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ABSTRACT

Molecular nature of cancer is the foundation of systematic studies of cancer genomes,
providing exceptional insights and allowing treatments advancement in clinic. Moreover,
they are motivating the clinical use of genomic information to make otherwise unexpected
treatment decisions for patients with a wide range of cancer types, rendering precision

medicine possible.

Having this in mind, we combine techniques of image processing, for feature
enhancement, and recommender systems for proposing a personalized ranking of cancer
drugs. The system is implemented in Python and tested using a database containing drug
sensitivity data for more than 310.000 ICso, describing response of more than 300
anticancer drugs across 987 cancer cell lines.

After several preprocessing tasks, regarding drug sensitivity data, two experiments are
performed. First experiment uses original DNA microarray images and second uses
wavelet transforms to preprocess those images. Experiments confirm that wavelet
transformed DNA microarray images enhance recommender system performance by

improving the search of cancer cell lines with similar profile to a target cell line.

In addition, we conclude that properly chosen wavelet transformed DNA microarray
images, not only uncover richer information for the users’ similarity search, but also

efficiently compress these images, optimizing computational resources.

To the best of our knowledge, this project is innovative in its use of wavelet transformed

DNA microarray images, to profile cell lines in a cancer drug recommender system.

Keywords: recommender system, wavelet transform, cancer genome, cancer disease, cell

line, DNA, Google Colaboratory, Python
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RESUMO

A natureza molecular do cancro serve de base para estudos sisteméaticos de genomas
cancerigenos, fornecendo valiosos insights e permitindo o desenvolvimento de
tratamentos clinicos. Acima de tudo, estes estudos estdo a impulsionar o uso clinico de
informacdo genomica na escolha de tratamentos, de outro modo ndo expectaveis, em

pacientes com diversos tipos de cancro, possibilitando a medicina de preciséo.

Com isso em mente, neste projeto combinamos técnicas de processamento de imagem,
para aprimoramento de dados, e sistemas de recomendacdo para propor um ranking
personalizado de drogas anticancerigenas. O sistema € implementado em Python e testado
usando uma base de dados que contém registos de sensibilidade a drogas, com mais de
310.000 ICso que, por sua vez, descrevem a resposta de mais de 300 drogas

anticancerigenas em 987 linhas celulares cancerigenas.

Apbs vérias tarefas de pré-processamento, sdo realizadas duas experiéncias. A primeira
experiéncia usa as imagens originais de microarrays de DNA e a segunda usa as mesmas
imagens, mas submetidas a uma transformada wavelet. As experiéncias confirmam que
as imagens de microarrays de DNA submetidas a transformadas wavelet melhoram o
desempenho do sistema de recomendacédo, otimizando a pesquisa de linhas celulares

cancerigenas com perfil semelhante ao da nova linha celular.

Além disso, concluimos que as imagens de microarrays de DNA com transformadas de
wavelet apropriadas, ndo apenas fornecem informag6es mais ricas para a pesquisa de
utilizadores similares, mas também comprimem essas imagens com eficiéncia,

otimizando os recursos computacionais.

Tanto quanto é do nosso conhecimento, este projeto é inovador no que diz respeito ao uso
de imagens de microarrays de DNA submetidas a transformadas wavelet, para perfilar

linhas celulares num sistema de recomendacdo personalizado de drogas anticancerigenas.

Palavras-chave: sistema de recomendacéo, transformada wavelet, genoma cancerigeno,
cancro, linha celular, ADN, Google Colaboratory, Python
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Wavelet-Based Cancer Drug Recommender System

1 INTRODUCTION

1.1 Statement of the problem

Recommender systems are becoming part of our daily life. Most of their practical
applications are web-centric, namely for e-commerce where they engage users by
presenting personalized recommendations that best suit their preferences. Nevertheless,

recommender systems’ potential is much wider.

They can be defined as “software tools and techniques providing suggestions for items to
be of use to a user” (F. Ricci, L. Rokach, B. Shapira, 2011). The terms “suggestions” (or
recommendations), “items” and “user” can be understood in a broad sense. The
underlying logic behind these systems is anchored on machine learning algorithms that

are very versatile and can be applied to many fields.

Machine learning has been increasingly used in most diverse domains, either at public
sector, such as in fiscal area (Seica, Trigo, & Belfo, 2019), in education area (Pimenta,
Ribeiro, S4, & Belfo, 2018), in the medical field (Cios & Moore, 2002) or, at private
sector, such as in marketing (Cui, Wong, & Lui, 2006), in media and entertainment
industry (Sereday & Cui, 2017), in events industry (Loureiro, Lourenco, Costa, & Belfo,
2014) and in many other areas, contributing to create new knowledge and helping

organizations to define strategies that allow them increase their performance.

This project explores the application of recommender systems in a specific field of
medicine. The problem under analysis is related to cancer disease. Many research
laboratories are testing numerous compounds on cancer cell lines, in order to find the
most effective drugs. Cancer biology is complex and, as being closely related with the
physiognomy of each patient, it means that some drugs are more effective than others in
each situation (lorio et al., 2016). From this perspective, the problem may be solved with
a recommender system supported by machine learning, for which the system aims, given
a target cancer cell line (i.e., a new patient), to propose a ranking (i.e., a recommendation)

of the most effective drugs (i.e., items).

1.2 Purpose and importance of the study

Cancer drug recommender systems allow the research and development of drugs tailored
specifically to an individual based on his/her personal genetic information. It is a step

towards precision medicine, a new paradigm that benefits all stakeholders. Patients can
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have a personalized treatment, increasing the chances of a successful and faster recovery.
Healthcare providers (e.g. hospitals) can decrease costs. Pharmaceutical industry can

offer new personalized treatments.

In order to contribute to the research community, by stimulating new ideas and drawing
attention to the topic, this study led to the homonym paper “Wavelet-based cancer drug

recommender system” (Brand&o, Belfo, & Silva, 2020) which gathers its main findings.

1.3 Research question

Here, a user-based collaborative filtering approach is followed. As a result, users ‘profiles
are central to the proposed framework. In the specific context, cancer cell lines are
profiled through their corresponding gene expression profile, represented by a DNA
microarray. As recognized by Serra (2003), there are several microarray systems and
methods which differ in several details but produce the same result, an image of spots.

On the other hand, images are 2-D spatial signals.

Hence, we intent to assess if the prior pre-processing of DNA microarray images, using
wavelet transforms, can improve the recommender system performance. To the best of

our knowledge, this is the first work that attempts to do it.

In practice, such preprocessing represents a shift for the data stored in the DNA
microarray image from spatial domain (pixels intensities) to wavelet domain

(frequencies).

We hypothesize that the representation of the users* profile in a wavelet domain uncovers
distinct and discriminating features that improve the search of similar users (a step of vital
importance in a user-based recommender system). This is due to the fact that, as stated
by Pittner & Kamarthi (1999), wavelet transforms “allow the extraction of richer

problem-specific information”.

1.4 Report outline
The document is organized into six chapters.

The current chapter — Introduction — contextualizes the general problem under analysis
and identifies the specific research question addressed by the project. At the forefront, it
states the hypothesis that is expected to be confirmed by the experiments. Furthermore,

the real-world impact and contemporaneity of this work are outlined.
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The second chapter — Theoretical Framework — enlightens the main theorical concepts
applied in the project. It starts by providing the genomic background of the problem,
which is fundamental for a better understanding of the dataset that is explored.
Afterwards, it exposes the main theory regarding wavelet transforms, focusing on its
capacity to perform premium feature extraction for machine learning algorithms. Next,
an overview of recommender systems theory is drawn with a special attention in what
concerns collaborative filtering. Related work with respect to image processing using
wavelet transforms and personalized recommender systems of cancer drugs is also

pointed out.

The third chapter — Research Methodology — starts by explaining the workflow of the
different CRISP-DM phases of the project. Additional details regarding cancer disease
worldwide and the used sample are given under the section “introduction”. A full
explanation of the database is followed along with the preprocessing steps taken towards
the final dataset. This chapter also gives a comprehensive description of the proposed
wavelet-based cancer drug recommender system. In fact, details of its two main stages
(users similarity measurement and cancer drug recommendation) are explained as well as
the identification of the tools used to implement them. The chapter closing remarks go to

the ethical and social questions that might arise in the problem domain.

The fourth chapter — Findings — and the fifth chapter — Discussion of the Results — state
the experimental results and provide their critical evaluation, respectively. In the chapter
Findings, it can also be found a practical example of a cancer drug recommendation for

a target cancer cell line.

Finally, the sixth chapter — Conclusions — states our main findings and contributions
besides the limitations and potential future improvements of this work. As it explains,
while pursuing the main research question, not only our initial hypothesis is confirmed
but other interesting outcomes emerge. Moreover, it shows how this project contributes
to the research towards efficient and effective real-world cancer drug recommender

system.
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2 THEORETICAL FRAMEWORK

2.1 Genomics background
2.1.1 Introduction

According to WHO (2020), Genomics can be defined as “the study of genes and their
functions, and related techniques”. Contrarily to Genetics (which focus on the study of
single genes), Genomics “addresses all genes and their inter relationships in order to
identify their combined influence on the growth and development of the organism”
(World Health Organization, 2020).

The analysis of “all genes and their inter relationships” allows the identification of distinct
patterns which are central for establishing similarities and differences between individual

patients.

2.1.2 Cell lines

In Genomics, cell lines refer to the cells capable of renewing themselves in an artificial
culture (i.e. under certain laboratory conditions) indefinitely, which makes them ideal for

testing new drugs.

Particularly in what concerns cancer, cell lines are extracted from biopsies (tissues
removed from a living body) of patients with different types of tumors (from several body
parts depending on the cancer location like lungs or breast).

2.1.3 Gene expression

There are several ways to characterize cell lines, namely using: gene expression, whole-
exome sequencing, copy number variation and DNA methylation. However, as shown by

Costello et al. (2014), gene expression provides “the best predictive power”.

Gene expression is the process by which the instructions in our DNA are converted into
a functional product, such as a protein. When genes are expressed, the genetic information
(base sequence) on DNA is first copied to a molecule of mRNA (transcription). The
MRNA molecules then leave the cell nucleus and enter the cytoplasm, where they
participate in protein synthesis by specifying the particular amino acids that make up

individual proteins (translation).
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Genomic DNA
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Figure 2.1 Gene expression

Adapted from (NCBI, 2020)

Consequently, one way to measure gene expression is by measuring RNA levels because,
as previously mentioned, in order to activate a gene, a cell must first copy the DNA
sequence of that gene into a piece of mMRNA. Thus, by determining which mRNA
transcripts are present in a cell, it is possible to determine which genes are expressed at

different stages of development and under different environmental conditions.

The quantity of mRNA transcript for a single gene directly reflects how much
transcription of that gene has occurred. Tracking of that quantity will therefore indicate

how vigorously a gene is transcribed or expressed.
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Hence, overall, the gene expression of a cell line is a portrait of the genes’ activity
contained in that cell and the corresponding gene expression analysis is “the
determination of the pattern of genes expressed at the level of genetic transcription” in

that specific cell (National Center for Biotechnology Information, 2020).

2.1.4 DNA microarrays

The most used technique to measure mRNA levels is through DNA microarrays

(Information Resources Management Association, 2019).

The DNA microarray slide contains up to tens of thousands of microscopic spots. Each
individual spot will be used to measure the activity of a specific gene. This happens during
the microarray scanning when the fluorescent intensity of all individual gene spots is
stored in an image. A spot with high fluorescence intensity represents a hyperactive gene
whereas the absence of fluorescence represents a silent one. Therefore, the DNA

microarray image provides a “fingerprint” of the cell line.

Figure 2.2 Example of a DNA microarray image

Source (Light et al., 2001)
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2.1.5 Half-maximal inhibitory concentration - 1Cso

In pharmacological experiments, it is usual to construct a dose-response curve to represent
a drug’s effect on a receptor. This curve describes the relationship between increasing the
dose (or concentration) of the drug and the change in response that results from this
increase in concentration. Typically, it comprises a wide concentration range. (Tulane
University - School of Medicine, 2020)

Regarding cancer drugs, the efficacy of a compound is usually assessed by the
corresponding 1Csg (“I” for inhibition and “C” for concentration), i.e., the half-maximal
inhibitory concentration. The I1Csg is the concentration of the compound required to inhibit
the cell growth at 50%. Hence, the lower the 1Cso value is, the more efficient the

compound is.

response

0.5

y

I1Cs0 dose

Figure 2.3 Dose-response curve and 1Cso

2.2 Image processing using wavelet transforms
2.2.1 Introduction

In the process of microarray scanning, an image of the genes ‘activity induced from the
fluorescence dye is captured by the scanner. However, “due to the weak fluorescence
response, complex biochemical reaction, imperfections in glass slide and photoelectric
sensor conversion distortion, etc., the signal of fluorescence probe is inevitably degraded,

which leads to serious noise interference in the microarray image” (Gan et al., 2019).
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Wavelet transform is a signal processing technique (also applied to images since they are
2-D spatial signals) that, simultaneously, allows to filter noise and extract more

informative features that allow better discriminability of the original signal.

2.2.2 Wavelet transforms

The purpose of the wavelet transform is to “transform the signal under investigation into

another representation which presents the signal information in a more useful form”

(Addison, 2017).

A wavelet is a little wavelike function. During the wavelet transform, a convolution of
the signal with a wavelet function happens. This convolution is computed at various
locations of the signal (wavelet translations) and for various scales (wavelet dilations).
The signal regions where the wavelet overlaps the signal result in large transform values,

called wavelet coefficients.

v

Figure 2.4 Wavelet translations (location)

Adapted from (Addison, 2017)

v

v

v

Figure 2.5 Wavelet dilations (scale)

Adapted from (Addison, 2017)
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Figure 2.6 Original signal and wavelet transform

Adapted from (Addison, 2017)
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Therefore, several clear structures relating to a specific scale in the wave are detected by
shifting the wavelet along the signal (Addison, 2017). For this reason, wavelet transform

has been called a ‘mathematical microscope’.

There are several types of wavelets, such as those from Haar, Daubechies, coiflet, and
symlet, and it is important to choose the one that best suits our signal and the scope of the

analysis.

N

Figure 2.7 Some wavelet types

Source (Addison, 2017)

Moreover, wavelet transforms come in two distributions: continuous and discrete. The
major difference relies in the way how they discretize the scale parameter. The continuous
wavelet transform uses exponential scales with a base smaller than 2 (e.g. 2*1/5) while
the discrete wavelet transform uses exponential scales with the base equal to 2 (i.e., the
scales are powers of 2). Hence, continue wavelet transform discretizes scale more finely

than the discrete wavelet transform.

However, for image processing, the discrete wavelet transform is the type of distribution
usually used, allowing a sparse representation of the signal. Here, coefficients whose
value is close to zero may be ignored, remaining only those that have captured important

features.

The wavelet transform can also comprise several levels of decomposition. In the first
level, the signal is decomposed in low and high frequencies regions. The convolution of
the wavelet with the low frequency regions results in the so-called approximation
coefficients. On the other hand, the convolution of the wavelet with the high frequency
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regions results in the so-called detail coefficients. In the next level, the approximation
coefficients (of the previous level) are again divided into low and high frequency regions.
This goes on until it is reached the level of detail that it is needed or until there is no more

low and high frequency regions.

The wavelet packet transform is similar to the discrete wavelet transform, however, at
each decomposition level, it decomposes not only the approximation coefficients but also
the detail coefficients, yielding a higher frequency resolution even in higher frequencies.

Level 0

A Level 1

/\ Level 2

Figure 2.8 Wavelet decomposition of a signal for 3 levels

It is possible to apply wavelet transforms to any signal such as time and spatial signals.

Spatial signals comprise, for example, 2-D images.

12
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Level 0

original

Level 1

approximation horizontal vertical diagonal
detail detail detail

approximation horizontal vertical diagonal
detail detail detail

horizontal vertical diagonal
detail detail detail

approximation

Figure 2.9 Example of a wavelet decomposition of an image for 3 levels
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2.2.3 Previous work

In what concerns machine learning classification tasks using images as inputs, the use of

wavelets as a preprocessing technique is already in use.

For example, Wan & Zhou (2010) made use of the Haar wavelet to extract features of
ultrasound liver images for a support vector machine classifier. The global scope was to
find “an effective method of feature extraction for revealing texture details and the

succeeding classifications”.

For each sub-image of the transform, they quantified mean and energy values and stored
them in a feature vector later on used to feed the classifier. They came to the conclusion
that wavelet packet transform allowed better feature vectors, regarding wavelet transform,

since they had shown “excellence in differentiating normal and cirrhosis classes”.

More recently, Rasheed, Younis, & Bilal (2020), working in a classification task using
deep neural networks, applied the wavelet transform as a preprocessing technique in order
to “help the network by enhancing the features in the images”. They reasoned that wavelet
transforms can unravel important features “within the image before feeding it to the

classifying network”.

Therefore, instead of the original images, they used two wavelet transformed images to
train the network. Those images were obtained by convoluting the wavelet along the

vertical and horizontal directions of the original image.

They found that the wavelet transform of X-Ray scans improves considerably the

performance of the classification network.

We can also find research regarding the application of wavelet transforms to DNA
microarray images. For instance, Li, Liao, & Kwok (2006) proposed a gene selection
method using the discrete wavelet transform on microarray data for cancer classification.
As they expressed, “microarray data typically have thousands of genes, and thus feature

extraction is a critical problem for accurate cancer classification”.

They began using the wavelet transform to decompose the microarray data. Afterwards,
they applied “the maximum modulus method to select some high-frequency coefficients”.
Those coefficients and the approximation ones were then “combined together to form a

new gene subset with a much lower dimensionality than the original one”.
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The experiments showed that this wavelet-based feature extraction method for microarray

data was able to “outperform the other methods in terms of classification accuracy”.

Also, for a cancer classification task, Nanni & Lumini (2011) adopted wavelet features
extracted from DNA microarrays. According to them, the high dimensional data present
in the microarrays contains irrelevant information that jeopardizes the classifier accuracy.

Therefore, “a feature reduction should be performed before the classification step”.

In their proposed system, the DNA microarrays were submitted to a wavelet
decomposition and the resulting detail coefficients selected through the sequential
forward floating selection method. The final subset of detail coefficients was then used

as an input to the classifier.

Since “different sub-bands of different wavelet families bring different information”, they

studied the impact of eighteen different wavelets at different decomposition levels.

Overall, the literature shows that wavelet decompositions can be used to overcome the
curse of the dimensionality problem by highlighting relevant information for the machine
learning algorithm. Nevertheless, it is important to keep in mind that, since there is a wide
choice of wavelet families and distinct decomposition levels can be applied, each problem

will have its one optimal wavelet transform, requiring knowledge and art to find it.

2.3 Recommender systems
2.3.1 Introduction

The global scope of recommender systems comprises the identification of the need and
preferences of users, filtering the huge collection of data accordingly and displaying the
best fitted option by using some well-defined mechanism (F. Ricci, L. Rokach, B.
Shapira, 2011). Thus, they allow information filtering (in opposition to information
retrieval like the one performed by search engines), providing personalized information
that is relevant to the user.

It is important to notice that, even before the appearance of recommender systems,
humans have been making use of personalization as a way to tailor services and products
to specific individuals. However, such personalization is rooted in personal intuition and
experience whereas the personalization made by recommender systems is automated and

supported by data.
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There are several important historic milestones that one could point out regarding
recommender systems. Their early days go back to 1994 when GroupLens (a research lab
in the Department of Computer Science and Engineering at the University of Minnesota)
built a system able to produce personal predictions regarding news articles. At that time,
the internet use was rapidly spreading, and recommender systems relying on collaborative
filtering were conceived to help users handle information overload. Thus, the GroupLens
recommendation system, using the reading opinions (ratings) of like-minded users about
Usenet news articles, produced personalized recommendations that were displayed in the
article header. (Resnick, Bergstrom, & Riedl, 1994)

Quickly, business applications began to be explored, and in 2009 Netflix (a web-based
commercial company) launches the first recommender system challenge with the grand
prize of US$1,000,000.

In fact, recommendation engines expanded rapidly among online retailers and online

content providers. Even in nowadays, recommender systems are still very web-centric.

We can identify at least two reasons for that. On one hand, personalized recommendations
engage people and engaged users are loyal (or profitable) users — exactly the type of

customers that companies seek.

On the other hand, we must not forget that, while humans rely on intuition to make
personalization, recommender systems rely on data and it is fairly simple for a web-based
company to collect a considerable amount of data produced by its online users. That data
is raw information and, therefore, the data trail that an online user leaves behind is
processed by the recommender engine to learn preferences and produce meaningful

recommendations.

Furthermore, in an online context it is possible to collect, not only explicit data (for
example, when a user rates an item), but also implicit data. This is the type of data that a
user produces non-intentionally, without being directly asked to, but that still has very
rich information about him/her. Examples of implicit data include click data (e.g. page

views), purchase data, consumption data (e.g. time spent in a page), and so on.

One might be led to think that explicit data is the best data to know a user. That it is not
always the case, explicit data has some pitfalls. It requires an extra effort from the user

(the direct action of rating) so, usually, this data is very sparse (not every user is willing
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to rate). Also, when using it to produce recommendations, it might be necessary to

overcome some rating subjectiveness.

2.3.2 Taxonomy

There are several dimensions that can be used to characterize and classify recommender

systems.

The domain regards the recommendation item itself which can range from products to
services. As previously mentioned, (see Section 1.1), the definition of item within a

recommender system background can be very broad.

The purpose identifies the overall goal underneath the recommendation; sales,

information, education, ...

Another important characteristic is the personalization level. In fact, recommender
systems can have different levels of personalization: from universal (non-personalized
recommender systems in which everyone receives the same recommendations) to tailor-
made (personalized recommender systems that match the user personal preferences). In
between, we can have different personalization degrees. For example, demographic

personalization.

Another differentiating aspect is the approach followed to solve the recommendation
problem. A possible solution is, given a set of unknown items to the user, predict the
ratings each item will have and then present the most N (predicted) rated items as
recommendations for that user. This is the “prediction version” of the problem (Aggarwal,
2016).

However, it is not mandatory to predict ratings in order to make recommendations. One
can simply recommend the top-N most likely relevant items to the user. This is the
“ranking version” of the problem and “in many cases it is easier and more natural to
design methods for solving the ranking version of the problem directly” (Aggarwal,

2016). In fact, this is the version commonly adopted in real world problems.

Finally, recommender systems can be classified regarding the model technique. Section
2.4.3. provides an overview of the main techniques available while Section 2.4.4 takes a

deeper look to the one employed in this project — collaborative-filtering.
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2.3.3 Techniques overview

The basic task of a recommender system is to suggest items to users. In order to perform
it, several techniques are available, but most of the them fall under one of the following
categories: non-personalized summary statistics, content-based filtering, collaborative
filtering (described in the next Section), matrix factorization methods and hybrid

approaches.

Recommender systems relying on non-personalized summary statistics use aggregated
indicators in order to propose items. “Best-seller”, “most-popular”, ... are examples of
such indicators regarding e-commerce recommender engines. This is one of the most

simple and easy to implement techniques, although its inexistent level of personalization.

IMDb Charts

Most Popular Movies

Showing 100 Titles Sort by: | Release Date hd

Figure 2.10 - Example of a non-personalized summary statistic recommendation

Adapted from (IMDb, 2020)

Content-based filtering recommender systems, on the other hand, belong to the group of
recommender systems that enable personalization. To model the user profile, the engine
exploits the items towards which the user’s preferences are already known. These known
preferences, along with the content (or characteristics/properties) of the items, are then
used to infer the preferences of the user towards a new item. In other words, the algorithm
recommends items that are similar to the ones that received favorable preference of the

user in the past.
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Figure 2.11 Example of a content-based filtering recommendation

Matrix factorization, another important recommender system technique, finds items to
recommend using extracted factors from the so-called rating matrix. These factors, called
latent factors, express trends in the data that explain the user’s behavior and, although

they make sense data-wise, it might be hard to interpret their meaning.

The first step is to factorize the rating matrix into smaller matrices. One of the most

commonly used methods for that is SVD that will decompose the rating matrix into three

matrices:
Weights
Rating Matrix — X Matrix X
Users Items
Feature Feature
Matrix Matrix
items

Figure 2.12 SVD applied to the rating matrix

Adapted from (Falk, 2019)

The weights matrix is a diagonal matrix whose elements are sorted from the largest to the
smallest. The values of these elements, called singular values, indicate how much
information a feature (both a column in the users feature matrix and a row in the items

feature matrix) produces for the dataset. Therefore, we can select a k number of features
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(for example, the ones that retain 90% of the information) and set the rest of the diagonal
to zero. As a practical consequence, we will be reducing the number of columns in the
users feature matrix and the number of rows in the items feature matrix, keeping only the
most meaningful dimensions. These reduced matrices are called the rank-k approximation
of the rating matrix. According to linear algebra, this is the best possible rank-k

approximation.

To predict a rating for a given user, we multiply his/her reduced factors.

