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ABSTRACT 

Molecular nature of cancer is the foundation of systematic studies of cancer genomes, 

providing exceptional insights and allowing treatments advancement in clinic. Moreover, 

they are motivating the clinical use of genomic information to make otherwise unexpected 

treatment decisions for patients with a wide range of cancer types, rendering precision 

medicine possible. 

Having this in mind, we combine techniques of image processing, for feature 

enhancement, and recommender systems for proposing a personalized ranking of cancer 

drugs. The system is implemented in Python and tested using a database containing drug 

sensitivity data for more than 310.000 IC50, describing response of more than 300 

anticancer drugs across 987 cancer cell lines. 

After several preprocessing tasks, regarding drug sensitivity data, two experiments are 

performed. First experiment uses original DNA microarray images and second uses 

wavelet transforms to preprocess those images. Experiments confirm that wavelet 

transformed DNA microarray images enhance recommender system performance by 

improving the search of cancer cell lines with similar profile to a target cell line.  

In addition, we conclude that properly chosen wavelet transformed DNA microarray 

images, not only uncover richer information for the users’ similarity search, but also 

efficiently compress these images, optimizing computational resources. 

To the best of our knowledge, this project is innovative in its use of wavelet transformed 

DNA microarray images, to profile cell lines in a cancer drug recommender system. 
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RESUMO 

A natureza molecular do cancro serve de base para estudos sistemáticos de genomas 

cancerígenos, fornecendo valiosos insights e permitindo o desenvolvimento de 

tratamentos clínicos. Acima de tudo, estes estudos estão a impulsionar o uso clínico de 

informação genómica na escolha de tratamentos, de outro modo não expectáveis, em 

pacientes com diversos tipos de cancro, possibilitando a medicina de precisão. 

Com isso em mente, neste projeto combinamos técnicas de processamento de imagem, 

para aprimoramento de dados, e sistemas de recomendação para propor um ranking 

personalizado de drogas anticancerígenas. O sistema é implementado em Python e testado 

usando uma base de dados que contém registos de sensibilidade a drogas, com mais de 

310.000 IC50 que, por sua vez, descrevem a resposta de mais de 300 drogas 

anticancerígenas em 987 linhas celulares cancerígenas. 

Após várias tarefas de pré-processamento, são realizadas duas experiências. A primeira 

experiência usa as imagens originais de microarrays de DNA e a segunda usa as mesmas 

imagens, mas submetidas a uma transformada wavelet. As experiências confirmam que 

as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o 

desempenho do sistema de recomendação, otimizando a pesquisa de linhas celulares 

cancerígenas com perfil semelhante ao da nova linha celular. 

Além disso, concluímos que as imagens de microarrays de DNA com transformadas de 

wavelet apropriadas, não apenas fornecem informações mais ricas para a pesquisa de 

utilizadores similares, mas também comprimem essas imagens com eficiência, 

otimizando os recursos computacionais. 

Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso 

de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar 

linhas celulares num sistema de recomendação personalizado de drogas anticancerígenas. 
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1 INTRODUCTION 

 Statement of the problem 

Recommender systems are becoming part of our daily life. Most of their practical 

applications are web-centric, namely for e-commerce where they engage users by 

presenting personalized recommendations that best suit their preferences. Nevertheless, 

recommender systems’ potential is much wider.  

They can be defined as “software tools and techniques providing suggestions for items to 

be of use to a user” (F. Ricci, L. Rokach, B. Shapira, 2011). The terms “suggestions” (or 

recommendations), “items” and “user” can be understood in a broad sense. The 

underlying logic behind these systems is anchored on machine learning algorithms that 

are very versatile and can be applied to many fields.  

Machine learning has been increasingly used in most diverse domains, either at public 

sector, such as in fiscal area (Seiça, Trigo, & Belfo, 2019), in education area (Pimenta, 

Ribeiro, Sá, & Belfo, 2018), in the medical field (Cios & Moore, 2002) or, at private 

sector, such as in marketing (Cui, Wong, & Lui, 2006), in media and entertainment 

industry (Sereday & Cui, 2017), in events industry (Loureiro, Lourenço, Costa, & Belfo, 

2014) and in many other areas, contributing to create new knowledge and helping 

organizations to define strategies that allow them increase their performance. 

This project explores the application of recommender systems in a specific field of 

medicine. The problem under analysis is related to cancer disease. Many research 

laboratories are testing numerous compounds on cancer cell lines, in order to find the 

most effective drugs. Cancer biology is complex and, as being closely related with the 

physiognomy of each patient, it means that some drugs are more effective than others in 

each situation (Iorio et al., 2016). From this perspective, the problem may be solved with 

a recommender system supported by machine learning, for which the system aims, given 

a target cancer cell line (i.e., a new patient), to propose a ranking (i.e., a recommendation) 

of the most effective drugs (i.e., items). 

 Purpose and importance of the study 

Cancer drug recommender systems allow the research and development of drugs tailored 

specifically to an individual based on his/her personal genetic information. It is a step 

towards precision medicine, a new paradigm that benefits all stakeholders. Patients can 
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have a personalized treatment, increasing the chances of a successful and faster recovery. 

Healthcare providers (e.g. hospitals) can decrease costs. Pharmaceutical industry can 

offer new personalized treatments. 

In order to contribute to the research community, by stimulating new ideas and drawing 

attention to the topic, this study led to the homonym paper  “Wavelet-based cancer drug 

recommender system” (Brandão, Belfo, & Silva, 2020) which gathers its main findings. 

 Research question 

Here, a user-based collaborative filtering approach is followed. As a result, users ‘profiles 

are central to the proposed framework. In the specific context, cancer cell lines are 

profiled through their corresponding gene expression profile, represented by a DNA 

microarray. As recognized by Serra (2003), there are several microarray systems and 

methods which differ in several details but produce the same result, an image of spots. 

On the other hand, images are 2-D spatial signals. (Serra & Angulo, 2003) 

Hence, we intent to assess if the prior pre-processing of DNA microarray images, using 

wavelet transforms, can improve the recommender system performance. To the best of 

our knowledge, this is the first work that attempts to do it.  

In practice, such preprocessing represents a shift for the data stored in the DNA 

microarray image from spatial domain (pixels intensities) to wavelet domain 

(frequencies).  

We hypothesize that the representation of the users‘ profile in a wavelet domain uncovers 

distinct and discriminating features that improve the search of similar users (a step of vital 

importance in a user-based recommender system). This is due to the fact that, as stated 

by Pittner & Kamarthi (1999), wavelet transforms “allow the extraction of richer 

problem-specific information”. (Pittner & Kamarthi, 1999) 

 Report outline 

The document is organized into six chapters.  

The current chapter – Introduction – contextualizes the general problem under analysis 

and identifies the specific research question addressed by the project. At the forefront, it 

states the hypothesis that is expected to be confirmed by the experiments. Furthermore, 

the real-world impact and contemporaneity of this work are outlined. 
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The second chapter – Theoretical Framework – enlightens the main theorical concepts 

applied in the project. It starts by providing the genomic background of the problem, 

which is fundamental for a better understanding of the dataset that is explored. 

Afterwards, it exposes the main theory regarding wavelet transforms, focusing on its 

capacity to perform premium feature extraction for machine learning algorithms. Next, 

an overview of recommender systems theory is drawn with a special attention in what 

concerns collaborative filtering. Related work with respect to image processing using 

wavelet transforms and personalized recommender systems of cancer drugs is also 

pointed out. 

The third chapter – Research Methodology – starts by explaining the workflow of the 

different CRISP-DM phases of the project. Additional details regarding cancer disease 

worldwide and the used sample are given under the section “introduction”. A full 

explanation of the database is followed along with the preprocessing steps taken towards 

the final dataset. This chapter also gives a comprehensive description of the proposed 

wavelet-based cancer drug recommender system. In fact, details of its two main stages 

(users similarity measurement and cancer drug recommendation) are explained as well as 

the identification of the tools used to implement them. The chapter closing remarks go to 

the ethical and social questions that might arise in the problem domain. 

The fourth chapter – Findings – and the fifth chapter – Discussion of the Results – state 

the experimental results and provide their critical evaluation, respectively. In the chapter 

Findings, it can also be found a practical example of a cancer drug recommendation for 

a target cancer cell line. 

Finally, the sixth chapter – Conclusions – states our main findings and contributions 

besides the limitations and potential future improvements of this work. As it explains, 

while pursuing the main research question, not only our initial hypothesis is confirmed 

but other interesting outcomes emerge. Moreover, it shows how this project contributes 

to the research towards efficient and effective real-world cancer drug recommender 

system. 
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2 THEORETICAL FRAMEWORK 

 Genomics background 

2.1.1 Introduction 

According to WHO (2020), Genomics can be defined as “the study of genes and their 

functions, and related techniques”. Contrarily to Genetics (which focus on the study of 

single genes), Genomics “addresses all genes and their inter relationships in order to 

identify their combined influence on the growth and development of the organism” 

(World Health Organization, 2020).  

The analysis of “all genes and their inter relationships” allows the identification of distinct 

patterns which are central for establishing similarities and differences between individual 

patients.  

2.1.2 Cell lines 

In Genomics, cell lines refer to the cells capable of renewing themselves in an artificial 

culture (i.e. under certain laboratory conditions) indefinitely, which makes them ideal for 

testing new drugs.  

Particularly in what concerns cancer, cell lines are extracted from biopsies (tissues 

removed from a living body) of patients with different types of tumors (from several body 

parts depending on the cancer location like lungs or breast). 

2.1.3 Gene expression  

There are several ways to characterize cell lines, namely using: gene expression, whole-

exome sequencing, copy number variation and DNA methylation. However, as shown by 

Costello et al. (2014), gene expression provides “the best predictive power”. (Costel lo et al., 2014) 

Gene expression is the process by which the instructions in our DNA are converted into 

a functional product, such as a protein. When genes are expressed, the genetic information 

(base sequence) on DNA is first copied to a molecule of mRNA (transcription). The 

mRNA molecules then leave the cell nucleus and enter the cytoplasm, where they 

participate in protein synthesis by specifying the particular amino acids that make up 

individual proteins (translation).  
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Figure 2.1 Gene expression  

 

 

                                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from (NCBI, 2020) (National Center for Biotechnology Information, 2020) 

Consequently, one way to measure gene expression is by measuring RNA levels because, 

as previously mentioned, in order to activate a gene, a cell must first copy the DNA 

sequence of that gene into a piece of mRNA. Thus, by determining which mRNA 

transcripts are present in a cell, it is possible to determine which genes are expressed at 

different stages of development and under different environmental conditions. 

