv of the schedulability predicate

requires that m 2 is not schedulable unless ILBLCAT(mx,m2) has committed. By rea

soning over the message paths of mi and m 2 it can be deduced that ILBLCAT(mx,m2)

has committed. This is because mx -< m2 and LCA(mx,m2) and ILBLCAT(mx,m2)

are synchronous with respect to each other. For these reasons, the ancestor of

ILBLC AT (mx, m2) must have returned to LCA(mx,m2) before the ancestor of m 2 was

sent by LCA(mx,m2). Since transaction creating messages do not return before they

have committed, ILBLCAT(mx,m2) must have committed. Note that this information

can be deduced locally, i.e. without asking the Transaction. Therefore, this approach

has the potential of avoiding network communications.

4.7 The Wait-By-Necessity Extension

4.7.1 Scheduling and Return Dependencies

A wait-by-necessity message m is an asynchronous message that returns a result. The

sender of m is not suspended at the time m is sent. Synchronization takes place when

m's result is first used. Immediately after m is sent, a voucher object is returned to the

sender. The result of m is eventually returned into its voucher. Note that there is a one-

to-one relationship between m and its voucher, m's voucher cannot be shared by another

wait-by-necessity message and m cannot have more than one voucher. When m's result is

i6xix2...xn -< yiV2...ym if x; = yi (1 < i < k) and x/t < yk for some k <m,n; or if Xi = y,: (1 < i < n)
and n < m [Knu73].

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 93

first used (e.g., the result is sent a message or it is saved to permanent storage) then the

voucher is attempted to be redeemed. There are two possible outcomes of an attempted

redeem operation.

1. m's result has already been returned to its voucher. In this case, the redeem oper

ation is successful. The requesting thread can use m's result and continue immedi

ately.

2. m's result has not yet been returned to its voucher. In this case, the redeem opera

tion is unsuccessful. The requesting thread is suspended until m's result is returned

into its voucher.

Consider a simple example in Hermes/ST-like pseudocode. C is a class with methods

ml and m2. ml and m2 are defined as follows:

ml

self x: 0. "write access to variable x"

v := self waitByNec; m2.

...some time consuming task...

v display "send message to v"

m2

"self x "perform read access and return"

Now consider the following scenario. Some object o of class C is sent the message

mi in o transactionCreating; ml. mi sends message m 2 in o waitByNec; m2. Since

mi writes to one of o's variables, its lock type is WriteLock. Since m 2 reads one of o's

variables but does not write to any of o's variables, its lock type is ReadLock. Thus, mi

and m2 are conflicting.

Since mi and m 2 create different transactional threads si and s2, the schedulability

properties requires si and s2 to be serialized. Note that there is no return dependency

between mi and m 2 per se. However, a return dependency occurs dynamically at run

time when v is attempted to be redeemed, mi cannot finish execution before m 2 has

finished execution since it waits for m2 to return a value. Note that such a dynamic

return dependency cannot be detected statically before the execution of a message, e.g.,at

compile time. This is because the redeem operation may depend on conditions, e.g7user

input, which cannot be anticipated.

This dynamic return dependency between mi and m 2 causes a deadlock situation.

mi cannot finish execution since it waits for m2 to return a value. m 2 is not schedulable

since it is conflicting with mi, and mi has not finished execution.

In accordance with Scheduling Property 2, seriahzabihty is not required in this case

because of the dynamic return dependency relationship between mi and m2. Note that

<*s with static return dependencies, there is no problem of interleaving accesses when

schedulability is guaranteed. This is f** . the following reasons:

• Before the dynamic return dependency occurs, i.e.,before m2's voucher is attempted

to be redeemed, seriahzabihty between sx and s2 is maintained. Since mi and m 2

are conflicting, m 2 is not schedulable.

• When the dynamic return dependency occurs, i.e,,when m2's voucher is attempted

to be redeemed, then serializability is not required. m 2 can then be scheduled. This

schedule cannot lead to interleaving executions of mx and m 2 since mi is suspended

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 94

until m 2 has finished execution and has returned its result. This is analogous to

a sender of a synchronous message being suspended until the synchronous message

returns a result.

4.7.2 A General Form of Wait-By-Necessity

The term "wait-by-necessity" has been invented by Caromel [Car90] in a concurrent, but

not distributed context. Also, transactions are not supported in Caromel's model. Since

wait-by-necessity is the only kind of message passing supported, vouchers47 that have

not been redeemed can be returned as message results and passed as arguments to other

messages. Vouchers are only attempted to be redeemed when they are first used, e.g.

when the result is sent a message.

In this section it is shown that such a general form of wait-by-necessity, although

elegant and useful in the concurrent context, is not suitable for a transactional, distributed

context. This is because returning vouchers and actual results over node boundaries

independently and maintaining seriahzabihty between wait-by-necessity threads that are

not return dependent on each other is very expensive. An example below demonstrates

this. For these reasons, a restricted form of wait-by-necessity is presented in Section 4.7.3

that can be implemented efficiently in a transactional, distributed context.

Consider the example of class C with four method ml, m2, m3 and m4:. ml, m2 and

m3 have no arguments. m4: has one argument. The definition*of the methods are shown

below in Hermes/ST-like pseudocode, barney and f red are two instances of C.

ml

self x: 0. "write access"

v2 := barney waitByNec; m2. "send m2 to barney"

v4 := fred waitByNec; m4: v2. "send m4 with argument v2 to fred"

v4 display "send a message to v4"

m2

v3 := fred waitByNec; m3. "send m3 to fred"

~v3 "return voucher v3"

m3

"self x "return result of read access"

m4: v

~v + 1 "send message to v. Return something"

Now consider the scenario of message mi being sent to fred in fred transaction-

Creating; ml. See Figure 4.24. After performing a write access to fred's variable X, mx

sends a message m 2 to barney in barney waitByNec; m2. m 2, in turn, sends message

m 3 back to fred in fred waitByNec; m3. m 3 performs a read access to fred's variable

x. This access is conflicting to mi's write access to x. Thus, mx and m 3 are conflicting.

This read access is also the result of m 3 and is therefore returned to voucher v3. v3 is the

result of m 2 and is therefore returned to voucher v2. v2 is then passed as an argument

to message m 4 in fred waitByNec; m4:v2. There, it is sent a message (+) which finally

causes v2 to be redeemed. The result of message m 4 is returned to voucher v4. v4 is then

sent a message (display) in mi and is therefore redeemed.

Two observations can be made from this scenario."

Vouchers are called "awaited objects" in [Car90].

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 95

fred ml

self x: 0. "write access"

v2 := barney wbn; m2.

v3 := fred wbn; m3

self x "conflicting read"

v3

fred wbn, m4: v2

'v2 + 1 "v2 is redeemed"

v4 display "v4 is redeemed"

Figure 4.24: A scenario of wait-by-necessity messages.

1. There can be chains of voucher returns of arbitrary length. The result of the read

access to fred's variable x is performed in m3. It is then returned to v3, then

returned to v2, then passed as an argument to m 4 and then redeemed in m4. See

Figure 4.24.

Assume that fred and barney reside on different nodes. Further assume that m 3

is computationally expensive such that m4 attempts to redeem v2 before m3 has

returned a result. Then, unredeemed vouchers must be passed from fred's node

(where m 3 is executed) to barney's node (where m 2 is executed) and back to fred's

node (where mi and m 4 are executed). When m 3 finally returns a result then this

result must be passed along the same route. This doubles the number of network

communications necessary for returning the result of m 3 to m4. In this case it is

conceivable that passing m3's result from fred's to barney's node and back can

be avoided if such a cycle in a return chain is detected. However, detecting such a

cycle requires at least the same amount of network communications as passing the

actual result.

2. There can be chains of return dependencies of arbitrary lengths. There is no serial

schedule for threads sx and s3 that are created by mx and m 3, respectively. This

is because mi and m 3 are conflicting and there is a dynamic return dependency

between mi and m 3 occurring when v2 is attempted to be redeemed in m4. The

dynamic return dependency is due to the following dependency chain, mi is sus

pended since it depends on the redeem of v4. The redeem of v4 depends on the

return of m4. The return of m 4 depends on the redeem of v2 and in turn on the

redeem of v3 since v3 is assigned to v2. v3 depends the return of m 3 which, of

course, depends on the finish of execution of m3.

This example demonstrates that, unlike static return dependencies, dynamic return

dependencies can occur between messages that are not in an ancestor/descendant relation

ship. . with static return dependencies, m 3 can be scheduled safely without the danger

of interleaving execution after the dynamic return dependency has been detected. How

ever, the detection of dynamic return dependencies can be very expensive. It requires

full knowledge of all unsuccessful redeem attempts in the execution of a system. This

knowledge can be used to construct a graph where messages form the nodes and waits-for

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 96

relationships form the arcs. Cycles in this graph indicate dynamic return dependencies.

Since such cycles can be of arbitrary length, cycle detection is NP-complete.

What makes this approach particularly unattractive is the fact that a high expense

for detecting dynamic dependency relationships wold have to be paid even in the absence

of dynamic return dependencies. Note that unsuccessful redeem attempts as such do by

no means indicate a cycle. For example, there would not have been a return dependency

between mi and m 3 if m 4 had been asynchronous or if mi had not redeemed v4 but had

returned it to its sender to redeem it instead. Unsuccessful redeem attempts can occur

in the absence of dynamic return dependencies if wait-by-necessity messages takes a long

time to return a result.

For these reasons, a less general form of wait-by-necessity is introduced below. It

still provides a useful programming abstraction but can be implemented efficiently in a

transactional, distributed context.

4.7.3 A Less General Form of Wait-By-Necessity

The less general form of wait-by-necessity requires that the voucher of a wait-by-necessity

message m can only be redeemed within the % This means that unredeemed

vouchers cannot be returned as results of messages and cannot be passed as arguments

to messages.

This wait-by-necessity construct still provides a useful programming abstraction. The

sender of a wait-by-necessity message m can continue to perform potentially computa

tionally expensive tasks while m executes other, potentially computationally expensive

tasks concurrently. This is particularly useful if m is remote, thus executing on a different

processor than its sender. The rede»pfa,of m' s voucher, and thus the synchronization of

m's sender with the return of m's result;is performed as in the general wait-by-necessity

model.

With this less general form of return dependency, dynamic return dependencies can

only form between ancestor and descendant messages—like static return dependencies

and unlike dynamic return dependencies in the general model. To see this, consider the

five rules about message dependencies from Section 4.4.1 with extensions for the wait-by-

necessity case. Extensions are emphasized by italics.

1. A message sending a synchronous message or sending a wait-by-necessity message

and attempting to redeem its voucher waits until the submessage returns a result.

Therefore, the finish of execution of a message depends on the return of synchronous

submessages and on the return of wait-by-necessity submessages if their vouchers

are attempted to be redeemed.

2. A message sending an asynchronous message is not suspended. Therefore, the finish

of execution of a message does not depend on the finish of execution of asynchronous

submessages.

3. A wait-by-necessity or synchronous non-transaction creating message returns imme

diately after it has finished execution. Therefore, the return of a wait-by-necessity or

synchronous transaction creating message depends only on the finish of execution.

4. A wait-by-necessity or synchronous transaction creating message returns after the

transaction it creates has committed or aborted. Therefore, the return of a wait-

by-necessity or synchronous transaction creating message depends on the commit

or abort of the transaction it creates.

ir W y of -fAe <*es*«<jt fU+ se«4s **,

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 97

5. Transaction commit entails the finish of execution of the message itself, finish of

execution of all threads that belong to it and the commit or abort of all descen

dant transactions. Therefore, the commit of a transaction depends on the finish of

execution of all descendant messages.

The less general form of wait-by-necessity can be implemented efficiently in a trans

actional, distributed context. The extension of the scheduling mechanism to include

wait-by-necessity messages is straight-forward. The idea is that in terms of schedula

bility testing, wait-by-necessity messages are treated like asynchronous messages before

they finish execution and before their voucher is attempted to be redeemed. However,

after they finish execution or after their vouchers are attempted to be redeemed, they are

treated like synchronous messages.

Then, seriahzabihty of transactional wait-by-necessity messages is ensured just as

the seriahzabihty of transactional threads is ensured (Scheduling Property 1). Also, dy

namic return dependencies are handled exactly in the way, static return dependencies are

handled. If a voucher is attempted to be redeemed, then its wait-by-necessity message

is treated like a synchronous message thus allowing the detection of return dependencies

with the mechanisms introduced in Section 4.6. Therefore, schedulability is guaranteed

in the face of return dependencies (Scheduling Property 2).

Obtaining the information whether a voucher is attempted to be redeemed is per

formed analogously to obtaining other scheduling information. Lazy information propa

gation and caching techniques are used. Since a voucher cannot be returned from a mes

sage and cannot be passed as an argument to other messages, the information whether

a voucher is attempted to be redeemed is available local to the sender of the wait-by-

necessity message. The sender's node serves requests about the redeem status of vouchers

it has created. With a set nodesToInform and local caches with sets objectsToInform,

it can be achieved that voucher redeem information is obtained only when it is needed

and then only once. Note that to implement this informing mechanism, a message path

must encode the location where a wait-by-necessity message is sent.

4.8 The Non-Serialized Transactional Thread Extension

Seriahzabihty of transactions is a useful property when transactional threads can inter

leave. However, if, due to the semantics of a particular application, transactional threads

never interleave, it is desirable to avoid the expense involved in ensuring seriahzabihty.

Take the example of a bank transfer which is performed via asynchronous withdraw and

deposit operations. Assume that the deposit and withdraw operations only access their

respective account objects. Since a transfer of funds is always performed from one account

to a different account, the withdraw and deposit operations never interleave. Therefore,

ensuring seriahzabihty of the two operations with respect to each other is unnecessary

and wasteful. Note that the withdraw and deposit operations are both serialized with

other transactions via the enclosing transfer transaction.

Also, non-serialized threads allow threads to communicate forth and backwards via

shared data if this is required in an application. Note that with synchronized threads,

this is not possible.

This is why existing transactional systems5>/ckas Avalon/C++ provide transactional

threads that are not serialized with respect to each other. The Hermes/ST generalized

message scheme is extended to include such non-serialized transactional threads. A new

message parameter, nonSerialized, indicates the creation of such a thread.

CHAPTER 4. SCHEDULING IN A GEN. TRANSACTION/THREAD MODEL 98

The extension of the scheduling mechanism to deal with non-serialized threads is

straight-forward. If an asynchronous non-serialized message is sent then asynchrony is

created AS . for normal asynchronous messages. However, in terms of scheduling, an

asynchronous non-serialized message is treated like a synchronous message. Note that

messages which are synchronous with respect to each other are schedulable with respect

to each other. Although non-serialized threads are not serialized with each other, they

are still serialized with other serialized threads.

4.9 The Top-Level Extension

In the generalized message scheme presented so far, every message sent by another message

is a submessage of its sender. Also, every transaction send by a transactional message is a

subtransaction of its sender's transaction. From the experience with nested transactional

systems it has emerged that in some applications it is advantageous to provide less strict

semantics. Therefore, many nested transactional systems provide mechanisms for leaving

the scope of an invoking transaction.

