
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1995

Presentation of consistent information from
independent databases
Pattarasinee Bhattarakosol
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Bhattarakosol, Pattarasinee, Presentation of consistent information from independent databases, Doctor of Philosophy thesis,
Department of Computer Science, University of Wollongong, 1995. http://ro.uow.edu.au/theses/1301

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Presentation of Consistent Information from

Independent Databases

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

(Computer Science)

UN!V£RS:TVOFJ
WOLLONGONG

LIBRARY

from

THE UNIVERSITY OF WOLLONGONG

by

Pattarasinee Bhattarakosol, B.Sc, M.Sc.

Department of Computer Science

1995

This is to certify that the work detailed in this thesis was done by the author, unless

specified otherwise in the text, and that no part of it has been submitted in a thesis to any other

University.

Pattarasinee Bhattarakosol

Abstract

This thesis addresses a particular aspect of the retrieval of information from a wide variety

of global information sources. This aspect is based on the model of a user working on a topic

of interest over an extended period of time. During the time period, information is accessed,

assembled, and correlated to satisfy the user's view of the topic.

The objective of the research described in this thesis is to ensure that the information

accessed by the user over the extended period of time is both complete and consistent from the

user's viewpoint.

A fundamental problem is achieving such consistency is that the information sources,

typically databases, or data files, are independently controlled with their own individual

viewpoints. Changes in content, structure, and access can therefore be made without the direct

knowledge of the user.

In investigating this problem a number of current implementations of Heterogeneous

Distributed Database Systems (HDDS) have been evaluated, including W A I S , A N S A ware, and

D A T A P L E X . The mechanisms available in such systems do not address the requirements of

the problem outlined in this thesis. A new set of mechanisms have been researched and

implemented on a testbed as the central part of this thesis in order to match the requirements.

The core of this testbed is a workstation-based interface for the user termed the Computer

Software Interface (CSI). The CSI has been implemented to demonstrate that the set of

mechanisms proposed are viable. One major aspect of the CSI has been the design and

development of a local working environment for the user, and the associated theoretical proof

needed to demonstrate that successful and complete access of this environment may be

performed.

The thesis demonstrates, both theoretically and practically, how the user may be presented

with consistent data from independent data sources over an extended time period.

Acknowledgements

I wish to express my gratitude to my supervisor, Professor Fergus O'Brien for his

constant support and valued guidance. Dr. Janusz R. Getta has provided most valuable

assistance in the field of database systems. I must warmly thank too, Dr. Peter R. Nickolas for

sharing his understanding of the theoretical significances which are the basis of this study,

Associate Professor Greg Doherty and Associate Professor Neil Gray in they great efforts to

help m e re-writing this thesis. Invaluable support was also giving by Mr. Phil Herring with the

Oracle System and Mr. Sam K. Tan with HyperCard.

My gratitude also extends to the staff of the Department of Computer Science for their

help and encouragement. Finally I wish to thank m y family and friends who have helped to

give m e the strength and determination to finish this work.

Table of Contents

Chapter

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 Introduction

Overview .

Motivation

Objective

Scope and Problem Domain

Work Undertaken

Introduction to Research Methodology

Computer Systems

Database and File Systems

Summary

Chapter 2 Literature Reviews with Some Example

Approaches to Implement Heterogeneous

Distributed Database Systems

2.1 Introduction to a H D D S

2.2 Design Constraints

2.3 Solutions to Syntactic Heterogeneity .

2.4 Solutions to Semantic Heterogeneity .

2.5 Supporting Language

2.6 Some Design Alternatives

2.6.1 Design of D A T A P L E X

2.6.2 Design of Wide Area Information Servers . . 30

2.6.3 Design of Advanced Network System Architecture . 35

2.7 Analysing and Defining Problems 43

2.7.1 Problems under the D A T A P L E X Approach . . 43

2.7.2 Problems under the W A I S Approach . . 44

2.7.3 Problems under the A N S A Approach . . 45

2.8 Comparison between Three Approaches . . . 46

2.9 Summariy 50

Chapter 3 System Analysis and Design ... 53

3.1 System Environment 53

3.2 Definitions and Theory 55

3.2.1 Data Consistency 55

3.2.2 Communication Failure 56

3.2.3 What Constitutes Unreasonable Data? . . 57

3.2.4 A Change at a Server 59

3.2.5 Implementation of a Local Database . . . 59

3.3 Problem Domain 64

3.4 System Analysis and Design 65

3.4.1 Dealing with a Change at a Server . . . 65

3.4.2 Using a Local Database 68

3.4.3 Unavailability of a Server 69

3.5 Computer Software Interface (CSI) 71

3.5.1 Information Server System (ISS) . . . 78

3.5.2 Query Generator System (QGS) . . . 82

3.5.3 Preserved Data System (PDS) . . . 87

3.6 Summary 90

Chapter 4 Implementation and Evaluation

4.1 Demonstration Environment .

4.1.1 General Assumptions .

4.1.2 Physical Disconnection

4.1.3 Characteristics of Data

4.1.4 Characteristics of This Prototype File System

4.2 System Implementation

4.2.1 Client System and Programs

4.2.2 Server Systems

4.2.3 Protocol

4.3 Evaluation

4.4 Summary

Chapter 5 Conclusions and Further Study

5.1 Implications of the Demonstration

5.2 Further Study

5.2.1 Compiler

5.2.2 Protocol

5.2.3 Data Model of Database Systems

5.3 Summary

94

94

94

96

98

98

100

101

116

118

118

121

123

123

124

124

124

125

125

Bibliography 127

Appendix A A Presented Paper in The International

Conference on Information Systems and

Management of Data, 1993 136

List of Tables

Table 1.1 The Form of the Original Data Stored in the O R A C L E . 12

Table 1.2 The Form of the Original Data Stored in the File Systems . 13

Table 2.1 Examples of Interfaces for Different Systems. . . 32

Table 2.2 Comparisons between Three Approaches. . . . 49

Table 2.3 An Example of a Data Definition Table. . . . 52

Table 3.1 An Example of Unreasonable Data. 58

Table 3.2 The Data Update Time Value is a Label of a Table in a Database 67

Table 3.3 The Data Update Time Value is a Field of each record in a Table 67

Table 3.4 The Data Update Time Table for Each Record in an Original Table 68

Table 4.1 Interpolate Population Using Time 112

Table 4.2. Choice of Interpolation of Sales Against Time or Production. 113

Table 4.3 An Example of Relationship between Fields in T w o Files . 114

Table 4.4 The Value used to Create the Functional Relation between

T w o Files 114

Table 4.5 An Example to Find the Key to Retrieve an Approximate Data from

theRDBMS 116

List of Figures

Figure 1.1 A Computer Network System. 9

Figure 1.2 Data in the Relational Database System. . . . 14

Figure 1.3 The Format of an Index File. 14

Figure 1.4 The Format of a Data File. 14

Figure 2.1 A Schematic of a Heterogeneous Distributed Database System. 17

Figure 2.2 Two different approaches to H D S or H D D S to schema integration 19

Figure 2.3 D A T A P L E X in a H D D S 25

Figure 2.4 The Relationship between a Nucleus and a Capsule. . . 42

Figure 2.5 An Example of Error when a Data Field is Added. . . 51

Figure 3.1 A possible H D D S Configuration. 54

Figure 3.2 An Example of a Network Partitions 57

Figure 3.3 The Design Environment of a CSI over a H D D S . . . 74

Figure 3.4 Cooperation between Three Subsystems in the Retrieval Process. 75-77

Figure 3.5 The Data Structure of the ISDB 80

Figure 3.6 An Example of Extraction a Query. 86

Figure 4.1 The Environment of a H D D S 95

Figure 4.2 Physical Disconnection between the Client and Server2 . 97

Figure 4.3 Physical Disconnection between the Client and Serverl . 97

Figure 4.4 The Format of Record in the File System. . . . 99

Figure 4.5 The System Design Architecture. 100

Figure 4.6 Using P R E S T A C K to Retrieve Data When no Physical Connection

between the Client and Server2. 110

Figure 4.7 Using P R E S T A C K to Retrieve Data When no Physical Connection

between the Client and Serverl 110

Figure 4.8 Connections between a Client and Server2 . . . 118

v i

Chapter 1

Introduction

This chapter will describe the system design parameters of a workstation based interface

for handling data from a variety of sources, which are subject to possible unreliable network

connectivity. The original problem was based on the heterogeneous design of seven major

databases within the data processing environment of Telstra, where Telstra has been trying to

solve the problem by combining the databases, but this is still under development, and this

approach has yet to be proven. The objective is to develop a Computer Software Interface

(CSI), which will facilitate data retrieval from a Heterogeneous Distributed Database System

(H D D S) which consists of various kinds of data management systems (databases and files),

which are independently owned. There are two different cases to be considered. The first

involves databases which are being continually updated. In the second, it is anticipated that the

data will be accessed by a user over extended time periods, during which the data may be

updated at its source, or access to the primary source may disappear intermittently.

1.1 Overview

In accessing the various data sources, a number of problems may arise, ranging from

communication link failure through to changes in data schema at the data source. In the past,

1

proprietary operating systems and communication protocols made shared access difficult, but

the adoption of open systems and TCP/IP as a connection mechanism has greatly improved

prospects for sharing data across systems. Higher level protocols have been implemented to

facilitate information retrieval processes in particular situations, such as the Z39.50

[NISO,1988] originally for bibliographic retrieval.

In the situations that we wish to consider, although correctness of transferred data is

guaranteed by TCP/IP, it is possible that during the data communication process communication

failure or some other failure at the source might occur. Such problems may cause the user to

obtain incorrect results, or impede further progress. A mechanism is given for bringing

together such data from different sources, and making sure that the data from different sources

can be assembled. Methods of achieving data integrity are discussed in this work

1.2 Motivation

A number of software systems have been developed to provide access to heterogeneous

distributed databases, providing full rights for users in the system to be able to update data,

delete data, add new data, or read data. Software such as D A T A P L E X [C H U N G , 1990], and

Pegasus [A H M E D et al.,1991], manage all types of transactions such as retrieval, updating,

and so on. Some software such as the Wide Area Information Servers (WAIS) [KAHLE,1989]

provides only the retrieval transaction which is entered by a user using a W A I S user interface

[K A H L E et al.,1992]. Yet another system is A N S A [APM(2),1991], which provides

commands that are embedded into the user ̂ licationprqjram.andinteract with the data holder

system to gain access, thus shielding the user from dealing with all difficulties in handling

different access methods. Such software is running under the assumption that the entire system

is stable, and that there is no error in data transmitted between transaction processes. At the

2

moment, there is a huge growth in Internet traffic related to the World Wide Web, W W W

[BERNERS-LEE et al.,1994] which can provide hypertext links between different data sources

prepared using the H T M L markup language.

One situation that will be discussed in this thesis is the original problem of a problem

that has occurred in Telecom Australia. Telecom Australia has many subcompanies and

departments, each of which manages itself and installs its own databases, and they use the

telephone number as a key to link data from every database in the different Telecom companies.

Consider the management system in the Telecom departments, such as the Telephone

Installation Department, the Service Department, and the Billing Department Each department

has installed different database systems. The Telephone Installation Department installed D B 2

on an I B M system, the Service Department installed I D M S on a B U L L system, and the Billing

Department installed O R A C L E on a U N I S Y S system. This environment is a classic

heterogeneous distributed database system.

The data in the Telephone Installation Department include the telephone number, name

and address of the owner of the phone. The data in the Service Department will be the

telephone number, numbers of local calls, S T D and international calls. The data in the Billing

system will be the telephone number and the details of number of calls, last payment, debt from

the last service charged, and the current charge for this period. So, the bill issued from the

Billing system must obtain the name and address of the owner of the phone from the D B 2 in the

Install Department, the number of services from the I D M S of the Service Department, and

include this information with the data in its O R A C L E database to prepare a bill for each

telephone number.

Consider the situation that a telephone number has been transferred to another owner,

and the details of the new owner have been updated on D B 2 and IDMS, but not O R A C L E . In

3

this case, when the bill has been prepared and sent to the address obtained from the D B 2 with

the service details from I D M S , the bill will be sent to the wrong person with the wrong

information because it will include the previous debt of the previous owner. From Telecom's

perspective, such an error arises because the different databases have become "inconsistent".

Such inconsistencies seem to occur too frequently in these distributed environments where

many separate agencies are responsible for updating different parts of the total data.

A different type of problem occurs in the retrieval process for information in a HDDS in

which the data from each data source will be updated occasionally. The retrieval process that

retrieves data relevant to a certain period w e refer to as a sustained task. Suppose that a cable

T V company in J A P A N has many representatives in different countries such as the USA,

C A N A D A , the U K , and F R A N C E . Each representative has authority to implement their own

database and control their local data. Suppose that the headquarters in J A P A N would like to

check the occupational status of cable T V subscribers in each country to find their main

preferences. This will constitute the sustained task to be performed. The data from each

database in the H D D S needs to be assembled, so that the senior manager in J A P A N can see the

differences in preferences between groups of subscribers in different countries.

Suppose that the head office in JAPAN announces a new customer service to all

members, such as an offer to switch from using cable to a satellite dish. This offer will be made

in every country, so each subsidiary company has to update its data on customers who take up

the offer, in their local databases. If a member does not want to change to the new service for

some personal reason, that member can still use cable. Once the new service has been available

for a time, the senior manager in J A P A N would like to see the number of members who have

converted to the new service. Some databases in some countries may have been updated, while

others have not. Thus, at this moment, data across the various databases are not consistent.

Therefore, when the director in J A P A N asks for information on the use of the new service, the

4

result will only show services from the updated repositories, and no new services on those

which have not been updated. This is a relatively c o m m o n form of inconsistent information,

and is the sense in which w e use inconsistent in this thesis. The problem occurs during the

update period because the data repositories are independent, so it is possible that one or more

databases are not updated at the same time. A query across more than one of them may obtain

inconsistent results.

One possible approach in dealing with these problems would be the introduction of

some form of "intelligent agent", which would monitor or control a user's access to the

combined databases. If the agent detected a potential inconsistency among the data sets

accessed, it would warn the user or take other corrective action. A general solution is

impractical, there are too many ways that data can be "inconsistent". However, some c o m m o n

problems seem to admit a relatively simple solution. If the "intelligent agent" can identify when

data were last changed, and has some knowledge of likely lifetime of data, then it can use this

information to detect several c o m m o n problems.

The idea of an intelligent agent that can utilize "timestamps" on data was the starting

point for the work in this thesis. The investigation aimed to explore a number of related

problems that might be dealt with using an intelligent agent. These problems include incomplete

updates of data being unavailable (would the last used value still held locally be good enough or

must the query fail?), and other problems related to the maintenance of local data caches.

1.3 Objective

The objectives were identified as:

1. explore the scope of application of an agent using timestamps

5

2. implement a prototype version realizing a simple agent through

programs

3. evaluate the performance and utility of the implemented system.

1.4 Scope and Problem Domain

We are interested in the total set of information spread across a number of distinct and

separately owned databases. The main part of our research is to build a prototype H D D S

dealing with information owned by different owners, in different databases possibly with

different data manipulation languages, data definitions, etc., where, nevertheless, information

across the network should be consistent, as defined above. The assumptions underlying our

work are as follows.

1. End users are not necessarily owners of a database in the HDDS, so they can

only retrieve data, but from more than one database at a time.

2. Mechanisms such as concurrency control, security control on servers, and

deadlock detection and recovery need not be discussed in this thesis, since w e

are dealing with read access only.

3. Problems of semantic heterogeneity will not be considered, but the problem of

syntactic heterogeneity will be addressed.

4. The data in the databases is assumed to be textual.

We will focus on the problems that affect the correctness of integrated data in the

presence of updates to individual databases.

6

1. Whenever a server changes its services or updates its data, how can our

database management system know that a change has occurred at the server site

and inform users?

2. When a user uses the local database which duplicates data from a remote

database in the H D D S , how can the database management software verify that

the data in the local database is the same as that at the remote site?

3. How can the HDDBMS continue its service to a user when a disconnection

between a client and a server occurs?

1.5 Work Undertaken

This section outlines the research undertaken, the results of which are described in the

remainder of the thesis. The following sections describe processes, methodologies, and a

simulated heterogeneous distributed data system which has been implemented.

1. Study of computer systems.

2. A general study of a file systems and relational database systems.

3. Study of the characteristics of TCP/IP, MacTCP and HyperCard.

4. Study of HyperCard scripts, Hyper*SQL and MacTCP toolkit.

5. Creation of files and a database on servers 1: Serverl and Server2.

l Server is a computer system that to accept an incoming connection, to provide a set of defined services.

7

6. Use of a Macintosh as a client 2 workstation to implement programs which

retrieve data from the file on Serverl and the database on Server2, using

TCP/IP and HyperCard. The data retrieved from both systems are merged and

shown on the client screen. This provides a fully functional prototype of the

heterogeneous data base idea.

7. Simulation of the situation of communication failure and changes in the

definition of data held in files and in the database.

8. Identification of problems arising in the previous process.

9. Proposing solutions for the problems identified, and implementation of a

prototype program.

10. Analysis and evaluation of the outcome of using the program.

1.6 Introduction to the Research Methodology

The programs we implemented are as follows.

1. AC language program - running as a server, on Serverl. The server program

uses the fork-exec mechanism [SUN, 1988] to connect different clients as they

arrive for service.

2. A HyperCard program running as a client program, on a Macintosh connected

to the ethernet. The client program contains a new mechanism developed from a

combination of the logging mechanism [CERI & PELAGATTI,1985] and the

^Client is a computer system that asks for connection, it will connect to a server.

8

duplicate database mechanism, [GOLDING,1992] to serve users when the

communication breaks down.

A trigger3 program in the RDBMS to record the last update time of data in a

table. Some tables also have the update time of individual records as a field.

1.7 Computer Systems

The computer systems in this trial consist of two SUN servers, Serverl and Server2,

and one Macintosh. The Macintosh is a client workstation. The TCP/IP set of protocols are

used to transmit data between the client and servers. See Figure 1.1.

f ŝ.

File

System

U N I X
8erver_l

EtlAtTWt*

,*- —^

RDBMS

|

UHK
Server_2

Mvltiport Gateway

M M T C

ApjlaT

Mcintosh.

Client

alk

j

CAP/IPtalk

*EtJjjenuet
Support
TPC/IP

Figure 1.1 A Computer Network System.

3 Trigger is a command in the Oracle database to perform actions such as update data in some specific table after

or before a transaction gains access to data in a particular table.

9

The data are artificially split into two components, one component on each server. One

part is a sequential file, and stored on Serverl using a random access algorithm. The other part

is recorded on Server2 using the O R A C L E relational database management system. W h e n the

client requests information from either server, server programs send information back to the

Macintosh. The server program on Serverl is a C program which accesses its data files, and

uses TCP/IP to transfer data to the client. The server program on Server2 is an O R A C L E

P R O * C program which also uses TCP/IP to transfer data to the client.

The client program consists of HyperTalk scripts. It is separated into two conceptual

components. The first part retrieves data from the database system using embedded

Hyper*SQL from Server2 The second part, which uses TCP/IP utilities, is the HyperCard TCP

toolkit, which initiates commands to retrieve data from a file system on Serverl. The data

from both servers is merged and shown on the client screen.

Communications between the client and servers take place through a multiport gateway.

The multiport gateway performs the necessary encapsulation of AppleTalk packets into T C P

datagrams, shown by Figure 1.1. Communication between the multiport gateway and the client

uses M a c T C P [APPLE-MACTCP,1988]. The protocol between the multiport gateway and

servers is TCP/IP which runs over Ethernet.

We did not use the alternative communication mode described below in which the

Macintosh is relegated to the role of a dumb terminal. In Figure 1.1, C A P is a software package

which runs on a U N I X host which lets the host utilise the AppleTalk encapsulated in IP packets

transmitted over the Ethernet. The information transferred from a U N I X host to a Macintosh

using CAP/IPtalk will be sent via an AppleTalk Ethernet Gateway such as a Webster multiport

gateway. At the multiport gateway, an IP packet is unwrapped to obtain AppleTalk packets to

be sent to a Macintosh. W h e n a Macintosh wants to send data or information over the Ethernet,

10

AppleTalk packets will be wrapped at the multiport gateway and sent via the IPtalk to the U N I X

computer.

1.8 Database and File Systems

The sample data loaded onto the servers were extracted from the "FAO Product Year

book: Food and Agriculture Organization of the United Nations" [FAO(l),1986]

[FAO(2),1987] [FAO(3),1988], The data forms of the original tables were separated and stored

in two systems: an O R A C L E relational database on Server2, and some data files on Serverl.

The data on Server2 is obtained from the Land Area Table, Table 1.1, and this table is

implemented in O R A C L E with eight columns. The table name in the database system is

F A O _ D A T A , consisting of columns named C O U N T R Y , YEAR, T O T A L A R E A ,

A R A B L _ L A N D , L A N D _ A R E A , P E R M _ C R O P S , PERM_PASTURE, F O R E S T _ W O O D L .

The structure of data on Server2 is shown in Figure 1.2.

The original data from four tables, Table 1.2, which are Agriculture Table, Alimentaries

Table, Cereals Table, and Cultures Table will be stored individually in the file systems. The file

system was created on Serverl as a sequential file, using a random access method to retrieve

data. The data of each original table is separated into two files. The first is an index file

containing a key and an index pointer to data in the other file. The second contains the real data

corresponding to the key in the previous file. The structure of data in these files is shown in

Figure 1.3 and Figure 1.4. On Serverl, there are four data file systems: Agriculture,

Alimentaries, Cereals, and Cultures.

11

Land Area Table

Country

Hong Kong

Total Area

Land Area

Arab&Perm CR

Arable Land

Perm Crops

Perm Pasture

Forest Woodl

Other Land

India

Total Area

Land Area

Arab&Perm CR

Arable Land

Perm Crops

Perm Pasture

Forest Woodl

Other Land

1985 1986 1987

Table 1.1 The Form of the Original Data Stored in the ORACLE

12

Country

Hong kong

India

•

Country

Hong kong
India

Country

Hong kong

India

•

Country

Hong kong

India

Alimentaries Table

1977 1978 1979 1980 1981 1982 1983 . . 1986 1987 198?

Agriculture Table

1977 1978 1979 1980 1981 1982 1983 . . 1986 1987 198?

Cereal s Table

1977 1978 1979 1980 1981 1982 1983 . . 1986 1987 1988

Cultures Table

1977 1978 1979 1980 1981 1982 1983 . . 1986 1987 198?

Table 1.2 The Form of the Original Data Stored in the File Systems.

13

CREATE TABLE FAO
(

COUNTRY
YEAR
TOTAL _AREA
LAHD_AREA
ARABL_LAHD
FERM CROFS
PERMJPASTURE
FOREST_WOODL

)

JDATA

CHAR(15)
NUMBER^)
NUMBER^),
NUMBEE(8),
NUMBER(8),
NUMBERS),
NUMBER(7],
NUMBER(7)

NOT NULL,
NOT NULL,

Fi gure 1.2 Data in the Relational Database System.