Reduced
X Weights

Matrix item factors (from the reduced items feature matrix

user factors (from the reduced users feature matrix)

Figure 2.13 Predicting ratings using the factors

Adapted from (Falk, 2019)

Since rating matrices are usually sparse, their unknown values must be filled prior to the
SVD factorization, and for that several methods are available like imputation (for

example, replace the unknown values by a mean value).

Alternatively, there are approaches that, also under the matrix factorization mindset, use
SGD to directly search for the best rank-k approximation without the need to deal with
the missing values. In fact, SGD allows efficient approximation of the S\VD from known
data.

Obviously, each recommender system algorithm has its own strengths and weaknesses.
Hybrid approaches, combining different algorithms, can be used as a way to overcome an
algorithm’s weaknesses by another algorithm’s strengths. Once more there are several
ways to perform such an ensemble. For example, in a weighted hybrid recommender, the

predicted rating is computed from the results of all of the available recommendation

techniques present in the system.
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Content-based filtering - _

Collaborative filtering | _ -

hybrid recommender system

T~ r_hybrid =r_cf *0.60 + r_cb*0.40

Figure 2.14 Example of a hybrid recommender system

Adapted from (Falk, 2019)

2.3.4 The collaborative filtering technique

»
>

Collaborative filtering models use the “collaborative power” (Aggarwal, 2016) of the

ratings provided by multiple users. The assumption on which they are based is that similar

users share similar behaviors and similar items receive similar ratings. Therefore, the

items that were relevant to existing users and the items that are similar to the ones that

were relevant to the target user will most likely be good recommendations.

This technique relies on the concept of neighborhood to infer the relevance of an item to

the target user. Two types of neighborhood can be defined — user-based and item-based.

In the user-based collaborative filtering, the ratings provided by a neighborhood of similar

users to a target user are exploit to make recommendations.

target
user

— similarity
—’ <—
’ measurement

Figure 2.15 User-based collaborative
filtering pipeline for creating

a recommendation list

v

select neighborhood (similar users)

'

score items from neighborhood

h A

recommendation list

existing
users
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According to Figure 2.15, the first step is “similarity measurement” which requires
calculating the target user’s similarity regarding all the existing users. Such similarity is
usually computed through the users’ rating vectors. Several similarity metrics can be
applied, such as Pearson correlation (a standard correlation metric), and the background
of the problem should guide to the final choice (for example, some metrics are more well

suited for certain types of data than others).

When the similarity measurement is completed, is time to “select a neighborhood”. The
scope is to remove the noise introduced by users that are not alike the target user. Once
more, there are several ways to determine a neighborhood. For example, limit the

neighborhood to the top-k neighbors or to a similarity threshold.

The “recommendation list” is then created using the items of the neighborhood. Firstly,
each item receives a “score” - the rating given by the neighbor weighted by the similarity
between the neighbor and the target user. It is important to notice that ratings may need
to be previously normalized. For example, when dealing with a rating scale, human users
might have different perceptions of it and, therefore, for instance, a rating “5” may mean
different things to different users. Normalization compensates this user bias. Secondly,
the items are sorted by “scores” and the top-N items are recommended to the target user.
Also, it might be necessary to filter some items (for example, items that for some reason
are not suitable for the target user).

other
target user’s Items
rated items —————

similarity =
—> 4—
’ measurement ;

|

select neighborhood (similar items)

'

score items from neighborhood

Figure 2.16 Item-based collaborative

X

filtering pipeline for creating . .
recommendation list

a recommendation list
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The second type of neighborhood is item-based, and it also relies on similarity, namely
between items according to their vector ratings (and not according to items’
properties/characteristics as in content-based filtering). Hence, the first step is to compute
the similarity between each of the items rated by the target user and the other items of the
database. The “score” of each neighbor item is the rating given by the target user weighted

by the similarity between the neighbor item and the target user’s rated item, as illustrated

in figure 2.17.
O .
rating )
@ » itemA
target user similarity

item B ] ) L
] mmmm)  item score = rating x similarity
neighbor

Figure 2.17 - Item scoring in item-based collaborative filtering

In short, in user-based collaborative filtering, neighborhoods are defined by similarities
among users (rating matrix rows), whereas in item-based collaborative filtering,

neighborhoods are defined by similarities among items (rating matrix columns).

Usually, item-based collaborative filtering is a technique with better performance and
stability than user-based. However, under certain circumstances is it likely to fail to
outperform user-based. For example, in an application where there is a relatively small
number of users, and many more items since the benefits of item-based collaborative

filtering depend on having more users than items.

It is also important to notice item-based low serendipity. In order to be effective, item-
item relationships need to be stable and, as consequence, it is very difficult for the
algorithm to discover highly different items to recommend and, hence, more of the items
recommended are expected. (On the other hand, user-based collaborative filtering by
default will elevate items that a close neighbor rates highly.) These “conservative”
recommendations can be good for shopping or consumption tasks, but they might be
frustrating, for example, for browsing/entertainment in which users might enjoy being

surprised with bold recommendations.
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2.3.5 Evaluation metrics

Like in any other machine learning algorithm, historical data can be used to evaluate a
recommender system performance. In this regard, three types of basic metrics can be

distinguished: prediction accuracy metrics, decision support metrics and ranking metrics.

Prediction accuracy metrics evaluate how good the recommender system is in what
concerns predicting users’ ratings. Therefore, they measure the error between the
prediction and the actual rating. Such metrics include MAE, MSE and RMSE. RMSE, in
particular, gives significantly greater weight to larger errors (unlike MAE) which often
reflects the fact that big errors are much worse for user experience. Also, RMSE is easier
to interpret than MSE because the scale of errors is matched more closely to the scale of

ratings.

On the other hand, decision support metrics measure how well a recommender system
helps users make good decisions, i.e., choosing relevant items. Under such mindset, for
example, a prediction of 4 stars versus 2.5 stars (true rating) is worse than a prediction of
2.5 stars versus 1 star (although the MAE — 1.5. — is the same on both predictions).
Precision — the percentage of selected items that are actually relevant — and recall — the
percentage of relevant items that are selected — are perhaps the most widely used decision
support metrics. It is also common to restrict such measurements to the N top items. For
example, top-N hit rate (or precision at N) is the fraction of relevant items that are in the
top-N recommendation list in relation to the N recommended items (the recommended

items that are actually relevant items are called hits).

Finally, ranking metrics assess how good the recommender system is at suggesting
relevant drugs on top positions. In other words, these metrics trace the position within the
recommendation list in which the item appears. As stated by Aggarwal (2016), “the
disadvantage of the hit-rate is that it gives equal importance to a hit, irrespective of its
position in the recommended list”. Average reciprocal hit-rate is like top-N hit-rate, but,
contrarily to it, it takes into account for where in the top-N recommendation list the hits

appear. Its scope is to reward recommended items that match top relevant items.

Other types of metrics, that relate more closely to business goals and/or user experience,
can be equally important. For example, coverage measures the percentage of items for
which a recommender system can make a prediction (in a commercial domain, for

instance, it is paramount to ensure that the algorithm will recommend everything in the
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sales catalogue). Another example is serendipity which attempts to measure unexpected

recommendations that lead to unexpected beneficial results.

All the previous metrics are measured in a retrospective mindset, i.e., dealing with items
already rated. However, especially in what concerns recommender systems designed for
the web, it is very common to also perform online evaluations (live experiments), under
a prospective mindset (looking at how recommendations are actually received). One of
the most popular mechanisms to perform such field experiments are the so-called A/B
tests which aim to see if a system change makes a positive improvement in user activity.
For example, if we are trying to decide between a user-based collaborative filtering
(version A) or an item-based algorithm (version B), we might give half of the users each
of those and follow them over a period of time, tracking a selected number of KPI (e.g.

conversion rate, i.e., recommendations that result in sales).

2.3.6 Practical issues — data sparsity and cold start
The two main problems of the recommender systems are: data sparsity and cold start.

Regarding the first problem, rating matrices might be sparse and, consequently, provide
little information, making the recommendation task difficult especially for collaborative
filtering algorithms (which, as shown in Section 2.4.4, rely on rating matrices to compute
similarities between users and items). One way to address such problem is through the
use of graph models that provide a “structural representation of the relationships among
various users and/or items” (Aggarwal, 2016) and allow the identification of

neighborhoods using random-walk or shortest-path methods.
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Figure 2.18 Rating matrix and corresponding user-item graph

Adapted from (Aggarwal, 2016)
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Another potential issue is the cold start problem — what to recommend to a new user (that
has no profile of preferences) and how to recommend new items (that have not been rated
yet)?

For a new user, some solutions might include providing useful default personalization
options (e.g. recommend popular items) or make use of their implicit data (e.g.
recommend items similar to the item they are looking). For a new item, content-based

approaches (including similarity to other items) might be useful to overcome the problem.

2.4 Personalized recommender systems of cancer drugs
2.4.1 Domain specificities and application fields

Although the classic expression “the human body”, large response variability among
individuals due to genetic differences is observed. This fact has been increasing the rise
of precision medicine (also called personalized medicine). Precision medicine aims to
develop tailored diagnostic, treatment, and prevention based on a patient’s genes and

genetic modifications of these genes.

Under this mindset, personalized recommender systems of cancer drugs target the use of
a patient’s genomic profile to generate tailored cancer drugs recommendations, i.e., one-

to-one recommendations (instead of one-to-many).

The underlying concepts behind such systems can be found in the general recommender
system theory but, as expected, with the necessary adaptations imposed by their specific

domain and problem background.

For example, the typical rating matrix (inspired by online backgrounds and storing users’
preferences regarding items), in a cancer drugs recommender system context gives place
to a drug-response matrix. The drug-response matrix stores, as the name implies, the drug
responses (or reactions) of each cancer cell line (rows) with respect to each drug

(columns).

Moreover, personalized recommender systems of cancer drugs with a collaborative
filtering approach (like the one we propose here), may not rely on drug response vectors
to compute similarities between users. Instead, they may use other type of rich
information about the users such as gene expression. Among other benefits (for example,
enhancement of the similarity measurement), this option allows to overcome both data

sparsity and cold start problems on the users’ side.
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Also, in what regards evaluation metrics, the focus relies on the recommender system
ability to suggest the most efficient drugs to the target patient (or cancer cell line).
Therefore, certain metrics may not make sense in such context. For example, metrics
reflecting business goals such as coverage. On the other hand, the skill to suggest the most
likely relevant drugs in the right rank is highly important to ensure that patients receive

the top treatments as soon as possible.

Finally, it is important to notice that personalized recommender systems of cancer drugs
can be useful not only in a clinical scenario (assisting doctors on the search of
personalized treatments for each individual patient) but also in a clinical laboratorial set
up, with a drug development scope, aiding researchers to identify new active
pharmaceutical ingredients. In fact, these recommendation algorithms may well represent

an outstanding opportunity for the pharma industry to offer precision medicine.

2.4.2 Previous work

Most of the research on cancer drug recommender systems has focused on the “prediction
version” of the problem, i.e., predicting the exact sensitivity values for the potential drugs.
To achieve this goal, a common technique applied is matrix factorization. Matrix
factorization solves the recommendation problem by finding latent features that

determine the relationship between users and items.

For example, Suphavilai, Bertrand, & Nagarajan (2018) used this technique to project
both drugs and cell lines into a latent space, named as “pharmacogenomic space®, such
that “the dot product between a cell line vector and a drug vector provides the cell line

specific drug response”.

With that aim, they factorized the drug response matrix into three matrices - biases, cell
lines and drugs — and then treated the problem as a minimization problem, where they try
to find the missing values in these matrices that best minimize the errors in the known

drug response.

With a similar approach, L. Wang, Li, Zhang, & Gao (2017) also focused on the drug
response prediction. Exploring similarities of drugs and cell lines simultaneously, they

proposed a similarity-regularized matrix factorization framework.

The major difference, regarding the previous research work, is that the latent space is built

using a drug similarity matrix and a cell line similarity matrix.
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Nevertheless, a few researchers have also focused on the “ranking version” of the

problem.

That is the case of He, Folkman, & Borgwardt (2018) whose framework gains were
“maximized when the most effective k drugs are the top k recommended drugs”, even

though, without any drug response being predicted.

In order to achieve that goal, the drug recommendation was framed into a problem of
learning a weight matrix W such that, given a new molecular profile x, the predicted
ranking vector (containing the predicted ranking scores for each of the m distinct drugs)
would be f=xW.

Then, using a loss function to evaluate how well the order of the top k recommendations
in f matched with the order of the most effective drugs in the drug response matrix,

learning W was settled as a minimization problem.

To sum up, despite the fact that most of the research effort is made under a “drug response
prediction” mindset, the “ranking version” approach (which does not rely on predicting
drug responses to make recommendations) is equally interesting. In fact, in a real-life
clinical scenario, it is more reasonable that a patient receives a recommendation of a few,

most effective, drugs rather than predicting the exact response to all drugs.
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3 RESEARCH METHODOLOGY
3.1 The CRISP-DM model

The CRISP-DM model is a data mining methodology and process model that provides a
standard blueprint for managing a data mining project. Launched in 1999, it is still used
worldwide by major players due to its timeless advantages such as effective and efficient

project planning and management.

Data

Figure 3.1 CRISP-DM process diagram

Adapted from (Jensen, 2012)

Despite initially created for data mining, this methodology provides powerful guidelines
for even nowadays the most advanced data science activities and, therefore, it was the
approach followed by this project. In fact, throughout this project report, the six CRISP-

DM main phases can be easily identified:

1. Business understanding
Focused on identifying the project objectives, setting a clear research question,
and gathering the necessary Genomics background for a full understanding of the
necessary domain knowledge. Hence, we started with a generic problem — cancer
disease — and gradually narrowed it into a specific research question. Later on, the

research question was translated into a data science problem and a framework to
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answer it using mathematical instruments (wavelet transforms) and computer
science algorithms (recommender systems) was planned.

Data understanding

The data was collected from the GDSC database (Yang et al., 2013) (Genomics
of Drug Sensitivity in Cancer, 2020) and imported into a Python Notebook where
several EDA tasks were conducted. This allowed us to get familiar with the data
and discover first insights. For example, the detection of several cancer cell lines
without DNA microarrays available.

Data preparation

In order to get the final dataset, several preprocessing tasks were necessary to
transform the initial raw data. These tasks ranged from missing values imputation
to features engineering (design of wavelet transformed images).

Modeling

Recommender systems comprise several techniques, therefore, guided by the data
available, a user-based collaborative filtering approach was selected and applied.
To assess the performance of the models (with and without wavelet transformed
images) two evaluation metrics were chosen: top-N hit rate and average reciprocal
hit-rate.

Evaluation

The results of the first round of experiments allowed us to fine-tune the models,
motivating adjustments in the wavelet transformed images design.

Deployment

This project aims to be a preliminary study, hence, no deployment of the model

into an operating system was planned.

3.2 The dataset

3.2.1 Introduction

According to WHO, cancer killed 9.6 million people in 2018, being the second leading

cause of death globally (about 1 in 6 deaths were due to cancer). Tobacco use was the

most important risk factor, causing approximately 22% of cancer deaths. Besides the

human dimensions, there is also a significant and increasing economic impact. The total

annual economic cost of cancer in 2010 was estimated at approximately US$ 1.16 trillion
(World Health Organization, 2018).
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Cancer can affect any part of the body and, also in 2018, WHO identified the most

common cancers:

- Lung (2.09 million cases)

- Breast (2.09 million cases)

- Colorectal (1.80 million cases)

- Prostate (1.28 million cases)

- Skin cancer (non-melanoma) (1.04 million cases)

- Stomach (1.03 million cases)
And, the most lethal cancers:

- Lung (1.76 million deaths)

- Colorectal (862 000 deaths)

- Stomach (783 000 deaths)

- Liver (782 000 deaths)

- Breast (627 000 deaths)

The previous numbers help us to understand why cancer has received increasing
worldwide attention, from governments to the research community. The dimension of the
problem is so significant that it has motivated several cooperation projects such as the
GDSC database (Yang et al., 2013) (Genomics of Drug Sensitivity in Cancer, 2020).

The GDSC is one of the largest public resource for information on drug sensitivity in
cancer cells. It is based on three types of datasets: (1) genomic datasets for cell lines, (2)

cell line drug sensitivity data and (3) analysis of genomic features of drug sensitivity.

In this project, we use datasets (1) to obtain the cancer cell lines profiles and dataset (2)
to obtain a drug-response matrix. Hence, the main variables are cell lines, compounds and
ICso. From a recommender system perspective: cell lines represent users (whose profile
is characterized by a gene expression profile), compounds represent items and 1Cso

represent ratings given by users to each item (in other words, the drugs ‘efficacy).

Regarding the project’s unit of analysis - cancer cell lines - GDSC offers a wide

collection: 1018 cancer cell lines from 50 different body parts.
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Figure 3.2 Body parts origins (1018 cancer cell lines)

Of the total number of cancer cell lines, this project makes use of 927, representing 45

different body parts, as explained in the next section.
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Figure 3.3 - Body parts origins (927 cancer cell lines)

3.2.2 Cell lines

Datasets (1) contain a collection of > 1000 different cell lines which “represent the
spectrum of common and rare types of adult and childhood cancers of epithelial,

mesenchymal and haematopoietic origin” (Yang et al., 2013).

A wide genomic characterization of these cell lines has been made available by the
Wellcome Trust Sanger Institute: mutation, copy number, methylation, and expression.
Nevertheless, it is commonly recognized that gene expression data provides “the best

predictive power” (Costello et al., 2014). In fact, gene expression is the common choice
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regarding the development of cancer drug recommender systems that use GDSCL.

Therefore, we choose gene expression data to profile the cancer cell lines.

The gene expression data can be found at the ArrayExpress website:

@D ArrayExpress a

Examples: E-MEXP-31, cancer, p53, Geuvadis
atiectvancecissarch

Browse Submit About ArrayExpress Contact Us

ARRAYEXPRESS BROWSE / EMTAB-3610 / FILES RAW DATA

E-MTAB-3610 - Transcriptional Profiling of 1,000 human cancer cell lines

. E-MTAB-3610.raw.1.zip 144.0 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.2.zip 147.8 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.3.zip 146.9 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.4.zip 145.7 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.5.zip 146.2 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.6.zip 146.9 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.7 zip 146.4 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.8.zip 146.7 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.9.zip 145.6 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.10.zip 1451 MB 4 June 2015, 22:28
. E-MTAB-3610.raw.11.zip 145.6 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.12.zip 1449 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.13.zip 145.5MB 4 June 2015, 22:29
. E-MTAB-3610.raw.14 zip 145.5MB 4 June 2015, 22:29
. E-MTAB-3610.raw.15.zip 1446 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.16.zip 144.5MB 4 June 2015, 22:29
X E-MTAB-3610.raw.17.zip 1444 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.18.zip 147.4MB 4 June 2015, 22:29
. E-MTAB-3610.raw.19 zip 144.7 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.20.zip 147.4MB 4 June 2015, 22:29
. E-MTAB-3610.raw.21 zip 147.8 MB 4 June 2015, 22:29
Y. E-MTAB-3610.raw.22.zip 145.0 MB 4 June 2015, 22:29
. E-MTAB-3610.raw.23 zip 146.6 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.24.zip 146.0 MB 4 June 2015, 22:30
. E-MTAB-3610.raw.25.zip 104.7 MB 4 June 2015, 22:30

A Due to the large amount of data there are multiple archive files for download.

Figure 3.4 Gene expression data

Adapted from (ArrayExpress, 2020)

It is important to notice that, although ArrayExpress website provides the gene expression
profiles of > 1000 cell lines, only 987 cell lines were drug screened for the dataset GDSC1

(release 8.2). Also, exploratory data analysis unfolds that only 928 of those cell lines have
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their DNA microarray available at the website. Later, while conducting the experiments,
one of them was found to have its CEL file corrupted. Therefore, the final number of
cancer cell lines used in this project is 927.

As shown in Figure 6.2, due to the large amount of data, there are multiple archive files
for download. For example, E-MTAB-3610.raw.1.zip archive file comprises the first 41

gene expressions:

Figure 3.5 E-MTAB-3610.raw.1.zip archive file (sample view showing 8 files of the 41 available)

Each gene expression is stored in a specific format file — a CEL file (created by an
Affymetrix DNA microarray image analysis software) — containing a 2-D matrix
(744x744):

Figure 3.6 Example of a CEL file (storing the gene expression of a cancer cell line)

This matrix represents an image — a DNA microarray image which is, as previously
explained (see Chapter 2 Genomics Background), the most common way to represent the

gene expression profile of a cell line.
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The microscopic DNA spots mark the positions of specific genes of the cell line (thus,
each cell line will be characterized by 744 x 744 = 553 536 different genes). Thus, each
number of the matrix represents the expression (or, in other words, the intensity of the

manifestation) of the corresponding gene after the artificial stimulation of the cell line.

Consequently, each cell line will have its characteristic gene expression profile that will

be like a “fingerprint” of the cell line.

The DNA microarray image stored in the previous matrix is:

C 0

0

Figure 3.7 Example of a DNA microarray image

Although it is difficult for the human eye to visualize the 553 536 gene spots, this is an

easy task for a computer.

In order to allow a cell line correspondence, the CEL filename contains the identification
of the corresponding assay (used to obtain that DNA microarray). This identification,
matched with additional information available at the ArrayExpress website, allows us to
identify the tested cell line.

For example, the DNA microarray stored in the file 5500994173212120213068 AO01.cel
belongs to the cell line UACC-812.
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E-MTAB-3610 - Transcriptional Profiling of 1,000 human cancer cell lines

© Display full sample-data table

-812_breast_91 Homo sapiens  UACC-812 UACC-812 &

-120_Brea Homo sapiens  CAL-120 CAL-120 &

32_| 201T_Lung:NS Homo sapiens  201T 2017 &
32_] Homo sapiens  EVSA-T EVSAT RA

Figure 3.8 Sample data description

Source (ArrayExpress, 2020)

For future use, the previous correspondences (cell line — assay — filename) are stored in a

customized file:

Cell lines & Assays

Figure 3.9 Cell lines, assays and filenames correspondence file (sample view)

Finally, and for evaluation purposes, the DNA microarray images belonging to the
selected 927 cancer cell lines are divided into 4 folders (mutually exclusive but of
different sizes): one folder with 852 cancer cell lines and three folders with 25 cancer cell

lines each.

The three folders of minor size, representing sets of target users in the context of the
proposed framework, are evaluated, one at a time. The resulting folder values, for hit-rate

and average reciprocal hit-rate, are then averaged and taken as the final result.

3.2.3 Compounds and ICso

Regarding dataset (2), featuring the cell line drug sensitivity data, the stored values are
“generated from ongoing high-throughput screening performed by the Cancer Genome
Project at the Wellcome Trust Sanger Institute and the Center for Molecular Therapeutics
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at Massachusetts General Hospital using a collection of >1000 cell lines” (Yang et al.,
2013).

The selected compounds are anticancer therapeutics “comprised of approved drugs used
in the clinic, drugs undergoing clinical development and in clinical trials and tool

compounds in early phase development” (Yang et al., 2013).

Cell lines are submitted to fluorescence-based cell viability assays following 72 hours of
drug treatment and the results available “include the half maximal inhibitory
concentration (ICsp), the slope of the dose—response curve and the area under the curve

for each experiment” (Yang et al., 2013).

The cell line drug sensitivity data is divided into two datasets - GDSC1 and GDSC2 —
which are periodically updated and freely available without restriction. For the moment,
the most recent release, and the one that we will use in this project, is Release 8.2

(Genomics of Drug Sensitivity in Cancer, 2020).

Release 8.2 (Feb. 2020)

GDSC1 GDSC2
Age
From 2010 to 2015 New
Size
987 Cell Lines 809 Cell Lines
367 Compounds 198 Compounds
310904 ICso 135242 ICso
Assay
Resazurin or Syto60 CellTitreGlo
72 hours 72 hours

Table 3.1 Cell line drug sensitivity data

Source (Genomics of Drug Sensitivity in Cancer, 2020)
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Compared with GDSC2, dataset GDSC1 provides access to more data and, hence, it is
the chosen dataset to perform the experiments. The corresponding file can be found at
https://www.cancerrxgene.org/downloads/bulk_download. Each row of it corresponds to

a specific drug tested in a specific cell line.

DATASET NLME_RESULT_ID NLME_CURVE_ID COSMIC_ID CELL_LINE_NAME SANGER_MODEL_ID TCGA_DESC DRUG_ID DRUG_NAME
0 GDSC1 289 14442001 683665 MC-CAR SIDM00636 MM 1 Erlotinib
1  GDSC1 289 14442813 684055 ES3 SIDM00265 UNCLASSIFIED 1 Erlotinib

Figure 3.10 Original GDSC1 dataset (sample view)

The file provides 19 variables from which we retrieve the ones of interest for this project,
namely, “CELL_LINE_NAME”, “DRUG_NAME” and “LN_IC50” (which represents
the natural log of the fitted I1Cxo).

Figure 3.11 Retrieved variables from the GDSC1 dataset (sample view)

An exploratory data analysis shows that, although some cell lines appear 367 times
(meaning that they were drug screened 367 times), only 345 different drugs were used.
This happens because some drugs were tested more than once on the same cell line.

Also, for some cell lines, not all the 345 different drugs were tested (for example, cell line

NCI-H250 has only 1 drug screening).

