
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1995

Multifrequency signal enhancement and
estimation using IIR filter bank structures
Mehdi Tavassoli Kilani
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Kilani, Mehdi Tavassoli, Multifrequency signal enhancement and estimation using IIR filter bank structures, Doctor of Philosophy
thesis, Department of Electrical and Computer Engineering, University of Wollongong, 1995. http://ro.uow.edu.au/theses/1346

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/




In the name of God, the Beneficent, the Merciful 



Multifrequency Signal Enhancement and Estimation 
Using IIR Filter Bank Structures 

Mehdi Tavassoli Kilani 
B.Se (Hons. 1), MSe. 

A thesis submitted in fulfilment of the requirements for the 

award of the degree of 

DOCTOR OF PHILOSOPHY 

from 

The University of Wall on gong 

Department of Electrical 

and Computer Engineering 

1995 



Dedicated to my family 



Declaration 

This is to certify that the work reported in this thesis was 

done by the author, unless specified otherwise, and that no 

part of it has been submitted in a thesis to any other 

university or similar institution. 

Mehdi Tavassoli Kilani 



i 

Acknowledgments 

First of all, I would like to express my special thanks to Associate 

Professor Joe F. Chicharo, m y supervisor, for his invaluable academic 

supervision. He has been very generous with his time in helping m e with various 

aspects of m y thesis. 

I wish to sincerely thank my wife, Tahereh, and my children for their continued 

encouragement and patient understanding during this research. I also express m y 

thanks to both m y mother and father. 

I thankfully acknowledge the financial support provided by the government of the 

Islamic Republic of IRAN. Finally, I appreciate the assistance and friendship of 

Jiangtao Xi, Ali Yazdian and Mansour Esmaili. 



ii 

Abstract 

This thesis deals with the accurate estimation of phase, amplitude and frequency 

of sinusoids buried in noise. Several algorithms are proposed to determine these 

parameters. 

A Constrained Notch Fourier Transform (CNFT) is proposed for estimating the 

Fourier coefficients of noise corrupted harmonic signals given a priori 

knowledge of the signal frequencies. The proposed method provides bandwidth 

controlled bandpass filters in contrast to the conventional Notch Fourier 

Transform (NFT) [Tadokoro and Abe (1987)] and its equivalent real valued 

Frequency Sampling (FS) structures which utilise fixed bandwidth bandpass 

filters. N e w sliding algorithms have been derived for both the N F T and C N F T 

for the purpose of estimating the Fourier coefficients of the sinusoidal 

components. A similar algorithm to the C N F T is also proposed for estimating the 

coefficients of sinusoids at arbitrary known frequencies. The main feature of the 

modified C N F T is that it uses a second order IIR bandpass filter whose centre 

frequency parameter is decoupled from the bandwidth parameter. In these 

techniques, the bandwidth control aspect provides the user with an efficient 

means of achieving the required resolution as well as reducing spectral leakage. 

In general, the proposed approach leads to considerable reduction in terms of 

acquisition time and memory storage. 

The sliding CNFT algorithm is extended to the Generalised Frequency Sampling 

(GFS) filter bank whose parametisation is derived based on the Least Means 

Square (LMS) spectrum analyser. The G F S filter bank possesses the desired 

characteristics that its resonant frequencies and nulls are arbitrarily set. This 

feature is used to effectively reduce the leakage problem. The use of G F S filter 

bank together with the C N F T algorithm provides faster acquisition time when 
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c o m p a r e d with the conventional F S filter bank. Further, it is computationally 

m o r e efficient than the direct use of the L M S spectrum analyser. 

The merits and demerits of the conventional Goertzel algorithm are evaluated 

w h e n it is applied for the task of estimating sinusoidal parameters. A sliding 

Goertzel algorithm is then developed based o n parallel second order digital 

resonators that are tuned at the input spectral lines. This approach exhibits good 

performance in l o w Signal to Noise Ratio ( S N R ) as verified b y extensive 

simulation tests. Further, unlike the modified and conventional Goertzel 

algorithms w h i c h require a complete signal period to accurately c o m p u t e the 

phase and amplitude of the input sinusoids, it computes Fourier coefficients in 

less than one signal period. 

The conventional FS structure was modified to obtain a new modular IIR FS 

filter b a n k with reduced spectral overlap as well as minimal spectral hole 

between adjacent bandpass filters. T h e IIR F S structure together with the self-

orthogonalising L M S algorithm is employed for Adaptive Line Enhancer (ALE) 

applications. The proposed method provides faster convergence than the 

conventional adaptive FS methods. The Performance characteristics such as the 

minimum Mean-Squared-Error (MSE), steady-state excess M S E and convergence 

conditions of the adaptive FS filter bank is analysed. A performance comparison 

of three adaptive techniques (the ITR FS structure, conventional FS structure and 

the Tapped Delay Line (TDL)) is carried out to establish the merits of each 

algorithm. 

Finally, the conventional IIR Parallel Adaptive Line Enhancer (PALE) which is 

comprised of a parallel second order IIR bandpass filter is modified such that the 

convergence to local minima or saddle points is avoided. Error surface analysis 
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is carried out to establish the convergence behaviour of the proposed technique. 

It is shown that the convergence speed of the proposed structure is the same as 

the serial configuration. However, it provides superior performance in terms of 

reduced distortion in amplitude and phase associated with each of the enhanced 

sinusoids. 
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CHAPTER 1: 

Preliminaries 

1.1 Introduction 

This thesis deals with the use of digital signal processing techniques for the task 

of enhancement and characterisation of Multifrequency (MF) signals buried in 

broadband noise. The M F signals refer to a particular class of signals which 

consist of sinusoidal components whose frequencies are either uniformly 

distributed (harmonic) or arbitrarily located (non harmonic) in the frequency 

domain spectrum. The objectives are to enhance the individual sinusoidal 

components as well as to estimate their characteristic parameters such as 

frequency, phase and amplitude. 

The application of MF signal characterisation is found in many areas of 

engineering. For example, the transmission of signals consisting of sets or combs 

of frequencies is commonly used in communication systems. In conventional 

telephone networks several types of Multifrequency Code (MFC) are used to 

transmit dialling and signalling information. For instance, Dual Tone 

Multifrequency ( D T M F ) signals are widely used in modern day telephone 

networks [Braun (1975), Koval and Gara (1973), Gay et al. (1989), Tadokoro 

and Abe (1987), W o n g and Seng (1990)]. Another example is the M-ary 

Frequency Shift Keying ( M F S K ) signalling technique where information is 

carried by the frequency of the signal. The transmitted M F S K signal consists of 
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a sinusoid whose frequency changes rapidly within the successive sequences. As 

an extension of the M F S K , a bandwidth efficient code division multiple access 

scheme called Frequency C o m b Multiple Access ( F C M A ) technique has been 

proposed [Stevenson and Yates (1989)]. In F C M A , each symbol contains a set or 

comb of frequencies spread across the information bandwidth which is currently 

used in a Very Small Aperture Terminal (VSAT) satellite communication systems 

[Simington and Percival (1991)]. In all the above applications the sinusoidal 

signals are often corrupted by interfering signals or noise. At the receiver, it is of 

critical importance to detect individual sinusoids and to estimate their parameters 

fast and accurately. The application of enhancement and estimation of noise 

corrupted sinusoidal signals are also found in other engineering areas such as 

radar, sonar, biomedical, control and power systems engineering. 

Our approach in this thesis is firstly to consider the case where the input 

frequency locations are known a priori. Accurate coefficient estimation of noise 

corrupted sinusoids is performed by using specially constrained tuneable 

bandpass filters whose resonant frequencies are set at the known input frequency 

locations. Secondly, adaptive Infinite Impulse Response (IIR) filter banks are 

developed for the situations where no a priori information regarding the locations 

of input spectral lines is available. 

This chapter is organised as follows: Section 1.2 describes the background to the 

thesis and reviews the current state of the art in relevant published literature. 

Attention has been paid mainly to the contributions which are most related to the 

work presented in this thesis. Section 1.3 discusses the approach taken and the 

resulting contributions. Finally, Section 1.4 provides an outline for the rest of the 

thesis. 
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1.2 Background to the Thesis 

In this section a brief review of those techniques which are commonly used for 

the estimation of sinusoidal parameters is given. The use of Discrete Fourier 

Transform (DFT) is the central part of most techniques in this area. Much of this 

interest is motivated by the availability of the fast computational techniques such 

as Fast Fourier Transform (FFT). The D F T simply means that the input sequence 

is projected on to a set of complex sinusoidal functions whose frequencies are 

evenly distributed in the frequency spectrum. W h e n applying the D F T technique 

to the estimation of the phase and amplitude of M F signals, two important issues 

must be considered including: the accuracy of the estimates and the required 

acquisition time. 

The accuracy of the estimates is affected by the leakage which is an inherent 

property of the D F T technique. The problem of the leakage can be examined 

from two different points of view. One approach is that the signal in the 

observation window has frequencies other than those of the basis functions. 

Therefore, the input data will have non zero projection on the other basis 

functions [Harris (1978)]. This problem is due to the truncation of the input 

signal; that is, the periodic extension of the signal does not match with its natural 

frequency. Based on this approach, widowing techniques which apply 

multiplicative weighting functions to the data have been proposed. The objective 

of windowing functions is to bring the data smoothly to zero at the boundaries of 

the observation sequence thus reducing the effect of truncation. A 

comprehensive and concise review on the use of windows and their performance 

is found in [Rife and Vincent (1970), Harris (1978)]. 

The second approach which provides additional insight into the leakage problem 

is through the use of an equivalent filter bank for the DFT. In this approach, the 
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D F T is performed by passing data through parallel Finite Impulse Response 

(FIR) bandpass filters whose centre frequencies are equally distributed in the 

frequency domain. The equivalent filter bank associated with the D F T is 

composed of an FIR comb filter followed by parallel digital resonators, as 

depicted in Figure 1.1, and is commonly referred to as a Frequency Sampling 

(FS) structure [Rabiner and Gold (1975)]. 

x(n) 
1-z -N 

1-z1 
yJn) 

1 L,"2 l-2cosoo jz +z 

yM 

1 

l-2cos(a kz'
1+z'2 

yk(n) 
> • 

* / 2 (tl) 

Figure 1.1: D F T implementation using FS filter bank. 

The comb filter (Figure 1.1) possesses N zeros that are equally spaced around the 

unit circle. The poles of resonators are also evenly spaced on the unit circle at 

the same frequencies as the zeros of the comb filter. At each branch, the pole of 

resonator cancels the corresponding zero of the comb filter thus resulting in an 

FIR bandpass filter. The resonant frequencies of the bandpass filters are equally 

spaced over the entire frequency domain. The magnitude response of two 

adjacent bandpass filters is shown in Figure 1.2. From this point of view, the 

leakage can be interpreted as the amount of overlap amongst the bandpass filters 

which results in spreading the sinusoid energy into the other bandpass filters 
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[Harris (1978)]. Although the structure shown in Figure 1.1 is an equivalent 

representation of the sliding D F T , special care must be taken when it is to be 

practically implemented. In fact, because the pole of the FS filter lies exactly on 

the unit circle, this realisation becomes marginally stable so that any round off 

errors could result in filter instability. To overcome this problem, the poles and 

zeros are placed slightly within the unite circle [Shynk (1992, 1989a), Kuo and 

Rodrigues (1986)]. 

The filter bank approach has a similar computational burden as the direct DFT 

method. However, in situations where the input sinusoidal parameters are time 

varying and Fourier coefficients are to be computed for each successive sample 

update (sliding measurement), the filter bank approach becomes computationally 

efficient when compared to the direct D F T and FFT techniques [Rabiner and 

Gold (1975)]. This sliding implementation of the D F T is also called a recursive 

D F T [Clark et al. (1985)]. 

0.1 0.2 0.3 
Normalised Frequency 

0.4 0.5 

Figure 1.2: Magnitude Response of two adjacent bandpass filters for the 

FS filter bank. 
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Using the D F T technique to compute the parameters of the sinusoids, the 

required acquisition time depends on the length of the input data. Assuming that 

the data are N evenly spaced samples of the input signal, the D F T provides N 

uniformly spaced samples of the associated signal spectrum. Clearly for 

situations where high resolution is required the acquisition time will necessarily 

increase. Also, in order to obtain an accurate estimate for the phase and 

amplitude of each sinusoid, the input data must cover exactly one period of the 

signal. The period of the signal containing sinusoidal components depends on 

the input constituent frequencies. If the input frequencies are mutually prime 

factor, the period of the signal is equal to 1Hz. Under such circumstances a large 

number of samples will be required which also increase the acquisition time. 

From a filter bank point of view, accurate phase and amplitude estimates are 

obtained when the input spectral lines lie exactly in the middle of the bandpass 

filters where the nulls of other spectral bins are located (see Figure 1.2). W h e n 

the input frequencies are mutually prime factor or closely spaced a higher 

resolution is needed to accurately estimate the sinusoids coefficients. The 

desired frequency resolution can be achieved by reducing the bandwidth of the 

bandpass filters. This requires a higher order FIR bandpass filter thus resulting in 

an increased acquisition time. In other words, by using the D F T to estimate the 

input signal parameters there is a trade off between accuracy and acquisition 

time. 

The DFT is restricted in the sense that the Fourier coefficients of the input signal 

are given at equally spaced points in the frequency domain. This is a major 

disadvantage of the D F T approach particularly when the spectrum of the signal 

must be evaluated at arbitrary locations. W h e n dealing with noise corrupted 

sinusoids at known frequencies, the information of input frequencies can be used. 
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Therefore, instead of looking at the spectrum of the signal at the entire frequency 

spectrum, w e confide ourselves to a particular frequency region. 

An efficient algorithm which is suitable for computing only few DFT points is 

known as the Goertzel algorithm [Goertzel (1958)]. The Goertzel algorithm 

requires 2(N + 2) real multiplications and 4(N +1) real additions for each value of 

Fourier coefficient, about half the number of multiplications required with the 

direct D F T method. In situations where the Fourier coefficients at ( M ) 

frequency points are of interest, the complex computation in the Goertzel 

algorithm is proportional to MN, where N is the number of input data samples 

[Oppenheim and Schafer (1989)]. In the F F T case the required complex 

computation is proportional to NlogN (assuming N is a power of 2). Clearly, 

when M is less than NlogN, the Goertzel algorithm provides better performance 

in terms of computational complexity than the F F T technique. Although the 

Goertzel algorithm is a computationally efficient method when the number of the 

D F T points is small, its frequency resolution and acquisition time remain the 

same as the D F T . 

A modified Goertzel algorithm was proposed by Gay et al (1989) to evaluate the 

Fourier coefficients of sinusoids at arbitrary frequencies. This algorithm uses the 

information of the input frequencies and evaluates the transfer function of the 

Goertzel filter at the exact frequency of interest. This method provides higher 

frequency resolution and estimates the amplitudes of the sinusoids faster when 

compared with the conventional Goertzel algorithm. However, when both 

amplitude and phase estimates are required the same acquisition time as the 

conventional approach is needed. 
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Another method called Interpolated FFT (IFFT) was developed [Jain et al. 

(1979)] for accurately measuring of periodic signal parameters. The IFFT 

algorithm uses the information of the input sinusoids for the general multitone 

case and achieves more accurate estimates when compared with the D F T 

technique. Since, the IFFT employs interpolation to reduce the effects of the 

leakage, it requires more calculations after performing the D F T . Unfortunately, 

this algorithm also does not provide insight into the transient behaviour and its 

effect on the coefficient estimates. 

A Recursive DFT (RDFT) algorithm was presented by Hostetter (1980) based on 

using a homogeneous differential equation whose general solution is in the form 

of a sum of sinusoidal functions. This method employs observer theory to 

estimate the states of a hypothetical system of resonators that model the input 

signal. The main advantage of R D F T method is that if a priori information 

regarding the input frequencies exists, it is computationally more efficient than 

the D F T method. 

Recently, Tadokoro and Abe (1987) suggested a Notch Fourier Transform (NFT) 

which utilises second order FIR notch filters whose notch frequencies are exactly 

tuned at the input spectral lines except the one of the interest. Thus, individual 

components are easily separated from each other. This method provides faster 

detection time when compared to the D F T . Although this method is 

computationally efficient and provides an interesting physical interpretation when 

compared to the R D F T method, it requires a high Signal to Noise Ratio (SNR) 

conditions to accurately estimate the phase and amplitude. 