Struct File_index
{

char Country[15];

long int Offset;

Figure 1.3 The Format of an Index File.

Struct File Rec

{
unsigned hit

float

unsigned int

float

unsigned int

float

}

Year_l;

Data_l;

Year_2;

Data_2;

Year_3;

Data_3;

Figure 1.4 The Format of a Data File.

14

1.9 Summary

This chapter has given an outline of the objectives, the system environment, and the

tools which will be used in this research. The operating environment is assumed to be one in

which users work in an uncontrolled environment where they have no authority to control any

alteration of data in the system, and where communication between them and the data sources

may be lost. The data values are time dependent data which should be synchronised by the

client program for presentation to the user. Our objective is to explore a system software

prototype to meet these constraints.

The prototype system for the HDDS contains one Macintosh and two SUNs. The

Macintosh is used as a workstation and a client The S U N systems are used as servers. The

data sources are a relational database system and a file system, each of which is located on a

different server. The protocols which are used to transmit data are TCP/IP and MacTCP. The

language used to implement the client software is HyperCard scripts running on Macintosh.

HyperCard scripts consist of Hyper*SQL, HyperTalk, and HyperCard T C P toolkit statements.

Data are separated into two different data holder systems, file systems and the relational

database system.

This prototype system includes all the functionality contained in a generalised H D D S ,

and can be used to demonstrate the viability of the approach adopted.

15

Chapter 2

Literature Reviews with Some Example Approaches to

Implement Heterogeneous Distributed Database

Systems

The need to use data from distributed database systems is increasing. Data may be

stored in different repositories, located at distinct addresses over a network. This leads to the

development of a system called a Heterogeneous Distributed Database System or H D D S .

System software that can access data over the H D D S has to take many factors in account. Here

w e summarise some of the design constraints and solutions which have been proposed by some

authors, and present a summary of three designs for Heterogeneous Distributed Database

Systems (HDDS). The systems under discussion are D A T A P L E X , Wide Area Information

Server (WAIS), and Advanced Network Systems Architecture (ANSA). The main reason for

looking at these three is to illustrate the diversity of design for similar objectives under different

constraints. The D A T A P L E X approach emphasises database access aspects, W A I S is an

information system approach to bridging the heterogeneity of information located at physically

distant sources, and A N S A is a more general approach to distributed programming.

16

2.1 Introduction to a H D D S

A Heterogeneous Database System (HDS) is a system that may contain various kinds of

database systems such as relational databases, hierarchical databases and network databases

[BREITBART,1990]. Each of these systems maintains control over its individual D B M S

participating in the federation. A Heterogeneous Distributed Database System (HDDS) is

characterised by the distribution of the component databases over the network The component

databases may have different data models. The system which manipulates all accesses to

databases in the H D D S is referred to as a Heterogeneous Distributed Database Management

System (H D D B M S) . Furthermore, heterogeneities in H D D S can be classified into two

different categories: syntactic and semantic.

Client

Network

NDBMS

Figure 2.1 A Schematic of a Heterogeneous Distributed Database System.

Syntactic heterogeneity refers to differences in data models, or data schemas of the

component databases. The component databases participating in the federation can include

17

databases such as Relational data model, Hierarchical data model or Network data model. This

leads to the differences in the Data Manipulation Languages (DML) of the component databases.

Each database system has its own D M L to access data, for example R D B M S uses S Q L

statements, and N D B M S uses Codasyl D M L [HSIAO & K A M E L , 1989].

Semantic heterogeneity refers to the difference in the semantics associated with the data

of the component databases. The databases which are semantically different may represent data

by the same data model but use different data interpretations [SHETH & L A R S O N , 1990]. For

example two tables may have the same columns S A L A R Y , but one is the gross payment from a

company and the other is the net payment from a company.

There are two approaches to solve the problem of schema integration from users. The

first approach presented by [D A Y A L & H W A N G , 1984] lets the D B A of the H D S or H D D S

create a global schema for a set of databases being integrated, and each user application is

provided with its own view of the global schema. This approach can be called a non-federated

database system. The second approach presented by [H A M M E R & McLEOD,1980] is that, for

each application, the D B A creates a schema describing data that the application may access in the

component databases, i.e. an import schema for that application. The D B A for each component

database creates a schema for the data in her database which she is willing to share. This

approach is called a federated database approach. Federated schemas may correspond closely to

user views, or user views may be further derived from federated schemas [T H O M A S et

al.,1990].

18

C HDSrtiDDS J

S" Global scljem.4 X s-*~ Fedmted sch/ami ""^-v
V ^ _ (Noiî edsr&Jted totalise) ^.J v (FftferaJted dAit&iase) J

Figure 2.2 T w o different approaches in H D S or H D D S to schema integration.

2.2 Design Constraints

The most obvious factor in the design is related to the area of Distributed Computer

Systems [SINGHAL & CASAVANT,1991]. This leads to the communication problems -

different computer systems might use different connection protocols. The design of

communication protocols can have a direct impact on system efficiency and reliability

[SINGHAL & CASAVANT, 1991]. Moreover, protocols must guarantee the correctness of

transferred data.

The syntactic heterogeneity and semantic heterogeneity of data in different repositories

are other factors that system designers must take into consideration when designing system

software to access data across the network. The interpretation of different names from different

systems which, in fact, represent the same object or data is needed. [BERSHAD &

LEVY, 1988] [SMITH & OMAN, 1990]. Moreover, data model translation may be required

where different data models are transferred to a local system [BERSHAD & LEVY, 1988].

19

2.3 Solutions to Syntactic Heterogeneity

[WIEDERHOLD et al.,1992] proposed the megaprogramming technique which is a

technique for programming with large modules - megamodules. This technique can be applied

to the design of system software by considering each access function as a function module in

the software. Then, access functions over the H D D S can be referred to as megamodules that

capture functions of services provided by large organisations. The architecture of a

megaprogramming system consists of a collection of geographically distributed megamodules

linked by high-capacity networks [W I E D E R H O L D et al.,1992]. Using the principle of

orthogonal design, it is easier to maintain the whole system by performing maintenance on each

megamodule. The technique which is applied in maintaining each megamodule is to implement

a megamodule repository and dictionary which is a collection of information relating to

megamodules in the megaprogramming environment.

The idea of implementing a dictionary which stores information about megamodules can

be applied to the design of system software to manage various kinds of data schemas in a

H D D S . For example, the dictionary of servers of Wide Area Information Servers (WAIS) is a

collection of all information of available services, including access method on each server.

[PAPAZOGLOU,1991] proposed the idea of introducing appropriate software modules

on the top of a set of interconnected autonomous data/information repositories. This software is

referred as Corporate Information System (CIS). This method is similar to the method of

[W I E D E R H O L D et al.,1992] in that "the CIS utilises some sort of a kernel data model whose

prime purpose is to furnish the system as a whole with the appropriate structural and semantic

capabilities through which data unification is made possible" [PAPAZOGLOU,1991].

Furthermore, the method of using a federated database to maintain the topology of the federation

and oversee the entry of new services has also been presented by [PAPAZOGLOU,1991].

20

Another method which is used in managing distinct data schemas in the H D D S is to

define a global schema for all existing schemas in the HDDS [PAPAZOGLOU,1991]. All data

schemas from different repositories will be translated and mapped into the defined global

schema. This method has been applied to the design of some system software such as

DATAPLEX, as discussed below. The database systems which are integrated to each other

using a global schema are classified as non-federated database systems, which are a subset of

possible system designs.

2.4 Solutions to Semantic Heterogeneity

Solutions to the problem of semantic heterogeneity can be achieved by various methods.

[SMITH & OMAN, 1990] proposed a dictionary called a semantic dictionary to provide high

efficiency in accessing shared data from diverse database systems. The other method presented

by [SCHLICHTER & MILLER, 1988] is to set up standard data information. This method is

implemented in a publication management system, FolioPub4. A third method which has been

implemented in some system software is the method called Name Translation [BERSHAD &

LEVY, 1988]. System software such as THERE5 [BERSHAD & LEVY, 1988] and ANSA use

this method to determine relevant information from distinct servers.

4 FolioPub is the publication management components of an experimental production publishing system;
focussing on publication definition and automatic publication processing in a distributed environment

[SCHLICHTER & MILLER, 1988],
5 T H E R E is a general-purpose metaservice designed to simplify the adaptation of non-network, nonheterogeneous
applications to a distributed heterogeneous environment [B E R S H A D & LEVY,1988].

21

2.5 Supporting Languages

Generally, such system software contains many modules and the total size is large.

There exist some problems relating to the requirements of persistence, diversity, and

infrastructure, which deserve as much attention as sheer size [W I E D E R H O L D et al.,1992].

The concept of using Module Interconnection Languages (MILs) has been proposed by

[W I E D E R H O L D et al.,1992] to facilitate the construction and management of programs.

Furthermore, Megaprogramming Languages (MPLs) has also been introduced to handle

information transfer between heterogeneous modules, between dynamic queries and updates by

users, between distributed network communication protocols and by dynamically changing the

specifications of interfaces. The effect of implementing M P L s is that difficulties in dealing with

various modules are reduced and users gain high efficiency in accessing large systems.

Many system software packages apply the concept of using a standard language to

reduce the complexities of operations over the network, such as deleting, retrieving and

updating data, or concurrency control. The T H E R E system introduces the T H E R E

Programming Language (TPL) [B E R S H A D & L E V Y , 1988]. T P L handles problems such as

naming, communication, location of data, binding, and data transfer. FolioPub manages the file

process using the File Processing Language (FPL) file, which contains operating system

commands that invoke programs to perform the actual computation [SCHLICHTER &

MILLER, 1988]. A N S A provides the Distributed Processing Language (DPL) to clearly

distinguish the concurrency expressed in the computation [APM(3),1991].

The following sections will describe three different heterogeneous distributed database

management systems, each of which is the federated database system, in the sense in which w e

have defined it above.

22

2.6 Some Design Alternatives

DATAPLEX, WAIS, and ANSA are database management systems with different

design approaches. However, the common framework among these three is that they are

federated database systems. The D B A s of component databases in each system must register

themselves to the headquarter of each H D D S before granting access to the data via the H D D S .

Users of D A T A P L E X must use S Q L to access data in a H D D S , the client and server systems

use W A I S protocol in order to establish the retrieval communication, while in the A N S A

system, clients and servers must install the ANSAware package to enable communication

between participating systems.

Here we present a short summary of the three different designs.

2.6.1 Design of DATAPLEX

D A T A P L E X [C H U N G , 1990] is a heterogeneous distributed database management

system (H D D B M S) which has been developed by General Motors Research Laboratories. The

D A T A P L E X approach uses the relational data model as the canonical data model and S Q L as its

standard query language.

D A T A P L E X is implemented in manufacturing industries to allow users to retrieve data

from diverse autonomous databases, allowing semantic and syntactic heterogeneity, to support

efficient engineering and manufacturing activities, and business operations. D A T A P L E X allows

sharing of data and reduces problems in operations [T H O M A S et al.,1990].

23

Architecture of DATAPLEX

D A T A P L E X treats the entire H D D S as a single relational database model that containing

three schemas: local schema, conceptual schema, and external schema. The local schema

contains data definitions used by each database system. The conceptual schema consists of data

definitions of all sharable databases in a H D D S which are transformed to an equivalent relational

data definition; it is implemented as a set of overlapping relational schemata, one for each

location and the relational at each location represent data objects that need to be accessed by

users at that location [T H O M A S et al.,1990]. The relational data definition of a conceptual

schema contains only the information on stored data objects and local views. The external

schema consists of each user's view of data in a H D D S which is contained within the user box

in the Figure 2.3, but has not been explicitly drawn. A user's view of data is a set of data that is

presented to the user in the format defined in the user's application program. Figure 2.3

illustrates the D A T A P L E X system in a H D D S .

24

LOCAL
pATAj

USER

LOCAL DBMS 1

DATAPLEX

COMMUNICATION

SQL Query

CoaceptTud

Dfct&iM Information, and
Transaction Tall* for
Local Data

_̂ . SQL Query

"** DATA *

COMMUNICATION

DATAPLEX

LOCAL DBMS 2

COMMUNICATION
HV&SW
DATAPLEX

LOCAL FILE SYSTEM

LOCAL
DATA J

LOCAL
DATA j

Figure 2.3 D A T A P L E X in a H D D S [T H O M A S et al.,1990].

The functionality of the DATAPLEX system is divided into fourteen modules which are

functionally independent, in that each module is responsible for its implementation and provides

services to other modules. Using these modules, data access is transparent to users. The

names and functions of these fourteen modules are as follows:

1. Controller

This module arranges for the required modules to process a transaction in the

right sequence, and also performs the multiple processes by multitasking.

User Interface

25

This module provides and controls the screen that allows users to issue the S Q L

query and presents the result to users after the processing of a query.

3. Application Interface

This module is responsible for communication between an application and

DATAPLEX.

4. SQL parser

This module checks the syntax of a SQL statement, and includes referred names

which are set up by the user in the application program.

5. Data Dictionary Manager

This module provides facilities to create the DATAPLEX dictionary. Data

Dictionary Manager is also responsible for aiding in the retrieval and update of

information in the data dictionary. The D A T A P L E X dictionary includes

information of locations of referenced data.

6. Security Manager

Security manager is responsible for global data object names and user-id to

perform the content-independent access control.

7. Distributed Query Decomposer

This module decomposes a distributed query into individual local queries which

may be transactions at remote data or local data sources. A distributed update

statement will be decomposed to distributed retrieval and distributed update

queries.

26

8. Distributed Database Protocol

This module provides communications between the D A T A P L E X software at user

locations and the data sources, and handles the detection and reporting of all

problems dealing with remote access.

9. Translator

The translator is responsible for the translation of a query into the component

specific transaction mechanism of each component database.

10. Local DBMS Interface

This module passes the translated transaction to a local DBMS and obtains the

result.

11. Distributed Query Optimizer

This module executes the data-reduction plan by sending commands to the

locations involved.

12. Distributed Transaction Coordinator

This module controls locking and unlocking on each local database to achieve the

desired result of a distributed transaction.

13. Relational Operation Processor

This module at the user location merges the results from the local sites to provide

the final query result.

14. Error Handler

27

This module is responsible for recovery of the system under an event of an error.

It will abort the transaction and clean up the system after a non-recoverable error,

and then send an error message to a user and record the error in the transaction

log.

Distributed Data Security

The data security mechanism of DATAPLEX is Content-Dependent Access Control

(C D A C) [C H U N G , 1990]. The access rules of C D A C include a predicate whose value depends

on data content In the D A T A P L E X environment, security control involves two steps: security

control by D A T A P L E X itself, and security control by each local database management system .

A function of a global database administrator of a DATAPLEX system is to create a

D A T A P L E X dictionary. Under certain circumstances, the administrator has to create a view

which contains a predicate to enforce a C D A C . After the D A T A P L E X dictionary is created, the

administrator lets users access the global data objects in the dictionary. Whenever a user

accesses the global data objects, there are two possibilities:

1. The user is an authorised user of local data objects.

This situation occurs whenever global data objects correspond to local data

objects managed by a local D B M S .

2. The DA TAPLEX system is an authorised user of local data objects.

If the global data object is a global view defined on one or more local data objects,

then D A T A P L E X becomes an authorised user of local data objects at their

location.

28

Distributed Retrieval

T o process a distributed retrieval query, the Distributed Query Decomposer decomposes

the distributed query in an S Q L statement into a textual form constituting a set of local queries

the results of which are merged and presented to the user. A nested query is executed as a

sequence of non-nested queries by executing the inner-queries of the nest first. The nested-

query is transformed into a set of aggregate-free conjunctive queries. The non-conjunctive

query is decomposed into a set of conjunctive queries which contains only A M) boolean

operators. After obtaining a conjunctive query, the distributed conjunctive query will be

transformed to a query graph. A node of the graph represents a relation and a qualification term

is represented by an edge. Using the location of information, this graph is decomposed into

connected sub-graphs by deleting the edges that correspond to global join terms. The global

join terms are assigned to the qualification of the user-location query. Every sub-graph is

transformed to local queries. The user-location (source) D A T A P L E X software sends local

queries to data-location (target) D A T A P L E X software using D D P .

The Translator finds query translation information from a translation table that keeps a

mapping of data names and data structures between the conceptual schema and the local schema.

The Translator translates a user S Q L query to a query (or program) in a component D M L using

the translation information. The Local D B M S Interface sends the translated query to component

D B M S and obtains the result, which is in a report form similar to a relation regardless of the

data structure used by the component D B M S .

The Distributed Query Optimizer at the source schedules an optimal data reduction plan

using the statistical information from the targets. The data reduction plan is a sequence of semi-

joins that consists of local data reduction operations and data moves r nong computers. Upon

completion of the execution of the data reduction plan, the reduced local results are sent to the

29

source, where the relational Operation Processor of the source merges the component results to

answer the original query.

Distributed Update

As a consequence of a user request to update data, a transaction is invoked which

performs the updating operation. The update operation invoked by the user may reference data

residing at logically distinct and physically distant sources, raising three problems: distributed

concurrency control, distributed deadlock handling, and distributed data recovery. These

problems are solved in D A T A P L E X in a manner similar to that used for a local D B M S .

Concurrency control is addressed by two-phase locking. DATAPLEX uses this method

to perform distributed concurrency control by doing global protection of release locks from

L D B M S , so that locks will be locked by the L D B M S and released under the control of

D A T A P L E X . D A T A P L E X will allow L D B M S s to release their locks when the update

processes at all relevant locations have been completed. The method used to detect a distributed

deadlock is using the time-out mechanism, which is also used by the individual L D B M S s . The

distributed data recovery method is the two-phase commit mechanism similar to a L D B M S . The

distributed two-phase commit forces L D B M S s to commit and release locks only after all

D B M S s involved in a distributed update are prepared to commit.

2.6.2 Design of Wide Area Information Servers

The Wide Area Information Servers (WAIS) [KAHLE,1989] is a system that allows the

end users to gain information from a variety of data sources which may reside at physically

distinct locations. These sources of information are under autonomous control and operate in

heterogeneous environments. W A I S is the outcome of a joint project between the Thinking

30

Machines Corporation, Apple Computer, D o w Jones & Co., and K P M G Peat Marwick

[K A H L E e t al.,1992].

The primary objective of WAIS was to define an open protocol that would allow any

user interfaces or information servers using the protocol to interact with any other components

which using the protocol [K A H L E et al.,1992]. Today, W A I S is implemented in many

systems. Examples of W A I S applications are library catalogues, movie schedules, class

schedules and catalogues, bus schedules, etc. The characteristic of all applications is a text

retrieval from a remote access [KAHLE(3),1991].

Architecture of WAIS

The WAIS system has been developed from the standard protocol Z39.506, which has

been under continual development for nearly a decade. The W A I S system consists of three

major components: clients, servers, and the, protocol that links them together. A client is a user

interface; a server is a data repository which maintains indices to aid retrieval of documents.

The protocol is used to transmit queries and responses between clients and servers

[KAHLE(1),1991].

WAIS Client System

A W A I S client is used to send queries to access documents possibly located at different

locations. These queries are in the form of English language (natural language) questions. A

query is translated into the W A I S protocol and transmitted over a network to a server. The

client contains information on each server that includes the access method, a description of

contents, and the access cost. Client programs for different computer systems are described in

Table 2.1.

The Z39.50 is a search and retrieval protocol, developed by N1SO.

31

InterfaceJSfame

WAJ Station

R O S E B U D

X W A I S

TaigetJYtachine

Macintosh Plus
9" Monochrome
Screen

Macintosh II,
Color Screen

X-vindovs
Terminate on
U N I X Machines

Language

ThinkC

Smalltalk
M P W - C

C

Communications

TCP/IP and
Modem

TCP/IP using
IPC package

TCP/IP

Table 2.1 Examples of Interfaces for Different Systems.

A user interface allows users to enter queries in a natural language. The user can mark

up the replies from the server as yes or no, maybe, and select parts that are of particular interest.

These marks then construct the second query if it is necessary [KAHLE(2),1991].

WAIS Server System

A WAIS server is a computer that maintains information on a specific theme to apply to

client applications [KAHLE,1989]. A WAIS server can be located anywhere on a network. A

user of the W A I S system is only allowed to retrieve data. The data security and data

manipulation are controlled by the server. A server will allow data to be retrieved by a user who

has explicit access rights. Documents are distributed with an explicit copyright disposition in

their internal format [KAHLE(1),1991].

A WAIS client may keep track of the server from which it has previously received

information, for subsequent retrievals. As the number of servers grows, it is impossible for a

client to keep track of all servers, thus requiring the development of a dictionary of servers.

32

Dictionary of Servers

The dictionary of servers is a database which maintains information on all available

servers. It contains descriptions of how each server can be contacted and the relative cost of

doing so. A dictionary includes the following information [KAHLE,1989].

1. Description of servers in English.

2. The parent server, if it is a subsidiary of a larger server.

3. Related servers.

4. Public encryption key.

5. Contact information - including networks and contact points.

6. Cost information.

A dictionary of servers is updated whenever a new server appears on the system. Each

new W A I S server must send a description itself to register into the dictionary. If registration of

the new server fails, the server will not be visible.

WAIS Protocol

The W A I S protocol evolved from the standard protocol Z39.50. Z39.50 [NISO, 1988]

was designed to search electronic catalogues, returning a list of titles and document IDs. The

W A I S protocol is an extension of the Z39.50 protocol from NISO. It has been found to be

effective for the federation of full-text retrieval systems. The W A I S protocol includes support

for multimedia, large files, or parts of files, and can handle graphics images and sound or video

formats [KAHLE(2), 1991].

33

Distributed Retrieval

There are four different methods to retrieve text - using identity, content, association

with other items, and criteria [KAHLE(2),1991]. W A I S retrieves document IDs from servers,

allowing users to select documents of relevance. The user typically formulates a query in the

form of text strings. Following the formulation of the query, sources which are to be searched

for the query are selected. O n the execution of the query, the text associated with the query so

formulated is packed into the W A I S protocol and transmitted over a network to one or more

servers. W h e n the query is transmitted, the W A I S system automatically queries all servers for

the required information without intervention from the user.

When a server receives a query from a client, the query packet is translated into server

query language and used to search for documents satisfying the query. The outcome of

searching process is a list of relevant documents, identified according to the W A I S syntax with

a document ID, a title, score, types and date. This list will be encoded in the protocol packets

and transmitted back to the client. The client decodes the packets and displays the results on the

screen. The user then selects documents from the displayed list to request the complete

document from the particular server.

The location of a document is embedded in the W A I S protocol. This protocol encodes

search terms and Boolean constraints or relationship among words, and includes an optional

procedure for relevant feedbacks7. Using an optional procedure, users can send document IDs

and optional subsetting parameters - which are transformed into a document by the system as

the text of a query.