It is also important to notice that the 1Cso are not comparable between different drugs
(each drug had a different dosage). Hence, it is necessary to normalize the 1Csq before
further analysis.

3.2.4 Preprocessing

Prior to the experiments, several tasks of preprocessing are conducted regarding the

retrieved cell line drug sensitivity data.

First, all rows with cancer cell lines whose gene expression profiles are not available are

removed. Consequently, only the ICso of 927 cancer cell lines are kept.
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Also, the cancer cell lines with repeated drugs (drugs tested more than once on the same

cell line) are grouped by their mean 1Csp value.

The variables are then rearranged into a new matrix (927x346):

cell PHA-

. Erlotinib Rapamycin Sunitinib _ MG-132 Paclitaxel Cyclepamine AZ628 Sorafenib Tozasertib Imatinib
line 665752
0 ”\P 2.395685 244 2.161095 2.613997 0.5306 5 64757 4296779 2.055377 4402 701282 2.804463
1 ES3
2 ESS
3 ESY
EW- R - - — R - - o e .
4 2.4 8 21231 942 2.775492 23202 20329 5 2 8 b 4.148589 2344 2 0

Figure 3.12 Drug-response matrix — initial version (sample view)

Next, the values are converted from LN ICsg to ICso (ICs0 = exp (LN ICsp)).

To normalize the ICsp values into a [0, 1] interval, we follow the method used by Menden,
lorio, Garnett, Mcdermott, & Benes (2013) by applying a logistic-like function:

normalized (ICso) = m with ICso > 0
50

Therefore, the closer a normalized I1Csg value is to zero, the more sensitive the cancer cell
line is to the drug whereas the closer the normalized ICso value is to 1, the more resistant

the cancer cell line is.

The final drugs response matrix has 13,3% of missing ICso values which are set equal to

0.5 (the neutral point in the chosen scale, i.e., the previous interval [0, 1]).

Finally, a column named “array data file” is added.

;z:: array data file Erlotinib Rapamycin Sunitinib GEZ:H; MG-132 Paclitaxel Cyclopamine
0 a1n 2900994173212120213068_A01.ce 0.589740 0.448857 0.500000 0.563572 0.535375 0.500000 0.638925
1 201T 5500994158987071513209_A01.cel 0.500000 0.500000 0.500000 0.500000 0.50000 500000 0.50000
2 — 5500994172383112813929_A01.ce 0.569937 0.430087 0.548258 0.570864 0.46506 0.413074 0.565090
KYSE-  CrnnaodtcagaTnT1 19909 AN e A EARRAR A EARAAA A EAARAR R EAANAS F EAAAT AR -
3 con  20500994158987071513202_A01.ce 0.500000 0.500000 0.500000 0.500000 0.50000 500000 0.50000
220
4 MS751 5500994158987071513207_A01.ce 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

Figure 3.13 Drug-response matrix — final version (sample view)
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3.3 Proposed framework
3.3.1 Introduction

The framework proposed here has two main stages: user similarity measurement and
cancer drug recommendation. Given a target cancer line (profiled by a DNA microarray
Image representing its gene expression profile), firstly, a search for the top-N most similar
users is conducted and, secondly, using the retrieved information, a personalized cancer
drug recommendation is presented, ranking the top-N most effective drugs for the target

user.

3.3.2 Stage 1 — users similarity measurement

The goal of this stage is to find the top-N most similar cancer cell lines regarding the
target cancer cell line. This is done under two experiments: without and with wavelet

transforms.

Figure 3.16 presents the framework used at experiment 1, which is done without wavelet
transforms. Accordingly, given a target cancer cell line, whose drugs’ response are
unknown, its DNA microarray image (individual gene expression profile) will be
compared against each already existing DNA microarray image belonging to cancer cell
lines whose drugs’ response, in turn, are known. This comparison will be performed using
a similarity metric. The final results (similarity score) will allow us to sort the database

in descending order, i.e., from the most to the least similar cell line.

Target cancer N Cancer cell lines
_ Similarity
cell line — — database
Measurement
DNA microarray image 1 DNA microarray images
(gene expression profile) (gene expression profiles)

Top-N similar
cancer cell lines

Figure 3.14 Experiment 1: without wavelet transforms

Figure 3.17 presents the framework at experiment 2, made with wavelet transforms.
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Target cancer cell line

DNA microarray image
(gene expression profile)

Transformation
from spatial domain
to wavelet domain

STEP 1

Feature extraction

Discrete wavelet transform

2d |evel detail coefficients

3 sub-sampled images
(horizontal, vertical, and
diagonal details)

STEP 2

3 detail channels image

1 single image
(47x47x3)

Feature} engineering

—

Phase 2

Similarity measurement

Figure 3.15 Experiment 2: with wavelet transform

________________________ 1____

Cancer cell lines
Database

Each cell line is represented
by its wavelet coefficients
subset
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The difference regarding the previous framework is that, this time, we will not use the
original DNA microarray images to compute the similarity score. Instead, each of the
original images (of both target and existing cell lines) will be transformed into new

images, i.e., wavelet transformed images.

Firstly, we will apply a discrete wavelet transform to the original images. Secondly, the
resulting three sub-sampled images (representing the horizontal, vertical, and diagonal
wavelet detail coefficients) will be rearranged in order to form a new 3 detail channels
image. Therefore, while the original images have only one channel, the new images will
have three channels.

Y

<
ot

P :
) ‘9@\““
o

STEP 1: feature extraction (discrete wavelet transform)

.

_—_—_—_>

STEP 2: feature engineering

Figure 3.16 Wavelet transformed images
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3.3.3 Stage 2 — cancer drug recommendation

The recommendation task is anchored in the assumption that similar cell lines have
similar drugs’ responses. Consequently, after finding the most similar users, their drugs’

responses are retrieved.

Next, in order to discover which of the retrieved drugs are the best ones to recommend to
the target cell line, the recommendation candidates (i.e., the retrieved drugs) are scored.
Such score should reflect, not only how efficient a certain drug is to a cell line similar to

the target one, but also how similar that existing cell is regarding the target cell.

Therefore, we establish a score that corresponds to the drug’s rating (measured by its
ICs0) but weighted by the similarity score between the retrieved cell line and the target
cell line. Also, if one drug appears more than once (a common situation that can occur

since some drugs were tested in several distinct cell lines), its scores are added in order

to strengthen that fact.
target user
/4
recommendation score// 75% similarity

75% x 1Cs /

E / existing user
o:i?l ICeo Y ——

Figure 3.17 Example of a recommendation score

The final scores are sorted in ascending order (the lower the ICso value is, the more
efficient the compound is) and the top-N drugs are then presented as the most likely

efficient ones for the target cell line.
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Top-N similar
cancer cell lines I

Candidate generation

For each similar cancer
cell line: retrieve I1Csg ‘
Candidate score
For each similar cancer cell |
line: 1Cso % similarity score ‘
—

Top-N recommendation list

Top-N drugs sorted
(ascending order) by scores

Figure 3.18 Cancer drug recommendation pipeline

3.4 Used tools

This project uses an environment provided by Google called Colaboratory (Google,
2020), or just Colab for short. Colab platform requires no setup to use and runs entirely
in the cloud, allowing the implementation of machine learning models. Technically
speaking, Colab is a hosted Jupyter notebook service available through a Google Drive.

The code is executed in a virtual machine private to the user ‘s Google account.

This infrastructure allows to write and execute Python code in a browser with zero
configuration required and to freely access GPUs (Graphics Processing Unit) and TPUs
(Tensor Processing Unit), accelerating the performance of linear algebra computation,

which is used heavily in machine learning applications.
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~ 1) INTRODUCTION

~ Google Drive Access

Figure 3.19 Example of a Google Colab Notebook

The benefits of using this cloud service over using our own local machines are several,

for example:

- It comes with important Python packages pre-installed and ready to use (Numpy,
Pandas, TensorFlow...) and, in addition, it allows the installation of further packages or

upgrade of current ones.

- It provides interactive browser-based Jupyter Notebooks that can be easily viewed,
edited, and executed by others (including non-technical audience), through a shareable
link.

- Free GPU access. The GPU available in Colab vary over time, and often include Nvidia
K80s, T4s, P4s and P100s.

- Free RAM of 12 GB with maximum extension of 25 GB.
- Storage of Notebooks on Google Drive.

- Document code with Markdown, making the Notebook layout well-organized and user-

friendly.
- Load data from the Google drive.

Despite Colab being free, there are overall usage limits as well as IDLE timeout periods,
maximum VM lifetime, GPU types available, and other factors that vary over time. For
example, VM have maximum lifetimes that can be as much as 12 hours. Nevertheless,
users interested in having resources beyond the limits of the free version may find useful

Colab Pro (paid version).

In what concerns this project, there was no need to use GPU (especially suitable for deep

learning tasks) and a 12 GB RAM was used to perform the computational tasks. Due to
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the VM maximum lifetime constraint, several checkpoints were scheduled to save the

results as they were becoming available.

Finally, regarding the Python packages/modules, the main ones used during the course of

the project were:

- Numpy, for array computing.

- Pandas, for dataframes analysis and manipulation.

- OS, for interacting with the operating system (directories and files).

- Matplotlib and Seaborn, for data visualizations.

- Biopython, a specialized package for computational biology and bioinformatics.
- PyWavelets, for wavelet transform calculations.

- OpenCV, a computer vision library.

- Scikit-image, for computing the SSIM Index.

3.5 Ethical considerations and social responsibility

The development of data-based solutions for cancer disease goes beyond the technical

challenge and also raises ethical and social issues.

Machine learning systems are greatly shaped by the data they are fed. Consequently, they
are prone to data bias. For example, if the algorithm was trained and evaluated with data
over-representing a certain group, then the system will naturally become biased against
under-represented groups. In a clinical context, a practical consequence of this bias might
be the system performing better for certain social or ethnical groups.

Also, the development of these algorithms implies the use of large quantities of data and,
consequently, issues like ownership and consent are relevant. Besides, in order to benefit
from a personalized medicine algorithm, the patient needs to share his/her personal data.
If the patient refuses to give such consent, this may lead to a “tension between consent

and quality of care”. (Carter et al., 2020)

Another interesting issue regards responsibility. If a doctor relies on a ML algorithm to
support a clinical decision, and a negative outcome happens, it might not be clear who
should take the responsibility since, currently, there is a regulatory vacuum. This is

especially relevant for the so-called “black box algorithms” or non-explainable Al.

48



Wavelet-Based Cancer Drug Recommender System

It is urgent to bring these (and other related) issues to public discussion and find standard
solutions if we truly want to benefit and incorporate Al healthcare solutions in the real
world. Such transparency produces a vital feeling in the stakeholders (doctors, patients,

healthcare providers, ...) — trustworthiness.
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4 FINDINGS

4.1 Introduction

Experiments are performed on the benchmark dataset, called GDSCL1 (release 8.2) (Yang
et al., 2013). The scope is to assess if the use of wavelet transforms on the DNA
microarray images contributes positively, or not, to the recommender system’s
performance. Therefore, the focus lies, not in achieving state-of-the-art results in terms
of evaluation metrics (i.e., hit-rate and average reciprocal hit-rate), but on judging the
impact of using wavelet transformed DNA microarray images (versus original images)
on the proposed framework. To that aim, two experiments are conducted: one using the
original DNA microarray images and another one using wavelet transforms to preprocess

the images before feeding them to the recommender system.

To measure the similarity between images (i.e., original and wavelet transformed
images), SSIM Index (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004) is used. This metric
compares two images using their structural information which suits well one of the main
tasks of the proposed framework — the search of similar users based on structural patterns
available, but concealed, on their DNA microarray images.

4.2 First experiment and its results — without wavelet transform

Overall, in this experiment, the similarity between images is analyzed in a spatial domain

(the original domain of the image).

In practical terms, this means that the similarity between the target cancer cell line (whose
drugs’ response are considered to be unknown) and the cancer cell lines of the database
(whose drugs’ response are known) is measured by applying the SSIM Index between the
original DNA microarray image of the target cancer cell line and the DNA microarray

images of the cell lines in the database.

The similarity measurements show that, in general, the similar cell lines that belong to
the same top-5 have very close SSIM Indexes regarding the target one. Furthermore, after
performing a pairwise similarity measurement among the cells of these top-5s, we
conclude that they are also closely similar to each other. Therefore, we decide to use only

the most similar cell line.

The drugs’ response of this cancer cell line is then retrieved of the database. The retrieved

normalized ICso values are then weighted by the corresponding SSIM and sorted in
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descending order (i.e., from the most to the least effective drug). The top-20 drugs of the
previous ranking are taken as part of the top-20 recommendation list for the target cancer

cell line.

Since the similarity measurement (stage 1), in this experiment, is very time consuming
(using Colab’s computational resources each image pair takes approximately 25 minutes),
an adapted four-fold cross-validation strategy is used to evaluate the proposed framework.
With that aim, the cancer cell lines are divided into four folders, mutually exclusive but

of different sizes.

Genomic Dataset for Cancer Cell Lines

927 cell lines

|

|

|

|

\ 4
Folder A Folder B Folder C Folder D
852 cell lines 25 cell lines 25 cell lines 25 cell lines

Figure 4.1 Dataset division for evaluation purposes

The framework is evaluated using folders B, C and D, one at a time, and taking the

average result as the final result.
The final top-20 hit-rate is 11.31 and the average reciprocal top-20 hit-rate is 2.39.
Equally remarkable is the execution time of the experiment, approximately 30 hours.

These results are set as a baseline for the next experiment.
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4.3 Second experiment and its results — with wavelet transform

Overall, in this experiment, the similarity between images is analyzed in a frequency

domain, i.e., between wavelet transformed images.

For most applications, the chosen wavelet type is Haar or Daubechies. Daubechies,
although conceptually and computationally more complex than Haar, can pick up details
that are missed by Haar. Thus, we choose a Daubechies approach to perform the wavelet
transform, as the option that may confirm the hypothesis of improving the recommender

system performance through the transformation of DNA microarray images.

Also, when computing wavelet decomposition, it is possible to use different resolutions
(decomposition levels) to convolve the wavelet with the image. Classification using
Daubechies 7 with four or five levels of decomposition reported good performance
(Nanni & Lumini, 2011). Therefore, we initially decide to carry out a 4-level
decomposition. However, the results suggest that the wavelet transformed image at level
4 is too much compressed resulting in a loss of information. Hence, we proceed instead

with a 2-level decomposition.

Figure 4.2 Daubechies 7 wavelet

Although approximation coefficients characterize the major trends contained in the gene
expression profiles (i.e., the essential information of the microarray data), we only use
the detail coefficients because, as observed by Wan & Zhou (2010), “they have better
discriminating capacities and make the classification of two classes of subtle differences
possible”. In the same line of thought, Liu & Bai (2009) state that “the purpose of detail

coefficients is to detect localized features in one of the gene expression profile”.
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At the 2nd level of decomposition, and considering only the detail coefficients, three
output images are obtained: one in horizontal, other in vertical and another in diagonal
directions of the image. These images are then combined, forming an unique 3-detail
channels image (similar to a 3-color channels image, using for example, the RGB - Red-
Green-Blue color model, but, instead of color channels, the image has the detail channels
Horizontal-Vertical-Diagonal). The resulting image is the one used to assess the

similarity.

One important advantage of the previous approach is that allows us to preserve spatial

patterns (since the coefficients‘ positions are kept in the image).

Following the same evaluation method as in experiment 1, the final top-20 hit-rate is
12.21 and the average reciprocal top-20 hit-rate is 2.53.

The experiment takes, approximately, 1.5 hours to execute.

4.4 Recommendation example - cancer cell line “HH”

Using cancer cell line “HH” as the target cancer cell line, we will now provide a
recommendation example. Cancer cell line “HH” has its origin in the body part identified

as “blood”.

After running experiment 1, cancer cell line “JVM-3” is retrieved as the most similar with
a SSIM index of 69.12 %. Like the target “HH”, this cell line belongs to the body part
“blood”.

On its turn, experiment 2 returns cancer cell line “QIMR-WIL”, with a SSIM index of
81.41 %, as the most similar. This cell line also belongs to the body part “blood” but, this

time, the SSIM Index is higher regarding the previous one.

The following tables provide an overview of the recommendation lists (top-20 drugs)
generated by each of the experiments.
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Target Cell “HH”
Drug Rank
Daporinad 1
Bortezomib 2
SN-38 3
Sepantronium bromide 4
Temsirolimus 5
THZ-2-102-1 6
Omipalisib 7
Vinblastine 8
Vinorelbine 9
ARRY-520 10
Dacinostat 11
Rapamycin 12
Panobinostat 13
Epothilone B 14
AZD4877 15
Ispinesib Mesylate 16
Dactolisib 17
PLK_6522 18
NSC319726 19
Luminespib 20

Table 4.1 Target cancer cell line "HH" - ground truth ranking

Experiment 1 — Similar Cell “JVM-3” Experiment 2 — Similar Cell “QIMR-WIL”
Drug True Drug True
Rank Rank
15t) SN-38 3 15t) SN-38 3
2nd) Vinblastine 8 2nd) NSC319726 19
3rd) Docetaxel 23 3rd) Epothilone B 14
4th) AZD4877 15 4th) Rapamycin 12
5th) Daporinad 1 5th) Omipalisib 7
6th) Temsirolimus 5 6th) Bortezomib 2
7th) Sepantronium bromide 4 7th) ARRY-520 10
8th) Thapsigargin 36 8th) Gemcitabine 22
oth) Methotrexate 24 9th) Vinorelbine 9
10th) PLK_6522 18 10t) Daporinad 1
11t) THZ-2-102-1 6 11th) Sepantronium bromide 4
12th) Bortezomib 2 12th) Panobinostat 13
13t%) Panobinostat 13 13th) Vinblastine 8
14t) Dactolisib 17 14th) Docetaxel 23
15th) PARP_9482 123 15th) Paclitaxel 25
16th) Lestaurtinib 60 16t) Luminespib 20
17th) Dacinostat 11 17t) Dacinostat 11
18t) Elesclomol 42 18th) Ispinesib Mesylate 16
19th) SNX-2112 21 19t) Temsirolimus 5
20th) NSC319726 19 20™) THZ-2-102-1 6

Table 4.2 Experiment 1 — recommendation list Table 4.3 Experiment 2 — recommendation list
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As we can observe, experiment 1 outputs a recommendation list with 13 hits whereas
experiment 2 recommendation list successfully identifies 17 hits. Moreover, experiment
1 has an average reciprocal hit-rate of 2.79 whereas for experiment 2 its value is 3.33.
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5 DISCUSSION OF THE RESULTS

In this project, a recommender system engine, having DNA microarrays (patients’
profiles) as inputs and drug recommendation lists as outputs, was implemented. It was
expected from the algorithm the ability to identify the top-20 most relevant compounds
from 345 possible drugs. In a random scenario, i.e. without any data-based approach, the
probability of being successful on finding those 20 drugs is less than 0.000000000002%.

Therefore, although in this preliminary study our research efforts did not focus on
implementing a cutting-edge recommender system in terms of evaluation metrics, we

consider very satisfying, as starting points, the final evaluation metrics obtained:

- experiment 1 (with original DNA microarray images): top-20 hit-rate was 11.31 and
average reciprocal top-20 hit-rate was 2.39.

- experiment 2 (with wavelet transformed images): top-20 hit-rate was 12.21 and average

reciprocal top-20 hit-rate is 2.53.

Overall, from a universe of 345 drugs, our recommender system was able to suggest a list
of 20 in which, on average, more than 50% were in fact relevant drugs. Once again, in a
random scenario, the probability of obtaining this result would be higher than the previous
one, but still less than 0.0000005%.

Also, in what concerns the average reciprocal top-20 hit-rate, measuring the ability of the
recommender system to display relevant drugs on top positions, the results are valuable,
keeping in mind that the maximum average reciprocal top-20 hit-rate (achieved when all

the recommended items are relevant) is 3.60.

The next figures show the distribution of the results, top-20 hit-rate and average reciprocal

top-20 hit-rate, across the 75 target cancer cell lines.
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Figure 5.1 Hit-rate box plot
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Figure 5.2 Average reciprocal hit-rate box plot
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On one hand, Figure 5.1 allows to conclude that hit-rate results are less dispersed in
experiment 2 (not only its interquartile range but also the range of scores is smaller
regarding experiment 1). In addition, although both maximum hit-rate scores are on par,
the minimum score of experiment 2 is higher. On the other hand, according to Figure 5.2,

average reciprocal hit-rates are less dispersed in experiment 1.

Taking a closer look to the recommendation example given in Section 4.4, it is also
interesting to notice that the retrieved similar cell line in experiment 2 has a higher SSIM
Index (81.41%) with respect to the one retrieved in experimentl (69.12%). In fact, the
SSIM range is higher in experiment 2. For example, regarding folder B, experiment 1 has
a SSIM range of [67.49 — 81.78%] whereas in experiment 2 it is [76.46 — 89.57%] which
reflects the denoising power of wavelets transforms.

SIMILARITY

M experiment 1 M experiment 2
100%
95%

90% °

85%
|
80%

75% e

70%

SIMILARITY

65% ¢
60%
55%

50%

Figure 5.3 Similarity box plot

Also, although in the aforementioned example both similar cell lines (i.e. from experiment
1 and experiment 2) belong to the same body part as the target cell (i.e. “blood”), this is

not always the case. For example, the target cancer cell line “HN” belongs to the body
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" while experi - . .
art “endometrium” and, while experiment 1 retrieves a similar cell line from the same

location, experiment 2 identifies a similar cell line from a different body part — “mouth”.

Furthermore, in 52% of the instances, experiment 2 chooses a different similar cell line
with respect to experiment 1. Figure 5.4 summarizes the impact of such choice on the

results.

TARGET CELL LINES - BODY PARTS

CENTRAL..
CERVIX
UPPER..
BILIARY TRACT
KIDNEY
BONE

LIVER

BRAIN
THYROID
HEAD & NECK
OVARY
ENDOMETRIUM
PLEURAL..
BLADDER
SKIN

HEAD & NECK
LARGE...
ESOPHAGUS
BREAST
BLOOD
PANCREAS
LUNG

||‘!|]||||5|J5J||""|

NUMBER OF TARGET CELL LINES

W same similar cell \l positive impact M neutral impact negative impact }

when experiment 2 uses different similar cell line

Figure 5.4 Experiments' final results according to target body part

Whenever experiment 2 chooses a different similar cell line, 66.67% of the times this
conducts to better results and 23.08% this leads to worse performance with respect to
experiment 1 (10.26% of the times the impact is neutral, conducting to similar results

although different cell lines are used).
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Some of the negative results of experiment 2 may be influenced by the drug sparsity on
the target cell line side, i.e. the fact that the target similar cell line does not have all the
IC50 values available. An example that illustrates this hypothesis is target cancer cell line
“HCC-78”. Experiment 2 retrieves cell line “LC-2-ad” as the most similar, however, 8
drugs (“Epothilone B”, “Thapsigargin”, “Rapamycin”, “Paclitaxel”, “Bortezomib”,
“GW843682X”, “Bl-2536” and “Mitomycin-C”) of the top-20 drugs have not been tested
in “HCC-78”, whereas experiment 1 retrieves cell line “HuCCT1 which has only 2 non
tested drugs (“Epothilone B”, “Thapsigargin”). Experiment 1 has a top-20 hit-rate of 15
and an average reciprocal hit-rate of 2.48 while experiment 2 has a top-20 hit-rate of 11

and an average reciprocal hit-rate of 1.12.

Overall, the final results confirm the initial hypothesis: the prior preprocessing of DNA
microarray images, using wavelet transforms, improves the recommender system
performance since the evaluation metrics of experiment 2 are, in fact, higher than those
of experiment 1. More specifically, experiment 2 has a top-20 hit-rate and an average
reciprocal top-20 hit-rate, 4.5% and 3.89%, respectively, higher.

FINAL RESULTS

experiment 1 66.39%

(baseline) N  56.55%

_ 70.28%
eIt 2 | .05/

experiment 2 +3.89%
improvement B +4.50%

% average B % hit rate
reciprocal
hit-rate

Figure 5.5 Final results

Moreover, it is also possible to conclude from the execution times of the experiments that
this positive impact is also translated into an enhanced use of computational resources —

30 hours (experiment 1) versus 1.5 hours (experiment 2).
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Figure 5.6 Experiments' execution time
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6 CONCLUSIONS

6.1 Contributions and implications

Recommender systems, comprising the identification of the need and preferences of
users, filtering the huge collection of data accordingly and displaying the best fitted
options, are becoming more embracing. This study discusses and presents a novel
framework used to implement a recommender system that proposes a personalized
ranking of cancer drugs, combining techniques of image processing for feature

enhancement.

The proposed framework has a first main stage that consists of measuring the user
similarity, and a second main stage, consisting of the cancer drug recommendation. Then,
two experiments are conducted. One using the original DNA microarray images and the
other using wavelet transforms to preprocess the images before feeding them to the

recommender system.

The central core of the project is the assessment of the impact of using wavelet
transformed DNA microarray images for measuring users’ similarity in a recommender
system’s framework. To the best of our knowledge, it is the first time that a research

project addresses this problem.