For example, Argus provides the enter topaction.. .end construct that allows the

creation of top-level transactions from within (nested) transactions. Avalon/C+-1- allows

the creation of top-level transactions and top-level threads from within (nested) transac

tions via the toplevel construct. It is stressed by the developers of both systems that

these constructs should be used with care and only in situations where they are necessary.

This is because they allow non-committed transactions to exchange data and therefore

may defy transactional properties.

The generalized message scheme is extended to include the creation of top-level mes

sages from within (nested) messages. This construct, although very simple, is more general

than the constructs provided by Argus and Avalon/C++. In addition to creating top-

level transactions and threads from within (nested) transactions, it allows the creation

of top-level messages of all kinds and transaction characteristics: transaction creating,

non-transaction creating, synchronous, asynchronous, and wait-by-necessity.

A new message parameter topLevel specifies that a message is defined outside its

sender's scope. For example, the message branch topLevel; transactional; add

lnterest creates a top-level transaction like the enter topaction.. .end construct in

Argus. Message branch topLevel; asynchronously; updateView creates a top-level

thread like the toplevel construct in Avalon/C++. Message branch topLevel; wait

ByNec getStatistics creates a wait-by-necessity message outside the scope of its sender.

The implementation of top-level messages is straight-forward. Whenever a top-level

message is sent then it is assigned a new top-level message path as if it was sent by a

client. The scheduling mechanism then treats this message like a message sent by a client,

i.e.,independent from the scope in which it was actually sent.

Chapter 5

Discussion

In this thesis, linguistic mechanisms to specify the application of transaction and thread

semantics to messages independently via parameters have been presented. Chapter 3 ar

gues that such linguistic mechanisms are useful in terms of reusability, extensibility and

maintainability. Chapter 4 specifies the semantics of independent threads and transac

tions in terms of scheduling properties. Although these scheduling properties are relatively

complex to describe, they are intuitive and easily understood by application programmers.

Basically, the interleaving of all kinds of transactional threads in any conflicting manner

is avoided while their progress is guaranteed. Also, properties*^*s cascading abort free

schedules and high concurrency are ensured. These properties do not affect the semantics

but rather the performance of programs. A schedulability predicate and its implementa

tion that satisfy the scheduling properties have been presented. Although the description

and correctness discussions of both the schedulability predicate and its implementation

are relatively complex, the algorithms are both efficient and easy to implement by system

programmers.

The schedulability predicate has been implemented in Hermes/ST and aspects of the

design that concern scheduling are described in Chapter 4. Hermes/ST employs single-

version, pessimistic concurrency control based on locking. Hermes/ST's object model

is fine -grained and deadlocks are detected via timeouts. However, the schedulability

predicate and its implementation are independent of quite a number of these and other

Lock Mode: The schedulability predicate and its implementation can be used in com

bination with all kinds of lock modes including read/write locks, mutual exclusion

locks, and user-defined type-specific locks. This separation of concerns is achieved

via the use of the predicate "conflicting" in the definition of "schedulable with re

spect to", "conflicting" refers to the lock compatibility matrix of any lock mode

that is used.

Deadlock Handling: The schedulability predicate and its implementation are indepen

dent to the deadlock handling mechanism employed. They can be used in combina

tion with mechanisms that may lead to deadlocks,**/^ for example "general wait

ing" as well as in a combination with mechanisms that prevent or avoid deadlocks,

suckiis, for example, "no waiting", "cautious waiting", "wound-wait," and "wait-die"

[RSL87]. When "general waitinĝ ' is used then a negative outcome of the schedu

lability test causes the execution of a message to be delayed. When "no waiting"

is used then a negative outcome of the schedulability test causes the abort of a

transaction. When "cautious waiting", "wound-wait", or "wait-die" is used then

99

CHAPTER 5. DISCUSSION 100

a negative outcome of the schedulability test either causes the delay of a message

execution or a transaction abort.

Level of Concurrency Control Granularity: The schedulability predicate and its im

plementation a+£ equahyaffliay, I? large-grained objects, medium-grained objects

and small-grained objects. Also, they are independent of whether concurrency con

trol is performed for whole objects or for objects' individual variables.

The independence of the schedulability predicate and its implementation from these

parameters facilitates the comparison of mechanisms presented in this thesis with the

respective mechanisms employed in other systems. This forms a major part of this chap

ter. A number of models and systems are selected that are representative of different

scheduling approaches. Since, for example, Argus and Camelot/Avalon employ similar

scheduling approaches, only one of these two important systems is compared. Moss'

model is compared in Section 5.1, Argus in Section 5.2, Eden in Section 5.3, downward

lock inheritance as used in Locus in Section 5.4, Venari/ML in Section 5.5 and K A R O S

in Section 5.6.

Section 5.7 presents the second part of this chapter. It shows some performance

figures, obtained from the implementation of the scheduling mechanisms in Hermes/ST.

5.1 Moss' Model

Four years after submission of his thesis [Mos81], Moss published a book "Nested Trans

actions — A n Approach to Reliable Distributed Computing" [Mos85]. This book is based

on his thesis with only minor modifications and additions. In terms of scheduling, [Mos85]

describes a slightly simpler model than [Mos81] in order to simplify the presentation of

the mechanisms. For the same reason, the scheduling mechanisms presented in this thesis

are first compared against the model presented in Moss' book. Most of the following

sections present variations of this scheme, including the model presented in Moss' thesis.

5.1.1 Transactions

The transaction model of [Mos85] is as follows. Transactions can access (read or write)

data items, which Moss calls "objects", and can create an arbitrary number of subtransac

tions. Subtransactions can execute synchronously or asynchronously. Transactions that

have not been created by another transaction are called "top-level transactions". All

transactions created in the execution of a system form a forest of transaction trees with

top-level transactions as roots. The following restrictions are made.

• Only leaf transactions of transaction trees, i.e., transactions that do not create sub-

transactions are allowed to read or write objects.

• The only way of creating concurrency in the execution of a system is by creating

asynchronous subtransactions.

• The model covers transactional operations only—non-transactional operations are

not included.

5.1.2 Scheduling

When a leaf transaction accesses an object then it must acquire a lock. A lock must be

acquired in read mode for a read access and in write mode for a write access. When the

lock is granted then the transaction holds it until commit or abort.

CHAPTER 5. DISCUSSION 101

Locks in Moss' terminology have a slightly different connotation from locks as used

throughout this thesis. The model described in Chapter 4 includes concurrency controllers

that are uniquely associated with objects. An individual lock has one particular mode

and is uniquely associated with one particular message. In Moss' terminology, a lock itself

is uniquely associated with a particular object—analogous to a concurrency controller in

the terminology of Chapter 4. Various transactions can hold this lock in various modes—

analogous to various transactions whose locks have been granted by the same concurrency

controller in the terminology of Chapter 4.

At top-level transaction commit or abort, all locks held by the top-level transaction

are released, after the respective recovery operations have been performed. At subtrans

action commit, the parent of the committing transaction "upward inherits"1 all locks,

the subtransaction has held. Inherited locks act as placeholders. On the one side, they

prevent transactions outside the holder's "universe" (i.e., non-descendant transactions)

from interleaving in a conflicting way. On the other hand, they allow transactions inside

this universe to acquire locks so that they have a chance of finishing successfully. Four

locking rules are described.

1. A transaction can acquire a write lock if all transactions holding this lock are

ancestors2.

2. A transaction can acquire a read lock if all transactions holding this lock in write

mode are ancestors.

3. When a transaction aborts then aU the locks it holds are released. Ancestor trans

actions holding the same lock are not affected.

4. When a transaction commits then all the locks it holds are upward inherited by its

parent transaction (if any).

Moss presents an optimization which is based on the fact that he considers read/write

locking only. When a transaction that holds a lock in some mode upward inherits the same

lock in another mode, then it does not have to hold the lock in two modes. Rather, the

transaction only has to hold the lock in the maximum of the two modes. The maximum is

defined by the total ordering none < read < write of the lock modes where none denotes

that the lock is not held at all.
Many aspects of Moss' model are described in an "algorithmic" way. For example,

holding a lock only in the maximum of two lock modes is purely an optimization. It

reduces the number of locks to compare against for schedulability testing. The semantics

of the transaction model does not change, whether this optimization is performed or

not. Lock upward inheritance is a mechanism that serves two purposes. It ensures

seriahzabihty of transactions and avoids cascading aborts. The mechanism is described,

rather than the semantics it aims to ensure. Nevertheless, Moss sees his model as purely

conceptual. A particular implementation is not described.

^his inheritance mechanism is unrelated to the inheritance concept in object-orientation. Differ

ent terms are used for this concept, including "anti-inheritance", "upward lock inheritance" and simply

"inheritance". In [Mos85], the simple term "inheritance" is used since its counterpart, "downward lock

inheritance" is not discussed there. However, downward lock inheritance is discussed in Section 5.4. In

order to make presentation unambiguous, the term "upward lock inheritance" is therefore used throughout

this chapter.
2Moss uses the term "superior" instead of "ancestor".

CHAPTERS. DISCUSSION 102

5.1.3 Comparison

5.1.3.1 Terminology

What are termed "objects" in [Mos85] are not objects in the object-oriented sense. Rather,

they are data items in the database sense. An object in [Mos85] holds one value and does

not encapsulate a set of variables. Such a value is visible to clients via read and write access

functions. The internals of objects are not hidden from clients. Functions, procedures.

and transactions are invoked by clients and inspect and manipulate objects directly. In

contrast, objects in the object-oriented sense can only be accessed via messages. The

implementations of objects and their messages are hidden from clients.

These are important differences with respect to software engineering issues. However,

since this thesis is mainly concerned with scheduling, these differences are not further

discussed. To make a proper comparison of the scheduling semantics that the two mecha

nisms provide, a simple mapping of the concepts can be made. Functions and procedures

in Moss' model are mapped to methods in the generalized message scheme. Function and

procedure calls are mapped to messages. Transactions are mapped to transaction creating

messages. Moss' objects are mapped to objects of the generalized message scheme.

In the generalized message scheme, aU three restrictions of Moss' model are removed.

1. Every message can access its receiver object's variables and can send other messages.

Thus, data accesses are not restricted to leaf transactions.

2. Non-transaction creating messages can be asynchronous. Thus, concurrency can be

created other than by subtransactions only.

3. Transactional and non-transactional messages are included. Thus the model is not

restricted to transactions only.

Moss' model can be seen as a subset of the generalized message scheme. Every program

in Moss' model can be expressed directly in the generalized message scheme. For exam

ple, synchronous transactions are expressed by synchronous transaction creating messages.

Asynchronous transactions are expressed by asynchronous transaction creating messages.

The opposite is not true. For example, there is no equivalent to non-transactional mes

sages, non-transaction creating transactional threads and wait-by-necessity messages in

Moss' model.

For the subset of the generalized message scheme that is identical to Moss' model,

scheduling properties are identical. Seriahzabihty is provided between top-level transac

tions and between asynchronous subtransactions. For the extensions of Moss' model, the

semantics of his model have been extended in a natural manner. Consider, for example,

transactional threads. In Moss' m odel, transactional threads are always associated with

subtransactions. Seriahzabihty semantics are provided. The generalized message scheme

extends the concept of transactional threads by additionally introducing non-transaction

creating transactional threads. Again, seriahzabihty semantics are provided as for their

transaction creating counterparts. Recall the discussion of the scheduling properties in

Section 4.2.2.

5.1.3.2 Separation of Concerns

Chapter 3 presents in detail the advantages of the generalized message scheme. They can

be paraphrased and summarized as follows.

Transactions are useful abstractions for reliable computing when the integrity of criti

cal data is concerned. However, ensuring transactional semantics comes at a considerable

CHAPTERS. DISCUSSION 103

expense. Therefore, non-transactional operations are more efficient and sufficient when

the integrity of data is not important. For example, in the banking domain, transactions

should be used for account operations like deposits and withdraws while transactions

should not be used for gathering statistical information.

Synchronous, asynchronous, and wait-by-necessity execution and their various vari

ations are well-established and widely used mechanisms in concurrent and distributed

programming. Moss' model combines the transaction aspect of an operation with its

kind, i.e., synchronous or asynchronous. This forces application programmers to make

compromises between the two concepts. They must, for example, use subtransactions if

they want to create a new thread.

In contrast, the generalized message scheme allows the kind of operations to be spec

ified independently from their transaction characteristics. This separation of concerns

gives application programmers the full advantage of both concepts. If they want to cre

ate transactions then they can use transaction creating messages. If they want to create

threads then they can use asynchronous messages. Also, as pointed out in Chapter 3,

separation of concerns supports reusability, extensibility and maintainability.

5.1.3.3 Level of Concurrency

The use of serialized transactional but non-transaction creating threads in the generalized

message scheme allows higher concurrency than asynchronous subtransactions in Moss'

model. As pointed out in Section 4.2.2, these threads allow the application programmer

to explicitly trade off the level of concurrency with the level of recovery provided by the

system.

Recall the example for Scheduling Property 3 as described in Section 4.2.1 and shown

in Figure 4.1. In this example, Mxx and MX5 have the same receiver object 0 and are

conflicting. Mn has started execution before Mis is sent. Moss' upward lock inheritance

mechanism handles this case in the following way. Assume that Mn reads O and M15

attempts to write 0. Further assume that M n is still executing. At this point in time,

Mis is not schedulable since it cannot acquire a write lock. This is because T n (the

transaction of M n) holds a read lock on O and T n is not an ancestor of T15. Thus,

Locking Rule 1 is not satisfied. When T n commits then its read lock is upward inherited

by its parent transaction Tio- Mi5 still cannot acquire a write lock since Tio is not an

ancestor of T15. The same happens when Tio commits. However, when T9 commits

then the read lock is upward inherited by its parent transaction T8. T8 is an ancestor

transaction of Ti5. Thus, T15 can now acquire the write lock and is schedulable.

Recall that T8 = LCAT(Mu,Mis). T9 = ILBLC AT (Mn, Mis). This example

demonstrates that when the transaction one level below the least common ancestor com

mits, then locks acquired by it and all descendant transactions are upward inherited to

the least common ancestor transaction. At this point in time, other descendants of the

least common ancestor transaction can acquire conflicting locks. One could say that up

ward lock inheritance and Locking Rules 1 and 2 "implement" the schedulability test that

checks whether the transaction one level below the least common ancestor has committed.

This can be showed easily via induction over the nesting levels of a transaction tree.

Thus, Moss' scheduling mechanism provides the same level of concurrency as the

scheduling mechanisms for the subset of his model of the generalized message scheme.

This is because conflicting messages become schedulable exactly under the same condition.

Now recall that non-transaction creating transactional threads are outside Moss'

model. They allow higher concurrency than subtransaction creating transactional threads,

as pointed out in Section 4.2.2. The same argument holds for a comparison of non-

CHAPTER 5. DISCUSSION 104

transaction creating transactional threads of the generalized message scheme and asyn

chronous subtransactions in Moss' model. Thus, the extensions to Moss' model provide a

higher level of concurrency than Moss' model does. Non-transaction creating transactional

threads allow application programmers to explicitly trade-off the level of concurrency with

the level of recovery.

