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Abstract – IoT platforms play an important role on 
modern measurement systems because they allow the 
ingestion and processing of huge amounts of data (big 
data). Usually, these platforms run as a service on the 
cloud and are accessed through open programming 
interfaces based on ubiquitous internet protocols (such 
as HTTP). Data analysis is done in batch, from time to 
time, or when a pre-configured event is triggered. Most 
of the platforms can also actuate on the physical world 
by issuing messages, thus closing the loop ingest-
analyze-actuate. 

The continuous investment on IoT platforms has 
made them extremely reliable and performant, 
wondering if they can be used to control physical 
processes. The paper contributes to this discussion by 
evaluating the loop-time – defined as the delay between 
ingestion and actuation – of the ThingSpeak platform. 
The measuring methodology is explained, results are 
presented, and conclusions are extracted. 
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 I. INTRODUCTION 

Commercial IoT platforms are hosted on powerful data 
centers with high bandwidth, high storage capacity and 
high processing power. This allows them to ingest, store 
and analyze huge quantities of data in a robust and 
continuous way. The availability of big data enables the 
implementation of new control algorithms (such as 
predictive control based on artificial neural networks), as 
well as the improvement of existing features (such as 
automatic controller tuning, preventive maintenance or 
just-in-time asset management). For these reasons IoT 
platforms are very attractive to be used in the control of 
physical processes. 

IoT platforms have being used by the industry at higher 
levels of automation, primarily for monitoring and 
supervision [1-7], with the goal of reducing or removing 
humans in the loop [8]. This is natural since higher 
business levels resist better to the unpredictability 

introduced by internet connections. There are some studies 
for control networks as well [9-10], but the constrains in 
terms of low-latency and real-time make harder the 
penetration of IoT platforms at lower automation layers. 

Whether IoT platforms are used for monitoring, 
supervision or real-time control, it is important to know 
how fast and how reliable they are. For this purpose, we 
measured the time taken for a data packet to be ingested by 
a commercial IoT platform and returned back without any 
kind of processing. This so-called ‘loop-time’ is an 
indicator of how fast the platform is. We also compared the 
content of both packets, outgoing and incoming, to see if 
it remained the same and thus infer about how reliable the 
platform is. We chose the ThingSpeak platform because it 
has all the resources a typical IoT platform provides, is free 
(with some restrictions), and is very easy to use. 

The paper is organized as follows: section II gives an 
overview of the ThingSpeak platform; section III explains 
the methodology used to measure the loop-time; section IV 
presents experimental results; and section V extracts 
conclusions. 

 II. THINGSPEAK 

The ThingSpeak platform provides resources to store and 
process data in the cloud. The data is accessed using two 
open application programming interfaces (API): a REST 
API [11] that communicates over HTTP and follows the 
request-response model; and a MQTT API [12] that 
communicates over TCP/IP and follows the publish-
subscribe model. Both APIs support data encryption 
mechanisms and provide authentication through unique 
read/write keys. The REST API is more popular because it 
is very easy to use and passes transparently through the 
network elements (e.g. routers). For these reasons, we used 
it in this work.  
 The ThingSpeak platform organizes information in 
data channels. Each channel includes eight fields that can 
hold any type of data, plus three fields for location, and 
one field for status. Each channel is also characterized by 
a unique ID, a name and a free description. It is not 



possible to access the fields individually; all read/write 
operations are made at the channel level to optimize 
remote calls. All incoming data is time and date stamped 
and receives a sequential ID. Channels are private by 
default, but they can also be made public in which case no 
read key is required. Channels are provided at no charge 
for non-commercial, small projects that require less than 
three million messages/year (or ~8200 messages/day or ~5 
messages/minute). 
 The ThingSpeak provides resources to control the 
dataflow inside the platform. These resources can be one 
of the following types: 
 
 React: Executes an action when stored data meets a 

certain condition (e.g. when a given field of a given 
channel crosses a given threshold). The action can be 
as simple as the execution of a script or the issue of a 
remote message over HTTP. 

 TimeControl: Orders the execution of an action once at 
a specific time, or periodically on a regular schedule, 
much like a software timer. The TimeControl supports 
the same actions as the React.      

 ThingHTTP: Is a kind of notification over HTTP. It 
enables communication with remote entities such as 
devices, websites and web services.  

 
The ThingSpeak platform relies on MATLAB scripts to 
process stored data. Scripts can be associated to a 
TimeControl to run one-time or periodically, or to a React 
to run whenever a given condition is met. Scripts can use 
the MATLAB toolboxes listed in [13], as long as the 
developer logs into to ThingSpeak using its MathWorks 
account and is licensed to use them. This opens the door to 
powerful data analytics, supported by robust, well-known 
software libraries. The results can be visualized on the 
web, directly from the ThingSpeak site, through ready-to-
use, fancy charts. The visualization experience can also be 
enriched with custom widgets and MATLAB plots.  
 Fig. 1 shows the dataflow through the ThingSpeak 
platform. Data is ingested, stored and analyzed to extract 
meaningful information (if needed). The stored data can be 
visualized remotely through a web browser anytime, 
anywhere. Messages can be sent to third-party applications 
to signal a given event. The present work focusses on 
measuring the time it takes to upload data and receive a 
reply, assuming no processing is made in the interim. 