The quantity of mRNA transcript for a single gene directly reflects how much 

transcription of that gene has occurred. Tracking of that quantity will therefore indicate 

how vigorously a gene is transcribed or expressed.  



Wavelet-Based Cancer Drug Recommender System 

 

7 

Hence, overall, the gene expression of a cell line is a portrait of the genes’ activity 

contained in that cell and the corresponding gene expression analysis is “the 

determination of the pattern of genes expressed at the level of genetic transcription” in 

that specific cell (National Center for Biotechnology Information, 2020). 

2.1.4 DNA microarrays 

The most used technique to measure mRNA levels is through DNA microarrays 

(Information Resources Management Association, 2019). 

The DNA microarray slide contains up to tens of thousands of microscopic spots. Each 

individual spot will be used to measure the activity of a specific gene. This happens during 

the microarray scanning when the fluorescent intensity of all individual gene spots is 

stored in an image. A spot with high fluorescence intensity represents a hyperactive gene 

whereas the absence of fluorescence represents a silent one. Therefore, the DNA 

microarray image provides a “fingerprint” of the cell line.  

 

Figure 2.2 Example of a DNA microarray image 

Source (Light et al., 2001) 
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2.1.5 Half-maximal inhibitory concentration - IC50 

In pharmacological experiments, it is usual to construct a dose-response curve to represent 

a drug’s effect on a receptor. This curve describes the relationship between increasing the 

dose (or concentration) of the drug and the change in response that results from this 

increase in concentration. Typically, it comprises a wide concentration range. (Tulane 

University - School of Medicine, 2020) 

Regarding cancer drugs, the efficacy of a compound is usually assessed by the 

corresponding IC50 (“I” for inhibition and “C” for concentration), i.e., the half-maximal 

inhibitory concentration. The IC50 is the concentration of the compound required to inhibit 

the cell growth at 50%. Hence, the lower the IC50 value is, the more efficient the 

compound is. 

 

 

 

 

 

 

 

 

 

 Image processing using wavelet transforms 

2.2.1 Introduction 

In the process of microarray scanning, an image of the genes ‘activity induced from the 

fluorescence dye is captured by the scanner. However, “due to the weak fluorescence 

response, complex biochemical reaction, imperfections in glass slide and photoelectric 

sensor conversion distortion, etc., the signal of fluorescence probe is inevitably degraded, 

which leads to serious noise interference in the microarray image” (Gan et al., 2019). 

Figure 2.3 Dose-response curve and IC50 
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Figure 2.4 Wavelet translations (location) 

Adapted from (Addison, 2017) 

 

Wavelet transform is a signal processing technique (also applied to images since they are 

2-D spatial signals) that, simultaneously, allows to filter noise and extract more 

informative features that allow better discriminability of the original signal.  

2.2.2 Wavelet transforms 

The purpose of the wavelet transform is to “transform the signal under investigation into 

another representation which presents the signal information in a more useful form” 

(Addison, 2017).  

A wavelet is a little wavelike function. During the wavelet transform, a convolution of 

the signal with a wavelet function happens. This convolution is computed at various 

locations of the signal (wavelet translations) and for various scales (wavelet dilations).  

The signal regions where the wavelet overlaps the signal result in large transform values, 

called wavelet coefficients.  

 

 

 

 

 

 

Adapted from (Addison, 2017) 
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Figure 2.5 Wavelet dilations (scale) 
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Figure 2.6 Original signal and wavelet transform 

Adapted from (Addison, 2017) 
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Therefore, several clear structures relating to a specific scale in the wave are detected by 

shifting the wavelet along the signal (Addison, 2017). For this reason, wavelet transform 

has been called a ‘mathematical microscope’. 

There are several types of wavelets, such as those from Haar, Daubechies, coiflet, and 

symlet, and it is important to choose the one that best suits our signal and the scope of the 

analysis.  

 

Figure 2.7 Some wavelet types 

 

 

Moreover, wavelet transforms come in two distributions: continuous and discrete. The 

major difference relies in the way how they discretize the scale parameter. The continuous 

wavelet transform uses exponential scales with a base smaller than 2 (e.g. 2^1/5) while 

the discrete wavelet transform uses exponential scales with the base equal to 2 (i.e., the 

scales are powers of 2). Hence, continue wavelet transform discretizes scale more finely 

than the discrete wavelet transform. 

However, for image processing, the discrete wavelet transform is the type of distribution 

usually used, allowing a sparse representation of the signal. Here, coefficients whose 

value is close to zero may be ignored, remaining only those that have captured important 

features.  

The wavelet transform can also comprise several levels of decomposition. In the first 

level, the signal is decomposed in low and high frequencies regions. The convolution of 

the wavelet with the low frequency regions results in the so-called approximation 

coefficients. On the other hand, the convolution of the wavelet with the high frequency 

Source (Addison, 2017) 
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regions results in the so-called detail coefficients. In the next level, the approximation 

coefficients (of the previous level) are again divided into low and high frequency regions. 

This goes on until it is reached the level of detail that it is needed or until there is no more 

low and high frequency regions. 

The wavelet packet transform is similar to the discrete wavelet transform, however, at 

each decomposition level, it decomposes not only the approximation coefficients but also 

the detail coefficients, yielding a higher frequency resolution even in higher frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Wavelet decomposition of a signal for 3 levels 

 

It is possible to apply wavelet transforms to any signal such as time and spatial signals. 

Spatial signals comprise, for example, 2-D images.  
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Figure 2.9 Example of a wavelet decomposition of an image for 3 levels 
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2.2.3 Previous work 

In what concerns machine learning classification tasks using images as inputs, the use of 

wavelets as a preprocessing technique is already in use.  

For example, Wan & Zhou (2010) made use of the Haar wavelet to extract features of 

ultrasound liver images for a support vector machine classifier. The global scope was to 

find “an effective method of feature extraction for revealing texture details and the 

succeeding classifications”. (Wan & Zhou, 2010) 

For each sub-image of the transform, they quantified mean and energy values and stored 

them in a feature vector later on used to feed the classifier. They came to the conclusion 

that wavelet packet transform allowed better feature vectors, regarding wavelet transform, 

since they had shown “excellence in differentiating normal and cirrhosis classes”. 

More recently, Rasheed, Younis, & Bilal (2020), working in a classification task using 

deep neural networks, applied the wavelet transform as a preprocessing technique in order 

to “help the network by enhancing the features in the images”. They reasoned that wavelet 

transforms can unravel important features “within the image before feeding it to the 

classifying network”. (Rasheed, Younis, & Bilal, 2020) 

Therefore, instead of the original images, they used two wavelet transformed images to 

train the network. Those images were obtained by convoluting the wavelet along the 

vertical and horizontal directions of the original image. 

They found that the wavelet transform of X-Ray scans improves considerably the 

performance of the classification network.  

We can also find research regarding the application of wavelet transforms to DNA 

microarray images. For instance, Li, Liao, & Kwok (2006) proposed a gene selection 

method using the discrete wavelet transform on microarray data for cancer classification. 

As they expressed, “microarray data typically have thousands of genes, and thus feature 

extraction is a critical problem for accurate cancer classification”. (Li, L iao, & Kw ok, 2006) 

They began using the wavelet transform to decompose the microarray data. Afterwards, 

they applied “the maximum modulus method to select some high-frequency coefficients”. 

Those coefficients and the approximation ones were then “combined together to form a 

new gene subset with a much lower dimensionality than the original one”. 
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The experiments showed that this wavelet-based feature extraction method for microarray 

data was able to “outperform the other methods in terms of classification accuracy”. 

Also, for a cancer classification task, Nanni & Lumini (2011) adopted wavelet features 

extracted from DNA microarrays. According to them, the high dimensional data present 

in the microarrays contains irrelevant information that jeopardizes the classifier accuracy. 

Therefore, “a feature reduction should be performed before the classification step”. (Nanni & Lumini, 

2011) 

In their proposed system, the DNA microarrays were submitted to a wavelet 

decomposition and the resulting detail coefficients selected through the sequential 

forward floating selection method. The final subset of detail coefficients was then used 

as an input to the classifier. 

Since “different sub-bands of different wavelet families bring different information”, they 

studied the impact of eighteen different wavelets at different decomposition levels. 

Overall, the literature shows that wavelet decompositions can be used to overcome the 

curse of the dimensionality problem by highlighting relevant information for the machine 

learning algorithm. Nevertheless, it is important to keep in mind that, since there is a wide 

choice of wavelet families and distinct decomposition levels can be applied, each problem 

will have its one optimal wavelet transform, requiring knowledge and art to find it. 

 Recommender systems 

2.3.1 Introduction 

The global scope of recommender systems comprises the identification of the need and 

preferences of users, filtering the huge collection of data accordingly and displaying the 

best fitted option by using some well-defined mechanism (F. Ricci, L. Rokach, B. 

Shapira, 2011). Thus, they allow information filtering (in opposition to information 

retrieval like the one performed by search engines), providing personalized information 

that is relevant to the user. 

It is important to notice that, even before the appearance of recommender systems, 

humans have been making use of personalization as a way to tailor services and products 

to specific individuals. However, such personalization is rooted in personal intuition and 

experience whereas the personalization made by recommender systems is automated and 

supported by data. 
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There are several important historic milestones that one could point out regarding 

recommender systems. Their early days go back to 1994 when GroupLens (a research lab 

in the Department of Computer Science and Engineering at the University of Minnesota) 

built a system able to produce personal predictions regarding news articles. At that time, 

the internet use was rapidly spreading, and recommender systems relying on collaborative 

filtering were conceived to help users handle information overload. Thus, the GroupLens 

recommendation system, using the reading opinions (ratings) of like-minded users about 

Usenet news articles, produced personalized recommendations that were displayed in the 

article header. (Resnick, Bergstrom, & Riedl, 1994) 

Quickly, business applications began to be explored, and in 2009 Netflix (a web-based 

commercial company) launches the first recommender system challenge with the grand 

prize of US$1,000,000. 

In fact, recommendation engines expanded rapidly among online retailers and online 

content providers. Even in nowadays, recommender systems are still very web-centric.  

We can identify at least two reasons for that. On one hand, personalized recommendations 

engage people and engaged users are loyal (or profitable) users – exactly the type of 

customers that companies seek. 

