

A preliminary study of loop-time delays in IoT
platforms: the ThingSpeak case

Vítor Viegas1,5, J. M. Dias Pereira2,5, Pedro Girão3,5, Octavian Postolache4,5

1CINAV – Escola Naval, Base Naval de Lisboa, Alfeite, Almada, Portugal
2ESTSetúbal/IPS, Instituto Politécnico de Setúbal, Setúbal, Portugal

3Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
4ISCTE-Instituto Universitário de Lisboa, Lisboa,
5Instituto de Telecomunicações, Lisboa, Portugal

Email: vviegas2@gmail.com

Abstract – IoT platforms play an important role on
modern measurement systems because they allow the
ingestion and processing of huge amounts of data (big
data). Usually, these platforms run as a service on the
cloud and are accessed through open programming
interfaces based on ubiquitous internet protocols (such
as HTTP). Data analysis is done in batch, from time to
time, or when a pre-configured event is triggered. Most
of the platforms can also actuate on the physical world
by issuing messages, thus closing the loop ingest-
analyze-actuate.

The continuous investment on IoT platforms has
made them extremely reliable and performant,
wondering if they can be used to control physical
processes. The paper contributes to this discussion by
evaluating the loop-time – defined as the delay between
ingestion and actuation – of the ThingSpeak platform.
The measuring methodology is explained, results are
presented, and conclusions are extracted.

Keywords – IoT, ThingSpeak, loop-time, delay, time
measurements

 I. INTRODUCTION

Commercial IoT platforms are hosted on powerful data
centers with high bandwidth, high storage capacity and
high processing power. This allows them to ingest, store
and analyze huge quantities of data in a robust and
continuous way. The availability of big data enables the
implementation of new control algorithms (such as
predictive control based on artificial neural networks), as
well as the improvement of existing features (such as
automatic controller tuning, preventive maintenance or
just-in-time asset management). For these reasons IoT
platforms are very attractive to be used in the control of
physical processes.

IoT platforms have being used by the industry at higher
levels of automation, primarily for monitoring and
supervision [1-7], with the goal of reducing or removing
humans in the loop [8]. This is natural since higher
business levels resist better to the unpredictability

introduced by internet connections. There are some studies
for control networks as well [9-10], but the constrains in
terms of low-latency and real-time make harder the
penetration of IoT platforms at lower automation layers.

Whether IoT platforms are used for monitoring,
supervision or real-time control, it is important to know
how fast and how reliable they are. For this purpose, we
measured the time taken for a data packet to be ingested by
a commercial IoT platform and returned back without any
kind of processing. This so-called ‘loop-time’ is an
indicator of how fast the platform is. We also compared the
content of both packets, outgoing and incoming, to see if
it remained the same and thus infer about how reliable the
platform is. We chose the ThingSpeak platform because it
has all the resources a typical IoT platform provides, is free
(with some restrictions), and is very easy to use.

The paper is organized as follows: section II gives an
overview of the ThingSpeak platform; section III explains
the methodology used to measure the loop-time; section IV
presents experimental results; and section V extracts
conclusions.

 II. THINGSPEAK

The ThingSpeak platform provides resources to store and
process data in the cloud. The data is accessed using two
open application programming interfaces (API): a REST
API [11] that communicates over HTTP and follows the
request-response model; and a MQTT API [12] that
communicates over TCP/IP and follows the publish-
subscribe model. Both APIs support data encryption
mechanisms and provide authentication through unique
read/write keys. The REST API is more popular because it
is very easy to use and passes transparently through the
network elements (e.g. routers). For these reasons, we used
it in this work.
 The ThingSpeak platform organizes information in
data channels. Each channel includes eight fields that can
hold any type of data, plus three fields for location, and
one field for status. Each channel is also characterized by
a unique ID, a name and a free description. It is not

possible to access the fields individually; all read/write
operations are made at the channel level to optimize
remote calls. All incoming data is time and date stamped
and receives a sequential ID. Channels are private by
default, but they can also be made public in which case no
read key is required. Channels are provided at no charge
for non-commercial, small projects that require less than
three million messages/year (or ~8200 messages/day or ~5
messages/minute).
 The ThingSpeak provides resources to control the
dataflow inside the platform. These resources can be one
of the following types:

 React: Executes an action when stored data meets a

certain condition (e.g. when a given field of a given
channel crosses a given threshold). The action can be
as simple as the execution of a script or the issue of a
remote message over HTTP.

 TimeControl: Orders the execution of an action once at
a specific time, or periodically on a regular schedule,
much like a software timer. The TimeControl supports
the same actions as the React.

 ThingHTTP: Is a kind of notification over HTTP. It
enables communication with remote entities such as
devices, websites and web services.