The conducted experiments confirm the initial hypothesis that wavelet transformed DNA
microarray images enhance the recommender system performance by improving the

search of cancer cell lines with similar profile to the one of the target cancer cell line.

Moreover, experiment 2 takes only 5 percent of the execution time of experiment 1. So,
also from a computational point of view, experiment 2 is more efficient and more suitable

for a real-world application.

Therefore, we conclude that properly chosen wavelet transformed DNA microarray
images, not only uncover richer information for the users’ similarity search (with positive
impact, as seen previously, in the recommendation task), but also efficiently compress

the DNA microarray images, optimizing computational resources.

Future research can benefit from these findings by incorporating wavelet transformed

inputs to their recommender systems frameworks.
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6.2 Limitations

Recommender systems need a lot of data to efficiently make recommendations. Not only
data quantity but also diversity is important. A limitation of the dataset used in the
experiments (besides data quantity) is that some body parts are over-represented (for
example, “blood” with over 140 cancer cell lines) while others are under-represented (for
example, “intestine” with less than 20 cancer cell lines). This may jeopardize the search
of similar cancer cells lines if the target one belongs to an under-represented group.
(Although, as previously discussed, it is not always the case that the retrieved similar cell

lines belongs to the same body part that the target one.)

On the other hand, missing 1IC50 may also compromise the evaluation results. For
example, if a certain drug was tested in the target cell but not in the similar cell line, even
if it was found to be relevant (or effective), the recommender engine will not suggest such
drug. In this project we have decided to work under the worst-case scenario, accepting

the sparsity on the drugs side.

Finally, due to computational constraints, especially during the similarity measurement
of the original DNA microarray images, it was not possible to perform a cross-validation
using the entire dataset, instead, 3 subsets of distinct 25 cancer cell lines were used to

perform the evaluation.

6.3 Recommendations

Since only 2" level detail wavelet coefficients were used on this study, future research
could investigate the effect of other variants of wavelet transformed DNA microarray
images (e.g. simultaneous use of detail and approximation coefficients), with the scope
of increasing even further the already existing gap between the evaluation metrics of the
two experiments. Another interesting possibility is the replacement of the DNA
microarray images for basal expression data, under the same scenarios - with and without

wavelet transforms.

It might be also useful to limit the number of compounds to the most tested drugs or,
alternatively, to use only cancer cell lines that have a certain minimum number of tested
drugs. As mentioned in the previous section, if a similar cancer cell line lacks many 1Csg

this may negatively impact the evaluation results. Surely, the imposition of such
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thresholds will result in the decrease of the number of cancer cell lines available to test

the framework.

At last, the implemented pipeline at Stage 2 (cancer drug recommendation) is only one
among others that could be implemented. Hence, there is space for exploring other

recommender systems techniques and assess if they can be a better fit.

6.4 Final considerations

Recommender systems will inevitably push their boundaries beyond e-commerce
applications. Throughout this project we show their potential in what concerns precision
medicine and, more specifically, for personalized cancer drug recommendations within a
clinical or laboratorial (pharmaceutical) context. Furthermore, not only the strengths but
also the implementation challenges of such systems are highlighted so that they can be
properly addressed in the future.

Domain knowledge from Genomics along with recommender systems and signal
processing theory were also provided to enhance the understanding of the implementation

details of this work.

There is still a long way to go, from shaping robust cancer cell line databases and drug-
responses matrices to gaining the stakeholders trust towards such ML personalized
systems. Nevertheless, the journey has started and all of us, from researchers to patients,

can take part in it.
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APPENDIX 1. EXPERIMENT 1/PART 1-PYTHON CODE.
Contents
1 INTRODUCTION
1.1 Google Drive Access
1.2 Packages
2 USERS SIMILARITY MEASUREMENT
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1 INTRODUCTION

1.1 Google Drive Access

In [0]:

1 from google.colab import drive
2 drive.mount('/content/drive')

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?clien
t_1d=947318989803-6bn6gk8qdgf4andg3pfee6491hcObrc4i.apps.googleusercontent.co
m&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=
email%2@https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2f
www . googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com¥%2fauth%
2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleap
i.readonly (https://accounts.google.com/o/oauth2/auth?client_id=947318989803
-6bn6gk8qdgf4andg3pfee6491hcObrc4i. apps.googleusercontent.com&redirect_uri=ur
n%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%
2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.co
m%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.re
adonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly)

Enter your authorization code:

Mounted at /content/drive

1.2 Packages

In [@]:
1 pip install biopython

Collecting biopython

Downloading https://files.pythonhosted.org/packages/83/3d/e@c8a993dbeall36
be90c31345aefcS5babdd5046cd52f81c18fc3fdad865/biopython-1.76-cp36-cp36m-manyl
inux1_x86_64.whl (https://files.pythonhosted.org/packages/83/3d/e0c8a993dbea
1136be90c31345aefc5babdd5046cd52f81c18fc3fdad865/biopython-1.76-cp36-cp36m-m
anylinuxl_x86_64.whl) (2.3MB)

| I, | 2.3vB 5.1MB/s

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packag
es (from biopython) (1.18.2)
Installing collected packages: biopython
Successfully installed biopython-1.76
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In [0]:
1 pip install scikit-image

Requirement already satisfied: scikit-image in /usr/local/lib/python3.6/dist
-packages (0.16.2)

Requirement already satisfied: scipy»>=0.19.0 in /usr/local/lib/python3.6/dis
t-packages (from scikit-image) (1.4.1)

Requirement already satisfied: pillow»>=4.3.0 in /usr/local/lib/python3.6/dis
t-packages (from scikit-image) (7.0.0)

Requirement already satisfied: PyWavelets>=0.4.0 in /usr/local/lib/python3.
6/dist-packages (from scikit-image) (1.1.1)

Requirement already satisfied: imageio>»=2.3.0 in /usr/local/lib/python3.6/di
st-packages (from scikit-image) (2.4.1)

Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /usr/local/lib/p
ython3.6/dist-packages (from scikit-image) (3.2.0)

Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.6/dis
t-packages (from scikit-image) (2.4)

Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dis
t-packages (from scipy>=0.19.0->scikit-image) (1.18.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.
usr/local/lib/python3.6/dist-packages (from matplotlib!=3.0.0,
t-image) (2.4.6)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.
6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image) (1.1.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist
-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image) (0.10.0)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python
3.6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image) (2.8.1)
Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/
dist-packages (from networkx>=2.0->scikit-image) (4.4.2)

Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-p
ackages (from kiwisolver»>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image) (4
5.2.0)

Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages
(from cycler>=0.10->matplotlib!=3.0.0,>=2.0.0->scikit-image) (1.12.0)

1in/

6,>=2.0.
>=2.0.0->sciki

In [0]:
1 from Bio.Affy import CelFile #package biopython (.cel files)
2 from skimage.metrics import structural_similarity as ssim #structural similarity index
3 import cv2 #handle images (read, save)
4 import pandas as pd
5 import numpy as np
6 import matplotlib.pyplot as plt
7 %matplotlib inline
8 import os
9 from os import listdir #handle path to directories/files

=
[

2 USERS SIMILARITY MEASUREMENT

Customized function that a) computes the SSIM between a given image and the other ones in the database and
b) outputs a top-6 rank (from most similar to dissimilar)
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In [0]:

1 #import .csv file that contains: (928) cell Lines names | assays names | assays filenal
2 assaysDescript_celllLinesDrugScreen_pd = pd.read_csv('/content/drive/My Drive/RecSys_Co

>

In [@]:

1 assaysDescript_celllLinesDrugScreen_pd.head()

Oout[6]:

Characteristics[cell line] Assay Name Array Data File
0 UACC-812 5500994173212120213068_A01 5500994173212120213068_A01.cel
1 201T 5500994158987071513209_A01 5500994158987071513209_A01.cel
2 EVSA-T 5500994172383112813929_A01 5500994172383112813929_A01.cel
3 KYSE-520 5500994158987071513202_A01 5500994158987071513202_A01.cel
4 MS751 5500994158987071513207_A01 5500994158987071513207_A01.cel
In [@]:

1 #remove corrupted .CEL file - 5500994157493061613625_A01.cel
2 corrupted_file = assaysDescript_celllLinesDrugScreen_pd[assaysDescript_celllLinesDrugScr
3 corrupted_file

Oout[7]:

Characteristics[cell line] Assay Name Array Data File
927 CAL-120 5500994157493061613625_A01 5500994157493061613625_A01.cel
In [@]:

1 assaysDescript_celllLinesDrugScreen_pd = assaysDescript_celllLinesDrugScreen_pd.drop(ind
2 assaysDescript_celllLinesDrugScreen_pd.shape

Out[8]:

(927, 3)

In [0]:

#store the filenames in a list

filenames_927 = assaysDescript_celllLinesDrugScreen_pd['Array Data File'].to_list()
print(len(filenames_927))

print(filenames_927[0]) #1st element of the list

print(filenames_927[926]) #last element of the List

uh wN R

927
5500994173212120213068_A01.cel
5500994175999120813240_E04.cel
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In [0]:
1 #find the folder where a .CEL file is located and add that info into the corresponding
2 #1)add column "folder" (its values will be temporarily filled with random numbers)
3 slLength = len(assaysDescript_celllLinesDrugScreen_pd['Array Data File'])
4 assaysDescript_celllLinesDrugScreen_pd = assaysDescript_celllLinesDrugScreen_pd.assign(f
5 assaysDescript_celllLinesDrugScreen_pd.head(2)
< >
out[1@]:
Characteristicsl[iz(j; Assay Name Array Data File folder
0 UACC-812 5500994173212120213068_A01 5500994173212120213068_A01.cel -0.637904
1 201T 5500994158987071513209_A01 5500994158987071513209_A01.cel  1.293723

4 14

In [0]:

#2)find the folder and add that info into the column 'folder’
raw_folders = ['rawl','raw2', ‘raw3’', 'raw4', ‘raw5', 'raw6', ‘raw7', 'raw8', 'raw9’,

for raw in raw_folders:
raw_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/Gen

1

2

3

4

5 for file in filenames_927:

6

7

8

9 raw_filenames = os.listdir(raw_path) #list all files in the folder

10
11
12 file_intersection_folder = list(set([file]) & set(raw_filenames)) #check if file 1ii
13
14
15 if len(file_intersection_folder) != 0: #if the file is stored in the folder
16 file_row = assaysDescript_celllLinesDrugScreen_pd[assaysDescript_celllLinesDrugScri
17 row_index = file_row.index.values.astype(int)[@] #index of the row where the fil
18 assaysDescript_celllLinesDrugScreen_pd.loc[row_index, 'folder'] = raw
19

4 »
In [0]:

1 assaysDescript_celllLinesDrugScreen_pd.iloc[777]

Out[12]:

Characteristics[cell line] JHOS-2
Assay Name 5500994172948120113978_HO7
Array Data File 5500994172948120113978_H0O7.cel
folder raw21l

Name: 777, dtype: object
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In [0]:

1 assaysDescript_celllLinesDrugScreen_pd['folder'].value_counts()

Out[13]:

rawlé 41
rawle 40
rawl2 40
rawl3 40
raw8 39
raw23 39
raw3 39
rawls 38
rawl?7 38
raw24 38
rawld 38
raw4 38
raw?7 37
raw2o 37
rawé 37
raw22 37
raw2 37
rawll 37
rawl9 37
raws 36
raw9 36
rawl 36
rawls8 35
raw2l 34
raw25 23

Name: folder, dtype: int64

In [@]:
1 assaysDescript_celllLinesDrugScreen_pd['folder'].value_counts().sum() #927. OK, as expe
Out[14]:

927

In [@]:

1 #export final dataframe as .csv file (to reuse it in the notebooks STAGE2_EXP1.ipynb al
2 #.csv file contains: (927) cell Llines names | assays names | assays filenames | folder
3 assaysDescript_celllLinesDrugScreen_pd.to_csv(r"/content/drive/My Drive/RecSys_Code/dat

4 >
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In [0]:

def similarity_ssim(image):

Description:

This function takes an image (.cel) and computes its similarity, using the Structura
Similarity Index, regarding the other images (.cel) from the database.

It outputs the top-6 most similar images.

Parameter:
image - image (.cel) whose similarity to the other images (.cel) will be computed

Returns:
top-6 most similar images

Example:
>>> similarity_ssim('5500994157493061613625_A10.cel')

#import .csv file that contains: (927) cell Lines names | assays names | assays file
assaysDescript_celllLinesDrugScreen_pd = pd.read_csv('/content/drive/My Drive/RecSys_

#store the assays filenames into a list

assays_filenames_927_pd = assaysDescript_celllLinesDrugScreen_pd['Array Data File']
assays_filenames_927_list = list(assays_filenames_927_pd)

assays_filenames_927_set = set(assays_filenames_927_list)

raw_folders = ['rawl','raw2', 'raw3', 'raw4', 'raw5', 'raw6', 'raw7', 'raw8', 'raw9’

#create an empty dataframe to store the results
columns_name = ["image","SSIM"]

df = pd.DataFrame(columns = columns_name)

n=0

#locate and read the given image:

#1)define the path to the directory where the image is stored

image_row = assaysDescript_celllLinesDrugScreen_pd[assaysDescript_celllLinesDrugScreen,
image_index = image_row.index.values.astype(int)[@] #index of the row where the imag
raw = assaysDescript_celllLinesDrugScreen_pd.loc[image_index].at['folder'] #folder wi
image_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/Gen«
images_path = '/content/drive/My Drive/RecSys_Code/dataset/CelllLines/GeneExpressionP
images_filenames = os.listdir(images_path) #lists all the files in the directory "4ti

#2)read the image
with open(image_path) as handle:
c = CelFile.read(handle) #read CEL file
img = c.intensities #read the image given as parameter

#folder by folder: locate other images, read them and compute SSIM; store the result
for raw in raw_folders:
print(“"The analysis of folder:", raw, "has started.")
images_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/
all_images_filenames_list = os.listdir(images_path) #lists all the files in the fo
all_images_filenames_set = set(all_images_filenames_list)
#retrieve the filenames of "raw" that are also present in assays_filenames_927
#(remember that, although we have an Affymetrix database with 1018 DNA microarray
filtered_images_filenames = assays_filenames_927_set.intersection(all_images_filen
filtered_images_filenames = list (filtered_images_filenames)
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

for image_db in filtered_images_filenames:

img_database_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/Ce

with open(img_database_path) as handle:
¢ = CelFile.read(handle) #read CEL file
img_database = c.intensities #read the image (in the folder 'raw')

img_ssim = ssim(img, img_database, multichannel = True) #compute SSIM

df.loc[n] = [image_db] + [img_ssim] #add result to the dataframe
n.e=1

df = df.sort_values(by='SSIM', axis=0, ascending=False).head(6)
print()

print("Top-6 most similar images:")

print()

return df
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In [@]:
1 similarity_ssim('5500994157493061613625_Al0.cel')

The analysis of folder: rawl has started.
The analysis of folder: raw2 has started.
The analysis of folder: raw3 has started.
The analysis of folder: raw4 has started.
The analysis of folder: raw5 has started.
The analysis of folder: raw6 has started.
The analysis of folder: raw7 has started.
The analysis of folder: raw8 has started.
The analysis of folder: raw9 has started.
The analysis of folder: rawl® has started.
The analysis of folder: rawll has started.
The analysis of folder: rawl2 has started.
The analysis of folder: rawl3 has started.
The analysis of folder: rawl4 has started.
The analysis of folder: rawl5 has started.
The analysis of folder: rawl6 has started.
The analysis of folder: rawl7 has started.
The analysis of folder: rawl8 has started.
The analysis of folder: rawl9 has started.
The analysis of folder: raw2@ has started.
The analysis of folder: raw2l has started.
The analysis of folder: raw22 has started.
The analysis of folder: raw23 has started.
The analysis of folder: raw24 has started.
The analysis of folder: raw25 has started.

Top-6 most similar images:

Out[24]:

image SSIM

101  5500994157493061613625_A10.cel 1.000000
246 5500994158987071513207_C06.cel 0.731897
554 5500994157493061613625_F04.cel 0.727921
359 5500994158987071513209_D06.cel 0.715566
74 5500994172383112813929_A11.cel 0.714804
697 5500994158987071513201_G10.cel 0.711776

In [@]:

1 #the execution of the function similarity_ssim() takes, aprox., 25 minutes
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In [@]:

#test

with open(imagel_path) as handle:
¢l = CelFile.read(handle)
imagel = cl.intensities

with open(image2_path) as handle:
c2 = CelFile.read(handle)
image2 = c2.intensities

WoONOOUVTDA WNR

RO R e
WN RO

ssim_test = ssim(imagel, image2, multichannel = True)
ssim_test #0.731897 Ok, as expected.

4 >

Ea
IS

Out[143]:

0.7318971581690118

imagel_path = '/content/drive/My Drive/RecSys_Code/dataset/CellLines/GeneExpressionPro

image2_path = '/content/drive/My Drive/RecSys_Code/dataset/CellLines/GeneExpressionPro
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APPENDIX 2. EXPERIMENT 1/PART 2 -PYTHON CODE.
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1 INTRODUCTION

1.1 Google Drive Access

In [0]:

1 from google.colab import drive
2 drive.mount('/content/drive')

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?clien
t_1d=947318989803-6bn6gk8qdgf4andg3pfee6491hcObrc4i.apps.googleusercontent.co
m&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=
email%2@https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2f
www . googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com¥%2fauth%
2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleap
i.readonly (https://accounts.google.com/o/oauth2/auth?client_id=947318989803
-6bn6gk8qdgf4andg3pfee6491hcObrc4i. apps.googleusercontent.com&redirect_uri=ur
n%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%
2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.co
m%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.re
adonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly)

Enter your authorization code:

Mounted at /content/drive

1.2 Packages

In [@]:
1 pip install biopython

Collecting biopython

Downloading https://files.pythonhosted.org/packages/a8/66/134dbd5f885fc714
93c61b6cfO4c9ea8082da28da5edd7709b02857cbde/biopython-1.77-cp36-cp36m-manyl
inux1_x86_64.whl (https://files.pythonhosted.org/packages/a8/66/134dbd5f885F
€71493c61b6cfR4c9e208082da28da5ed0d7709b02857cbd0/biopython-1.77-cp36-cp36m-m
anylinux1_x86_64.whl) (2.3MB)

| I, | 2.3V 2.8MB/s

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packag
es (from biopython) (1.18.4)
Installing collected packages: biopython
Successfully installed biopython-1.77

In [0]:
1 import pandas as pd
2 import numpy as np
3 from skimage.metrics import structural_similarity as ssim #structural similarity index
4 from sklearn.utils import shuffle #shuffle (i.e., make random order)
5 from Bio.Affy import CelFile #package biopython (.cel files)
6 import os
7 from os import listdir #handle path to directories/files
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1.3 Customized function similarity_ssim(image.cel)
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In [@]:

53

def similarity_ssim(image):

Description:

This function takes an image (.cel) and computes its similarity, using the Structura
Similarity Index, regarding the other images (.cel) from the database.

It outputs the top-50 most similar and the top-10 most dissimilar images.

Parameter:
image - image (.cel) whose similarity to the other images (.cel) will be computed

Returns:
top-50 most similar images
top-10 most dissimilar images

Example:
>>> similarity_ssim('5500994157493061613625_A10.cel')

#import .csv file that contains: (927) cell Llines names | assays names | assays file
assaysDescript_cellLinesDrugScreen_pd = pd.read_csv('/content/drive/My Drive/RecSys_|

#store the assays filenames into a list

assays_filenames_927_pd = assaysDescript_celllLinesDrugScreen_pd[ 'Array Data File']
assays_filenames_927_list = list(assays_filenames_927_pd)

assays_filenames_927_set = set(assays_filenames_927_list) #transform the List object

raw_folders = ['rawl’,'raw2', 'raw3', 'raw4', 'raw5', 'raw6’', 'raw7', 'raw8', 'raw9’

#create an empty dataframe to store the results
columns_name = ["image","SSIM"]

df = pd.DataFrame(columns = columns_name)

n=0

#locate and read the given image:

#1)define the path to the directory where the image is stored

image_row = assaysDescript_celllLinesDrugScreen_pd[assaysDescript_celllLinesDrugScreen,
image_index = image_row.index.values.astype(int)[@] #index of the row where the imag
raw = assaysDescript_celllLinesDrugScreen_pd.loc[image_index].at['folder'] #folder w
image_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/Gen
images_path = '/content/drive/My Drive/RecSys_Code/dataset/CelllLines/GeneExpressionP
images_filenames = os.listdir(images_path) #lists all the files in the directory "Ge

#2)read the image
with open(image_path) as handle:
c = CelFile.read(handle) #read CEL file
img = c.intensities #read the image given as parameter

#folder by folder: locate other images, read them and compute SSIM; store the result
for raw in raw_folders:
if raw == 'rawl' or raw == 'raw5' or raw == 'rawl®' or raw == 'rawl5' or raw == 'r
print("Current folder under analysis:", raw)
images_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/
all_images_filenames_list = os.listdir(images_path) #lists all the files in the fo
all_images_filenames_set = set(all_images_filenames_list)
#retrieve the filenames of "raw" that are also present at assays_filenames_927
#(remember that, although we have an Affymetrix database with 1018 DNA microarray
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60 filtered_images_filenames = assays_filenames_927_set.intersection(all_images_filen
61 filtered_images_filenames = list (filtered_images_filenames)

62

63 for image_db in filtered_images_filenames:

64 img_database_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/Ce
65 with open(img_database_path) as handle:

66 ¢ = CelFile.read(handle) #read CEL file

67 img_database = c.intensities #read the image (in the folder ‘'raw')

68

69

70 img_ssim = ssim(img, img_database, multichannel = True) #compute SSIM

71

72

73 df.loc[n] = [image_db] + [img_ssim] #add result to the dataframe

74 n+=1

75

76 df_similar = df.sort_values(by='SSIM', axis=0, ascending=False).head(50)

77 df_dissimilar = df.sort_values(by='SSIM', axis=@, ascending=False).tail(10)
78 print()

79

80 return df_similar, df_dissimilar

1.4 Dataset split (for performance evaluation)

Function similarity_ssim(image.cel) takes aprox. 25 minutes to run (with Google Colab computational
resources). Thus, to compute a user-user similarity matrix (which is symmetric along its diagonal) would take
aprox. 827x827/2x25 minutes.

Hence, due to the previous constraint, we use an adaptation of a four-fold cross-validation to evaluate the
proposed RecSys.

The 927 cell lines are split into 4 folders (mutually exclusive but of different sizes):

« Folder A with 852 cells
« Folder B with 25 cells
« Folder C with 25 cells
« Folder D with 25 cells

Using folders B, C and D, we perform 3 distinct validations and take their average as the final result.