7 The relevant feedback is a method of information retrieval when a user marks the retrieved documents and

run the search to obtain the similar documents.

34

2.6.3 Design of Advanced Network System Architecture

The Advanced Network System Architecture (ANSA) is an architectural framework for

the design and construction of distributed systems. A N S A does not attempt to hide the

distribution of the individual systems but makes the distribution transparent to users,

administrators, and application programmers. As a consequence, A N S A allows exploitation of

the inherent concurrency of distributed systems [APM(1),1991],

There are two systems that developed at the same time: the Advanced Network System

Architecture (ANSA), which was developed in Europe and the C o m m o n Object Request Broker

Architecture (C O R B A) , which was developed in USA. These systems have the same objective

in addressing the problems of developing distributed systems in data processing. A N S A

concentrated on the ability to find and use software components via a trading mechanism, and

did not include any form of inheritance, whilst C O R B A came from the Object Management

Group (O M G) , and used inheritance in its interface language, IDL, from the start

[TOMLINSON, 1991]. Nevertheless, C O R B A will not be mentioned in detail in this Chapter.

The US National Aeronautics and Space Administration (NASA) has an Astrophysics

Data System (ADS) which is a collection of all information on N A S A space programs. The

A D S consists of various systems and databases including IDMS, Ingres, Oracle and a number

of home-built packages. The information are text, data, and images. ANSAware, an

infrastructure for distributed systems of A N S A , is used to join with the Knowledge Dictionary

System (KDS), to provide the means for client applications to use the K D S as a distributed

catalogue and to direct queries to an appropriate database site.

35

Architecture

Under the ANSA approach, the five projections presented below must be taken into

consideration when designing a suitable architecture [APM(1),1991]:

1. The Enterprise projection is concerned with the processing roles of an

information system within an organisation.

2. The Information projection deals with the representation of meaning and value

of information within an organisation.

3. The Computational projection is concerned with the structured programming

language to be run on a distributed computer system.

4. The Engineering projection is associated with the problem of efficiently running

distributed programs within the finite resources available.

5. The Technology projection refers to components of hardware and software,

which are used to construct a distributed system.

From these five projections, three models unfold: the computational model, engineering

model, and technological model. The computational model can be thought of as a set of

building blocks for constructing programs which can be distributed across a large distributed

system [APM(1),1991]. The engineering model, or a system builder viewpoint, is an

engineering entity that allows the same functions to access other parts of the system. The

technological model represents the operating system on which A N S A is implemented. There

are a variety of operating systems each constituting a different technological model

[APM(2),1991].

36

ANSA Design Aspects

There are five design aspects to be considered when constructing distributed

applications. These are separation, heterogeneity, federation, concurrency, and scaling.

1. Separation

The first assumption of separation is that all services are physically or logically

remote from each other, which raises the problem of accessing information residing at distant

locations. This requires that each service is able to encapsulate its data, and that the state and

data of each remote service can only be manipulated indirectly by interacting with one or more

interfaces8 supported and made available by the service.

The most important property of the computational model is that remote services

at an interface can be shared by clients invoking the services via interface references9. The

encapsulated data and the service operations for manipulating that data are referred to as a

computational object. Each computational object of a service is stored in its private memory

space, distinct from other objects.

2. Heterogeneity

Many incompatibilities may be experienced in the construction of distributed

applications, as a consequence of the different modules of the application residing at different

locations. Such incompatibilities include different operating system interfaces, physical and

logical data representations, and communication protocols. The solution of the A N S A model to

heterogeneity is to use interface instances to perform remote service interaction and make

services public enabling sharing by publishing offered services.

° An interface is a unit of service provision.
9 A n interface reference is an entity which refers to an instance of an interface [APM(2),1991].

37

Communication between services is performed by passing interface references to

each other. The possession of an interface reference by a client allows an invocation of service

operations provided at the interface by a server [APM(2),1991].

3. Federation

ANSA does not impose a centralised control on each component of the system,

but allows each component to control itself. Thus, a negotiation of shared services between

cooperating systems must be defined. The cooperative systems also have to identify all

available services via a context-relative naming scheme.

To manipulate the information in the federation, it must be possible to identify

names and trading services of a component system. Many names may be used to refer to a

specific object. To resolve this problem, ANSA defines the federated naming model as follows:

1. separating of Naming domains1 °;

2. separating of Naming conventions11;

3. separating of Naming contexts12;

4. Naming networks13;

5. Pathnames14; and

6. Name transparency15.

10 A Naming domain is developed for heterogeneous entities that can be named.

* * A Naming convention is a method of naming an entity.
12 A Naming cc :text is a set of binding between entities in a naming domain and names in a name set.
13 A Naming netlvork is a structure which names a naming context from another naming context.
14 A Path name is an extended name which traces a path through the naming network.
15 A Name transparency is a Naming context that is not visible to the interpreter.

38

As well as naming methods, A N S A also concerns itself with interactions

between clients and servers. The client uses interface references to interconnect to accessible

servers. The process which separates clients and servers and is used to interconnect initially is

called trading. After the trading process has completed successfully, two objects16 are able to

interact. The federated cooperative systems can organise and control sharing services - using

trading facilities of A N S A . The trading is accomplished by typename and optionally by

property name/value pairs.

A typename denotes a set of permissible interactions that a service instance can

engage in. It identifies a set of c o m m o n service interface instances. A property name/value pair

is used to support decision making from a set of instances with the same typename.

Servers register typename and property name/value pairs representing services

with the trading service (or trader). The operation by which a server advertises services to the

system by registering an interface with the trader, is called exporting. The trader also contains

operations to search for a service which a client intends to use, called importing. Thus, the

client receives the interface reference from the trader by an importing operation.

The function of a trader is only to search through exports of the required type. It

tries to match on the interface type conformance and required service properties

[APM(3),1991].

4. Concurrency control

A distributed system will inevitably be faced with the problem of distributed

concurrency and synchronisation. It also cannot avoid the possibility of an overlapped request

for a server. T o arrange distributed concurrency and synchronisation, A N S A introduced a

16 The two objects might refer to a client and a server, or between two servers.

39

Distributed Processing Language (DPL). The difference between the computational model and

engineering model can be distinguished by the DPL.

A program which runs on the ANSA system using the DPL must declare

opportunities for computational parallelism and requirements for synchronisation, without

reference to possible mechanisms for their implementation.

5. Scaling

In real life, a system always changes. It is difficult to set up system software or

a package to support all possible changes. A N S A will extend naming and trading facilities to

support the growth of the system, with each computational object keeping the information on

the services and data it provides. However, this method does not guarantee that A N S A is able

to support the scaling of any system for an unlimited period.

Distributed Retrieval

In A N S A , a programmer must state distribution requirements in the client program;

ANSAware interpreters can be applied to the source to yield components corresponding to these

requirements. The client program also declares all variables which are used to store data from a

H D D S without knowing their locations.

There are two systems that were developed at the same time: the Advanced Network

System Architecture (ANSA), which was developed in Europe, and the C o m m o n Object

Request Broken Architecture (CORBA), which was developed in USA. These systems have

the same objective in addressing the problems of developing distributed systems in data

processing. The A N S A concentrated on ability to find and use software components via a

tradin^echanism, and did not include any form of inheritance, whilst C O R B A came from the

Object Management Group (O M G) , and used inheritance in its interface language, IDL, from

40

the start ITOMLINSON,1991]. Nevertheless, C O R B A will not be mentioned in details in this

Chapter.

The communication between objects is performed through an interface. Client programs

or computational objects must define interfaces, which are written in the Interface Definition

Language (IDL). The IDL statements are embedded in the client program and compiled by the

stub compiler. After computational objects are compiled by the stub, the result is a set of stub

routines or engineering objects.

The client program is also embedded with PREPC17 statements. PREPC is a language

providing a means for embedding invocations of an interface operation in C. The compiler,

called the PREPC compiler, translates PREPC statements into invocations of stub routines

[APM(2),1991]. After completing the compilation of files with the stub and the PREPC

compilers, the programmer must assemble object modules into an executable program file.

Traders are divided into two types: local traders, and a master trader. The local traders

bind their local contexts to the master trader. All client and server programs will interact with

the local trader before interacting with the master trader.

The engineering objects are imported to a trader to look for services which need to be

used. The result of this search is an interface reference, which will be passed to a nucleus18.

Then, the nucleus provides engineering objects referred as capsules. The relationship between a

capsule and a nucleus is shown in Figure 2.4. Additionally, there is a service called a

transparency service that manages nucleus-provided resources in a capsule, and communication

with it's peers in other capsules - to provide the required transparency [APM(2),1991].

17 PREPC provides three basic facilities which are interface type declarations and lexical binding of interface
refere J-e variable, dynamic creation/destruction of interface instances, invocation of operations in one or more

interface instances.
18 A Nucleus manages the resources of a node; it includes a service definition for the protocol required for

communication between nuclei.

41

Er^meering Objects

Computational Objects

Transparency Service

N U C L E U S

N O D E

Capsule

Figure 2.4 The Relationship between a Nucleus and a Capsule.

Generally, a network is assumed to be unreliable and the communication is based on

Remote Procedure Calls (RPC) [APM(2),1991] [BIRRELL,1984]. Each remote operation is

assigned a sequence number, client session number, and server session number. If a service is

a local service then the service is processed on a local node on the network. On the other hand,

a Message Passing Service (MPS)19 is involved when a service requires a remote service. The

message from a MPS will be sent by a Remote Execution protocol (REX)20.

The ANSA system on a server receives the message and interprets the message into a

form of the server program; the interpreted command will be executed and the result will be

returned back to the client by the REX protocol.

19 A n M P S provides a transport service between nuclei.

20 A n R E X provides a simple service for process-to-process interactions across a network.

42

2.7 Analysing and Defining Problems

In this section problems that may arise in each of the three systems outlined in the

previous sections are presented.

2.7.1 Problems with the DATAPLEX Approach

Under the DATAPLEX approach, a HDDS is assumed to be a relational data model. All

component database systems which are not relational have their schemas transformed to the

relational data model. The data definitions of all sharable database systems are stored in the

conceptual schema. W e will now discuss some potential problems with the approach.

1. Inconsistency between the data definition of a local database and

that of the conceptual schema.

If the data definition of a local database is updated and the data definition at the

conceptual level of D A T A P L E X has not been correspondingly updated, this leads to an

inconsistency between the local database and D A T A P L E X which may cause an error in the

retrieval process. The data schema of a local database might be altered as a consequence of the

following operations.

A data field is deleted from data records.

In this case, if the deleted field is a sharable field then the data definition at the

conceptual schema must be updated. Otherwise, the user will obtain incorrect

details of data.

A data field is added into data records.

43

This added field will not be available for use by D A T A P L E X until the data

definition of the conceptual schema is updated.

A data schema of a local database is absolutely changed.

As a result of changing the whole data definition in a local DB, the conceptual

schema of D A T A P L E X is completely different from that currently defined. Thus,

an error will occur when D A T A P L E X translates a S Q L command to retrieve

information from the changed database.

2. No retrieval process after the DATAPLEX dictionary has been

damaged.

The retrieval process can be performed after the location of data is found from

the D A T A P L E X dictionary. Thus, if the dictionary is destroyed, then locations of data will be

undefined and the retrieval process must be terminated.

3. Loss of information from a non-relational data model.

This situation might occur when DATAPLEX translates a non-relational data

model to be a relational data model that is a part of a conceptual schema. Even though

D A T A P L E X uses a transaction table to store all information which could be lost, it still cannot

guarantee that all information that can be lost are kept in the table.

2.7.2 Problems with the WAIS Approach

Problems which may arise using WAIS are as follows.

1. The dictionary of servers might be inconsistent with the current

servers and their details.

44

The server must register itself to the dictionary of servers to convey the details of

its service. W A I S uses this dictionary to find the location of a required document, and the

method to connect to a server. Whenever some relevant details of a server change, the

corresponding information maintained in the dictionary of servers must also be updated to

reflect the changes. If such details are not updated at the dictionary of servers, a client will gain

incorrect information from the server and might not be able to retrieve the required document.

2. Retrieval cannot be done if the dictionary of servers is

unavailable.

The same problem can exist with the DATAPLEX dictionary, if access to it is

unavailable.

2.7.3 Problems with the ANSA Approach

The ANSA approach is more general than the first two approaches presented. The main

idea of A N S A is to use the interface to communicate between objects. The important part before

communication commences is the trading process. The trader gives an interface reference to the

client to obtain information from servers. The problems that may arise under the A N S A

approach to implement distributed systems include the following.

1. The information of a trader is out-of-date.

Sometimes a server might change its services and may not inform traders.

Under such circumstances, the service information in traders will be incorrect. This may cause

a client to receive an incorrect interface reference thus preventing contact with a suitable server.

2. The information on a local trader and the master trader may not be

the same.

45

This case may arise if information of a local trader is altered but is not updated at

the master trader. This may cause an error to occur as the client will not receive the correct

interface reference from the master trader.

3. All traders are updated but the client program does not match the

updated detail.

In ANSA, all variables must be declared and defined before receiving values

from a server, passing through an interface. Consequently, if a value from the interface is

changed, then a variable declared in the program may not match the received value.

2.8 Comparisons between Three Approaches

In this section, a comparison of the designs of DATAPLEX, WAIS, and ANSA will be

presented. All three are database managers which provide information from various databases

on the network, and protect information from unauthorised users. Using D A T A P L E X or

A N S A , an authorised user can perform data manipulations such as deleting, adding or updating

data on databases available to them, while W A I S allows users to perform only the retrieval

process on a database. D A T A P L E X and A N S A allow users to access more than one database at

the same time using one query, while W A I S can retrieve one document at a time for a user.

WAIS has a global dictionary of servers located in only one place, at the Thinking

Machines Corporation., into which details of servers are recorded. Every query on W A I S will

be sent through the dictionary of sources before distributing to individual servers. Thus, if the

central dictionary of servers is unavailable, users can only access server addresses stored locally

by them. The transaction management concept of D A T A P L E X and A N S A is different from

W A I S . D A T A P L E X uses the distributed process to perform a retrieval transaction; each server

46

must install the D A T A P L E X software to enable communication between a client and the server.

A N S A uses distributed programming which means that every server and client in A N S A has to

install an ANSAware program so that any operations issued from a client can be executed on a

suitable server system.

DATAPLEX implements a distributed database protocol (DDP) so that a remote access

can be done with an efficient error detection module. Remote access or remote data retrieval on

W A I S is performed by a special protocol named the W A I S protocol. A N S A implements a

computational model using an interface reference, which is an entity that refers to an instance of

a unit of service provision, and uses special protocols named Message Passing Service (MPS)

and Remote Execution (REX) [APM(2),1991].

These systems implement a database to store information of shared data repositories,

called respectively, a D A T A P L E X dictionary, a dictionary of W A I S servers, and a trader in the

A N S A system. They also inform the systems about data models in component databases, and

the type of data manipulation language (DML) that can access the data in each.

If differences exist between data models and DMLs in a HDDS, it is the responsibility of

a system to hide syntactic heterogeneity. D A T A P L E X uses a User Interface module which

allows a user to enter a query using a standard query language (SQL). The user of D A T A P L E X

system will interact with an external schema defined by the D A T A P L E X software; this schema

is a relational data model. The query in the D A T A P L E X will be decomposed, translated to a

suitable D M L for each data source, and distributed to the locations defined in the D A T A P L E X

dictionary. W A I S has a user interface client to allow users to enter queries, this time using

English-like statements, which will be translated into the W A I S protocol and be distributed to

retrieve data from its locations. A N S A allows a user to write his/her program using embedded

ANSAware language with the IDL and P R E P C statements. The user can define his/her own

47

data model in the program declaration section, then compile the program with the S T U B and

P R E P C compilers to obtain engineering objects, and integrate the object modules into an

executable program file.

WAIS only performs a retrieval process, so need not have a mechanism for concurrency

control. D A T A P L E X uses the 2-phase locking mechanism for concurrency control ,while

A N S A uses the D P L embedded into a client program.

48

Comparisons

Data manipulation operations

Number of databases able to

be accessed each time

Controlling system

Mechanism to overcome the

semantic heterogeneity

Mechanism to hide the

syntactic heterogeneity

Query language to access data

Transaction process

Concurrency control

DATAPLEX

retrieve, update, delete

data in a H D D S

more than one database

can be accessed.

distributed control

D A T A P L E X dictionary

a User Interface module

(external schema) and

conceptual schema (using

relational data model)

SQL

D D B protocol

2-phase locking

WAIS

retrieve data only

one database can be

accessed.

centralised control

Dictionary of Servers

a user interface

English-like query

W A I S protocol

no method required

ANSA

retrieve, update, delete

data in a H D D S

more than one database

can be accessed.

distributed control

Traders

the data declaration in a

user program

IDL and PREPC

embedded into a client

program

Interface References,

M P S and R E X

D P L embedded into a

client program

Table 2.2 Comparisons between Three Approaches

49

2.9 Summary

In this chapter, three different design approaches have been discussed: DATAPLEX,

W A I S , and A N S A . Although their designs are different, the mechanisms to control semantic

and syntactic heterogeneities of these software are quite similar: the implementation of a

database called a dictionary (for D A T A P L E X and W A I S) and a trader (for A N S A) . These

dictionaries and traders keep details of available servers on the network The details are such as

the location of a server, the connection method, the data model of the server's repository, etc..

Moreover, if a server wants to grant access to its database as part of a H D D S under the

D A T A P L E X or W A I S or A N S A systems, the administrator must register details about shared

databases. These details will be inserted into the D A T A P L E X dictionary or dictionary of

servers or a trader. The location of the data definition database of the component database is not

supplied, so automatic checking of this information is not available in these systems, and

updates will occur only if a server administrator informs the administrator of the H D D S .

D A T A P L E X uses S Q L as the standard query language for users to access data, W A I S

allows users to write an English-like language for their queries, and A N S A uses the ANSAware

embedded with some special command such as IDL, and PREPC. Each implements its own

protocol.

In m y research, a file system is considered to be a sharable repository. Information on

that file system must be stored, along with information on any participating databases. Figure

2.5 illustrates the situation when a file is used as a sharable source without any data definition

available in the H D D B M S or a file management program.

50

Production File of a Country

First round of reading values to
variables of the program
(vl-v5)

Second round of reading values to
variables of the program
(vl-v5)

i —

value: vl v2 V3 v4 v5
i r

vl v2 v3 v4 v5

34234 43223 5432 5427 71963 34245 43228 5673 5621 67320

zx ~T V

First record Second record

Figure 2.5.1 The Original Data File, before Adding a new Field.

First round of reading values to
variables of the program
(vl-v5)

Second round of reading values to
variables of the program
(vl-v5)

value: vl v2 v3 v4 "vS1 vl v2 v3 v4 v5

34234 43223 5432 5427 71963 6701 34245 43228 5673 5621 67320 4502

real vl v2
value: \

v3 v4 v5 v6 vl v2 v3 v4 v5 v6
/

First record Second record

Figure 2.5.2 The New Data File, after Adding a new Field.

vl=grape v2=apple v3=rice v4=plum v5=orange v6=tomato

Figure 2.5An Example of Error when a Data Field is Added.

From Figure 2.5, a file X contains production values of grapes, apples, rice, plums,

and oranges of a country (Figure 2.5.1). Thus, a program will read 5 fields per record into

variables vi, v2, v3, v4, v5 respectively. The first time of reading, values of all variables will

be vl=34234, v2=43223, v3=5432, v4=5427, v5=71963. The second round of reading,

values of variables vl-v5 will be: vl=34245, v2=43228, v3=5673, v4=5621, v5=67320. If a

product value of tomato is added into this file, then each record will contain 6 fields (Figure

51

2.5.2). After reading a first record from a file, variables vl-v5 will be 34234, 43223, 5432,

5427, 71963. Consider the second round of reading. The values of vl-v5 will be 6701,

34245, 43228, 5673, 5621, which are not correct because the value 6701 is the product value

of tomato from the first record. The correct values of vl-v5 should be 34245, 43228, 5673,

5621, 67320.

To solve the above problem, the data definition of a sharable file system must be

declared and stored as the header of the file, or a data definition file of any sharable files in the

network must be implemented. In this way, all files can be shared in a H D D S and be controlled

by any H D D B M S . An example of a data definition for a file is presented in Table 2.3

Fieldjname

Country
Year
Product

Fieldjength

15
A
15

Fieldjype

C H A R
INT
FLOAT

FieM_format

15
A
13.2

Note: Assume that One Record Contains 3 Data Fields

Table 2.3 An Example of a Data Definition Table.

The next Chapter will propose a design of a Computer Software Interface (CSI) which

allows a user to retrieve information from a HDDS. Data consistency and data integrity have

been achieved. The system software designed in this thesis focuses on the situation where end

users have been granted read-only privileges. In some systems the data is subject to continuous

update, while in others a communication failure may isolate the user from some data

repositories. The problem of dealing with some types of changes of data services has been

considered and solved. Moreover, consideration of the problem of communication failure leads

to the possibility of approximating some data when mathematical methods are inappropriate.

52

Chapter 3

System Analysis and Design

In this chapter, we describe our proposed system software design under the

assumptions that end users lack authority to control or to change data, and in some situations

communication between the client and servers is unstable, but that the protocol responsible for

the communication of data between component databases guarantees correctness of transferred

data. From the user point of view, data in a H D D S are related to each other in some way. For

example, there is a key linking data from various databases, such as the telephone number in

Telecom systems, or the cable T V entries in the databases for different regions. The proposed

system software will consist of three subsystems: an Information Server System (ISS), a Query

Generator System (QGS), and a Preserved Data System (PDS).

3.1 System Environment

As mentioned in Section 1.2 and Section 1.3, users cannot control the actions of owners

of the databases participating in the H D D S and the communication between a client and a server

may unexpectedly close. The configuration of a component node in a H D D S may vary in

hardware, operating system, and data manager. Access to data stored in the H D D S may be

granted by many applications. It is possible that there are multiple users who wish to access

53

data simultaneously for different purposes. Data manipulation on data sources can be initiated at

any time by an owner or local system administrator. Figure 3.1 shows a possible H D D S

configuration.

workstation workstation workstation

Network

Figure 3.1 A possible H D D S configuration.

There are many distinct database systems holding particular data sets. Each individual

system is characterised by a specific Data Manipulation Language (DML). This prevents the use

of the D M L of any individual data sources as a global D M L . Furthermore, each data source

will have a data schema for its own local data. These assumptions imply customised data access

methods for the individual database systems.

A file system may or may not maintain any external record of the semantics of the stored

data, nor will it support a D M L . There are three primitive file structures: a sequential file, an

indexed sequential file, and a random file, each with its own access method. Applications in

54

various computer languages are able to access the same file. Programmers have to know the file

structure and the current data definition before writing any application that uses the file.

Whenever a change of data definition of the file occurs, the existing application programs must

be modified.