On the other hand, we must not forget that, while humans rely on intuition to make 

personalization, recommender systems rely on data and it is fairly simple for a web-based 

company to collect a considerable amount of data produced by its online users. That data 

is raw information and, therefore, the data trail that an online user leaves behind is 

processed by the recommender engine to learn preferences and produce meaningful 

recommendations. 

Furthermore, in an online context it is possible to collect, not only explicit data (for 

example, when a user rates an item), but also implicit data. This is the type of data that a 

user produces non-intentionally, without being directly asked to, but that still has very 

rich information about him/her. Examples of implicit data include click data (e.g. page 

views), purchase data, consumption data (e.g. time spent in a page), and so on. 

One might be led to think that explicit data is the best data to know a user. That it is not 

always the case, explicit data has some pitfalls. It requires an extra effort from the user 

(the direct action of rating) so, usually, this data is very sparse (not every user is willing 
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to rate). Also, when using it to produce recommendations, it might be necessary to 

overcome some rating subjectiveness. 

2.3.2 Taxonomy 

There are several dimensions that can be used to characterize and classify recommender 

systems. 

The domain regards the recommendation item itself which can range from products to 

services. As previously mentioned, (see Section 1.1), the definition of item within a 

recommender system background can be very broad. 

The purpose identifies the overall goal underneath the recommendation; sales, 

information, education, … 

Another important characteristic is the personalization level. In fact, recommender 

systems can have different levels of personalization: from universal (non-personalized 

recommender systems in which everyone receives the same recommendations) to tailor-

made (personalized recommender systems that match the user personal preferences). In 

between, we can have different personalization degrees. For example, demographic 

personalization. 

Another differentiating aspect is the approach followed to solve the recommendation 

problem. A possible solution is, given a set of unknown items to the user, predict the 

ratings each item will have and then present the most N (predicted) rated items as 

recommendations for that user. This is the “prediction version” of the problem (Aggarwal, 

2016).  

However, it is not mandatory to predict ratings in order to make recommendations. One 

can simply recommend the top-N most likely relevant items to the user. This is the 

“ranking version” of the problem and “in many cases it is easier and more natural to 

design methods for solving the ranking version of the problem directly” (Aggarwal, 

2016). In fact, this is the version commonly adopted in real world problems.  

Finally, recommender systems can be classified regarding the model technique. Section 

2.4.3. provides an overview of the main techniques available while Section 2.4.4 takes a 

deeper look to the one employed in this project – collaborative-filtering. 
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2.3.3 Techniques overview 

The basic task of a recommender system is to suggest items to users. In order to perform 

it, several techniques are available, but most of the them fall under one of the following 

categories: non-personalized summary statistics, content-based filtering, collaborative 

filtering (described in the next Section), matrix factorization methods and hybrid 

approaches. 

Recommender systems relying on non-personalized summary statistics use aggregated 

indicators in order to propose items. “Best-seller”, “most-popular”, … are examples of 

such indicators regarding e-commerce recommender engines. This is one of the most 

simple and easy to implement techniques, although its inexistent level of personalization. 

 

 

 

Figure 2.10 - Example of a non-personalized summary statistic recommendation 

Adapted from (IMDb, 2020) 

 

Content-based filtering recommender systems, on the other hand, belong to the group of 

recommender systems that enable personalization. To model the user profile, the engine 

exploits the items towards which the user’s preferences are already known. These known 

preferences, along with the content (or characteristics/properties) of the items, are then 

used to infer the preferences of the user towards a new item. In other words, the algorithm 

recommends items that are similar to the ones that received favorable preference of the 

user in the past. 
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Figure 2.12 SVD applied to the rating matrix 

 

 

 

 

 

 

 

 

 

Matrix factorization, another important recommender system technique, finds items to 

recommend using extracted factors from the so-called rating matrix. These factors, called 

latent factors, express trends in the data that explain the user’s behavior and, although 

they make sense data-wise, it might be hard to interpret their meaning.   

The first step is to factorize the rating matrix into smaller matrices. One of the most 

commonly used methods for that is SVD that will decompose the rating matrix into three 

matrices: 

 

Adapted from (Falk, 2019) 

 

The weights matrix is a diagonal matrix whose elements are sorted from the largest to the 

smallest. The values of these elements, called singular values, indicate how much 

information a feature (both a column in the users feature matrix and a row in the items 

feature matrix) produces for the dataset. Therefore, we can select a k number of features 

Figure 2.11 Example of a content-based filtering recommendation 
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× × 

(for example, the ones that retain 90% of the information) and set the rest of the diagonal 

to zero. As a practical consequence, we will be reducing the number of columns in the 

users feature matrix and the number of rows in the items feature matrix, keeping only the 

most meaningful dimensions. These reduced matrices are called the rank-k approximation 

of the rating matrix. According to linear algebra, this is the best possible rank-k 

approximation. 

To predict a rating for a given user, we multiply his/her reduced factors. 

 

 

 

 

Since rating matrices are usually sparse, their unknown values must be filled prior to the 

SVD factorization, and for that several methods are available like imputation (for 

example, replace the unknown values by a mean value). 

Alternatively, there are approaches that, also under the matrix factorization mindset, use 

SGD to directly search for the best rank-k approximation without the need to deal with 

the missing values. In fact, SGD allows efficient approximation of the SVD from known 

data. 

Obviously, each recommender system algorithm has its own strengths and weaknesses. 

Hybrid approaches, combining different algorithms, can be used as a way to overcome an 

algorithm’s weaknesses by another algorithm’s strengths. Once more there are several 

ways to perform such an ensemble. For example, in a weighted hybrid recommender, the 

predicted rating is computed from the results of all of the available recommendation 

techniques present in the system. 

Reduced   

Weights 

  Matrix 

 

 

user factors (from the reduced users feature matrix) 

item factors (from the reduced items feature matrix 

Figure 2.13 Predicting ratings using the factors 

Adapted from (Falk, 2019) 



Wavelet-Based Cancer Drug Recommender System 

 

21 

Figure 2.15 User-based collaborative  
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2.3.4 The collaborative filtering technique 

Collaborative filtering models use the “collaborative power” (Aggarwal, 2016) of the 

ratings provided by multiple users. The assumption on which they are based is that similar 

users share similar behaviors and similar items receive similar ratings. Therefore, the 

items that were relevant to existing users and the items that are similar to the ones that 

were relevant to the target user will most likely be good recommendations. 

This technique relies on the concept of neighborhood to infer the relevance of an item to 

the target user. Two types of neighborhood can be defined – user-based and item-based. 

In the user-based collaborative filtering, the ratings provided by a neighborhood of similar 

users to a target user are exploit to make recommendations. 

 

 

 

 

 

 

 

 

 

 

Content-based filtering  

Collaborative filtering  

r_hybrid = r_cf *0.60 + r_cb*0.40 

hybrid recommender system 

Figure 2.14 Example of a hybrid recommender system 

Adapted from (Falk, 2019) 



Wavelet-Based Cancer Drug Recommender System 

 

22 

Figure 2.16 Item-based collaborative  

filtering pipeline for creating  

a recommendation list 

According to Figure 2.15, the first step is “similarity measurement” which requires 

calculating the target user’s similarity regarding all the existing users. Such similarity is 

usually computed through the users’ rating vectors. Several similarity metrics can be 

applied, such as Pearson correlation (a standard correlation metric), and the background 

of the problem should guide to the final choice (for example, some metrics are more well 

suited for certain types of data than others). 

When the similarity measurement is completed, is time to “select a neighborhood”. The 

scope is to remove the noise introduced by users that are not alike the target user. Once 

more, there are several ways to determine a neighborhood. For example, limit the 

neighborhood to the top-k neighbors or to a similarity threshold.  

The “recommendation list” is then created using the items of the neighborhood. Firstly, 

each item receives a “score” - the rating given by the neighbor weighted by the similarity 

between the neighbor and the target user. It is important to notice that ratings may need 

to be previously normalized. For example, when dealing with a rating scale, human users 

might have different perceptions of it and, therefore, for instance, a rating “5” may mean 

different things to different users. Normalization compensates this user bias. Secondly, 

the items are sorted by “scores” and the top-N items are recommended to the target user. 

Also, it might be necessary to filter some items (for example, items that for some reason 

are not suitable for the target user).  

 

recommendation list 
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The second type of neighborhood is item-based, and it also relies on similarity, namely 

between items according to their vector ratings (and not according to items’ 

properties/characteristics as in content-based filtering). Hence, the first step is to compute 

the similarity between each of the items rated by the target user and the other items of the 

database. The “score” of each neighbor item is the rating given by the target user weighted 

by the similarity between the neighbor item and the target user’s rated item, as illustrated 

in figure 2.17. 

 

In short, in user-based collaborative filtering, neighborhoods are defined by similarities 

among users (rating matrix rows), whereas in item-based collaborative filtering, 

neighborhoods are defined by similarities among items (rating matrix columns).  

Usually, item-based collaborative filtering is a technique with better performance and 

stability than user-based. However, under certain circumstances is it likely to fail to 

outperform user-based. For example, in an application where there is a relatively small 

number of users, and many more items since the benefits of item-based collaborative 

filtering depend on having more users than items. 

It is also important to notice item-based low serendipity. In order to be effective, item-

item relationships need to be stable and, as consequence, it is very difficult for the 

algorithm to discover highly different items to recommend and, hence, more of the items 

recommended are expected.  (On the other hand, user-based collaborative filtering by 

default will elevate items that a close neighbor rates highly.) These “conservative” 

recommendations can be good for shopping or consumption tasks, but they might be 

frustrating, for example, for browsing/entertainment in which users might enjoy being 

surprised with bold recommendations. 

target user 

item A 

item B 

neighbor 

rating 

similarity 

item score = rating × similarity 

Figure 2.17 - Item scoring in item-based collaborative filtering 
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2.3.5 Evaluation metrics 

Like in any other machine learning algorithm, historical data can be used to evaluate a 

recommender system performance. In this regard, three types of basic metrics can be 

distinguished: prediction accuracy metrics, decision support metrics and ranking metrics. 

Prediction accuracy metrics evaluate how good the recommender system is in what 

concerns predicting users’ ratings. Therefore, they measure the error between the 

prediction and the actual rating. Such metrics include MAE, MSE and RMSE. RMSE, in 

particular, gives significantly greater weight to larger errors (unlike MAE) which often 

reflects the fact that big errors are much worse for user experience. Also, RMSE is easier 

to interpret than MSE because the scale of errors is matched more closely to the scale of 

ratings. 