In [0]:

1 #import .csv file that contains: (927) cell Lines names | assays names | assays filenar
2 cells927_pd = pd.read_csv('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/927Ce
3 cells927_pd.head(2)

Out[5]:
Charade"s"cslli‘::]l Assay Name Array Data File folder
0 UACC-812 5500994173212120213068_A01 5500994173212120213068_A01.cel  raw1
1 201T 5500994158987071513209_A01 5500994158987071513209_A01.cel  raw1
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In [@]:
1 cells927_pd[cells927_pd['Array Data File'] == '5500994172383112813928 (C04.cel']
out[6]:

Characteristics[cell line] Assay Name Array Data File folder

In [0]:

1 cells927 = cells927_pd['Array Data File'].values #store the filenames into an array
2 cells927[0:10]

Oout[7]:

array ([ '5500994173212120213068_A01.cel', '5500994158987071513209_A0l.cel’,
'5500994172383112813929_A01.cel', '5500994158987071513202_A01.cel’,
'5500994158987071513207_A01.cel', '5500994172383112813928_A01.cel’,
'5500994172383112813930_A01.cel', '5500994172948120113978_A01.cel’,
'5500994173212120213068_A02.cel', '5500994157493061613625_A02.cel'],
dtype=object)

In [0]:
1 #split
2 cells927 = shuffle (cells927, random_state = 101) #shuffle the order of the cell Llines
3 folderA = cells927[0:752] #752 cells
4 folderB = cells927[752:777] #25 cells
5 folderC = cells927[777:802] #25 cells
6 folderD = cells927[802:827] #25 cells
7 #missing 100 _cells = [827:927] #100 cells (without impact in the notebooks or results,
8
9 #752 + 25 + 25 + 25 + 100 = 927 cells

In jel:
1 #store the folders in dataframes and export them as .csv files (to reuse them in the n
2 folderA_pd = pd.DataFrame(folderA)
3 folderA_pd.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderA/fold¢
4
5 folderB_pd = pd.DataFrame(folderB)
6 folderB_pd.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/fold
7
8 folderC_pd = pd.DataFrame(foldercC)
9 folderC_pd.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderC/fold
10
11 folderD_pd = pd.DataFrame(folderD)

=y
N

2 CANCER DRUG RECOMMENDATION

2.1 Drug response matrix

Description

folderD_pd.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/foldl

>
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« rows: cancer cell lines
« columns: drugs
« values: IC50s

2.1.1 Download original dataset
GDSC1_fitted_dose_response_25Feb20.xIsx

In [0]:
1 cell_drug_fitResponse = pd.read_excel("/content/drive/My Drive/RecSys_Code/dataset/Druj
2 cell_drug_fitResponse.head(2)

out[6]:

CELL_LINE_NAME DRUG_NAME LN_IC50

0 MC-CAR Erlotinib  2.395685
1 ES3 Erlotinib  3.140923
In [8]:

1 cell_drug_fitResponse.shape
Out[7]:

(310904, 3)

2.1.2 (Brief) Exploratory analysis original dataset

In [0]:

1 #number of distinct cell Llines
2 cells = cell_drug_fitResponse[ 'CELL_LINE_NAME'].unique()
3 cells.shape

out[1@]:

(987,)
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In [@]:

1 cells_freq = cell_drug_fitResponse[ 'CELL_LINE_NAME'].value_counts()
2 cells_freq

Out[11]:

KCL-22 367
SH-4 367
LS-123 367
A253 367
AMO-1 367
ECC12 32
KP-N-RT-BM-1 25
CP67-MEL 23
NCI-H378 2
NCI-H250 1

Name: CELL_LINE_NAME, Length: 987, dtype: int64

In [0]:

1 #number of distinct drugs
2 drugs = cell_drug_fitResponse[ 'DRUG_NAME'].unique() #retrieve drugs names
3 drugs.shape

Out[13]:

(345,)

In [0]:

1 drugs_freq = cell_drug_fitResponse[ 'DRUG_NAME'].value_counts()
2 drugs_freq

Out[18]:

Cisplatin 1879
AZD7762 1878
SN-38 1876
PLX-4720 1869

Avagacestat 1861

Dasatinib 394

Tozasertib 394
Bortezomib 393
JW-7-52-1 384
Rapamycin 358

Name: DRUG_NAME, Length: 345, dtype: int64

2.1.3 Filter the original dataset (from 987 to 927 cell lines)
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In [0]:
1 #from the total of 987 cell lines, we are only interested in 927 cell lines (the ones
2 #import .csv file that contains: (927) cell lines names | assays names [ assays filena
3 cells927_pd = pd.read_csv('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/927Ce
4  cells927_pd.head(2)
4 >
out[28]:
Charactenstlcsllir;‘ eel; Assay Name Array Data File folder
0 UACC-812 5500994173212120213068_A01 5500994173212120213068_A01.cel  raw1
1 201T 5500994158987071513209_A01 5500994158987071513209_A01.cel  raw1
In [0]:

1 cells927 = pd.DataFrame(cells927_pd['Characteristics[cell line]']).rename(columns = {'
2 cells927.head(2)

< 14

out[29]:

CELL_LINE_NAME

0 UACC-812
1 201T
In [0]:

1 #from the original dataframe cell_drug_fitResponse, keep only the results/rows related
2 cell_drug_fitResponse_927 = pd.merge(cell_drug_fitResponse, cells927, on = 'CELL_LINE_
3 cell_drug_fitResponse_927.head(2)

Out[30]:

CELL_LINE_NAME DRUG_NAME LN_IC50

0 MC-CAR Erlotinib  2.395685
1 MC-CAR Rapamycin -0.658244
In [@]:

1 cell_drug_fitResponse_927.shape
Out[31]:

(294425, 3)
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In [0]:

1 #check for cell Llines that appear more than once
2 cell_drug_fitResponse_927['CELL_LINE_NAME'].value_counts()

3

Oout[32]:

KNS-42 367
LS-1034 367
AMO-1 367
SK-MEL-1 367
TE-1 367
MM1S 63
EW-12 41
ECC12 32
NCI-H378 2
NCI-H250 i |

Name: CELL_LINE_NAME, Length: 927, dtype: int64

In [0]:

1 #conclusion: all the cell Lines that appear more than 345 (the number of distinct drug:

>

2.1.4 Final matrix: rows/927 cell lines X columns/345 drugs

2.1.4.1 One cell line - 'LS-1034'

In [@]:

1 #from the filtered dataset, select the rows regarding "LS-1034" and store the result 1ii
2 df_LS_1034 = cell_drug_fitResponse_927[cell_drug_fitResponse_927[ 'CELL_LINE_NAME'] ==
3 df_LS_1034.head(3)

out[34]:

CELL_LINE_NAME DRUG_NAME LN_IC50

95974 LS-1034 Erlotinib  3.587308
95975 LS-1034 Rapamycin -2.160668
95976 LS-1034 Sunitinib  4.013094
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In [@]:

1 #find an example of repeated drug
2 drugs_LS_1034 = df_LS_1034[ 'DRUG_NAME'].value_counts()
3 drugs_LS_1034

Out[35]:

JQ1
Afatinib
Doxorubicin
UNCO638
Selumetinib

NNNNN

AZD8835
Ruxolitinib
Alectinib
Vinorelbine
AZD6094 1

Name: DRUG_NAME, Length: 345, dtype: int64

PR R

In [@]:
1 # drug 'AZD4547' appears twice on the cell line 'LS-1034'
2 AZDA547 = df_LS_1034[df_LS_1034[ 'DRUG_NAME'] == "'AZD4547']
3 AZD4547

Out[36]:

CELL_LINE_NAME DRUG_NAME LN_IC50

96251 LS-1034 AZD4547 4.011553
96334 LS-1034 AZDA4547 2.462752
In [@]:

1 #let's group the previous rows by their mean value
2 AZD4547 = AZD4547.groupby('DRUG_NAME').mean().reset_index()
3 AZD4547

out[37]:

DRUG_NAME LN_IC50

0 AZD4547 3.237153
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In [0]:

1 #replace the duplicated drugs by their mean value
2 df_LS_1034 = df_LS_1034.groupby( 'DRUG_NAME').mean().reset_index()
3 df_LS_1034

out[38]:

DRUG_NAME LN_IC50

0 (5Z)-7-Oxozeaenol  1.530226

1 5-Fluorouracil ~ 1.366590

2 A-443654 -0.406974

3 A-770041 2.177551

4 A-83-01 5.124398
340 ZSTK474  0.903746
341 Zibotentan  5.578559

342 eEF2K Inhibitor, A-484954  5.480570
343 kb NB 142-70  4.062590
344 rTRAIL  -1.095531

345 rows x 2 columns

In [@]:

#test
drug = 'AZD4547'

drug_row

1
2
3
4 drug_row = df_LS_1034[df_LS_1034[ 'DRUG_NAME'] == drug] #row of the dataframe where the
5
6 #3.237153 - 0K, as expected.

Out[39]:

DRUG_NAME LN_IC50

23 AZD4547 3.237153

1) transform the dataframe 'df_LS_1034" into row format

In [0]:

1 cell = list(['LS-1034'])
2 df_cell = pd.DataFrame(cell, columns = ['cell line'])
3 df_cell

Out[40]:

cell line

0 LS-1034
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In [0]:
1 df_drugs = df_LS_1@34.transpose()
2 df_drugs
Out[41]:
0 1 2 3 4 5 6
(52)-7- 2 A- A8 ACY-  AGk Al

DRUG_NAME  eaenol Fluorouracl 443654 770041 01 1215 6780 Ribonucleoti

LN_ICS0 153023  1.36650 -0.406974 217755 51244 3.85712 2.16919 8.960

2 rows x 345 columns

In [0]:

1 df_drugs = df_drugs.rename(columns = df_drugs.iloc[@]).drop(index = 'DRUG_NAME")
2 df_drugs

Oout[42]:
(52)-7- 5- A-443654 A- A-83- ACY- AGI- AICA
Oxozeaenol Fluorouracil 770041 01 1215 6780 Ribonucleotide
LN_IC50 1.53023 1.36659 -0.406974 2.17755 5.1244 3.85712 2.16919 8.9606¢

1 rows x 345 columns

In [@]:

1 df_drugs = df_drugs.reset_index(drop=True)
2 df = pd.concat([df_cell, df_drugs], axis = 1)

3 df
Out[43]:
cell (52)-7- 5- A-443654 A-  A-83- ACY- AGI- AICA
line Oxozeaenol Fluorouracil 770041 01 1215 6780 Ribonucleotide
0 1 (I)‘:f ‘; 1.563023 1.36659 -0.406974 2.17755 5.1244 3.85712 2.16919 8.96068

1 rows x 346 columns

2) Create an empty dataframe to store the final response matrix and append the previous row
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In [@]:
1 #empty dataframe to store the final matrix (1 cell line x 345 drugs)
2 df_drug = pd.DataFrame(columns = drugs) #empty dataframe
3 df_cell_line = pd.DataFrame(columns = ['cell line']) #empty dataframe
4 drug_response_matrix_ln = pd.concat([df_cell_line, df_drug], axis = 1) #concatenate pr
5 drug_response_matrix_ln.head(2) #3065 columns = 1 cell line + 346 drugs. OK
Out[44]:
cell . . o PHA- MG- . " .
line Erlotinib Rapamycin Sunitinib 665752 132 Paclitaxel Cyclopamine AZ628 Sorafenil

0 rows x 346 columns
4 »
In [0]:

1 drug_response_matrix_ln = drug_response_matrix_ln.append(df.iloc[0])
2 drug_response_matrix_ln

Out[45]:
cell Eotinib Rapamycin Sunitinib . FHA*  MG-132 Paclitaxel Cyclopamine  AZ62¢
line pamy 665752 yelop:

0 |5, 3587308 2160668 4013094 3560745 0950043 2268914 5134507 2.50315¢

1 rows x 346 columns

< >

2.1.4.2 927 cell lines

In [0]:
1 #empty dataframe to store the final matrix (i.e. drug response matrix with shape(927, 3«
2 df_drug = pd.DataFrame(columns = drugs) #empty dataframe
3 df_cell_line = pd.DataFrame(columns = ['cell line']) #empty dataframe
4 drug_response_matrix_1n = pd.concat([df_cell_line, df_drug], axis = 1) #concatenate pr
5 drug_response_matrix_ln.head(2) #3065 columns = 1 cell line + 345 drugs. OK

Out[46]:
cell PHA- MG-

Erlotinib Rapamycin Sunitinib 665752 132 Paclitaxel Cyclopamine AZ628 Sorafenil

line

0 rows x 346 columns

4 >
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In [0]:
1 cells_927 = list(cell_drug_fitResponse_927['CELL_LINE_NAME'].unique())
2 len(cells_927) #0K. 927 cell Llines as expected.
out[47]:
927
In [@]:
1 #generate "drug_response_matrix_Ln" (with LN IC50 values) and export it as .csv file
2 n=20
3
4 for cell in cells_927:
5 df_cell = cell_drug_fitResponse_927[cell_drug_fitResponse_927['CELL_LINE_NAME'] == c
6 df_cell = df_cell.groupby( 'DRUG_NAME').mean().reset_index() #replace the drug duplici
7 #after this command, df_:
8
9
10
11 #1)transform df_cell into row format
12 cell_list = list([cell])
13 cell _df = pd.DataFrame(cell_list, columns = ['cell line'])
14
15 drugs_df = df_cell.transpose() #transform columns in rows
16 drugs_df = drugs_df.rename(columns = drugs_df.iloc[@]).drop(index = 'DRUG_NAME')
17 drugs_df = drugs_df.reset_index(drop=True)
18
19 df = pd.concat([cell_df, drugs_df], axis = 1)
20
21 #2)append df to the final matrix
22 drug_response_matrix_1n = drug_response_matrix_1ln.append(df.iloc[@])
23
24 n+=1
25 if n==100 or n==200 or n==300 or n==400 or n==500 or n==600 or n==700 or n==800 or n:
26 print("Progress report:", n, "cell lines were added to the Drug Response Matrix")
27
28 if n==927:
29 print(“"Task completed. Saving Drug Response Matrix into file drugResponseMatrix_ln
30 drug_response_matrix_1ln.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/Drugs
31
32
33

]

Progress report: 100 cell lines were added to the Drug Response Matrix
Progress report: 200 cell lines were added to the Drug Response Matrix
Progress report: 300 cell lines were added to the Drug Response Matrix
Progress report: 400 cell lines were added to the Drug Response Matrix
Progress report: 500 cell lines were added to the Drug Response Matrix
Progress report: 600 cell lines were added to the Drug Response Matrix
Progress report: 700 cell lines were added to the Drug Response Matrix
Progress report: 800 cell lines were added to the Drug Response Matrix
Progress report: 900 cell lines were added to the Drug Response Matrix
Task completed. Saving Drug Response Matrix into file drugResponseMatrix_1n.

csv
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In [@]:
1 drug_response_matrix_1n.shape
Out[49]:

(927, 346)

In [0]:

1 drug_response_matrix_ln.head()

Out[50]:
cell  Erotinib Rapamycin Sunitinb P2 MG.132 Paclitaxel Cyclopamine  AZ628
line 665752
o YO 2305685 0658244 2161005 2613997 0530615 -3.647573 4296779 2.055377
0 ES3 3140923 -0.067752 3.043634 2935678 1.296998 -0.356496 4.887534 2.070470
0 ES5 3968757  0.586881 3.774145 2.696152 0.930800 0.680364 5605762 2.666071
0 ES7 2692768 -0.025451 2.991234 2491081 0.550690 0.075821 4.998695 2.392732
o BW 2478678 2123150 3600042 2775492 0.232020 0.920329 5716290 1.087535

11

5 rows x 346 columns

In [@]:
1 drug_response_matrix_1n.shape
Out[51]:

(927, 346)

In [0]:

1 #check if the row regarding cell "LS-1034" matches with previous section "One cell Lin
2 LS_1034_row = drug_response_matrix_ln[drug_response_matrix_1ln['cell line'] == 'LS-1034
3 LS_1034_row

4 #Conclusion: OK. It matches.

Out[52]:
cell  ciotinib Rapamycin Sunitinib . FHA"  MG-132 Paclitaxel Cyclopamine  AZ62¢
line 665752

0 15;: 3587308  -2.160668 4.013094 3.569745 0950943 -2.268914 5.134507 2.50315¢

1 rows x 346 columns

] 2

100



Wavelet-Based Cancer Drug Recommender System

In [@]:

1 #check matrix sparsity (by columns)
2 drug_response_matrix_1ln.isnull().sum()

out[53]:

cell line 0
Erlotinib 551
Rapamycin 586
Sunitinib 549
PHA-665752 540
AZD1332 40
TTK_3146 41
SN-38 19
Pevonedistat 261
PFI-3 119

Length: 346, dtype: int64

In [0]:
1 #check matrix sparsity (total)
2 drug_response_matrix_ln.isnull().sum().sum()
3 #Conclusion: 927 X 345 = 319 815; 42 594 / 319 815 = 13,32% of missing values
4 #I.e., Among the 948 X 345 = 319 815 interacting pairs (cell-drug), 86,68% of the IC560
5 #and 13,32% of the IC50 are missing.
6
Out[54]:
42594

2.1.5 :: Export drug_response_matrix_In as .csv file

In [@]:
1 #export "drug_response_matrix_Ln" (with LN IC50 values) as .csv file (already done in

2  #drug_response_matrix_Ln.to_csv(r"/content/drive/My Drive/RecSys_Code/dataset/DrugScre
3

2.2 IC50s
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In [@]:

1 drug_response_matrix_1ln = pd.read_csv("/content/drive/My Drive/RecSys_Code/dataset/Druj

2 drug_response_matrix_1n.head()

Out[55]:
cell e otinib Rapamycin Sunitinib PHA- 5 132 Paclitaxel Cyclopamine  AZ628
line 665752
0 CMACR' 2.395685  -0.658244 2161095 2.613997 0.530615 -3.647573 4296779 2.055377
1 ES3 3.140923 -0.067752 3.043634 2.935678 1.296998 -0.356496 4.887534 2.070470
2 ES5 3.968757  0.586881 3.774145 2.696152 0.930800 0.680364 5695762 2.666071
3 ES7 2692768  -0.025451 2991234 2491081 0.550690 0.075821 4.998695 2.392732
4 BW- 5478678 2123150 3600042 2775492 0.232020 0.920329 5716290 1.087535

11

5 rows x 346 columns

In [0]:
1 drug_response_matrix_ln.shape
Out[56]:
(927, 346)
We follow the method in "Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic

and Chemical Properties" Paper 5.1. to normalize the logarithmic IC50 values into a (0, 1) interval.

« 0 - most sensitive
« 1 - most resistant

For cell-drug pairs that lack IC50 values, we set their normalized IC50 to 0.5 (neutral point).

2.2.1 From LN IC50s to IC50s

In [@]:

1 drug_response_matrix_ic50 = drug_response_matrix_ln.iloc[:, 1:346].transform(func =

e

>

102



Wavelet-Based Cancer Drug Recommender System

In [0]:
1 drug_response_matrix_ic50.head()
Out[58]:
Erlotinib Rapamycin Sunitinib 2> MG-132 Paclitaxel Cyclopamine  AZ628
0 10975714 0517760 8.680638 13.653515 1.609977 0.026054  73.462789  7.809782
1 23125202  0.934492 20981351 18.834268 3.658298 0700125  132.626114  7.928549
2 52918712 1798371 43560248 14.822585 2.536538 1.974506  297.603481 14.383346
3 14772510 0974870 19.910237 12074321 1.734449 1.078769  148.219606 10.943350
4 11925488  0.119653 36.632726 16.046520 1261145 2510116  303.775821 2.966952 |

5 rows x 345 columns

2.2.2 Normalize IC50s

In [0]:

1 drug_response_matrix_norm

In [@]:

= drug_response_matrix_ic50.transform(func

1 drug_response_matrix_norm.head()

lambda x : (1/(

out[60]:
i . — PHA- . . 5
Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ628 Sor:
0 0.559607 0.483550 0.553818 0.564980 0.513262 0.409808 0.605797 0.551204 0.5
1 0.577884 0.498306 0.575509 0.572869 0.532380 0.491089 0.619813 0.551578 0.5!
2 0.597937 0.514668 0.593249 0.566998 0.523253 0.517003 0.638665 0.566260 0.5
3 0.566915 0.499364 0.574228 0.561957 0.513764 0.501896 0.622429 0.559535 0.5
4 0.561652 0.447120 0.589063 0.568945 0.505800 0.522992 0.639139 0.527162 0.6t

5 rows x 345 columns

]

In [@]:

1 drug_response_matrix_norm.max().max() #the most resistant value

Out[61]:

0.7748505206703983
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In [@]:

1 drug_response_matrix_norm.min().min()

out[62]:

0.2694718762793556

2.2.3 Set missing IC50 values equal to 0.5

In [@]:

1 drug_response_matrix_norm_withoutMissingValues = drug_response_matrix_norm.fillna(@.5)

In [0]:

1 drug_response_matrix_norm_withoutMissingValues.head()

#the most sensitive value

out[64]:
_— . s PHA- ” .

Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ628 Sor:
0 0.559607 0.483550 0.553818 0.564980 0.513262  0.409808 0.605797 0.551204 0.5
1 0.577884 0.498306 0.575509 0.572869 0.532380 0.491089 0.619813 0.551578 0.5!
2 0.597937 0.514668 0.593249 0.566998 0.523253 0.517003 0.638665 0.566260 0.5
3 0.566915 0.499364 0.574228 0.561957 0.513764 0.501896 0.622429 0.559535 0.5
4 0.561652 0.447120 0.589063 0.568945 0.505800 0.522992 0.639139 0.527162 0.6t

5 rows x 345 columns

In [0]:

1 drug_response_matrix_norm_withoutMissingValues.shape

Out[65]:

(927, 345)

2.2.4 :: Export drug_response_matrix_norm_withoutMissingValues as .csv

file

1) Add column "cell line" to the previous dataframe
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In [@]:

1 drug_response_matrix_norm_withoutMissingValues.insert(®, 'cell line', drug_response_mat
2 drug_response_matrix_norm_withoutMissingValues.head()

Out[66]:
cell  Eotinib R in Sunitinb . "HA* MG132 Paclitaxel Cyclopami AZ628
line riotini apamycin unitni 665752 aclitaxe yclopamine
0 M 0550607 0483550 0553818 0564980 0513262 0409808 0605797 0.551204
1 ES3 0577884 0498306 0575509 0572869 0532380 0491089  0.619813 0.551578
2 ES5 0597937 0514668 0593249 0566998 0.523253 0517003  0.638665 0.566260
3 ES7 0566915 0499364 0574228 0561957 0513764 0501896  0.622429 0.559536
4 BYW- 0561652 0447120 0.589063 0.568945 0.505800 0.522992 0639139 0.527162

"

5 rows x 346 columns

In [0]:

1 drug_response_matrix_norm_withoutMissingValues.shape

out[67]:

(927, 346)

In [@]:

1 drug_response_matrix_norm_withoutMissingValues[drug_response_matrix_norm_withoutMissin

out[68]:
cell s ) s s PHA- . r
line Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine Al
UACC-
261 812 0.58974 0.448857 0.5 0.563572 0.535375 0.5 0.638925 0.58

1 rows x 346 columns
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In [@]:

1 drug_response_matrix_norm_withoutMissingValues[drug_response_matrix_norm_withoutMissin

out[69]:

cell s P i PHA- MG- . :

line Erlotinib Rapamycin Sunitinib 665752 132 Paclitaxel Cyclopamine AZ628 €
773 201T 0.5 0.5 0.5 05 05 0.5 0.5 0.5

1 rows x 346 columns

4 >
2) Add column "array data file" to the previous dataframe

In [@]:

1 #import .csv file that contains: (927) cell Llines names | assays names [ assays filena
2 cells927 _pd_2 = pd.read_csv('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/927(
3 cells927_pd_2.head(2)

< >

out[7e]:
Characteristics[cell line] Array Data File
0 UACC-812 5500994173212120213068_A01.cel
1 201T 5500994158987071513209_A01.cel
In [0]:
1 #rename columns
2 cells927 pd_2 = cells927_pd_2.rename(columns = {"Characteristics[cell line]":"cell lin
3 print(cells927_pd_2.shape)
4 print(cells927_pd_2.head(2))

In [6]:

1 drug_response_matrix_norm_withoutMissingValues = cells927_pd_2.merge(drug_response_mat
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In [@]:

1 drug_response_matrix_norm_withoutMissingValues.head(5)

Out[73]:
cell o . p— PHA- "
line array data file Erlotinib Rapamycin Sunitinib 665752 MG-13z
0 UAg% 5500994173212120213068_A01.cel 0.589740 0.448857 0.500000 0.563572 0.53537¢

1 201T 5500994158987071513209_A01.cel 0.500000 0.500000 0.500000 0.500000 0.50000C
EVSA-

2 T 5500994172383112813929_A01.cel 0.569937 0.430087 0.548258 0.570864 0.465061
3 KYSE(; 5500994158987071513202_A01.cel 0.500000 0.500000 0.500000 0.500000 0.50000C

4 MS751 5500994158987071513207_A01.cel 0.500000 0.500000 0.500000 0.500000 0.50000C

5 rows x 347 columns

In [@]:
1 drug_response_matrix_norm_withoutMissingValues.shape
Out[74]:
(927, 347)
3) Export the final matrix (normalized and with missing values set to 0.5) as .csv file (to reuse it in notebook
STAGE2_EXP2.ipynb)
In [0]:

1 #export the final matrix (normalized and with missing values set to ©.5) as .csv file

2 drug_response_matrix_norm_withoutMissingValues.to_csv(r"/content/drive/My Drive/RecSys,

>

2.3 Top-N similar cell lines

2.3.1 Folder B
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In [@]:

1 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderB/-
2 folderB = list(folderB[0])
3 folderB[©@]

Oout[76]:

'5500994158987071513209_EQ9.cel’

In [0]:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

for cell in folderB:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell_name = os.path.splitext(cell)[@] #removes the extension .cel from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderB_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderl
similar_path = os.path.join(similar_folderB_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar images

dissimilar_folderB_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderB_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dat

Analysing cell/image: 5500994158987071513209_E@9.cel
Current folder under analysis: rawl

Current folder under analysis: raw5

Current folder under analysis: rawl@

Current folder under analysis: rawl5

Current folder under analysis: raw20

Current folder under analysis: raw25

Analysing cell/image: 5500994158987071513207_G11.cel
Current folder under analysis: rawl

Current folder under analysis: raw5

Current folder under analysis: rawl@

Current folder under analysis: rawl5

Current folder under analysis: raw20

2.3.2 Folder C

In [@]:

1 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/foldercC/
2 folderC = list(folderC[0])
3 folderc[0]
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In [@]:

for cell in folderC:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell_name = os.path.splitext(cell)[@] #removes the extension .cel from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderC_path = "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/foldenr(
similar_path = os.path.join(similar_folderC_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar 1images

dissimilar_folderC_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderC_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dat

2.3.3 Folder D

In [0]:

1 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
2 folderD = list(folderD[0])
3 folderD[@]

In [@]:

for cell in folderD:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell_name = os.path.splitext(cell)[@] #removes the extension .cel from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderD_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderl
similar_path = os.path.join(similar_folderD_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar 1images

dissimilar_folderD_path = "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderD_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dati

2.4 Drug candidates generation
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In [0]:

1 drug_response_matrix_norm_withoutMissingValues = pd.read_csv("/content/drive/My Drive/|
2 drug_response_matrix_norm_withoutMissingValues.head(2)