Adaptive algorithms are also widely used for the estimation of phase and 

amplitude of sinusoids buried in noise. These algorithms match the weighted 
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sum of sinusoidal functions (reference signal) to the input signal using the Least 

M e a n Squared (LMS) [Widrow et al. (1975)] and the Recursive Least Square 

(RLS) [Nehorai and Porat (1986), Chicharo and N g (1990c)] algorithms. The 

relationship between the L M S algorithm and the D F T transform was established 

by Widrow et al. (1987), w h o showed that the L M S algorithm can be used to 

determine the Fourier coefficients in a sliding fashion. For situations where the 

input sequence is composed of sinusoids with known frequencies, the reference 

signals are set in the form of sinusoidal functions with known frequencies, as 

shown in Figure 1.3. Once convergence takes place the phase and amplitude of 

individual components are obtained from the adaptive weights. This structure is 

known as an adaptive spectrum analyser [Widrow et al. (1987) and Ogunfunmi 

and Peterson (1987)]. 

x(n) 

cos 0); n 

K/2 
Delay 

1 
P} (n) 
— I — 

qj(n) ^M e ej(n) 

cos (a n 
m 

n/2 

PmW 

qJn) 

r. Adaptive 
Algorithm 

em-i (n) 

g>W 

Figure 1.3: Adaptive spectrum analyser. 

It has been shown by M c G e e (1989a, 1989b) that the transfer function from input 

to the output of each adaptive weight is equal to an IIR bandpass filter. M c G e e 

(1989) examined this structure using sinusoidal steady state analysis. His 

approach is similar to that used by Glover (1977) whereby an equivalent filter 
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bank was obtained for adaptive noise cancellation scheme applied to sinusoidal 

interferences. The resonant frequency of the bandpass filter is equal to the 

frequency of the corresponding reference sinusoid. The bandpass filter also 

possesses nulls at frequencies determined by other reference sinusoids. This 

means that by setting the frequencies of the reference sinusoids arbitrarily, a 

bandpass filter can be realised with resonant frequencies and nulls at any desired 

locations. Therefore, this structure can be considered as a Generalised Frequency 

Sampling (GFS) structure which is in contrast with the conventional FS filter 

bank whose resonant frequencies and nulls are equally spaced over the entire 

frequency spectrum. 

The parametisation of the GFS filter bank structure has been derived 

independently using different approaches such as observer theory [Peceli (1989)] 

and an active R C realisation of the singly terminated ladder filter [Padmanabhan 

and Martin (1991)]. It has been shown that this filter bank consists of parallel 

digital resonators in a c o m m o n feedback loop and is therefore sometimes referred 

to as a resonator-based filter bank. Such a filter bank is very suitable for the 

enhancement and characterisation of M F signals. This is due to the fact that the 

nulls of the bandpass filter can be placed exactly at the unwanted frequencies and 

consequently the effect of leakage can be significantly minimised. 

For the case where little or no a priori information is available, adaptive filters 

are employed since they can adjust their parameters according to the input signal 

automatically. A Tapped Delay Line (TDL) Adaptive Line Enhancer (ALE) 

using the L M S algorithm was introduced for both enhancement and frequency 

estimation of sinusoidal signal corrupted by noise [Widrow et al. (1975)]. The 

performance of the T D L A L E was later studied extensively by Zeidler et al. 

(1978), Rickard and Zeidler (1979), Treichler (1979) and Yoganadam et al. 
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(1988). The popularity of T D L A L E over the conventional DFT-based spectral 

analysis for sinusoidal enhancement is due to its computational efficiency, 

robustness and better performance in low S N R conditions [Widrow et al. 

(1975)]. Because of the potential savings in computational complexity, adaptive 

IIR filtering has also been proposed for A L E application [Friedlander (1982, 

1984), David et al. (1983), Rao and Kung (1984), Ahmed et al. (1984), Hush and 

Ahmed (1984), Nehorai (1985), Ng (1987), K w a n and Martin (1989), Chicharo 

and Ng (1990a, 1990b, 1992), Chicharo (1992), Padmanabhan and Martin 

(1991)]. ALE's based on FS filter banks have also been developed which provide 

faster convergence than the T D L ALE's [Narayan and Peterson (1981), Narayan 

et al. (1983), Kuo and Rodrigues (1985), Rodrigues and Kuo (1985), Kuo and 

Rodrigues (1986)]. 

1.2.1 Adaptive Frequency Sampling Structures 

Frequency Domain Block Adaptive Filtering (FDBAF) was suggested mainly for 

the purpose of reducing the computational complexity associated with FIR-based 

adaptive algorithms [Dentino et al. (1978), Ferrera (1980), Clark et al. (1983)]. 

In this method a transformation is firstly applied to the input and the desired 

signal after a large block of data has been accumulated. Then the filter 

convolution and the gradient correlation are performed by using computationally 

efficient techniques such as the FFT. The nett result is that the computational 

burden is substantially reduced particularly in situations where the adaptive filter 

is characterised by a long impulse response. 

Another class of frequency domain techniques commonly referred to as transform 

domain L M S algorithms were proposed which only apply a transformation on the 

input and the desired sequences in a sliding fashion [Narayan and Peterson 

(1981), Narayan et al. (1983), Bitmead and Anderson (1981)]. This approach 
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transforms the input signal into a set of sequences which are less correlated with 

one another before performing the adaptive process. Although this does not 

possess the computational efficiency of the F D B A F , it has the following main 

advantages. Firstly, the convergence speed dramatically increases when 

compared with the time domain approach. This is due to the fact that a self-

orthogonalising L M S algorithm [Narayan et al. (1983), Lee and U n K w a n 

(1986)] can be used which compensates for the power variation of input signal 

spectrum. It is well known that a large dynamic range of the input signal 

spectrum tends to spread the eigenvalues of the input correlation function thus 

resulting in slow convergence speed [Makhoul (1975)]. In general, it has been 

shown that for a stationary input, the speed of convergence of the L M S algorithm 

is dependent on the eigenvalue spread or the ratio of the maximum to minimum 

eigenvalues of the input correlation matrix [Widrow et al. (1976)]. Secondly, it 

provides a uniform convergence speed for all the adaptive weights [Narayan et al. 

(1983), Lee and U n (1986)]. 

An efficient realisation of sliding transforms such as DFT and Discrete Cosine 

Transforms (DCT) can be performed by using equivalent FS filter banks [Rabiner 

and Gold (1975), Narayan et al. (1983)]. Viewed in this way, the transform 

domain technique is implemented by applying the input signal to a set of parallel 

bandpass filters whose centre frequencies are uniformly distributed in the 

frequency domain. The output of each bandpass filter is then multiplied by an 

adaptive weight which is updated by using a self-orthogonalising L M S algorithm 

as depicted in Figure 1.4. The algorithm is similar to the L M S algorithm except 

that it uses a time-varying step size factor which is inversely proportional to the 

power of the signal at output of each bin. This technique is also referred to as an 

adaptive FS filter bank [Bitmead and Anderson (1981)]. 
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The Adaptive FS filter bank structure is very suitable for A L E application 

particularly when the powers of the sinusoidal components are widely spread 

[Narayan et al. (1983)]. A parallel architecture A L E scheme based on FS 

structure was proposed [Kuo and Rodrigues (1985), Rodrigues and K u o (1985)] 

and later implemented [Kuo and Rodrigues (1986)]. In the proposed technique a 

corresponding set of two-weight L M S adaptive filter was used to gate sinusoidal 

signals to the output. The weights associated with those bands which contain 

only noise are set equal to zero. The proposed scheme resulted in a reduction in 

excess error and improvement in convergence. However, the problem of large 

spectral overlap amongst the bandpass filter modules is one of the inherent 

difficulties associated with the conventional FS structure. This spectral overlap 

reduces the orthogonalisation characteristics of the FS filter bank. 
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Figure 1.4: Adaptive FS filter bank. 

1.2.2 Adaptive IIR Filtering 

For A L E applications, an adaptive IIR filtering approach can provide substantial 

computational savings particularly when higher resolution is required. The IIR 
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A L E is usually implemented by using a specially constrained IIR bandpass or 

bandstop (notch) filter. Those techniques which employ an IIR notch filter 

parametisation are sometimes called Adaptive Notch filtering (ANF) [Friedlander 

(1984), Rao and Kung (1984), Nehorai (1985), N g (1987), Chicharo and N g 

(1990a)]. 

An adaptive IIR line enhancer was developed using an Autoregressive Moving 

Average ( A R M A ) model together with a Recursive Maximum Likelihood (RML) 

algorithm [Friedlander (1982)]. It was shown [Friedlander (1982)] that this 

approach was capable of providing improved performance in low S N R 

conditions. The next interesting contribution occurred when an IIR notch filter 

which required only half the number of parameters was proposed by Rao and 

Kung (1984). In other words, Rao and Kung's solution (1984) required In 

adaptive filter coefficients for implementing n notches. The filter parameters 

were updated using the Stochastic Gauss-Newton (SGN) algorithm. The reduced 

number of parameters resulted in decreased adaptation error. In addition, the 

proposed notch filter parametisation enabled simplification of the gradient which 

could be easily implemented in both cascade and parallel forms. However, as 

pointed out by Nehorai (1985), the approach suffers from high nonlinearity in the 

minimisation process, which complicates the algorithm and degrades its 

performance particularly as the number of input sinusoids increases. 

An adaptive IIR notch filter based on the general prediction error framework 

[Ljung and Soderstrom (1983), Ljung (1981)] was developed by Friedlander 

(1984). The IIR notch filter was designed with zeros on the unit circle and soft-

constrained poles. This algorithm was also characterised by 2n parameters for n 

notches plus pole-zero pair or notch at the Nyquist frequency. It was suggested 

by Nehorai (1985) that the use of soft-constrained poles may cause numerical 
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problems due to near pole-zero cancellation on the unit circle. The proposed 

algorithm also required stability monitoring as convergence was not guaranteed. 

A minimal HR notch filter parametisation together with the use of RML 

algorithm was proposed by Nehorai [Nehorai (1985), Nehorai and Porat (1986)]. 

Statistical analysis was later presented to provide insight into the performance of 

the algorithm [Stoica and Nehorai (1988)]. The proposed notch filter [Nehorai 

(1985)] has a minimal parametisation; that is, n notches can be implemented 

using n parameters. This is in contrast with previous techniques which required 

2n parameters. The proposed algorithm resulted in reduced computational 

burden, improved convergence rate and ensured numerical robustness. However, 

it presents convergence problems and requires a complicated procedure for 

checking the stability of the filter during the adaptation process [Ng (1987)]. A 

range for the minimal IIR notch filter parameters was derived for stability 

monitoring purposes [Ng (1987)]. The simulation studies presented by N g 

(1987) showed that under certain conditions the R M L algorithm did not 

converge. As an alternative solution, N g (1987) proposed the use of an 

Approximate M a x i m u m Likelihood ( A M L ) algorithm which yields improved 

performance in terms of convergence. 

The use of gradient search techniques together with a second order IIR bandpass 

filter was presented for the A L E applications [David et al. (1983)]. This method 

was applied for the task of enhancing a single sinusoid buried in white noise. It 

was shown that the proposed technique provides considerable computational 

savings for the same S N R enhancement when compared with FIR A L E . Further, 

gradient-based algorithms were found to possess the desirable advantages of 

simplicity and robustness. 
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A gradient-based A L E was later developed for multiple sinusoid case using 

second order H R bandpass filter modules in cascaded [Ahmed et al. (1984)] and 

parallel [Hush and A h m e d (1984)] structures. The advantage of a cascaded 

structure is that it provides guaranteed convergence [Ahmed et al. (1984)]. In 

other words, assuming that the number of modules are equal to the number of 

input sinusoids, each module in the cascaded structure is expected to converge to 

each sinusoid. This is not the case for parallel structures since the parameter 

estimates may converge to the local minima or saddle points in the error surface 

[Hush and A h m e d (1984), Rao and Kung (1984), Padmanabhan and Martin 

(1991)]. Therefore when using a parallel structure, a judicious choice for the 

initial values of the adaptive parameters is required. 

The gradient-based technique was applied to a modified notch filter 

parametisation for the purpose of estimating the frequencies of multiple sinusoids 

buried in noise [Chicharo and N g (1990a)]. The advantage of the proposed 

modified notch filter is that it can be easily converted to a bandpass filter by 

swapping the positions of poles and the zeros of the notch filter [Chicharo and 

N g (1990b)]. Error surface analysis was used to demonstrate the convergence 

behaviour of the gradient based technique. It was shown that for single sinusoid 

buried in white noise, the algorithm provides guaranteed convergence. For the 

multiple sinusoids in noise case, a cascaded structure was suggested as being the 

preferred option. 

A constrained adaptive IIR filter consisting of a cascade of biquadratic notch 

sections was used to track multiple sinusoids [Kwan and Martin (1989)]. The 

proposed adaptive algorithm approximates the Gauss-Newton method but without 

the associated computational burden. It was shown that the technique can 

enhance the input sinusoids with minimum phase shift distortion. The structure 
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provides reduced bias in frequency estimates when compared with the 

conventional cascaded structure and is especially good at isolating small 

amplitude sinusoids which are in the proximity of much higher amplitude 

sinusoids. However, the complexity of this method increases quadratically with 

the number of sinusoids. The algorithm is felt to be impractical for tracking more 

than five sinusoids [Martin (1990)]. 

1.3 Approach and Contribution of the Thesis 

As mentioned earlier, the D F T can be implemented in a sliding form by using FS 

filter bank whose resonant frequencies are equally distributed from dc to half the 

sampling frequency (see Figure 1.1). Consequently, individual sinusoidal 

components are separated and the associated coefficients are obtained at the 

outputs of the bandpass filters after the Nth sampling time. In the N F T method, 

the input sinusoids are separated by placing the nulls of FIR notch filter modules 

at all other frequencies other than the sinusoid of interest. The N F T method has 

been generalised for the case of D F T where the input frequencies are assumed 

equally spaced [Tadokoro and Abe (1987)]. In this case, the D F T and N F T 

methods are in fact equivalent. In other words, the comb filter in the FS structure 

can be considered as N complex notch filter whose notch frequencies are equally 

distributed around the unit circle. The pole of each resonator cancels the 

corresponding zero of the notch filter. As a result, the structure becomes 

identical to N-l second order complex notch filters whose notch frequencies are 

tuned at all the frequencies except the one of interest (see Figure 1.5(a)). 

Assuming that one is dealing with real signals, it is desirable to use real 

operations. One way to achieve this is through the use of a real valued FS 

structure as shown in Figure 1.5(b) [Bitmead and Anderson (1981)]. The comb 

filter consists of Nl2 second order notch filters that are equally spaced around 
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the unit circle. Each notch is then cancelled by a corresponding second order 

digital resonator. 
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Figure 1.5: Relationship between FS and N F T structures. 

The previous section noted that the sinusoidal coefficients can be accurately 

computed provided the input frequencies lie exactly at the resonant frequencies 

of the FS filter bank. Otherwise, distortion in Fourier coefficient estimation will 

occur because of the overlap amongst the bandpass filters (spectral leakage). In 

order to satisfy the above condition, the resolution must be increased. This is 

particularly necessary when the input frequencies have a small c o m m o n factor or 

are closely spaced. The required resolution in the FS filter bank can be achieved 
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by increasing the order of the FIR comb filter which also unfortunately results in 

increased memory storage and acquisition time. 

Since the DFT computation at a particular frequency is equivalent to a tuned 

bandpass filter, other bandpass filter parametisations can be used as an alternative 

solution. A new filter bank is proposed for the enhancement of noise corrupted 

harmonic signals. The proposed method is similar in principle to the Notch 

Fourier Transform (NFT) technique [Tadokoro and Abe (1987)] except that it 

employs an IIR rather than an FIR notch filter parametisation. In addition, the 

proposed IIR parametisation provides simple bandwidth controlled bandpass 

filters. Note that the D F T and N F T both have fixed bandwidth bandpass filter 

characteristics. In this sense the proposed technique can be regarded as a 

Constrained Notch Fourier Transform (CNFT). The filter bank is also modified 

such that the phase characteristic of each bandpass filter is equal to zero at the 

centre frequency. The bandpass filters are tuned exactly at the input frequency 

locations which are assumed to be known a priori. By evaluating the phase and 

gain characteristics of the bandpass filters at centre frequencies, the output signal 

associated with each bandpass filter is presented in the time domain. Using the 

resulting output signals, a sliding algorithm for C N F T filter bank is proposed to 

accurately estimate the phase and amplitude of each component. 

One of the advantages of the proposed CNFT method is the availability of the 

bandwidth control parameter which can be used to obtain a comb of bandpass 

filters with variable bandwidth without increasing the order of the filter. This is 

in direct contrast with existing D F T and N F T techniques. In order to compare 

the acquisition time associated with each technique (i.e., the N F T and C N F T ) , 

the N F T algorithm has also been developed in a sliding form; that is, the 

coefficients are updated at every sample time. The sliding N F T algorithm has a 
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similar parametisation to the conventional Goertzel algorithm and hence can be 

referred to as the Sliding Goertzel (SG) algorithm. 

The CNFT algorithm is generalised for computing the amplitude and phase of the 

Fourier coefficients of sinusoids at arbitrary known frequencies. The generalised 

C N F T algorithm uses a second order IIR bandpass filter whose bandwidth and 

centre frequency can be adjusted independently. The bandwidth control aspect 

of the proposed approach provides the user with an efficient means of achieving 

the required resolution as well as reducing spectral leakage. The main advantage 

of this approach is that it provides faster acquisition time when the input 

frequencies are mutually prime factor or closely spaced. Further, it leads to a 

considerable reduction in memory storage requirements when compared with the 

N F T method. 