5.1.3.4 Serializability between Ancestor and Descendant Transactions

Before comparing the individual mechanisms, 1*4- w* define; what is meant by serializabil

ity between asynchronous ancestor and descendant transactions. As usual, a serializable

schedule is defined as a schedule whose effects are equivalent to a serial schedule. However,

there cannot be a serial schedule between an ancestor and a descendant transaction. This

is because an ancestor transaction cannot commit before all descendants have committed3,

and therefore before all descendants have started execution. On the other hand, a de

scendant transaction cannot commit before one of its ancestor transactions has started

execution. This is because the descendant is created by the ancestor.

Therefore, a serial schedule between asynchronous ancestor and descendant transac

tions is defined as a schedule which is equivalent to a serial schedule of the two threads

that include all data accesses of the two transactions but exclude their commit procedures.

In Moss' model, only leaf transactions are allowed to access objects. This means

that no ancestor transaction ever performs any work other than creating subtransactions.

With this access restriction, there is no problem with the synchronization of asynchronous

ancestor and descendant transactions. This is because ancestor transactions never perform

"real" work. Moss concedes that the access restriction severely limits programming in his

model. The justification for the access restriction is to simplify the presentation of his

mechanisms. He offers the following range of practical approaches to get around this

restriction that have been adopted by various systems.

1. All data accesses are turned into subtransactions.

2. Parent transactions are always suspended while child transactions execute.

3. Conflicting data accesses of ancestor and descendant transactions are treated as

errors.

4. Ancestor and descendant transactions can interleave in an uncontrolled way.

Data Accesses Turned into Subtransactions: In this approach, all data accesses

performed by a non-leaf transaction are turned into synchronous subtransactions. These

additionally created subtransactions perform nothing but data accesses. Thus, they are

leaf transactions and the access rule is not violated. To avoid subtransactional overhead,

Moss proposes that a real implementation can treat these additional transactions in a

special way.
First consider the option that the conversions from data accesses into synchronous sub-

transactions are performed automatically by the system and invisibly to the application

programmer. Then, seriahzabihty between asynchronous ancestor and descendant trans

actions cannot be guaranteed. Consider the example shown in Figure 5.1. Transaction Tx

creates an asynchronous subtransaction T2. Tx performs two write accesses writex and

write2 to an object. T2 performs a write access write3 to the same object. The timing

3 T h e abort case is not considered here in order to give transactions the chance of finishing successfully.

CHAPTER 5. DISCUSSION 105

(a)

(b)

CTI'1
V J

(Tl)

T̂2~]

CT13

[T2) (TT)

[T2']

Figure 5.1: Accesses

Tl

Tl

write 1

I

T2

write 1

_1
_̂r Tl'

T2

are turned into

write 3

T2'

write 2

1

write 2

I

u Tl"

subtransactions.

write 3

1

time

diagram in Figure 5.1 (a) shows a possible serializable schedule between Ti and T2 where

the write accesses are performed in order writex, write2, write3.

Figure 5.1 (b) shows how the variable accesses of Ti and T2, writex, write2 and write3,

are turned into synchronous subtransactions T[, T[' and T2, respectively. Note that this

transformation makes T2 (the subtransaction specified by the application programmer)

and T{ and T[' (the subtransactions created by the system) sibling transactions. Using

Moss' locking rules, the following schedule is allowed. Ti starts execution and creates

T[. T[acquires a write lock, performs writex and commits. Ti then upward inherits the

write lock. T2 is created asynchronously. Assume that it creates T'2 before Ti creates

T". Then, T'2 tries to acquire a write lock. This lock is granted since the holder of the

write lock, Ti, is an ancestor. T2 can then perform write3 and commit. Successively, T2

can commit and T" can perform write2. Thus, the locking rules allow a non-serialized

schedule between asynchronous ancestor and descendant transactions Ti and T2 with the

write accesses performed in order writex, write3, write2.

This example demonstrates that an automatic conversion of data accesses to sub-

transactions does not guarantee seriahzabihty between ancestor and descendant trans

actions. Thus, application programmers must manually convert variable accesses into

subtransactions. They must reason over the application semantics in order to guarantee

seriahzabihty. This defies the purpose of transactions. Recall that transactions have been

introduced as a programming abstraction where the underlying system ensures semantics

like seriahzabihty.

Reconsider the example of Figure 5.1. The application programmer must ensure that

T2 is created after T" has committed. Note that this modification of the program may not

only obscure the definition of Ti in an unnatural way. It may also restrict the concurrency

considerably. Assume that Ti performs time-consuming computations between writex

and write2, possibly remotely. Furthermore assume that T2 performs time-consuming

computations before write3, possibly remotely. Then, the delay of T2 may lead processors

to be idle that could have, otherwise, performed operations concurrently.

Parent Transactions Suspended: The second approach to avoid the access restric

tion is to always suspend parent transactions while child transactions execute. The par-

CHAPTER 5. DISCUSSION 106

ent transaction can resume execution as soon as all child transactions have committed or

aborted. This approach is used by Argus. It ensures that whenever descendant transac

tions execute, all ancestor transactions are suspended. Although this approach prevents

interleaving executions of ancestor and descendant transactions, it does not provide seri

ahzabihty between ancestor and descendant transactions as defined above. Furthermore,

it restricts concurrency unnecessarily. This is demonstrated in Section 5.2.

Concurrent Accesses are Errors: This approach disallows all conflicting data ac

cesses between asynchronous ancestor and descendant transactions and treats them as

programming errors. Although this approach may be valid in database programming, it

is considered too restrictive in the context of general distributed programming.

Uncontrolled Interleaving: This approach allows asynchronous ancestor and descen

dant transactions to interleave in an uncontrolled way. It obviously does not guarantee

seriahzabihty between asynchronous ancestor and descendant transactions and assumes

that the application programmer "does the right thing". This approach is incompati

ble with the transaction concept as a useful programming abstraction where the system

provides the desired semantics automatically.

In contrast to all these approaches, the schedulability predicate for the generalized

message scheme always provides seriahzabihty between ancestor and descendant transac

tions. This is because scheduling decisions are not only made on the basis of transaction

commits. They are also made on the basis of the finish of execution of threads. Recon

sider the example shown in Figure 5.1. The schedulability predicate ensures that write3

is not performed before Ti's thread has finished execution, hence after write2 has been

performed.

5.1.3.5 Efficiency

Since Moss does not describe an implementation of his mechanisms, a comparison of the

two mechanisms can only be performed on a conceptual level. In this section, it is shown

that scheduling for the subset of the generalized message scheme that implements Moss'

model is not more expensive than scheduling in Moss' model.

Both mechanisms need a data structure that resembles the position of a transaction

in a transaction tree. The length of this structure is determined by the transactional

nesting depth4. The implementation of the scheduling mechanism for the generalized

message scheme uses the message path data structure. The length of a message path is

determined by the number of transaction creating and/or asynchronous messages. For the

subset of Moss' model, the length of a message path is the transactional nesting depth.

This is because,in his model, transactional operations are considered only. Thus, the

data structure describing the position of a transaction in a transaction tree has the same

length for both mechanisms.

Both mechanisms require schedulability testing of requested operations compared

to operations that have started execution. They are called "granted messages" in the

scheduling mechanism for the generalized message scheme and "other transactions hold

ing the lock" in Moss' model. In both mechanisms, this test is linear in the number of

4Theie are implementations of Moss' model that use fixed length nested transaction identifiers. For

example, Camelot employs such an approach. For transactions whose nesting depth is within the limit of

this fixed length, the performance discussions above apply. For deeper nested transactions, caching and

informing techniques are used.

CHAPTER 5. DISCUSSION 107

executing operations. Furthermore, for both mechanisms, the individual compatibility

tests are linear in the transactional nesting depth. For the generalized message scheme,

this has been shown in Section 4.6.2.8. For Moss' mechanisms this is easy to see since a

test for ancestor relationship is performed.

In a naive implementation of upward lock inheritance, all locks held by a committing

subtransaction are informed to perform upward inheritance. This approach potentially

requires a large number of network communications since a committing transaction must

not only communicate with all locks it has acquired but also all locks, all its descen

dant transactions have acquired. A more realistic strategy is called "lazy-evaluation

anti-inheritance" [Lis84]. It describes a caching and informing mechanism. Scheduling

information is only requested when needed. In this case, the question whether or not a

transaction "has committed up to the least common ancestor" is asked. This strategy is

equivalent to asking the transaction one level below the least common ancestor whether it

has committed—the strategy used in the scheduling mechanisms for generalized message

scheme.

Assuming the subset of Moss model, the scheduling mechanisms for generalized mes

sage scheme does not need more communications to obtain scheduling information than

Moss' mechanism, using lazy-evaluation anti-inheritance. Note that in Moss' model, con

currency is only created via subtransactions, hence asynchronous messages are always

transaction creating. This means that once ILBLC AT (mx,m2) has committed, the

thread of mx must also have finished. This information need not be requested separately.

The fact that in the generalized message scheme, transaction creation and thread

creation are unified with the message concept allows further reduction of network com

munications than is possible in Moss' model. This is because message paths contain

information about the message kind, synchronous or asynchronous. This information al

lows, in some cases, the deduction of the commit status of transactions which otherwise

would have to be acquired remotely. Recall Section 4.6.2.9.

On aborts, both mechanisms perform the same operations. All locks held by an

aborting transaction are released.

5.2 Argus

5.2.1 The Model

The scheduling mechanism adopted in Argus [Lis82, LS83, LCJS87, Lis88] is similar to

Moss' mechanism. Since it is a major design goal of Argus to make distributed program

ming easier, the restriction that only leaf transactions can access objects is removed. The

Argus approach to dealing with the interleaving of concurrent ancestor and descendant

transactions is to disallow ancestor/descendant concurrency completely. Parent transac

tions are always suspended while asynchronous child transactions execute. Although there

may be concurrency between sibling transactions, there is no concurrency between ances

tor and descendant transactions. This approach is expressed in the linguistic constructs tuf

Argus provides for creating transactions. Top-level transactions and synchronous trans

actions are created via the enter action. . .end construct. Concurrent subtransactions

are created via the coenter. . . end construct. The coenter. . . end construct ensures that

the invoking transaction is suspended until all child transactions have either committed

or aborted: Only then it is resumed.

CHAPTER 5. DISCUSSION 108

write 3

Tl i

write 1 T2 \ write 2

I JTi J\ I
T ^ _ _ _ i _ _ _ c o b e g i i | / ~ ^ n » n H I > T

\Hfi_

Figure 5.2: Ancestor/descendant synchronization in Argus.

5.2.2 Generality of the Model

Like Moss' model, the transactional model of Argus has a number of restrictions that are

removed by the generalized message scheme.

• Concurrency can only be created via subtransactions.

• There is no ancestor/descendant concurrency.

• Every handler call implicitly creates a transaction. Therefore, non-transactional

operations are not included in the model.

• A wait-by-necessity type construct is not provided.

The creation of top-level transactions from within subtransactionsis provided via the

enter topaction. . .end construct. T h e generalized message scheme supports such a con

struct via the extension described in Section 4.9.

5.2.3 Scheduling

Scheduling in Argus is based on the locking rules of Moss' book as described in Section 5.1.

Transactions can acquire a lock if all transactions holding the lock in a conflicting m o d e are

ancestors. At transaction commit, locks are upward inherited to the parent transaction

(if any). At transaction abort, locks are released.

5.2.4 Serializability of Ancestor and Descendant Transactions

Since Argus does not allow concurrency between ancestor and descendant transactions,

there is no interleaving execution between ancestor and descendant transactions' threads.

However, note that the Argus approach does not provide seriahzabihty between ancestor

and descendant transactions as defined in Section 5.1. T h e reason is that there cannot be a

serial schedule between a parent transaction and its subtransactions if they are created via

the coenter.. .end construct. This is obvious from the fact that the parent transaction

always starts before its subtransactions start and always finishes after the subtransactions

have finished. In short, there cannot be serial schedules of ancestor and descendant

transactions if there is no concurrency between ancestor and descendant transactions.

Consider the example in Figure 5.2. A transaction T performs two write accesses writex

and write2 to the same data item. T creates a number of asynchronous subtransactions

via the coenter.. .end construct. T h e subtransactions are created between the two

accesses. O n e of the subtransactions, Tx, performs a write access write3 to the same data

item. Argus schedules the write accesses in the order writex, write3, write2. This is not a

file:///Hfi_

CHAPTER 5. DISCUSSION 109

elementl element t

lUt

coni ents

V.

(a)

Tl Tl'

T2 T2

(b)

ffn-1

Figure 5.3: Linked list example.

serializable schedule between the ancestor transaction Ti and the descendant transaction

T2. In a serializable schedule, the write accesses are either performed in order writex,

write2, write3 or write3, writex, write2.

5.2.5 Level of Concurrency

An obvious disadvantage of the Argus approach to suspend parent transactions while

subtransactions execute is that it restricts concurrency unnecessarily. It could be argued

that higher concurrency can always be achieved in Argus by turning the transaction code

after coenter. . . end into an additional concurrent subtransaction. Such a conversion

could be performed either automatically by the system or manually by the application

programmer. There are various drawbacks of this conversion approach which are discussed

below.

5.2.5.1 Readability, Reusability and Maintainability

If such a conversion is left to the application programmer then the application program

becomes unnecessarily obscured. Efficiency concerns have to be reflected in the structure

of the programs. This adversely affecfe*tlie readability and maintainability

of code, but also the reusability of transactions in various contexts.

5.2.5.2 Increased Transactional Nesting Depth and Overheads

hether this conversion is performed manually by the application programmer

or automatically by the system, it involves subtransactional overheads. These overheads

include the activation of transaction handlers, recovery-related operations, commit noti

fication, upward lock inheritance/and, in case of early writing, disk accesses.

Furthermore, the transactional nesting depth may be increased considerably by this

approach, leading to higher expense in scheduling. Consider the example shown in Fig

ure 5.3, which has been adapted from [HR93]. The data structure used is a linked list.

CHAPTER 5. DISCUSSION 110

Every list element has two pointers, one to the contents of the element and one to the

next list element. The whole list is represented by a pointer to the first list element. See

Figure 5.3 (a). The task is to . .._. y update the whole hsWperfofeiing an

update operation on each list element in a subtransaction.

First assume that the list elements are to be updated sequentially. This could be

expressed in Argus-like pseudocode in the following way:

updateListLinearly (1: list)

ptr := 1;

while (ptr <> nil) do

enter action updateElement (ptr->contents) end;

ptr := ptr->next;

end updateListtw**'/

The invocation is as follows.

enter action updateListLinearly(1) end.

If there are n elements in the list / then the transaction tree in Figure 5.3 (b) is created.

Top-level transaction T follows the next pointers of /. It creates the subtransactions

Tx...Tn to update contentsx...contentsn, respectively.

Now assume that all update operations are to be performed concurrently. This cannot

be achieved directly in Argus. This is because the parent transaction that foUows the next

pointers cannot execute concurrently with its subtransactions that perform the update

operations for the individual elements. However, the approach proposed above shows

how the Argus program can be restructured to provide the desired concurrency. The

update operation of each element is performed in a concurrent subtransaction, using the

coenter. . .end construct. The remaining code of the parent transaction, i.e. following

the next pointer and updating the rest of the list, are turned into a sibling subtransaction.