On the other hand, decision support metrics measure how well a recommender system 

helps users make good decisions, i.e., choosing relevant items. Under such mindset, for 

example, a prediction of 4 stars versus 2.5 stars (true rating) is worse than a prediction of 

2.5 stars versus 1 star (although the MAE – 1.5. – is the same on both predictions). 

Precision – the percentage of selected items that are actually relevant – and recall – the 

percentage of relevant items that are selected – are perhaps the most widely used decision 

support metrics. It is also common to restrict such measurements to the N top items. For 

example, top-N hit rate (or precision at N) is the fraction of relevant items that are in the 

top-N recommendation list in relation to the N recommended items (the recommended 

items that are actually relevant items are called hits). 

Finally, ranking metrics assess how good the recommender system is at suggesting 

relevant drugs on top positions. In other words, these metrics trace the position within the 

recommendation list in which the item appears. As stated by Aggarwal (2016), “the 

disadvantage of the hit-rate is that it gives equal importance to a hit, irrespective of its 

position in the recommended list”. Average reciprocal hit-rate is like top-N hit-rate, but, 

contrarily to it, it takes into account for where in the top-N recommendation list the hits 

appear. Its scope is to reward recommended items that match top relevant items. (Aggarwal, 2016) 

Other types of metrics, that relate more closely to business goals and/or user experience, 

can be equally important. For example, coverage measures the percentage of items for 

which a recommender system can make a prediction (in a commercial domain, for 

instance, it is paramount to ensure that the algorithm will recommend everything in the 
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sales catalogue). Another example is serendipity which attempts to measure unexpected 

recommendations that lead to unexpected beneficial results. 

All the previous metrics are measured in a retrospective mindset, i.e., dealing with items 

already rated. However, especially in what concerns recommender systems designed for 

the web, it is very common to also perform online evaluations (live experiments), under 

a prospective mindset (looking at how recommendations are actually received). One of 

the most popular mechanisms to perform such field experiments are the so-called A/B 

tests which aim to see if a system change makes a positive improvement in user activity. 

For example, if we are trying to decide between a user-based collaborative filtering 

(version A) or an item-based algorithm (version B), we might give half of the users each 

of those and follow them over a period of time, tracking a selected number of KPI (e.g. 

conversion rate, i.e., recommendations that result in sales). 

2.3.6 Practical issues – data sparsity and cold start 

The two main problems of the recommender systems are: data sparsity and cold start. 

Regarding the first problem, rating matrices might be sparse and, consequently, provide 

little information, making the recommendation task difficult especially for collaborative 

filtering algorithms (which, as shown in Section 2.4.4, rely on rating matrices to compute 

similarities between users and items).  One way to address such problem is through the 

use of graph models that provide a “structural representation of the relationships among 

various users and/or items” (Aggarwal, 2016) and allow the identification of 

neighborhoods using random-walk or shortest-path methods. 

 

 

1  5  

 4 3  

5 2 2  

 3  5 

 

items users 

U2 

U1 

U3 

U4 

Item 2 

Item 1 

Item 3 

Item 4 

rating matrix user-item graph 

Figure 2.18 Rating matrix and corresponding user-item graph 

Adapted from (Aggarwal, 2016) 
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Another potential issue is the cold start problem – what to recommend to a new user (that 

has no profile of preferences) and how to recommend new items (that have not been rated 

yet)? 

For a new user, some solutions might include providing useful default personalization 

options (e.g. recommend popular items) or make use of their implicit data (e.g. 

recommend items similar to the item they are looking). For a new item, content-based 

approaches (including similarity to other items) might be useful to overcome the problem. 

 Personalized recommender systems of cancer drugs 

2.4.1 Domain specificities and application fields 

Although the classic expression “the human body”, large response variability among 

individuals due to genetic differences is observed. This fact has been increasing the rise 

of precision medicine (also called personalized medicine). Precision medicine aims to 

develop tailored diagnostic, treatment, and prevention based on a patient’s genes and 

genetic modifications of these genes. 

Under this mindset, personalized recommender systems of cancer drugs target the use of 

a patient’s genomic profile to generate tailored cancer drugs recommendations, i.e., one-

to-one recommendations (instead of one-to-many). 

The underlying concepts behind such systems can be found in the general recommender 

system theory but, as expected, with the necessary adaptations imposed by their specific 

domain and problem background. 

For example, the typical rating matrix (inspired by online backgrounds and storing users’ 

preferences regarding items), in a cancer drugs recommender system context gives place 

to a drug-response matrix. The drug-response matrix stores, as the name implies, the drug 

responses (or reactions) of each cancer cell line (rows) with respect to each drug 

(columns). 

Moreover, personalized recommender systems of cancer drugs with a collaborative 

filtering approach (like the one we propose here), may not rely on drug response vectors 

to compute similarities between users. Instead, they may use other type of rich 

information about the users such as gene expression. Among other benefits (for example, 

enhancement of the similarity measurement), this option allows to overcome both data 

sparsity and cold start problems on the users’ side.  
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Also, in what regards evaluation metrics, the focus relies on the recommender system 

ability to suggest the most efficient drugs to the target patient (or cancer cell line). 

Therefore, certain metrics may not make sense in such context. For example, metrics 

reflecting business goals such as coverage. On the other hand, the skill to suggest the most 

likely relevant drugs in the right rank is highly important to ensure that patients receive 

the top treatments as soon as possible. 

Finally, it is important to notice that personalized recommender systems of cancer drugs 

can be useful not only in a clinical scenario (assisting doctors on the search of 

personalized treatments for each individual patient)  but also in a clinical laboratorial set 

up, with a drug development scope, aiding researchers to identify new active 

pharmaceutical ingredients. In fact, these recommendation algorithms may well represent 

an outstanding opportunity for the pharma industry to offer precision medicine. 

2.4.2 Previous work 

Most of the research on cancer drug recommender systems has focused on the “prediction 

version” of the problem, i.e., predicting the exact sensitivity values for the potential drugs. 

To achieve this goal, a common technique applied is matrix factorization. Matrix 

factorization solves the recommendation problem by finding latent features that 

determine the relationship between users and items.  

For example, Suphavilai, Bertrand, & Nagarajan (2018) used this technique to project 

both drugs and cell lines into a latent space, named as “pharmacogenomic space“, such 

that “the dot product between a cell line vector and a drug vector provides the cell line 

specific drug response”. (Suphavilai, Bertrand, & Nagarajan, 2018) 

With that aim, they factorized the drug response matrix into three matrices - biases, cell 

lines and drugs – and then treated the problem as a minimization problem, where they try 

to find the missing values in these matrices that best minimize the errors in the known 

drug response. 

With a similar approach, L. Wang, Li, Zhang, & Gao (2017) also focused on the drug 

response prediction. Exploring similarities of drugs and cell lines simultaneously, they 

proposed a similarity-regularized matrix factorization framework. (L. Wang, Li, Zhang , & Gao, 2017) 

The major difference, regarding the previous research work, is that the latent space is built 

using a drug similarity matrix and a cell line similarity matrix. 
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Nevertheless, a few researchers have also focused on the “ranking version” of the 

problem.  

That is the case of He, Folkman, & Borgwardt (2018) whose framework gains were 

“maximized when the most effective k drugs are the top k recommended drugs”, even 

though, without any drug response being predicted. (He, Folkman, & Borgwardt, 2018) 

In order to achieve that goal, the drug recommendation was framed into a problem of 

learning a weight matrix W such that, given a new molecular profile x, the predicted 

ranking vector (containing the predicted ranking scores for each of the m distinct drugs) 

would be f=xW.  

Then, using a loss function to evaluate how well the order of the top k recommendations 

in f matched with the order of the most effective drugs in the drug response matrix, 

learning W was settled as a minimization problem. 

To sum up, despite the fact that most of the research effort is made under a “drug response 

prediction” mindset, the “ranking version” approach (which does not rely on predicting 

drug responses to make recommendations) is equally interesting. In fact, in a real-life 

clinical scenario, it is more reasonable that a patient receives a recommendation of a few, 

most effective, drugs rather than predicting the exact response to all drugs. 
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3 RESEARCH METHODOLOGY 

 The CRISP-DM model 

The CRISP-DM model is a data mining methodology and process model that provides a 

standard blueprint for managing a data mining project. Launched in 1999, it is still used 

worldwide by major players due to its timeless advantages such as effective and efficient 

project planning and management.  

 

Figure 3.1 CRISP-DM process diagram 

Adapted from (Jensen, 2012) 

 

Despite initially created for data mining, this methodology provides powerful guidelines 

for even nowadays the most advanced data science activities and, therefore, it was the 

approach followed by this project. In fact, throughout this project report, the six CRISP-

DM main phases can be easily identified: 

1. Business understanding 

Focused on identifying the project objectives, setting a clear research question, 

and gathering the necessary Genomics background for a full understanding of the 

necessary domain knowledge. Hence, we started with a generic problem – cancer 

disease – and gradually narrowed it into a specific research question. Later on, the 

research question was translated into a data science problem and a framework to 
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answer it using mathematical instruments (wavelet transforms) and computer 

science algorithms (recommender systems) was planned.  

2. Data understanding 

The data was collected from the GDSC database  (Yang et al., 2013) (Genomics 

of Drug Sensitivity in Cancer, 2020) and imported into a Python Notebook where 

several EDA tasks were conducted. This allowed us to get familiar with the data 

and discover first insights. For example, the detection of several cancer cell lines 

without DNA microarrays available. 

3. Data preparation 

In order to get the final dataset, several preprocessing tasks were necessary to 

transform the initial raw data. These tasks ranged from missing values imputation 

to features engineering (design of wavelet transformed images). 

4. Modeling 

Recommender systems comprise several techniques, therefore, guided by the data 

available, a user-based collaborative filtering approach was selected and applied. 

To assess the performance of the models (with and without wavelet transformed 

images) two evaluation metrics were chosen: top-N hit rate and average reciprocal 

hit-rate. 

5. Evaluation 

The results of the first round of experiments allowed us to fine-tune the models, 

motivating adjustments in the wavelet transformed images design. 

6. Deployment 

This project aims to be a preliminary study, hence, no deployment of the model 

into an operating system was planned. 