The proposed sliding algorithms for the CNFT and NFT techniques can be used 

to estimate the Fourier coefficients of sinusoids at any desired sample time. 

Accurate estimates are obtained once transient effects of the filters have elapsed. 

This approach provides an interesting interpretation for the relationship between 

acquisition time and frequency resolution. It is shown that for higher resolution 

in frequency, narrower bandwidth is required which increases the transient time 

of the filter. This means that one can trade the acquisition time for frequency 

resolution and vice versa. 

The relationship between the LMS and the SG as well as CNFT algorithms for 

coefficient estimation of sinusoidal components is established from the point of 

view that these methods can be considered as narrow bandpass filters tuned to the 

exact input frequencies. A new derivation for the equivalent filter bank of the 

L M S spectrum analyser is presented which has similar parametisation as the 
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resonator-based filter bank recently proposed [Padmanabhan and Martin (1991)]. 

Our approach is similar to that used by Widrow et al. (1975) whereby an 

equivalent notch filter was obtained for the adaptive noise cancellation scheme 

applied to single sinusoidal interference. The G F S filter bank is used for the 

enhancement and coefficient estimation of noise corrupted sinusoids. Since the 

phase and gain characteristics of each bandpass filter at the resonant frequency 

are equal to zero and unity; respectively, the enhanced output sinusoid is 

undistorted in phase and amplitude. Hence, the generalised C N F T algorithm can 

be used to effectively estimate the phase and amplitude coefficients associated 

with each sinusoid. This approach also provides more accurate estimates since 

the nulls of the G F S filter bank are placed at the other unwanted frequencies 

which may be present. In other words, the effect of leakage is minimised. 

Further, the G F S filter bank yields significant computational savings when 

compared with the direct use of the L M S algorithm under the same accuracy and 

acquisition time conditions. 

For comparison purposes, the merits and demerits of the DFT technique are 

evaluated for estimating sinusoidal parameters. Using the D F T , the required 

minimum block length is inversely proportional to the greatest c o m m o n factor of 

the input frequencies. In situations where the c o m m o n factor between the input 

frequencies is small, a large number of samples are required thus resulting in 

increased acquisition time. The same problem exists for the conventional 

Goertzel algorithm as it is merely an efficient realisation of the DFT. Further, a 

S G algorithm is developed based on setting the resonance frequency of a second 

order digital resonator exactly at the input frequency location. Hence, the 

proposed technique is referred to as the resonator-based S G algorithm. The 

resonator based S G algorithm is particularly suitable when the input components 

are heavily corrupted by noise. This is expected since a digital resonator can be 
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considered as an ideal matched filter for sinusoidal signal buried in noise. The 

proposed technique significantly reduces the acquisition time when compared 

with the conventional Goertzel method particularly when the c o m m o n factor of 

the input frequencies is small. As a result, the proposed approach seems 

promising for the situations where the input sinusoid parameters change rapidly. 

W e consider the performance of the proposed techniques for the task of D T M F 

signal detection under adverse S N R conditions. 

The issue of large spectral overlap amongst bandpass filters in the FS structures 

is examined. This problem leads to slow convergence speed when FS structures 

are employed for adaptive filtering. A new IIR FS filter bank is proposed which 

yields less spectral overlap while preserving the modularity of the conventional 

FS structures. The proposed structure is composed of a constrained IIR comb 

filter followed by two successive digital resonators. The IIR comb filter consists 

of zeros equally spaced on the unit circle together with zeros and poles evenly 

distributed on the circle with radius less than unity. The positions of the poles 

and zeros within the unit circle are controllable thus enabling bandpass filters 

with variable transition band as well as bandwidth. The frequency response 

characteristics of each bandpass filter is obtained in terms of the position of poles 

and zeros which are located inside the unit circle. 

The additional feature of the proposed IIR FS structure is its reduced spectral gap 

between two adjacent channels. Using a self-orthogonalising L M S algorithm, it 

is shown that this technique provides faster convergence when compared to the 

conventional adaptive T D L and FS structures. This is expected since the spectral 

overlap amongst the bandpass filters has been considerably reduced. 

Performance characteristics including convergence speed, minimum Mean 

Squared Error (MSE), excess (MSE) and convergence condition are presented. 

The proposed adaptive IIR FS structure is employed for the task of A L E and the 
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results are compared with those of the conventional FS structure and T D L 

adaptive filtering. The improvement in convergence speed is quite significant 

and is particularly evident when the input eigenvalues are widely spread. 

FS structures orthogonalises the input signal by passing the signal through 

parallel bandpass filters which cover the entire frequency domain. This provides 

an effective means for the compensation of the input power variation thus 

resulting in faster convergence speed. Note that the slow convergence speed 

associated with the T D L method is due to the large spectral dynamic range of the 

input signal. The resolution of transform domain techniques; however, is the 

same as the T D L technique. A n alternative method can be considered by using 

parallel IIR A L E . This structure, as shown in Figure 1.6, is composed of parallel 

second order IIR bandpass filters whose centre frequencies are allowed to vary 

adaptively. Although this structure provides less computational complexity when 

compared with adaptive FS structure, it may converge to local minima or saddle 

points [Hush and A h m e d (1985)]. Note that the existence of local minima is one 

of the inherent problems associated with IIR adaptive filtering [Widrow and 

Stearns (1985)]. 
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Figure 1.6: Conventional parallel adaptive line enhancer. 
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To overcome this problem, the conventional parallel A L E is modified. The 

proposed structure is shown in Figure 1.7 in which the error signal is established 

separately for each module. The modified structure effectively retrieves all the 

input sinusoidal components without converging to local minima or saddle 

points. Therefore, it is attractive for the situations where there is no a priori 

information regarding the locations of the frequencies. Gradient-based 

algorithms such as R P E and Pseudolinear Regression (PLR) algorithms for the 

proposed structure are given. The convergence behaviour of the modified 

parallel A L E structure is studied by using error surface analysis. 

Figure 1.7: Modified Parallel Adaptive IIR line enhancer. 

Modular structures have some unique features when compared with the direct 

implementation. Firstly, they offer simple stability monitoring. Secondly, the 

input frequencies can be easily determined from bandpass filter coefficients. 

Thirdly, individual sinusoids are available in the time domain for further 

processing. 

The advantage of the parallel structure over the serial configuration is that it 

introduces less distortion in phase and amplitude. This is due to the fact that 

each sinusoid only passes through one module rather than successive modules as 
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in the case of cascaded structures. It also provides less degradation due to 

quantisation noise and round off accumulation error when compared with direct 

or cascaded configuration [Rabiner and Gold (1975), Liu and Kaneko (1969)]. 

Simulation results are performed to demonstrate the convergence of the given 

structure and the results are compared with those of conventional parallel [David 

(1984), Hush and A h m e d (1984)] and cascaded [Ahmed et al. (1984), Chicharo 

and N g (1990a)] structures. 

1.3.1 Point Summary of Contributions 

• A new sliding algorithm is developed for the Notch Fourier Transform (NFT) 

filter bank to accurately compute the phase and amplitude of sinusoidal 

signals. 

• A new Constrained Notch Fourier Transform (CNFT) which provides a 

bandwidth controlled filter bank is proposed for the enhancement and 

accurate estimation of Fourier coefficients of harmonic signals. The 

bandwidth control parameter is used to obtain the required enhancement 

without necessarily increasing the order of the filter. 

• The CNFT algorithm is generalised for coefficient estimation of sinusoidal 

signals at arbitrary frequencies by using a tuneable second order IIR bandpass 

filter. This approach provides faster acquisition time and less memory storage 

when compared with the N F T method. 

• The acquisition time versus frequency resolution of the CNFT and NFT 

algorithms is established. 
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• A new derivation for the Generalised Frequency Sampling (GFS) filter bank 

based on a Least M e a n Square (LMS) spectrum analyser is presented. 

• The GFS filter bank together with the generalised CNFT algorithm is 

proposed for the task of Fourier coefficient estimation of sinusoidal signals. 

This technique effectively minimises the leakage problem. Further, it is 

computationally more efficient when compared with the direct use of the 

L M S algorithm. 

• A sliding Goertzel algorithm is developed based on a digital resonator which 

is tuned at the input spectral lines to increase the slow acquisition time 

associated with the conventional Goertzel algorithm. 

• A new IIR frequency sampling filter bank is developed for Adaptive Line 

Enhancer (ALE) applications which provides increased convergence speed 

when compared to the conventional Frequency Sampling (FS) structures. 

• A simple design procedure using a graphical technique is presented to select 

appropriate ripple and transition band for the bandpass filters of the proposed 

IIR FS filter bank. 

. The conventional parallel IIR A L E is modified such that the convergence to 

local minima or saddle points is avoided. Convergence behaviour has been 

established based on error surface analysis. 

. The Recursive Prediction Error (RPE) and Pseudolinear Regression (PLR) 

algorithms have been derived for the proposed parallel IIR A L E . 
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1.4 Outline of the Thesis 

The N F T and C N F T filter bank parametisations for harmonic retrieval together 

with the associated sliding algorithms for phase and amplitude estimation of 

individual components are given in Chapter 2. This chapter also includes the use 

of the sliding C N F T algorithm for the estimation of Fourier coefficients of 

sinusoidal components with arbitrary known frequencies using a constrained 

second order IIR bandpass filter. Further, the issues of acquisition time and 

frequency resolution are discussed. Simulation tests are conducted for harmonic 

and nonharmonic signals to evaluate the relative performance of both N F T and 

C N F T methods. For the nonharmonic signal, a typical D T M F signal corrupted 

by noise is simulated. 

Chapter 3 derives the GFS filter bank based on the conventional LMS spectrum 

analyser. Further, the stability of the structure is analysed. The sliding C N F T 

algorithm is generalised to the G F S filter bank. It is shown that under the same 

accuracy and acquisition time the proposed C N F T algorithm provides less 

computational burden when compared with the direct use of the L M S algorithm. 

Simulation results for the estimation of Fourier coefficients of typical D T M F 

signal are conducted to evaluated the performance of both C N F T and L M S 

algorithms. 

In Chapter 4, the individual sinusoids of the input signal are separated using 

digital resonators whose resonance frequencies are tuned at the input frequency 

locations. Using the z-transform technique, the output of the resonator is derived 

and an algorithm similar to the sliding Goertzel algorithm is proposed which can 

be used to accurately estimate the phase and amplitude of each sinusoid. The 

proposed technique provides faster detection time when compared with the 

conventional and modified Goertzel algorithms and this is verified by simulation 

tests. It is also shown that the given approach is appropriate for the situations 
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where the input sinusoidal parameters change rapidly within the successive 

sequences. 

The parametisation of IIR FS structure is given in Chapter 5. The proposed filter 

bank provides faster convergence when compared with T D L and FS adaptive 

filters. Performance analysis in terms of minimum M S E , excess M S E and 

convergence condition using the self orthogonalising L M S algorithm are given. 

Simulation tests for the task of A L E are performed and the results are compared 

with those obtained by using T D L and FS structure adaptive filters. 

A novel parallel IIR ALE using second order IIR bandpass filter modules is 

described in Chapter 6. W e show that the proposed structure together with the 

gradient based algorithms provides an efficient means of retrieving all sinusoids 

while the conventional parallel structure may converge to local minima or saddle 

points. This is justified by using error surface analysis. Extensive simulation 

results for the enhancement of multiple sinusoids buried in noise is carried out to 

evaluate the performance of the given structure. The results are compared with 

those of the conventional cascaded and parallel structures. Finally, Chapter 7 

concludes the thesis and outlines some suggestions for further research. 



CHAPTER 2: 

A Constrained Notch Fourier Transform 

2.1 Introduction 

This chapter presents a new technique for estimating the coefficients of 

sinusoidal components buried in noise. The proposed technique utilises a priori 

information regarding the locations of the input frequencies and estimates the 

phase and amplitude of each sinusoid for every sample update. The proposed 

algorithm is obtained by examining the output of the bandpass filters which are 

tuned at the desired frequencies. Important issues such as spectral leakage, 

desired resolution and required acquisition time are discussed. 

An efficient method for performing the sliding spectral analysis at a few 

frequency bins is by using the D F T filter bank implementation which is often 

referred to as Frequency Sampling (FS) structure. This structure consists of an 

FIR comb filter followed by a bank of digital resonators [Rabiner and Gold 

(1975)] and is equivalent to parallel bandpass filters whose centre frequencies are 

equally distributed in the frequency domain. Due to the leakage problem, if the 

input frequencies do not fall exactly in the middle of the bandpass filters then 

distortion in Fourier coefficient estimation will occur [Koval and Gara (1973), 

Harris (1978)]. In order to reduce the effect of leakage, the number of bandpass 

filters must be increased. This can be achieved by increasing the order of the FIR 

comb filter which results in increased memory storage and acquisition time. 
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The Notch Fourier Transform (NFT) approach proposed by Tadokoro and Abe 

(1987) provides an efficient method for computing the Fourier coefficients when 

the signal is composed of arbitrary frequencies. This method utilises a priori 

information regarding the location of the frequencies and provides reduced 

computational burden and faster detection time when compared with the D F T 

approach. The N F T method uses a second order FIR notch filter parametisation 

as follows: 

Hk(z~
l) = 1 -2cos(Okz~

l +z~2 (2.1) 

Effectively Equation (2.1) places a null at frequency co* while allowing the rest 

of the input signal through. Assuming that the signal is composed of m 

sinusoids, this method uses (ra-1) FIR notch filters in a cascaded structure 

whose notch frequencies are equivalent to all the signal frequencies except the 

frequency of interest. As a result, individual components can easily be separated 

from each other. The N F T algorithm in the general case, can also perform the 

same task as the D F T where frequencies of the input signal are evenly arranged 

in the range of 0<f<fs/2 [Tadokoro and Abe (1987), Liu and Lin (1992)]. 

The input signal in this case is composed of m+1 equally spaced frequencies and 

is written by: 

m-l 

x{n) = a0 + \ (ak cos (fikn + bk sin &kri) + aN/2 cos Tin (2.2) 
k=\ 

where N = 2m and co* = 2nk IN. Using the N F T method to find the Fourier 

coefficients means that ((/V/2)-l) serially connected second order FIR notch 

filter modules are required. A n efficient realisation of this approach consists of a 

structure composed of an FIR comb filter of order N followed by a second order 

digital resonator as depicted in Figure 2.1. Note that N is an even number and 

the zeros of the comb filter appear in complex conjugate form on the unit circle. 

The pole of each digital resonator module cancels the corresponding zero of the 

FIR comb filter. The overall structure can also be considered as an (N-2) order 
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FIR bandpass filter. The comb filter also consists of two first order zeros, 

H0(z~
l) = 1-z"1 at frequency f0 (direct component) and HN/2(z~

l) = l + z~\ at fNI2. 

Therefore, in order to compute aQ and aN/2, resonators are replaced by l/(l-z
_1) 

and 1 / (1 + z_1), respectively (see Figure 2.1). It is interesting to note that the N F T 

filter bank structure is an alternative form of implementing the real valued FS 

structures [Bitmead and Anderson (1981)]. Obviously for high resolution 

applications the N F T method requires a higher order FIR comb filter as well. 
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Figure 2.1: Block diagram of the N F T filter bank. 

The individual FIR notch filter modules within the comb filter structure are 

replaced by a constrained E R parametisation. The resulting structure provides a 

bandwidth control parameter for each of the parallel bandpass filters. Hence, the 

proposed structure is referred to as a Constrained Notch Fourier Transform 

(CNFT). This approach is most appropriate for estimating the amplitude and 

phase of harmonic signals. B y examining the magnitude and phase 

characteristics of the C N F T filter bank at the centre frequency of each bandpass 

filter, a sliding computational algorithm for Fourier coefficient estimation is 
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developed. The bandwidth parameter in the C N F T filter bank is used to obtain 

the required enhancement without necessarily increasing the order of the comb 

filter. 

For the situation where the spectral components of interest are not distributed 

uniformly, a constrained second order IIR notch filter is proposed for the 

realisation of a bandpass filter at arbitrary frequencies. Bandwidth and centre 

frequency of each individual bandpass filter can be adjusted independently. It is 

shown that a similar algorithm to the C N F T algorithm can be applied for the 

second order IIR bandpass filter. This approach provides the following 

advantages. Firstly, the required spectral bin is easily realised by setting the 

resonant frequency of the bandpass filter at the desired frequency. The 

bandwidth control parameter can also be used to achieve the required resolution 

and to reduce the leakage problem. In other words, w e can effectively control the 

filter bandwidth to minimise spectral leakage without increasing the order of the 

comb filter. These features will reduce the memory requirements when 

compared to the N F T method which utilises an FIR parametisation. Secondly, 

for estimating the coefficients of the sinusoids whose frequencies are mutually 

prime factors, the proposed approach provides faster acquisition time than the 

N F T method. In such cases, the N F T filter bank requires I Hz resolution to 

provide an accurate (leakage free) estimate. This can be realised by using a high 

order FIR bandpass filter which results in increased acquisition time. 