An implementation of this strategy can be expressed by the following recursive Argus-like

pseudo code.

updateListConcurrently (1: list)

if (1 <> nil) then

coenter ... '/.two concurrent subactions:

updateElement (l->contents) ... '/. first subaction

updateList(l->next) . . . '/.second subaction

end

end updateList^'Wv**^

The invocation is as follows.

enter action updateListConcurrently(1) end.

This execution creates the transaction tree shown in Figure 5.3 (c). Transactions

T,Tx,...,Tn correspond to transactions T,Tx,...,Tn in Figure 5.3 (b). Top-level transac

tion T performs the update of the whole list and subtransactions Ti, ...,Tn perform the

updates for contentsx..contentsn, respectively. T[,...,T'n are the^tfansactions

created in order to achieve the desired level of concurrency. The level

of transaction nesting has been increased dramatically from the constant number 2 to the

length of the list, n.

CHAPTER 5. DISCUSSION 111

In contrast, the concurrent update of a linked list can be expressed elegantly and

efficiently in the generalized message scheme, without the need for additional transactions.

Consider the following Hermes/ST like pseudo code for method updateConcurrently of

class LinkedList.

updateConcurrently

ptr := hermesSelf.

[ptr notNil] whileTrue: [

ptr contents asynchronously; transactionCreating; update.

ptr := ptr next]

The invocation is as follows.

list transactionCreating; updateConcurrently.

The sequential version can be obtained by simply omitting the asynchronously pa

rameter for the update message. The execution of list transactionCreating; update-

Concurrently creates the same transaction tree as shown in Figure 5.3 (b), where the

solid fines are replaced by dashed fines.

5.2.5.3 Synchronization of Ancestor and Descendant Transactions

As pointed out above, concurrent subtransactions created by coenter.. .end are not

serialized with their parent transactions. However, Argus provides other, clean semantics

for the order of execution of parent and subtransactions. First, the first part of the parent

transaction is executed. Then, all subtransactions are executed in a serializable schedule.

Finally, the second part of the parent transaction is executed.

This clean semantics is lost when the mechanism for achieving higher concurrency is

used. Although seriahzabihty between subtransactions is guaranteed, it is non-deterministic

when the second part of the parent transaction is scheduled. Thus, applying this mech

anism not only change* the performance but may also change the semantics of an

implement at ion.

In contrast, the scheduling mechanism for the generalized message scheme always pro

vides the highest level of concurrency. Application programmers do not have to modify

their code in order to achieve a desired level of concurrency. They do not have to risk

software errors due to the semantic changes that these modifications may involve. Fur

thermore, seriahzabihty semantics are always guaranteed for asynchronous ancestor and

descendant transactions. This is because scheduling decisions are made on the

basis of transaction commits and aborts but also on the basis of the finish of execution of

threads.

5.3 Eden

5.3.1 The Model

Eden is a distributed programming environment that supports nested transactions [PN85,

ABLN85]. In Eden's transaction model, all transactions can access data items, called

"Eden objects" or "Ejects". Every transaction can create a number of synchronous and

asynchronous subtransactions. Concurrency can be created via the COBEGIN. . .COEND

construct. Concurrent threads created via COBEGIN. . .COEND can, but do not have to,

create transactions. Unlike the coenter... end construct in Argus, the thread performing

CHAPTER 5. DISCUSSION 112

a COBEGIN. . . COEND construct is not suspended during the execution of the concurrent

subthreads. Thus, ancestor/descendant concurrency is provided. Unlike Argus, Eden

does not provide a construct to leave the scope of a transaction, e.g., to create a top-level

transaction from within a subtransaction.

5.3.2 Scheduling

Eden allows non-leaf transactions to access Ejects. Furthermore, ancestor/descendant

transaction concurrency is provided. Thus, the scheduling rules specified in Moss' book

as described in Section 5.1 are not sufficient to provide seriahzabihty between ancestor

and descendant transactions. Thus, Eden employs the scheduling mechanism described

in Moss' thesis [Mos81].

5.3.2.1 Holding Locks versus Retaining Locks

In Moss' thesis, a distinction is made between a transaction holding a lock and a trans

action retaining a lock. A transaction holds a lock if the transaction itself has acquired

the lock because it performs data accesses. A transaction holds a lock until it commits

or aborts. A transaction retains a lock if one of its descendants has held this lock and

the lock has been upward inherited to this transaction. The explicit distinction between

holding and retaining locks allows other transactions to distinguish whether a lock has

been acquired by an ancestor or by a non-ancestor that belongs to the same transaction

tree. The locking rules are as follows.

1. A transaction can hold a lock in write mode if no other transaction holds the lock

and all transactions retaining the lock are ancestors.

2. A transaction can hold a lock in read mode if no other transaction holds the lock

in write mode and all transactions retaining the lock in write mode are ancestors.

3. At subtransaction commit, the parent transaction retains all locks held or retailed

by the committing subtransaction.

4. At transaction abort and top-level commit, all locks held or retained are released.

These locking rules provide serializability between ancestor and descendant trans

actions. Assume that there is a lock conflict between an ancestor and a descendant

transaction. Consider two cases.

1. The descendant transaction has acquired the lock before the ancestor transaction.

2. The ancestor transaction has acquired the lock before the descendant transaction.

Descendant Before Ancestor: In this case, Locking Rules 1 and 2 ensure that the

ancestor transaction cannot acquire the lock unless the descendant transaction has com

mitted and its lock has been upward inherited to the ancestor transaction. This schedule

is equivalent to the serial schedule "descendant before ancestor" and is therefore serializ

able.

CHAPTERS. DISCUSSION 113

Ancestor Before Descendant: In this case, Locking Rules 1 and 2 ensure that the

descendant transaction cannot acquire the lock before the ancestor transaction has com

mitted. However, the ancestor transaction cannot commit unless all of its descendant

transactions have either committed or aborted. A deadlock situation occurs that can

only be resolved by aborting either the descendant or the ancestor transaction.

If the ancestor transaction acquires the lock before the descendant transaction is

created then there is no point in retrying the failed transaction. Every retry will lead to the

same deadlock situation. Thus, such a transaction is de facto regarded as a programming
error.

5.3.2.2 Non-Transaction Creating Transactional Threads

Transactions can create non-transaction creating threads via the COBEGIN. . .COEND con

struct. No seriahzabihty semantics is provided for such threads. They can interleave in an

unrestricted way with respect to each other. However, since serializability between trans

actions is ensured, these threads cannot interleave with other transactions in a conflicting

way.

5.3.3 Comparison

The scheduling mechanism in Eden always leads to an ancestor/descendant deadlock if

an ancestor transaction acquires a lock before a descendant transaction tries to acquire

the same lock. In contrast, the scheduling mechanism for the generalized message scheme

never deadlocks in such a case. This is because scheduling decisions are not only based

on transaction commits and aborts but also on the finish of execution of threads.
Non-transaction creating transactional threads in Eden are treated like non-serialized

threads in the generalized message scheme as described in Section 4.8. There are no

serialized non-transaction creating threads in Eden.

5.4 Downward Lock Inheritance

5.4.1 Simple Downward Lock Inheritance

The concept of downward inheritance of locks is an extension of the scheduling mechanism

described in Moss' thesis [Mos81]. Recall the distinction between holding and retaining

locks and the locking rules, as described in Section 5.3.2.1. A linguistic construct is

introduced that allows ancestor transactions expficitlĵ o/fer locks that theyare holding

to descendant transactions. Descendant transactions can then acquire the^lock. This is

expressed in the following additional locking rule.

• A transaction holding a lock can offer the lock to descendant transactions. After

offering the lock, the transaction retains the lock in the same mode it held it.

When the transaction later wants to hold the lock again then it has to wait until

descendants holding the lock have committed or aborted, i.e., until the lock has been

upward inherited back to the transaction. Such a downward lock inheritance mechanism

has been implemented in Locus [MMP83].

5.4.2 Controlled Downward Lock Inheritance

In [HR93], the simple downward lock inheritance concept is extended to a concept called

"controlled downward lock inheritance". The concepts of upgrading and downgrading locks

CHAPTER 5. DISCUSSION

(a)

Tl L
lock downward
inheritance

T2

writes

write 2

transaction
commit

0>) Tl
transaction creation bm

no lock downward
inheritance

T2

write 2

lock downward
inheritance

Figure 5.4: Lock downward inheritance.

are introduced. They allow explicit specification of the type of mode in which descendants

are allowed to hold a lock. The following two locking rules express this concept.

• A transaction may upgrade a lock from read mode to write mode if no other trans

action holds this lock and any transaction retaining this lock is an ancestor.

• A transaction may downgrade a lock it holds from write mode to read mode. It

then retains the lock in write mode.

5.4.3 Analysis

Downward lock inheritance and its extensions, upgrading and downgrading of locks, al

lows the application programmer to explicitly modify transactional scheduling semantics

on a per-transaction basis. Note that downward lock inheritance allows application pro

grammers to explicitly defy serializability between ancestor and descendant transactions.

Consider the example shown in Figure 5.4 (a). Ti performs a write operation writex

and therefore acquires a write lock. It offers this write lock to its descendant T2. T2

performs another write operation write3 to the same data item and acquires the offered

lock. After T2 has committed, the lock is upward inherited by Tx. It can then re-acquire

the lock to perform a write operation write2. The explicit lock offer allows, in this case,

the non-serializable schedule writex, write3, write2.

However, downward lock inheritance can also be used to ensure seriahzabihty between

asynchronous ancestor and descendant transactions. This can be achieved if a transaction

offers all the locks it holds to descendant transactions after it has performed its last data

access. Since the transaction does not perform any further data accesses, serializability

is ensured.

Consider the example shown in Figure 5.4 (b). Transaction Tx acquires a write lock

and performs two write operations writex and write2. After both write operations have

been performed and it is ensured that no further data is accessed, Tx offers the lock to its

descendants. T2 can then acquire the lock to perform the write operation write3 to the

same data item. The serializable schedule writex, write2, write3 is achieved.

5.4.4 Comparison

Lock downward inheritance and the extension to include upgrading and downgrading of

locks allow application programmers to explicitly modify^the performance and scheduling

CHAPTER 5. DISCUSSION 115

characteristics of applications. As shown above, they can explicitly violate serializabil

ity as well as ensure seriahzabihty. Furthermore, using application specific knowledge,

they can ensure seriahzabihty and achieve higher concurrency than is possible with the

schedulability predicate for the generalized message scheme. This is the case if an ances

tor transaction offers locks to its descendants before it finishes execution but after it is

sure, via the semantics of the application, that these locks are not further used by the

ancestor transaction. In order to make such optimizations, the application programmer

must carefully reason over both application semantics and the semantics of the scheduling

mechanisms.

In contrast, the schedulability predicate for the generalized message scheme always

ensures seriahzabihty for all kinds of serialized threads.f^ighest possible concurrency

is achieved without using application-specific knowledge. However, the application pro

grammer <f-°*s notAthe ability to use application-specific knowledge in order to increase

concurrency further. Also, the application programmer cannot defy seriahzabihty in the

way^aownward lock inheritance allows.

To paraphrase, downward lock inheritance is an explicit mechanism where the ap

plication programmer is responsible for ensuring the desired semantics. The scheduling

mechanism for the generalized message scheme is an implicit mechanism where the system

is responsible for ensuring the desired semantics.

Other important aspects of the the generalized message scheme sit), OJ, e.g. the inter

play of transactional and non-transactional messages, serialized transactional threads that

do not create a subtransaction, non-serialized threads, and return dependencies are not

addressed by the downward lock inheritance mechanism and can, therefore, not be com

pared.

5.5 Venari/ML

Venari/ML [WFMN92, NW91, HKM+94] is the only system the author is aware of

that extends the traditional nested transaction model in a similar fashion to Hermes/ST.

Not only are transaction semantics separated from thread semantics, but individual

transactional properties caf^De applied independently. fis~ in Hermes/ST, the separation

of concerns is a key idea of Venari/ML and Venari/ML goes even further than Hermes/ST.

Even though Venari/ML is not object-oriented and not yet distributed, its similar design

goals make it well worth comparing with Hermes/ST.

The notations used in various Venari/ML publications differ slightly. In this section,

the notations of [HKM+94] are used. The term "transaction" is redefined to describe

a thread or a group of threads. Every transaction can be invoked synchronously or

asynchronously. The predicates "persist", "undo" and "locking" can be applied indepen

dently to transactions, persist, undo and locking roughly correlate to the transactional

properties permanence, atomicity, and seriahzabihty, respectively. A transaction that has

all three properties is called a "regular transaction". Regular transactions have the se

mantics of transactions in the traditional sense. The other seven combinations provide

weaker semantics but are also less expensive than regular transactions. Transactions can

be arbitrarily nested, thus providing nested transactions and a wide range of other useful

semantics.

Venari is implemented on top of the functional programming language Standard M L

[MTH90]. Transaction creation and thread creation is specified via higher order functions.

The following syntax is used, f a denotes the application of function f to argument a. No

transaction or thread is created, (transact f) a first applies the higher order function

transact to f which returns a function with regular transaction semantics. This function

CHAPTER 5. DISCUSSION 116

is then applied to a. transact can be applied to any function f regardless of its semantics

and implementation.

Thread creation is specified similarly, (fork f) a specifies that function f is applied

to argument a asynchronously.

5.5.1 Generality of the Model

Venari/ML's transaction model is more general than the generalized message scheme. Like

the generalized message scheme, it includes the following extension* of the transactional

nested transaction model;

• Transactional and non-transactional operations are included.

• Every transaction can access data, not only leaf transactions.

• fork creates concurrency without necessarily creating a subtransaction.

• Ancestor/descendant concurrency is supported.

• The model includes both transactional threads that are serialized with respect to

each other and transactional threads that are not serialized with respect to each

other.

Additionally, Venari/ML allows various transactional features to be applied indepen

dently.

5.5.2 Scheduling

In terms of scheduling, however, Venari/ML is much less sophisticated than Hermes/ST.

Venari/ML provides two kinds of locking:

1. Read/write locking is used for transactions. Locks are explicitly acquired in the

function code and are released by the system according to 2PL.

2. ^ utual exclusion locking fs typically used for non-transactions. Locks are explicitly

acquired and released in the function code.

With mutual exclusion locking, application programmers are responsible for ensuring

the desired scheduling semantics. Mutual exclusion locks can, for example, be used to

synchronize non-transactional messages.

With read/write locking, the system ensures seriahzabihty semantics. Venari/ML uses

the simple locking rules of Moss' book as described in Section 5.1. No distinction is made

between holding and retaining locks. Locks can be acquired if all conflicting locks are

held by ancestor transactions. At transaction commit, all locks are upward inherited. At

top-level transaction commit and transaction abort, locks are released.

5.5.3 Serializability of Ancestor and Descendant Transactions

Venari/ML does not restrict data accesses to leaf transactions. /ncestor/descendant

concurrency is not restricted. Also, no distinction is made between holding and retain

ing locks. This means on^one hand that no deadlock between ancestor and descendant

transactions can occur as in Eden. However, on the other hand it means that ancestor

and descendant transactions can interleave in an uncontrolled manner. Seriahzabihty of

CHAPTER 5. DISCUSSION 117

asynchronous ancestor and descendant transactions is not provided. If application pro

grammers want to guarantee serializability in this case, they must implement it explicitly

via mutual exclusion locks.