Out[9]:
;z! array data file Erlotinib Rapamycin Sunitinib 66?;5‘\2- MG-132
0 UAg% 5500994173212120213068_A01.cel  0.58974 0.448857 0.5 0.563572 0.535375
1 201T 5500994158987071513209_A01.cel  0.50000 0.500000 0.5 0.500000 0.500000

2 rows x 347 columns

2.41 Folder B

STEP 1: For every new user (i.e. cell line in folder B), retrieve the most similar user (top-1 similarity) and store
that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user | ssim [ ar
2 columns= ['new user', 'similar user', 'ssim', ‘array data file']
3 index = list(range(25)) #25 rows (one for every new user)
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder B
8 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderB/-
9 folderB = list(folderB[0])
10 folderB = [(str(os.path.splitext(cell)[©])) for cell in folderB]
11 folderB[@] #e.g. '5500994158987071513209_E09'
12
13
14 #access to the .csv files which contain the top-50 similar cell Llines
15 folderB_experimentl_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fold¢
16
17
18 #for every new user (i.e. cell Lline in folder B), retrieve the most similar user (top-:
19 #and store that info in the "df1" dataframe
20
21 {ln=0
22
23 for cell in folderB:
24
25 cell_csv = cell + '.csv'
26 path_cell = os.path.join(folderB_experimentl_path, cell_csv)
27 df_cell = pd.read_csv(path_cell)
28
29 dfl.loc[n].at['new user'] = cell + '.jpg'
30 dfl.loc[n].at['similar user'] = df_cell.loc[1].at["'image']
31 dfl.loc[n].at['ssim'] = df_cell.loc[1].at["'SSIM']
32
33 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C160.jpg
34 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
35 dfl.loc[n].at['array data file'] = array_data_file
36 n+=1
37
38 dfl.head(2)
39
out[10]:
new user similar user ssim
0 5500994158987071513209_E09.jpg 5500994158987071513209_E12.cel 0.744766 55009941589870

1

5500994158987071513207_G11.jpg 5500994158987071513207_C09.cel 0.754121 55009941589870

>

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe
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In [0]:
1 #store the similar users .cel filenames (e.g."5500994158987071513209 E12.cel") into a
2 similar_users = dfl.loc[:, 'array data file'].tolist()
3
4
5 #retrieve rows, from drug response matrix, that belong to the similar users
6 df2 = drug_response_matrix_norm_withoutMissingValues
7
8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl is kept (i.e., the 1st index belongs to the 1st similar
10
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]
13 indexes.append(index)
14 noes d
15
16
17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])
20
21 df2.head()
22
out[11]:
cell - N P PHA- . .
line Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ6
0 ES-2 0.569146 0.500000 0.555500 0.527795 0.468730 0.434597 0.596898 0.4888
1 SNB75 0.598558 0.500000 0.585036 0.591141 0.502335 0.398194 0.621480 0.5913
2 PN 0500000 0500000 0500000 0500000 0500000 0.500000 0500000 0.5000
3 BC-1 0.571770 0.447419 0.562951 0.544063 0.509149 0.462440 0.586561 0.5383
4 SUIT-2 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.5000

5 rows x 346 columns

4

STEP 3: Concatenate df1 and df2
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In [0]:

1 drug_candidates_generation_folderB = pd.concat([df1,
2 drug_candidates_generation_folderB.head(25)

Out[12]:

new user

similar user

df2], axis = 1)

ssim

10

1

12

13

14

15
16
17
18
19
20

21

22

23
24

5500994158987071513209_E09.jpg
5500994158987071513207_G11.jpg

5500994158987071513209_F08.jpg

5600994158987071513209_A10.jpg
5500994173212120213068_B04.jpg

5500994158987071513201_A08.jpg

5500994172383112813928_F06.jpg

5500994172383112813928_B03.jpg
5500994158987071513209_G04.jpg
5500994158987071513207_G07.jpg

5500994172383112813929_F11.jpg

5500994172383112813930_C02.jpg

5500994175999120813240_H10.jpg
5500994157493061613625_D11.jpg
5500994158987071513202_D01.jpg

5500994158987071513207_C10.jpg
5500994157493061613625_D08.jpg
5500994158987071513202_G09.jpg
5500994158987071513207_D12.jpg
5500994172948120113978_C09.jpg
5500994172383112813929_D11.jpg

5500994158987071513201_C06.jpg

5500994157493061613625_A07.jpg

5500994172383112813929_F06.jpg
5500994172383112813930_H09.jpg

25 rows x 350 columns

5500994158987071513209_E12.cel
5500994158987071513207_C09.cel

5500994158987071513201_H04.cel

5500994158987071513209_H03.cel
5500994172383112813928_C03.cel

5500994172383112813930_C02.cel

5500994172383112813930_D05.cel

5500994172383112813929_D06.cel
5500994158987071513209_D08.cel
5500994158987071513207_D07.cel
5500994172383112813928_B11.cel

5500994158987071513201_G12.cel

5500994172948120113978_H05.cel
5500994158987071513209_D05.cel
5500994158987071513201_BO06.cel

5500994158987071513202_C05.cel
5500994157493061613625_E03.cel
5500994172948120113978_H04.cel
5500994157493061613625_C11.cel
5500994172948120113978_D01.cel
5500994172383112813929_E08.cel

5500994173603120813304_A10.cel

5500994158987071513201_GO03.cel

5500994172383112813929_B01.cel
5500994172383112813928_F01.cel

0.744766
0.754121

0.762577

0.774402
0.73787

0.765332

0.749291

0.817804
0.786151
0.774367
0.691162

0.778825

0.674877

0.730805

0.764124

0.773456
0.713918
0.755039
0.746729
0.737993
0.759326

0.7067

0.811949

0.742445
0.76188

5500994158987
5500994158987

5500994158987

5500994158987
5500994172383

5500994172383

5500994172383

5500994172383
5500994158987
5500994158987
550099417238¢

5500994158987

5500994172948

5500994158987

5500994158987

5500994158987
5500994157493
5500994172948
5500994157493
5500994172948
5500994172383

5500994173603

5500994158987

5500994172383
550099417238¢
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In [@]:

1 #check sparsity (remember: IC560 values not available were replaced by ©.5)
2 sparsityB = drug_candidates_generation_folderB[drug_candidates_generation_folderB.iloc
3 sparsityB

Out[13]:

565

2.4.2 Folder C

STEP 1: For every new user (i.e. cell line in folder C), retrieve the most similar user (top-1 similarity) and store
that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user | ssim [ ar
2 columns= ['new user', 'similar user', 'ssim', 'array data file' ]
3 index = list(range(25))
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder C
8 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/foldercC/
9 folderC = list(folderC[0])
10 folderC = [(str(os.path.splitext(cell)[0])) for cell in folderC]
11 folderC[@] #e.g. '5500994158987071513209_E09'
12
13
14 #access to the .csv files which contain the top-50 similar cell Llines
15 folderC_experimentl_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fold¢
16
17
18 #for every new user (i.e. cell Lline in folder C), retrieve the most similar user (top-:
19 #and store that info in the "df1" dataframe
20
21 {ln=0
22
23 for cell in folderC:
24
25 cell_csv = cell + '.csv'
26 path_cell = os.path.join(folderC_experimentl_path, cell_csv)
27 df_cell = pd.read_csv(path_cell)
28
29 dfl.loc[n].at['new user'] = cell + '.jpg'
30 dfl.loc[n].at['similar user'] = df_cell.loc[1].at["'image"]
31 dfl.loc[n].at['ssim"'] = df_cell.loc[1].at["'SSIM']
32
33 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C160.jpg
34 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
35 dfl.loc[n].at['array data file'] = array_data_file
36 n+=1
37
38
39 dfl.head(2)
40
Out[14]:

new user similar user ssim

0 5500994158987071513201_G04.jpg 5500994175999120813240_D04.cel 0.654131 55009941759991

1 5500994158987071513209_G10.jpg 5500994158987071513202_E10.cel  0.76525 55009941589870

<

»

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe
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In [0]:
1 #store the similar users .cel filenames (e.g."5500994158987071513209 E12.cel") into a
2 similar_users = dfl.loc[:, 'array data file'].tolist()
3
4
5 #retrieve rows, from drug response matrix, that belong to the similar users
6 df2 = drug_response_matrix_norm_withoutMissingValues
7
8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl1 is kept (i.e., the 1st index belongs to the 1st similar
10
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]
13 indexes.append(index)
14 noes d
15
16
17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])
20
21 df2.head(2)
Out[15]:
I‘:g: Erlotinib Rapamycin Sunitinib seggsAz- MG-132 Paclitaxel Cyclopamine  AZ628
0 R:CH\; 0.500000 0.5 0.500000 0.50000 0.500000 0.500000 0.50000 0.500000
1 GSR.I: 0.593271 0.5 0.567969 0.58731 0.540033 0.430408 0.59567 0.549635

2 rows x 346 columns

<

STEP 3: Concatenate df1 and df2
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In [@]:

1 drug_candidates_generation_folderC = pd.concat([df1,
2 drug_candidates_generation_folderC.head(25)

Out[16]:

new user

similar user

df2], axis = 1)

ssim

10

1"

12

13

14

15

16

17

18

19

20

21

22

5500994158987071513201_G04.jpg

5500994 158987071513209_G10.jpg
5500994172383112813929_H11.jpg

5500994172948120113978_D06.jpg

5500994157493061613625_F09.jpg

5500994158987071513207_A10.jpg

5500994175999120813240_D09.jpg

5500994172383112813928_C02.jpg
5500994173212120213068_D01.jpg

5500994173603120813304_H10.jpg

5500994172383112813930_F03.jpg

5500994 172383112813930_G11.jpg

5500994172383112813928_DO06.jpg
5500994157493061613625_A12.jpg

5500994158987071513207_D09.jpg

5500994172383112813930_C06.jpg
5500994158987071513201_C04.jpg
5500994158987071513209_F03.jpg
5500994158987071513209_E07.jpg

5500994172383112813928_A03.jpg

5500994175999120813240_C11.jpg

5500994158987071513202_B06.jpg

5500994158987071513201_E07.jpg

5500994175999120813240_D04.cel

5500994158987071513202_E10.cel
5500994172383112813928_F11.cel

5500994158987071513201_B09.cel

5500994158987071513201_B06.cel

5500994173212120213068_D07.cel

5500994175999120813240_B11.cel

5500994172383112813928_C12.cel
5500994172383112813929_B05.cel

5500994158987071513207_F04.cel

5500994158987071513201_E07.cel

5500994158987071513207_GO05.cel

5500994172383112813928_H11.cel
5500994157493061613625_A06.cel

5500994158987071513201_C08.cel

5500994172383112813928_F07.cel
5500994158987071513207_B11.cel
5500994158987071513202_E11.cel
5500994158987071513209_D12.cel

5500994172383112813929_E04.cel

5500994172383112813930_G05.cel

5500994157493061613625_B08.cel

5500994172383112813930_F03.cel

0.654131

0.76525
0.732257

0.734016

0.78136

0.789542

0.774402

0.775961

0.69964

0.787144

0.775811

0.776452

0.732648

0.763146

0.779163

0.803567

0.810649

0.71624

0.784199

0.802642

0.726803

0.705583

0.775811

5500994175999

5500994158987
550099417238:¢

5500994158987

5500994158987

5500994173212

550099417599¢

5500994172383

5500994172383

5500994158987

5500994158987

5500994158987

5500994172382

5500994157493

5500994158987

550099417238¢

5500994158987

5500994158987

5500994158987

5500994172383

5500994172383

5500994157493

550099417238¢
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new user similar user ssim

23 5500994158987071513207_H10.jpg 5500994172383112813928_C12.cel 0.792985 5500994172383

24 5500994158987071513209_E12.jpg 5500994172383112813928_A06.cel  0.76942 5500994172383

25 rows x 350 columns

In [@]:

1 #check sparsity (remember: IC560 values not available were replaced by 6.5)
2 sparsityC = drug_candidates_generation_folderC[drug_candidates_generation_folderC.iloc
3 sparsityC

Out[17]:

1406

2.4.3 Folder D

STEP 1: For every new user (i.e. cell line in folder D), retrieve the most similar user (top-1 similarity) and store
that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user [ ssim [ ar
2 columns= ['new user', 'similar user', 'ssim', 'array data file' ]
3 index = list(range(25))
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder D
8 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
9 folderD = list(folderD[0])
10 folderD = [(str(os.path.splitext(cell)[©])) for cell in folderD]
11 folderD[@] #e.g. '5500994158987071513209_E09'
12
13
14 #access to the .csv files which contain the top-50 similar cell Llines
15 folderD_experimentl_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fold¢
16
17
18 #for every new user (i.e. cell Lline in folder D), retrieve the most similar user (top-:
19 #and store that info in the "df1" dataframe
20
21 {ln=0
22
23 for cell in folderD:
24
25 cell_csv = cell + '.csv'
26 path_cell = os.path.join(folderD_experimentl_path, cell_csv)
27 df_cell = pd.read_csv(path_cell)
28
29 dfl.loc[n].at['new user'] = cell + '.jpg'
30 dfl.loc[n].at['similar user'] = df_cell.loc[1].at["'image"]
31 dfl.loc[n].at['ssim'] = df_cell.loc[1].at["'SSIM']
32
33 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C160.jpg
34 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
35 dfl.loc[n].at['array data file'] = array_data_file
36 n+=1
37
38
39 dfl.head(2)
Out[18]:
new user similar user ssim
0 5500994173212120213068_F06.jpg 5500994158987071513201_G08.cel 0.732 55009941589870

1

5500994158987071513202_G03.jpg 5500994158987071513202_A04.cel 0.788274 55009941589870

»

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe
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In [0]:

#store the similar users .cel filenames (e.g."5500994158987071513209 E12.cel") into a
similar_users = dfl.loc[:, 'array data file'].tolist()

df2 = drug_response_matrix_norm_withoutMissingValues

1

2

3

4

5 #retrieve rows, from drug response matrix, that belong to the similar users

6

7

8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl1 is kept (i.e., the 1st index belongs to the 1st similar
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]

13 indexes.append(index)
14 n+=1

15

16

17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])

21 df2.head(2)

Out[19]:
cell . . e PHA- . .
line Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ(
0 H1'\‘5((:5|8- 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500(
KINGS-
1 1 0.585343 0.397651 0.585886 0.460329 0.460236 0.405243 0.635257 0.523¢

2 rows x 346 columns

4 4

STEP 3: Concatenate df1 and df2
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In [@]:

1 drug_candidates_generation_folderD = pd.concat([df1,
2 drug_candidates_generation_folderD.head(25)

Out[20]:

new user

similar user

df2], axis = 1)

ssim

10

1
12
13
14
15
16

17

18
19
20

21

22

23

24

5500994173212120213068_F06.jpg

5500994 158987071513202_G03.jpg
5500994158987071513202_A06.jpg
5500994158987071513201_E06.jpg

5500994158987071513207_E05.jpg

5500994172383112813928_C03.jpg

5500994158987071513202_C01.jpg
5500994157493061613625_G07.jpg

5500994158987071513201_C05.jpg
5500994158987071513201_DO06.jpg
5500994172383112813929_A09.jpg

5500994158987071513201_D07.jpg
5500994172948120113978_C03 jpg
5500994157493061613625_B01.jpg
5500994172383112813928_C07.jpg
5500994157493061613625_G02.jpg
5500994158987071513209_B12.jpg

5500994158987071513201_E11.jpg

5500994172383112813928_G11.jpg
5500994158987071513202_C06.jpg
5500994172383112813929_F02.jpg

5500994158987071513201_C12.jpg
5500994173212120213068_D05.jpg
5500994158987071513202_A01.jpg

5500994157493061613625_F04.jpg

25 rows x 350 columns

5500994158987071513201_G08.cel

5500994158987071513202_A04.cel
5500994158987071513209_E12.cel
5500994175999120813240_C08.cel

5500994158987071513207_H10.cel

5500994172383112813930_B02.cel

5500994158987071513209_H10.cel
5500994172383112813930_C07.cel

5500994172383112813928_B01.cel
5500994158987071513202_F08.cel
5500994158987071513201_B06.cel

5500994172383112813928_EO01.cel
5500994172948120113978_E11.cel
5500994157493061613625_C08.cel
5500994172383112813928_C09.cel
5500994172383112813928_F12.cel
5500994158987071513202_B02.cel

5500994158987071513201_B06.cel

5500994172383112813930_D12.cel
5500994173212120213068_H08.cel
5500994172383112813929_G03.cel

5500994172383112813930_B01.cel
5500994158987071513207_C09.cel
5500994158987071513202_A05.cel

5500994172383112813929_H10.cel

0.732

0.788274
0.756887
0.73558

0.789839

0.749748

0.734725
0.806106

0.758861

0.731668

0.792263

0.702753
0.747097
0.798118
0.730629
0.774692
0.760935

0.782648

0.779884
0.765912
0.737251

0.712978

0.759586

0.731257

0.732153

5500994158987

5500994158987
5500994158987
5500994175999

5500994158987

5500994172382

5500994158987
5500994172383

5500994172382

5500994158987

5500994158987

5500994172382
550099417294¢
5500994157493
5500994172383
550099417238¢
5500994158987

5500994158987

5500994172383
5500994173212
5500994172383

5500994172383

5500994158987

5500994158987

5500994172383
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In [@]:
1 #check sparsity (remember: IC560 values not available were replaced by ©.5)
2 sparsityD = drug_candidates_generation_folderD[drug_candidates_generation_folderD.iloc
3 sparsityD

Out[21]:

1293

2.5 Drug candidates score

2.5.1 Folder B

In [8]:

1 #SSIM x IC50s

2 drug_candidates_score_folderB = drug_candidates_generation_folderB.iloc[:, 5:350].mult

3

4 #add columns "new user", "similar user"”, "ssim", "array data file", "cell line"

5 drug_candidates_score_folderB = pd.concat([drug_candidates_generation_folderB.iloc[:,0

6

7 drug_candidates_score_folderB.head(2)

>
Out[22]:
new user similar user ssim
0 5500994158987071513209_E09.jpg 5500994158987071513209_E12.cel 0.744766 55009941589870

1

5500994158987071513207_G11.jpg 5500994158987071513207_C09.cel 0.754121 55009941589870

2 rows x 350 columns

2.5.2 Folder C
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In [0]:
1 #SSIM x IC56s
2 drug_candidates_score_folderC = drug_candidates_generation_folderC.iloc[:, 5:350].mult
3
4 #add columns "new user", "similar user"”, "ssim", "array data file", "cell line"
5 drug_candidates_score_folderC = pd.concat([drug_candidates_generation_folderC.iloc[:,@
6
7 drug_candidates_score_folderC.head(2)

Out[23]:

new user similar user ssim

0 5500994158987071513201_G04.jpg 5500994175999120813240_D04.cel 0.654131 55009941759991

1 5500994158987071513209_G10.jpg 5500994158987071513202_E10.cel  0.76525 55009941589870

2 rows x 350 columns

2.5.3 Folder D

In [@]:

#SSIM x IC50s

drug_candidates_score_folderD = drug_candidates_generation_folderD.iloc[:, 5:350].mult

drug_candidates_score_folderD = pd.concat([drug_candidates_generation_folderD.iloc[:,0

i §
2
3
4 #add columns "new user”, "similar user”, "ssim", "array data file", "cell line"
5
6
7

drug_candidates_score_folderD.head(2)
out[24]:

new user similar user ssim

0 5500994173212120213068_F06.jpg 5500994158987071513201_G08.cel 0.732 55009941589870

1 5500994158987071513202_G03.jpg 5500994158987071513202_A04.cel 0.788274 55009941589870

2 rows x 350 columns

2.6 Top-N recommendation list
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2.6.1 Folder B

In [@]:
1 #import folder B
2 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderB/-
3 folderB = list(folderB[0])
4 folderB = [(str(os.path.splitext(cell)[0])) for cell in folderB] #e.g. '55009941589870
5:
6 #create empty dictionary to store the top20 recommendations; key values correspond to
7 #e.g. folderB_top20 rec[ '5500994158987671513209 E09'] gives the top-20 recommendations
8 folderB_top20_rec = {}
9 row_index = @

10

11 for new_user in folderB:

12

13 recommendation = drug_candidates_score_folderB.iloc[row_index, 5:350].sort_values(as

14 top20 = recommendation.iloc[@:20]
15 folderB_top20_rec[new_user] = top20

17 row_index +=1

In [@]:

1 folderB_top2@_rec['5500994158987071513209 E69' ]

Oout[26]:

Bortezomib
Trametinib
Docetaxel
Sepantronium bromide
SN-38
Elesclomol
Vinblastine
Gemcitabine
PDO325901
AZD4877
Epothilone B
Panobinostat
Thapsigargin
Dabrafenib
Bryostatin 1
Methotrexate
GW843682X
Dactolisib
Paclitaxel
ARRY-520
Name: @, dtype: object

2.6.2 Folder C

0.264645
0.27564
.276623
.279906
.289451
.290565
.301368
.301491
0.30446
.313895
.314956
.315119
.316282
.318894
.321202
.322148
0.32338
0.323534
0.323674
0.327603

OO0

OO0
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In [@]:

WoONOUVDWNR

#import folder C

folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldercC/-
folderC = list(folderC[0])

folderC = [(str(os.path.splitext(cell)[©])) for cell in folderC] #e.g. '55009941589870

#create empty dictionary to store the top20 recommendations; key values correspond to |
#e.g. folderC_top20_rec[ '5500994158987071513209 E09'] gives the top-20 recommendations
folderC_top20_rec = {}

row_index = @

for new_user in folderC:
recommendation = drug_candidates_score_folderC.iloc[row_index, 5:350].sort_values(as
top20@ = recommendation.iloc[0:20]

folderC_top20_rec[new_user] = top20

row_index +=1

2.6.3 Folder D

i [8]:

WoONOOUVD WNR

#import folder D

folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
folderD = list(folderD[0])

folderD = [(str(os.path.splitext(cell)[0])) for cell in folderD] #e.g. '550099415898760

#create empty dictionary to store the top26 recommendations; key values correspond to
#e.g. folderD_top20_rec[ '5500994158987071513209 _E09'] gives the top-20 recommendations
folderD_top20_rec = {}

row_index = @

for new_user in folderD:
recommendation = drug_candidates_score_folderD.iloc[row_index, 5:350].sort_values(as
top20 = recommendation.iloc[@:20]

folderD_top20_rec[new_user] = top20

row_index +=1

2.7 Evaluation - Top-N hit-rate & average reciprocal hit-
rate

2.7.1 Folder B

2.7.1.1 Top-N hit-rate
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In [@]:

WoONOUVDWNR

#import folder B

folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/-
folderB_cel = list(folderB[0]) #e.g. '5500994158987071513209 E@9.cel'’

folderB = [(str(os.path.splitext(cell)[©])) for cell in folderB_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty Llist to store the row indexes (from drug response matrix) that bel¢
n=0

for new_user in folderB_cel:
index = df[df["array data file"] == folderB_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderB_top20_real[ '5500994157493061613625 A07'] gives the real top-20 for the n
folderB_top20_real = {}

row_index = ©

for new_user in folderB:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top20 = recommendation.iloc[©:20]
folderB_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderB_top26 rec and fol«
for new_user in folderB:
set_rec_drugs = set(folderB_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderB_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_B = number_of_hits/(len(folderB)) #hit_rate = (total number of hits in folder
print("Folder B hit-rate:", hit_rate_B)

print(" (Number of recommended drugs:", len(set_rec_drugs), ")")

] >

Folder B hit-rate: 11.84
(Number of recommended drugs: 20 )

2.7.1.2 Average reciprocal hit-rate
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In [0]:
1 #import folder B
2 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/-
3 folderB = list(folderB[0@])
4 folderB = [(str(os.path.splitext(cell)[0])) for cell in folderB] # e.g. '5500994158987|
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/1e0, 1/11,
7 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20]
8
9 total_sum_weights = 0 #store the weights 'sum of all new users
10
11 for new_user in folderB:
12

13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderB_top20_real[new_user].index)

16 df_real_weights = pd.DataFrame(weights).transpose()
17 df_real_weights.columns = real_list

19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended

20 rec_set = set(folderB_top20_rec[new_user].index)

21 real_set = set(folderB_top20_real[new_user].index)

22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)

25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)

27 #compute ARHR
28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()

30 aver_recip_hit_rate_B = total_sum_weights/len(folderB)
32 print("Folder B average reciprocal hit-rate:", aver_recip_hit_rate_B)

33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")
34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder B average reciprocal hit-rate: 2.5922828459809875
(Maximum average reciprocal hit-rate: 3.597739657143682