The last component that has to be considered in a HDDS is the communication protocol.

For the various components of the heterogeneous database to be able to communicate, they need

to employ the same connection protocol, in our case TCP/IP [DAVIDSON, 1988]. TCP/IP is a

collection of network protocols which support host-to-host communication which allow

connection with any number of heterogeneous networks. The T C P resides above the IP in an

internet in the same way as a U D P (User Datagram Protocol). The T C P is a reliable21 stream

service whereas IP is unreliable and connectionless22. In addition, there may be data

transmission protocols such as Z39.50, or W A I S protocol, employed in the system.

3.2 Definitions and Theory

3.2.1 Data Consistency

In H D D S , such as the Telecom systems described in Section 1.2, data are separately

stored and distributed amongst various data holders. However, the key values will be used to

link data from different sources. In this thesis, the relationship between data will be defined by

the user viewpoint, examples of which are:

21 The reliability of a protocol refers to the delivery service. It guarantees that the packet will not be lost,

duplicated, or out of order.
2 2 Connectionless means that each packet is treated independently from all others and a sequence of packets sent
from one machine to other m a y travel over different paths, or be lost while others are delivered.

55

1. the situation that every database in the H D D S contains the same key value, such

as a telephone number, so that data from different databases can be combined;

2. the situation that the user has an expectation that a functional relationship, not

expressed in the form of an explicit global integrity constraint, exists between

certain items in different databases, such as that corn production is related to

fertiliser used;

Whenever a user sets up a rule to combine data in a HDDS, we describe that data as

interdependent data [R U S M K I E W I C Z et al.,1991].

Definition 1: There are two types of data in a HDDS: data which have relationship

with other data (interdependent data) and data without relationship with

others (independent data).

We assume that all data sources belong to different organisations or are independently

owned, and that remote end users cannot control the management of the data in the H D D S .

Therefore, consistency of integrated data in the network is defined as follows.

Definition 2: The data in different databases carry a timestamp, either explicitly in the

individual record, or implicitly in the database update time. W e will take

consistency to mean that the timestamps of the data to be integrated

agree.

3.2.2 Communication Failure

Communication between client and server may fail if the connecting network is

partitioned, or if the computer running the server program, which is not under user control, is

temporarily taken out of service. The status of network partitions is that sites on different

56

subnetworks cannot communicate to each other. For example, a site(A) can communicate to

site(B) but not site(C). Site(B) also cannot communicate to site(C). This means the network is

separated into two subnetworks, one contains site(A) and site(B), another contains site(C).

Figure 3.2 illustrates the network partitioning situation.

Site
B

A: Con

Site
B

4 •

frmunicatij

« — *

Site
A 4 h Site

C

Dn line in normal situation.

Site
A +4+-+ Site

C

4-

4- - f r

Site
D

Site
D

B: Communication line between site A and site C is closed.

3.2.3

Fi gure 3.2 An Example of a Network Partition

What Constitutes Unreasonable Data?

The information from a database or a file system is transferred to a client by the TCP/IP

protocol. The protocol ensures that the message is correct, in order, and not duplicated. It is

possible that an owner inadvertently entered an incorrect data item, which a user can see is

unreasonable. Table 3.1 shows an example of unreasonable data.

Definition 3 : A n inconsistent data item is an item that satisfies one of the following:

1. Data consists of unexpected characters or special characters, such as #$@$.

2. Data has a type different from the expected type, for example, data must be a

numeric value but an alphabetic value is presented.

57

3.

4.

5.

Data is missing.

Data is out of range, for example, a data should be in the range of [10,400] but

the received data value is 7687.

Data is not out of range but it is not resonable when compared with the

other values, such as a total_payment is 2345.00 but a partial_payment is

3345.00.

Most of these problems can only arise from a lack of integrity constraints in the

individual databases. Some might arise because there is no mechanism to impose global

integrity constraints on data entered by independent owners.

(incorrect data type "̂)

(̂ data out of range ̂ -]

Customer Name

Mr.J.B. Brown

Mr.j.G. Gray

Mr.K.H. Hui

Mr. Y.U Sope

Mr.K.J. Brown

Address

11 college Place

12Cowper St.

45 Kiera st.

leCorrimalSt.

&*A$##@&*

TotalOrder

123

100

50

326

400

Price/unit

679.986

1.5

data get3 special
characters

NetPay

yhkuy

679

75090

326

240

(missirig data value)

(unreasonable data, value ̂)

Table 3.1 An Example of Unreasonable Data.

58

3.2.4 A Change at a Server

A change at a server could be either of the following:

1. a change of a data schema at the data source.

2. a change of a data value

The change of a data value may affect the timestamp consistency of data in the HDDS

but not disrupt the user application program, while the change of a data schema can affect every

application program that uses the old data format to retrieve data from the source.

3.2.5 Implementation of a Local Database

According to [HSIAO & KAMEL,1989], every data model can be transformed to be a

relational data model, so w e use relational notations consistent with those in [MAIER,1983] as

far as possible. However, the consistency of data contained in the local database must be

determined and it must be proven to ensure that users can obtain the same data from this

database as from the remote repository. The following proof is due to [NICKOLAS,1992].

W e make the following assumptions.

1. The database has a single relation T.

2. The (designated) key KofT is singleton.

3. The relation T has no nulls.

4. All queries made on T (or at least those which are used to maintain the PDB) are

of the form

S E L E C T Fields

FROM T

59

W H E R E Cond

where Fields is a subset of the attributes of T which includes the key K, and

where Cond is as usual a Boolean combination of simple comparisons of

attributes (of T) with attributes, or of attributes with values. That is, more

compactly, each query Q applied to T is of the form n Fields o Gcond-

The assumptions 2 and 3 are probably not essential, but are convenient.

Furthermore, we will model a local database system as a relation over the same relation

scheme as T, and denote it by T\ T w o variants suggest themselves for initialisation of T\

1. Initialise T' as an empty table (over the scheme of T).

2. Initialise T' with one row for each tuple of T, with the key values copied from

T, and with all other values set to the null value (_L).

Whichever of these variants is used, maintenance of T' is thereafter the same. Let Q be

a query n Fields & ® Cond applied to T, where Fields is KFiF2...Fn. Note that for each

tuple s e Q(7), w e have s(K), s(Fi),..., s(Fn) non-null. For each such s, proceed as follows.

(a) If there exists t'€ T' such that t'(K) = s(K), perform an update

CH(T'; K = s(K); Fi = s(Fi), ... , Fn = s(Fn)).

(b) If there does not exist t' € V such that t'(K) = s(K), perform an addition

ADD(r;K = s(K),Fi = s(Fi), , Fn = s(Fn), Gi = J_,....,Gm = JL),

where Gi,....,Gm are the attributes of T (orT
1) other than K and

F],....,Fn.

60

The following result gives most of the information w e need about the properties of T',

whichever form of initialisation is used.

Lemma Let K be the key attribute of both T and T. Suppose that f e T. Then

i) *W *±

ii) there exists a unique t e Tsuch that f(K) = t(K); and

Hi) iff (A) * 1, for some attribute A, then f(A) = t(A), for the above t.

Proof We prove the result by induction on the number of queries (and consequent

maintenance steps) performed.

At the start, before any queries have been made, there are two cases, depending on

which initialising step was used. If T' was initialised as an empty table, the required statements

hold vacuously. Consider the other alternative-initialisation of 7" with one row for each row of

T, with key values copied from T, and with all other values set to JL Then for t' £ T\ (i) and

(ii) above are immediate, and since t'(A) * ± implies that A = K, (iii) holds because of (ii).

Thus (i), (ii) and (iii) holds initially.

N o w suppose that (i), (ii) and (iii) hold for all f € T before the execution of a query

Q = 7i Fidds o ucond and
 tne subsequent maintenance step. Suppose also that Fields =

KFiF2...Fn. W e fix f e T and prove (i),(ii) and (iii). First note that if t' was present in 7"

before Q, and is unaffected by Q (and the maintenance step), then (i), (ii) and (iii) are automatic.

W e consider the case when t' is either created or updated by Q.

(i) Suppose first that f is updated by step (a) of the maintenance procedure. Note that

only one such update occurs, since there can be only be one s € Q(7) with s(K) = t'(K).

N o w t* before the update satisfied t'(K) = s(K), and f is updated by setting t'(K) to s(K), so

61

t'(K) in fact unchanged. Since t'(K) * 1 before the step, this also holds afterwards. Second, if

t' is created by step (b) of the maintenance procedure, w e have f(K) = s(K) * 1. Thus (i)

holds.

(ii) Iff is updated by step (a), then t'(K) is not changed, so (ii) holds by the inductive

assumption. If t" is added by step (b), then by the definition of a key, there is a unique t € T

such that f(K) = s(K) = t(K). Thus (ii) holds.

(iii) Let A be an attribute of T such that t'(A) * 1. First suppose that t' is updated by

step (a). If A is none of K,Fi F2,... ,Fn, then t'(A) is unaltered by the update, so since t'(K) is

not changed by the update either, t'(A) = t(A) holds by the inductive assumption. If A = K,

then t'(A) = t(A) holds by (ii). Suppose that A = Fj for some /. N o w t'(Fj) becomes s(Fj) in

the update, and w e want to show that s(Fj) = t(Fj). But t is the unique tuple in T such that t(K)

= t'(K) = s(K), and therefore s = tfKF^.-.Fn), giving s(Fj)= t(Fj), as required. Second,

suppose that t' is created by step (b). Then t'(A) * _L implies that A is K or one of the Fi. If A

= K, w e have f(A) = t(A) by (ii). If A = Fj, then t'(A) = t'(F0 = s(Fi), which as before is

t(Fj) = t(A). Thus (iii) holds.

Therefore by induction we have the result.

In order to retrieve data from the local database, we will say that a query Q of the form

^Fields 0 (^Cond (with Fields and Cond as earlier) is permitted (on 7") if for every tuple t'e

T\ all fields of t' whose attributes names occur in Field or Cond have non-null values. Only

permitted queries are applied to T\

Theorem 1.1 IfQ is a permitted query, then Q(T) £ Q(T).

Proof

62

As before, write Q as n Fields o ocond, where Fields = KFXP2- • -Fn. Consider any f €

V such that t' is selected by aCond- By Lemma, there is a unique t e T such that t'(K) = t(K)

* 1. For each such attribute A occurring in Fields or Cond, the fact that Q is permitted shows

that t'(A) * J_, and so L e m m a shows that t'(A) = t(A) for each such A. It follows in particular

that a cond also selects t from T (strictly by induction over the structure of Cond). N o w

7TKFiF2...Fn(t') = t'(KFiF2...Fn) and t'(K) and each t'(Fi) is non-null. Therefore t'(Fj) = t(Fj),

and so t'(KFiF2-..Fn) = t(KFiF2...Fn). Therefore 7TKFiF2...Fn(t') = 7TKFiF2...Fn(t), and so

7tKFiF2...Fn o acond produces all the tuples when applied to Tthat it produces when applied to

T\

Simple examples show that the reverse inclusion does not hold in general if the first

initialisation scheme is used. If the second scheme is used, however, the reverse inclusion does

hold.

Theorem 1.2 Suppose that T is initialised with one row for each tuple ofT, with the key

values copied from T, and with all other values set to -L IfQ is a permitted query, then Q(T)

£ Q(T).

Proof

Take Q to be it Fields o acond as earlier. Let t € T be selected by cscond- N o w there is

a t ' e r such that t'(K) = t(K), because of the initialisation step, and because no key values are

changed in the maintenance process. Also, by Lemma, there is a unique t" £ T such that t'(K)

= t"(K) and such that t'(A) * J. implies t'(A) = t"(A) for all attributes A of T. Since t(K) =

t'(K) = t"(K), we must have t = t". N o w as Q is permitted, t'(A) * 1 for all attributes A of

Cond and Fields, so we have t*(A) = t(A) for all such A. Hence oCond selects f from V, and

by an argument similar to that of Theorem 1, we have 7T Fields(t) = ̂ Fields(t'), giving the result.

63

Corollary Suppose that T is initialised with one row for each tuple ofT, with the key

value copies from T, and with all other values set to JL If Q is a permitted query, then Q(T) =

Q(T).

Proof

From Theorem 1 and Theorem 2, Q(T') C 0(7) and Q(7) S 0(7"). Therefore, Q(7) =

OCT').

As a consequence of the Lemma, the data stored in the local database is related to data at

a remote repository. Therefore, when the timestamp of data at the local site is equal to the

remote server, Theorem 1, Theorem 2, and Corollary have proven that the retrieved data from

the local area are a part of, or the same as, needed data from the original data sources. Thus,

reading data from the local database while the timestamp is equal to the remote storage using

permitted queries, the consistency of data can be ensured for users.

3.3 Problem Domain

As a consequence of granting read-only privilege to users, we need not consider areas of

security control, concurrency control and distributed deadlock. The areas of interest include the

design of system software and methods to access data from a H D D S (with respect to different

D M L s and data schemas) and to present what data it can be to users under the circumstances of

uncontrolled and unpredictable relations between client access and server update. Re-iterating

potential areas of difficulties:

1. H o w can users know that there are some changes have occurred at a server site?

64

2. W h e n a user implements a local database by copying some significant data

from a H D D S , how can the system software maintain consistency of data in this

local database with the remote data?

3. Unavailability of remote data to a client may be caused by disconnection of

link, malfunction of the remote data source, etc. H o w can the system software

present some data to users under this circumstance?

3.4 System Analysis and Design

3.4.1 Dealing with a Change at a Server

There are two changes at a server site to consider: a data definition, and a data value. In

order to detect a change of a data schema of a service, a creation timestamp for the schema

should be recorded at the server site, and forwarded together with the the location of the data

schema, such as user_tab_columns23 to the central database manager. When the schema of

data has been changed, the H D D B M S can inform users and automatically update to the new data

schema. To overcome the problem of independent update of data bases, a record update

timestamp, either explicit or implicit, will be employed.

The notion of consistency w e are using is tied to the consistency of the update

timestamps. Many aspects of time arise in the real world, three possible aspects of time relevant

to databases are described as follows [KIM et al.,1990] [K L A H O L D et al.,1986]:

1. time of storage into the database; eg 20 July 1992;08:30:50

2. data update time or timestamp; eg 12 June 1990; 10:35:00

23 user_tab_columns is the name which is used in the Oracle database.

65

3. period of data validity eg (12-02-92,11-04-93).

When interdependent data are distributed over the world, it is difficult to use only the

data update time to examine consistency. As a consequence of having different time zones, the

time in different time areas cannot be compared directly. To compare the data update time

values from different time zones, the easiest method is to convert time values to Greenwich

Mean Time. Whether time conversion is required or not in an application depends on the

relativity between time increments of update and varaiation in time zones.[KIM et al.,1990].

There are two primary mechanisms to represent the time value. These may be defined as

absolute time and abstract time.

Absolute Time

The absolute time is the primary method to represent the time value which is of the form

Y Y Y Y / M M / D D [KIM et al.,1990] or D D - M M - Y Y Y Y [RUSINKIEWICZ et al.,1991], where

Y Y Y Y refers to year, M M refers to month, and D D refers to day.

Abstract Time

The abstract time is used in the "time-concerning event" [KIM et al.,1990]. The abstract

time uses some special characters to define the valid time such as exclamation mark (!) to define

the "before or after a specific instant of time or date", or on to define "a particular date", or at-

sign (@) to define "a particular time" etc [RUSINKIEWICZ et al.,1991], for example, 25-Aug-

86! means 'after August 25, 1986', on27-May-1990 means on M a y 27,1990, or @7.00

means at 7.00 a.m.. All of these special characters can be combined together in order to obtain

the specific date/time such as onl7-March-1990,@8-30 means on March 17, 1990 at 8.30

a.m..

66

Timestamp will be used to determine the data consistency within the entire H D D S . In

implementing a timestamp value, w e should consider the frequency of data update. If data in

each data repository is updated occasionally, such as an Agriculture report which will be

updated yearly, it is reasonable to implement a timestamp on each table, see Table 3.2. O n the

other hand, if data in a database is frequently updated, such as the Telecom databases, then the

timestamp of each record should be implemented as a field, see Table 3.3, or in order to avoid

the re-creation of an original table, the timestamp table will be implemented - Table 3.4. To

implement a data update time for each record as shown in Table 3.3 or Table 3.4, the D B A of

the database can implement a trigger program so that the timestamp of each record will be stored

into the timestamp field or table.

Till* A^icultured Product

Lalel of a. Data. Update Time Value

20-04-95

Product

Rise

Cora.

PeauUt

4 1
^

Amount (106)

5.67098

3.67509

0.09878

Value(109)

1.7S9429
1.006798

0.008906

Table 3.2 The Data Update Time Value is a Label of a Table in a Database.

Ttil* : CustomerJData

Tih.^hiJik_Jio

042+230657

042+214508

Updatejime

04-06-94

05-07-93

Name

Mr. Patrick Bolk

Ms. RoselJofca

Address

23Cowp«rSt., NSW2519

5 Madeline St., N S W 2500

Table 3.3 The Data Update Time Value is a Field of Each Record in a Table.

67

Till* : Update Jimejalle

Teleplonejao

042+230657

042+214508

Updatejime

04-06-94

05-07-93

Telepluoiije_Bo

042+230657

042+214508

Name

Mr. Patrick Bolk

Ms. Rosel John

Address

23 Courier St., HSV2519

SMadoliaaSt., NSV2500

Table 3.4 The Data Update Time Table for Each Record in an Original Table.

An alternative method to confirm consistency of data would be to notify clients

whenever an update takes place at a server site [GOLDING,1992]. This idea is impractical in

the situations for which w e are designing.

3.4.2 Using a Local Database

In some organisation, a user such as a Japanese resercher in cable TV company who is

working for an advertisement policy might need some piece of data stored in a H D D S so that

the cable T V company can run an advertising promotion. With this aim, the researcher wants to

obtain information from all cable T V sub-companies, but the information of interest will be only

small pieces of data from participating databases. The researcher might implement her local

database to keep only the specific data used. Thus, the local database will contain replicated

data from original data sources and be managed individually by the researcher. Inconsistency of

data in the local database can arise if the orginal source has been updated, but not this local

database.

To maintain consistency of data in the local database, it must contain a timestamp value

retrieved from the remote sources so that verification of data consistency in the entire H D D S ,

including the local database, can be performed. Furthermore, if the implementation date of a

68

data schema in each data source has been recorded into the local database, a change of a data

format affecting the local database can also be detected and notified to the user.

To maintain consistency of the local database, a logging mechanism has been applied.

In the logging technique of [CERI & PELAGATTI,1985], every process of a transaction will be

stored in a log file W e can consider our local database as a log file, and a change in a

repository as a process of a transaction (indicated by a data update time value). W h e n a retrieval

transaction has been transmitted to a remote repository, and a change is detected, then remote

retrieval starts and the database management performs a synchronised update to the local

database.

3.4.3 Unavailability of a Server

There are many reasons that a server cannot conect to a client, such as a disconnection of

the communication channel, the network becoming partitioned, or the server system shutting

down for maintenance. In order to serve a user while a remote server is not available in the

H D D S , the concept of implementing duplicated databases on some other servers over the

network was proposed by [GOLDING,1992]. The alternative is to make a copy of data in the

H D D S into the user database at the client. However, there is a timitation on storing data into the

local repository if the participating databases are huge. Under these circumstances the local

database should store only the significant data in which the user is interested. W e will use the

timestamp comparison described above to ensure the local database will be consistent with other

databases in the H D D S .

W h e n some data are not available in the local database or the data in the local database is

inconsistent with the original data source then the remote retrieval process needs to be

performed. It is possible that during the remote retrieval process, that communication between

the client and a server will be terminated for some reason. In this circumstance, the user will

69

not be able to obtain data from the original repository. A possibility for maintaining service to

the user during the disconnection period is for the heterogeneous distributed database

management system to shift the client transaction to perform at another replicated

source[GOLDING,1992]. Alternatively, if there is no other replicated database in the network,

it will terminate the transaction, close the connection, and wait until the sever is available on the

network again.

Our design will assume that there is no other duplicate database available in the network

except the local database at the client site, which is provided with the aim that the user will be

able to obtain some data instead of terminating the transaction. In this situation, our system

software will retrieve the previous data with the same key value from the local database, adding

the data timestamp to warn the user that the data presented belongs to the previous timestamp

period. The user need not terminate the task if that is acceptable, and the system software will

connect to the required server whenever the connection can be re-established.

A Computer Software Interface (CSI) has been developed to demonstrate the heuristic

solutions presented above. Our design contains three components, a client, servers, and the

protocol for exchanging information. The design will focus on the client software to serve

users in the retrieval of data only. As mentioned by [STALLINGS,1991] TCP/IP enables

communication between heterogeneous computers. Despite the minor differences in

implementations of TCP/IP, it has become the default industry standard and has the support of a

large number of vendors. TCP/IP is therefore the obvious connection protocol to transmit data

between clients and servers.

70

3.5 Computer Software Interface (CSI)

A Computer Software Interface or CSI has been developed to facilitate accessing of data

from a H D D S and supporting the presentation of data to users. The result of a query on the CSI

is relevant data, or an error code. The CSI function is defined as follows.

Definition 4: A Computer Software Interface or CSI is client software containing

retrieval functions to read data from a H D D S and return the result to a

user application program.

A primary objective of a CSI is to reduce complexities in retrieving data from a HDDS.

Desirable characteristics of a CSI are:

1. A CSI is a user friendly program, using standard commands which will be

interpreted to perform all retrieval processes. Users need not deal with the

details of different retrieval statements for different data holders. Furthermore, it

provides some security control.

2. A CSI generates suitable commands to access data from a H D D S .

3. A CSI should be built on an open system connection protocol. Our CSI is built

using the ubiquitous TCP/IP.

4. A CSI is able to check all available services of servers and inform users

whenever changes occur.

5. A CSI is able to automatically update information of servers services, which are

stored in the CSI storage.

6. A CSI checks the timestamp of data after a retrieval process starts.

71

7. A CSI attempts to present data to users even when the communication fails .

8. If the user can detect data which is obviously wrong or has a data definition that

is not consistent, an efficient CSI might contain a function that can support an

approximation routine for a user application. Ours contains a mechanism to do

so.

9. A CSI is able to choose suitable servers to minimise cost and retrieval time, if

data are held in more than one place.

10. A CSI is able to present information on available services to users. Thus, users

are able to check the available services before or after receiving a warning

message from the CSI. Moreover, users should be able to check their priority

and scope of accessed data.

In order to reduce the difficulties in retrieving data from different servers, the user

program will use embedded CSI standard commands which are described in Chapter 4. If a

user application program is written in a language different from the CSI, then, a pre-compiler

will be needed. As with other heterogeneous distributed database systems, our CSI allows

users to query the available data sources on the network by retrieving information from a local

database that stores information of all services in the H D D S . The query language in CSI is

SQL-like in the following format.

present <column_name>/<variable_name>

interested area [is/are] <tabk_name>/<file_name>

under condition <only one condition allowed>.