In contrast, the scheduling mechanism for the generalized message scheme always

ensures seriahzabihty between asynchronous ancestor and descendant transactions.

Transaction and thread semantics in Venari/ML are applied to functions—analogously

to the generalized message scheme. Thus, return dependencies can arise between ancestor

and descendant transactions in exactly the same way. In contrast to the scheduling

mechanism for the generalized message scheme, this issue is not addressed by Venari/ML's

scheduling mechanism.

5.5.4 Level of Concurrency

Although Venari/ML provides non-transaction creating transactional threads that provide

serializability semantics, it schedules them like regular transactions. This is because Moss'

locking rules are generally used for all kinds of transactions. This takes away some of the

attraction of such threads since concurrency is unnecessarily restricted. This is because

Moss' scheduling rules require transactions to commit all the way up to the least common

ancestor. This not only ensures seriahzabihty but also avoids cascading aborts. However,

serializability is already ensured when conflicting threads have finished execution. Recall

the example for Scheduling Property 3 as described in Section 4.2.1.

In contrast, the scheduling mechanism for the generalized message scheme provides

seriahzabihty of threads under the highest concurrency that can be achieved without

using application-specific knowledge. This allows application programmers to explicitly

trade-off the level of concurrency with the level of recovery in transactional threads.

5.6 KAROS

KAROS [GCLR92] is an object-oriented concurrent, but not distributed, programming

system that supports nested transactions. KAROS is implemented in C + + [Str86]. It

is the only transactional system the author is aware of that provides wait-by-necessity

constructs in combination with transactions. For this reason, it is compared with

the scheduling mechanism for the generalized message scheme.

5.6.1 The Transaction Model

Transactions in K A R O S are implicit in that every message creates a new transaction.

Three types of asynchronous messages are supported: Apply, Cal^and Send.

Apply: The syntax for Apply is as follows:

res = Apply(server, class, method) << Argl..4 ArgN;

When Apply is used, : an implicit future object is returned to the sender im

mediately. A n implicit future object is analogous to a voucher object as described in

Section 4.7. The actual result is eventually awaited when the implicit future is first used

or when it is sent an explicit wait message. Two subtransactions are always created when

Apply is used: one for method and one for the remaining code of the sender's message.

The first subtransaction commits after the execution of method has finished. The second

subtransaction commits when the implicit future is awaited.

CHAPTER 5. DISCUSSION 118

Call: The syntax for Call is as follows.

res = CalKserverl, class, method) « Argl ... « ArgN;
if Failure(res)) /*alternative code */

res = Call(server2, class, method) << Argl ... << ArgN;
else /* normal code */

Call behaves exactly like Apply if there is no failure in the invocation of method. In

case of a failure, a failure code is returned and the sender can perform some alternative
action.

Send: The syntax for Send is as follows.

Send(server, class, method) << Argl ... << ArgN;

After issuing a Send message, the sender continues to execute in its current transaction.

The sender does not expect any result from method, method is executed in an independent

top-level transaction outside the scope of the sender's transaction.

5.6.2 Scheduling

KAROS uses the simple locking rules of Moss's book for synchronization (see Section 5.1).

5.6.3 Serializability

The scheduling mechanism for the generalized message scheme provides stronger seman
tics for wait-by-necessity messages than K A R O S does for Apply and Call messages. See

Figure 5.5 (a) which has been adapted from [GCLR92]. A transaction tx sends a message

using Apply or Call. This creates two subtransactions tx.x for the remaining code of

the sender and tx.2 for the new message. Assume that there are three conflicting write

accesses being performed by tx, tx_x and tx_2 as shown in Figure 5.5 (a). Since K A R O S

treats the remaining code of the sending transaction tx as subtransaction tx,i, the order

of accesses write2 and write3 is non-deterministic. Thus, both schedules writex, write2,

write3 and writex, write3, write2, are possible.
In contrast, the scheduling mechanism for the generalized message scheme provides

stronger serializability semantics in this case. Only the schedule writex, write2, write3
is allowed. This is because the scheduling mechanism ensures seriahzabihty between

the whole of the sending thread and the whole of the wait-by-necessity thread unless a

dynamic return dependency is established. Such a return dependency is only established

at the point where the sender awaits the result of the wait-by-necessity message.

5.6.4 Efficiency and Concurrency

Since K A R O S creates a transaction for every message, application programmeirdo not have

the option to save transactional expense when transactional semantics are not required.

Also, higher concurrency for non-transaction creating transactional threads canuiot be

achieved.
The method of creating two subtransactions for Apply and Call messages is similar

to the mechanism discussed in Section 5.2 to increase concurrency in Argus. It has the

same drawback of creating deeply nested transaction trees where the application program

suggests only a constant level of nesting. Consider the following example in KAROS-fike

pseudo code;

CHAPTER 5. DISCUSSION 119

xl = Apply(serverl, classl, methodl) << Argl.l ... ̂ Argl.Ml;

x2 = Apply(server2, class2, method2) << Arg2.1 ... <k Arg2.M2;

xN = Apply(serverN, classN, methodN) << ArgN.l ... 6 ArgN.MN;

x = xl + x2 + ... xN; /* usage of implicit futures */

There is no nesting of messages in this example and thus the code suggests a flat

transaction tree. However, the K A R O S system creates a transaction tree of depth n + 1 as

shown in Figure 5.5 (b). In this figure, transaction T refers to the transaction sending all

the Apply messages. Tx...Tn refer to the subtransactions for methodl. . .methodN. T[...T!^

refer to the subtransactions that are additionally created by the K A R O S system. Such a

deeply nested transaction increases the expense for scheduling considerably and therefore

affects the performance of programs in a negative way.

In contrast, an equivalent example can be programmed in Hermes/ST using transac

tion creating wait-by-necessity messages. The Hermes/ST system does not create more

subtransactions than specified in the application program.

5.7 Performance Analysis

This section presents the second part of Chapter 5. It gives some performance figures for

the implementation of the scheduling mechanism in Hermes/ST. Hermes/ST is a proto

type implementation of concepts and mechanisms introduced in this thesis and various

other publications [FHR93b, Faz94, Ran94]. Due to limited manpower, many obvious

and well-known optimizations, e.g., for crash and abort recovery and 2PC, have not been

implemented. The choice of Smalltalk as the implementation language facilitated the

implementation of a complete and complex system in a relatively short period of time.

CHAPTER 5. DISCUSSION 120

This is due to Smalltalk's excellent features for rapid prototyping. However, the choice of

Smalltalk as the implementation language also has an adverse affect on the performance

of Hermes/ST.

A goal of the Hermes/ST implementation was to integrate the new linguistic constructs

into Smalltalk in a natural way which makes their usage convenient for the application

programmer. This goal partially conflicted with another goal to avoid modifying the

Smalltalk compiler and virtual machine. Compromises had to be made which also lead

to performance drawbacks.

Despite these avoidable performance drawbacks of the implementation of Hermes/ST,

the performance measurements presented in this section show clear tendencies which

validate the concepts and mechanisms presented in this thesis. They can be summarized

as follows':

1. Higher concurrency can increase performance. Particularly, the modification of

message parameters can have a dramatic effect on message performance. Allowing

message parameters to be modified individually is a useful tool for fine-tuning the

performance characteristics of applications.

2. Testing schedulability of a message with respect to a granted message according to

the algorithm presented in Section 4.6 is linear in the depth of the two message paths.

It can be performed in the same order of magnitude as testing for schedulability

according to Moss' locking rules, namely testing for ancestor relationship.

3. The expense for schedulability testing (excluding the cost for obtaining scheduling

information remotely) is negligible compared to overall transaction costs.

4. Network communications are expensive and should be avoided if possible.

5.7.1 Modifying Message Parameters

Recall the bank transfer example, as described in Section 3.1, and its implementation

in Hermes/ST, as listed in Appendix A.5.1. The transfer method is always invoked as

a transaction. The withdraw and deposit methods may be sent synchronously, asyn

chronously, transaction creating or non-transaction creating, depending on their message

parameters. The transaction created by the transfer message ensures that the semantics

of the transfer operation are not changed, no matter what parameter setting is chosen for

the deposit and withdraw messages. Message parameters for the message kind and trans

action characteristics can be set independently. This allows four possible combinations

which are shown in Table 5.1.

nonTrans

trans

asynch

0.86 s

1.73 s

synch

1.31s

2.18 s

Table 5.1: Transactional bank transfer with varying message parameters for deposit and

withdraw.

The table shows the execution times for the whole transfer transaction, where the

Teller object and the two Account objects all reside on different nodes. The parameters

nonTrans and trans for the rows and asynch and synch for the columns specify the

message parameters for both deposit and withdraw messages.

Performing the transfer operation synchronously and with two subtransactions (synch

trans) is certainly the slowest option. It does not sufficiently utilize system resources,

CHAPTERS. DISCUSSION 121

namely the processors of the nodes on which the particular objects reside. Also, it provides

an unnecessarily high level of recovery since a transfer operation is always aborted if either

of the deposit or withdraw operations failj.

T w o kinds of optimizations can be made: increasing concurrency and cutting down

transactional nesting depth. The first optimization (trans asynch) reduces the execution

time by over 20%. The second optimization (nonTrans synch) reduces the the execu

tion time by 40%. Since the generalized message scheme allows message parameters

to be modified independently, both optimizations can be performed together (nonTrans

asynch). This reduces the the execution time by over 60%.

This example shows that the performance impacts of changing message parameters

can be dramatic. Note that changing these parameters does not affect the semantics of the

program. This makes the generalized message scheme a most useful tool for fine-tuning

transactional applications.

5.7.2 Performance of Schedulability Testing

Section 4.6.2.8 shows that the complexity of the algorithm for the schedulability predicate

is linear in the length of the message paths. The testing of the ancestor relationship, as

performed in Moss' locking rules, is also linear in the length of the nested transaction

identifier. Both the message paths and the nested transaction identifiers have the same

length for all cases within the subset of Moss' model.

To validate this theoretical result, the performance of both algorithms has been mon

itored for a large number of pairs of message paths out of randomly generated message

trees of various depths and breadths. The results are listed in Table 5.2.

depth

1
2
3
4

Hermes/ST

28.9 us

55.7 //s

93.4 us

118.5 us

Moss

25.5 /is

27.8 us

30.4 /xs

32.5 fJ,s

Table 5.2: Comparison of the performance of schedulability testing.

Column "depth" indicates the average nesting depth of the message paths compared.

Column "Hermes/ST" shows the average execution time for schedulability testing accord

ing to the algorithm of Section 4.6. Column "Moss" shows the average execution time for

performing a test for the ancestor relationship. -rowoJklv

Table 5.2 shows that both figures rise monotonically andAhnearly. Furthermore, the

expense of schedulability testing for the generalized message scheme is in the same order

of magnitude as testing for ancestor relationship.

5.7.3 Schedulability Testing versus Overall Transaction Cost

This section puts the results of the last section, namely the cost of individual schedulability

tests, into the context of overall transaction costs. Measurements have been taken from

executions of the banking system, as specified in Appendix A.5. For these tests, the

transactional nesting depth was in the range 1-4 and the number of granted messages

that an incoming message had to be compared with was in the range 0-10. Table 5.3

shows the average time for transactional transfer operations and the respective time spent

on schedulability testing, excluding the time needed for obtaining scheduling information

remotely.

CHAPTER 5. DISCUSSION 122

overall transaction schedulability testing percentage

857 m s 0.11 m s 0.013 %

Table 5.3: Cost for schedulability testing in comparison to overall transaction costs.

The table Si/«yycs+s that the cost for schedulability testing is negligible compared

to the overall transaction cost. The two main contributors to the transaction cost are

disk accesses and network communications. That network communications are well worth
avoiding if possible is shown in the next section.

5.7.4 Caching versus Asking Scheduling Information

From executions of the banking system, measurements have been taken to compare the

run-time cost involved in obtaining scheduling information remotely, i.e./via asking a

Transaction object, or locally, i.e.,via its TransactionCache. Scheduling information

includes information about the commit of transactions and the finish of execution of

(partial) threads. The result is shown in Table 5.4.

remote local

scheduling information 58.8 m s 5.6 m s

Table 5.4: Obtaining scheduling information remotely and locally.

The table shows clearly that caching and obtaining scheduling information locally has

enormous performance benefits compared to obtaining scheduling information remotely.

To summarize, the performance figures indicate the validity of concepts and mecha

nisms, described in this thesis. Particularly, the more general transaction model allows

the performance tuning of applications in a way which is not possible in the traditional,

less general transaction model.
The cost for scheduling in the more general transaction model is a small component

of the overall transaction cost. However, what does affect the overall transaction cost

is the number of network communications needed for obtaining scheduling information.

This is why it is important that scheduling in the general model does not require more

network communication than scheduling with the traditional mechanisms for the subset

of the less general model. It can even be shown that, in some cases, even less network

communications are needed (recall Section 4.6.2.9).

Chapter 6

Conclusions

In this thesis, novel linguistic constructs for distributed systems programming have been

introduced. They include a generalized message scheme that allows transaction creation

and thread creation to be specified independently over messages in the object-oriented. .

sense. The generalized message scheme provides a richer set of programming abstractions

than does the traditional nested transaction model. For this reason, the scheduling se

mantics of the traditional nested transaction model have been extended in a natural way

to cover all abstractions provided by the generalized message scheme. An implementation-

independent scheduling mechanism is presented that satisfies these scheduling semantics.

Also, an efficient implementation of this scheduling mechanism is described.

The generalized message scheme has advantages over the traditional nested transac

tion model with respect to both system development and system execution. It facilitates a

flexible "pick-and-choose" approach. Application programmers can pick the programming

abstraction which is most suitable for a particular application, both in terms of seman

tics and performance. This is particularly important in the area of distributed systems

programming where concurrency and the possibility of failures add enormous complexity

and performance constraints are often hard.

The flexibility of the approaches presented has been achieved by consequent separation

of concerns. Orthogonal concepts^tU^ for example, transaction creation and thread

creation that have been combined in the traditional nested transaction model, can be

applied independently of each other and independent of the application code. Separation

of concerns supports typical advantages of object-orientation like reusability, extensibility

and maintainability. Particularly, it allows fine-tuning of the performance of existing

applications without modifying their structure or semantics.

Although the definition of the scheduling semantics is relatively complex, their prop

erties are intuitive and easy to understand by application programmers. Basically, serial

izability is provided for all kinds of transactional threads if possible and unless specified

otherwise by the application programmer. If it is impossible to ensure serializability then

the progress of threads is guaranteed. The fact that the properties are conceptually simple

is important to their usefulness and acceptance by application programmers. Although

the semantics cover a more general model, their properties are not more complex than

their counterparts for the traditional, less general model. In fact, they are in some cases

even simpler. Take the example of asynchronous ancestor and descendant transactions.