Simulation tests have been carried out to evaluate the performance of the 

proposed method for both uniform and arbitrary spectral frequency distributions. 

For the former situation, a harmonic signal is used while for the latter case a 

typical D T M F signal is simulated. In both instances, it is assumed that the signal 

is corrupted by noise. Sliding algorithms are employed to estimate the Fourier 
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coefficients of the sinusoidal components. The results are compared with those 

obtained by the N F T method. 

This chapter is organised as follows: In Sections 2.2 and 2.3, the parametisation 

of IIR bandwidth controlled comb and bandpass filters are presented, 

respectively. The sliding computational algorithms for estimation of Fourier 

coefficients are derived in Section 2.4. Performance evaluation using simulation 

tests is included in Section 2.5. Finally, Section 2.6 concludes the chapter. 

2.2 Comb Filter Parametisation 

Suppose the sliding D F T is to be computed using the N F T bandpass filter 

depicted in Figure 2.1. As mentioned before, the FIR comb filter can be 

considered as N serial FIR notch filters with notch frequencies uniformly spaced 

on the unit circle. The FIR comb filter is defined as follows: 

N/2-1 

Hc(z-') = l-z'
N =d-z-2)Y[Hk(z-

1) (2.3) 
<t=i 

where Hk(z~
x) is a second order FIR notch filter as described by Equation (2.1). 

In this case, co*, is equal to 2nk IN where N is an even number. Note that the 

zeros of the FIR comb filter are equally spaced on the unit circle. Notches are 

also placed at co = 0 and co = n using the (1 - z'2) term. The poles of the resonator 

at the kth branch eliminate the zeros of the comb filter at frequency co* thus 

resulting in an FIR bandpass filter. The FIR notch filter can be replaced by a 

constrained second order IIR notch filter of the following form: 

1-2COSCM-+^ ( 2 4 ) 

l-2occosco*z '+a2z 

where the positions of the zeros of the notch filter are placed on the unit circle, 

while the poles are constrained to be within the unit circle by the coefficient a. 

In order to obtain variable notch bandwidth characteristics and guaranteed 
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stability, a is chosen to satisfy the inequality; (0<cx<l), as discussed in 

[Chicharo and N g (1990a)]. Further, replacing the (1-z-2) term in Equation (2.3) 

with (1 - z~2) / (1 - (oT'z)-2) leads to the following transfer function: 

Hc(z~
l) = 

1-z -N 

1-Pz -N 
(2.5) 

where 

p = ce" (2.6) 

From Equation (2.5), it is evident that the zeros of the IIR comb filter are also 

equally spaced on the unit circle while the poles are at the same frequencies but 

constrained to be within the unit circle. The IIR comb filter can be implemented 

in Direct Form II which means that it only requires N delay registers 

[Oppenheim and Schafer (1989)]. A block diagram of the proposed filter bank 

using an IIR comb filter parametisation is shown in Figure 2.2. 
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Figure 2.2: Block diagram of the C N F T filter bank. 

The (1-z-2) term is added to provide a zero phase shift at the centre frequency of 

each bandpass filter. This means that the components are obtained in the time 

domain with zero phase shift. Note that only two multiplications are needed per 

output sample at each branch. Further, the parameter N represents the number of 
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bandpass filters which are equally distributed over the entire frequency band 

while p is used to control the bandwidth. Figures 2.3(a) and 2.3(b) compare the 

gain versus frequency response of the proposed bandpass filter (N = 16, p = 0.7) 

with the conventional N F T structure (N = 128) at normalised centre frequencies 

of /=0.25 and / = 0.125, respectively. It is evident from Figure 2.3 that by 

choosing an appropriate p, the same bandwidth can be realised but with 

considerable reduction in N. For the N F T structure, the normalised bandwidth 

of the bandpass filter depends on the order of the comb filter and is equal to 1/ N. 

However, in the C N F T approach, the bandwidth also depends on the distance of 

the poles from the origin. The normalised -3dB bandwidth is obtained 

geometrically by finding the two points around co* on the unit circle which are 

V2 times the distance between the A:th pole and the unit circle. For a very close 

to one, these points are considered to be approximately at the same distance from 

the pole at co,. as they are from the zero at co,. (for all i , where i*k). The 

normalised -3dB bandwidth is then given by [Chicharo (1990)]: 

J B W « - ( 1 - # ) = - ( 1 - C X ) (2.7) 
K K 

Figure 2.4 shows the magnitude response of the resulting filter bank for different 

values of P (P = 0, p = 0.5 and p = 0.7) for two adjacent spectral bins. 

2.3 A Constrained Second Order IIR Bandpass Filter 

The centre frequencies of the above bandpass filters are constrained to be equally 

spaced over the entire frequency band. In order to realise the spectral bins at 

arbitrary frequencies, the following constrained second order IIR bandpass filter 

is proposed: 

HBF(z-') = (\-g). }rfl —5 (2-8) 
l + ghz +(2g-\)z 
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Normalised Frequency 

(a) 

Normalised Frequency 

(b) 

Figure 2.3: The gain response of the N F T bandpass filter (dashed line 

W = 128) and C N F T bandpass filter (solid line AT = 16, p = 0.7) 

at centre frequencies (a) / = 0.25, (b) / = 0.125. 



Chapter 2: A Constrained Notch Fourier Transform 37 

0.2 0.3 
Normalised Frequency 

0.4 0.5 

(a) 

O.I 0.2 0.3 
Normalised Frequency 

0.4 0.5 

(b) 

0.2 0.3 
Normalised Frequency 

0.5 

(c) 

Figure 2.4: The magnitude response of the CNFT bandpass filter for 

different values of p (a) P = 0, (b) p = 0.5 and (c) p = 0.7. 
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where g controls the bandwidth of the filter and should be in the range of 

0.5<g<l to ensure that the filter is stable. The derivation for the proposed 

bandpass filter is detailed in Appendix (A). HBP(z~
l) has a maximum gain of 

unity at the frequency given by: 

/'=icos"'(T) (Z9) 
where -2 < h< 2. Equation (2.9) can be verified by considering the fact that the 

following second order IIR notch filter is realised by subtracting the output of the 

bandpass filter from the input signal: 

HN(z-
l) = l-HBP(z-

l) = g ]^r~T, -2 (2-10) 
l + ghz +(2g-l)z 

This implies that the gain and phase values for the bandpass filter are unity and 

zero, respectively at the centre frequency. The centre frequency also occurs at 

the zero transmission of the notch filter transfer function. Thus, by letting the 

numerator of the notch filter transfer function equal zero, Equation (2.9) is easily 

derived. 

It is interesting that the two parameters h and g, provide effective means of 

independently setting the required centre frequency and bandwidth. The gain 

versus frequency response of the proposed bandpass filter for different values of 

g (i.e., g = 0.9, g = 0.96 andg = 0.99) is depicted in Figure 2.5 and this is 

compared with the N F T structure (JV = 20). The normalised bandwidth (BW) of 

the proposed bandpass filter can be determined geometrically (for values of g 

close to one) by the following approximate relationship: 

BW~^- (2.11) 

The bandwidth control parameter (g) is useful from the point of view of reducing 

the spectral leakage due to other components in the input signal. Further, it can 
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be used to obtain the required resolution when spectral components are closely 

spaced. 

It must be emphasised that in order to use the proposed approach to resolve the 

input frequency components, a priori knowledge regarding the location of these 

frequencies is required. In many applications such as Dual-Tone Multifrequency 

( D T M F ) signals [Tadokoro and Abe (1987), Braun (1975)], digital 

Multifrequency (MF) receivers [Koval and Gara (1973)] and in very small 

aperture terminal (VSAT) satellite communication systems [Simington and 

Percival (1991)], this information is available a priori. 
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Figure 2.5: Magnitude response of the N F T bandpass filter TV = 20 (solid 

line) and the second order IIR bandpass filter for different 

values of g (g = 0.9 (dashed line), g = 0.96 (dotted line) and 

g = 0.99 (dashdot line)). 
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2.4 Derivation of Sliding Algorithms for Computing the Fourier 

Coefficients 

This section presents the derivations of the sliding N F T and C N F T algorithm for 

determining the Fourier coefficients. Consider the following cases: 

a) The NFT case. 

In order to establish the sliding algorithm, the transfer function of each bandpass 

filter is evaluated at its centre frequency. Assuming that each bandpass filter 

enhances only one component, the output can easily be derived in the time 

domain. The transfer function for each bandpass filter in the N F T case is as 

follows (refer to Figure 2.1): 

HkBP(z-
l) = Glk(z-

l)= ^ _2 (2.12) 
\-2cos(dkz +z 

where k = \,---,NI2-\ 

Evaluation of the above transfer function (Equation (2.12)) at frequency cot 

results in [Tadokoro and Abe (1987), Liu and Lin (1992)]: 

Gik(e^)=^tltLe-
j<-^2 (2.13) 

2 sin (dk 

Letting (ak equal 2nk IN, Equation (2.13) reduces to: 

G u ( e * . ) = ^ _ / •"•f
,
 (214) 

2 sin cô  

The kth component of the input signal given by Equation (2.2) can be expressed 

as: 

xk (n) = ak coscakn+bk sin cô rc (2.15) 

Using Equation (2.14), the output of the kth branch, yk{n), is: 
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N 
yk (n) iaksrn Gik(n + l)~K cos co j. (n +1)} 

2 sin CD. 
'k 

N 

2sincojt 
(ak sin (dkn cos co^ + ak cos (bkn sin cô  (2.16) 

-^cosco^ncosco^ + &jtsincoytnsincoA) 

Evaluating Equation (2.16) at (n — 1) th sampling time w e have: 

N 
yk (n -1) = (ak sin <x)kn-bk cos(x)kn) (2.17) 

2 sin co j. 
From Equations (2.16) and (2.17), the following Equations are obtained: 

2 
Ak(n) = — {yk(n)~cosco*yk(n-1)} = ak cos(Okn + bk sin co^n (2.18) 

£^ (n) = 1 Vjk (n -1) = &* cosco^n - at sin cofcn (2.19) 

The algorithm given by Equations (2.18) and (2.19) is similar to the Goertzel 

algorithm. In other words, since co* is equal 2nklN, the sine and cosine terms 

are equal to zero and one at every N sampling time, respectively. Hence, 

Ak(N) = ak and Bk{N)-bk. However, it is interesting to note that by solving the 

resulting linear Equations (2.18) and (2.19), a sliding algorithm for accurate 

computation of Fourier coefficients is obtained as follows: 

~ak(n)' 
_bk(n) 

Note that Equations (2.18), (2.19) and (2.20) can be used at any desired sample 

time to evaluate the Fourier coefficients (ak,bk). At this point, it is important to 

address the issue of the transient behaviour associated with the bandpass filter. 

In the N F T case, the overall bandpass filter is an FIR filter with the order of 

(N-2). Hence accurate results will be achieved after (N-2) samples. 

Increasing the order of the bandpass filter leads to a narrower bandwidth 

bandpass filter and consequently leads to an increase in resolution. However, 

this means that the transient time will also increase. A s expected, accurate 

cosco^n -sinco^ 
sincotn cosco^n 

Ak(n) 

Bk{n) 
(2.20) 
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results are obtained when the transient time of the filter has elapsed. From the 

block diagram of the N F T (see Figure 2.1), for k = 0 w e have: 

G 1 0 ( z -
1 ) = i ^ - (2.21) 

l-z 

Given that the value of the above transfer function at zero frequency is equal to 

N, the sliding algorithm for amplitude of direct component (/0) is: 

Av(n) = -±-y0(n) (2.22) 
N 

For fNn , the filter transfer function becomes (refer to Figure 2.1): 

if 1 + z 

Appendix (B) derives and shows that the sliding algorithm for amplitude of fNI2 

component is given by: 

AN/2(n)=^yN/2(n) (2.24) 

Since the order of the FIR filters given by Equations (2.21) and (2.23) is equal to 

(N-l), then a0 and aNI2 are given by A0(N-l) and AN/2(N-l), respectively. 

Manipulating Equations (2.18) and (2.19) leads to the following expression: 

Ak
2(n) + B

2
k(n) = a

2
k+bk

2 (2.25) 

This means that the amplitude can be updated at every sampling time without 

computing Equation (2.20). W e now show that when the input frequency is not 

exactly in the middle of the spectral bins, Equation (2.25) is still approximately 

valid provided the deviation is small. Consider the case where the kth input 

sinusoidal frequency is co*+Aco, where Aco is a small deviation from the 

bandpass filter centre frequency. In this case xk (n) is given by: 

xk(n) = ak cos(d)k+A(a)n+bk sin (co* + Aco)n (2.26) 

Expanding the above equation results in: 

xk(n) = ak cos(i)kn+bk sin (£>kn (2.27) 
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where 

ak = a*cosAcon+6*sin Aeon (2.28) 

bk = bk cosAco n - ak sin Aco n (2.29) 

Hence, the sliding algorithm will compute a[ and b'k. Clearly from Equations 

(2.28) and (2.29), it is seen that: 

<2+K2="l+b2k (2.30) 

Note that the amplitude will be reduced due to the deviation of the sinusoid from 

the centre of the bandpass filter where the gain is maximum. Therefore the 

deviation in frequency must be small to ensure that the sinusoid is located within 

the passband of the bandpass filter. 

b) The CNFT case. 

Using the same approach as employed for the N F T case, a sliding algorithm for 

the proposed bandpass filters will be derived. The transfer function of each 

bandpass filter in the C N F T structure is given by (see Figure 2.2): 

HkBP(z~
l) = Glk(z-

l)G2(z-')=
 !"^. -2/7I (2-31) 

l-2cosco*z +z 1-pz 

where fc = l,—,Ar72-l 

The frequency response for G2(z~
x) at co* is expressed as: 

Ga(ir*.) = 1 ^ 2 L ^ - f ) (2.32) 

Using Equation (2.14), the total response of each bandpass filter at co* will be: 

HkBP(e
i°') = pN (2.33) 

where 

p = J _ (2.34) 
1-p 

As stated previously the zero phase shift characteristics (at the centre frequency) 

in Equation (2.33) is achieved by adding the (1-z-2) block. Consider the kth 
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component of the real input signal given by Equation (2.15), using Equation 

(2.33), the output of the kth branch is given by: 

y*(n) = pN(a* cosco*n + bk sin co*n) (2.35) 

In order to derive the sliding algorithm for computing the Fourier coefficients, we 

evaluate y*(rc) at nth and (n-l)th samples. Solving the resulting equations 

simultaneously, w e obtain: 

Ak(n) = yk(n) = ak cosco*n + bk sin co*n (2.36) 

Bk(n) = : {yk(n -1) -cosco*y*(«)} = bk cos(dkn-ak sin co*« (2.37) 

where k = !,•••,N/2-\ 

From Equations (2.36) and (2.37) it is evident that Equation (2.20) can be used, 

as in the case of N F T , to update the Fourier coefficients (ak, bk) at every sample 

time. Further, Equation (2.25) is also valid even with a small deviation of input 

frequency from the middle of the spectral bin. Note that because of the 

additional bandwidth control parameter p, the proposed technique provides an 

extra degree of flexibility when compared to the N F T approach. For the special 

case when p is equal to zero the proposed C N F T is equivalent to the N F T 

method. Referring to the block diagram shown in Figure 2.2 the filter transfer 

function for (k = 0) is as follows: 

1-z-" 1 + z-1 

1-z-1 1-pz" 

It is straight forward to show that the frequency response of the first and the 

second terms of Equation (2.38) at co = 0 are equal to N and 2/(1 — [3), 

respectively. Therefore, ̂ (n) is given by: 

Mn) = ^yoO) (2-39) 

For the case when k = N 12, ANn(n) can be expressed as (see Appendix (B)): 

/&(*-')=' '., , * (2-38) 
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(-1)" 
4m(*) = ̂ 7jpw/2(»0 (2.40) 

The phase shift of the proposed second order IIR bandpass filter is also equal to 

zero at the peak frequency. This means that the corresponding component 

appears without phase shift at the output. Therefore, Equations (2.20), (2.36) and 

(2.37) can be employed to compute the Fourier coefficients of the sinusoidal 

component provided that pN is replaced by 1 in Equations (2.36) and (2.37). 

Note that the second order IIR bandpass filter has unity gain at the centre 

frequency while the gain of the C N F T filter bank is equal to pN. The required 

acquisition time for obtaining the Fourier coefficients depends on the bandwidth 

of the bandpass filter. In other words, for situations where a narrow bandwidth is 

required, the transient time will necessarily increase. This is the same situation 

as in the N F T case when a higher order comb filter is required which also 

increases the acquisition time. Clearly the same detection time will be achieved 

with both methods if the bandwidth of the N F T and C N F T bandpass filters are 

equal. The number of samples required (N ) to obtain accurate Fourier 

coefficient estimates for the proposed IIR bandpass filters is approximately given 

by: 

N » — (2.41) 
acq BW 

where the normalised bandwidth (BW) is given by Equations (2.7) and (2.11). 