72

All variables in the "< >" must be defined and registered in the CSI. At the present

command <columnjwme>/<variablejiame> must exist under the name of the area of a user's

interest. The interested area must be a <tablejuane>/<file_name>.

The processing of a query is separated into three main components. The first step is to

check the local access rights of a user, verify required variables such as column names, obtain

data addresses, and establish links to servers. The second step is to generate suitable statements

to access data from participating servers, to transmit queries to the required servers, to recover

the process if communication between the client and a server fails, and to determine the

consistency of the data being retrieved. A mechanism is available to supply data for the user

when communication between the client and a server is unexpectedly unavailable.

Figure 3.3 illustrates the components of the system software designed in this thesis

which are an Information Server System (ISS), a Query Generator System (QGS), and a

Preserved Data System (PDS). The functions of the ISS are to check user authority, to resolve

the addresses of the required servers, to check for any changes of services and data values of

those servers, to decide the lowest cost and fastest servers in the situation that data are

duplicated, and to open and close connections between the client and servers. The function of

the Q G S is to generate suitable commands for each data source as required. The Q G S also

controls the retrieval process if communication between the client and a server fails. It contains

an approximation routine which can suggest an approximated value if one is required. The

PDS logs incoming data and is able to supply data back to the user if the normal mechanisms

fail. The cooperation between these three subsystems is illustrated in Figure 3.4.

73

Figure 3.3 The Design Environment of a CSI over a HDDS.

74

*-»

3

a-

« £3

S3 =•
CIH n

"s-.'d
<L> H
Vi 05

D

2

tt

5

s

p!
•9

Pi

o
o

U

h

75

o
U

e
P4

1
•i'

tt

5

a1

•3
Vl
•XI

%
H

ei
•3

P4
O

o
U

f*

76

o
U

2
PL,

•s
K
2

1>

3

77

3.5.1 Information Server System (ISS)

In the systems we discussed in Chapter 2, in each case there is a database that stores

information of server services, viz. the D A T A P L E X dictionary, the W A I S dictionary of

servers, and A N S A traders. W e noted that the manual updating of these databases could result

in out-of-date information about available services being offered to a client. The information

kept for each server is the location of the service, type of the service, data definition for the

service, access method, and cost of access. A change of a service may occur if the server

discards the service, or the server alters the service definition24. The effect of altering

information at a server site without updating the server information database will be errors in

user applications.

The first objective of the ISS is to find all locations and formats for the data specified in

the user query, thus avoiding the problem of a changing data schema affecting a user's

application as it might in D A T A P L E X , W A I S or A N S A . Moreover a change of a data value at a

server site can be detected and the user informed, if the timestamp is implemented as a label of

the entire database. If the timestamp is attached to individual records, the data will have to be

fetched anyway for examination.

Definition 5: The Information Server System (ISS) is the subsystem that allocates all

available services, assigns server addresses to variables for retrieval,

controls local access rights, and establishes links to servers.

The ISS uses a local database called an Information Server Database (ISDB) where the

information related to the user data area and server information area are kept The information

in the ISDB will be updated by ISS after the V S indicates the differences between the

24 The service definitions are such as available data models, data interpretation, etc.

78

information in the ISDB and the current information from the connected server. The ISDB will

be partitioned into two data areas: user data area and server information area. The user data area

stores information of authorised users in the H D D S , in the same way as the user database is

kept in a normal D B M S , and will not be described here, while the server information area will

be a repository for all available services offered by servers.

In consideration of the data model for the ISDB, the chosen data model must be efficient

in supporting the searching process. Besides, the chosen data model should be compatible with

the file structure. The structure of the file system is similar to the hierarchical model which

implies that the ISDB data model should be implemented as a hierarchical model. Although

there are four models in the database area, the relational model, hierarchical model, network

model, and object-oriented model, the hierarchical model was selected for the following

reasons.

Using the relational data model, a database must consist of relational tables, each table

consists of attributes and each attribute consists of a number of related constraints where each

constraint must be well defined. However, it is possible that relations between some tables

from different data sources cannot be implemented as clearly as required. Moreover, storing the

information of the structure of the file, using this model, the information must be converted to

the relational model which is not efficient. So, the relational model is not suitable for the ISDB.

Consider the network data model. This data model is also not the right model for ISDB because

in this Thesis there is no relationship across data tables or files from different repositories. For

the object-oriented model, it has no unique model but the structure of a database must be

classified to be class, subclass, and sub-subclass. Inheritance between classes can occur.

Thus, using this model to store a structure of a file does not fit the requirements of the database.

Therefore, the object-oriented data model is not suitable for the ISDB. In conclusion, the

hierarchical model is the most suitable for the ISDB, as shown in Figure 3.5.

79

ISDB

Addr. of repository-1 Addr. of repository-2 Addr. of repository-nl

Table name-1 : Cost Table nanie-2 : Cosj Table name-3 : Cost File name-1 : Cost

Location of Times

Fi gure 3.5 The Data Structure of the ISDB.

To allow automatic updating of this database, each server must register the location of

information about itself, such as the name of its data definition table in the database. For

example, locations of data schemas in a database system on the server have to be defined and

registered with the ISDB. The information stored in the server information area will include:

1. addresses of sharable databases or files;

2. names of sharable tables or files or services;

3. locations of data schemas, the data schemas themselves, data models of

databases or files and a number that can be used as an indicator to choose the

command generator procedure;

80

4. locations of the timestamp value (timestamp label's address or timestamp table's

address or tiemstamp field in the required database) and the creation time of data

definition at the remote database.

5. meaning of each defined data column or variable such as Payment means Gross

payment or Net payment. This cannot be used to resolve semantic questions,

without the use of a universal vocabulary.

6. all access costs.

Data files often do not contain a data definition header defining the data that they store.

For our system to work properly, this information will have to be stored somewhere, either at

the front of the file, or in a dedicated file of data schemas. If the latter is used, the ISS can

monitor changes on the servers and update the ISDB, whenever connections between the client

and servers are established. If there is a change at the server site, the ISS will inform the user.

The ISS can perform the following functions:

1. A n ISS can check the access rights of users of the client system, as a first

security control measure, before the access rights to remote data are validated by

servers.

2. A n ISS stores all available services of servers, and their access costs. This

information is registered by server administrators when granting access to users

of the ISS.

3. A n ISS is able to select sources of data required by a user, based on the cheapest

access cost and data update time values of every server that has a label of the

timestamp, including the Preserved Database (PDB).

81

4. A n ISS can check and inform users when a change related to the data definition

arises at the server site, using the data schema's create date value.

5. An ISS can automatically update services of servers in the ISDB whenever the

details of required data stored in the ISDB is different to the real information

stored in the server database system.

6. An ISS performs open-link and close-link routines to all required servers. Every

link is opened until the user receives complete information for one query;

consequently links for each user enquiry may be different.

The first function of the ISS is to check a user's authority in the local system. The

objective is to protect the data against unauthorised use. Once authorised, users are able to use

or obtain access on the local database PDB, which will be described in the next two sections.

As a further security control, a remote check may be made by servers.

The outcome for each service may be represented by an (i,j,k) triple, where i stands for

the address of the required data, j represents the type of data source (such as R D B M S or file),

and k is the required data name, entered by the user. After finding all details of the required

data, the ISS will send these results to the next subsystem. If a data address cannot be

resolved, an error will be sent to the user's program which will decide what to do next.

To accommodate many kinds of data sources, we decided that links between a client and

servers should be opened and closed for each user enquiry. This implies that connections

between the client and servers depend on which servers are needed to service each query. So,

links between the client and servers of query_l may not be the same as links between the client

and servers of query_2.

82

After the ISS issues links to all servers, the data schema creation time value on each

server will be sent to the ISS. The ISS compares all these time values with the created time

value of each remote database stored in the P D B so that when a change of data schema occurs,

the P D B will be able to detect and inform the user of this change. In the situation that the

timestamp is implemented as a label of the entire table of a database, as shown in Table 3.2, this

timestamp will be sent to compare with the timestamp of that table which is recorded in the

PDB. Thus the possible change of a data value at the original source will be detected, or the

consistency of data will be confirmed. The P D B can be used as a server in the H D D S when the

the comparison of timestamps are equal.

Once the ISS confirms a change of data schema at the servers occurs, it will update the

ISDB and warn the user of the change. As an objective of the CSI is that the user is able to

check the available services details on the system, the ISS will perform the retrieval process to

read all services defined in the ISDB and present them to the user when required. These details

are recorded in the ISDB. The services information will be presented based on the areas of

interest.

The last function of the ISS is to close all opened links after the retrieval process has

been completed. The user application program uses a standard command to initiate closing links

with all servers.

3.5.2 Query Generator System (QGS)

In a heterogeneous database, data-model transformation, data-language translation, and

cross-model accessing are required [HSIAO et al.,1989]. The function of the data-model

transformation is to transform one data model from a data source to another data model. The

data-language translation is included to resolve the problem of handling different data

83

manipulation languages. The cross-model accessing is similar to the data-model transformation,

but it transforms the data model from the data source to the data model defined by a user.

Data-language translation is performed in our Query Generator System (QGS), which

uses the idea of data-language translation to develop and implement a data-language generator to

access data on different servers, so that syntactic differences can be hidden from the user.

Definition 6: The Query Generator System (QGS) is the subsystem that generates

commands to retrieve consistent data from the H D D S without any user

intervention.

The retrieval commands generated for each server are based on information supplied by

the ISS. Therefore, the Q G S is active if and only if the ISS is able to obtain details of required

services. Each generator routine will consist of retrieval command(s) which are suitable for the

type of server on which the data is held. The information from the ISS which are the data

model (such as Relational) and type of data source (such as DB2) will be the indicator for Q G S

to select the right procedure for query generation. For example, a command generator named

Oracle_command will be implemented to generate retrieval commands for every O R A C L E

server.

Q G S is separated into three main parts. The first is responsible for the generation of

retrieval commands. The second retrieves information and sends outcomes to the user. The

second part also checks for consistency of data from different areas before returning the

outcome to the user's application program, using the timestamp values retrieved from every data

source, irrespective of the form in which they have been implemented. The third part can offer

an approximation where the user believes that a data item is incorrect.

84

The retrieval process of Q G S starts after receiving results from the ISS. The reading

process on each server can encounter two particular situations. The first is the normal situation

- communications between the client and servers are established. The second is when the

communication between the client and servers fails. Usually the user is interested in some

particular area, so the situation that a server is unreachable can be overcome by implementing

the P D S and the P D B because the amount of information to be stored in the local database is

small compared with an original source. If the user is accessing large databases subject to

continual update, as in the Telecom database example, the loss of connection implies all

functionality is lost

After an appropriate command is generated for each participating server, the retrieval

process begins. The method of decomposing complex queries into simple queries is similar to

that of the Distributed Query Decomposer of D A T A P L E X [C H U N G , 1990]. The result from

each simple query will be merged to obtain the final result for presentation to the user. A n

example of extraction from a query is illustrated in Figure 3.6. The objective of performing

extraction from the complicated query is that the result from each simple query will be storable

in a local database.

85

User "3 Query:

Present Empto;yee_rio, Age, Education, Experience, Salary
Interested areas are Personal_detail and Working_detail
under conditions Age < 35 and Experience > 5

From the above query, there are two interested areas: Personal_detail and
Working_detail. The extracted queries will he as follows.

Extracted Query 1:

Present Employee_no, Age, Education
Interested area is p"ersonal_detail
under condition Age < 35

Extracted Query 2:

Present Employee_noJ Age, Experience, Salary
Interested area is Working_detail
under conditions Age < 35 and Experience > 5

Figure 3.6 An Example of Extraction a Query.

Suppose that a user is interested in some piece of remote data. The client may not be

able to communicate with the server when a link between the client and the server is closed, or

the server system is not switched on, or the network becomes partitioned. In other systems tike

ours, when communication between the client and a server fails, the client process would be

terminated. We would like to present some data to users even if the servers do not contain

duplicated data sources, so our QGS process co-operates with a subsystem called a Preserved

Data System (PDS), which we now describe.

The QGS retrieves data from each repository using simple queries extracted by

decomposing the original user query. After the QGS received data and if the information in the

ISS indicates that the timestamp was assigned for each record for a data source, then the data

consistency has to be confirmed by comparing the timestamp values of the individual data.

After the comparison, data will be marked as either consistent data or inconsistent data.

86

The results of the retrieval process are data from each relevant server. These will be

merged and presented to the user as a table in a form determined by the user application program

and based on the consistency flag obtained from the Q G S . O n receiving data, the user might be

able to see that a data item is in a format that is unreasonable, for some reason. In this case, the

user might prefer an approximation to the item if our system can supply one. In this thesis, an

approximation of data can be attempted' because there is a focal" database, PDB; available at the

client site. The approximation command will be embedded in the user application to be invoked

whenever estimation is required. The approximation function in Q G S determines whether

approximation can be done mathematically or by retrieving previous data from the PDB. If the

data can be estimated mathematically, the Q G S will retrieve related values that can be used as

input to the mathematical model. Otherwise, the Q G S will send a message to the P D B to

retrieve data for the same resource name from a previous time period.

3.5.3 Preserved Data System (PDS)

The P D S will be implemented at the client assuming that a user uses only some piece of

data in the H D D S which is not replicated on another server. W h e n the transaction from the

client cannot access the server, the transaction would eventually time out. In such

circumstances, the client program may wait until the communication becomes available again or

adopt one several methods to avoid termination of transaction while the client is not able to

communicate with its servers. The method w e use to ensure that information is presented to

users while communication between the client and a server is not available is to implement the

Preserved Data System (PDS).

The P D S will cooperate with a local database called a Preserve Database (PDB) The

P D B is developed from the concept of implementing duplicated databases on some other

servers over the network [GOLDING,1992], and a recovery method - logging mechanism

87

[CERI & PELAGATTI,1985]. The P D B will store only those items the user has queried from

all data repositories in the H D D S . In order to maintain consistency of the PDB, the logging

mechanism has been applied, in that every process of a transaction will be stored in a log file.

Consider the P D B as a log file, and that a change in a repository is a process of a transaction.

Therefore, when a retrieval transaction has been transmitted to a remote database or a file, and

ISS confirmed a change on that source, the remote retrieval starts and the P D S performs the

synchronise update to P D B .

Definition 7: The Preserved Data System (PDS) is the subsystem that supports the

retrieval process under some circumstances such as when communication

between the client and servers fails.

Definition 8: The Preserved Database (PDB) is a local database at the client node

that contains data retrieved from remote servers.

The PDS acts as the database management system of the PDB. In designing the data

model of the P D B , the following points were considered. The model should be easy to

implement, easy to understand, and should be able to represent other data models. As noted by

[CHUNG, 1990] all of these criteria are met by a relational data model, so we have used it.

Because the H D D S may contain different data models, data-model transformation may be

required The information which is stored in the P D B is listed below.

1. The data source address and name corresponding to the stored data.

2. The update time of current data when retrieved from its server.

3. The created time of the current data schema as issued by the server.

88

4. The retrieval constraints which users use to limit the area of interest under the

same timestamp. These values are used to confirm that the required data are

available in the P D B .

5. A list of variables or column names plays the role of data definition of the

original database.

6. The data values themselves.

The functions of the PDS which are performed on the PDB are defined as follows.

1. The PDS updates information in the PDB whenever the QGS receives new data

from the servers.

2. The PDS retrieves information from the PDB when processing a transaction

from the Q G S .

3.5.3.1 Maintaining the PDB

As a result of extracting simple queries from a complicated query, the PDB is able to

store data from simple queries on retrieval. The primary operation that the P D S performs on the

P D B is the insertion of new data when updates on the servers are detected. Based on the

maintenance algorithms in Section 3.2.3, the P D B can be considered as a subset of every

primary source.

Consider the case that approximation of data is required. If the approximated data

cannot be calculated mathematically, then the approximate value should be obtained from the

previous data, which should be kept for the purpose. This historic data may also be presented

to the user if the client cannot communicate to the server. However, it is not worth keeping all

obsolete data, so w e keep previous data from one step before the current value. Thus, the P D B

89

will contain up-to-date data and the out-of-date data which were valid one step before the current

values.

3.5.3.2 Querying the PDB

The primary objective of implementing the PDB is to support users gaining information

while the client cannot connect to the server, or to service queries quickly and cheaply if the

required data items are present and up to date. The result from the P D B (the effect of each

extracted query) will be sent to the Q G S and let the Q G S manage all data. In the case of using

the P D B for a long time without remote updates, the P D B will contain almost all significant

data. In the case wherein the current update time is the same in the P D B and remote servers, the

result from the P D B is a subset of the primary result from the remote sources.

As mentioned in the previous section, data in the PDB will be used in the approximation

routine of the Q G S . Whenever the Q G S determines that the approximated value cannot be

calculated mathematically, the Q G S will send a message to the P D S in order to retrieve previous

data from the P D B . The P D S is able to retrieve data from the P D B using the address, source

name, and service name (or variable name). The result of searching the previous data is either

success or failure. It is success if the previous data was stored in the PDB, otherwise, an error

message is returned to the Q G S .

3.6 Summary

The objective of a user is to gain access to relevant documents. The conditions of the

system environment are that users cannot control all changes of data, as described in Section

1.2. Moreover, data in the H D D S are interdependent data with relationships possibly defined

by a user's view point. The protocol guarantees the correctness of transmitted data but

90

communication between a client and servers may not be available sometimes, and there are no

duplicate databases available in the H D D S except those provided locally by our software to a

user.

Three main problems we have considered are out-of-date information in a database in a

H D D S , inconsistency across the entire H D D S including a local database implemented at the

client system, and failure of communication between the client and servers.

To solve the first problem, an Information Server System (ISS) has been developed,

which co-operates with a local database system called an Information Server Database (ISDB).

The ISS has four main functions. Firstly, the ISS performs security control, checking the user

access rights locally before checking at the remote servers. Secondly, the ISS verifies and

locates variables in user queries. Thirdly, the ISS establishes communication between the client

and servers, and terminates the connections when the retrieval process is completed. And,

finally, the ISS checks and updates information in the ISDB whenever a change in a service

occurs, using the address of the data definition database such as users_tab_columns in Oracle

database and the creation time value of the data schema.

Servers have to register the addresses of services and service models into the ISDB

during the initial phase. File systems do not usually have extrenally accessible data schemas, but

we require that the characteristics of a file have to be stored, in a way similar to the

characteristics of a database system, in a location accessible to our system, so that the server can

register the data model and address of the data model of the file into the ISDB. Ultimately, the

ISS will use this information to update information in the ISDB automatically. Moreover, users

are able to retrieve information on available services from the ISDB, to confirm user authorities

and the scope of data to be accessed, before or after receiving a warning message.

91

The Query Generator System (QGS) reduces the complexity in managing retrieval

processes from heterogeneous data sources. The main functions of the Q G S are to generate

suitable commands to read data from remote servers, retrieve information from available

sources, and recover processes when a communication between the client and a server fails.

The Q G S applies the concept of a data-language translator for the D M L s in the various servers

to generate a suitable retrieval command for each server. In addition, it may generate simple

queries from a complicated user query. The retrieval process uses the extracted queries. After

receiving data from all required sources, the Q G S determines the consistency of data using the

timestamp values of data before assembling and presenting it to users.

The consistency of data will be determined by both the ISS and QGS subsystems, based

on the timestamp value presented in each database, or individual record of each database, as

appropriate for the frequency of update of both tables and individual records. If the data item is

also recorded in the P D B , the timestamp of the data stored in the P D B will be compared with the

remote timestamp value, so that the ISS can choose the lowest cost access, including the PDB.

Consider the possibilities for a retrieval process which cannot reach the remote

servers. Normally, in these circumstances, the transaction will be aborted. A n objective of our

CSI is to present data to users even though the communication is not available for a user

performing a sustained task, so the Preserved Data System (PDS) has been developed. The

Q G S cooperates with the P D S to achieve this objective. The P D S stores the results of previous

data retrievals from remote servers into a local database called a Preserved Database (PDB),

which can be considered to be a subset of the data on the remote servers, but located locally. By

reference to Theorem 1.2 and Corollary, w e can guarantee that the result retrieved from the

P D B is a subset of the results which could be obtained from the remote source, based on the

same update time.

92

In the design, some approximation methods are available to serve a user if there is a

local database available at the client system. The first is to apply a mathematical approximation.

The second is to present previous data to the user. Whenever an approximate value is required,

the Q G S will determine whether the required field is numeric or not. If numeric, the Q G S could

retrieve the related data required to create the approximate value. If not, two previous values are

available in the P D B and can be presented.

93

Chapter 4

Implementation and Evaluation

This chapter describes a prototype system implemented using HyperCard based on the

design given in Chapter 3. A n O R A C L E database and file systems are the data sources. The

communication between a client and servers uses the TCP/IP protocol.

4.1 Demonstration Environment

The demonstration environment consists of three major parts: the client, servers and the

protocol used to transmit data between a client and servers.

4.1.1 General Assumptions

A schematic of our system environment is presented in Figure 4.1. Our general

assumptions are as follows.

1. There are various kinds of hardware, D B M S s , and file systems on a network.

2. All data sources are assumed to be remote.

3. All data on each server are related to each other by the key value(s).

94

4. A query m a y require merging of data retrieved from diverse sources.

5. A client system is a workstation with some secondary storage.

6. Our client is not required to update data on the remote servers.

7. The data security, concurrency control and distributed deadlock will be handled

by a D B M S of the database system or by a file management system available at

any server site through the use of their standard facilities.

8. If a physical disconnection occurs, the client tries to present some information

to users.

Protocol

£ Z'

Datalase

(1)

Server

11)

• m „•

Database

(2)

Server

(2)

Protocol

I
Network

1
Protocol

I

Client

Protocol

Figure 4.1 The Environment of a H D D S .

95

4.1.2 Physical Disconnection

A physical disconnection in this prototype system will be handled in the following

circumstances.

Assumption 1 : The disconnection occurs after the login process has completed. This

means that links between a client and servers must be available at the

beginning of the login process.

Assumption 2 : Although a connection is closed, the client and server programs are not

terminated. Then the client and the server can reconnect and

communicate to each other with their previous status preserved.

Assumption 3 : When a physical disconnection occurs, the client program can check,

do the internal close connection, and later try to connect back to the same

server.

Assumption 4 : N o two physical disconnections occur at the same time. This means that

if the connection between the client and Serverl is closed then the

connection between the client and Server2 must be available, or vice

versa.

96

Connection

line is closed

c— ^>
^ ^

File
System

v___ J

SERVER1

Transfer

Data from

the File

CLIENT

Figure 4.2 Physical Disonnection between the Client and Server2.

Transfer Data.

from the R D B

r*- —^.

File
System

v, -S

SERVER 1

Connection

line is
closed.

Figure 4.3 Physical Disconnection between the Client and Serverl.