2.7.2 Folder C

2.7.2.1 Top-N hit-rate
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In [@]:

WoONOUVDWNR

51

#import folder C

folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderC/-
folderC_cel = list(folderC[0]) #e.g. '5500994158987071513209 E@9.cel'’

folderC = [(str(os.path.splitext(cell)[©])) for cell in folderC_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty List to store the row indexes (from drug response matrix) that bel¢
n=0

for new_user in folderC_cel:
index = df[df["array data file"] == folderC_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderC_top20_real[ '5500994157493061613625_A07'] gives the real top-26 for the n
folderC_top20_real = {}

row_index = 0

for new_user in folderC:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top20 = recommendation.iloc[0:20]
folderC_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderC_top26 rec and fol«
for new_user in folderC:
set_rec_drugs = set(folderC_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderC_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_C = number_of_hits/(len(folderC)) #hit_rate = (total number of hits in folder
print("Folder C hit-rate:", hit_rate_C)

print("(Number of recommended drugs:", len(set_rec_drugs), ")")
4 >

Folder C hit-rate: 10.24
(Number of recommended drugs: 20 )

2.7.2.2 Average reciprocal hit-rate
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In [0]:
1 #import folder C
2 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderC/-
3 folderC = list(folderC[0])
4 folderC = [(str(os.path.splitext(cell)[0])) for cell in folderC] # e.g. '5500994158987|
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11,
7 1/92; 1/13; ‘1714, A/1s; 1/16; 1/i7; 1718; 1/19; 1/20]
8
9 total_sum_weights = 0 #store the weights'sum of all new users
10
11 for new_user in folderC:
12

13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderC_top20_real[new_user].index)

16 df_real_weights = pd.DataFrame(weights).transpose()
17 df_real_weights.columns = real_list

19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended

20 rec_set = set(folderC_top20_rec[new_user].index)

21 real_set = set(folderC_top20_real[new_user].index)

22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)

25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)

27 #compute ARHR
28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()

30 aver_recip_hit_rate_C = total_sum_weights/len(folderC)

31

32 print("Folder C average reciprocal hit-rate:", aver_recip_hit_rate_C)

33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")

34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder C average reciprocal hit-rate: 2.1510852051285485
(Maximum average reciprocal hit-rate: 3.597739657143682

2.7.3 Folder D

2.7.3.1 Top-N hit-rate
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In [0]:

WoONOUVDWNR

#import folder D

folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderD/-
folderD_cel = list(folderD[0]) #e.g. '5500994158987071513209 E@9.cel'’

folderD = [(str(os.path.splitext(cell)[©])) for cell in folderD_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty List to store the row indexes (from drug response matrix) that bel¢
n=0

for new_user in folderD_cel:
index = df[df["array data file"] == folderD_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderD_top20 real[ '5500994157493061613625 _A07'] gives the real top-20 for the n
folderD_top20_real = {}

row_index = ©

for new_user in folderD:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top2@ = recommendation.iloc[©:20]
folderD_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderD_top2@ rec and fol«
for new_user in folderD:
set_rec_drugs = set(folderD_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderD_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_D = number_of_hits/(len(folderD)) #hit_rate = (total number of hits in folder
print("Folder D hit-rate:", hit_rate_D)

print (" (Number of recommended drugs:", len(set_rec_drugs), ")")

< »

Folder D hit-rate: 11.84
(Number of recommended drugs: 20 )

2.7.3.2 Average reciprocal hit-rate
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In [@]:
1 #import folder D
2 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
3 folderD = list(folderD[@])
4 folderD = [(str(os.path.splitext(cell)[0])) for cell in folderD] # e.g. '5500994158987|
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11,
74 1/12,. 1/13, 1/14, 1/15, 3/16, 1/17, 1/18, 1/18, 1/28]
8
9 total_sum_weights = @ #store the weights'sum of all new users
10
11 for new_user in folderD:
12

13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderD_top20_real[new_user].index)

16 df_real_weights = pd.DataFrame(weights).transpose()
17 df_real_weights.columns = real_list

18

19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended

20 rec_set = set(folderD_top20_rec[new_user].index)

21 real_set = set(folderD_top20_real[new_user].index)

22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)

24

25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)

27 #compute ARHR

28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()
29

30 aver_recip_hit_rate_D = total_sum_weights/len(folderD)

31

32 print("Folder D average reciprocal hit-rate:", aver_recip_hit_rate_D)
33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")
34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder D average reciprocal hit-rate: 2.4278351995441776
(Maximum average reciprocal hit-rate: 3.597739657143682

2.7.4 Overall / Final results

In [0]:

1 hit_rate_average = (hit_rate_B + hit_rate_C + hit_rate_D)/3
2 hit_rate_average

Out[35]:

11.306666666666667

In [0]:

1 arht_average = (aver_recip_hit_rate_B + aver_recip_hit_rate_C + aver_recip_hit_rate_D)
2 arht_average

Out[36]:

2.390401083551238
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APPENDIX 3. EXPERIMENT 2 - PYTHON CODE.
Contents
1 INTRODUCTION
1.1 Google Drive Access
1.2 Packages
1.3 Customized function similarity_ssim(image.jpg)
1.4 Drug response matrix
1.5 Dataset split
2 WAVELET TRANSFORM

2.1 Read CEL file, extract 2" level detail coeffs & store the 3 detail channels
Image with the assay filename (containing the gene expression profile) of the
cell line

3 FOLDER B

3.1 Top-N similar cell lines

3.2 Drug candidates generation

3.3 Drug candidates score

3.4 Top-N recommendation list

3.5 Evaluation — hit-rate & average reciprocal hit-rate
3.5.1 Top-N hit-rate

3.5.2 Average reciprocal hit-rate

4 FOLDER C

4.1 Top-N similar cell lines

4.2 Drug candidates generation

4.3 Drug candidates score

4.4 Top-N recommendation list

4.5 Evaluation — hit-rate & average reciprocal hit-rate
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4.5.1 Top-N hit-rate

4.5.2 Average reciprocal hit-rate

5 FOLDER D

5.1 Top-N similar cell lines

5.2 Drug candidates generation

5.3 Drug candidates score

5.4 Top-N recommendation list

5.5 Evaluation — hit-rate & average reciprocal hit-rate
5.5.1 Top-N hit-rate

5.5.2 Average reciprocal hit-rate

6 Overall/Final Results
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1 INTRODUCTION

1.1 Google Drive Access

In [@]:

1 from google.colab import drive
2 drive.mount('/content/drive')

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?clien
t_1d=947318989803-6bn6gk8qdgf4andg3pfee6491hcObrc4i.apps.googleusercontent.co
m&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=
email%2@https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2f
www . googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com¥%2fauth%
2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleap
i.readonly (https://accounts.google.com/o/oauth2/auth?client_id=947318989803
-6bn6gk8qdgf4andg3pfee6491hcObrc4i. apps.googleusercontent.com&redirect_uri=ur
n%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%
2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.co
m%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.re
adonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly)

Enter your authorization code:

Mounted at /content/drive

1.2 Packages

In [0]:
1 pip install biopython

Requirement already satisfied: biopython in /usr/local/lib/python3.6/dist-pa
ckages (1.76)

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packag
es (from biopython) (1.18.2)

In [@]:

from Bio.Affy import CelFile #package biopython (.cel files)
import pywt #package PyWavelets (wavelet transform)
from pywt import wavedec2

import pandas as pd
import numpy as np
import os #handle paths to directories/files

wWoOoNOUVD WNR

1.3 Customized function similarity_ssim(image.jpg)

import cv2 #merge 2nd Llevel detail channels into a _x_x3 image, read & save images
from skimage.metrics import structural_similarity as ssim #structural similarity index
import cv2 #merge 4th level detail channels into a 74x74x3 image, read & save images
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In [0]:

def similarity_ssim(image):

Description:

This function takes a 3-detail channels image (.jpg) and computes its similarity,
using the Structural Similarity Index, regarding the other 3-detail channels
images (.jpg) from the database.

It outputs the top-50 most similar and the top-10 most dissimilar images.

Parameter:
image - image (.jpg) whose similarity to the other images (.jpg) will be computed

Returns:
top-50 most similar images
top-10 most dissimilar images

Example:
>>> similarity_ssim('5500994157493061613625_A10.jpg")

#create an empty dataframe to store the results
columns_name = ["image","SSIM"]

df = pd.DataFrame(columns = columns_name)

n=0

image_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/2nd|
images_path = '/content/drive/My Drive/RecSys_Code/dataset/CellLines/2ndWaveletImage
images_filenames = os.listdir(images_path) #lists all the files in the directory "2n

img = cv2.imread(image_path) #read the image given as parameter

for image in images_filenames:
img_database_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/Cell
img_database = cv2.imread(img_database_path) #read the images in the database

img_ssim = ssim(img, img_database, multichannel = True)

df.loc[n] = [image] + [img_ssim]
n+=1

if n==10 or n==50 or n==100 or n==200 or n==300 or n==400 or n==500 or n==600 or n:

print("Number of database cell lines analysed so far:", n)
df_similar = df.sort_values(by='SSIM', axis=0, ascending=False).head(50)
df_dissimilar = df.sort_values(by='SSIM', axis=@, ascending=False).tail(1e)
print()

return df_similar, df_dissimilar

1.4 Drug response matrix
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In [0]:

1 drug_response_matrix_norm_withoutMissingValues = pd.read_csv("/content/drive/My Drive/
2 drug_response_matrix_norm_withoutMissingValues.head(2)

out[6]:

I?:LI array data file Erlotinib Rapamycin Sunitinib GG?;SAZ. MG-132
0 UAgg; 5500994173212120213068_A01.cel  0.58974 0.448857 0.5 0.563572 0.535375
1 201T 5500994158987071513209_A01.cel  0.50000 0.500000 0.5 0.500000 0.500000

2 rows x 347 columns

1.5 Dataset split

In [0]:
1 #import .csv file which identifies the cell Line names of folder B
2 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/-
3 folderB = list(folderB[0])
4 folderB[0]
Out[8]:

'5500994158987071513209_EQ9.cel’

In [@]:

1 #import .csv file which identifies the cell Line names of folder C

2 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/foldercC/
3 folderC = list(folderC[0])

4 folderC[@]

Out[9]:

'5500994158987071513201_GO4.cel’

In [0@]:

1 #import .csv file which identifies the cell Line names of folder D

2 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderD/-
3 folderD = list(folderD[0@])

4 folderD[0]

Out[10]:

'5500994173212120213068_F06.cel’

2 WAVELET TRANSFORM

2.1 Read CEL file, extract 2nd level detail coeffs & store the 3
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detail channels iniage with the assay filename (containing the
gene expression profile) of the cell line

In [0]:
1 #c = pywt.wavedec2(sample_microarray, 'db7', mode='periodization', Llevel=2)
2 #Output: Llist [cAn, (cHn, cVn, cDn), .. (cH1, cV1, cD1)], i.e.,
3 #level 2 c[0], c[1]: cA2, (cH2, cV2, cD2)
4 #level 1 c[3]: (cH1, cV1, cD1)
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In [0]:

#customized function - input: raw folder; output: 3 detail channels
def details_2ndlevel_extractor(raw):

This function performs a 2-D wavelet transform and outputs the images concerning hor

1

2

3

4

5 Description:
6

7 vertical and diagonal 2-level details as a single image with 3 channels.
8

9

Parameter:
10 raw - folder that contains the original images
11
12 Returns:
13 3-detail channels image (channels = horizontal, vertical and diagonal details)
14
15 Example:
16 >>> details_2ndlevel_extractor('rawl')
17
18
19 i
20

2% raw_path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/GenekE:
22 raw_filenames = os.listdir(raw_path)

23

24

25 filenames_927 = os.listdir('/content/drive/My Drive/RecSys_Code/dataset/CelllLines/4t
26 filenames_927 = [((os.path.splitext(file)[0]) + '.cel') for file in filenames_927] #
27 filenames = list(set(filenames_927) & set(raw_filenames))

28

29 for file in filenames:

30 file_cel = file

31 #print("This is the file under analysis:", file)

32

33 img_name = (os.path.splitext(file)[0]) + '.jpg’

34

35 path = os.path.join(raw_path, file_cel)

36 with open(path) as handle:

37 c = CelFile.read(handle) #read CEL file

38 dna_microarray = c.intensities

39

40 c = pywt.wavedec2(dna_microarray, 'db7', mode='periodization', level=2) #perform W
41 h = np.array(c[1][@]) #img 2nd lLevel horizontal details

42 v = np.array(c[1][1]) #img 2nd Llevel vertical details

43 d = np.array(c[1][2]) #img 2nd Level diagonal details

a4 img = cv2.merge((h,v,d)) #merge single imgs to obtain a 3 detail channels image

45

46 path = os.path.join('/content/drive/My Drive/RecSys_Code/dataset/CellLines/2ndWave
47 cv2.imwrite(path, img) #save final img into Google Drive

48 print("The extraction finished.", len(filenames), "images were saved.")

In [@]:
1 details_2ndlevel_extractor('rawl’)

The extraction finished. 36 images were saved.

138



Wavelet-Based Cancer Drug Recommender System

In [0]:
1 details_2ndlevel_extractor('raw2’)

The extraction finished. 37 images were

In [8]2
1 details_2ndlevel_extractor('raw3")

The extraction finished. 39 images were

In [@]:
1 details_2ndlevel_extractor('rawd’)

The extraction finished. 38 images were

In [0]:
1 details_2ndlevel_extractor('raws')

The extraction finished. 36 images were

In [@]:
1 details_2ndlevel_extractor('raw6")

The extraction finished. 37 images were

In [0]:
1 details_2ndlevel_extractor('raw7')

The extraction finished. 37 images were

In [0]:
1 details_2ndlevel_extractor('raw8")

The extraction finished. 39 images were

In [0]:
1 details_2ndlevel_extractor('raw9')

The extraction finished. 36 images were

In [0]:
1 details_2ndlevel_extractor('rawle"')

The extraction finished. 40 images were

In [0]:
1 details_2ndlevel_extractor('rawll")

The extraction finished. 37 images were

saved.

saved.

saved.

saved.

saved.

saved.

saved.

saved.

saved.

saved.
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In [0]:

1 details_2ndlevel_extractor('rawl2")

The extraction finished. 40 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl3"')

The extraction finished. 40 images were saved.

In [@]:

1 details_2ndlevel_extractor('rawld")

The extraction finished. 38 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl5")

The extraction finished. 38 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl6")

The extraction finished. 41 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl7")

The extraction finished. 38 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl8"')

The extraction finished. 35 images were saved.

In [0]:

1 details_2ndlevel_extractor('rawl9"')

The extraction finished. 37 images were saved.

In [0]:

1 details_2ndlevel_extractor('raw20')

The extraction finished. 37 images were saved.

In [0]:

1 details_2ndlevel_extractor('raw2l")

The extraction finished. 34 images were saved.
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In [0]:
1 details_2ndlevel_extractor('raw22")

The extraction finished. 37 images were saved.

In [8]2
1 details_2ndlevel_extractor('raw23"')

The extraction finished. 39 images were saved.

In [0]:
1 details_2ndlevel_extractor('raw24")

The extraction finished. 38 images were saved.

In [0]:
1 details_2ndlevel_extractor('raw25")

The extraction finished. 23 images were saved.

3 FOLDER B

3.1 Top-N similar cell lines

In [@]:

1 #replace the .cel extension by .jpg (in order to use the function similarity_ssim(imag¢
2 folderB = [(str(os.path.splitext(cell)[0]) + ".jpg") for cell in folderB]
3 folderB[©@]

out[51]:

'5500994158987071513209_E09.jpg"
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In [0]

Analysing cell/image: 5500994158987071513209_E@9. jpg

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

for cell in folderB:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell _name = os.path.splitext(cell)[@] #removes the extension .jpg from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderB_path = "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderl
similar_path = os.path.join(similar_folderB_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar 1images

dissimilar_folderB_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderB_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dat

of database cell lines analysed so far: 10

of database cell lines analysed so far: 50

of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400
of database cell lines analysed so far: 500
of database cell lines analysed so far: 600
of database cell lines analysed so far: 700
of database cell lines analysed so far: 800

Analysing cell/image: 5500994158987071513207_G11.jpg

Number
Number
Number
Number
Number
Number

of database cell lines analysed so far: 10
of database cell lines analysed so far: 50
of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400

wl detalame aed Wdinwer matabeea  wet Cmet T

3.2 Drug candidates generation

STEP 1

: For every new user (i.e. cell line in folder B), retrieve the most similar user (top-1 similarity) and store

that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user | ssim | ar
2 columns= ['new user', 'similar user', 'ssim', ‘array data file']
3 index = list(range(25))
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder B
8 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderB/-
9 folderB = list(folderB[0])
10 folderB = [(str(os.path.splitext(cell)[0])) for cell in folderB] #e.g. '55009941589870
11
12
13 folderB_experiment3_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldi
14
15
16 #for every new user (i.e. cell Line in folder B), retrieve the most similar user (top-:
17 #and store that info in the "df1" dataframe
18
19 n=0
20
21 for cell in folderB:
22
23 cell csv = cell + '.csv'
24 path_cell = os.path.join(folderB_experiment3_path, cell_csv)
25 df_cell = pd.read_csv(path_cell)
26
27 dfl.loc[n].at['new user'] = cell + '.jpg'
28 dfl.loc[n].at['similar user'] = df_cell.loc[1].at[ 'image']
29 dfl.loc[n].at['ssim'] = df_cell.loc[1].at['SSIM']
30
31 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C16. jpg
32 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
33 dfl.loc[n].at['array data file'] = array_data_file
34 n+=1
35
36 dfl.head(2)
out[20]:

new user similar user ssim

0 5500994158987071513209_E09.jpg 5500994157493061613625_C10.jpg 0.792672 55009941574930

1 5500994158987071513207_G11.jpg 5500994158987071513207_C09.jpg 0.814494 55009941589870

4

»

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe
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In [0]:
1 #store the similar users .cel filenames (e.g.'"5500994158987071513209 E12.cel") into a
2 similar_users = dfl.loc[:, 'array data file'].tolist()
3
4
5 #retrieve rows, from drug response matrix, that belong to the similar users
6 df2 = drug_response_matrix_norm_withoutMissingValues
7
8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl is kept (i.e., the 1st index belongs to the 1st similar
10
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]
13 indexes.append(index)
14 n+=1
15
16
17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])
20
21 df2.head()
Out[21]:
cell - . I PHA- . .
line Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ6
0 H1C1T; 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.5000
1 SNB75 0.598558 0.500000 0.585036 0.591141 0.502335 0.398194 0.621480 0.5913
2 P&;\f; 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.5000
3 BC-1 0.571770 0.447419 0.562951 0.544063 0.509149 0.462440 0.586561 0.5383
4 SUIT-2 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.5000

5 rows x 346 columns

<

STEP 3: Concatenate df1 and df2
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In [0]:

1 drug_candidates_generation_folderB = pd.concat([dfl, df2], axis = 1)
2 drug_candidates_generation_folderB.head(25)

Out[22]:

new user

similar user

ssim

10

1

12

13

14

15

16
17
18
19
20

21

22

23
24

55600994158987071513209_E09.jpg
5500994158987071513207_G11.jpg

5500994158987071513209_F08.jpg

5600994158987071513209_A10.jpg
5500994173212120213068_B04.jpg

5500994158987071513201_A08.jpg

5500994172383112813928_F06.jpg
5500994172383112813928_B03.jpg

5500994158987071513209_G04.jpg
5500994158987071513207_G07.jpg

5500994172383112813929_F11.jpg

5500994172383112813930_C02.jpg

5500994175999120813240_H10.jpg

5500994157493061613625_D11.jpg

5500994158987071513202_D01.jpg

5500994158987071513207_C10.jpg

5500994157493061613625_D08.jpg
5500994158987071513202_G09.jpg
5500994158987071513207_D12.jpg
5500994172948120113978_C09.jpg
5500994172383112813929_D11.jpg

5500994158987071513201_CO06.jpg

5500994157493061613625_A07.jpg

5500994172383112813929_F06.jpg
5500994172383112813930_H09.jpg

25 rows x 350 columns

5500994157493061613625_C10.jpg
5500994158987071513207_C09.jpg

5500994158987071513201_H04.jpg

5500994158987071513209_H03.jpg
5500994172383112813928_C03.jpg

5500994172383112813930_C02.jpg

5500994173212120213068_A02.jpg
5500994172383112813929_D06.jpg

5500994158987071513207_F04.jpg
5500994158987071513207_D07.jpg

5500994158987071513201_E04.jpg

5500994158987071513201_G12.jpg

5500994175999120813240_E09.jpg

5500994172383112813928_C01.jpg

5500994175999120813240_B05.jpg

5500994172383112813930_H10.jpg

5500994175999120813240_E02.jpg
5500994172948120113978_H04.jpg
5500994158987071513207_E04.jpg
5500994158987071513202_CO06.jpg
5500994158987071513202_CO05.jpg

5500994173603120813304_A10.jpg

5500994158987071513201_GO03.jpg

5600994172383112813929_A07.jpg
5500994173212120213068_D04.jpg

0.792672
0.814494

0.815679

0.837917
0.81978

0.805321

0.79795
0.864549

0.849332

0.833984

0.81408

0.834953

0.764571

0.790761

0.809064

0.818

0.778173

0.82366
0.855842
0.814064
0.817998

0.818197

0.895716

0.800849
0.827526

5500994157493
5500994158987

5500994158987

5500994158987
5500994172382

5500994172382

5500994173212
5500994172382

5500994158987

5500994158987

5500994158987

5500994158987

550099417599¢

5500994172388

550099417599¢

5500994172382

550099417599¢
550099417294¢
5500994158987
5500994158987
5500994158987

5500994173602

5500994158987

550099417238%
5500994173212
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In [@]:

1 #check sparsity (remember: IC560 values not available were replaced by ©.5)
2 sparsityB = drug_candidates_generation_folderB[drug_candidates_generation_folderB.iloc
3 sparsityB

Oout[23]:

645

3.3 Drug candidates score
In [0]:

#SSIM x IC50s
drug_candidates_score_folderB = drug_candidates_generation_folderB.iloc[:, 5:350].mult

drug_candidates_score_folderB = pd.concat([drug_candidates_generation_folderB.iloc[:,0

1
2
3
4 #add columns "new user", "similar user", "ssim", "array data file", "cell line"
5
6 drug_candidates_score_folderB.head(2)

Out[24]:

new user similar user ssim

0 5500994158987071513209_E09.jpg 5500994157493061613625_C10.jpg 0.792672 55009941574930

1 5500994158987071513207_G11,jpg 5500994158987071513207_C09.jpg 0.814494 55009941589870

2 rows x 350 columns

3.4 Top-N recommendation list
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In [0]:
1 #import folder B
2 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/-
3 folderB = list(folderB[0])
4 folderB = [(str(os.path.splitext(cell)[0])) for cell in folderB]
5
6
7 #create empty dictionary to store the top20 recommendations; key values correspond to
8 #e.g. folderB_top20_rec[ '5500994157493061613625_A07'] gives the top-20 recommendations

9 folderB_top20_rec = {}

10 row_index = @

11

12 for new_user in folderB:

13

14 recommendation = drug_candidates_score_folderB.iloc[row_index, 5:350].sort_values(as
15 top20 = recommendation.iloc[©:20]
16 folderB_top20_rec[new_user] = top20
17

18 row_index +=1

19

3.5 Evaluation - hit-rate & average reciprocal hit-rate

3.5.1 Top-N hit-rate
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In [0]:

WoONOUVDWNR

#import folder B

folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderB/-
folderB_cel = list(folderB[0]) #e.g. '5500994158987071513209 E@9.cel'’

folderB = [(str(os.path.splitext(cell)[©])) for cell in folderB_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty Llist to store the row indexes (from drug response matrix) that bel¢
n=0

for new_user in folderB:
index = df[df["array data file"] == folderB_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix
df.head()

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderB_top20_real[ '5500994157493061613625 A07'] gives the real top-20 for the n
folderB_top20_real = {}

row_index = ©

for new_user in folderB:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top20 = recommendation.iloc[©:20]
folderB_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderB_top26 rec and fol«
for new_user in folderB:
set_rec_drugs = set(folderB_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderB_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_B = number_of_hits/(len(folderB)) #hit_rate = (total number of hits in folderi
print("Folder B hit-rate:", hit_rate_B)

print(" (Number of recommended drugs:", len(set_rec_drugs), ")")

] >

Folder B hit-rate: 12.64
(Number of recommended drugs: 20 )

3.5.2 Average reciprocal hit-rate
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In [@]:
1 #import folder B
2 folderB = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderB/-
3 folderB = list(folderB[0])
4 folderB = [(str(os.path.splitext(cell)[0])) for cell in folderB] # e.g. '5500994158987|
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11,
7 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20]
8
9 total_sum_weights = @ #store the weights'sum of all new users
10
11 for new_user in folderB:
12

13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderB_top20_real[new_user].index)

15

16 df_real_weights = pd.DataFrame(weights).transpose()

17 df_real_weights.columns = real_list

18

19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended
20 rec_set = set(folderB_top20_rec[new_user].index)

21 real_set = set(folderB_top20_real[new_user].index)

22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)

24

25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)

26

27 #compute ARHR

28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()

29

30 aver_recip_hit_rate_B = total_sum_weights/len(folderB)

31

32 print("Folder B average reciprocal hit-rate:", aver_recip_hit_rate_B)
33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")
34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder B average reciprocal hit-rate: 2.721471768169911
(Maximum average reciprocal hit-rate: 3.597739657143682