Hence, Equation (2.20) must be evaluated at JV th sample time as follows: 

ak 
C0^kNaca -sinco*Nflc; 

S™<»kNaca COS(OkNacq _ 

MKca) 
Bk(Nacq) 

(2.42) 

The complete sliding N F T and C N F T algorithms are summarised in Table 2.1. 

Note that Equations (2.20), (2.36) and (2.37) are evaluated at the time instant 

when the transient response of the filter has elapsed. However, in situations 

where the sinusoidal parameters (phase and amplitude) are time varying, 

Equations (2.20), (2.36) and (2.37) can be computed at any sample time to update 
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the estimates. For such cases, the rate of parameter variation must be slower than 

the required acquisition time of the filter. In other words, if the sinusoidal 

coefficients change, w e must wait until N samples to obtain accurate results. 

The performance of the two approaches from this point of view is evaluated by 

simulation tests in the next section. 

Table 2.1: N F T and C N F T sliding algorithms 

2.5 Simulation Results 

T w o cases are considered to evaluate the performance of the proposed bandpass 

filters together with their sliding algorithms. The first is where the input signal is 

a harmonic series and secondly, where the input signal is composed of arbitrary 

frequencies. In both cases the signals are buried in noise and an estimate of 

amplitude and phase will be computed. The results are compared with those 

obtained from the N F T algorithm. 

Example 1. Harmonic signal. Consider a noise corrupted input harmonic signal 

as follows: 
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x(n) = ]Tc* sin (—p.n-tyk) + v(n) (2.43) 
*=1 fs 

where v(n) is a unit variance, zero mean white noise sequence. The coefficients 

C p C2 and C3 are chosen to be 4, 2 and 1 respectively and <]), = <|>2 = <|)3 = 1 (rad) 

while the fundamental and sampling frequencies are 50Hz and 400Hz, 

respectively. In this case the frequencies are distributed uniformly. The 

bandpass filters are realised by using a comb filter of order N = 16 followed by 

parallel resonators. Note that the frequency components are also placed on the 

centre of the spectral bins. The amplitude and phase of the fundamental 

frequency is computed at every sample for two different values of p (i.e., 0.7 and 

0.9). The results are depicted in Figure 2.6 and as can be seen the accuracy 

improves as p increases. It is interesting to note that slower acquisition time is 

obtained as p approaches unity for the amplitude coefficient estimate but not for 

the phase coefficient. In other words, P only affects the accuracy of the phase 

estimate. This phenomenon was also observed for the N F T case and can be 

interpreted as follows. Consider a sinusoidal component defined by: 

xk(n) = Ck sin(co*n-())*) (2.44) 

where 

C * = - ^ - ; 4>4=-taiT'(|*-) (2.45) 
sin (((>*) bk 

Since the transient behaviour of the bandpass filter has similar effect on ak (n) 

and bk(n), therefore the ratio in the argument of tan"'(.) will not be affected 

significantly. Figure 2.7 compares the amplitude and phase estimates obtained 

for both the N F T (N = 128) and C N F T (N = \6, P = 0.7) approaches. As 

expected, since the bandwidth of the two methods are nearly equal (see Figure 

2.3), the acquisition times are also equal. However, N has been reduced from 

128 for the case of the N F T to 16 in the case of C N F T . 
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Figure 2.6: Sliding computation of the (a) amplitude and (b) phase of the 

fundamental frequency corrupted by zero mean, unit variance 

white noise for P = 0.7 (solid lines) and p = 0.9 (dashed lines) 

using C N F T algorithm. 
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Figure 2.7: Sliding computation of the (a) amplitude and (b) phase of the 

fundamental component corrupted by zero mean, unit variance 

white noise using NFT (dashed lines, N = 128) and CNFT (solid 

lines, N = 16andp = 0.7). 
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Based on 50 independent experiments, the average and the standard deviation of 

the estimated amplitudes and phases of the fundamental and subharmonics were 

obtained. In the N F T case, the estimates were computed after the 256th output 

sample. For the C N F T approach, the 256th and 1024th output samples were 

chosen for p equal to 0.7 and 0.9, respectively. The amplitude and phase 

estimate results are given in Tables 2.2 and 2.3. 

Amplitude 

(Average) 

Amplitude 
(STD) 

A 

A 

c2 
A 

c3 
A 

A 

c2 
A 

CNFT N=16 

P =0.7 

4.0156 

1.9901 

1.0168 

0.1145 

0.1054 

0.1325 

P =0.9 

3.9889 

1.9826 

0.9987 

0.0512 

0.0622 

0.0567 

NFT 

N=128 

4.0174 

1.9946 

1.0389 

0.1250 

0.1311 

0.1461 

Table 2.2: The average and standard deviation of the amplitude estimates 

of the fundamental and subharmonics components. 

Phase 

(Average) 

Phase 
(STD) 

A 

A 

* 2 
A 

* 3 

A 

A 

*2 
A 

*3 

CNFT JV=16 

P =0.7 

1.0010 

0.9884 

1.0176 

0.0280 

0.0567 

0.1193 

P =0.9 

0.9988 

1.0020 

0.9868 

0.0151 

0.0205 

0.0700 

NFT 

AT =128 

1.0016 

0.9748 

1.0192 

0.0308 

0.0639 

0.1292 

Table 2.3: The average and standard deviation of the phase estimates of 

the fundamental and subharmonics components. 



Chapter 2: A Constrained Notch Fourier Transform 

From these tables, it is evident that as the bandwidth decreases (p increases), the 

accuracy of the estimates improves. Clearly the proposed method provides the 

necessary bandwidth control (p) to reduce output noise effectively without 

increasing the order of the FIR comb filter. Since the kth component appears 

with zero phase shift at the output of the kth branch, by adding all the outputs, 

the harmonic signal will be retrieved in time domain if so desired. 

Example 2. Nonharmonic signal. As an example we will apply the proposed 

approach for the task of computing the coefficients of a noise corrupted D T M F 

signal. The D T M F signals are composed of two frequencies which are selected 

from four low frequencies (/,) and four high frequencies (fh). In this case, /, 

and fh were chosen to be equal to 941 Hz and 1209Hz, respectively and the 

sampling frequency was selected as 4000Hz. The amplitudes of components, /, 

and fh were both set to a magnitude of 3 while the corresponding phases were 

assumed to be 0.4 (rad), and 1.2 (rod), respectively. The given D T M F tones 

were buried in a zero mean unit variance white noise sequence. In this example 

the input frequencies are mutually prime factors. In other words, the greatest 

common measure frequency of two frequencies is equal to I Hz. Therefore, if the 

N F T bandpass filter is used for estimation and retrieval purposes a \Hz 

resolution is needed which means that a comb filter with an order of 4000 is 

required. As a result a large amount of memory storage and computational 

burden would be required. Such a situation also applies to the conventional 

Goertzel algorithm which is equivalent to the N F T algorithm. The proposed 

constrained second order IIR bandpass filter given in Section 2.3 was used and g 

was chosen to be equal to 0.995 in order to achieve the required resolution. 

Using Equation (2.9), the centre frequencies of the second order H R bandpass 

filter (l\ and \) were set equal to -0.185 and 0.645, respectively. The results of 

the amplitude and phase estimates are depicted in Figure 2.8. 
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3.5 

600 
Time [n] 

1000 1200 

(a) 

600 
Time [n] 

1000 1200 

(b) 

Figure 2.8: Sliding computation of the (a) amplitude and (b) phase of the 

nonharmonic components for the DTMF signal using a 

constrained second order IIR bandpass filter (g = 0.995), 

(Cx = Ch= 3 and (J>,=0.4 (rad), (|>fc = 1.2 (rad)). 
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From Figure 2.8, it is seen that the required number of samples for accurate 

amplitude estimation is approximately equal to 600 samples while for phase 

estimation it is only 100 samples. Even though the proposed bandpass filter 

parametisation needs two more multiplications per output sample than does the 

N F T structure, this is compensated by the fact that it requires a much smaller 

number of data samples to obtain the estimates. In fact, the proposed approach 

requires approximately one sixth of the number of samples needed by the N F T 

algorithm. 

To compare and evaluate the accuracy of both methods, 50 independent trials 

were carried out and the mean and standard deviation of the amplitude and phase 

estimates were established for the low frequency component (/,). In addition we 

also considered the scenario where two different values of g (i.e., 

g = 0.99 and g = 0.995) were used. The phase and amplitude estimates were taken 

after the 300th and 600th output samples (the appropriate output sample can be 

obtained using Equation (2.41)). The results are shown in Table 2.4 which also 

includes the required acquisition time and number of multiplications. 

Amplitude 
A 

Phase 
A 

• , 

Ave. 

Std 

Ave. 

Std 

Acquisition Time 

Number of 
Multiplications 

2nd order BP filter 

g =0.99 

2.8847 

0.0964 

0.7816 

0.0357 

Nacq =300 

3( Nacq+2) 

= 906 

8 =0.995 

2.9371 

0.0757 

0.7878 

0.0239 

Nacq =600 

3( Naca+2) 
= 1206 

NFT 

N =4000 

2.9915 

0.0202 

0.8026 

0.0061 

Nacq=4000 

Nacq+2=4002 

Table 2.4: The average and standard deviation of phase and amplitude 

estimates using N F T algorithm and the constrained second 

order bandpass filter. 
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In fact, the estimates were obtained by evaluating the algorithm (Equations 

(2.20), (2.36) and (2.37)) at a specific sampling time when the bandpass filters 

transient behaviour had settled. As stated previously, the N F T method requires a 

minimum of 4000 samples. Referring to the Table 2.4, it is evident that the N F T 

algorithm provides more accurate estimates. It is important to note that the 

accuracy of the proposed method can be increased by reducing the bandwidth of 

the bandpass filter which leads to an increase in the acquisition time. Hence, a 

compromise needs to be reached in practice. 

2.6 Conclusion 

Sliding algorithms for estimating Fourier coefficients of noise corrupted 

harmonic (equally spaced frequencies) and nonharmonic (arbitrary spaced 

frequencies) signals with known frequencies were presented. 

The FIR notch filter within the NFT filter bank structure was replaced by a 

constrained IIR notch filter (hence, the name C N F T ) . This modification provides 

bandwidth controlled bandpass filters whose centre frequencies are equally 

distributed over the entire frequency band. Sliding algorithms were also 

developed for both N F T and C N F T methods to estimate the coefficient of 

enhanced sinusoid at the output of each bandpass filter. Since the resonant 

frequencies of the C N F T filter bank are placed at equal intervals in the frequency 

spectrum, it is most suitable for the enhancement and characterisation of 

harmonic signals. The bandwidth control parameter in the C N F T method, is used 

to achieve the required enhancement without increasing the order of the filter 

which is necessary in the N F T method. Consequently, the C N F T structure 

requires less memory requirements when compared with the N F T structure. 
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To implement individual spectral bins at arbitrary frequencies, a second order H R 

bandpass filter was proposed. The centre frequency and bandwidth of the 

proposed bandpass filter can be easily controlled by two independent parameters. 

The desired spectral bin is realised by adjusting the centre frequency of the 

bandpass filter while the bandwidth control facility is used to obtain the required 

resolution and enhancement. This approach also substantially reduces the 

memory storage requirement when compared to the N F T method. 

The issue of the required acquisition time versus frequency resolution was 

discussed. In the proposed technique, there is a trade off between the required 

acquisition time and the desired frequency resolution. This means that an 

increase in frequency resolution results in an increase in acquisition time. The 

proposed approach; however, provides faster acquisition time than the N F T 

method. This was particularly demonstrated for the situations where the input 

frequencies have the greatest c o m m o n factor equal to 1Hz. This advantage is due 

to the fact that the centre frequency of the given bandpass filter can be arbitrarily 

set which is in direct contrast with the D F T and N F T filter bank structures whose 

resonant frequencies are equally spaced. Simulation tests for the Fourier 

coefficient estimation of typical harmonic and Dual-Tone Multifrequency 

( D T M F ) signals were conducted to evaluated the relative performance of the 

proposed approaches with the N F T method. 



C H A P T E R 3: 

A Generalised Frequency Sampling Filter Bank 

3.1 Introduction 

Spectral estimation using bandpass filtering is affected not only by the broadband 

noise spectrum, but also by the other sinusoidal components in the input signal. 

The accuracy of the estimates decreases if the unwanted spectral lines are 

observed at the output of the bandpass filter (spectral leakage). In the previous 

chapter, the effects of both the noise and leakage were reduced by using a 

bandwidth control parameter introduced in the bandpass filter parametisation. In 

this chapter another bandwidth controlled filter bank is developed which provides 

resonant frequencies as well as nulls at arbitrary spectral locations. As opposed 

to the conventional FS filter bank whose resonant frequencies and nulls are 

located at equally spaced points in the frequency spectrum, the proposed filter 

bank is referred to as Generalised Frequency Sampling (GFS) structure. The 

bandwidth control parameter is used to reduce the effect of noise while nulls can 

be placed at the frequency locations of other spectral components to effectively 

minimise the leakage. 

A new derivation for the GFS filter bank based on the conventional LMS spectral 

analyser is derived. The structure of the L M S spectral analyser is shown in 

Figure 3.1. It is comprised of a set of sinusoids whose frequencies are equal to 

those of the input frequencies as reference signals. The adaptive L M S algorithm 
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is employed to match the weighted sum of the sinusoidal functions to the input 

signal. Once convergence takes place, the phases and amplitudes of input 

sinusoids are obtained from the adaptive weights. The relationship between L M S 

algorithm and the Discrete Fourier Transform (DFT) has been established by 

Widrow et al. (1987). It has been shown that the L M S algorithm can be used to 

determine the Fourier coefficients of the input signal in a sliding fashion. In this 

case, the reference signal is a set of sinusoids whose frequencies are equally 

distributed in frequency domain. 

x(n) 

cos co; n 

n/2 

Delay 

Pj (") 

qj(n) 
e}(n) 

cos a) n 

K/2 

, n leml (*) 

qjn) —-T T ,., 

Figure 3.1: L M S spectrum analyser. 

The equivalent filter transfer function from input signal, x(n), to the output of 

each adaptive weight, yt(n), in the L M S algorithm is obtained. The resulting 

structure is equivalent to an IIR filter bank. The z-transform method is employed 

to find the parametisation of the bandpass filter at the output of each adaptive 

weight. Our method is similar to that used by Widrow et al. (1975) whereby an 

equivalent notch filter was obtained for adaptive noise cancellation scheme 
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applied to a single sinusoidal interference case. It will be shown that this method 

results in identical structure as suggested by Padmanabhan and Martin (1987). 

Different approaches but similar parametisation are also found in [McGee 

(1989a, 1989b), Peceli (1989)]. 

The important feature of the resulting filter bank is that its resonant frequencies 

and nulls can be arbitrarily set. In other words, using this approach, bandpass 

filters can be realised with the desired centre frequencies as well as arbitrary null 

positions. The G F S filter bank is proposed for the enhancement and 

characterisation of sinusoidal components buried in noise. At the resonant 

frequency, the phase and gain characteristics associated with each bandpass filter 

is equal to zero and unity, respectively. Therefore, the enhanced component is 

available at the output with zero phase shift and with the same amplitude as the 

input sinusoid. As a result, the sliding C N F T algorithm can be employed to 

estimate the coefficients associated with each sinusoid. It is expected that the 

resulting estimates will be more accurate than those obtained in Chapter 2. In 

Chapter 2, the leakage was reduced by decreasing the bandwidth of the bandpass 

filter. Unfortunately, this resulted in an undesirable increase in acquisition time. 

Assuming that both methods (i.e. the G F S bandpass filter and the second order 

IIR bandpass filter) have equal bandwidth, the effect of the leakage at the output 

of G F S filter bank is less than that of the second order IIR bandpass filter. This 

is due to the fact that the nulls of the G F S bandpass filter can be placed at those 

frequency locations other than the one of interest thus minimising the effect of 

leakage. Further, it is shown that the G F S filter bank together with the sliding 

C N F T algorithm is computationally more efficient when compared to the 

conventional L M S spectrum analyser. To evaluate the performance of both 

methods, simulation results are conducted to compute the phases and amplitudes 

of Dual Tone Multifrequency ( D T M F ) signals buried in noise. 
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This chapter is organised as follows: In Section 3.2 the G F S filter bank is derived 

based on the L M S spectrum analyser. The sliding C N F T algorithm is applied to 

the G F S filter bank and is given in Section 3.3. Simulation results are included in 

Sections 3.4 and finally Section 3.4 concludes the chapter. 