97

4.1.3 Characteristics of Data

As mentioned in the first chapter, our prototype data will be stored in two servers: a file

system on Serverl and a relational database (RDB) on Server2. These data satisfy the

following assumptions.

Assumption 1: Data on the RDB and data on the file systems are related

Assumption 2: Data on both systems have the same key values to support search and

merge operations.

Assumption 3: The mapping relation between data and key values on the file system is a

one-to-one correspondence.

Assumption 4: Data in file systems on Serverl with the same key are related.

Assumpti on 5: The life interval, or the time stamp value, is a field of the data.

Assumption 6: The timestamp of the created data schema is stored for each table at the

data source, as described in Figure 3.2.

4.1.4 Characteristics of This Prototype File System

A file system consists of two subfiles: an index file, and a data file. The index file

contains the data definition of the data file, key values and offset of data in the data file. A key

value plays the same role as the key value in the R D B . A n offset gives the location of the data

in the data file corresponding to a key value. The data format is stored at beginning of an index

file and has the information listed below:

1. the maximum number of fields which will be sent to a client '(assuming fixed

number of fields);

98

the name of each field in one record;

the type of each field such as integer, floating point, or string; and

the length of data of each field

Struct File
{

char
long int

}

index

Countrv[15];
Offset;

A: The format of nonnal File_index which
does not contain the format of data in
the other file.

struct FilejMex
{

unsign int noField;
char FieMName[15];
char FielrlType[i2];
unsign int FieldLenght;
DataStruct DataKey;

}
struct Keyjndex
{

char Country[15];
long int Offset;

} DataStruct;

B: A format of a File_index which contains
the format of data in the other file.

Figure 4.4 The Format of Record in the File System.

99

4.2 System Implementation

The implementation will be based on the design in Chapter 3. To simulate a HDDS, two

data resources were created, file systems stored in Serverl, and a relational database system on

Server! The data manipulation program on the Serverl was a simple retrieval code written in

C and the data management system on the Server2 was the ORACLE RDBMS. Figure 4.5

shows the system architecture of the simulated HDDS with its set of software tools.

CLIENT SHE

INFOSERV
(DATA)

INFOSERV
(PROGRAM)

Open Connections to Servers

8EEVEB SITE

8HDDS
(IWs
Program)

QUERYGEN
(PROGRAM)

Retrieve Data
from Servers

I I

PRESTACK
(PROGRAM)

PRESTACK]
(DATA)

SERVER

(2) RDBMS

SERVER

Figure 4.5 The System Design Architecture.

100

4.2 System Implementation

The implementation will be based on the design in Chapter 3. To simulate a HDDS, two

data resources were created, file systems stored in Serverl, and a relational database system on

Server2. The data manipulation program on the Serverl was a simple retrieval code written in

C and the data management system on the Server2 was the O R A C L E R D B M S . Figure 4.5

shows the system architecture of the simulated H D D S with its set of software tools.

CLIENT SITE

INFOSERV
(DATA)

INFOSERV
(PROGRAM)

Ojen Connections to Servers

SEEVEB SITE

SHDDS
(Usei's
Program)

PRESTACK
(PROGRAM)

Retrieve Data
from Servers

'RESTACK
(DATA)

SERVER

(2) RDBMS

Figure 4.5 The System Design Architecture.

100

4.2.1 Client System and Programs

The prototype client is a Macintosh running HyperCard. Our client application is written

using HyperTalk scripts which has functions to read data from both servers. The data in the

R D B is accessed by Hyper*SQL statements which are embedded in HyperTalk scripts.

Hyper*SQL has an Oracle driver to access the R D B . It also controls errors which may occur

during the process and informs users. The HyperTalk script and Hyper*SQL treat all data as

character strings, although it may contain numeric values. HyperCard can convert freely

between strings and numeric fields.

There are two important modules in the client program. The first consists of three

HyperCard stacks, which will perform discrete functions, which is called a CSI. Each stack is

defined as a subsystem of the system software to support a client query. The second module is

a user interface program, which allows users to enter a query and presents an outcome of the

query.

The subsystem programs, INFOSERV, Q U E R Y G E N , and P R E S T A C K are written in

HyperTalk scripts. I N F O S E R V is a subsystem which keeps all information about available

servers and services. Q U E R Y G E N is a subsystem which has functions to generate query

commands which are suitable for each server - depending on the information stored in

INFOSERV. P R E S T A C K is a stack that stores all information retrieved from remote

repositories. P R E S T A C K can also be used as a secondary source when a physical

disconnection occurs, or the query had been re-issued while the timestamp in the P R E S T A C K

is equal to the timestamp at a remote database. If a user believes that an incorrect data value has

been presented and some approximation is needed, information from the P R E S T A C K may be

used in the approximation routine.

101

A user interface program, called S H D D S uses the embedded commands of

I N F O R S E R V and Q U E R Y G E N to request data from remote sources. The embedded

commands will perform all retrieval functions, relieving the user of the need to determine the

location of the data requested, which will be provided by INFOSERV and Q U E R Y G E N

subsystems.

SHDDS: User Interface Program

A user uses the SHDDS user interface program to enter a query which consists of

variable names, resource name, and a condition. The resource name will be treated as a table

name or file name, as appropriate, in subsequent processing. S H D D S has many standard

commands to call suitable routines from INFOSERV, Q U E R Y G E N , and PRESTACK.

Standard commands reduce the difficulties in controlling transaction accesses to different

locations. The data mampulation is performed by the user interface program which can use

values passed from standard commands to present data, performing merges if required.

In presenting data to a user, the consistency of data from different resources must be

taken into account, using the timestamp at each location [RUSINKIEWICZ et al, 1991]. If data

from distinct resources have different timestamps then those data should not be merged.

However, if there is a field of a database that has been updated, and this field does not occur in

any related database, the merging of data from different repositories, including the updated

database, can be performed if and only if the timestamps of all required records are consistent.

The S H D D S will receive an indication from the CSI whether the retrieved data is consistent or

not

102

INFOSERV: Subsystem of Server Information

INFOSERV is the first subsystem which will attempt to satisfy a user requirement. The

location of each variable requested must be validated by INFOSERV. The information provided

by each server is recorded as a card in a stack each of which will be updated automatically if the

timestamp of the created data schema has been changed. The functions of INFOSERV can be

defined as follows:

1. checks the "interested_area" entered by the user to indicate that the given field is

a database name or a file name.

2. checks the location of every variable requested, whether it is stored in the

database or the file;

3. opens links between the client and servers;

4. determines if there has been a change of data schemas by comparing the

timestamps stored by INFOSERV with the timestamp on each server;

5. updates and notifies the user whenever a change of service information has been

found.

All the processes above can be performed using the information stored by INFOSERV,

which will contain an O R A C L E table name details, or a file name and details, depending on the

type of server. The standard commands of the INFOSERV module which will be embedded in

the S H D D S and other two subsystems are described below.

do_close_connect

This command is used to close the connection between a client and Serverl.

103

do_disconnect_sql

Similar to the do_close_connect command, it is used to closed the connection between a

client and Server2.

findLocation

The location of required variables will be found by this procedure. After all related data

resources have been found by findResource, every variable in the query will be checked

for its location, using those resources. The result of this search will be a table name of a

database, or a file name, which contains the required variable, and the variable name at

the remote site.

findResource

The findResource command defines the type of data resource: a database or a file system.

It uses the table name entered by the user to determine the source. The result of this

function will be the type of a resource (database or file), and the name of area of interest

(table name or file name).

FLCompare

This command is used to check the timestamp of data definition of the required file,

including the data schema itself, which is stored in a card of INFOSERV stack.

get_format

m. , . ,, „ r»TTPi? Y H F N routine to retrieve the data format of a file if
This command is used by a Q U E R Y U£JN rouime w

there is a change of data format.

104

open_fiIe_unix

This command is called by QUERYGEN when the connection between the client and the

Serverl is established.

openDatabase

This command is called by QUERYGEN when the connection between the client and the

Server2 is established. The timestamp of the data definition will be checked, and if the

timestamp stored in the P R E S T A C K is different from the remote source, then the new

data definition will be retrieved and recorded in a new card of the INFOSERV stack.

openLink

The link between a client and servers will be specified after resources are defined. This

function will open connections to all servers, depending on the data resources on each

server. If the data are stored in a database, then the command to open a connection will

be generated After that, the access right will be checked by the server. If the data are

recorded in a file system, then the asking-for-connection command of M a c T C P toolkit

will be sent to the server.

sql_error

This command is used to check the process of a S Q L statement, and it detects errors such

as when a connection line is closed or the data schema has been altered. Some significant

errors are given below.

00902 invalid datatype

00903 invalid table name

105

00904 invalid column name

00910 specified length too large for CHAR column

00932 inconsistent datatypes

00942 table or view does not exist

01034 ORACLE is not available

01040 This version of ORACLE does not match the mounted system

01454 cannot convert column into numeric datatype

01455 converting column overflows integer datatype

01457 converting column overflows decimal datatype

02017 integer value required

02267 column type incompatible with referenced column type

06100 connection error

06402 unexpected end-of-file

06408 bad message type

06410 network read error

06412 bad read length

06413 unexpected end-of-file. ••

106

Q U E R Y G E N : Subsystem of Query Generator

We have assumed that there are various DBMSs and file systems, and that the data

retrieval methods from distinct sources are different. Q U E R Y G E N is a subsystem which has

functions to generate query statements suitable for each server. W h e n locations of variables

have been found, Q U E R Y G E N will use them to create query statements. For example, in our

prototype, if data are stored in the database system then an S Q L statement will be generated;

otherwise, the MacTCP toolkit will be used to retrieve data from the server.

During the retrieval process, it is possible that a connection line between the client and a

server will close. In this situation, Q U E R Y G E N returns a flag to allow the user application

program to decide on the next step. W h e n a disconnection has occurred, and the retrieval

process from every resource has not finished, Q U E R Y G E N will keep checking and trying to

reconnect to the lost server.

There are two standard commands which will be embedded into the user program to

control the retrieval process from diverse resources, createCommand and retrieve_info.

createCommand

This command will generate a S Q L statement to retrieve data from a database system.

The variable names of data in the database are indicated by INFOSERV where the table

name is defined using the area of interest in the query statement.

FLestimate

The FLestimate is called when a user wants to find an approximate data value, either in

place of a result, or when the result of a query cannot be obtained.

107

retrieve_info

This command will send a S Q L statement to a D B M S server, or call the routine using the

MacTCP toolkit commands to retrieve data from a file. During the retrieval period, the

status of connection lines will be monitored until the retrieval process is finished The

command returns the retrieval status. If the retrieval succeeds, the returned value will be

zero. Otherwise, it will indicate the type of an error, such as a changed format, or a

disconnection, and the server which generated the error.

PRESTACK: Subsystem of Preserved Data

The concepts of implementing a PRESTACK are as follows.

1. The workstation will create a PRESTACK when the system is used, for the first

time, by each user.

2. Each time the user retrieves data from the original resource, PRESTACK will

update by adding new data that is not already held, or creating a new card if the

data schema of the original repository has been changed, or replacing the data in

P R E S T A C K with the new value and keeping the previous value on the

historical card of the same table name.

3. P R E S T A C K will not record incomplete information that is obtained before a

physical disconnection occurred, or data obtained from an approximation.

PRESTACK is created in the form of a stack. PRESTACK will be a backup of some

information from the original database and file systems, containing the results of recent user

queries. P R E S T A C K contains records which are called preserve stack cards (PSC) which

contain the following details:

108

1. the name of the database table or file from which the item was retrieved;

2. the update time of data in the original data sources;

3. the update time of a data format in the original data sources;

4. all conditions of user queries such as COUNTRY = "UK";

5. the header of retrieved data which is the list of variable names; and

6. retrieved data values.

PRESTACK will be used when a connection line is closed, in the following situations

illustrated in Figure 4.6 and Figure 4.7.

1. The connection fails while retrieving the information from the RDBMS.

2. The connection fails while retrieving the format of a file, or data from a file.

109

RDBMS

SERVER2

Connection
line is close!

^ "^

File
System

^ J

SERVER1

L
Transfer

Data from

tie File

CLIENT -Retrieve Data Preserve

Stack (PS)

Figure 4.6 Using P R E S T A C K to Retrieve data W h e n no Physical Connection between the Client and

Server2.

Transfer Data

from the R D B

Connection

line is
closed.

^Retrieve Data
Preserve

Stack (PS)

Figure 4.7 Using P R E S T A C K to Retrieve data W h e n no Physical Connection between the Client and Serverl.

110

The retrieval method on P R E S T A C K is as follows.

1. If the PSC contains the same query as the current user query, the data can be

retrieved from P R E S T A C K using the table name or the file name and the field

names of the current query to search for the required data.

2. If the key has never been retrieved, then stop searching PRESTACK; the client

program shows data from the part of the query already processed.

Some commands of PRESTACK which relate to two subsystems and the user interface

programs are as follows.

do_copy_log

This command is embedded into the SHDDS to make a copy of data retrieved from

original resources in the PSC. do_copy_log has two functions: create a new card, and

update a previous card.

The creation of a new card will be performed when data items retrieved from the new

source have not been recorded in P R E S T A C K , or the timestamp which is a label of the

entire table or the file has been changed Another possibility is that the card of the

database table or the file will be updated by adding new values or replacing an existing

data value by one with a later timestamp. In that case, the previous data value will be

saved in the historical card of the same table name in PRESTACK.

findLine

The findLine command is used to find the tine containing the required name in a group of

data fields which is recorded in the card.

Ill

retrieve_log and rtvAPPXDB

These routines retrieve a previous data item from a card in PRESTACK when a user

needs the previous value in an approximation routine.

rtvDBMS and rtvFILE

These routines are called from the SHDDS and QUERYGEN modules to retrieve data

from the PSC, rather than the DBMS or the file server respectively. These will be

invoked when a connection is lost, or the required data item is already in the PSC. The

latter assumption will be checked by QUERYGEN.

setUpdateLog

The setUpdateLog command is called by INFOSERV to check whether the update time of

data in PRESTACK is the same as the original data.

We now consider some possibilities for approximating a value. There may be

relationships between data from different repositories, as illustrated in Table 4.1 and Table 4.2.

YEAR

1985

1936

1987

1988

1989

POPULATION_of_COUHTRY

25,000,000

28,000,000

29,400,000

31,458,000

34,603,800

INCREMENT_RATE

8%

5&

?%

1095

Table 4.1 Interpolate Population Using Time.

112

YEAR

1985

1986

1987

1988

1989

NO_OF_PRODUCT

250,000

285,000

270,000

330,000

245,000

NO_OF_SALE_PRODUCT

200,000

57,000

135,000

313,500

171,500

SALE_RATE

80%

20%

50%

95%

70%

Table 4.2 Choice of Interpolation of Sales Against Time or Production .

An approximate value for a numeric data item can be obtained by interpolation.

Interpolation involves the selection of a function p(x) from a given class of functions, often

polynomials, in such a way that the graph of y = p(x) passes through a finite set of given data

points [ATKINSON, 1989]. After fitting a function, it can be used to predict the value of y,

given a value of x. In a table with several numerical fields, there is considerable choice in the

interpolating variable and the functional form chosen.

In our prototype, the file systems25 on Serverl are related, so some form of

interpolation may well be appropriate. The example of the relationship between the two files is

shown in Table 4.3.

25 The data on the file systems are assumed to have the relationship with each other, as defined in Section B. 1

113

Country Year AgricultureJData

^

Alimjentsdxes Data

USSR

USSR

USSR

1985

1986

1987

109.83996

117.269997

116.139999

t

110.339996

118.660004

117.88999

JJ
BotL fieMs defend on tie climate j

Table 4.3 A n Example of Relationship between Fields in Two Files.

Country

U K

UK

UK

Table 4.4 gives an example of the possibility

Year

1985

1986

1987

AgricultureJData

109.760002

110.099998

f 108.919998)

Alimentaires Data

120.779999

132.470001

X and Y values vhich are used
to create a function.

X value which, is used to
approximate the Y value, Xi

Y value vhich is needed to
be approximated, Yi,

Table
4.4 The Values used to Create the Functional Relation between Two Files.

114

There are many methods of interpolation such as Polynomial Interpolation, Newton

Divided Differences, Lagrange Polynomial, and Hermite Interpolation. The method used in this

thesis is Newton Divided Differences26.

Linear interpolation yields

yi =p(xt) =f(xo) +f(xi) -f(xo) * (xi-xo)

(xi - xo)

when the xi: value used to approximate yi,

xo,xi : values which are in the same years as yo and yi,

f(xo), f(xi) : values of the production from the same file as yi, matched with the year of xo

and xi.

If an approximation is required for non-numeric data, or numeric data for which no

rationale exists for interpolation, the data in P R E S T A C K will be presented to the user with its

timestamp. The data in P R E S T A C K will be searched by country name and the field name. If

there is a data item for that country name and field name available then it will be presented to the

user as an approximate value as illustrated in Table 4.5.

26 The details of this method can be found in any text books of the numerical analysi

115

COUNTRY

HONG KONG 12

INDIA 67100

c INDONESIA) /

/

c FOREST WOODL

/

/

ZZI D
12

67100

The data vhich. is needed to
be approximated.

Country and Field axe used as the key to [
search for data in the Preserve Stack.

^ ~

Data from the RDB. 3
Table 4.5 An Example of Finding the Key to Retrieve an Approximate Data from the RDBMS.

4.2.2 Server Systems

There are two servers which store related data. The first server uses a file system, and

the second server stores data in a RDB. When the connection is closed between Server2 and a

client, the RDBMS will perform recovery on the RDB. In such case the client application need

not consider the effect of disconnection on the RDB. When a user retrieves data from each

server, each server has to control all security functions. To achieve data security, the following

functions are required of each server.

1. The server must register itself to INFOSERV on each client system.

2. The server's address, data source names and types (the type of data resource,

such as an RDBMS or a file system), and location of data definitions, either

of the whole database, or the user view the DBA is willing to grant, must be

provided to INFOSERV when the server registers.

116

3. Whenever the location of a data definition, the server address, or the type of data

source, is changed the system administrators of I N F O S E R V clients must be

notified to update their information and Q U E R Y G E N routines.

If the servers adhere to these requirements completely, the client programs will be able

service all user requirements. The information on servers in I N F O S E R V can be updated

automatically, once the location of data definition has been communicated.

After the client issues a query statement, the RDBMS on Server2 will manipulate the

retrieval process and send the result or an error code back to the client. If disconnection occurs,

the client program can continue with reduced functionality. T o cope with the problem of

resynchronising messages between the client and Serverl, after a disconnection has occurred,

the Serverl software uses the parent/child model. The U N I X system call fork allows a

process to split into two duplicated processes. The main process is called & parent process and

the duplicated process is called a child process. Whenever a client asks for a connection, the

parent on Serverl will generate a child process and passes the client connect off to the child

process. After a client finishes its task and terminates the connection, the child process will be

killed. Using this method, sending and receiving commands on both systems will be in the

correct sequence. The connection between a client and the Server2 is illustrated in Figure 4.8.

117

1 Client asks for the connection.

2 Server splits the process to le parent and child processes.

3 C M M responds to the client.

Figure 4.8 Connections between a Client and Server2.

4.2.3 Protocol

The protocol which is used to transmit data between a client and servers in this

environment is TCP/IP. The transmitted data is guaranteed by the protocol to be correct, in

order, and not duplicated. We chose TCP/IP because it is the most commonly used protocol,

and is available for our prototype on UNIX and Apple Macs.

4.3 Evaluation
r

Our design uses standard commands embedded into a user application program,

SHDDS, allowing the retrieval process to be managed by INFOSERV, QUERYGEN, and

118

P R E S T A C K without interference from users. Aspects of the design can be summarised as

follows.

1. Ease of User Use

Because the application program uses embedded commands to obtain data values

from the remote servers, it need not manage any retrieval processes or supply different retrieval

commands for different servers. Users need not be concerned with the various data models that

exist in the H D D S . Facilities are provided for a user to retrieve information about the servers,

and to check the data definitions on a server before issuing a query. Users are able to decide

their own presentation format for the retrieved data.

2. Monitoring changes on the server

The design includes the facility to check for changes on the servers and keep

users aware of the current state of information distributed across the servers.

3. Presenting Consistent Information.

Consistency of data, based on timestamps, will be checked Whenever the

timestamp values from different places are different, the CSI will detennine these data to be

inconsistent, and present each separately to users. The CSI can present some information to

users even if there is a communication failure, by keeping a copy of previously obtained data in

the P R E S T A C K . If asked by the user, it may be able to estimate data from other values it

holds, using some approximation.

119

4. L o w Cost Access

By storing the access costs of each server, the system is able to choose the

lowest access cost server for retrieving data. Some of this data may be retrieved from the local

database, in which the results of previous retrievals are recorded.

5. Maintenance of information on servers

The information stored by INFOSERV and PRESTACK will be updated by each

subsystem automatically. However, when a new server is ready to contribute data, its

information has to be registered in INFOSERV by the server administrator. Thus maintenance

of the system will be a joint responsibility of the server and client system administrators.

1. A dding a new server, or new services.

W h e n a new server system is added, the server administrator has to register all

details of its services to allow INFOSERV to show users the new data retrieval possibilities.

2. A dding a DML for a new database.

When a new database is added, its D M L must be considered. If the new

database employs a D M L already available, no alteration in Q U E R Y G E N is required.

Otherwise, the new D M L has to be added into Q U E R Y G E N . Adding a new database system

may affect the data-model transformer of the PRESTACK. To store data from the new data

model into the PRESTACK, the new data model has to be transformed to a local data model that

would be available in the PRESTACK.

120

6. Security Control

The first check of user access authority is a local check performed at the client

site. The second check is performed at server sites. These processes (two-step checking)

guarantee that the user is an authorised user who can access both P R E S T A C K and remote

databases.

It is possible that during the linking process between the client and a server, a

communication failure occurs. In order to serve the user during the communication failure, the

retrieval process will be performed on the P R E S T A C K . Thus, the access check at the client can

prevent an unauthorised user from obtaining data during the communication failure in spite of

the fact that remote checking cannot be done.

7. Speed

We used interpreted HyperTalk to implement the CSI propotype, so the speed of this

program is slow compared with a program running objectcode. However, later versions of

Hypertalk can be compiled, which should improve execution speed for HyperTalk scripts.

4.4 Summary

Our prototype is a simulated H D D S containing one client and two servers, Serverl

providing data from files, and Server2 providing data from the O R A C L E R D B M S . The

connection protocol is TCP/IP.

Our prototype system software consists of three subsystems. The first subsystem,

INFOSERV, verifies the required variables, establishes connections to servers, automatically

checking and updating of information of available services. INFOSERV reports changes of

121

data schema at a remote server to users as they are detected Once a user issues a query; all

required variables will be verified; the locations of servers which provide such value are

determined; and links to servers established.