 The dataset 

3.2.1 Introduction 

According to WHO, cancer killed 9.6 million people in 2018, being the second leading 

cause of death globally (about 1 in 6 deaths were due to cancer). Tobacco use was the 

most important risk factor, causing approximately 22% of cancer deaths. Besides the 

human dimensions, there is also a significant and increasing economic impact. The total 

annual economic cost of cancer in 2010 was estimated at approximately US$ 1.16 trillion 

(World Health Organization, 2018). 
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Cancer can affect any part of the body and, also in 2018, WHO identified the most 

common cancers: 

- Lung (2.09 million cases) 

- Breast (2.09 million cases) 

- Colorectal (1.80 million cases) 

- Prostate (1.28 million cases) 

- Skin cancer (non-melanoma) (1.04 million cases) 

- Stomach (1.03 million cases) 

And, the most lethal cancers: 

- Lung (1.76 million deaths) 

- Colorectal (862 000 deaths) 

- Stomach (783 000 deaths) 

- Liver (782 000 deaths) 

- Breast (627 000 deaths) 

The previous numbers help us to understand why cancer has received increasing 

worldwide attention, from governments to the research community. The dimension of the 

problem is so significant that it has motivated several cooperation projects such as the 

GDSC database  (Yang et al., 2013) (Genomics of Drug Sensitivity in Cancer, 2020). 

The GDSC is one of the largest public resource for information on drug sensitivity in 

cancer cells. It is based on three types of datasets: (1) genomic datasets for cell lines, (2) 

cell line drug sensitivity data and (3) analysis of genomic features of drug sensitivity.  

In this project, we use datasets (1) to obtain the cancer cell lines profiles and dataset (2) 

to obtain a drug-response matrix. Hence, the main variables are cell lines, compounds and 

IC50. From a recommender system perspective: cell lines represent users (whose profile 

is characterized by a gene expression profile), compounds represent items and IC50 

represent ratings given by users to each item (in other words, the drugs ‘efficacy). 

Regarding the project’s unit of analysis - cancer cell lines - GDSC offers a wide 

collection: 1018 cancer cell lines from 50 different body parts.  
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Figure 3.2 Body parts origins (1018 cancer cell lines) 

 

Of the total number of cancer cell lines, this project makes use of 927, representing 45 

different body parts, as explained in the next section.  
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Figure 3.3 - Body parts origins (927 cancer cell lines)  

3.2.2 Cell lines 

Datasets (1) contain a collection of > 1000 different cell lines which “represent the 

spectrum of common and rare types of adult and childhood cancers of epithelial, 

mesenchymal and haematopoietic origin” (Yang et al., 2013).  

A wide genomic characterization of these cell lines has been made available by the 

Wellcome Trust Sanger Institute: mutation, copy number, methylation, and expression. 

Nevertheless, it is commonly recognized that gene expression data provides “the best 

predictive power” (Costello et al., 2014). In fact, gene expression is the common choice 
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regarding the development of cancer drug recommender systems that use GDSC1. 

Therefore, we choose gene expression data to profile the cancer cell lines.  

The gene expression data can be found at the ArrayExpress website: 

 

 

 

Figure 3.4 Gene expression data  

Adapted from (ArrayExpress, 2020) 

 

It is important to notice that, although ArrayExpress website provides the gene expression 

profiles of > 1000 cell lines, only 987 cell lines were drug screened for the dataset GDSC1 

(release 8.2). Also, exploratory data analysis unfolds that only 928 of those cell lines have 
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their DNA microarray available at the website. Later, while conducting the experiments, 

one of them was found to have its CEL file corrupted. Therefore, the final number of 

cancer cell lines used in this project is 927. 

As shown in Figure 6.2, due to the large amount of data, there are multiple archive files 

for download. For example, E-MTAB-3610.raw.1.zip archive file comprises the first 41 

gene expressions: 

 

Figure 3.5 E-MTAB-3610.raw.1.zip archive file (sample view showing 8 files of the 41 available) 

 

Each gene expression is stored in a specific format file – a CEL file (created by an 

Affymetrix DNA microarray image analysis software) – containing a 2-D matrix 

(744×744): 

 

Figure 3.6 Example of a CEL file (storing the gene expression of a cancer cell line) 

 

This matrix represents an image – a DNA microarray image which is, as previously 

explained (see Chapter 2 Genomics Background), the most common way to represent the 

gene expression profile of a cell line. 
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The microscopic DNA spots mark the positions of specific genes of the cell line (thus, 

each cell line will be characterized by 744 × 744 = 553 536 different genes). Thus, each 

number of the matrix represents the expression (or, in other words, the intensity of the 

manifestation) of the corresponding gene after the artificial stimulation of the cell line. 

Consequently, each cell line will have its characteristic gene expression profile that will 

be like a “fingerprint” of the cell line. 

The DNA microarray image stored in the previous matrix is: 

 

                                       Figure 3.7 Example of a DNA microarray image 

 

Although it is difficult for the human eye to visualize the 553 536 gene spots, this is an 

easy task for a computer. 

In order to allow a cell line correspondence, the CEL filename contains the identification 

of the corresponding assay (used to obtain that DNA microarray). This identification, 

matched with additional information available at the ArrayExpress website, allows us to 

identify the tested cell line.  

For example, the DNA microarray stored in the file 5500994173212120213068_A01.cel 

belongs to the cell line UACC-812. 
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Figure 3.8 Sample data description            

Source (ArrayExpress, 2020) 

 

For future use, the previous correspondences (cell line – assay – filename) are stored in a 

customized file: 

 

Figure 3.9 Cell lines, assays and filenames correspondence file (sample view) 

 

Finally, and for evaluation purposes, the DNA microarray images belonging to the 

selected 927 cancer cell lines are divided into 4 folders (mutually exclusive but of 

different sizes): one folder with 852 cancer cell lines and three folders with 25 cancer cell 

lines each.  

The three folders of minor size, representing sets of target users in the context of the 

proposed framework, are evaluated, one at a time. The resulting folder values, for hit-rate 

and average reciprocal hit-rate, are then averaged and taken as the final result. 

3.2.3 Compounds and IC50 

Regarding dataset (2), featuring the cell line drug sensitivity data,  the stored values are 

“generated from ongoing high-throughput screening performed by the Cancer Genome 

Project at the Wellcome Trust Sanger Institute and the Center for Molecular Therapeutics 
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at Massachusetts General Hospital using a collection of >1000 cell lines” (Yang et al., 

2013).  

The selected compounds are anticancer therapeutics “comprised of approved drugs used 

in the clinic, drugs undergoing clinical development and in clinical trials and tool 

compounds in early phase development” (Yang et al., 2013).  

Cell lines are submitted to fluorescence-based cell viability assays following 72 hours of 

drug treatment and the results available “include the half maximal inhibitory 

concentration (IC50), the slope of the dose–response curve and the area under the curve 

for each experiment” (Yang et al., 2013).  

The cell line drug sensitivity data is divided into two datasets - GDSC1 and GDSC2 – 

which are periodically updated and freely available without restriction. For the moment, 

the most recent release, and the one that we will use in this project, is Release 8.2 

(Genomics of Drug Sensitivity in Cancer, 2020). 

Release 8.2 (Feb. 2020) 

GDSC1 GDSC2 

Age 

From 2010 to 2015 

 

New 

Size 

987 Cell Lines 

367 Compounds 

310904 IC50 

 

809 Cell Lines 

198 Compounds 

135242 IC50 

 

Assay 

Resazurin or Syto60 

72 hours 

 

CellTitreGlo 

72 hours 

 

       Table 3.1 Cell line drug sensitivity data               

                Source (Genomics of Drug Sensitivity in Cancer, 2020) 

 



Wavelet-Based Cancer Drug Recommender System 

 

40 

Compared with GDSC2, dataset GDSC1 provides access to more data and, hence, it is 

the chosen dataset to perform the experiments. The corresponding file can be found at 

https://www.cancerrxgene.org/downloads/bulk_download. Each row of it corresponds to 

a specific drug tested in a specific cell line. 

 

Figure 3.10 Original GDSC1 dataset (sample view) 

 

The file provides 19 variables from which we retrieve the ones of interest for this project, 

namely, “CELL_LINE_NAME”, “DRUG_NAME” and “LN_IC50” (which represents 

the natural log of the fitted IC50).  

 

Figure 3.11 Retrieved variables from the GDSC1 dataset (sample view) 

 

An exploratory data analysis shows that, although some cell lines appear 367 times 

(meaning that they were drug screened 367 times), only 345 different drugs were used. 

This happens because some drugs were tested more than once on the same cell line. 

Also, for some cell lines, not all the 345 different drugs were tested (for example, cell line 

NCI-H250 has only 1 drug screening). 

It is also important to notice that the IC50 are not comparable between different drugs 

(each drug had a different dosage). Hence, it is necessary to normalize the IC50 before 

further analysis. 

3.2.4 Preprocessing 

Prior to the experiments, several tasks of preprocessing are conducted regarding the 

retrieved cell line drug sensitivity data.  

First, all rows with cancer cell lines whose gene expression profiles are not available are 

removed. Consequently, only the IC50 of 927 cancer cell lines are kept.  



Wavelet-Based Cancer Drug Recommender System 

 

41 

Also, the cancer cell lines with repeated drugs (drugs tested more than once on the same 

cell line) are grouped by their mean IC50 value. 

The variables are then rearranged into a new matrix (927×346): 

 

Figure 3.12 Drug-response matrix – initial version (sample view) 

 

Next, the values are converted from LN IC50 to IC50 (IC50 = exp (LN IC50)). 

To normalize the IC50 values into a [0, 1] interval, we follow the method used by Menden, 

Iorio, Garnett, Mcdermott, & Benes (2013) by applying a logistic-like function: (Menden, 

Iorio, Garnett, Mcdermott, & Benes, 2013) 

normalized (IC50) = 
1

1+(𝐼𝐶50)
−0.1

         with IC50 > 0 

 

Therefore, the closer a normalized IC50 value is to zero, the more sensitive the cancer cell 

line is to the drug whereas the closer the normalized IC50 value is to 1, the more resistant 

the cancer cell line is.  

The final drugs response matrix has 13,3% of missing IC50 values which are set equal to 

0.5 (the neutral point in the chosen scale, i.e., the previous interval [0, 1]). 

Finally, a column named “array data file” is added.   