3.2 Generalised Frequency Sampling Filter Bank 

Consider Figure 3.1 and further assume that the input frequency locations are 

known in advance. Each of the reference sinusoidal signals are generated and 

passed through a two adaptive weight structure. The outputs of the adaptive 

weights are subtracted from the input signal to establish the error signal. This 

error signal is then minimised by the L M S algorithm. The transfer function from 

input, x(n), to the error signal, e(n), is equivalent to an IIR notch filter, while the 

transfer function from input to the output of each adaptive weight, yk(n), is 

equivalent to an IIR bandpass filter. To prove this, assume that the input 

sequence is an impulse function as follows: 

x(n) = b(n) (3.1) 

The adaptive weights are updated by using the L M S algorithm and are given by 

[Widrow and Stearns (1985)]: 

pk(n + \) = Pk(n)-2\le(n)-^- (3.2a) 
dpk(n) 

qk(n + l) = qk(n)-2lle(n)pp- (3.2b) 
dqk(n) 

Where p is the adaptive step size factor which controls the convergence rate of 

the algorithm. The error signal is written as: 

m 

e(n) = h(n)-^pk(n)cos<i)kn + qk(ri)sm<}ikn (3.3) 
k=\ 

Taking the derivative of the error signal with respect to the adaptive weights, we 

have: 
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6e(n) 
= -cosoyi (3.4a) dpk(n) 

de(n) 
= -sincoJtn (3.4b) 

dqk(n) 

Substituting Equations (3.4) into Equations (3.2) and applying Euler's formula, 

we obtain: 

pk(n + l) = pk(n) + \ie(n)e
Jmkn +[ie(n)e-jWtn (3.5) 

qk(n + \) = qk(n)+^e(n)e
ja>n-^e(n)e-j(**n (3.6) 

j j 

Equation (3.3) can also be written as: 

e(n) = o(n) -f [M^* +M£e-M" + **M f>* -2&L,,-»*} (3.7) 
S 2 2 2; 2; 

Taking z-transform of Equations (3.5) and (3.6) and noting that: 

e~j(0nf(n)< z-Transf°rm )F(ejaz) n>0 (3.8) 

we have: 

EL^lE^A (3.9) 
z-\ 

JLWZ)-^) (3,0) 

The z-Transform of Equation (3.7) also results in: 

1 m 

£(z) = l-i£{[Pft(^'z) + P4(^z)]-;[a(«-^z)-a(e^z)]} (3.11) 
2 *=i 

Substituting Equations (3.9) and (3.10) into Equation (3.11) and after some 

manipulations, the transfer function between the input and error signal is given 

by: 

i (3.12) 
E(z) = 

l-2u^tfr*(z) 
k = \ 

where H*(z) is a second order digital resonator whose transfer function is: 
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l-2cos(akz +Z 

Note that the transfer function as defined by Equation (3.12) yields zero 

transmission at the input frequency locations. In other words, the structure 

becomes equivalent to a 2m order IIR notch filter where m is equal to the number 

of input sinusoids. The enhanced input sinusoids are available at the outputs of 

the adaptive weights (yk(n)). In order to obtain the transfer function between 

input, x(n), and the output of the adaptive weights, yk(n), the error signals, ek(n) 

are expressed as follows (see Figure 3.1): 

e1(n) = 5(n)-p1(n)cosco1n-^1(n)sinco1n (3.14) 

ek(n) = ek_x(n)- pk(n) cos (£> kn- qk(n)sin (itkn (3.15) 

where k = 2,...,m 

Using Euler's Formula and applying Equation (3.8) to Equations (3.14) and 

(3.15), w e obtain: 

Ex(z) = \-hPx(e-^z) + P,(e^z)]-^\Qx(e-^z)-Qx(e^z)] (3.16) 
2 ^J 

Ek(z) = Eaz)-UPk(e-
ia>z) + Pk(e^zn^ (3.17) 

2 £J 

Substituting Equations (3.9) and (3.10) into Equation (3.16) and (3.17) and after 

some straightforward manipulations it can be shown that: 

E,(z) = l + 2U ^"T^W (3.18) 
1 l^COSCO^ +z 

and 

Z~2 - Z~l COSO, _. . nio\ 
£ ^ z ) = £ ' - w + 2 ^ - 2 c o s c o , z + : -

£ ( z ) (3-19) 

where k = 2,...,m 

From Figure 3.1, it is clear that: 

Yi(z) = \-E](z) (3-2°) 
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Yk(z) = Ek_x(z)-Ek(z) 

where k = 2,...,m 
(3.21) 

yk(n) is the signal at the output of the kth bandpass filter. Substituting Equation 

(3.19) into Equation (3.21) and considering the fact that the input sequence is an 

impulse function, w e get: 

H\F(z) = Yk{z) = -2H
 Z " ~ C 0 S ( ° f " 2£(z) 
l-2cosco.z +z 

(3.22) 

Based on Equations (3.12) and (3.22), the equivalent filtering structure is 

obtained and shown in Figure 3.2. 

-y (n) 
H?(z) 

Figure 3.2: Equivalent filter bank structure for L M S spectrum analyser. 

It is interesting to note that w e have arrived at a similar structure to that proposed 

by Padmanabhan and Martin (1987) as a resonator-based filter bank. 

Padmanabhan and Martin (1987) derived this structure by using a singly 

terminated L-C ladder analogue filter. Note that the phase and magnitude of 

each bandpass filter at resonant frequency are equal to zero and one, respectively. 

Each bandpass filter also has zero transmission at the other frequencies of the 

input signal. This is an important property which effectively eliminates the 
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contribution of other unwanted components at the output of the bandpass filter. 

A plot of magnitude response of the filter bank for m = 3 is shown in Figure 3.3. 

Note that the bandwidth of each bandpass filter is controlled by parameter p. 

The magnitude responses of the bandpass filters for different values of p are also 

depicted in Figure 3.4. For a single sinusoid case we have: 

E(z) = ^ — (3.23) 
l-2u( Z ~ C ° S ^ Z

 2) 
l-2cosco,z + z 

or equivalently: 

E(z)= • — ..,,-„ — ~ ~ , _2 (3.24) 
l^-jcos^z l+z 2 

l-2(l-p.) coscOjZ-1 + (1 - 2\i)z 

and HBP(z) is given by: 

HBP(z) = 1 - E(z) = 211- '0SCQl'"l-ll"
2
1 = ,-2 (3-25) 

l-2(l-p,)cosco,z +(l-2|i)z 

Equations (3.24) and (3.25) are consistent with those reported in Widrow et al. 

(1975) where the equivalent filter was derived for a single sinusoid interference 

cancellation scheme. The Bandwidth (BW) of the bandpass filter, Equation 

(3.25), is approximately given by [Widrow et al. (1975)]: 

BW~^- (3.26) 
7t 

Note that this approach includes the step size factor associated with the L M S 

algorithm in the U R bandpass filter parametisation. In the L M S algorithm, as the 

value of p decreases, the acquisition time increases while providing more 

accurate estimates. From the filter bank point of view, small values of u. result in 

narrow bandwidth which means that the acquisition time will be also increased. 

However, we expect to obtain more accurate estimates due to the fact that the 

amount of noise at the output of the bandpass filters is reduced. 
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Figure 3.3: Magnitude response of filter bank for ra = 3, u = 0.05, and 

/1=0.1,/2 = 0.2,/3=0.3. 

1.2 

S0.8 
o 
ex. 
w 
CD 

<u 0.6 
T3 

CD 
CO 
0.4 

0.2 

Pi 

pi 
n.:: il 

Iii: i 
| i : : ' 

/':; 

jl :: 
/' -:-
/' :; 

III': 
/ ' • 

/' ' 

/' • • 
/ / ; 

/ / •' 

—-̂" —' 

1 

\ \ 
\ \ 
\ \ 
\ \ \ \ 
\ \ 
\ \ 

I 

£- -~̂^ 
^̂ — — — 

1 

— — — 

-

-

-

-

_ _ 

0.1 0.2 0.3 
Normalised Frequency 

0.4 0.5 

Figure 3.4: Magnitude response of bandpass filters for different values of 

p = 0.08 (solid line), p = 0.05 (dashed line), u = 0.01 (dotted 

line). 
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For a single sinusoid case, the L M S algorithm provides guaranteed convergence 

provided p is less than unity [Widrow and Stearns (1985)]. This is particularly 

interesting since the IIR filter parametisation given by Equation (3.25) is also 

stable when p < 1. For the multisinusoid case, the necessary convergence 

conditions of the L M S spectrum analyser is given by [Widrow and Stearns 

(1985)]: 

7r(R) N 

where 7V(R) is the sum of the diagonal elements of the autocorrelation matrix R 

for the signal at the input of the adaptive weights. Note that 7>(R) is the sum of 

the reference sinusoid's powers and therefore is equal to N. The same expression 

as given by Equation (3.27) was obtained for the stability of the IIR filter bank as 

reported by Padmanabhan and Martin (1987). 

3.3 Sliding CNFT Algorithm Using GFS Filter Bank 

In order to obtain a bandpass filter at any arbitrary frequency by using a 

conventional FS filter bank, it is necessary to increase the order of the comb filter 

which results in increased memory storage and acquisition time. The G F S filter 

bank derived in Section 3.2 can be considered as an alternative method for the 

case when the input sinusoids are arbitrarily distributed in the frequency 

spectrum. The proposed G F S filter bank can be tuned at the desired frequencies 

while placing zeros on the other unwanted sinusoidal frequency locations. 

As mentioned earlier, the phase and gain of the GFS filter bank at the centre 

frequency are equal to zero and unity, respectively. Therefore, the sliding C N F T 

algorithm as proposed in Chapter 2 can be employed to estimate the phase and 

amplitude of a sinusoid at the output of each bandpass filter. Assume that the 

input signal is given by: 
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m m 

x(n) = ̂ Ck $m((akn-tyk) =£(ak cos(£>kn + bk sin co^n) (3.28) 

where 

Ck=4
al + bl and ^ = -tan-]^- (3.29) 

The signal at the output of the kth. bandpass filter is written as: 

yk(n) = Ck s'm((Skn-§k) = ak cos(dkn + bk sin cô n (3.30) 

Evaluating Equation (3.30) at the (n-l)th sampling time, w e have: 

yk(n-1) = ak costok(n-l) + bk sin tok(n-l) (3.31) 

Solving the resulting two linear Equations (3.30) and (3.31), the following sliding 

algorithm is derived: 

Ak(n) = yk(n) = ak cos cakn + bk sin G)kn (3.32) 

Bk(n) = {yk(
n~~ 1) -cosco*y)<(n)) - K cosd)kn -ak sin (dkn (3.33) 
sin cô  

The two coefficients, ak and bk are updated at every sampling time as follows: 

~ak(n) 

_bk(n) 

Note that the G F S filter bank is equivalent to the L M S algorithm. Therefore, the 

same performance is expected for the acquisition time and accuracy. However, 

the number of multiplications based on using the sliding C N F T algorithm is less 

than that in the L M S algorithm (see Figure 3.1). For m sinusoids, the L M S 

algorithm requires 6m multiplications at every sample update. B y contrast, the 

realisation of the G F S filter bank as shown in Figure 3.2, requires 2m+l 

multiplications to compute each sample at the outputs of all bandpass filters. 

Note that, in the C N F T method, Equations (3.32), (3.33) and (3.34) do not need 

to be performed at every sample time but rather after the transient time of the 

filter has elapsed. The performance of both methods are assessed by using 

simulation tests in the next section. 

cosco^n sin <tikn 

Sin C0,.tt COSCDjTl 

Ak(n) 

Bk(n) 
(3.34) 
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3.4 Simulation Results 

Simulations have been carried out to evaluate the relative performance of both 

the direct L M S and the C N F T algorithms. The algorithms have been applied for 

the task of phase and amplitude estimation of Dual-Tone Multifrequency 

( D T M F ) Signal. In this case, /, and fh were chosen to be equal to 852 Hz and 

1336Hz, respectively and the sampling frequency was selected as 4000Hz. The 

input signal was corrupted by noise and is expressed as follows: 

2 

x(n) = ̂ akcosa>kn + bksin (dk + v(n) (3.34) 

where v(n) is a unit variance, zero mean white noise sequence. The coefficients 

a, and bx are both chosen to be equal to 4, while ̂  and b2 are both set equal to 5. 

Note that the frequencies are mutually prime factors which means that I Hz 

resolution is required if conventional D F T or N F T algorithms are used. In other 

words, to estimate the Fourier coefficients accurately, at least 4000 samples are 

needed as was the case in simulation studies in Chapter 2. 

The GFS bandpass filter together with the sliding CNFT algorithm is used for 

estimating the sinusoidal coefficients and the results are depicted in Figure 3.5. 

For comparison purposes, the results of the L M S algorithm are also included. It 

is seen that both methods have similar acquisition times for the same value for u. 

as expected. Note that in the C N F T algorithm the initial state of the filters must 

be set equal to zero. In the L M S algorithm, however, initial values for adaptive 

weights can be selected arbitrarily. The initial values for the adaptive parameters 

in the L M S algorithm were chosen to be half of the actual values of the 

coefficients. 
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Figure 3.5: The sliding estimates of (a) cosine and (b) sine terms 

coefficients using CNFT (solid line) and LMS (dashed line) 

algorithms, p = 0.01, fx =852/4000, f2 =1336/4000, ax=4, 

a2 =5, bx =4, b2 =5. 
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To compare the accuracy of both methods, the mean and standard deviation of 

the estimates for both components have been determined based on 100 

independent trials. The results are shown in Table 3.1 and 3.2. From the Tables, 

it is evident that both methods have also similar accuracy characteristics as 

expected. 

Average 

STD 

A 
Gl 
A 
a2 

A 

A 
a2 

LMS 
Algorithm 

4.0058 

4.9984 

0.0737 

0.0685 

CNFT 
Algorithm 

3.9844 

4.9920 

0.0766 

0.0623 

Table 3.1: The average and standard deviation of the cosine term coefficient. 

Average 

STD 

A 

h A 

h 
A 

A 

b2 

LMS 
Algorithm 

4.0026 

5.0013 

0.0680 

0.0723 

CNFT 
Algoritm 

3.9965 

4.9940 

0.0666 

0.0775 

Table 3.2: The average and standard deviation of the sine term coefficient. 

3.5 Conclusion 

A new derivation for the equivalent filter bank for the L M S spectrum analyser 

was presented. The main advantage of the filter is that it provides a bandwidth 

controlled bandpass filter whose resonant frequencies can be set arbitrarily. 

Further, the filter bank possesses a very desirable feature in that w e can place 

nulls at any frequency location. Hence, the filter bank is referred to as the 

Generalised Frequency Sampling (GFS) structure. The bandwidth control 

parameter is used to reduce the effect of noise while the nulls are placed at those 

unwanted spectral lines to minimise the leakage. 
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This filter bank can be used to enhance and characterise sinusoidal signals 

corrupted by noise. The phase and gain characteristics of the bandpass filter are 

equal to zero and one, respectively. A s a result, if the bandpass filters are tuned 

at the input frequencies, the enhanced components will be available at the outputs 

of bandpass filters with zero phase shift and with same amplitude as the input 

components. The sliding C N F T algorithm as proposed in Chapter 2 was 

employed to estimate the phase and amplitude of each enhanced sinusoid. It was 

shown that the G F S filter together with the sliding C N F T algorithm is 

computationally efficient when compared with the L M S algorithm. 



C H A P T E R 4: 

Resonator-Based Sliding Goertzel Algorithm 

4.1 Introduction 

In low Signal to Noise Ratio (SNR) conditions, the IIR bandpass filters proposed 

in Chapters 2 and 3 require a narrow bandwidth thus resulting in increased 

acquisition time. This chapter presents a sliding Goertzel (SG) algorithm based 

on a second order digital resonator whose resonant frequency is tuned at the 

input frequency location. The proposed technique accurately estimates the 

coefficients of the sinusoidal signal in less than one period of the signal and 

provides good performance in low S N R conditions. 

The leakage problem associated with the DFT can be avoided provided that at 

least a block length equal to the ratio of sampling frequency to the greatest 

common factor of the input frequencies is used. Clearly, in situations where the 

greatest c o m m o n factor of the input frequencies is small, a large number of 

samples is required. Note that the same situation exists for the Frequency 

Sampling (FS) and N F T filter banks as discussed in the previous chapters. For 

the D F T method, windowing techniques are employed to reduce the detrimental 

effects of the noise and spectral leakage [Harris (1973), Rife and Vincent 

(1969)]. These techniques apply a weighting function to the input data before 

performing the D F T . In fact, the leakage is caused by the discontinuity at the 

boundaries of the input block. The objective of the windowing function is to 
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bring data smoothly to zero at the boundaries thus minimising the effect of 

discontinuity. The windows are designed such that their spectra exhibit a narrow 

main lobe and low amplitude side lobes. As a result, the effect of noise also 

reduces. A concise review of data windows and their effect on the estimation of 

the sinusoidal signals in the presence of noise are found in [Harris (1973), Rife 

and Vincent (1970)]. Windowing techniques; however, increase the 

computational burden particularly when the input sinusoidal coefficients need to 

be updated at every sample time (in the case of sliding measurements). 