The second subsystem QUERYGEN, which controls all retrieval routines, is activated

when the location of each server has been established from INFOSERV. The functions of

QUERYGEN are separated into three parts. The first is to generate a suitable statement suite for

each required server, relieving users of knowing details of DMLs to access different servers.

The second part is to retrieve data from available servers, attempting to continue even if a

physical disconnection occurs. The last function of the QUERYGEN module is to determine

the consistency of data received from various repositories by comparing the timestamp of each

record, either explicit, or implicit from the timestamp labels of tables and files.

PRESTACK is the last subsystem which serves users while a disconnection continues;

it is also used as a local data source to provides some current data to users more cheaply than by

remote access.

122

Chapter 5

Conclusions and Further Study

This chapter will present conclusions concerning the system software design discussed

in Chapter 3, and the implementation described in Chapter 4. W e describe what w e have

achieved, and some possible further extensions to the design and implementation.

5.1 Implications of the Demonstration

In this thesis the timestamp mechanism is proposed for solving the problems of a change

at a server system. The timestamp is also a heuristic AI technique to detect the inconsistency of

data when a local database is implemented.

1. The timestamp can be used to identify the change of a data schema at a server

site, or to determine a change of data value at a server. A user is informed if a

timestamp inconsistency of data in the H D D S is detected.

2. Our prototype system contains three parts: a client system two servers, and the

TCP/IP protocol. A n algorithm is also implemented to hide the differences of

various data manipulation languages.

123

3. Our design includes a local database at the client site, which gives the possibility

on continuation in a disconnection situation. The system software is able to

present some possible data to the user during the disconnection period.

Information about available services can be given to users when needed

5.2 Further Study

Our prototype system has been implemented in HyperCard. To complete this design in

real applications, further work would be required in the areas of compiler, protocol, and data

models of databases as follows.

5.2.1 Compiler

In order to use standard commands embedded into user applications, a technique of

compiling and linking between the user software and the CSI has to be developed. This

technique will depend on the language which is used to implement the system software. Thus,

the consideration of finding a suitable language to implement the software has to take place

before finding the technique of compiling and linking between users' application and software.

However, the compiler for a natural language is recommended.

5.2.2 Protocol

In order to connect and transmit data between a client and servers, some efficient

protocol is required. Although this thesis uses TCP/IP, there is a possible that other protocols

might be more suitable than it. This is so because the TCP/IP is fairly low level (may be

difficult to handle) and less flexible from the user's point of view. However, the protocol

124

which is used in this software is based on the assumption that it can run over various types of

computer systems and maintain efficiency in transferring data.

5.2.3 Data Model of Database Systems

The data model of each ISDB and PDB should be taken into account for the real world

applications because the objectives and concepts of a design to overcome problems in each

organisation are different For example, the objective to develop an efficiency hypertext or

multimedia software.

5.3 Summary

The research reported in this thesis addresses the retrieval of information from

independent sources of data, potentially on a global basis, over an extended period of time. The

objective was to give the individual user, the researcher or retriever of the information, a set of

mechanisms for continuing their work in this environment with the certainty that the data

retrieved maintained its consistency.

This problem is one that has not been addressed by current wide area retrieval systems

as is shown in Chapter 2.

A series of solutions and their corresponding mechanisms have been devised during the

research to handle a wide variety of problems as they became apparent. These mechanisms

handle communication link failure, changes in data values, changes in database schema and the

augmentation of file systems to permit any form of consistency checking.

A major result has been the recognition that a soince of information can be made

available through the local storage of previously accessed and retrieved results. This generation

125

of a working local environment and its usage has been demonstrated to be theoretically

achievable.

The mechanisms have all been implemented on a representative test environment to

check their viability and correctness.

The overall result has been that the original objectives of the research have been

achieved, and significant innovation demonstrated in the area of H D D S .

126

Bibliography

[AHMED et al.,1991] Ahmed, R„ et al., "The Pegasus Heterogeneous Multidatabase System,"

IEEE Computer, Vol.24, No. 12, December 1991, pp 19-27.

[APPLE, 1988] Macintosh HyperCard user's guide, CA: Apple Computer, 1988.

[APPLE, 1989] HyperTalk(TM) Beginner's Guide: An Introduction to Scripting, CA: Apple

Computer, 1989.

[APPLE-MACTCP,1988] "Apple-MacTCP Programmer's Guide: Networking and

communications Publications," Apple Computer, 1988.

[APM(1),1991] An Application Programmer's Introduction to the Architecture, Cambridge:

Architecture Projects Management Limited, Release TR.017.00, Nov. 1991.

[APM(2),1991] ANSAware 3.0 Implementation Manual, Document RM.097.01, Cambridge:

Architecture Projects Management Limited, February 1991.

[APM(3),1991] The System Designer's Introduction to the Architecture, Cambridge:

Architecture Projects Management Limited, April 1991.

[A N D E R S O N & LEE,1981] Anderson,T., Lee, P.A., Fault Tolerance Principles and Practices,

Englewood Cliffs, N e w Jersey: Prentice-Hall, 1981.

[ARONSON,1994] Aronson,L., H T M L : Manual or style, lsted., California:Ziff-Davis Press.

127

[ATKINSON, 1989] Atkenson, K. E., An Introduction to Numerical Analysis, 2nd.ed., New

York: John Wiley & Sons, 1989.

[BARGHOUTI & KAISER, 1991] Barghouti, N.S., Kaiser, G.E., "Concurrency Control in

Advanced Database Applications," A C M Computing Surveys, Vol.23, NO.3, September

1991, pp 269-317.

[BATINI et al.,1986] Batini, C, Lenzerini, M., Navathe, S.B., "A comparative Analysis of

Methodologies for Database Schema Integration," A C M Computing Surveys, Vol.18, NO.4,

December 1986, pp 324-364.

[BEAUCHAMP,1987] Beauchamp, K.G.,Computer Communications, Berkshire: Van

Nostrand Reinhold (UK) Co.Ltd.,1987

[BERNERS-LEE et al.,1994] Berners-Lee,T., et al., "A Secret. The World Wide Web,"

Communication of A C M , Vol.37, No.8, pp. 76-82, 1994.

[BERSHAD & LEVY, 1988] Bershad, B.N., Levy, H.M., "A Remote Computation Facility for

a Heterogeneous Environment," IEEE Computer, Vol.21, No.5, May 1988, pp. 50-54.

[BOBROWSKI,1992] Bobrowski, S., ORACLE(R) RDBMS: Database Administrator's

Guide,Vol.2.,Version 7.0: Developer's Release Documentation, USA:ORACLE Corporation,

May 1992.

[BREITBART,1990] Breitbart, Y., "Multidatabase Interoprability," A C M SIGMOD record,

Vol.19, No.3, Sept. 1990, pp 53-60.

[BREITBART et al.,1992] Breitbart, Y., et al., "Overview of Multidatabase Transaction

Management," The V L D B Journal, Vol.1, No.2, Oct.1992, pp. 181-240.

128

[CERI & PELAGATTI,1985] Ceri, S., Peiagatti, G., Distributed database, principles &

systems, McGraw-Hill International, 1985.

[CHEU,1988] Cheu, D., SQL Language: Reference Manual ORACLE RDBMS Version 6.0,

USA:ORACLE Corporation, November 1988.

[CHUNG, 1990] Chung, Chin-Wan, "DATAPLEX: An Access to Heterogeneous Distributed

Database," Communications of the A C M , Vol.33, No.l, January 1990, pp. 70-80.

[CLIFTON, 1987] Clifton, Carl S., What every engineer should know about data

communications, Marcel Debber, Inc., New York and Basel, 1987, pp 61.

[COMER,1988] Comer, D., Internetworking with TCP/IP, Principles Protocols and

Architecture, Prentice Hall, 1988.

[DAYAL&HWANG,1984] Dayal, U., Hwang, H.-Y., "View Definition and Generalization for

Database Integration in a Multidatabase System" in Hurson, A.R., Bright, M.W., Pakzad,

S.H. (Ed.): "Multidatabase Systems: An Advanced Solution for Global Information Sharing,"

Washington.-IEEE Computer Society Press, 1994.

[DAVIDSON, 1988] Davidson, J., An introduction to TCP/IP, Springer-Verlag, 1988.

[DEEN et al.,1987] Deen, S.M., Amin, R.R.,Taylor, M.C., "Data Integration in Distributed

Databases," IEEE trans, on Software Eng., Vol.SE-13, No.7, July 1987, pp 806-864.

[DEMURJIAN&HSIAO,1988] Demurjian, S.A., Hsiao, D.K., "The multi-lingual database

system," Proc. 3rd. Int.Conf. Data Engineering, Los Angeles, CA, Feb. 1987.

129

[D R E W et al.,1992] Drew, P., et al., "A Toolkit for the Incremental Implementation of

Heterogeneous Database management Systems," The V L D B Journal, Vol.1, No.2, October

1992, pp 241-284.

[FAO(l),1986] "FAO Production Yearbook," Rome: Food and Agriculture Organization of the

United Nations, Vol.40, 1986, pp 9-13.

[FAO(2),1987] "FAO Production Yearbook," Rome: Food and Agriculture Organization of the

United Nations, Vol.41, 1987, pp 53-57.

[FAO(3),1988] "FAO Production Yearbook," Rome: Food and Agriculture Organization of the

United Nations, Vol.42, 1988, pp 53-57, 84-92.

[GARCIA, 1982] Garcia-Molina, J., "Reliability Issues for fully Replicated Distributed

Databases," IEEE Computer, Vol. 16, No. 9, September 1982, pp 34-42.

[GOLDING,1992] Golding, R.A., "A Weak-Consistency Architecture for Distributed

Information Services", Computer Systems, Vol. 5, No. 9, Fall 1992, pp 379-405.

[GRAY, 1981] Gray, J.N., "The Transaction Concept: Virtue and Limitations," VLDB,

September 1981,pp 144-154.

[GROFF & W E I N B E R G , 1990] Groff, J.R., Weinberg, P.N., Using SQL, Berkeley:

McGraw-Hill, 1990.

[HAMMER&McLEOD,1980] Hammer, M.,McLeod, D , "On Database Management System

Architecture," in Hurson, A.R., Bright, M.W., Pakzad, S.H. (Ed.): "Multidatabase Systems:

An Advanced Solution for Global Information Sharing," WashingtomlEEE Computer Society

Press, 1994.

130

[HSIAO, 1991] Hsiao, David K., "Database and Database Systems in the 21st Century" in

Mesirov, J.P.(Ed.):"Very Large Scale Computation in the 21st. Century," Society for Industrial

and Applied Mathematics(SIAM), VermontCapital City Press, 1991.

[HSIAO & KAMEL, 1989] Hsiao, David K., Kamel, Magdi N., "Heterogeneous Database:

Proferations, Issues, and Solutions," WashingtomlEEE Trans, on Knowledge and Data Eng.,

Vol.1, No.l, March 1989, pp. 45-62.

[JABLONSKI et al.,1990] Jablonski, S., et al., "Implementation of a Distributed Data

Management System for Technical Applications - A Feasibility Study," Information Systems,

Vol.15, No.2, pp 247-256.

[KAHLE,1989] Kahle, B., "Wide Area Information Server Concepts," TMC Tec Report

TMC202, Version 4.0, November 1989.

[KAHLE(1),1991] Kahle, B., "An Information System for Corporate Users: Wide Area

Information Servers," T M C Tec Report TMC199, Version 3, April 1991.

[KAHLE(2),1991] Kahle, B., "Release 1.0," Ester Dyson, April 1991.

[KAHLE(3),1991] Kahle, B., "Roles of Electronic Publishing on Campus," TMC, Version

0.2, September 1991.

[KAHLE(4),1991] Kahle, B., "Overview of Wide Area Information Servers," Apr. 1991.

[KAHLE et al.,1992] Kahle, B., et al.,"Interfaces for Wide Area Information Servers," TMC,

Apple Computer, N S F Network Service Center, Version 0.8, January 1992.

[KIM et al.,1990] Kim, J., et al., "Design and Implementation of a Temporal Query Language

with Abstract Time," Information System, Vol.l5,No.3, pp.349-357.

131

[K L A H O L D et al.,1986] Klahold, P., et al.,"A general model for version management in

databases," Proc.l2th Int.Conf. on Very Large Databases, pp. 319-327.

[LEFFLERetal., 1989] Leffler, S. J., et al., The design and implementation of the 4.3 BSD

UNLX Operating system., Reading, Mass.: Addison-Wesley, 1989.

[LINDEN, 1992] Linden, B., SQL Language Reference Manual Version 7.0: Developer's

Release Documentation, CA/.ORACLE Corporation, May 1992.

[LISKOV & SCHEIFLER, 1982] Liskov, B., Scheifler, R. "Guardians and Actions : Linguistic

Support for Robust, Distributed Programs," Proc. of the Ninth Symposium on Principles of

Programming Languages, January 1982, pp 7-19.

[LITWIN & ABDELLATIF,1986] Litwin,W., Abdellatif, A., "Multidatabase Interoperability,"

IEEE Computer, Vol.19. No. 12, December 1986, pp 10-18.

[MAIER,1983] Maier, D., The Theory of Relational Databases, LondomPitman Publishing

Limited, 1983.

[MARTIN et al.,1991] Martin, B.E., et al., "An Object-Based Taxonomy for Distributed

Computing Systems," IEEE Computer, Vol.24, No.8, August 1991, pp 17-27.

[M A R Z U L L O et al.,1991] Marzullo, K., et al., "Tools for Distributed Application

Management," IEEE Computer, Vol.24, No.8, August 1991, pp 42-51.

[MOSS,1982] Moss, J.E.B., "Nested Transactions and Reliable Distributed Computing",

Proc. of the second Symposium on Reliability in Distributed Software and Database Systems,

July 1982.

[NICKOLAS,1992] Nickolas, P., Private Communication.

132

[NOTKIN et al.,1987] Notion, D., et al., "Heterogeneous Computing Environments: report on

the A C M SIGOPS Workshop on Accommodating Heterogeneity*," Communications of the

A C M , Vol.30, No.2, February 1987, pp. 132-140.

[NISO,1988] National Information Standards Organization, Z39.50-1988 Information retrieval

Service Definition and Protocol Specifications for Library applications, New Brunswick:

Transaction Publishers, January 1988.

[OC(l),1988] Oracle for Macintosh: Networking, Version 1.0, Belmont: Oracle Corporation,

1988.

[OC(2),1988] SQL*NET TCP/IP: User Guide, Version 1.0, Belmont: Oracle

Corporation, 1988.

[PAPAZOGLOU,1991] Papazoglou, M.P., "Framework for Interconnecting Distributed

Information Systems," DBIS'91: Database and Information Systems Conference, Sydney,

February 1991.

[RAM, 1991] Ram, S., "Heterogeneous Distributed Database Systems," IEEE Computer,

Vol.24, No. 12, December 1991, pp 7-10.

[REDDY et al.,1988] Reddy,M.P., Prasad, B.E., Reddy, P.G., "Query Processing in

Heterogeneous Distributed Database Management Systems," in Gupta, A. (Ed.): "Integration of

Information Systems :Bridging Heterogeneous Databases," New York: IEEE Computer Sociaty

Press, 1989.

[RUSINKIEWICZ et al,1991] Rusinkiewicz, M., Sheth, A., Karabatis, G., "Specifying

Intenfatete V0L24' N a l 2 '

December 1991, pp 46-53.

133

[SCHLICHTER & MILLER, 1988] Schlichter, J.H., Miller, L.J., " FolioPub: A Publication

Management System," IEEE Computer, Vol.21, No.l, Jan. 1988, pp.61-69.

[SHETH & LARSON, 1990] Sheth, A.P., Larson, J.A., "Federated Database Systems for

Managing Distributed, Heterogeneous, and Autonomous Databases," ACM Computing

Surveys, Vol.22, No.3, September 1990, pp 183-235.

[SIEWIOREK & SCHWARZ, 1982] Siewiorek, D., Schwarz, R, The Theory and Practice of

Reliable System design, Digital Press, 1982.

[SINGHAL & CASAVANT, 1991] Singhal, M.,Casavant, T.L., "Distributed Computing

Systems," IEEE Computer, Vol.24, No.8, August 1991, pp 12-15.

[SKEEN & STONEBRAKER,1983] Skeen, D. ,Stonebraker, M., "A Formal Model of Crash

Recovery in a distributed System," IEEE Transactions on Software Engineering, Vol.SE-9,

No.3, May 1983.

[SMITH & OMAN, 1990] Smith, D.B., Oman, P.W., "Software Tools In Context," IEEE

software, May 1990, pg. 15-19.

[STANKOVIC,1985] Stankovic, J., "A Reliable Distributed System Software," IEEE

computer society order No.570, IEEE Catalog No.EHO230-3,1985, pg 3-5.

[STALLINGS,1991] Stallings, W., Data and Computer Communications, 3rd ed., New York:

Maxwell Macmillan International Editions, 1991.

[STEIN,1991] Stein, R.M.,"Browsing Through Terabytes," BYTE, May 1991, pp 157-164.

134

[STROM & YEMINI,1984] Strom, R.E., Yemini, Shaula, "Optimistic Recovery : An

Asynchronous Approach To Fault-Tolerance in Distributed Systems," Proc. of the Fourteenth

International Conference on Fault-Tolerant Computing, June 1984.

[SUN, 1988] Network Programming, Australia: SUN Microsystem, Revision A, 1988.

[SVOBODOVA,1984] Svodobova, L., "File Servers for Network-Based Distributed Systems,"

Computing Surveys, Vol.16, No.4, December 1984, pp 353-398.

[TAKAGI,1979] Takagi, A., "Concurrent and Reliable Update of Distributed Databases,"

Massachusetts Institute of Technology, November 1979.

[THOMAS et al.,1990] Thomas, G., et al., "Heterogeneous Distributed Database Systems For

Production Use," A C M Computing Surveys, Vol.22, No.3, September 1990, pp. 246-249.

[TOMLINSON,1991] Tomlinson, B., "An oldesh (release 1.1 vintage): Introduction to

CORBA," www.acl.lanl.gov/sunrise/DistComp/Objects/CORBAtalk/CORBAtalk.html.

[VERHOFSTAD,1978] Verhofstad, J.S.M., "Recovery Techniques for Database Systems,"

Computing Surveys, Vol.10, No.2, June 1978, pp 167-195.

[WIEDERHOLD et al.,1992] Wiederhold, G., et al., "Toward Mega Programming,"

Communication of the A C M , Vol.35, No. 11, November 1992, pg. 89-98.

[WINKLER & KAMINS,1990] Winkler, D., Kamins, S., HYPERTALK 2.0: THE BOOK,

New York: Bantam Books, 1990.

[YVTTTIE & V A N TILBORG, 1980] Wittie, L., Van Tilborg, A. M , "MICROS, A Distributed

Operating System for Micronet, A Reconfigurable Network Computer," IEEE Transactions on

Computers, Vol.C-29, No. 12, December 1980.

135

http://www.acl.lanl.gov/sunrise/DistComp/Objects/CORBAtalk/CORBAtalk.html

Appendix A

A Presented Paper in

The International Conference on Information Systems

and Management of Data,

New Delhi, October 6-8, 1993

136

Presentation of Consistent Information from Independent

Databases

:V- Pattarasinee Bhattarakosol

Dept. of Mathematics

Faculty of Science

Chulalongkom University

Payathai Rd. Bangkok 10330

Thailand

fscipat@chulkn.chula.ac.th

Abstract

A Heterogeneous Distributed Data^ a system that contains

various kinds of database systems (DBS) distributed over a network; each of which

retain their autonomy when participating in the H D D S . The problem domain of this

paper is based on an uncontrolled environment in which a number of conditions

hold? Firstly, users do not have authority to control any changes, and the

communication within "me "network is unstable." Additionally, no duplicated

d&diefexist, data values are based on time, data relationships are visible only

.from the users' point of view, and a system's rerwsitories include file systems.

mailto:fscipat@chulkn.chula.ac.th

The problem of ensuring users that presented information is consistent is discussed

and a method is searched for that treats file systems as sharable sources.

Furthermore, the system software should be able to provide users with up-to-date

service information. It should also provide some consistency information when

communication fails, and a mechanism to approximate data when needed The

available software packages such as D A T A P L E X , W A I S , and A N S A do not

provide facilities in supporting all requirements under the above defined

circumstances. Besides, these system do not include file systems as sharable

repositories. Therefore, the design of Computer Software Interface (CSI) has been

proposed. The idea of using either data update time or data valid time to determine

data consistency has been implemented. The concept of upgrading characteristics

of file systems to be similar to the D B S is used; thus data in file systems can be

shared. Registering addresses of service definitions enables the CSI to check and

maintain service details kept in a local database. Consequently, the CSI can inform

users when service details have been changed. A combination of logging

mechanism and the implementation of a duplicated database is developed to serve

users in case of communication failure occurs. Using all the discussed methods,

the CSI is able to provide and guarantee consistency of data to users in the

aforementioned environment.

K e y w o r d s : Heterogeneous Distributed Database Systems, Data Consistency,

Independent Databases, Communication Failure.

138

Introduction

Currently, there are many system software implemented for the HDDS. Most of the

system software provide full rights for users in the system to be able to access data such as

update data, delete data, add new data, or read data. Software such as D A T A P L E X

[C H U N G , 1990] , Pegasus [A H M E D et al.,1991], manage all types of transactions such

as retrieve, update etc. S o m e software such as the Wide Area Information Servers

(WAIS) [K A H L E , 1989] provides only the retrieval transaction which is entered by a user

using a W A I S user interface [K A H L E et al.,1992]. The other kind of system software is

like A N S A [APM(a),1991]. It provides commands that are embedded into the user's

application and interact with the data holder system to gain access. The user need not deal

with all difficulties in handling different access methods. These software are running

under the assumption that the system is stable, and there is no error between transmitted

data, or between transaction processes.

One operation that is performed by users is the retrieval operation. The retrieval process

aims to retrieve relevant information for users. The information which is considered in this

research are related to a certain period. The retrieval process that retrieves data based on a

certain period refers as a sustained task. For example, information about the amount of

production from a handicraft factory within the year 1989, or information about Agriculture

production of Indonesia in the year 1990.

The environment of software approach in this research is based on the assumption that the

communication within the network is unstable and all data repositories belong to different

owners. Therefore, end users have no priority to control data in the H D D S . Furthermore,

uiere is no duplicated database in the system. This research also focusses on a H D D S that

139

contains related data which are separated and stored in different data repositories (databases

or files); the assembly of consistent data has to be presented to users.

As mentioned previously, data are distributed over the HDDS and the assembly of data will

be presented to users. This does not imply that data are stored in a specific format in order

to serve the grouping of data based on users' requirements. The grouping of data, based

on the users' view is grouped from independent data formats and independent owners'

objectives controlled by distinct owners. Thus, data in the H D D S are related with each

other by the users' point of view whereas they are independent from an owners' point of

view. A s a consequence of relationships between data in the users' view, performing a

sustained task will enable users to assemble their environment.