4 FOLDERC

4.1 Top-N similar cell lines

In [@]:

1 #replace the .cel extension by .jpg (in order to use the function similarity_ssim(imag
2 folderC = [(str(os.path.splitext(cell)[0]) + ".jpg") for cell in folderC]
3 folderC[0]

out[60]:

'5500994158987071513201_GO4.jpg"
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In [0]

Analysing cell/image: 5500994158987071513201_G@4.jpg

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

for cell in folderC:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell _name = os.path.splitext(cell)[@] #removes the extension .jpg from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderC_path = "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/foldenrt(
similar_path = os.path.join(similar_folderC_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar images

dissimilar_folderC_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderC_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dat

of database cell lines analysed so far: 10

of database cell lines analysed so far: 50

of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400
of database cell lines analysed so far: 500
of database cell lines analysed so far: 600
of database cell lines analysed so far: 700
of database cell lines analysed so far: 800

Analysing cell/image: 5500994158987071513209_G10.jpg

Number
Number
Number
Number
Number
Number

4 R

of database cell lines analysed so far: 10
of database cell lines analysed so far: 50
of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400

2 SRELGLis SZaM AESSE Jasiiidad LI elsd RAA

4.2 Drug candidates generation

STEP 1

: For every new user (i.e. cell line in folder C), retrieve the most similar user (top-1 similarity) and store

that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user | ssim [ ar
2 columns= ['new user', ‘similar user', 'ssim', 'array data file']
3 index = list(range(25))
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder C
8 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldercC/
9 folderC = list(folderC[0])
10 folderC = [(str(os.path.splitext(cell)[0])) for cell in folderC] #e.g. '55009941589870
11
12
13 folderC_experiment3_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldi
14
15
16 #for every new user (i.e. cell Line in folder C), retrieve the most similar user (top-:
17 #and store that info in the "df1" dataframe
18
19 ([n =0
20
21 for cell in folderC:
22
23 cell csv = cell + '.csv'
24 path_cell = os.path.join(folderC_experiment3_path, cell_csv)
25 df_cell = pd.read_csv(path_cell)
26
27 dfl.loc[n].at['new user'] = cell + '.jpg'
28 dfl.loc[n].at["'similar user'] = df_cell.loc[1].at['image']
29 dfl.loc[n].at['ssim'] = df_cell.loc[1].at['SSIM']
30
31 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C16. jpg
32 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
33 dfl.loc[n].at['array data file'] = array_data_file
34 n+=1
35
36 dfl.head(2)
out[27]:
new user similar user ssim
0 5500994158987071513201_G04.jpg 5500994175999120813240_D04.jpg 0.779256 55009941759991

1

5500994158987071513209_G10.jpg 5500994158987071513209_F07.jpg 0.827881 55009941589870

4

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe
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In [0]:
1 #store the similar users .cel filenames (e.g."5500994158987071513209 E12.cel") into a
2 similar_users = dfl.loc[:, 'array data file'].tolist()
3
4
5 #retrieve rows, from drug response matrix, that belong to the similar users
6 df2 = drug_response_matrix_norm_withoutMissingValues
7
8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl is kept (i.e., the 1st index belongs to the 1st similar
10
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]
13 indexes.append(index)
14 nies g
15
16
17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])
20
21 df2.head()
Out[28]:
cell P . o PHA- = = o
line Erlotinib Rapamycin Sunitinib 665752 MG-132 Paclitaxel Cyclopamine AZ6:
0 R/S('?V 0.50000 0.500000 0.500000 0.500000 0.500000 0.500000 0.50000 0.5000C
1 CA46 0.57393 0.495945 0.555723 0.575169 0.552311 0.455882 0.59261 0.5534¢
2 JHH-7  0.50000 0.500000 0.500000 0.500000 0.500000  0.500000 0.50000 0.5000¢
3 H2N‘Igl2 0.50000 0.500000 0.500000 0.500000 0.500000 0.500000 0.50000 0.5000C
PE-
4 CA-  0.50000 0.500000 0.500000 0.500000 0.500000 0.500000 0.50000 0.5000C
PJ15

5 rows x 346 columns

4

STEP 3: Concatenate df1 and df2
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In [0]:

1 drug_candidates_generation_folderC = pd.concat([dfl, df2], axis = 1)
2 drug_candidates_generation_folderC.head(25)

Out[29]:

new user

similar user

ssim

10

1

12

13

14

15

16
17
18

19

20
21

22

23

24

5500994158987071513201_G04.jpg

5500994 158987071513209_G10.jpg
5500994172383112813929_H11.jpg

5500994172948120113978_D06.jpg

5500994157493061613625_F09.jpg

5500994158987071513207_A10.jpg

5500994175999120813240_D09.jpg

5500994172383112813928_C02.jpg
5500994173212120213068_D01.jpg

5500994173603120813304_H10.jpg

5500994172383112813930_F03.jpg

5500994172383112813930_G11.jpg

5500994172383112813928_D06.jpg
5500994157493061613625_A12.jpg

5500994158987071513207_D09.jpg

5500994172383112813930_C06.jpg

5500994158987071513201_C04.jpg
5500994158987071513209_F03.jpg
5500994158987071513209_E07.jpg

5500994172383112813928_A03.jpg

5500994175999120813240_C11.jpg
5500994158987071513202_B06.jpg

5500994158987071513201_E07.jpg
5500994158987071513207_H10.jpg

5500994158987071513209_E12.jpg

5500994175999120813240_D04.jpg

5500994158987071513209_F07.jpg
5500994172383112813928_F11.jpg

5500994175999120813240_F11.jpg

5500994 158987071513201_B06.jpg

5500994172383112813928_F01.jpg

5500994175999120813240_B11.jpg

5500994158987071513207_A02.jpg
5500994172383112813929_B05.jpg

5500994158987071513207_F04.jpg

5500994158987071513201_DO08.jpg

5500994158987071513207_G05.jpg

5500994173603120813304_D12.jpg
5500994172383112813929_C02.jpg

5500994158987071513201_C08.jpg

5500994172383112813928_F07.jpg

5500994158987071513207_B11.jpg
5500994175999120813240_A04.jpg
5500994158987071513209_D12.jpg

5500994158987071513207_C03.jpg

5500994158987071513207_B01.jpg
5500994158987071513202_B08.jpg

5500994172948120113978_A03.jpg
5500994172383112813929_C02.jpg

5500994172383112813928_A06.jpg

0.779256

0.827881
0.775788

0.812921

0.825241

0.820293

0.828107

0.819471

0.842599

0.849867

0.818987

0.875754

0.776809

0.797552

0.825477

0.861852

0.859242
0.802041
0.816018

0.87062

0.821722
0.763047

0.825634

0.839188

0.821691

5500994175998

5500994158987
550099417238!

550099417599¢

5500994158987

550099417238

550099417599¢

5500994158987

550099417238%

5500994158987

5500994158987

5500994158987

5500994173603

5500994172382

5500994158987

550099417238

5500994158987
550099417599¢
5500994158987

5500994158987

5500994158987
5500994158987

550099417294¢

5500994172388

550099417238%
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25 rows x 350 columns

In [B]2

1 #check sparsity (remember: IC50 values not available were replaced by 6.5)
2 sparsityC = drug_candidates_generation_folderC[drug_candidates_generation_folderC.iloc
3 sparsityC

Out[30]:

915

4.3 Drug candidates score

In [@]:
1 #SSIM x IC50s
2 drug_candidates_score_folderC = drug_candidates_generation_folderC.iloc[:, 5:350].mult
3
4 #add columns "new user", "similar user"”, "ssim", "array data file", "cell line"
5 drug_candidates_score_folderC = pd.concat([drug_candidates_generation_folderC.iloc[:,0
6 drug_candidates_score_folderC.head(2)

Out[31]:

new user similar user ssim

0 5500994158987071513201_G04.jpg 5500994175999120813240_D04.jpg 0.779256 55009941759991

1 5500994158987071513209_G10.jpg  5500994158987071513209_F07.jpg 0.827881 55009941589870

2 rows x 350 columns

4.4 Top-N recommendation list
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In [0]:
1 #import folder C
2 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderC/-
3 folderC = list(foldercC[0])
4 folderC = [(str(os.path.splitext(cell)[0])) for cell in folderC]
5
6
7 #create empty dictionary to store the top20 recommendations; key values correspond to
8 #e.g. folderC_top20_rec[ '5500994157493061613625_A07'] gives the top-20 recommendations

9 folderC_top20_rec = {}

10 row_index = @

11

12 for new_user in folderC:

13

14 recommendation = drug_candidates_score_folderC.iloc[row_index, 5:350].sort_values(as
15 top20@ = recommendation.iloc[©:20]

16 folderC_top20_rec[new_user] = top20

17

18 row_index +=1

4.5 Evaluation - hit-rate & average reciprocal hit-rate

4.5.1 Top-N hit-rate
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In [0]:

WoONOUVDWNR

#import folder C

folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderC/-
folderC_cel = list(folderC[0]) #e.g. '5500994158987071513209 E09.cel'’

folderC = [(str(os.path.splitext(cell)[©])) for cell in folderC_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty Llist to store the row indexes (from drug response matrix) that bel«
n=0

for new_user in folderC:
index = df[df["array data file"] == folderC_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix
df.head()

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderC_top20_real[ '5500994157493061613625 A07'] gives the real top-20 for the n
folderC_top20_real = {}

row_index = ©

for new_user in folderC:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top20 = recommendation.iloc[©:20]
folderC_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderC_top26 rec and fol«
for new_user in folderC:
set_rec_drugs = set(folderC_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderC_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_C = number_of_hits/(len(folderC)) #hit_rate = (total number of hits in folder
print("Folder C hit-rate:", hit_rate_C)

print (" (Number of recommended drugs:", len(set_rec_drugs), ")")

] >

Folder C hit-rate: 11.8
(Number of recommended drugs: 20 )

4.5.2 Average reciprocal hit-rate
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In [0]:
1 #import folder C
2 folderC = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldercC/-
3 folderC = list(folderC[@])
4 folderC = [(str(os.path.splitext(cell)[0])) for cell in folderC] # e.g. '5500994158987i
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/1e, 1/11,
7 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20]
8
9 total_sum_weights = 0 #store the weights 'sum of all new users
10
11 for new_user in folderC:
12
13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderC_top20_real[new_user].index)
15
16 df_real_weights = pd.DataFrame(weights).transpose()
17 df_real_weights.columns = real_list
18
19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended
20 rec_set = set(folderC_top20_rec[new_user].index)
21 real_set = set(folderC_top20_real[new_user].index)
22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)
24
25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)
26
27 #compute ARHR
28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()
29
30 aver_recip_hit_rate_C = total_sum_weights/len(foldercC)
|

32 print("Folder C average reciprocal hit-rate:", aver_recip_hit_rate_C)
33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")
34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder C average reciprocal hit-rate: 2.465275496089738
(Maximum average reciprocal hit-rate: 3.597739657143682

5 FOLDER D

5.1 Top-N similar cell lines

In [0]:

1 #replace the .cel extension by .jpg (in order to use the function similarity_ssim(imag
2 folderD = [(str(os.path.splitext(cell)[©]) + ".jpg") for cell in folderD]
3 folderD[0]

Out[71]:

'5500994173212120213068_F06.jpg"
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In [0]

for cell in folderD:

print("Analysing cell/image:", cell)
df_similarity, df_dissimilarity = similarity_ssim(cell)

cell _name = os.path.splitext(cell)[@] #removes the extension .jpg from the filename
cell_name = str(cell_name) + ".csv"

#top-50 similar images

similar_folderD_path = "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderl
similar_path = os.path.join(similar_folderD_path, cell_name)
df_similarity.to_csv(similar_path, index = False, header=True) #export the dataframe

#top-10 dissimilar images

dissimilar_folderD_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/fol«
dissimilar_cell_name = "d" + cell_name

dissimilar_path = os.path.join(dissimilar_folderD_path, dissimilar_cell_name)
df_dissimilarity.to_csv(dissimilar_path, index = False, header=True) #export the dat

Analysing cell/image: 5500994173212120213068_F06.3pg

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

of database cell lines analysed so far: 10
of database cell lines analysed so far: 50
of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400
of database cell lines analysed so far: 500
of database cell lines analysed so far: 600
of database cell lines analysed so far: 700
of database cell lines analysed so far: 800

Analysing cell/image: 5500994158987071513202_GO3.jpg

Number
Number
Number
Number
Number
Number

Al ciam,

of database cell lines analysed so far: 10
of database cell lines analysed so far: 50
of database cell lines analysed so far: 100
of database cell lines analysed so far: 200
of database cell lines analysed so far: 300
of database cell lines analysed so far: 400

N WA - 1 D Y MTiiead oe Fee. FAn

5.2 Drug candidates generation

STEP 1

: For every new user (i.e. cell line in folder D), retrieve the most similar user (top-1 similarity) and store

that info into "df1" dataframe
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In [0]:
1 #create an empty dataframe df1l with the structure: new user | similar user | ssim [ ar
2 columns= ['new user', ‘similar user', 'ssim', ‘array data file']
3 index = list(range(25))
4 dfl = pd.DataFrame(index = index, columns = columns)
5
6
7 #import folder D
8 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
9 folderD = list(folderD[0])
10 folderD = [(str(os.path.splitext(cell)[0])) for cell in folderD] #e.g. '55009941589870
11
12
13 folderD_experiment3_path = "/content/drive/My Drive/RecSys_Code/dataset/CellLines/foldi
14
15
16 #for every new user (i.e. cell Line in folder D), retrieve the most similar user (top-:
17 #and store that info in the "df1" dataframe
18
19 n=20
20
21 for cell in folderD:
22
23 cell csv = cell + '.csv'
24 path_cell = os.path.join(folderD_experiment3_path, cell_csv)
25 df_cell = pd.read_csv(path_cell)
26
27 dfl.loc[n].at['new user'] = cell + '.jpg'
28 dfl.loc[n].at["'similar user'] = df_cell.loc[1].at[ 'image']
29 dfl.loc[n].at['ssim'] = df_cell.loc[1].at['SSIM']
30
31 array_data_file = df_cell.loc[1].at['image'] #e.g. 5500994157493061613625_C10. jpg
32 array_data_file = str(os.path.splitext(array_data_file)[0]) + '.cel’
33 dfl.loc[n].at['array data file'] = array_data_file
34 n+=1
35
36 dfl.head(2)
Out[35]:
new user similar user ssim
0 5500994173212120213068_F06.jpg 5500994158987071513201_G08.jpg 0.815748 55009941589870

1

5500994158987071513202_G03.jpg 5500994175999120813240_A06.jpg 0.806401 55009941759991

»

STEP 2: For every similar user, retrieve the drugs' response and store that info into "df2" dataframe

159



Wavelet-Based Cancer Drug Recommender System

In [0]:
1 #store the similar users .cel filenames (e.g."5500994158987071513209 E12.cel") into a
2 similar_users = dfl.loc[:, 'array data file'].tolist()
3
4
5 #retrieve rows, from drug response matrix, that belong to the similar users
6 df2 = drug_response_matrix_norm_withoutMissingValues
7
8 indexes = [] #empty list to store the row indexes (from drug response matrix) that bel¢
9 n=0 #the order of dfl is kept (i.e., the 1st index belongs to the 1st similar
10
11 for similar_user in similar_users:
12 index = df2[df2["array data file"] == similar_users[n]].index.values.astype(int)[0]
13 indexes.append(index)
14 n+=1
I5
16
17 df2 = df2.loc[indexes, :] #retrieve the rows of the drug response matrix
18 df2 = df2.reset_index(drop=True)
19 df2 = df2.drop(columns = ['array data file'])
20
21 df2.head()
Out[36]:
cell line Erlotinib Rapamycin Sunitinib . LA~ MG~ b litaxel Cyclopamine AZ628 Sor
Y 665752 132 4
NCI-
0 H1568 0.5 0.5 0.5 05 0.5 0.5 0.5 0.5
DBTRG-
1 05MG 0.5 0.5 0.5 05 0.5 0.5 0.5 0.5
2 CAL-62 0.5 0.5 0.5 05 05 0.5 0.5 0.5
PANC-
3 10-05 0.5 0.5 0.5 05 0.5 0.5 0.5 0.5
4 Bl 0.5 0.5 0.5 05 0.5 0.5 0.5 0.5
MEL-28 : : : : : : : :

5 rows x 346 columns

4

STEP 3: Concatenate df1 and df2
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In [@]:

1 drug_candidates_generation_folderD = pd.concat([df1,
2 drug_candidates_generation_folderD.head(25)

Out[37]:

new user

similar user

ssim

df2], axis = 1)

10

1
12
13
14
15
16

17

18
19
20
21
22
23

24

5500994173212120213068_F06.jpg

5500994158987071513202_G03.jpg
5600994158987071513202_A06.jpg

5500994158987071513201_EO06.jpg

5500994158987071513207_E05.jpg

5500994172383112813928_C03.jpg
5500994158987071513202_C01.jpg
5500994157493061613625_G07.jpg

5500994158987071513201_CO05.jpg

5500994158987071513201_D06.jpg

5500994172383112813929_A09.jpg

5500994158987071513201_D07.jpg
5500994172948120113978_C03.jpg
5500994157493061613625_B01.jpg
5500994172383112813928_C07.jpg
5500994157493061613625_G02.jpg
5500994158987071513209_B12.jpg

5500994158987071513201_E11.jpg

5500994172383112813928_G11.jpg
5500994158987071513202_C06.jpg
5500994172383112813929_F02.jpg
5500994158987071513201_C12.jpg
5500994173212120213068_DO05.jpg
5500994158987071513202_A01.jpg

5500994157493061613625_F04.jpg

25 rows x 350 columns

5500994158987071513201_G08.jpg

5500994175999120813240_A06.jpg
5500994175999120813240_C08.jpg

5500994158987071513201_BO05.jpg

5500994158987071513207_H10.jpg

5500994173212120213068_B04.jpg
5500994158987071513209_H10.jpg
5500994172383112813930_CO07.jpg

5500994172383112813928_B01.jpg

5500994173212120213068_B01.jpg

5500994158987071513201_B06.jpg

5500994172383112813928_E01.jpg
5500994173603120813304_F10.jpg
5500994157493061613625_C08.jpg
5500994172383112813929_G03.jpg
5500994172383112813928_F12.jpg
5500994158987071513202_B02.jpg

5500994158987071513201_B06.jpg

5500994172383112813928_F01.jpg
5500994158987071513201_D11.jpg
5500994172383112813929_G03.jpg
5500994172948120113978_G05.jpg
5500994158987071513207_C09.jpg
5500994173603120813304_H10.jpg

5500994158987071513207_CO06.jpg

0.815748

0.806401

0.817187

0.841482

0.836718

0.81978
0.779388
0.869738

0.800671

0.81495

0.824486

0.794525
0.799984
0.837031
0.777451
0.843923

0.81763

0.822841

0.819031
0.829996
0.789264
0.748813
0.819187
0.812143

0.792147

5500994158987

550099417599¢

5500994175999

5500994158987

5500994158987

5500994173212
5500994158987
5500994172388

550099417238%

5500994173212

5500994158987

550099417238%
550099417360
5500994157493
5500994172383
550099417238
5500994158987

5500994158987

550099417238:
5500994158987
5500994172383
5500994172948
5500994158987
5500994173603

5500994158987
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In [@]:

1 #check sparsity (remember: IC560 values not available were replaced by ©.5)
2 sparsityD = drug_candidates_generation_folderD[drug_candidates_generation_folderD.iloc
3 sparsityD

Out[38]:

1252

5.3 Drug candidates score

In [O]:
1 #SSIM x IC56s
2 drug_candidates_score_folderD = drug_candidates_generation_folderD.iloc[:, 5:350].mult
3
4 #add columns "new user", "similar user"”, "ssim", "array data file", "cell Line"
5 drug_candidates_score_folderD = pd.concat([drug_candidates_generation_folderD.iloc[:,®@
6 drug_candidates_score_folderD.head(2)

Out[39]:

new user similar user ssim

0 5500994173212120213068_F06,jpg 5500994 158987071513201_G08,jpg 0.815748 55009941589870

1 5500994158987071513202_G03.jpg  5500994175999120813240_A06.jpg 0.806401 55009941759991

2 rows x 350 columns

5.4 Top-N recommendation list
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In [0]:
1 #import folder D
2 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderD/-
3 folderD = list(folderD[0])
4 folderD = [(str(os.path.splitext(cell)[@])) for cell in folderD]
5
6
7 #create empty dictionary to store the top20 recommendations; key values correspond to
8 #e.g. folderD_top20_rec[ '5500994157493061613625_A07'] gives the top-20 recommendations

9 folderD_top20_rec = {}

10 row_index = @

11

12 for new_user in folderD:

13

14 recommendation = drug_candidates_score_folderD.iloc[row_index, 5:350].sort_values(as
15 top20@ = recommendation.iloc[©:20]

16 folderD_top20_rec[new_user] = top20

17

18 row_index +=1

5.5 Evaluation - hit-rate & average reciprocal hit-rate

5.5.1 Top-N hit rate
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In [0]:

WoONOUVDWNR

#import folder D

folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CellLines/folderD/-
folderD_cel = list(folderD[0]) #e.g. '5500994158987071513209 E@9.cel'’

folderD = [(str(os.path.splitext(cell)[©])) for cell in folderD_cel] # e.g. ‘550099415

#1) for every new user, retrieve the real top-20 drugs'response (from the drug respons
df = drug_response_matrix_norm_withoutMissingValues

indexes = [] #empty List to store the row indexes (from drug response matrix) that bel«
n=0

for new_user in folderD:
index = df[df["array data file"] == folderD_cel[n]].index.values.astype(int)[0]
indexes.append(index)
n+=1

df = df.loc[indexes, :] #retrieve the rows of the drug response matrix
df.head()

#2) create an empty dictionary to store the real top-20 ; key values correspond to new
#e.g. folderD_top20_real[ '5500994157493061613625 A07'] gives the real top-20 for the n
folderD_top20_real = {}

row_index = ©

for new_user in folderD:
recommendation = df.iloc[row_index, 2:347].sort_values(ascending=True)
top20 = recommendation.iloc[©:20]
folderD_top20_real[new_user] = top20
row_index +=1
#compute hit-rate
number_of_hits = @ #a hit occurs when a drug appears on both folderD_top26 rec and fol«
for new_user in folderD:
set_rec_drugs = set(folderD_top20_rec[new_user].index) #store recommended drugs into
set_real_drugs = set(folderD_top20_real[new_user].index) #store real/relevant drugs
common_drugs = set_rec_drugs.intersection(set_real_drugs) #perform set intersection
number_of_hits = number_of_hits + len(common_drugs) #cumulative number of hits
hit_rate_D = number_of_hits/(len(folderD)) #hit_rate = (total number of hits in folder
print("Folder D hit-rate:", hit_rate_D)

print(" (Number of recommended drugs:", len(set_rec_drugs), ")")

] >

Folder D hit-rate: 12.2
(Number of recommended drugs: 20 )

5.5.2 Average reciprocal hit-rate

164



Wavelet-Based Cancer Drug Recommender System

In [@]:
1 #import folder D
2 folderD = pd.read_csv( "/content/drive/My Drive/RecSys_Code/dataset/CelllLines/folderD/-
3 folderD = list(folderD[0])
4 folderD = [(str(os.path.splitext(cell)[@])) for cell in folderD] # e.g. '5500994158987|
5
6 weights = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11,
7 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20]
8
9 total_sum_weights = @ #store the weights'sum of all new users
10
11 for new_user in folderD:
12

13 #create dataframe "real top-20 drugs & weights"
14 real_list = list(folderD_top20_real[new_user].index)

15

16 df_real_weights = pd.DataFrame(weights).transpose()

17 df_real_weights.columns = real_list

18

19 #remove drugs/columns of dataframe "df_real_weights" that weren't recommended
20 rec_set = set(folderD_top20_rec[new_user].index)

21 real_set = set(folderD_top20_real[new_user].index)

22 not_recommended_drugs = real_set.difference(rec_set) #identify drugs in real_set tha
23 not_recommended_drugs = list(not_recommended_drugs)

24

25 df_real_weights = df_real_weights.drop(columns = not_recommended_drugs)

26

27 #compute ARHR

28 total_sum_weights = total_sum_weights + df_real_weights.sum().sum()

29

30 aver_recip_hit_rate_D = total_sum_weights/len(folderD)

31

32 print("Folder D average reciprocal hit-rate:", aver_recip_hit_rate_D)
33 print("(Maximum average reciprocal hit-rate:", "3.597739657143682")
34 #note: maximum average reciprocal hit-rate was computed in the notebook STAGE2_EXP2

Folder D average reciprocal hit-rate: 2.401255092516702
(Maximum average reciprocal hit-rate: 3.597739657143682

6 Overall/Final Results

In [@]:

1 hit_rate_average = (hit_rate_B + hit_rate_C + hit_rate_D)/3
2 hit_rate_average

Out[43]:

12.213333333333333

In [0]:

1 arht_average = (aver_recip_hit_rate_B + aver_recip_hit_rate_C + aver_recip_hit_rate_D)
2 arht_average

out[44]:

2.529334118925451
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