 

Figure 3.13 Drug-response matrix – final version (sample view) 
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 Proposed framework 

3.3.1 Introduction 

The framework proposed here has two main stages: user similarity measurement and 

cancer drug recommendation. Given a target cancer line (profiled by a DNA microarray 

image representing its gene expression profile), firstly, a search for the top-N most similar 

users is conducted and, secondly, using the retrieved information, a personalized cancer 

drug recommendation is presented, ranking the top-N most effective drugs for the target 

user. 

3.3.2 Stage 1 – users similarity measurement  

The goal of this stage is to find the top-N most similar cancer cell lines regarding the 

target cancer cell line. This is done under two experiments: without and with wavelet 

transforms.  

Figure 3.16 presents the framework used at experiment 1, which is done without wavelet 

transforms. Accordingly, given a target cancer cell line, whose drugs’ response are 

unknown, its DNA microarray image (individual gene expression profile) will be 

compared against each already existing DNA microarray image belonging to cancer cell 

lines whose drugs’ response, in turn, are known. This comparison will be performed using 

a similarity metric. The final results (similarity score) will allow us to sort the database 

in descending order, i.e., from the most to the least similar cell line. 

 

 

 

 

 

 

 

Figure 3.14 Experiment 1: without wavelet transforms 

 

Figure 3.17 presents the framework at experiment 2, made with wavelet transforms.  

 

Target cancer  

cell line 

 

DNA microarray image 

(gene expression profile) 

 

Cancer cell lines 

 database 

 

DNA microarray images 

(gene expression profiles) 

 

Similarity  

Measurement 

Top-N similar  

cancer cell lines 
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Phase 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Experiment 2: with wavelet transform 

 

Similarity measurement Top-N similar cancer cell lines 

 

Cancer cell lines 

Database 

 

Each cell line is represented 

by its wavelet coefficients 

subset 

Phase 1 

STEP 2 

STEP 1 

Feature   engineering 

 

Target cancer cell line 

 

DNA microarray image 

(gene expression profile) 

2nd level detail coefficients 

 

3 sub-sampled images 
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diagonal details) 

3 detail channels image 

 

1 single image  
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Feature extraction 
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Figure 3.16 Wavelet transformed images 

STEP 1: feature extraction (discrete wavelet transform) 

STEP 2: feature engineering 

The difference regarding the previous framework is that, this time, we will not use the 

original DNA microarray images to compute the similarity score. Instead, each of the 

original images (of both target and existing cell lines) will be transformed into new 

images, i.e., wavelet transformed images.   

Firstly, we will apply a discrete wavelet transform to the original images. Secondly, the 

resulting three sub-sampled images (representing the horizontal, vertical, and diagonal 

wavelet detail coefficients) will be rearranged in order to form a new 3 detail channels 

image. Therefore, while the original images have only one channel, the new images will 

have three channels. 
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Figure 3.17 Example of a recommendation score 

3.3.3 Stage 2 – cancer drug recommendation 

The recommendation task is anchored in the assumption that similar cell lines have 

similar drugs’ responses. Consequently, after finding the most similar users, their drugs’ 

responses are retrieved. 

Next, in order to discover which of the retrieved drugs are the best ones to recommend to 

the target cell line, the recommendation candidates (i.e., the retrieved drugs) are scored. 

Such score should reflect, not only how efficient a certain drug is to a cell line similar to 

the target one, but also how similar that existing cell is regarding the target cell.  

Therefore, we establish a score that corresponds to the drug’s rating (measured by its 

IC50) but weighted by the similarity score between the retrieved cell line and the target 

cell line. Also, if one drug appears more than once (a common situation that can occur 

since some drugs were tested in several distinct cell lines), its scores are added in order 

to strengthen that fact.  

 

 

 

 

 

 

 

 

  

  

 

 

 

The final scores are sorted in ascending order (the lower the IC50 value is, the more 

efficient the compound is) and the top-N drugs are then presented as the most likely 

efficient ones for the target cell line. 

target user 

existing user 

75% similarity recommendation score 

75% × IC50 

IC50 
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Figure 3.18 Cancer drug recommendation pipeline 

 Used tools 

This project uses an environment provided by Google called Colaboratory (Google, 

2020), or just Colab for short. Colab platform requires no setup to use and runs entirely 

in the cloud, allowing the implementation of machine learning models. Technically 

speaking, Colab is a hosted Jupyter notebook service available through a Google Drive. 

The code is executed in a virtual machine private to the user ‘s Google account. 

This infrastructure allows to write and execute Python code in a browser with zero 

configuration required and to freely access GPUs (Graphics Processing Unit) and TPUs 

(Tensor Processing Unit), accelerating the performance of linear algebra computation, 

which is used heavily in machine learning applications. 

 

Top-N similar  

cancer cell lines  

 

 

Candidate generation 

 

For each similar cancer 

cell line: retrieve IC50 

Candidate score 

 

For each similar cancer cell 

line: IC50 × similarity score 

Top-N recommendation list 

 

Top-N drugs sorted 

(ascending order) by scores 
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Figure 3.19 Example of a Google Colab Notebook 

 

The benefits of using this cloud service over using our own local machines are several, 

for example: 

- It comes with important Python packages pre-installed and ready to use (Numpy, 

Pandas, TensorFlow…) and, in addition, it allows the installation of further packages or 

upgrade of current ones. 

- It provides interactive browser-based Jupyter Notebooks that can be easily viewed, 

edited, and executed by others (including non-technical audience), through a shareable 

link. 

- Free GPU access. The GPU available in Colab vary over time, and often include Nvidia 

K80s, T4s, P4s and P100s. 

- Free RAM of 12 GB with maximum extension of 25 GB. 

- Storage of Notebooks on Google Drive. 

- Document code with Markdown, making the Notebook layout well-organized and user-

friendly. 

 - Load data from the Google drive. 

Despite Colab being free, there are overall usage limits as well as IDLE timeout periods, 

maximum VM lifetime, GPU types available, and other factors that vary over time. For 

example, VM have maximum lifetimes that can be as much as 12 hours. Nevertheless, 

users interested in having resources beyond the limits of the free version may find useful 

Colab Pro (paid version). 

In what concerns this project, there was no need to use GPU (especially suitable for deep 

learning tasks) and a 12 GB RAM was used to perform the computational tasks. Due to 
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the VM maximum lifetime constraint, several checkpoints were scheduled to save the 

results as they were becoming available.  

Finally, regarding the Python packages/modules, the main ones used during the course of 

the project were: 

- Numpy, for array computing. 

- Pandas, for dataframes analysis and manipulation.  

- OS, for interacting with the operating system (directories and files). 

- Matplotlib and Seaborn, for data visualizations. 

- Biopython, a specialized package for computational biology and bioinformatics. 

- PyWavelets, for wavelet transform calculations. 

- OpenCV, a computer vision library. 

- Scikit-image, for computing the SSIM Index. 

 Ethical considerations and social responsibility 

The development of data-based solutions for cancer disease goes beyond the technical 

challenge and also raises ethical and social issues. 

Machine learning systems are greatly shaped by the data they are fed. Consequently, they 

are prone to data bias. For example, if the algorithm was trained and evaluated with data 

over-representing a certain group, then the system will naturally become biased against 

under-represented groups. In a clinical context, a practical consequence of this bias might 

be the system performing better for certain social or ethnical groups. 

Also, the development of these algorithms implies the use of large quantities of data and, 

consequently, issues like ownership and consent are relevant. Besides, in order to benefit 

from a personalized medicine algorithm, the patient needs to share his/her personal data. 

If the patient refuses to give such consent, this may lead to a “tension between consent 

and quality of care”. (Carter et al., 2020) 

Another interesting issue regards responsibility. If a doctor relies on a ML algorithm to 

support a clinical decision, and a negative outcome happens, it might not be clear who 

should take the responsibility since, currently, there is a regulatory vacuum. This is 

especially relevant for the so-called “black box algorithms” or non-explainable AI.  
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It is urgent to bring these (and other related) issues to public discussion and find standard 

solutions if we truly want to benefit and incorporate AI healthcare solutions in the real 

world. Such transparency produces a vital feeling in the stakeholders (doctors, patients, 

healthcare providers, …) – trustworthiness.  
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4 FINDINGS 

 Introduction 

Experiments are performed on the benchmark dataset, called GDSC1 (release 8.2) (Yang 

et al., 2013). The scope is to assess if the use of wavelet transforms on the DNA 

microarray images contributes positively, or not, to the recommender system’s 

performance. Therefore, the focus lies, not in achieving state-of-the-art results in terms 

of evaluation metrics (i.e., hit-rate and average reciprocal hit-rate), but on judging the 

impact of using wavelet transformed DNA microarray images (versus original images) 

on the proposed framework. To that aim, two experiments are conducted: one using the 

original DNA microarray images and another one using wavelet transforms to preprocess 

the images before feeding them to the recommender system. 

To measure the similarity between images (i.e., original and wavelet transformed 

images), SSIM Index (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004) is used. This metric 

compares two images using their structural information which suits well one of the main 

tasks of the proposed framework – the search of similar users based on structural patterns 

available, but concealed, on their DNA microarray images. 

 First experiment and its results – without wavelet transform 

Overall, in this experiment, the similarity between images is analyzed in a spatial domain 

(the original domain of the image).  

In practical terms, this means that the similarity between the target cancer cell line (whose 

drugs’ response are considered to be unknown) and the cancer cell lines of the database 

(whose drugs’ response are known) is measured by applying the SSIM Index between the 

original DNA microarray image of the target cancer cell line and the DNA microarray 

images of the cell lines in the database.  

The similarity measurements show that, in general, the similar cell lines that belong to 

the same top-5 have very close SSIM Indexes regarding the target one. Furthermore, after 

performing a pairwise similarity measurement among the cells of these top-5s, we 

conclude that they are also closely similar to each other. Therefore, we decide to use only 

the most similar cell line.  

The drugs’ response of this cancer cell line is then retrieved of the database. The retrieved 

normalized IC50 values are then weighted by the corresponding SSIM and sorted in 
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descending order (i.e., from the most to the least effective drug). The top-20 drugs of the 

previous ranking are taken as part of the top-20 recommendation list for the target cancer 

cell line. 

Since the similarity measurement (stage 1), in this experiment, is very time consuming 

(using Colab’s computational resources each image pair takes approximately 25 minutes), 

an adapted four-fold cross-validation strategy is used to evaluate the proposed framework. 