The ThingSpeak platform relies on MATLAB scripts to
process stored data. Scripts can be associated to a
TimeControl to run one-time or periodically, or to a React
to run whenever a given condition is met. Scripts can use
the MATLAB toolboxes listed in [13], as long as the
developer logs into to ThingSpeak using its MathWorks
account and is licensed to use them. This opens the door to
powerful data analytics, supported by robust, well-known
software libraries. The results can be visualized on the
web, directly from the ThingSpeak site, through ready-to-
use, fancy charts. The visualization experience can also be
enriched with custom widgets and MATLAB plots.
 Fig. 1 shows the dataflow through the ThingSpeak
platform. Data is ingested, stored and analyzed to extract
meaningful information (if needed). The stored data can be
visualized remotely through a web browser anytime,
anywhere. Messages can be sent to third-party applications
to signal a given event. The present work focusses on
measuring the time it takes to upload data and receive a
reply, assuming no processing is made in the interim.

 III. METHODOLOGY

To measure the loop-time, we had to build a closed data
path passing through the ThingSpeak platform, as shown
in Fig. 2. The path includes several actors and stages that
can be described as follows (the numbers in the list
correspond to the numbers in the figure):

1. LabVIEW application: The LabVIEW application

makes HTTP calls to the ThingSpeak platform, collects

the replies and computes the time elapsed. Each call is
a GET request intended to upload an unsigned 32-bit
integer (U32) that is successively incremented. This
integer is called ‘source’ as it uniquely identifies the
request. The timestamp of the request, t0, is registered
to serve as reference for the loop-time. The application
also provides a graphical interface to the user.

2. ThingSpeak channel (name = TestChannel; ID =
515584; access = private): The channel contains a
single field (Field1) to store the source uploaded by the
LabVIEW application.

3. React (condition type = numeric; test frequency = on
data insertion; condition = TestChannel.Field1 > 0; run
= each time the condition is met): A reaction is fired

Fig. 1. Dataflow through the ThingSpeak platform.

Fig. 2. Closed data path passing through the ThingSpeak
platform.

ThingSpeak

Ingest
(Channel)

React

Analyze
(MATLAB scripts)

Notify
(ThingHTTP)

TimeControl

Sensors ActuatorsPhysical process

ThingSpeak (cloud)

Channel

Field1

ThingHTTP
React

2

3

 Router

HTTP

Desktop computer (local machine)

Cross-
process
comm

4

5

1

HTTP

LabVIEW
application

 LabVIEW web service

NI application web server
running on port 80

6

7

each time the arriving source is positive, which is
always because the source is a U32 number. The
reaction instructs the ThingHTTP broker to make the
request 78772 (see below).

4. ThingHTTP broker (request = 78772, URL =
http://xxx.xxx.xxx.xxx//MyWebService/MyCallBack?
Source; method = POST): The broker makes HTTP
calls to remote endpoints. In the present case, the
broker is configured to make a POST request to a web
service running on the same machine as the LabVIEW
application. The request sends back the source initially
issued by the LabVIEW application.

5. Router: Outgoing and incoming HTTP messages pass
through a local router. Outgoing messages are safe and
so the router forwards them transparently. Incoming
messages, however, are potentially dangerous and are
blocked by default. To overcome this problem, we had
to forward port 80 on the local router, so that POST
requests coming from the ThingSpeak platform reach
the LabVIEW web service.

6. LabVIEW web service: The LabVIEW web service is
a stateless routine that receives a POST request,
extracts the attached source, and registers the
timestamp of the reply, t1. The pair (source, t1) is then
sent back to the LabVIEW application by means of a
UDP socket. The web service is hosted by the NI
Application Web Server running on port 80 of the local
machine.

7. UDP socket (URL = localhost; port = 61557): An
external agent is needed to transfer data from the
LabVIEW web service to the LabVIEW application
because they are two separate processes. That agent is
a simple UDP socket that listens for incoming data on
port 61557.

The LabVIEW application issues a source and waits for
the reply in the form of a pair (source, t1). If the reply does
not arrive within five minutes, or if the incoming source is
different from the outgoing source, an error is registered.
If the reply is successful, the loop-time is computed simply
as the difference t1 – t0.

 IV. EXPERIMENTAL RESULTS

The LabVIEW application, LabVIEW web service and
DataSocket server were executed on a common desktop
computer (Intel Core i7-4510U @ 2 GHz, 8 GB RAM, 256
GB SSD, Windows 10 Pro 64 bits). The access to the
internet was made through a commercial provider
(Vodafone Portugal) using a general-purpose router
(Huawei’s HG8247Q) with port 80 forwarded.

 A. Measurements for one hour

The LabVIEW application was configured to issue sources
every 20 s (approximately). Fig. 3 shows the loop-time for
one hour of measurements (around 180 points). Fig. 4
shows the content of the data channel as visualized in the

ThingSpeak site. Fig. 5 shows the statistical distribution of
the loop-time. No errors were found during the test
(incoming source always equal to outgoing source).