It is known that the conventional Goertzel algorithm is an efficient 

implementation of the D F T when the number of coefficients required is small 

[Oppenheim and Schafer (1989)]. The transfer function of the equivalent 

Goertzel algorithm filter is defined as follows [Oppenheim and Schafer (1989)]: 

1 _ pj°' 7-' 

Hk(z~
1) = t - - Z—t _2 (4.1) 

where (Ok = 2nk IN. The D F T coefficients are obtained as the output of the 

system after N iterations. The signal flow graph of the transfer function given by 

Equation (4.1) is shown in Figure 4.1. Note that the Goertzel filter is composed 

of a recursive part (left hand side of delay elements) and a nonrecursive part 

(right hand side of the delay elements). The recursive part is a second order 

digital resonator. The resonant frequency of the resonator is set at equally 

spaced frequency points; that is, ask=2nk/N. In practice, w e only compute the 

recursive part of the filter at every sample update and the nonrecursive part is 

computed only after the Nth time instant when the Fourier coefficients are to be 

determined. 

Since the Goertzel algorithm is only an efficient realisation of the DFT, it 

requires the same acquisition time as the D F T . Often a large number of samples 
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are required which reduces the tracking capability of the Goertzel technique 

when the parameters of an input sinusoid are time-varying. Further, it increases 

the possibility of overflow at the output of the Goertzel filter for fixed-point 

arithmetic implementation [Beraldin and Steenaart (1989)]. 

x(n) 
& 

2cos(b 

i^r 

-1 

•*e 

-cos (a 

sinti) 

-*H8>-

Re[X(k)] 

Im[X(k)] 

Resonator 

Figure 4.1: Filter realisation of the Goertzel algorithm. 

The resolution can be improved by using the modified Goertzel algorithm 

proposed by G a y et al. (1989). In the modified Goertzel algorithm, Equation 

(4.1) is evaluated at the exact frequency of interest which means that the 

resonator is set arbitrarily at the angular frequency (d)k) of the kth component. 

This modification results in faster acquisition time for estimating the amplitude 

of the input sinusoid. The modified Goertzel algorithm; however, requires the 

same acquisition time as the conventional Goertzel algorithm for estimating both 

the phase and amplitude. In fact, the conventional Goertzel algorithm yields 

accurate estimates of the sinusoidal parameters provided that the input frequency 

falls exactly at the resonant frequency of the resonator. Under these 

circumstances both the conventional and modified Goertzel algorithms become 

equivalent. 

This chapter considers the required acquisition time associated with the D F T 

technique for estimating coefficients of sinusoidal signals. In order to obtain a 
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faster acquisition time as well as good performance in low SNR, a new technique 

is presented. The proposed technique applies an input sinusoid to a second order 

digital resonator whose resonance frequency is tuned to the exact input 

frequency. The signal characteristics at the output of the resonator is derived in 

the time domain by means of the z-Transform. A n algorithm similar to the real 

valued Goertzel algorithm is then established which estimates the phase and 

amplitude of the input sinusoid for successive values of n. This new approach 

provides the following features when compared with the conventional and 

modified Goertzel algorithms. Firstly, it computes accurate sinusoidal 

coefficients before a complete signal period has elapsed. As a result, faster 

acquisition time is achieved. Secondly, since the required number of samples is 

significantly reduced, the possibility of numerical overflows reduces when 

implemented in hardware with only fixed-point arithmetic [Beraldin and 

Steenaart (1989)]. Experimental tests are performed to assess the performance of 

the proposed method and the results are compared with those obtained by the 

conventional and modified Goertzel algorithms. 

This chapter is organised as follows: In Section 4.2, the problem associated with 

the Goertzel algorithm is discussed and the sliding Goertzel algorithm based on a 

second order resonator as a solution is proposed in Section 4.3. Simulation tests 

are included in Section 4.4. Finally, Section 4.5 concludes the chapter. 

4.2 Problem Statement 

One problem associated with the D F T and Goertzel techniques is that they can 

not accurately compute the Fourier coefficients until the end of a complete signal 

period. This means that in order to accurately estimate the phase and amplitude 

of sinusoidal components of a Multifrequency (MF) signal, the required number 

of samples should be taken over the whole period of the input sequence. Clearly, 
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the period of an MF signal depends on the constituent input frequencies. In 

situations where the input frequencies are prime factor or very closely spaced, a 

large number of samples will be required which results in an undesirable increase 

in acquisition time. In the case where the greatest common measure frequency of 

the input frequencies is equal to A/Hz, the minimum number of samples (N^J 

which is required to accurately compute sinusoidal coefficients is given by: 

#-=£ (4-2) 

where fs is the sampling frequency (fs is assumed to be an integer factor of A/). 

It is seen that the N^ is inversely proportional to Af, that is, for small value of 

A/ a large number of samples are required. To prove Equation (4.2), consider 

the following composite signal: 

.2*/, 

J—,n x(/i) = Xc,c f! (4.3) 
1=1 

where C, and f are amplitude and frequency of the i th complex sinusoidal input 

component, respectively. The D F T of a sequence x(n) of length N is then given 

by: 

"-1 -J*** 
X(k) = ̂ x(n)e~ N 0<k<N-l (4.4) 

n=0 

Substituting Equation (4.3) into Equation (4.4) results in: 

„ AM -2*..,, m. 

X(*) = XXc/"" (" / ; ) (4-5) 
;=i /!=o 

Rearranging Equation (4.5), w e obtain: 

X(k) = Ct^e
 J»{ '<\X ^C/N <• (4.6) 

n=0 i=l, n=0 

To compute the / th component (Q), the appropriate index k, is required so that: 

X(k[) = NCl (4-7) 
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This implies that the first summation and the second term in Equation (4.6) must 

be equal to N and zero respectively. To meet these two requirements we use the 

fact that [Oppenheim and Schafer (1989)]: 

ẑ,1 -j—(k-i)n [N for k -1 = LN and L is an integer 
Ye N ={ (4.8) 
^ [0 for other integer values of/ 

In order to satisfy the first requirement we obtain: 

kl-^
L = LlN for/ = l,...,m (4.9) 
J s 

Since k. are integer values which lie in the range of 0 < kx < N-1 and f < fs, it is 

clear that L{ = 0. Assuming there exists at least two frequencies (say / and f) 

that have no greater common factor than Af, we have: 

fp=MpAf; fq=MqAf (4.10) 

where Mp and Mq are integers with the greatest common measure equal to one. 

From Equations (4.9) and (4.10), we obtain: 

= NMJ_ = NM±_ 

' f,/Af ' f.ltf 

and, therefore: 

M. k. 
p _ p 

M* K 
(4.12) 

Since Mp and Mq are integer numbers with prime factor, the indexes kp and kq 

should be equal to the values of Mp and Mq, respectively. Applying this fact to 

Equation (4.11), the required block length is given as follows: 

N=fsMp =•£*- (4.13) 
fP A/ 

N o w we show that the second requirement is satisfied when the block length 

given by Equation (4.13) is used. From Equation (4.13), we get: 

K = JL f0rz = l,...,m (4.14) 
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and 

Since the values of frequencies are integer factors of Af, r is an integer number 

(less than N) as well. Hence, the second term in Equation (4.6) becomes equal 

to zero. By evaluating Equation (4.15) for the case of j = p and i = q, it can be 

shown that the block length given by Equation (4.13) is a minimum, that is: 

Wa N 
K—— = MP M=r (4.16) 
' /, ' fJAf q ) 

Since Mp and Mq are integer numbers with common measure equal to one, the 
value of r becomes noninteger for N <(fsl Af). Therefore the second term in 

Equation (4.6) will not be identical to zero and this ends the proof. 

It is assumed when using DFT and Goertzel algorithms that the phase and 

amplitude must be fixed during each block of data. If the input signal parameters 

vary within each frame of data, the estimates will be degraded. This means that 

the required large number of samples given by Equation (4.2) also reduces the 

tracking capability of the Goertzel technique when the sinusoidal parameters 

(phase and amplitude) are time varying. 

4.3 Resonator-Based Sliding Goertzel Algorithm 

This section presents the sliding Goertzel algorithm based on a second order 

digital resonator. Consider a real valued signal composed of arbitrary 

frequencies expressed as follows: 

x{n) = X a
k cos(£>kn + bk sin (akn + v(n) (4.17) 

k=\ 

where m is the number of components and v(n) is the noise component. The 

task is to compute the coefficients (ak and bk) of the sinusoidal components of 



Chapter 4: Resonator-Based Sliding Goertzel Algorithm 78 

x(n). Let us begin by examining the case where the input signal consists of a 

single component as follows: 

xk(ri) = akcosi£ikn+bk sinco^n (4.18) 

Applying xk(n) to the resonator, in terms of z-Transform, the output, Yk(z~
x), is 

given by: 

Yk(z~
l) = Xk(z-

x)Hr(z-
x) (4.19) 

where Xk(z'
x) is: 

_, at(l-cosq)>z-)+fctsino)tZ-

l^COSCO^Z +Z 

Hr(z~
x) is the transfer function of a second order resonator. Taking the inverse 

z-Transform of Equation (4.19), it is shown that the output, yk(n), is given by 

[see Appendix (C)]: 

y (n) = -. {(n + 2) cosco ̂ sin [co, (n +1)] - (n +1) sin [co* (n + 2)]} 
2 sin co t 

k (4.21) 
+ {(n + 2) sin cousin [cot(n + l)]} 

2 sin CO* 
Evaluating Equation (4.21) at nth and (w-l)th sampling time and after some 

manipulations we obtain: 

yk(n) = K s i n [03̂  (n +1)] - bk cos[co* (n +1)]} 
2 sin co* 

{2ak sin cot sin [ti)k(n + l)] + bk sin co^} 

(4.22) 

2 sin co t 

and 

yk(n -1) = — T ^ (ak sin © , n - bk cos <otn) 
2 sin co t (4.23) 

+ 5 [(6* cos co* +atsin cojsin co^n] 
2sin co* 

It is evident that as the number of samples increases, the output values will also 

increase in magnitude. This is expected since the input frequency is equal to the 
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resonance frequency of the resonator. For large values of n, the second terms in 

Equations (4.22) and (4.23) can be ignored and, with some straightforward 

manipulations, the following equations are obtained: 

A » = 
2(y(n)-y(n-l)cosG>Jt) 

n 
ak cos(£>kn + bk sin (dkn 

- . . 2sincoty(n-l) . . 
Bk(n) = ~~ak sinco^n + ̂ cosco^n 

n 

(4.24) 

This algorithm has similar parametisation to the real valued conventional 

Goertzel algorithm which is n o w presented in sliding form. In the conventional 

Goertzel algorithm the left hand side of Equation (4.24) is only evaluated at the 

Nth sample time and the resonator is tuned at equally spaced frequency points, 

that is; co* = 2itk IN. The proposed and modified Goertzel techniques are similar 

in the sense that both employ a resonator tuned exactly at the input frequency 

location. The modified Goertzel algorithm takes Ak and Bk as the estimates of ak 

and bk, respectively. In the proposed algorithm; however, the equality in the 

right hand side of Equation (4.24) provides a suitable means for updating both 

the phase and amplitude at every sample time. In other words, by solving the 

resulting linear Equations (Equations (4.24)), the sliding algorithm for Fourier 

coefficients are obtained as follows: 

ak(n) 

bk(n) 

cos(x)kn -sm(Okn 

sin (Hkn cosco^n 

Ak(n) 

Bk(n) 
(4.25) 

From Equations (4.24) it can be shown: 

A2k(n) + B
2
k(n) = a

2
k+b

2
k (4.26) 

which means that the amplitude of the sinusoidal component can be updated at 

every sample time without performing Equation (4.25). The phase associated 

with each sinusoid is obtained as follows: 

^(^-tan-1^) 
bk(n) 

(4.27) 
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In the case where the input signal is composed of m sinusoids buried in noise, m 

resonators are required where each resonator is tuned at a particular input 

sinusoidal frequency. 

At this point it is important to consider the issue of the acquisition time (tac). 

Note that although the algorithm provides the sinusoidal coefficients at every 

sample update, one does not need to evaluate Equations (4.24) and (4.25) at 

every sample time but only after the transient time has elapsed and the output of 

the resonator has settled. In other words, accurate estimates of the Fourier 

coefficients are available after a specific sampling number (say Nacq) when the 

contribution of noise and other components can be ignored at the output of the 

resonator. Clearly w e can write: 

taca = Nacq/fs (4.28) 

In the proposed technique, the acquisition time depends on the power of the 

noise and the required resolution. In other words, when the input spectral lines 

are closely spaced or the input signal is heavily corrupted by noise, a greater 

value for Nacq will be required. For situations where the frequency of the input 

sinusoid is different from the resonance frequency of the resonator the output is 

given by [see Appendix C ] : 

y(„) = 1 {"^Sm(0<:sin[cor(n + l)]+^sin[co,(n + l)]} (4.29) 
-2(coscor - cosco*) sin cor 

where cor is the resonance frequency of the resonator, co* and bk are the 

frequency and amplitude of the input sinusoid, respectively. From Equation 

(4.29), it is seen that the output magnitude is inversely proportional to the factor 

(cos(cor)-cos(co*)) which means that the contribution of the unwanted 

component will be greatest when it is close to the desired component. Note that 

the magnitude of the output component associated with the desired sinusoid 

linearly increases in time (see Equation (4.22)) while the output component due 
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to the unwanted frequency is constant. Therefore, the individual sinusoids are 

quickly separated and enhanced through the resonator. The algorithm also 

provides a good performance in low SNR. This is due to the fact that the 

resonator can be considered as an ideal matched filter for sinusoids buried in 

noise. Since an estimate for phase and amplitude of each sinusoid is available at 

every sample time, the value of Nacq can be selected arbitrarily large to get more 

accurate results. This is not the case for the conventional Goertzel algorithm. 

The appropriate selection of Nacq and performance of the proposed method will 

be discussed in more detail by means of simulation tests in the next section. The 

complete algorithm is summarised in Table 4.1 and the signal flow graph of the 

resonator and algorithm is shown in Figure 4.2. Note that the sampler in Figure 

4.1 has a frequency given by: 

/, 
/, 

sampler 

acq 
N 

(4.30) 
acq 

for k = \,...,m: 

Ak(n) = 
. 2(yk(n)-yk(n~ 1)cosco*) 

n 

6 2sinco*y*(«-l) 

n 

~ak(n) 

VbM. 
cosco*n -sinco*/2 

sin co*« cosco*n 

~Ak(n) 

_Bk(n)_ 

A2k(n) + B
2
k(n) *a

2
k(n) + b

2
k(n) 

cK(n)~-tan->(^) 
bk(n) 

Table 4.1: Sliding Goertzel algorithm. 
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Figure 4.2: Digital resonator and sliding Goertzel algorithm realisation. 

4.4 Simulation Results 

Simulation tests have been carried out to evaluate the performance of the 

proposed algorithm. T w o cases are considered. First, the algorithm is used for 

the detection of a D T M F signal. Secondly, the algorithm will estimate the phase 

and amplitude of a single sinusoid whose parameters are time varying within the 

successive sequences. 

Example 1. The proposed sliding Goertzel algorithm is used for the task of 

Fourier coefficient estimation of a D T M F signal. Consider the following D T M F 

signal: 

x(n) = JjCicos(^-t?i) + v(n) 
J s 

(4.31) 
i=l,h 

where v(n) is zero mean white noise. The parameters of the signal are given in 

Table 4.2. 



Chapter 4: Resonator-Based Sliding Goertzel Algorithm 83 

Freq. 

Amplitude 

Phase 

Sampling Freq. 

SNR 

Low Freq. 
component 

941Hz 

2 

l(rad) 

High Freq. 
component 

1209Hz 

2 

l(rad) 

4000Hz 

3dB 

Table 4.2: Parameters of D T M F signal. 

Figures 4.3 and 4.4 show the resulting trajectories for amplitude and phase 

estimates of the input signal components, respectively. The amplitude estimates 

when the frequencies have not been transmitted is also depicted in Figure 4.5. 

From Figure 4.5 it is clear that the contribution of noise is insignificant after 100 

samples when compared with the magnitude of the sinusoidal component. 

100 
Time [n] 

200 

Figure 4.3: Sliding computation of amplitude (c/, c») of the D T M F (low 

frequency component (Dashed line), high frequency component 

(Solid Line)). 
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Figure 4.4: Sliding computation of phase (<)),, tyh) of the D T M F (low 

frequency component (Dashed line), high frequency component 

(Solid Line)). 