 III. METHODOLOGY 

To measure the loop-time, we had to build a closed data 
path passing through the ThingSpeak platform, as shown 
in Fig. 2. The path includes several actors and stages that 
can be described as follows (the numbers in the list 
correspond to the numbers in the figure): 
  
1. LabVIEW application: The LabVIEW application 

makes HTTP calls to the ThingSpeak platform, collects 

the replies and computes the time elapsed. Each call is 
a GET request intended to upload an unsigned 32-bit 
integer (U32) that is successively incremented. This 
integer is called ‘source’ as it uniquely identifies the 
request. The timestamp of the request, t0, is registered 
to serve as reference for the loop-time. The application 
also provides a graphical interface to the user. 

2. ThingSpeak channel (name = TestChannel; ID = 
515584; access = private): The channel contains a 
single field (Field1) to store the source uploaded by the 
LabVIEW application. 

3. React (condition type = numeric; test frequency = on 
data insertion; condition = TestChannel.Field1 > 0; run 
= each time the condition is met): A reaction is fired 

 
Fig. 1. Dataflow through the ThingSpeak platform. 

 

 
Fig. 2. Closed data path passing through the ThingSpeak 
platform. 
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each time the arriving source is positive, which is 
always because the source is a U32 number. The 
reaction instructs the ThingHTTP broker to make the 
request 78772 (see below). 

4. ThingHTTP broker (request = 78772, URL = 
http://xxx.xxx.xxx.xxx//MyWebService/MyCallBack?
Source; method = POST): The broker makes HTTP 
calls to remote endpoints. In the present case, the 
broker is configured to make a POST request to a web 
service running on the same machine as the LabVIEW 
application. The request sends back the source initially 
issued by the LabVIEW application. 

5. Router: Outgoing and incoming HTTP messages pass 
through a local router. Outgoing messages are safe and 
so the router forwards them transparently. Incoming 
messages, however, are potentially dangerous and are 
blocked by default. To overcome this problem, we had 
to forward port 80 on the local router, so that POST 
requests coming from the ThingSpeak platform reach 
the LabVIEW web service. 

6. LabVIEW web service: The LabVIEW web service is 
a stateless routine that receives a POST request, 
extracts the attached source, and registers the 
timestamp of the reply, t1. The pair (source, t1) is then 
sent back to the LabVIEW application by means of a 
UDP socket. The web service is hosted by the NI 
Application Web Server running on port 80 of the local 
machine.  

7. UDP socket (URL = localhost; port = 61557):  An 
external agent is needed to transfer data from the 
LabVIEW web service to the LabVIEW application 
because they are two separate processes. That agent is 
a simple UDP socket that listens for incoming data on 
port 61557.  

 
The LabVIEW application issues a source and waits for 
the reply in the form of a pair (source, t1). If the reply does 
not arrive within five minutes, or if the incoming source is 
different from the outgoing source, an error is registered. 
If the reply is successful, the loop-time is computed simply 
as the difference t1 – t0.  

 IV. EXPERIMENTAL RESULTS 

The LabVIEW application, LabVIEW web service and 
DataSocket server were executed on a common desktop 
computer (Intel Core i7-4510U @ 2 GHz, 8 GB RAM, 256 
GB SSD, Windows 10 Pro 64 bits). The access to the 
internet was made through a commercial provider 
(Vodafone Portugal) using a general-purpose router 
(Huawei’s HG8247Q) with port 80 forwarded.  

 A. Measurements for one hour 

The LabVIEW application was configured to issue sources 
every 20 s (approximately). Fig. 3 shows the loop-time for 
one hour of measurements (around 180 points). Fig. 4 
shows the content of the data channel as visualized in the 

ThingSpeak site. Fig. 5 shows the statistical distribution of 
the loop-time. No errors were found during the test 
(incoming source always equal to outgoing source). 
 

 

Fig. 3. Loop-time measurements for one hour. Amplitude param-
eters: maximum = 65.358 s; minimum = 0.927 s. 

 

 

Fig. 4. Visualization of TestChannel.Field1 in the ThingSpeak 
site. 

 

 

Fig. 5. Loop-time histogram (detail for the interval 0 to 5 sec-
onds). Statistical parameters: mean = 3.256 s; standard devia-
tion = 8.653 s; median = 1.279 s. 

From the figures we see that the loop-time is less than 2 s 
with a probability of 82%. Nevertheless, every 10 min 
(around 30 points) we see that the loop-time increases very 
sharply reaching tens of seconds. This suggests that the 
ThingSpeak platform stores data in temporary buffers, 
which, from time to time or when they are full, have to be 
flushed and processed. The absence of errors reinforces the 
reliability of the platform. 



 B. Measurements for one day 

The LabVIEW application was configured to issue sources 
every 6 minutes for 24 hours (around 240 points in total). 
Fig. 6 plots the results obtained. No errors were found 
during the test. 
 

 

Fig. 6. Loop-time measurements for one day. 

From the figure we see that the loop-time remained stable 
over 24 hours without significant fluctuations during the 
test. Every 5 points (around 30 min) the loop-time 
increased above 10 seconds, suggesting, again, the 
existence of buffering mechanisms. The absence of errors 
reinforces, again, the reliability of the platform. 

 V. CONCLUSIONS 

In this paper we studied the responsiveness and reliability 
of the ThingSpeak platform. We measured the time needed 
for a data packet to loop back through the platform. We 
also verified if its content has been corrupted during the 
trip.  

Tests were made covering periods of one hour and one 
day. The ThingSpeak platform revealed to be reliable since 
no data corruption was detected. The loop-time remained 
below 2 s during 82% of the time, with no significant 
fluctuations over the day. Nevertheless, peaks were 
detected periodically which may be caused by internal 
buffering mechanisms. This particular behavior deserves 
further research but has not a critical impact in a large 
number of monitoring applications supported in the cloud. 
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