With that aim, the cancer cell lines are divided into four folders, mutually exclusive but 

of different sizes. 

 

 

The framework is evaluated using folders B, C and D, one at a time, and taking the 

average result as the final result. 

The final top-20 hit-rate is 11.31 and the average reciprocal top-20 hit-rate is 2.39.  

Equally remarkable is the execution time of the experiment, approximately 30 hours.  

These results are set as a baseline for the next experiment. 

 

Folder A 

852 cell lines 

Folder B 

25 cell lines 

Folder C 

25 cell lines 

Folder D 

25 cell lines 

Genomic Dataset for Cancer Cell Lines 

927 cell lines 

Figure 4.1 Dataset division for evaluation purposes 
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 Second experiment and its results – with wavelet transform 

Overall, in this experiment, the similarity between images is analyzed in a frequency 

domain, i.e., between wavelet transformed images. 

For most applications, the chosen wavelet type is Haar or Daubechies. Daubechies, 

although conceptually and computationally more complex than Haar, can pick up details 

that are missed by Haar. Thus, we choose a Daubechies approach to perform the wavelet 

transform, as the option that may confirm the hypothesis of improving the recommender 

system performance through the transformation of DNA microarray images. 

Also, when computing wavelet decomposition, it is possible to use different resolutions 

(decomposition levels) to convolve the wavelet with the image. Classification using 

Daubechies 7 with four or five levels of decomposition reported good performance 

(Nanni & Lumini, 2011). Therefore, we initially decide to carry out a 4-level 

decomposition. However, the results suggest that the wavelet transformed image at level 

4 is too much compressed resulting in a loss of information. Hence, we proceed instead 

with a 2-level decomposition. 

Figure 4.2 Daubechies 7 wavelet 

 

Although approximation coefficients characterize the major trends contained in the gene 

expression profiles (i.e., the essential information of the microarray data), we only use 

the detail coefficients because, as observed by Wan & Zhou (2010), “they have better 

discriminating capacities and make the classification of two classes of subtle differences 

possible”. In the same line of thought, Liu & Bai (2009) state that “the purpose of detail 

coefficients is to detect localized features in one of the gene expression profile”. (Wan & Zhou,  2010) (Liu  & Bai, 2009) 
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At the 2nd level of decomposition, and considering only the detail coefficients, three 

output images are obtained: one in horizontal, other in vertical and another in diagonal 

directions of the image. These images are then combined, forming an unique 3-detail 

channels image (similar to a 3-color channels image, using for example, the RGB - Red-

Green-Blue color model, but, instead of color channels, the image has the detail channels 

Horizontal-Vertical-Diagonal). The resulting image is the one used to assess the 

similarity.  

One important advantage of the previous approach is that allows us to preserve spatial 

patterns (since the coefficients‘ positions are kept in the image).  

Following the same evaluation method as in experiment 1, the final top-20 hit-rate is 

12.21 and the average reciprocal top-20 hit-rate is 2.53.  

The experiment takes, approximately, 1.5 hours to execute. 

 Recommendation example - cancer cell line “HH” 

Using cancer cell line “HH” as the target cancer cell line, we will now provide a 

recommendation example. Cancer cell line “HH” has its origin in the body part identified 

as “blood”.  

After running experiment 1, cancer cell line “JVM-3” is retrieved as the most similar with 

a SSIM index of 69.12 %. Like the target “HH”, this cell line belongs to the body part 

“blood”. 

On its turn, experiment 2 returns cancer cell line “QIMR-WIL”, with a SSIM index of 

81.41 %, as the most similar. This cell line also belongs to the body part “blood” but, this 

time, the SSIM Index is higher regarding the previous one. 

The following tables provide an overview of the recommendation lists (top-20 drugs) 

generated by each of the experiments. 
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Target Cell “HH” 

Drug Rank 

Daporinad 1 

Bortezomib 2 

SN-38 3 

Sepantronium bromide 4 

Temsirolimus 5 

THZ-2-102-1 6 

Omipalisib  7 

Vinblastine 8 

Vinorelbine 9 

ARRY-520 10 

Dacinostat 11 

Rapamycin 12 

Panobinostat 13 

Epothilone B 14 

AZD4877 15 

Ispinesib Mesylate 16 

Dactolisib 17 

PLK_6522 18 

NSC319726 19 

Luminespib 20 

 

Table 4.1 Target cancer cell line "HH" - ground truth ranking 

 

 

Table 4.2 Experiment 1 – recommendation list                 Table 4.3  Experiment 2 – recommendation list 

    

 

 

Experiment 1 – Similar Cell “JVM-3” 

 Drug True 
Rank 

1st) SN-38 3 

2nd) Vinblastine 8 

3rd) Docetaxel 23 

4th) AZD4877 15 

5th) Daporinad 1 

6th) Temsirolimus 5 

7th) Sepantronium bromide 4 

8th) Thapsigargin 36 

9th) Methotrexate 24 

10th) PLK_6522 18 

11th) THZ-2-102-1 6 

12th) Bortezomib 2 

13th) Panobinostat 13 

14th) Dactolisib 17 

15th) PARP_9482 123 

16th) Lestaurtinib 60 

17th) Dacinostat 11 

18th) Elesclomol 42 

19th) SNX-2112 21 

20th) NSC319726 19 

Experiment 2 – Similar Cell “QIMR-WIL” 

Drug True 
Rank 

1st) SN-38 3 

2nd) NSC319726 19 

3rd) Epothilone B 14 

4th) Rapamycin 12 

5th) Omipalisib 7 

6th) Bortezomib 2 

7th) ARRY-520 10 

8th) Gemcitabine 22 

9th) Vinorelbine 9 

10th) Daporinad 1 

11th) Sepantronium bromide 4 

12th) Panobinostat 13 

13th) Vinblastine 8 

14th) Docetaxel 23 

15th) Paclitaxel 25 

16th) Luminespib 20 

17th) Dacinostat 11 

18th) Ispinesib Mesylate 16 

19th) Temsirolimus 5 

20Th) THZ-2-102-1 6 
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As we can observe, experiment 1 outputs a recommendation list with 13 hits whereas 

experiment 2 recommendation list successfully identifies 17 hits. Moreover, experiment 

1 has an average reciprocal hit-rate of 2.79 whereas for experiment 2 its value is 3.33. 
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5 DISCUSSION OF THE RESULTS 

In this project, a recommender system engine, having DNA microarrays (patients’ 

profiles) as inputs and drug recommendation lists as outputs, was implemented. It was 

expected from the algorithm the ability to identify the top-20 most relevant compounds 

from 345 possible drugs. In a random scenario, i.e. without any data-based approach, the 

probability of being successful on finding those 20 drugs is less than 0.000000000002%. 

Therefore, although in this preliminary study our research efforts did not focus on 

implementing a cutting-edge recommender system in terms of evaluation metrics, we 

consider very satisfying, as starting points, the final evaluation metrics obtained: 

- experiment 1 (with original DNA microarray images): top-20 hit-rate was 11.31 and 

average reciprocal top-20 hit-rate was 2.39. 

- experiment 2 (with wavelet transformed images): top-20 hit-rate was 12.21 and average 

reciprocal top-20 hit-rate is 2.53. 

Overall, from a universe of 345 drugs, our recommender system was able to suggest a list 

of 20 in which, on average, more than 50% were in fact relevant drugs. Once again, in a 

random scenario, the probability of obtaining this result would be higher than the previous 

one, but still less than 0.0000005%. 

Also, in what concerns the average reciprocal top-20 hit-rate, measuring the ability of the 

recommender system to display relevant drugs on top positions, the results are valuable, 

keeping in mind that the maximum average reciprocal top-20 hit-rate (achieved when all 

the recommended items are relevant) is 3.60. 

The next figures show the distribution of the results, top-20 hit-rate and average reciprocal 

top-20 hit-rate, across the 75 target cancer cell lines.  
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Figure 5.1 Hit-rate box plot 

 

 

Figure 5.2 Average reciprocal hit-rate box plot 
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On one hand, Figure 5.1 allows to conclude that hit-rate results are less dispersed in 

experiment 2 (not only its interquartile range but also the range of scores is smaller 

regarding experiment 1). In addition, although both maximum hit-rate scores are on par, 

the minimum score of experiment 2 is higher. On the other hand, according to Figure 5.2, 

average reciprocal hit-rates are less dispersed in experiment 1.  

Taking a closer look to the recommendation example given in Section 4.4, it is also 

interesting to notice that the retrieved similar cell line in experiment 2 has a higher SSIM 

Index (81.41%) with respect to the one retrieved in experiment1 (69.12%). In fact, the 

SSIM range is higher in experiment 2. For example, regarding folder B, experiment 1 has 

a SSIM range of [67.49 – 81.78%] whereas in experiment 2 it is [76.46 – 89.57%] which 

reflects the denoising power of wavelets transforms. 

 

 

Figure 5.3 Similarity box plot 

 

Also, although in the aforementioned example both similar cell lines (i.e. from experiment 

1 and experiment 2) belong to the same body part as the target cell (i.e. “blood”), this is 

not always the case. For example, the target cancer cell line “HN” belongs to the body 
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part “endometrium” and, while experiment 1 retrieves a similar cell line from the same 

location, experiment 2 identifies a similar cell line from a different body part – “mouth”.  

Furthermore, in 52% of the instances, experiment 2 chooses a different similar cell line 

with respect to experiment 1. Figure 5.4 summarizes the impact of such choice on the 

results. 

 

 

Figure 5.4 Experiments' final results according to target body part 

 

Whenever experiment 2 chooses a different similar cell line, 66.67% of the times this 

conducts to better results and 23.08% this leads to worse performance with respect to 

experiment 1 (10.26% of the times the impact is neutral, conducting to similar results 

although different cell lines are used). 