The property provided by the general model is simple: seriahzabihty is guaranteed in

any case. In existing systems that employ the traditional model, application program

mers have to understand how the particular scheduling mechanism works. They then

may have to modify their applications in order to ensure seriahzabihty manually or risk

failures or deadlocks.

123

CHAPTER 6. CONCLUSIONS 124

In terms of efficiency, it has been shown that the mechanisms for the more general

model are not more expensive than the mechanisms for the less general model, as far

as the subset of the less general model is concerned. For transactions that cannot be

expressed in the less general model, only a small amount of work is performed since the

number of network communications is minimized. It can even be shown that in certain

cases, network communications can be saved where such savings are not possible with

the traditional mechanisms. This is due to the fact that transaction creation and thread

creation are unified with the message concept and the fact that message paths include

thread information.

Another important advantage of the mechanisms proposed is the following. Although

reasoning over the correctness of the scheduling mechanism and its implementation is

relatively complex, the algorithms themselves are not very complex and can be adopted

easily by system programmers.

To summarize, the semantics and mechanisms proposed in this thesis are more gen

eral than traditional semantics, are as efficient as traditional mechanisms, and are easy

to implement. The combination of these three properties makes the adoption of these

mechanisms well worthwhile. Although the results of this thesis are mature, they are

regarded as only one step into an area that deserves more research: the separation of

orthogonal concepts that have traditionally been combined in order to achieve both more

flexibility during system development and more efficiency during system execution.

Take, for example, the transaction concept itself. Transactions provide useful and

strong semantics but they are also quite expensive. For many real-world applications,

the performance penalties of transactions are too high. Therefore, the "right" level of

reliability is often achieved via hand-coding. This approach is not only unproductive and

inflexible but also error prone. There are various research efforts to provide cheaper

transactions. One approach is to weaken the transactional semantics, e.g^by weaken

ing serializability. Another interesting approach has been proposed recently by Wing

[HKM+94]. The idea is, again, the separation of concerns. Transactions comprise the

three properties seriahzabihty, atomicity, and permanence. The individual properties can,

in part, be applied independently. Initial results have been reported as part of the Ve

nari/ML project at Carnegie-Mellon University.

Another area where the separation of concerns may increase flexibility during system

development and efficiency during system execution is concurrency control granular

ity. The granularity of concurrency control can be separated from both object granularity

and concurrency control specification. Both areas, separation of transactional properties

and separation of concurrency control granularity, are currently investigated as part of the

Hermes/ST project. They are only two examples of a wide range of possible continuing

research in this area.

Appendix A

Hermes/ST Code Examples

A.l The Binary Search Tree

A. 1.1 The Tree Class

class T r e e

superclass HermesSortedCollection

instance variables root Node

class variables none

pool dictionaries none

class category Binary Search Tree

"Classes Tree and TreeNode implement the binary search tree data type. A binary

search tree is a binary tree where the contents of every node (i.e. the elements of the

tree) can be compared (i.e. provide two methods — and <) and are in the following

relationship: for every node, all elements in the left subtree are less than the node

contents itself and all elements in the right subtree are greater than the node contens.

There are no two nodes with the same contents in the tree. Traversing the tree in

pre—order results in a sorted list of all elements with the smallest element first and the

largest elment last. Tree is defined in the following hierarchy:

HermesObject ()

HermesCollection ()

HermesSequenceableCollection ()

HermesOrderedCollection ()

HermesSortedCollection ()

Tree ('rootNode')

Tree has one instance variable:

rootNode < TreeNode> or < UndefinedObjecty

which represents the root node of the tree. If the tree is empty then rootNode is nil.

Tree supports the complete interface, Collection provides.

testing

isEmpty

|self rootNode isNil

125

APPENDLX A. HERMES/ST CODE EXAMPLES 126

enumerating

do: aBlock

"evaluates 'aBlock' for each element in the tree. Traverses the tree in pre-order"

hermesSelf isEmpty

ifFalse:

[hermesSelf left do: aBlock.

aBlock value: hermesSelf contents.

hermesSelf right do: aBlock]

adding/removing

add: anObject ifExisting: aBlock

"adds 'anObject' to the tree. If 'anObject' is already existing in the tree then evaluates

the exception 'aBlock'"

hermesSelf isEmpty

ifTrue: [hermesSelf rootNode: (TreeNode instantiate: hermesSelf kind withContents:

anObject)]

ifFalse: [hermesSelf contents = anObject

ifTrue: [aBlock value]

ifFalse: [anObject < hermesSelf contents

ifTrue: [hermesSelf left add: anObject ifExisting: aBlock]

ifFalse: [hermesSelf right add: anObject ifExisting: aBlock]]]

find: anObject ifAbsent: aBlock

"Finds a subtree with 'anObject' as root node. Returns this subtree if such a subtree can

be found and evaluates the exception 'aBlock' otherwise "

hermesSelf isEmpty

ifTrue: [aBlock value]

ifFalse: [anObject = hermesSelf contents

ifTrue: [f hermesSelf]

ifFalse: [anObject < hermesSelf contents

ifTrue: [thermesSelf left find: anObject ifAbsent: aBlock]

ifFalse: [thermesSelf right find: anObject ifAbsent: aBlock]]]

findLargest

"assumes that the tree is not empty. Finds and returns the subtree with the largest

element as root. This subtree is always of depth 1 "

thermesSelf right isEmpty

ifTrue: [hermesSelf]

ifFalse: [hermesSelf right findLargest]

APPENDIX A. HERMES/ST CODE EXAMPLES 127

remove: anObject ifAbsent: aBlock

"removes 'anObject' from the tree. If 'anObject' is absent then the exception block

'aBlock' is evaluted. The algorithm first finds the subtree which contains the node to be

removed as root. 3 cases are distringuished:

1. the subtree has no children. Then it is simply deleted;

2. the subtree has only one child. Then, the node is removed like in a linked list;

3. the subtree has two children. Then, the largest node of the left subtree is removed

(another approach is to remove the smallest node of the right subtree), and the node

that is to be removed is replaced by it. "

| subTree old Node replacement |

subTree := hermesSelf find: anObject ifAbsent: [taBlock value].

subTree children

if: [:c | c = #noChildren]

then:

[subTree rootNode delete.

subTree rootNode: nil]

elself: [:c | c = #leftOnly]

then:

[oldNode := subTree rootNode.

subTree rootNode: oldNode left.

old Node delete]

elself: [:c | c = #rightOnly]

then:

[oldNode := subTree rootNode.

subTree rootNode: oldNode right.

oldNode delete]

elself: [:c | c = #twoChildren]

then:

[replacement := subTree left removeLargest.

subTree rootNode contents: replacement]

removeLargest

"removes the largest TreeNode in the tree. Returns the contents of the removed

TreeNode "

| largest contents |

largest := hermesSelf findLargest.

contents := largest contents.

largest rootNode delete.

largest rootNode: nil.

tcontents

A.1.2 The TreeNode Class

class T r e e N o d e

superclass HermesObject

instance variables left

contents

APPENDIX A. HERMES/ST CODE EXAMPLES 128

right
class variables none

pool dictionaries none

class category Binary Search Tree

"Classes Tree and TreeNode implement the binary search tree data type. Tree is defined

in the following hierarchy:

HermesObject ()

TreeNode ('left' 'contents' 'right*)

TreeNode has three instance variables:

left, right: < Tree> referring to the left and right subtrees

contents: < Object> referring to the contens of the node "

class TreeNode class
superclass HermesObject class

instance variables none

class variables none

pool dictionaries none

instance creation

instantiate: kind withContents: anObject

"instantiates a TreeNode according to kind (^volatile or ̂ persistent) with anObject as

contents"

| inst |

inst := super instantiate: kind.

inst left: (Tree instantiate: kind).

inst contents: anObject.

inst right: (Tree instantiate: kind).

tinst

A.2 Weighted Voting for Replicated Objects

A.2.1 Methods for Concurrent Collection Enumeration

class HermesCollection
superclass HermesObject

instance variables none

class variables none

pool dictionaries none

class category Hermes-Class Library

APPENDIX A. HERMES/ST CODE EXAMPLES 129

enumerating concurrently

collectlnParallel: aBlock

"Concurrently evaluates 'aBlock' with each of the values of the receiver, a collection, as

the argument. Collects the resulting values into a new SharedQueue in order of arrival.

Returns the SharedQueue immediately."

q|
q := SharedQueue new.

hermesSelf do: [:each | hermesSelf asynchronously; evaluate: [q nextPut: (aBlock

value: each)]].

Tq

doInParallel: aBlock

"Concurrently evaluates 'aBlock' with each of the values of the receiver, a collection, as

the argument. Returns nil immediately"

hermesSelf do: [:each | hermesSelf asynchronously; evaluate: aBlock with: each].

tnil

doInParallelAndWait: aBlock

"Concurrently evaluates 'aBlock' with each of the values of the receiver, a collection, as

the argument. Returns hermesSelf after the last message has returned."

|q|
q := hermesSelf collectlnParallel: aBlock.

hermesSelf size timesRepeat: [q next].

thermesSelf

A.2.2 The ReplicatedObject Class

class ReplicatedObject

superclass HermesObject

instance variables version Number

class variables

pool dictionaries

class category

w
replicas

contents

none

none

Replication

"This class implements Gifford's weighted voting mechanism [Gif79]. Every replica of a

replicated object is assigned a number of votes. A transaction that reads variables must

acquire a read quorum r of votes; a transaction that writes variables must acquire a

write quorum w of votes. Two restrictions apply for the choice of r and w with respect

to the total number of votes v.

1. r + w > v. This ensures that there is always a non-null intersection

between every read and write quorum. This ensures that every read operation returns

the current version. Timestamps determine the age of a version.

APPENDIX A. HERMES/ST CODE EXAMPLES 130

2. w> v/2. This ensures that there can not be two partitions that have a
write quorum at the same time.

Varying r and w within the range the two restrictions allow one to change the

performance and availability charateristics of the replicated object.

Variables of ReplicatedObject:

versionNumber < Integer> current version number, is incremented for every write
operation

r < Integer> read quorum; fixed for every replica of the replicated object

w < Integer> write quorum; fixed for every replica of the replicated object

replicas < List of ReplicaInfo> information about all replicas including their

respective votes "

read/write access

read: variableName

"reads and returns a variable of a replicated object. First, votes are collected in parallel,

using method collectlnParallel:. As the votes arrive, it is tested whether the read quorum

r is reached. Then, the latest version is returned (which is guaranteed to be the current

version); votes coming in afterwards are not considered"

| latestVersionNumber collectedVotes queue replicatedObject votes

latestVersionContents

latestVersionNumber := — 1 .

collectedVotes := 0.

queue := self replicas keys collectlnParallel: [:replObj | replObj

copyVersionNumberAndContents].

[collectedVotes < r]

whileTrue:

[replicatedObject := queue next.

versionNumber := replicatedObject versionNumber.

votes := self replicas at: replicatedObject hermesSelf.

collectedVotes := collectedVotes + votes.

versionNumber > latestVersionNumber

ifTrue:

[latestVersionNumber := versionNumber.

latestVersionContents := replicatedObject contents]].

tlatestVersionContents get: variableName

write: anObject to: variableName

"writes 'anObject' to the variable 'variableName' in a replicated object. First, votes for

the write operation are collected concurrently using method 'collectlnParallel:'. While

votes arrive, it is tested whether the write quorum 'w' is reached. When this has

happened, then the write operation is performed on all replicas of the quorum using

method 'doInParallelAndWait:'. It is ensured that the replica with the largest version

number is current. To keep versions as up-to-date as possible, replicas with older version

numbers get other variables updated as well. 'doInParallelAndWait:' does not continue

until all update operations have been completed.

To keep the replicas as up-to-date as possible, votes arriving after the write quorum

has been reached ('lateComers') are updated as well using method 'doInParallel:'. Since

APPENDIX A. HERMES/ST CODE EXAMPLES 131

this update is not essential for maintaining the integrity of the replicated object, write:to:

does not have to wait for the update of the 'lateComers' and can return before."

| latestVersionNumber collectedVotes queue votes latestVersionContents quorum

updatedContents lateComers |

latestVersionNumber := —1.

collectedVotes := 0.

quorum := Set new.

queue := self replicas keys collectlnParallel: [:replicatedObject | replicatedObject

copyVersionNumberAndContents].

[collectedVotes < w]

whileTrue:

[| replicatedObjectCopy |

replicatedObjectCopy := queue next.

versionNumber := replicatedObjectCopy versionNumber.

votes := self replicas at: replicatedObjectCopy hermesSelf.

collectedVotes := collectedVotes + votes.

quorum add: replicatedObjectCopy.

versionNumber > latestVersionNumber

ifTrue:

[latestVersionNumber := versionNumber.

latestVersionContents := replicatedObjectCopy contents]].

updatedContents := latestVersionContents set: variableName to: anObject.

quorum doInParallelAndWait: [replicatedObjectCopy |

replicatedObjectCopy hermesPointer replaceContentsBy: updatedContents].

lateComers := queue nextAII.

lateComers doInParallel: [replicatedObjectCopy |

replicatedObjectCopy hermesPointer replaceContentsBy: updatedContents].

t#done

A.2.3 The Replicalnf o Class

class Replicalnfo
superclass Object

instance variables name

location

votes

class variables none

pool dictionaries none

class category Replication

"This class describes information about a replica

name < Symboly a name under which the replica can be accessed

location < Symboly its location

votes < Integery its number of votes

APPENDIX A. HERMES/ST CODE EXAMPLES 132

A.3 Specification and Overriding of Message Parameters

A.3.1 Transfer Method in Class Teller

class Teller

superclass HermesObject

instance variables name

currencyTable

interface

class variables none

pool dictionaries none

class category Distributed Bank

transfer

transfer: amount from: branchl name: accountNumberl to: branch2

name: accountNumber2

" MessageParameters transactionCreating"

branchl

asynchronously;

nonTransactionCreating;

withdraw: amount from: accountNumberl.

branch2

asynchronously;

nonTransactionCreating;

deposit: amount to: accountNumber2.

t#done

A.3.2 Deposit And Withdraw Methods in Class Branch

class B r a n c h
superclass HermesObject

instance variables name

accounts

class variables none

pool dictionaries none

class category Distributed Bank

deposit and withdraw

deposit: amount to: accountName

" MessageParameters transactionCreating"

... method body ...