For example, a user in the Department of Agriculture of a company in JAPAN performs a

sustained task to obtain Agricultural information from the Agricultural Department in USA,

C A N A D A , U K , and F R A N C E . The result from the process presented to the user in

J A P A N is a composite table of each country based on the same year, as shown in Figure 1.

The only person with specific view of assembled data is the user, in this example is the

user in J A P A N . However, the real outcome of the sustained task is a yearly report data

from each country.

According to uncontrolled environment, users must be able to trust all received data from

the H D D S . Nevertheless, the mentioned system software cannot guarantee the correctness

and consistency of data under the defined circumstances. Consequently, the user cannot be

ensured be the system software that obtained data are consistent and correct as they must

be. This is a central problem faced by an user of a H D D S software system.

140

YEAR

1985

1986

1987

Product
(1:1012)

3.234

3.345

3.029

I

User's view

JAPAN

Client

Result

r

i - "- - - i
TEAR

1985

1986

1987

USA
[1:1012)

3.234

3.345

3.029

CANADA
[1:1012)

2.345

2.300

2.218

UK
(1:109)

1.567

1.456

1.589

FRANCE
(1:109)

1.890

2.075

2.100

Network

CANADA

Server

HDBMS

YEAR

1985

1986

1987

Product
(1:1012]

2.345

2.300

2.218

I

FRANCE
Server

QODBMS

YEAR

1985

1986

1987

I

Product
(1:109)

1.567

1.456

1.589

YEAR

1985

1986

1987

Product
(1:109)

1.890

2.075

2.100

Original Data.

Figure 1 A n Example of Sustained Task and the Result.

This paper proposes mechanisms to be implemented in the system software to control and

serve users in obtaining data under the above defined circumstances; the software design

will project on the retrieval process of users' queries. Additionally, the designed software

should be able to inform users whenever a change of available services arises. So, users

could have access to up-to-date services and information. Moreover, the objective to use

141

m e systems as repositories in the H D D S has been considered. The method guarantees the

consistency of data has been implemented Therefore, users in the H D D S are able to be

ensured by the system software that the received data is consistent.

System Environment:

This research focusses on the environment wherein remote users are working under the

uncontrolled environment This is due to the unstable communication between the client

and servers. Furthermore, users cannot control any changes which are performed by

database/file owners in the H D D S . However, data in the H D D S are related with each other

under some users' constraints.

As an assumption that users will works under and uncontrolled environment of the HDDS,

the configuration of a component node in a H D D S may constitute various kinds of

hardware, data sources and protocols. Access to data stored in the H D D S may be

accomplished by many applications. It is possible that there are multiple users who wish to

access data simultaneously with different objectives. The data manipulation on data

sources can be accomplished any time by an owner or a system administrator.

Typically, there are many distinct database systems which are installed to serve particular

requirements. Each individual system in the H D D S is characterised by a specific Data

Manipulation Language (DML). This prevents the use of the D M L of any individual data

sources as a global D M L . Furthermore, each data source will have a data schema that

pertains to local data only. The above mentioned factors necessitate customised data access

methods for individual database systems.

Apart from a database system, a file system does not maintain any semantics about the

stored data and does not have a D M L . There are three primitive file structures: a sequential

142

W e , an index sequential'file, and a random file. Each structure has a unique method to

?*CCess ̂ in a file. However, many applications in various computer languages are able

to access the same file. The programmers have to know the file structure and the current

data definition before writing any application that uses the file. The problem manifests

i J J ^ ^ ^ S ^ ^ ^ g e ' o f data definition of the file occurs without changing the previous

-application program.

The last component that has to be considered in a HDDS is the communication protocol.

As aresult of having various kinds of computer systems in a network, it is possible that the

protocol on each system be different There are many protocols to transmit data such as

| r C P ^ p ^ ^ 'Each such protocol is

^implemented under a particular objective, 'such'as, Z39.50 is implemented for retrieving

' data and transforming information between two computers [NISO, 1988]. TCP/IP is a

protocol that transmits data in predefined format and guarantees correctness of transferred

"data.

r Under the circumstances that there are various kinds of data repositories which may or may

not contain the data schema, and various kinds of protocols exist in the H D D S , there are

many problems to be considered before designing and implementing a system software

jwhich manages'presentation of data to users. The most important aspect of presenting data

"to users relates to consistency of data from component databases because the retrieval result

is able to lead users to make right/wrong decision in any users' processes. The next

section describes the meaning of data consistency.

I'Data Consistency '/VV/^/'^\

The data consistency in this research is based on the characteristic of interdependent data

[R U S I N K I E W I C Z et al.,1991]. Table1 illustrates the meaning of data consistency. Table

143 «*

1 (b), data are separated to store in a file system and a database system. The consistency of

data can be determined by the time that data are available in the system, such as data in the

file system are consistent with data in the database system because they occur in the same

year, 1985 and 1986. If an update occurs on the database, Table 1 (c), data on the file

system will not consistent with data on database because data in the file system are data of

year 1985 and 1986 while data on the database system are data of year 1985 and 1987.

To achieve the objective of presenting of interdependent data consistently, time values of

the constituent data are used. M a n y aspects of time arise in the real world, three possible

aspects of time are described as follows [KIM et al.,1990] [K L A H O L D et al.,1986]:

1. time of realisation or data update time;

2. time of storage into the database; and

3. time of validity.

The data update time is the time at which data in the database is updated and is recorded in

the database. For example, data in the database has been updated at 12-03-86, then the

data update time is 12-03-86. The data update time may be referred as a timestamp. The

valid time is the time at which new data value becomes active or data are considered as up-

to-date data. For example, if data in a file will count to be valid during 10-03-85 to 10-03-

87 then the data valid time is the interval of (10-03-85,10-03-87).

W h e n interdependent data are distributed over the world, it is difficult to use only the data

update time to consider the consistency. As a consequence of having different time zones,

the time in different time areas cannot be compared directly. It is reasonable to implement

valid time without any time conversion [KIM et al.,1990]. There are two primary

144

mechanisms to represent the time value. These may be defined as absolute time and

abstract time.

Country

INDIA

Year

1985

1986

Agricultures

123.54

123.18

Cereales

121.60

122.10

Table 1 (a) Original Data before Separation.

Country

INDIA

Year

1985

1986

Agricultures

123.54

123.18

Country

INDIA

Cereales

121.60

122.10

(Dataiatlue Database.) Q Data in tha File. }

Table 1 (b) Separated Data stored on a Database and a File.

Country

INDIA

Year

1985

1987

Agricultures

123.54

145.09

Country

INDIA

Cereales

121.60

122.10

C Data ia the Database .J fj Data in tfo File. J

Table 1 (c) Data after Individual Update.

Table 1 A n Example Illustrates the Meaning of Data Consistency.

145

Ihe absolute time is the primary method to represent the time value which is of the form

Y Y Y Y / M M / D D [KIM et al.,1990] or D D - M M - Y Y Y Y [RUSINKIEWICZ et al.,1991],

where Y Y Y Y refers to year, M M refers to month, and D D refers to day. The abstract time

is used in the time-concerning event [KIM et al.,1990]. The abstract time uses some

special characters to define the valid time such as exclamation mark (!) and at-sign (@) etc

[RUSINKIEWICZ et al.,1991]. For example, 25-Aug-86! means 'after August 25,

1986'.

Regarding Figure I,year is the data valid time unit. Then the problem relates to

consistency of data will not occur after data in the file contain year as a key value.

Therefore, the user will not receive the incorrect data after individual update data on each

system occurs. However, it is possible that the data valid time has not been implemented

as a key value of the original data. Thus, the only one method that can be applied to

determined data consistency for the entire system is to use the data update time value.

Therefore, data consistency can be determined by either the data update time or the data

valid time.

Problem Domain

Regarding to the defined circumstances above, the problem domain in this research is

described as follows;

1. to find methods which are able to use a file system as a sharable data

source, not just databases;

2. to inform users when any change occurs in the HDDS;

3 to guarantee to users that the received data is consistent;

146

4. to provide consistent information while a communication failure occurs; and

5. to provide approximation routines when the user expects that a received data

value is not reasonable.

System Analysis and Design

Consider the system software such as DATAPLEX, WAIS, and ANSA. There are many

deficiencies of system software' s services due to the above circumstances. Firstly, the

mentioned system software cannot inform users when any alteration occur in the system.

This is because the mentioned system software cannot check and update the server's

information. Secondly, it cannot ensure users that the received data are consistent

information although merged data is presented to users. Thirdly, it is not able to provide

consistent data to users while a communication failure occurs and no duplicated database

exists. Fourthly, it does not provide any approximation routines when an unreasonable

data arises in the system. Lastly, it is not able to access data in the file because it does not

consider a file system to be a repository in the H D D S .

To achieve an efficient system software that can protect and solve the above problems, a

system software called a Computer Software Interface (CSI) has been developed. The

CSI consists of three subsystems: an Information Server System (ISS), a Query Generator

System (QGS), and Preserve Data System (PDS). The ISS contains a local database called

an Information Server Database (ISDB) while the P D S contains a local database named a

Preserve Database (PDB). Figure 2 illustrates the system design environment

By the characteristics of a HDDS which consist of various kinds of data schemas and Data

Manipulation Languages (DML) , it is not possible to implement every data model and D M L

into one application program. Thus, every system software has set up its own language

147

for users. The characteristic of the software language must be that it be user friendly,

which enables users to issue their requirements either in a form of query language such as

SQL, or embedded commands such as ANSAware commands. These commands will be

interpreted into server statements by applying the method of data-language translator. In

this research, the idea of using standard commands embedded into a user's application

program has been presented in order to reduce the difficulty in handling various types of

D M L s . The following sections describe functions and methods to be used in each

subsystem of the CSI.

148

ISDB PDB

Network

Figure 2 The Design Environment of a CSI over a H D D S .

Information Server System (ISS)

The functions of the ISS are to check user's authority, to define the required variables'

addresses, to check for any changes of servers' services, to make a decision to retrieve data

from the lowest cost and fastest servers, to open and close connections between the client

and defined servers. The Information Server System (ISS) is implemented as an

Information Server DataBase (ISDB) Manager. The implementation of the ISS is proposed

149

to support basic requirements before the retrieval process starts. Additionally, the ISS

maintains data in the ISDB by updating information whenever any change which relates to

available services occurs at a server site.

The fact that the communication over the network is unstable, it is possible that the user

will not be checked for access right from remote servers. The ISS will check the user's

right whenever the user logs into the client system. After the user passes the check, the

user is able to gain data from the P D B even while the communication between the client

and a server is broken. Thus, the data security will be achieved though the remote

checking cannot be done.

In order to manage semantic heterogeneity which deals with the different meaning of data

in the H D D S , the ISDB has been presented, using hierarchical data model. The function of

the ISDB is to store information of available services in the H D D S , including variable

names or attribute names or significant words. Once a user issues a query to retrieve data,

the required variables must be verified and addresses of these values are defined by using

information in the ISDB; the user's quiry consists of required data name, interested area,

and conditions.

Based on the objective that information in the ISDB must be updated automatically,

therefore, at the beginning of granting services, the server must register all information

about granting services into the ISDB. The information stored in the ISDB includes:

1. addresses of sharable databases or files;

2. names of sharable tables or files or services;

3. locations of data schemas, data schemas, and data models of databases or

files;

150

4. meaning of each defined data; and,

5. all access costs.

The idea of storing locations of available services' definitions and service's model into the

ISDB is presented in order to maintaining information in the ISDB by the ISS.

Furthermore, the concept of upgrading the characteristic of a file to be similar to a database

is also proposed by storing definition of data in some accessable storage such as at the

beginning of the data file. Therefore, the data schema of records will be available in an

accessible storage. Thus, information about stored data in a file can be recorded into the

ISDB as the information of data of a database system. Consequently, the ISS is able to

check and update services' details in the ISDB without waiting for a server administrator.

Moreover, users are able to check the available data definitions before issuing a query and

will be informed when a change of a service occurs.

The method that the ISS uses to select the suitable servers is to consider the meaning of

data (interpreted using the interested area entered by the user), access costs and data update

time value. The server which has the lowest access cost will be selected. However,

according to the consideration of using the P D B as a repository in the system, the data

update time will be used as a value to determine whether the P D B is suitable to be a server

for the user's query or not. The data update time value from every server will be compared

with data update time value of each server stored in the P D B . Whenever the data update

time value in the P D B is equal to the update time value from a remote server, the ISS will

choose the P D B as a repository to retrieve the required information.

151

Query Generator System (Q G S)

A function of the QGS is to generate suitable commands for every data source in the

H D D S . The Q G S also controls the retrieval process while communication between the

client and a server fails. Furthermore, the Q G S contains an approximation routine when an

approximated value is required. The language generator routine in Q G S is developed from

the concept of data-language translator will generate a suitable statement for accessing each

server, after determining data addresses and data models. The query extraction similarly to

the concept of Distributed Query Generator of D A T A P L E X [C H U N G , 1990] may be

required when the user's query is very complicated. The retrieval process will perform

using extracted queries, each of which are sent to the suitable servers.

The method to generate retrieval commands for each server is based on the result from the

ISS. Therefore, the Q G S is active if and only if the ISS is able to obtain details of required

services. Referring to the outcome of the ISS stated in the previous section, the command

generator uses the address of required data, and type of the repository as a pointer that

points to the command generator routine. Each generator routine will consist of retrieval

command(s) which are suitable for each type of data holder. For example, if command

generator named Oracle_command is implemented for generating S Q L statements of Oracle

D B M S then this routine will be used to generate retrieval command for every address

which implements Oracle D B M S s .

Due to the uncontrolled environment, it is possible that an unreasonable data arises in the

system. Whenever the user suspects that a retrieved data is incorrect, data might be

required. In the user's application program, the approximation command will be

embedded The approximation routine will be a part of the Q G S . The Q G S will determine

152

the estimated method: calculation by mathematical method, or using data in the PDB. This

can be done using the meaning of data defined in the ISS.

If the estimated value can be obtained from the calculation, the QGS will retrieve other

related data to create the mathematical model and perform the necessary calculation. The

result of calculation will be returned to the user's application. O n the other hand, if the

estimated value cannot be achieved by calculation, the Q G S will send a message to the P D S

to retrieve data from the PDB.

Preserve Data System (PDS)

The PDS supports the retrieval process while communication failure occurs after the QGS

sends a message to the PDS. Additionally, it is used to support an approximation routine

of the Q G S when the user receives an unreasonable data. The technique used in

implementing the P D S is the combination of the logging mechanism and duplicating

database in the network. The P D S is implemented under the combination of the above

methods by implementing a local database and updating this local database whenever a

change occurs on the server site. The local database which cooperates with the P D S is

called a Preserve DataBase (PDB), using a relational data model; the PDS is implemented

as the database management system of the PDB. Therefore, the CSI is able to serve users

when communication failure occurs by using data stored in the PDB.

The data in the P D B are obtained from outcomes of users' queries after the retrieval

process is completed As a result of query's extraction, the P D B will be a subset of remote

data holders which contains all significant data in users' interested area. As a consequence

of recording data from the H D D S into the P D B , the data-model transformation may be

required due to the various data models in the H D D S . The information which is stored in

the P D B is listed below.

153

1. The data source address and name correspond to the stored data

2. The update time of current data with respect to the update time of the remote

source; this value is issued by the server.

3. The create time of the current data schema with respect to the create time of

the remote resource; this value is issued by the server.

4. The retrieval constraints which users use to limit the area of interest (they

are under the same update time).

5. A list of variables or column names or significant words which is the same

as the data definition of the original database.

6. The data values correspond to either variable names, or column names, or

significant words.

As a consequence of being a subset of primary data sources, it is possible that the PDB be

treated as a local data holder. This leads to the assumption that results of some user's

queries can be achieved from the P D B . Additionally, the system software can present data

from the P D B when communication between the client and a server fails.

Whenever an approximation required from the PDS, the PDS searches for the previous

value with respect to the address, source name, and data name. The result of this research

could either be a success or a failure. The search is successful if the required data was

stored in the P D B . Otherwise, and error message is generated. The final solution from the

P D S will be sent to the Q G S ; the Q G S will pass this result to the user's application.

154

Evaluation of a C S I

The evaluation of the designed CSI can be summarised as follows.

1. User Friendly Program. The designed CSI is a user friendly program

because users use embedded commands to obtain required value from the H D D S . Users

need not manage any retrieval processes or deal with the difficulties in interpreting suitable

commands for different servers. Furthermore, users need not bother with the various data

models that exist in the H D D S . The designed CSI also provides the facility to the user in

retrieving services' information in order to check the available data definitions before the

user issues the query. Besides, users also are able to set their own presentation form for

data after received the result from the Q G S , including the consistency flag.

2. High efficiency. The designed CSI has high efficiency in retrieving

data from various data repositories, including file systems because it is able to generate a

suitable command for each server. Furthermore, it is able to check and inform a change of

service which might affect users' requirements.

3. Present Consistent Information. Referring to the definition of

consistent data, the consistency of data will be based on two time values: data update time

and data valid time. The designed CSI is able to check the consistency of data by applying

this rule. Whenever the time values from different servers are different, the CSI will

determine these data to be inconsistent data. In such a case data from each server is

presented separately to users. Additionally, the CSI can present some information to users

even if there is a communication failure. The CSI obtains data, which is presented to

users, by implementing a local database called a Preserve Database (PDB). Consequently,

some approximated values can be obtained from the P D B . Besides, the information of

155

available services in the information server database will be up-to-date due to the ability in

checking available services from servers has been implemented.

4. Low Cost Access. By storing every access cost of every server in the

CSI, the designed CSI is able to choose the lowest access cost server for retrieving data.

Furthermore, some consistent data may be retrieved from the P D B which is a local

database of the system.

5. Maintenance Problems. The maintenance problems relate to many

factors such as the growth rate of the H D D S , the change of services, the change of server

system, etc. According to the design of the CSI, there are three main subsystems to

manage all retrieval functions. Every subsystem has to maintain up-to-date information

and retrieval routines in order to perform correct process with respect to user's

requirements. Based on the proposed method, the maintenance routine of the stored

information in the ISDB and P D B will be performed by each subsystem automatically.

However, when a new server and services occur in the H D D S , their information have to be

registered by the server administrator. Thus, under the following circumstances the

maintenance of the ISS, Q G S and P D S will be a responsibility of the server and client

system administrators.

1. A new server, and new services exist in the HDDS.

Whenever a new server system arises in the H D D S , the server administrator

has to register all details of its services to initialise the services in the CSI. Then, ISDB

will be updated and ready to grant this new information to users.

2. A new database is installed in the HDDS.

156

the new D M L has to be added into the Q G S . Furthermore, the information of this database

include services' details have to be registered into the ISDB. The effect of adding a new

database system does affect the data-model transformer of the local database or PDB. In

order to store data which are implemented by the new data model into the PDB, the new

data model has to be transformed to a local data model that would be available in the local

database. Finally, the new transformation model has to be added into the routine of the

PDS.

6. Security Control. The security control will be performed by two

systems. The first checking of a user's authority is the local check - preformed at the client

site. The second control is performed at server sites. These processes (two-step checking)

guarantee that the user is an authorised user who can access both local database and remote

databases. It is possible that during the linking process between the client and a server, the

communication failure occurs. In order to serve the user during the communication failure,

the retrieval process will be performed on the PDB. Thus, the access check at the client

can prevent an unauthorised user from obtaining data during the communication failure in

spite of the fact that remote checking cannot be done.

Conclusions

This paper presents the design CSI which enables users to receive consistent information

under an uncontrolled environment due to users are not the owner of required repositories,

and because the communication system is unstable. The central problem is to find a

method to ensure users that received data from any repositories is consistent. The other

problem are such as finding methods that can present up-to-date service information to

users when any changes arise in the system, present consistent information during the

communication failure occurs, or support approximation routine when approximation is

157

needed. The present CSI consists of three subsystems: Information Server System (ISS),

Query Generator System (QGS), and Preserve Data System (PDS). The idea of upgrading

the characteristic of a file system to be similar to a database system has been proposed in

order to use the file system as a sharable repository in the H D D S . The method to

determine consistency of data is based on either data update time value or data valid time

value. The concept of registering addresses of all available services' definitions provides

the efficiency of the CSI to check, maintain service information, and be able to inform

users when any changes occur. The combination between logging mechanism with

duplicated database has been developed in order to serve users when communication failure

occurs. After implementing all methods mentioned above, the CSI is able to present

consistent information to users in any situations under an uncontrolled environment. The

CSI is able to inform all changes of the system to users; it also provides an approximation

routine to estimate a value when data is expected as an incorrect data or an unreasonable

data.

References

[A H M E D et al.,1991] Ahmed, R., et al., "The Pegasus Heterogeneous Multidatabase

System," IEEE Computer, Vol.24, No. 12, December 1991, pp 19-27.

[APM(a),1991] ANSAware 3.0 Implementation Manual, Document RM.097.01,

Cambridge: Architecture Projects Management Limited, February 1991.

[APM(b),1991] The System Designer's Introduction to the Architecture, Cambridge:

Architecture Projects Management Limited, April 1991.

158

[CHUNG, 1990] Chung, Chin-Wan, "DATAPLEX: An Access to Heterogeneous

Distributed Database," Communications of the A C M , Vol.33, No.l, January 1990, pp.

70-80.

[DAVIDSON, 1988] Davidson, J., An introduction to TCP/IP, Springer-Verlag, 1988.

[KAHLE, 1989] Kahle, B., "Wide Area Information Server Concepts," TMC Tec Report

TMC202, Version 4.0, November 1989.

[KAHLE et al.,1992] Kahle, B., et al.,"Interfaces for Wide Area Information Servers,"

T M C , Apple Computer, N S F Network Service Center, Version 0.8, January 1992.

[KIM et al.,1990] Kim, J., et al., "Design and Implementation of a Temporal Query

Language with Abstract Time," Information System, Vol.l5,No.3, pp.349-357.

[KLAHOLD et al.,1986] Klahold, P., et al.,"A general model for version management in

databases," Proc. 12th Int.Conf. on Very Large Databases, pp. 319-327.

[MAIER,1983] Maier, D., The Theory of Relational Databases, LondomPitman

Publishing Limited, 1983.

[NISO, 1988] National Information Standards Organization, Z39.50-1988 Information

retrieval Service Definition and Protocol Specifications for Library applications, New

Brunswick: Transaction Publishers, January 1988.

[RUSINKIEWICZ et al,1991] Rusinkiewicz, M., Sheth, A., Karabatis, G., "Specifying

Interdatabase Dependencies in a Multidatabase Environment," IEEE Computer, Vol.24, No. 12,

December 1991, pp 46-53.

159

	coverpage.pdf
	University of Wollongong
	Research Online
	1995

	Presentation of consistent information from independent databases
	Pattarasinee Bhattarakosol
	Recommended Citation