L U N G

P A N C R E A S

B L O O D

B R E A S T

E S O P H A G U S

L A R G E  …

H E A D  &  N E C K

S K I N

B L A D D E R

P L E U R A L  …

E N D O M E T R I U M

O V A R Y

H E A D  &  N E C K

T H Y R O I D

B R A I N

L I V E R

B O N E

K I D N E Y

B I L I A R Y  T R A C T

U P P E R  …

C E R V I X

C E N T R A L  …

4

3

8

1

3

2

2

1

1

3

2

1

1

1

1

2

6

2

6

1

2

1

1

2

1

2

1

1

1

1

1

1

1

1

1

2

1

1

1

1

NUMBER OF TARGET CELL LINES

TARGET CELL LINES - BODY PARTS

same similar cell positive impact neutral impact negative impact

when experiment 2 uses different similar cell line



Wavelet-Based Cancer Drug Recommender System 

 

62 

Some of the negative results of experiment 2 may be influenced by the drug sparsity on 

the target cell line side, i.e. the fact that the target similar cell line does not have all the 

IC50 values available. An example that illustrates this hypothesis is target cancer cell line 

“HCC-78”. Experiment 2 retrieves cell line “LC-2-ad” as the most similar, however, 8 

drugs (“Epothilone B”, “Thapsigargin”, “Rapamycin”, “Paclitaxel”, “Bortezomib”, 

“GW843682X”, “BI-2536” and “Mitomycin-C”) of the top-20 drugs have not been tested 

in “HCC-78”, whereas experiment 1 retrieves cell line “HuCCT1 which has only 2 non 

tested drugs (“Epothilone B”, “Thapsigargin”). Experiment 1 has a top-20 hit-rate of 15 

and an average reciprocal hit-rate of 2.48 while experiment 2 has a top-20 hit-rate of 11 

and an average reciprocal hit-rate of 1.12.  

Overall, the final results confirm the initial hypothesis: the prior preprocessing of DNA 

microarray images, using wavelet transforms, improves the recommender system 

performance since the evaluation metrics of experiment 2 are, in fact, higher than those 

of experiment 1. More specifically, experiment 2 has a top-20 hit-rate and an average 

reciprocal top-20 hit-rate, 4.5% and 3.89%, respectively, higher. 

 

 

Figure 5.5 Final results 

 

Moreover, it is also possible to conclude from the execution times of the experiments that 

this positive impact is also translated into an enhanced use of computational resources – 

30 hours (experiment 1) versus 1.5 hours (experiment 2). 
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Figure 5.6 Experiments' execution time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

1.5

EXECUTION TIME

experiment 1 experiment 2

(hours)



Wavelet-Based Cancer Drug Recommender System 

 

64 

 

 

 

 

 

  



Wavelet-Based Cancer Drug Recommender System 

 

65 

6 CONCLUSIONS  

 Contributions and implications 

Recommender systems, comprising the identification of the need and preferences of 

users, filtering the huge collection of data accordingly and displaying the best fitted 

options, are becoming more embracing. This study discusses and presents a novel 

framework used to implement a recommender system that proposes a personalized 

ranking of cancer drugs, combining techniques of image processing for feature 

enhancement.  

The proposed framework has a first main stage that consists of measuring the user 

similarity, and a second main stage, consisting of the cancer drug recommendation. Then, 

two experiments are conducted. One using the original DNA microarray images and the 

other using wavelet transforms to preprocess the images before feeding them to the 

recommender system. 

The central core of the project is the assessment of the impact of using wavelet 

transformed DNA microarray images for measuring users’ similarity in a recommender 

system’s framework. To the best of our knowledge, it is the first time that a research 

project addresses this problem. 

The conducted experiments confirm the initial hypothesis that wavelet transformed DNA 

microarray images enhance the recommender system performance by improving the 

search of cancer cell lines with similar profile to the one of the target cancer cell line.  

Moreover, experiment 2 takes only 5 percent of the execution time of experiment 1. So, 

also from a computational point of view, experiment 2 is more efficient and more suitable 

for a real-world application.  

Therefore, we conclude that properly chosen wavelet transformed DNA microarray 

images, not only uncover richer information for the users’ similarity search (with positive 

impact, as seen previously, in the recommendation task), but also efficiently compress 

the DNA microarray images, optimizing computational resources.  

Future research can benefit from these findings by incorporating wavelet transformed 

inputs to their recommender systems frameworks. 
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 Limitations 

Recommender systems need a lot of data to efficiently make recommendations. Not only 

data quantity but also diversity is important. A limitation of the dataset used in the 

experiments (besides data quantity) is that some body parts are over-represented (for 

example, “blood” with over 140 cancer cell lines) while others are under-represented (for 

example, “intestine” with less than 20 cancer cell lines). This may jeopardize the search 

of similar cancer cells lines if the target one belongs to an under-represented group. 

(Although, as previously discussed, it is not always the case that the retrieved similar cell 

lines belongs to the same body part that the target one.) 

On the other hand, missing IC50 may also compromise the evaluation results. For 

example, if a certain drug was tested in the target cell but not in the similar cell line, even 

if it was found to be relevant (or effective), the recommender engine will not suggest such 

drug. In this project we have decided to work under the worst-case scenario, accepting 

the sparsity on the drugs side. 

Finally, due to computational constraints, especially during the similarity measurement 

of the original DNA microarray images, it was not possible to perform a cross-validation 

using the entire dataset, instead, 3 subsets of distinct 25 cancer cell lines were used to 

perform the evaluation. 

 Recommendations 

Since only 2nd  level detail wavelet coefficients were used on this study, future research 

could investigate the effect of other variants of wavelet transformed DNA microarray 

images (e.g. simultaneous use of detail and approximation coefficients), with the scope 

of increasing even further the already existing gap between the evaluation metrics of the 

two experiments. Another interesting possibility is the replacement of the DNA 

microarray images for basal expression data, under the same scenarios - with and without 

wavelet transforms. 

It might be also useful to limit the number of compounds to the most tested drugs or, 

alternatively, to use only cancer cell lines that have a certain minimum number of tested 

drugs. As mentioned in the previous section, if a similar cancer cell line lacks many IC50 

this may negatively impact the evaluation results. Surely, the imposition of such 
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thresholds will result in the decrease of the number of cancer cell lines available to test 

the framework.  

At last, the implemented pipeline at Stage 2 (cancer drug recommendation) is only one 

among others that could be implemented. Hence, there is space for exploring other 

recommender systems techniques and assess if they can be a better fit. 

 Final considerations 

Recommender systems will inevitably push their boundaries beyond e-commerce 

applications. Throughout this project we show their potential in what concerns precision 

medicine and, more specifically, for personalized cancer drug recommendations within a 

clinical or laboratorial (pharmaceutical) context. Furthermore, not only the strengths but 

also the implementation challenges of such systems are highlighted so that they can be 

properly addressed in the future. 

Domain knowledge from Genomics along with recommender systems and signal 

processing theory were also provided to enhance the understanding of the implementation 

details of this work. 

There is still a long way to go, from shaping robust cancer cell line databases and drug- 

responses matrices to gaining the stakeholders trust towards such ML personalized 

systems. Nevertheless, the journey has started and all of us, from researchers to patients, 

can take part in it. 
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APPENDIX 1. EXPERIMENT 1 / PART 1 – PYTHON CODE.  

Contents 

1 INTRODUCTION 

1.1 Google Drive Access 

1.2 Packages 

2 USERS SIMILARITY MEASUREMENT 
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APPENDIX 2. EXPERIMENT 1 / PART 2 – PYTHON CODE.  

Contents 

1 INTRODUCTION 

1.1 Google Drive Access 

1.2 Packages 

1.3 Customized function similarity_ssim(image.cel) 

1.4 Dataset split (for performance evaluation) 

2 CANCER DRUG RECOMMENDATION 

2.1 Drug response matrix 

2.1.1 Download original dataset 

GDSC1_fitted_dose_response_25Feb20.xlsx 

2.1.2 (Brief) Exploratory analysis original dataset 

2.1.3 Filter the original dataset (from 928 to 927 cell lines) 

2.1.4 Final matrix rows/927 cell lines X columns/345 drugs 

2.1.4.1 One cell line – “LS-1034” 

2.1.4.2 927 cell lines 

2.1.5 Export drug_response_matrix_ln as .csv file 

2.2 IC50 

2.2.1 From LN IC50 to IC50 

2.2. Normalize IC50 

2.2.3 Set missing IC50 values equal to 0.5 

2.2.4 ::Export drug_response_matrix_norm_withoutMissingValues as .csv 

file 

2.3 Top-N similar cell lines 

2.3.1 Folder B 

2.3.2 Folder C 
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2.3.3 Folder D 

2.4 Drug candidates generation 

2.4.1 Folder B 

2.4.2 Folder C 

2.4.3 Folder D 

2.5 Drug candidates score 

2.5.1 Folder B 

2.5.2 Folder C 

2.5.3 Folder D 

2.6 Top-N recommendation list 

2.6.1 Folder B 

2.6.2 Folder C 

2.6.3 Folder D 

2.7 Evaluation – Top-N hit-rate & average reciprocal hit-rate 

2.7.1 Folder B 

2.7.1.1. Top-N hit-rate 

2.7.1.2 Average reciprocal hit-rate 

2.7.2 Folder C 

2.7.2.1. Top-N hit-rate 

2.7.2.2 Average reciprocal hit-rate 

2.7.3 Folder D 

2.7.3.1. Top-N hit-rate 

2.7.3.2 Average reciprocal hit-rate 

2.7.4 Overall / Final results 
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APPENDIX 3. EXPERIMENT 2 – PYTHON CODE.  

Contents 

1 INTRODUCTION 

1.1 Google Drive Access 

1.2 Packages 

1.3 Customized function similarity_ssim(image.jpg) 

1.4 Drug response matrix 

1.5 Dataset split 

2 WAVELET TRANSFORM 

2.1 Read CEL file, extract 2nd level detail coeffs & store the 3 detail channels 

image with the assay filename (containing the gene expression profile) of the 

cell line 

3 FOLDER B 

3.1 Top-N similar cell lines 

3.2 Drug candidates generation 

3.3 Drug candidates score 

3.4 Top-N recommendation list 

3.5 Evaluation – hit-rate & average reciprocal hit-rate 

3.5.1 Top-N hit-rate 

3.5.2 Average reciprocal hit-rate 

4 FOLDER C 

4.1 Top-N similar cell lines 

4.2 Drug candidates generation 

4.3 Drug candidates score 

4.4 Top-N recommendation list 

4.5 Evaluation – hit-rate & average reciprocal hit-rate 
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4.5.1 Top-N hit-rate 

4.5.2 Average reciprocal hit-rate 

5 FOLDER D 

5.1 Top-N similar cell lines 

5.2 Drug candidates generation 

5.3 Drug candidates score 

5.4 Top-N recommendation list 

5.5 Evaluation – hit-rate & average reciprocal hit-rate 

5.5.1 Top-N hit-rate 

5.5.2 Average reciprocal hit-rate 

6 Overall/Final Results 
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