APPENDIX A. HERMES/ST CODE EXAMPLES 133

withdraw: amount from: accountName

"MessageParameters transactionCreating"

... method body ...
n

A.3.3 Transfer Method in Class AutomaticTellerMachine

class AutomaticTellerMachine
superclass Teller

instance variables none

class variables none

pool dictionaries none

class category Distributed Bank

transfer

transfer: amount from: branchl name: accountNumberl to: branch2

name: accountNumber2

"MessageParameters timeout: 2"

tsuper

transfer: amount

from: branchl

name: accountNumberl

to: branch2

name: accountNumber2

A.4 Programmable Lock Definition and Usage

A.4.1 The ProgrammableLock Class

class ProgrammableLock
superclass Object
instance variables metaObject

class variables none

pool dictionaries none

class category Hermes-Programmable Locks

"ProgrammableLock is the abstract class for all programmable lock specifications. It

defines the two methods isSchedulable: and isCompatibleWith: that can be overriden by

descendant classes. ProgrammableLock is defined in the following hierarchy:

Object ()

ProgrammableLock ('metaObject')

MutualExclusionLock ()

NoLock ()

ReadLock ()

APPENDIX A. HERMES/ST CODE EXAMPLES 134

AccountReadLock ('account')

FairReadLock ()

PeekLock ('is Empty Method')

SpreadSheetReadLock ('row' 'column*)

WriteLock ()

AccountWriteLock ('account')

GetLock ('isEmptyMethod*)

PutLock ('isFullMethodr)

SavingsAccountsWriteLock ('account' 'typeCheckMethod')

SpreadSheetWriteLock ('row' 'column*)

It has one variable

metaObject < MetaObjecty refers to the persistent object being locked "

locking
isCompatibleWith: anotherLock

ttrue

isSchedulable

ttrue

guard methods
performGuard: guardMethod

tself performGuard: guardMethod withArguments: #()

performGuard: guardMethod with: anObject

tself metaObject performGuard: guardMethod withArguments: (Array with: anObject)

performGuard: guardMethod withArguments: anArray

tself metaObject performGuard: guardMethod withArguments: anArray

A.4.2 The AccountWriteLock Class

class AccountWriteLock
superclass WriteLock

instance variables account

class variables none

pool dictionaries none

class category Distributed Bank

"AccountWriteLock is a lock to be applied to a whole branch. Logically, however, it locks

a single account in write mode. It has one variable:

account < Symboly the name of the account locked.

APPENDIX A. HERMES/ST CODE EXAMPLES 135

locking

isCompatibleWith: otherLock

t(super isCompatibleWith: otherLock)

or: [self account ~ = otherLock account]

A.4.3 Deposit Method of Class Branch

class Branch
superclass HermesObject

instance variables name

accounts

class variables none

pool dictionaries none

class category Distributed Bank

in account operations

deposit: amount to: accountName

" MessageParameters

transactionCreating;
lock: [AccountWriteLock account: accountName]"

II

... method body ...

A.4.4 The SavingsAccountsWriteLock Class

class SavingsAccountsWriteLock
superclass WriteLock

instance variables typeCheckMethod

class variables none

pool dictionaries none

class category Distributed Bank

"SavingsAccountsWriteLock is specified for a whole branch. Logically, however, it locks

all savings accounts of the branch in write mode. It has one variables:

typeCheckMethod < Symboly a method name "

locking

isCompatibleWith: otherLock

t(super isCompatibleWith: otherLock)
or: [(self performGuard: self typeCheckMethod with: otherLock account)

APPENDIX A. HERMES/ST CODE EXAMPLES 136

A.4.5 Method addlnterest in Class Branch

class B r a n c h
superclass HermesObject

instance variables name

accounts

class variables none

pool dictionaries none

class category Distributed Bank

in account operations

addlnterest

" MessageParameters

transactionCreating;

lock: [SavingsAccountsWriteLock typeCheckMethod: #typeOf:]"

self accounts do: [:account | account type = ^savings ifTrue: [account balance:

account balance * (1 + self interest Rate)]].

t#done

A.5 The Distributed Bank Implementation

A.5.1 The Teller Class

class Teller

superclass HermesObject

instance variables name

currencyTable

interface

class variables none

pool dictionaries none

class category Distributed Bank

"Class Teller represents various teller types in the distributed bank. It is defined in the

following hierarchy:

HermesObject ()

Teller ('name' 'currencyTable' 'interface*)

AutomaticTellerMachine ()

BankClerk ()

HeadOffice ('branches' 'tellers *)

Variables are:

name < Symboly which uniqely identifies a teller

currencyTable < CurrencyTabley used fo looking up exchange rates

interface < Tellerlnterfacey a graphical user interface; not part of the

persistent state of a teller object. "

APPENDIX A. HERMES/ST CODE EXAMPLES 137

transfer

internationalTransferFrom: branchl name: account 1 to: branch2 name:
account 2

" MessageParameters transactionCreating"

| currencyl currency2 exactRate amount newAmount |

currencyl := self currencyOf. branchl.

currency2 := self currencyOf: branch2.

exactRate := (self headOffice) waitByNec; exchangeRate: currencyl to: currency2.
amount := branchl balanceOf: accountl.

newAmount := amount * (amount > 10000

ifTrue: [exactRate]

ifFalse: [self exchangeRate: currencyl to: currency2]).

branchl asynchronously; withdraw: amount from: accountl.

branch2 asynchronously; deposit: newAmount to: account2.

t#done

transfer: amount from: branchl name: accountNumberl to: branch2

name: accountNumber2

"MessageParameters transactionCreating"

branchl asynchronously; withdraw: amount from: accountNumberl.

branch2 asynchronously; deposit: amount to: accountNumber2.

t#done

A.5.2 The HeadOffice Class

class HeadOffice
superclass Teller

instance variables branches

tellers

class variables none

pool dictionaries none

class category Distributed Bank

head office operations

addBranch: branchName on: node

" MessageParameters transactionCreating"

| branch |
branch := Branch name: branchName location: node.

self branches add: branch.

tbranch

APPENDIX A. HERMES/ST CODE EXAMPLES 138

addTeller: tellerName on: n o d e

" MessageParameters transactionCreating"

| teller |

teller := Teller name: tellerName location: node.

self tellers add: teller.

tteller

audit

" MessageParameters transactionCreating"

t(self branches collect: [:branch | branch total]) sum

deleteBranch: branch

" MessageParameters transactionCreating"

branch asynchronously; delete.

self branches remove: branch.

t#done

deleteTeller: teller

"MessageParameters transactionCreating"

teller asynchronously; delete.

self tellers remove: teller.

t#done

A.5.3 The AutomaticTellerMachine Class

class AutomaticTellerMachine
superclass Teller

instance variables none

class variables none

pool dictionaries none

class category Distributed Bank

transfer

transfer: amount from: branchl name: accountNumberl to: branch2

name: accountNumber2

"MessageParameters timeout: 2"

tsuper

transfer: amount

from: branchl

name: accountNumberl

to: branch2

name: accountNumber2

APPENDIX A. HERMES/ST CODE EXAMPLES 139

A.5.4 The BankClerk Class

class BankClerk
superclass Teller

instance variables none

class variables none

pool dictionaries none

class category Distributed Bank

A.5.5 The Branch Class

class Branch
superclass HermesObject

instance variables name

accounts

class variables none

pool dictionaries none

class category Distributed Bank

"Class Branch represents a branch of the distributed bank that contains a number of

bank accounts. It is defined in the following hierarchy.

HermesObject ()

Branch ('name' 'accounts')

Branch has two variables

'name' < Symboly that uniqely identifies a branch;

'accounts' < Treey a collection of all accounts stored at this branch, sorted

according to the account number. "

account operations

addlnterest

" MessageParameters

transactionCreating;

lock: [SavingsAccountsWriteLock typeCheckMethod: #typeOf:]"

self accounts do: [:account | account type = #savings ifTrue: [account balance:

account balance * (1 + self interestRate)]].

t#done

balanceOf: accountName

" MessageParameters

transactionCreating;

lock: [AccountReadLock account: accountName]"

t(self lookUp: accountName) balance

APPENDIX A. HERMES/ST CODE EXAMPLES 140

closeAccount: accountName

" MessageParameters

transactionCreating;

lock: [AccountWriteLock account: accountName]"

| account |

account := self lookUp: accountName.

account balance ~ = 0 ifTrue: [self abortCurrentTransaction: #notEmpty].

self accounts remove: account.

account delete.

t#done

deposit: amount to: accountName

" MessageParameters

transactionCreating;

lock: [AccountWriteLock account: accountName]"

| account |

amount < 0 ifTrue: [self abortCurrentTransaction: #negativeAmount],

account := self lookUp: accountName.

account deposit: amount.

t#done

lookUp: accountName

tself accounts detect: [:account | account name = accountName]

ifNone: [self abortCurrentTransaction: #noSuchAccount]

openAccount: accountName type: accountType

" MessageParameters

transactionCreating;

lock: [AccountWriteLock account: accountName]"

| account j

account := Account name: accountName type: accountType.

self accounts add: account ifExisting: [self abortCurrentTransaction: #alreadyExisting].

taccount

total

"MessageParameters lock: [AccountReadLock account: #allAccounts]"

tself accounts collect: [:account | account balance] sum

withdraw: amount from: accountName

" MessageParameters transactionCreating;

lock: [AccountWriteLock account: accountName]"

APPENDIX A. HERMES/ST CODE EXAMPLES 141

I account |

amount < 0 ifTrue: [self abortCurrentTransaction: #negativeAmount].

account := self lookUp: accountName.

account withdraw: amount.

t#done

guard methods

typeOf: accountName

t(self lookUp: accountName) type

class Branch class
superclass HermesObject class

instance variables none

class variables none

pool dictionaries none

instance creation

name: branchName location: location

tself

instantiate: ̂persistent

name: branchName

location: location

init: [:branch | branch name: branchName; accounts: (Tree instantiate: p̂ersistent)]

A.5.6 The Account Class

class Account
superclass HermesObject

instance variables name

type

balance

class variables none

pool dictionaries none

class category Distributed Bank

"Account represents an individual bank account as stored in branches of the distributed

bank. It is defined in the following hierarchy

HermesObject ()

Account ('name' 'type' 'balance *)

It has three variables:

'name' < Symboly a name that uniquely identifies this account within the branch

'type' < Symboly , //cheque of ̂ /savings

'balance' < Integery the current account balance

APPENDIX A. HERMES/ST CODE EXAMPLES 142

deposit/withdraw

deposit: amount

self balance: self balance + amount.

t#done

withdraw: amount

self balance: self balance — amount.

t#done

class Account class
superclass HermesObject class

instance variables none

class variables none

pool dictionaries none

instance creation

name: accountName type: type

tself instantiate: ^persistent init: [:inst | inst

name: accountName;

type: type;

balance: 0]

Bibliography

[ABLN85] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe.

The Eden system: A technical review. IEEE Transactions on Software

Engineering, SE-ll(l):43-58, January 1985.

[Arc91] Architecture Projects Management Limited, Poseidon House, Castle Park,

Cambridge CB3 ORD, United Kingdom. ANSAware 3.0 Implementation

Manual, Document RM.097.01, February 1991.

[Atk91] Colin Atkinson. Object-Oriented Reuse, Concurrency and Distribution - An

ADA-based approach. A C M Press, New York, 1991.

[BD72] L. A. Bjork and C. T. Davies. The semantics of the preservation and recovery

of integrity in a data system. Technical Report TR-02.540, IBM, December

1972.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Series in Computer Science.

Addison-Wesley Publishing Company, Reading, Massachusetts, 1987.

[Bjo73] Lawrence A. Bjork. Recovery scenario for a DB/DC system. In Proc. ACM
73 Nat. Conf, pages 142-146, Atlanta G A (USA), August 1973. ACM.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM

Transactions on Computer Systems, 2:39-59, 1984.

[Boo90] Grady Booch. Object Oriented Design with Applications. Benjamin-

Cummings, 1990.

[Car90] Denis Caromel. Concurrency and reusability: From sequential to parallel.
Journal of Object-Oriented Programming, pages 34-42, September/October

1990.

[CC91] Roger C. Chin and Samuel T. Chanson. Distributed object-based program

ming systems. ACM Computing Surveys, 23(1):91-124, March 1991.

[CCI91] CCITT - International Telegraph and Telephone Consultative Committee.
Draft Recommendation F. 851 - Universal Personal Telecommunications Ser

vice - Principles and Operational Provisions. Version 5. Question 35/1.

Study Group I (28 May - 7 June 1991 Meeting), 1991.

[CCM+93] Brian Church, Peter Coleman, Matthew McGregor, Jeff Saul, Ian White,
and Paul Woollard. Universal personal telecommunications. User manual

and technical manual, The University of Wollongong, Department of Com

puter Science, Wollongong, NSW, Australia, 1993.

143

BIBLIOGRAPHY 144

[CY91a] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Yourdon Press,

New Jersey, 2nd edition, 1991.

[CY91b] Peter Coad and Edward Yourdon. Object-Oriented Design. Prentice-Hall,

1991.

[Dav73] Charles T. Davies. Recovery semantics for a DB/DC system. In Proc. ACM

73 Nat. Conf, pages 136-141, Atlanta G A (USA), August 1973. A C M .

[Dix94] Graeme Dixon. Transarc corp. Private communication, 1994.

[DLAR91] Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umakishore

Ramachandran. The Clouds distributed operating system. IEEE Computer,

24(ll):34-44, 1991.

[EGLT76] K. P. Eswaran, J. N Gray, R. A. Lorie, and I. L. Traiger. The notions of

consistency and predicate locks in a database system. Communications of

the ACM, 19(ll):624-633, November 1976.

[EME91] Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector (Eds.).

Camelot and Avalon. Morgan Kaufmann Publishers, Inc., San Mateo, C A

94403, 1991.

[Faz94] Michael Fazzolare. Flexible concurrency control through nested encapsu

lation in Hermes/ST. Submitted to: Seventh International Conference on

Parallel and Distributed Computing Systems, Las Vegas, Nevada, USA. Oc

tober 6-8, 1994.

[FHR93a] Michael Fazzolare, Bernhard G. Humm, and R. David Ranson. Advanced

transaction semantics for TINA. In Proceedings of the Fourth Telecommuni

cations Information Networking Architecture Workshop (TINA 93), Volume

2, pages 47-57, L'Aquila, Italy, September 27-30 1993.

[FHR93b] Michael Fazzolare, Bernhard G. Humm, and R. David Ranson. Concurrency

control for distributed nested transactions in Hermes/ST. In Proceedings of

the 1993 International Conference on Parallel and Distributed Systems (IC-

PADS'93), National Taiwan University, Taipei, Taiwan, Republic of China,

December 15-17 1993.

[FHR93c] Michael Fazzolare, Bernhard G. Humm, and R. David Ranson. Hermes/ST

user manual and technical manual. Technical Report No. 4, Telecommuni

cations Software Research Centre, Department of Computer Science, Uni

versity of Wollongong, Wollongong N S W 2500, Australia, 1993.

[FHR94] Michael Fazzolare, Bernhard G. Humm, and R. David Ranson. Object-

oriented extendibility in Hermes/ST, a transactional distributed program

ming environment. In Rachid Guerraoui, Oscar Nierstrasz, and Michel

Riveill, editors, Proceedings of the ECOOP '93 Workshop on Object-Based

Distributed Programming, Lecture Notes in Computer Science 791, pages

240-261. Springer-Verlag, 1994.

[For] Forte Software Inc., Oakland CA, USA. FORTE.

BIBLIOGRAPHY 145

[GCLR92] Rachid Guerraoui, Riccardo Capobianchi, Agnes Lanusse, and Pierre Roux.

Nesting actions through asynchronous message passing: the ACS proto

col. In Proceedings, European Conference on Object-Oriented Programming
(ECOOP'92), 1992.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proceedings of

the 7th Symposium on Operating Systems Principles, pages 150-162. ACM,
1979.