Fig. 3. Loop-time measurements for one hour. Amplitude param-
eters: maximum = 65.358 s; minimum = 0.927 s.

Fig. 4. Visualization of TestChannel.Field1 in the ThingSpeak
site.

Fig. 5. Loop-time histogram (detail for the interval 0 to 5 sec-
onds). Statistical parameters: mean = 3.256 s; standard devia-
tion = 8.653 s; median = 1.279 s.

From the figures we see that the loop-time is less than 2 s
with a probability of 82%. Nevertheless, every 10 min
(around 30 points) we see that the loop-time increases very
sharply reaching tens of seconds. This suggests that the
ThingSpeak platform stores data in temporary buffers,
which, from time to time or when they are full, have to be
flushed and processed. The absence of errors reinforces the
reliability of the platform.

 B. Measurements for one day

The LabVIEW application was configured to issue sources
every 6 minutes for 24 hours (around 240 points in total).
Fig. 6 plots the results obtained. No errors were found
during the test.

Fig. 6. Loop-time measurements for one day.

From the figure we see that the loop-time remained stable
over 24 hours without significant fluctuations during the
test. Every 5 points (around 30 min) the loop-time
increased above 10 seconds, suggesting, again, the
existence of buffering mechanisms. The absence of errors
reinforces, again, the reliability of the platform.

 V. CONCLUSIONS

In this paper we studied the responsiveness and reliability
of the ThingSpeak platform. We measured the time needed
for a data packet to loop back through the platform. We
also verified if its content has been corrupted during the
trip.

Tests were made covering periods of one hour and one
day. The ThingSpeak platform revealed to be reliable since
no data corruption was detected. The loop-time remained
below 2 s during 82% of the time, with no significant
fluctuations over the day. Nevertheless, peaks were
detected periodically which may be caused by internal
buffering mechanisms. This particular behavior deserves
further research but has not a critical impact in a large
number of monitoring applications supported in the cloud.

REFERENCES

[1] J. Delsing, F. Rosenqvist, O. Carlsson, A. W. Colombo, T.
Bangemann, “Migration of industrial process control
systems into service oriented architecture", 38th Annual
IEEE Conference on Industrial Electronics Society (IECON
2012), Oct. 25-28 2012, Montreal, Canada

[2] T. Hegazy, M. Hefeeda, “Industrial automation as a cloud
service", IEEE Transactions on Parallel and Distributed
Systems, Vol. 26, Issue 10, pp. 2750-2763, Oct. 1 2015

[3] R. Langmann, L. Meyer, “Automation services from the
cloud", 11th IEEE International Conference on Remote
Engineering and Virtual Instrumentation, 26-28 Feb. 2014,
Porto, Portugal

[4] H. Sequeira, P. J. Carreira, T. Goldschmidt, P. Vorst,
“Energy cloud: real-time cloud-native energy management
system to monitor and analyze energy consumption in

multiple industrial sites", 7th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC 2014),
8-11 Dec. 2014, London, UK

[5] O. Givehchi, J. Jasperneite, “Industrial automation services
as part of the cloud: first experiences", Jahreskolloquium
Kommunikation in der Automation (KommA 2013), 13-14
Nov. 2013, Magdeburg, Germany

[6] O. Givehchi, H. Trsek, J. Jasperneite, “Cloud computing for
industrial automation systems: a comprehensive overview",
18th IEEE Conference on Emerging Technologies &
Factory Automation (ETFA),10-13 Sept. 2013, Cagliari,
Italy

[7] A. Ito, T. Kohiyama, K. Sato, F. Tamura, “IoT-ready
industrial controller with enhanced data processing
functions”, Hitachi Review, Vol. 67, No. 2, pp. 208-209,
February 2018

[8] J. Pretlove, C. Skourup, “Human in the loop”, ABB Review
1/2007

[9] L. Wang, A. Canedo, “Offloading industrial human-
machine interaction tasks to mobile devices and the cloud",
19th IEEE Conference on Emerging Technology and
Factory Automation (ETFA), 16-19 Sept. 2014, Barcelona,
Spain

[10] O. Givehchi, J. Imtiaz, H. Trsek, J. Jasperneite, “Control-as-
a-service from the cloud: a case study for using virtualized
PLCs", 10th IEEE Workshop on Factory Communication
Systems (WFCS 2014), 5-7 May 2014, Toulouse, France

[11] “REST API”, https://www.mathworks.com/help/
thingspeak/rest-api.html (accessed on April 10th 2019)

[12] “MQTT API”, https://www.mathworks.com/help/
thingspeak/mqtt-api.html (accessed on April 10th 2019)

[13] “Access MATLAB Add-On Toolboxes”,
https://www.mathworks.com/help/thingspeak/matlab-
toolbox-access.html (accessed on April 10th 2019)