[GR89] Adele Goldberg and Dan Robson. Smalltalk-80: The Language. Addison-
Wesley, 1989.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech

niques. Morgan Kaufmann, USA, 1993. ISBN 1-55860-190-2.

[Hal85] R. H. Halstead. Multilisp: A language for concurrent symbolic computation.

Transactions on Programming Languages and Systems, October 1985.

[Hew91] Carl Hewitt. Open information systems semantics for distributed artificial

intelligence. Artificial Intelligence, 47:79-106, 1991.

[HF92a] Bernhard G. Humm and Michael Fazzolare. Object-Oriented Analysis and

Design for Universal Personal Telecommunications. In Proceedings of the

Second IASTED International Conference on Computer Applications in In

dustry, Alexandria, Egypt, May 1992.

[HF92b] Bernhard G. Humm and Michael Fazzolare. Object-Oriented Analysis for

Telecommunications Services. In Proceedings of the 1992 International

ACM/SIGAPP Symposium on Applied Computing, Kansas City M O , USA,

March 1992.

[HKM+94] Nicholas Haines, DarreU Kindred, J. Gregory Morrisett, Scott M. Net

tles, and Jeannette M. Wing. Tinkertoy transactions. Technical report,

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA

15213-3891, 1994. Submitted to Conference on Lisp and Functional Pro

gramming '94.

[HR93] Theo Haerder and Kurt Rothermel. Concurrency control issues in nested

transactions. VLDB Journal, 2(l):39-74, 1993.

[HS91] Brian Henderson-Sellers. A Book of Object-Oriented Knowledge. Prentice

Hall, 1991.

[Hum93] Bernhard G. Humm. An extended scheduling mechanism for nested transac
tions. In Luis-Felipe Cabrera and Norman Hutchinson, editors, Proceedings

of the Third International Workshop on Object-Orientation in Operating

Systems (IWOOOS'93), pages 125-134, AsheviUe, North Carolina, USA,

December 1993. IEEE, IEEE Computer Society Press, Los Alamitos, CA.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1: Funda

mental Algorithms. Addison Wesley Publishing Company, Reading Mas

sachusetts, USA, second edition, 1973.

[LCJS87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler. Im

plementation of Argus. ACM Operating Systems Reviews, 21(5):111-122,

1987.

BIBLIOGRAPHY 146

[Lie87] H. Liebermann. Concurrent object-oriented programming in Actl. In Aki-

nori Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent Pro

gramming, chapter 2, pages 9-36. The MIT Press, Cambridge MA, USA and
London, England, 1987.

[Lis81] Barbara Liskov. CLU reference manual. In Goos and Hartmanis, editors,

Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

[Lis82] Barbara Liskov. On linguistic support for distributed programs. IEEE

Transactions on Software Engineering, SE-8(3):203-210, May 1982.

[Lis84] Barbara Liskov. Overview of the Argus language and system. Program

ming methodology group memo 40, MIT Laboratory for Computer Science,
February 1984.

[Lis88] Barbara Liskov. Distributed programming in Argus. Communications of

the ACM, 31(3):300-312, March 1988.

[LS83] Barbara Liskov and Robert Scheifler. Guardians and actions: Linguistic sup

port for robust, distributed programs. ACM Transactions on Programming

Languages and Systems, 5(3):381-404, July 1983.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382-401,

1982.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,

Cambridge, Great Britain, 1988.

[MMP83] Erik. T. Mueller, Johanna D. Moore, and Gerald J. Popek. A nested trans

action mechanism for LOCUS. In Proceedings of the 9th Symposium on

Operating Systems Principles, pages 71-83. ACM/SIGOPS, A C M Press,

1983.

[Mos81] J. EliotflMoss. Nested Transactions: An Approach to Reliable Distributed

Computing. PhD thesis, M.I.T. Department of Electrical Engineering and

Computer Science, April 1981. Available as M.I.T. Laboratory for Computer

Science Technical Report 260. Qo+ */?+•*+.

[Mos85] J. Eliot B. Moss. Nested Transactions - An Approach to Reliable Distributed

Computing. MIT^Series in Information Systems. The MIT Press, Cambridge,

Massachusetts and London, England, 1985.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The

MIT Press, 1990.

[NW91] Scott M. Nettles and Jeannette M. Wing. Persistence + undoability =

transactions. Technical Report CMU-CS-91-173, School of Computer Sci

ence, Carnegie Mellon University, Pittsburgh, PA 15213, 1991.

[Obj] Object Design, Burlington MA, USA. ObjectStore.

[Par92] ParcPlace Systems, Sunnyvale CA, USA. VisualWorks Release 1.0, 1992.

[Pen] Penobscot Development Corp., Cambridge Mass. USA. KALA.

BIBLIOGRAPHY 147

[PN85] Calton Pu and Jerre D. Noe. Nested transactions for general objects: The

Eden implementation. Technical Report TR-85-12-03, Department of Com

puter Science, University of Washington, Seattle, W A 98195, December
1985.

[Ran94] R. David Ranson. A framework for transactional semantics. Submitted

to: Distribution and Concurrency in Persistent Systems, HICSS Minitrack,
Maui, Hawaii, January 1994.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modelling and Design. International

Editions. Prentice Hall, New York, 1991.

[Ree78] David P. Reed. Naming and Synchronization in a Decentralized Computer

System. PhD thesis, M.I.T. Department of Electrical Engineering and Com

puter Science, September 1978. Available as M.I.T. Laboratory for Com

puter Science Technical Report 205.

[RHR+93] Matthew Robinson, Linda Hennessey, Shane Richards, Adam Barclay, and

Fiona Soper. A reliable distributed name server. User manual and technical

manual, The University of Wollongong, Department of Computer Science,

Wollongong, NSW, Australia, 1993.

[RSL87] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. System level concurrency
control for distributed database systems. ACM Transactions on Database

Systems, 3(2), June 1987.

[SBD+84] Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jef
frey L. Eppinger, Charles E. Fineman, Abdelsalam Heddaya, and Peter M.

Schwarz. Support for distributed transactions in the TABS prototype. In

Proceedings of the 4th Symposium in Distributed Software and Database Sys

tems, pages 186-206, Bethseda, Maryland (USA), 1984. IEEE Computer

Society, IEEE Computer Society Press.

Fred B. Schneider. What good are models and what models are good?

In Sape Mullender, editor, Distributed Systems, Second Edition, chapter 2,

pages 17-26. A C M Press, New York, 1993.

S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An overview of the
Arjuna distributed programming system. IEEE Software, pages 66-73,1991.

D. Skeen. Crash Recovery in a Distributed Database System. PhD thesis,

University of California, Berkley, 1982.

Brian Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

Transarc Corporation, Pittsburgh, PA, USA. Encina Transaction Processing

System, TP Monitor, TP-00-D078, 1991.

Versant Object Technology, 4500 Bohannon Drive, Menlo Park, CA 94025,

USA. Versant.

[WBWW90] Rebecca Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-

Oriented Software. Prentice Hall, 1990.

[Sch93]

[SDP91]

[Ske82]

[Str86]

[Tra91]

[Ver]

BIBLIOGRAPHY 148

[WFMN92] Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott

Nettles. Extensions to standard ml to support transactions. Technical Re

port CMU-CS-92-132, School of Computer Science, Carnegie Mellon Uni
versity, Pittsburgh, PA 15213, 1992.

[WL85] William Weihl and Barbara Liskov. Implementation of resilient, atomic

data types. ACM Transactions on Programming Languages and Systems,
7(2):244-269, April 1985.

[WN93] Xuequn Wu and Jan Neuhaus. Extending PCTE with object-oriented ca

pabilities. In Proceedings of DEXA93, pages 681-684, 1993.

[YSTH87] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and pro

gramming in an object-oriented concurrent language ABCL/1. In Akinori

Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent Program

ming, chapter 4, pages 55-90. The MIT Press, Cambridge MA, USA and
London, England, 1987.

[YT87] Yasuhiko Yokote and Mario Tokoro. Concurrent programming in Concur

rent Smalltalk. In Akinori Yonezawa and Mario Tokoro, editors, Object-

Oriented Concurrent Programming, chapter 6, pages 129-158. The MIT

Press, Cambridge MA, USA and London, England, 1987.

[YTM+91] Yashuiko Yokote, Fumio Teraoka, Atsushi Mitsuzawa, Nobuhisa Fjinami,

and Mario Tokoro. The Muse object architecture: A new operating system

structuring concept. Operating Systems Review, 25(2), 1991.

Index

2PC, 10

coordinator, 10

participant, 10

commit phase, 11

prepare phase, 10

2PL, 8

abort recovery, 9, 10

abstract class, 15

abstract data type, 14

ancestor, 39

ancestor class, 14

ancestor transaction, 12

any, 40

Argus, 18, 34, 107

atomic object, 18, 34

guardian, 18, 34

handler, 18

non-atomic object, 18, 34

asynchronous message, 24, 38

asynchronous with respect to, 43

atomic object in Argus, 18, 34

atomicity, 5

attempted voucher redeem, 93

Avalon/C++, 35

server, 35

awaited object, 24

behaviour sharing, 16

belongs to top-level transaction, 41

belongs to transaction, 41

binary search tree, 22

broadcast, 82

Byzantine failure, 5

C++, 16
caching, 74
Camelot, 35
cascading abort, 7, 47

catastrophe, 9, 11

CBox, 24

checkpointing, 12

child transaction, 12

class, 14

code sharing, 16

commit phase of 2PC, 11

common ancestor, 39

composability of concurrency control, 31

concurrency control, 6, 28, 79

multiple-version, 8

optimistic, 7

pessimistic, 7

single-version, 8

concurrency controller, 7

conflicting, 39

constant object in Hermes/ST, 21

crash recovery, 9, 10

deadlock, 8

avoidance, 9

detection, 9

prevention, 9

descendant, 39

descendant transaction, 12

descendent class, 14

distributed bank, 20

distributed system, 3

downgrading lock mode, 113

downward lock inheritance, 113

dynamic return dependency, 93

early writing, 12

Eden, 111

Eiffel, 16
encapsulation, 14

explicit concurrency control, 29

extendibility, 16

failure model, 5

fine-grained object model, 21

finish of execution of message, 44

future variable, 24

generalized message scheme, 23

guard method, 30

guardian in Argus, 18, 34

149

INDEX 150

handler in Argus, 18

Hermes/ST, 20

class, 21

concurrency control, 28

explicit, 29

implicit, 28

minimal locking, 28

programmable lock approach, 29

instance creation parameter, 21

message

asynchronous, 24

generalized message scheme, 23

kind, 24

parameter, 25

synchronous, 23

wait-by-necessity, 24

method

access method, 21

guard method, 30

arguments, 24

name, 24

object, 21

constant, 21
HermesObject, 21

kind, 21
persistent, 21

receiver, 24

volatile, 21

retries, 26
timeout, 26

transaction mode, 26

variable

indexed, 21

named, 21

holding a lock, 8, 100, 112

implicit concurrency control, 28

implicit future, 24, 117

incomparable, 39

inconsistent state, 4

information hiding, 14

inheritance, 14
multi-rooted, 14

multiple, 14

non-strict, 14

single, 14
single-rooted, 14

strict, 14

instance, 14
interleaving operations, 3

is-a relationship, 15

KAROS, 117

lazy information propagation, 74
least common ancestor message, 39

least common ancestor transaction, 41

location transparency, 18

lock

anti-inheritance, 13

compatibility matrix, 8
controlled downward inheritance, 113

downward inheritance, 113

holding, 8

inheritance, 13

type, 38

releasing, 8

upward inheritance 13

locking

mutex, 8
read/write, 8

two-phase, 8

type-specific, 8

logging
redo, 10

undo, 10
long message path, 84

maintainability, 16

message, 14, 38
argument, 38

belongs to thread, 42

finish execution, 44

identifier, 38

kind, 38
parameter, 38

passing, 14

path, 40, 84

long, 84

short, 84

path element, 40

return, 44
start execution, 44

tree, 38
message-submessage relationship, 38

method, 14

migration, 18

minimal locking, 28

Moss, J. Eliot B., 13, 51, 100

multi-rooted inheritance, 14

multiple inheritance, 14

INDEX 151

multiple-version concurrency control, 8

mutex locking, 8

mutual exclusion locking, 8

nested encapsulation, 21

nested transaction, 12

network, 3

network failure, 4

node, 3

node crash, 4, 5

non-atomic object in Argus, 18, 34

non-strict inheritance, 14

non-transaction creating, 38

non-transactional, 41

object, 14

object-based, 16

object-orientation, 13

offering a lock, 113

one level below least common ancestor,

41

optimistic concurrency control, 7

optional element, 40

overriding, 14

parameterization, 20

parent transaction, 12

parent-child relationship, 39

partial thread, 43

permanence, 5

permanent memory, 5

pessimistic concurrency control, 7

polymorphism, 15

prepare phase of 2PC, 10

private method, 14

programmable lock, 29

programmable lock approach, 29

public method, 14

read/write locking, 8

* p-rcpe* real ancestor, 39

feat ancestor transaction, 12

real descendant, 39

real descendant transaction, 12

receiver object, 24, 38

recovery, 6, 9

abort, 9, 10

crash, 9, 10

redo logging, 10

releasing a lock, 8

remote procedure call, 17

replication, 18

retaining a lock, 112

retDep, 53

return dependency, 47

dynamic, 93

reusability, 16

schedulability predicate, 53

schedulable, 53

schedulable with respect to, 54

schedule

serial, 6

serializable, 6

scheduled serially, 44

scheduling, 80

serial schedule, 6, 44

seriahzabihty, 5

serializable schedule, 6, 45

serialization graph testing, 8

serialized, 45

server in Avalon/C++, 35

short message path, 84

single inheritance, 14

single-rooted inheritance, 14

single-version concurrency control, 8

SmaUtalk-80, 16

start of execution of message, 44

status record, 10

strict inheritance, 14

subclass-superclass relationship, 14

subtransaction, 12

abort, 12

commit, 12

successful voucher redeem, 93

synch, 40

synchronized, 46

synchronized schedule, 46

synchronous message, 23, 38

synchronous with respect to, 42

thread, 42

identifier, 38

of a message, 42

under transaction, 43

three-phase commit, 11

timestamp ordering, 8

top-level abort, 12

top-level commit, 12

top-level message, 39

top-level transaction, 12

top-level transaction of a message, 41

INDEX

trans, 40

transaction, 5

abort, 5

characteristics, 38

commit, 5

creating, 38

identifier, 38

of a message, 41

one level below least common ances

tor, 41

tree, 12, 41

transactional, 41

two-phase commit, 10

two-phase locking, 8

type-specific locking, 8

undo logging, 10

uniform reference semantics, 21

Universal Personal Telecommunications,

33

unsuccessful voucher redeem, 93

update record, 10

upgrading lock mode, 113

upward lock inheritance, 13, 101

variable, 14

Venari/ML, 36, 115

volatile memory, 5

voucher, 24

redeem, 93

successful, 93

unsuccessful, 93

wait-by-necessity, 24, 92

waits-for graph, 9

	coverpage.pdf
	University of Wollongong
	Research Online
	1994

	Scheduling in a generalized transaction/thread model
	Bernhard G. Humm
	Recommended Citation