100 
Time [n] 

200 

Figure 4.5: Sliding amplitude computation (ci, Ch) using sliding Goertzel 

algorithm in the presence of unit variance, zero mean white 

noise only (low frequency component (Dashed line), high 

frequency component (Solid Line)). 
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Figure 4.6 corresponds to the case when the two closest frequencies, in the 

D T M F signal (/, =852Hz and fh = 1336Hz), are transmitted while the resonators 

are tuned at 941 H z and 1209Hz. It is evident that when the two most adjacent 

frequencies are transmitted, after 100 samples the receiver does not falsely detect 

another D T M F signal. Once the transient behaviour of the filter has elapsed, 

detection can be accomplished by using an appropriate threshold. The threshold 

value is application dependent. The signal is detected as a valid transmitted 

frequency when the magnitude is larger than the threshold. These results clearly 

show that the coefficients are computed very fast. Note that if the conventional 

or modified Goertzel algorithms are used at least 4000 samples are needed to 

accurately estimate the phase and amplitude of the components. Based on 100 

independent experiments, the average and standard deviation of amplitude 

estimates of low frequency component (/,) using the proposed, conventional and 

modified Goertzel algorithms were computed at the 256th time instant and the 

results are given in Table 4.3. For the conventional Goertzel algorithm, the 

index k is found to be equal to 30. 

Amplitude 

(//) 

Phase 

(//) 

Ave. 

STD 

Ave. 

STD 

Sliding 
Goertzel 
algorithm 

Modified 
Goertzel 
algorithm 

conventional 
Goertzel 
algorithm 

NaCq = 256 SNR=3dB 

2.0158 

0.0910 

0.9900 

0.0441 

1.9874 

0.1115 

— 

— 

1.9610 

0.1312 

— 

— 

Table. 4.3: The average and standard deviation of phase and amplitude 

estimates of low frequency component (f,) of D T M F signal 

(Example 1) using sliding, conventional and modified Goertzel 

algorithms. 
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100 
Time [n] 

200 

Figure 4.6: Sliding amplitude computation using sliding Goertzel algorithm 

when the two most adjacent frequencies (f = S52Hz, 

fh = 1336Hz) are transmitted (C, (Dashed line), Ch (Solid 

Line)). 

Note that, since the conventional and modified Goertzel algorithms can not 

estimate phase of the component by using 256 samples, these are not included in 

Table 4.3. It is seen that the sliding Goertzel algorithm provides similar accuracy 

for amplitude computation as does the modified Goertzel algorithm. Both the 

sliding and modified Goertzel algorithms perform better than the conventional 

Goertzel algorithm. The performance of the sliding Goertzel algorithm under 

various S N R conditions has also been examined. For each S N R condition, the 

estimates are computed based on 100 independent experiments. The standard 

deviation and average error of the estimates for the amplitude and phase are 

shown in Figures 4.7 and 4.8, respectively. In these figures, the parameter N 

indicates the sample number at which the algorithm was performed. It is seen 

that the algorithm exhibits good performance at low SNR. 
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Figure 4.7: (a) error ( (C-Caclual)/C( actual' ^actual 
) and (b) standard deviation of 

amplitude estimate versus SNR. 
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Figure 4.8: (a) error ( W ~ factual)'$ actual 
) and (b) standard deviation of phase 

estimate versus SNR. 
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Note that N can be selected large to increase the accuracy of the estimates. This, 

however; leads to an increase in acquisition time which means that one needs to 

trade acquisition time for accuracy, or vice versa. 

Now we consider the condition when a mismatch exists between the resonance 

frequency of the resonator and the actual input sinusoidal frequencies. In other 

words, in practice, there may exist some deviation in input frequencies. For the 

given example, assume ±1.0% frequency deviation in the low frequency 

component of the input signal. Using 100 different trials, the standard deviation 

and the average of Fourier coefficients have been carried out and the results are 

depicted in Table 4.4. The input frequency was randomly selected from the 

range of f -0.01/j <f<f, +0.01/,. As can be observed the accuracy of the 

proposed and modified Goertzel algorithms are similar and both provide more 

accurate estimates when compared with the conventional Goertzel algorithm. 

Obviously, the accuracy depends on the degree of uncertainty in the input 

frequency, that is, a more accurate estimate can be obtained as the amount of 

mismatch reduces. 

Amplitude 

Phase 

Ave. 

STD 

Ave. 

STD 

Sliding 
Goertzel 
algorithm 

conventional 
Goertzel 
algorithm 

Modified 
Goertzel 
algorithm 

NaCq=256 SNR=3dB Freq. Deviation 1% 

2.0434 

0.1305 

1.0120 

0.1036 

2.0454 

0.1285 

-

-

1.8806 

0.2253 

-

Table 4.4: The average and standard deviation of phase and amplitude 

estimates of low frequency component (Example 1) using 

sliding, modified and conventional Goertzel algorithms for 1 % 

deviations in frequency. 
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Example 2. This example considers the situation where the signals are 

time-varying. Even though the proposed technique provides an estimate update 

at every sample time, one needs to wait for a minimum of Nac samples before 

the estimate can be considered reliable. Note, however, that Nac is less than one 

period of the signal. Figures 4.9 and 4.10 show amplitude and phase 

computation at every 30 samples of a single sinusoid, respectively. The phase 

and amplitude of the sinusoid change within successive sequences 

simultaneously. The input and sampling frequencies were chosen to be equal to 

1209Hz and 4000Hz, respectively, while the S N R was set at 20dB. Step changes 

in amplitude (from 1 to 2) and phase (from 0 to 1 radian) were applied to the 

input sinusoid. From Figures 4.9 and 4.10, it is evident that the given algorithm 

is capable of tracking the rapid changes in the parameters of the input sinusoid. 
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Figure 4.9: Amplitude computation of single sinusoid at every 30 samples 

with step changes in the input sinusoid's parameter. 
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Figure 4.10: Phase computation of single sinusoid at every 30 samples 

with step changes in the input sinusoid's parameter. 

4.5 Conclusion 

The required acquisition time associated with the Goertzel algorithm for 

estimating the coefficients of sinusoidal signals was discussed. It was shown that 

the Goertzel algorithm requires a large number of samples when the common 

factor of input frequencies are small. This increases the required acquisition 

time of the algorithm and therefore reduces its tracking capability when the 

sinusoids parameters are time-varying. 

A Sliding Goertzel (SG) algorithm was developed based on using second order 

digital resonators which are tuned to the input spectral frequencies. The 

proposed method provides good performance in low S N R situations and 

estimates accurate Fourier coefficients in less than one period of the signal. As a 

result, a significant reduction in acquisition time is achieved when compared to 

the conventional Goertzel algorithm. The accuracy versus the acquisition time of 
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the S G algorithm was also discussed. Further, the proposed approach is better 

suited to the estimation of Fourier coefficients when the parameters are time-

varying within successive sequences. Simulation tests for the Fourier coefficient 

estimation of a typical D T M F signal were conducted to evaluate the relative 

performance of the sliding, modified and conventional Goertzel algorithms. 



CHAPTER 5: 

An Adaptive IIR Frequency Sampling Filter Bank 

5.1 Introduction 

So far the enhancement and characterisation of noise-corrupted sinusoidal signals 

have been performed based on the assumption that the frequencies of the input 

components are known a priori. W e now consider the case when the input 

frequencies are unknown. In this chapter, the enhancement and frequency 

estimation of the input frequencies are performed by using an adaptive Frequency 

Sampling (FS) filter bank. The problem of large spectral overlap amongst the 

bandpass filters of the FS structure which decreases the convergence speed is 

discussed. A new adaptive IIR FS filter bank is proposed in an attempt to 

overcome the problem. 

Traditionally, enhancement of unknown sinusoids buried in broadband noise is 

performed by using Tapped Delay Line (TDL) Adaptive Line Enhancers (ALE) 

[Widrow et al. (1975)]. A block diagram of the traditional A L E is shown in 

Figure 5.1. It is comprised of an iV-weight T D L filter which is adapted by using 

the Least Mean Square (LMS) algorithm. Once convergence takes place, the 

enhanced sinusoidal signal is available at the output, y(n), of the FIR filter. The 

location of the input frequencies are determined by taking the D F T of the FIR 

filter weights. The frequencies are validated if there is any spectral peak above 

the background noise [Widrow et al. (1975)]. Clearly, the desired enhancement 
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as well as the required resolution of the conventional A L E can be improved by 

increasing the length of the FIR filter. 

x(n) A 
Delay 

r> z1 -I -* z1 •••-*• z1 ~ 

Figure 5.1: Traditional A L E structure. 

It is well known that the convergence speed of the conventional A L E depends on 

the eigenvalue disparity of the input autocorrelation function [Widrow et al. 

(1976)]. In situations where the powers of the input sinusoids are widely spread, 

the input correlation matrix will have a bigger eigenvalue disparity thus resulting 

in slow convergence speed. Transform domain L M S adaptive algorithms have 

been proposed partly with the aim of improving the convergence speed [Narayan 

and Peterson (1981), Narayan et al. (1983), Bitmead and Anderson (1981)]. This 

approach also provides more uniform convergence rate for all the adaptive 

weights. The method is similar to the T D L L M S adaptive filter, except that a 

transformation such as the D F T or the Discrete Cosine Transform (DCT) is first 

performed on the input sequence in a sliding fashion. Each transform can be 

considered as a bank of narrow-band bandpass filters. A n equivalent filter bank 

structure is more efficient in terms of computational burden. The FS structures 

are generally regarded as having a reduced computational complexity of the 

sliding spectral measurements. These structures are composed of an FIR comb 



Chapter 5: An Adaptive IIR FS Filter Bank 95 

filter followed by parallel resonators. Alternative realisations for the real valued 

FS filter bank have been described in [Bitmead and Anderson (1981)]. 

The purpose of using a filter bank is to separate the energy of the input signal 

into N approximately nonoverlapping frequency bins as shown in Figure 5.2. At 

first, the filter bank splits the input signal x(n) into N approximately orthogonal 

signals yk (n). These signals, [yk (n)], are filtered by a bank of adaptive subfilters 

Fk(n,z). The outputs of the subfilters are added to obtain the overall filter output 

z(n). The output, z(n), is compared with the desired signal d(n) to produce a 

common error signal e(n). A self-orthogonalising L M S adaptive algorithm is 

then employed to adjust the coefficients of the adaptive subfilters so that the 

M S E is minimised [Narayan et al. (1983), Lee and U n (1986)]. 

x(n) 

Bandpass 
Filters Self-Orthogonalising 

L M S Algorithm 

e(n)l 

d(n) 

Figure 5.2: Filter bank based adaptive filtering. 

The self-orthogonalising algorithm is similar to the conventional L M S algorithm 

except that it uses a time-varying step size factor for each adaptive weight which 

is inversely proportional to the power of the signal at the output of each bin. This 
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algorithm, in fact, normalises the power of the signal in each bin to unity thus 

resulting in reduced eigenvalue disparity. Therefore faster convergence speed is 

expected when compared with T D L L M S algorithm. The algorithm is sometimes 

called transform domain normalised L M S algorithm [Farhang-Boroujeny and 

Gazor(1992)]. 

When adaptive filters are realised using a filter bank, two important issues must 

be considered. The first is the amount of overlap and the second is the spectral 

holes which occur between two adjacent bins. The steady state performance of 

the adaptive algorithm is adversely affected by the spectral hole. In other words, 

the adaptive process may not give adequate enhancement to the unknown 

sinusoids lying in these spectral gaps [Shynk (1992)]. O n the other hand, the 

existence of a large degree of spectral overlap results in reduced convergence rate 

[Shynk (1992), Petraglia and Mitra (1988)]. Although FS filter banks are 

computationally efficient, they suffer from a large degree of spectral overlap. 

In this chapter we present a new IIR FS filter bank. The proposed structure is 

composed of a constrained IIR comb filter followed by parallel digital resonators. 

The IIR comb filter comprises N zeros equally spaced on the unit circle along 

with N uniformly distributed zeros and poles inside the unit circle. T w o adjacent 

zeros of the comb filter on the unit circle are eliminated by using two successive 

digital resonators and the resulting structure is an H R bandpass filter. The 

spectral overlap as well as the spectral hole between adjacent channels of the 

proposed method are significantly reduced when compared to the conventional 

FS structures. Further, by using the self-orthogonalising L M S algorithm, the 

proposed filter bank approach provides faster convergence speed when compared 

with both the T D L (normalised L M S ) and conventional FS methods under the 
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same steady-state Mean-Squared-Error (MSE). The convergence conditions, the 

minimum and excess M S E of the adaptive FS filter bank are also studied. 

Since the poles of the proposed IIR parametisation are constrained to be within 

the unit circle, it has guaranteed stability. Further, it provides approximately 

linear phase characteristics in the passband. The proposed structure is modular in 

design which means that it lends itself to easy implementation. The proposed 

filter bank is used for the task of A L E and simulation tests are carried out to 

establish the performance. The results are compared with those obtained by the 

T D L and the conventional FS methods. 

This chapter is organised as follows: Section 5.2 presents the formulation for the 

proposed filter bank. Performance analysis of the seif-orthogonalising L M S 

algorithm using filter bank is described in Section 5.3. Simulation tests are 

included in Section 5.4 and finally Section 5.5 concludes the chapter. 

5.2 The Proposed Filter Bank 

Conventional FS filter banks are commonly used when implementing sliding 

spectral measurements. The D F T can be implemented in sliding form using an 

FIR comb filter followed by parallel digital resonators. For example, the transfer 

function of D F T filter bank becomes [Rabiner and Gold (1975)]: 

Hk(z-
x) = Hc(z-

x)Hr(z-
x)= X'C k = 0,...,N-l (5.1) 

l-e N z~x 

where Hc(z~
x) and Hr(z~

x) are the transfer functions of the comb filter and 

resonator, respectively. The pole of each resonator (denominator) eliminates the 

corresponding zero of the comb filter (numerator) and the result is an FIR 

complex bandpass filter. A n equivalent approach of implementing the D C T is 

via a digital filter bank defined as follows, [Narayan et al. (1983)]: 
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„r_-iv.„r„-iv„r_-u g-^xw-i)^) ,-_ 
Hk(z )-Hc(z )Hr(z ) - ^ (5.2) 

l - 2 c o s — z x+z 2 

N 
for k = 0,...,N. It is evident that the poles of each resonator cancels the 

corresponding zeros of the comb filter (numerator). Each branch in this structure 

results in a real FIR bandpass filter. For the D C T case, the bandpass filters are 

spaced at equal intervals of nl N rather than 2n/N radians as seen in the D F T 

filter bank implementation. Unlike the D F T case, the bandpass filter outputs of 

the D C T filter bank are real and therefore no complex arithmetic is involved. 

These structures have become attractive because of their modularity and lower 

computational burden. The frequency response of two adjacent bins for the D F T 

and the D C T filter banks are shown in Figures 5.3 and 5.4, respectively. It is 

evident that in the case of D C T the size of the spectral hole between two adjacent 

bins has decreased. However, the amount of spectral overlap in the main lobe 

has increased. Further, it can be seen that the side lobes contain less overlap 

when compared to the D F T filter bank implementation. Note that in both 

methods (i.e., D F T and D C T ) , the first side lobe is about 13dB below the main 

lobe. 

Our objective is to obtain bandpass filters with less spectral overlap and reduced 

spectral hole between adjacent bins, while preserving the modularity of the FS 

structures. To achieve these requirements, w e propose an H R comb filter rather 

than FIR comb filter as follows: 

HAz-') = a-z-")\^r (53> 

where N is an even number and 0 < a < (3 < 1. 
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Figure 5.3: Magnitude response of two adjacent bins for the D F T filter bank. 

0.1 0.2 0.3 
Normalised Frequency 

0.4 0.5 

Figure 5.4: Magnitude response of two adjacent bins for the D C T filter bank. 
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The comb filter, as described by Equation (5.3), has N equally spaced zeros on 

the unit circle as well as N equally distributed zeros and poles within the unit 

circle. The two parameters a and (3 can be used to control the position of zeros 

and poles, respectively. In addition, two resonators will be used in each branch 

to eliminate the two corresponding adjacent zeros of the comb filter on the unit 

circle as follows: 

-i 
Hr(z~

l) = [ 
1 

•I-
1 

_ .2nk_ JL ^ ,2n(*+l) 
l _ e

 7 N ,"1 1_„ J N „-l 

'] k=0,....N-\ (5.4) 

z ' l-e " z 

The normalised magnitude response of two adjacent bins are depicted in 

Figure 5.5. From Figure 5.5, it is evident that the transition band of each 

bandpass filter has decreased, which leads to a reduction in the spectral hole 

between adjacent channels. 

o 0.1 0.2 0.3 
Normalised Frequency 

0.4 0.5 

Figure 5,5: Magnitude response of two adjacent bins for the proposed 

structure (N = 20, a = 0.2, (3 = 0.3). 

Further, the amount of overlap particularly through the side lobes is reduced. 

The first side lobe is n o w about 24dB below the main lobe which is significantly 
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reduced when compared with that of the FS structure (-13dB side lobe). In order 

to obtain an appropriate selection of the parameters (a and (3), (3 is defined as 

follows: 

P = a + r| (5.5) 

The transition band (bin) and the passband ripple (dB) versus a for different 

values of r| are plotted in Figures 5.6 and 5.7, respectively. The bandwidth of 

the transition band in which the magnitude response drops from the passband to 

the stopband is given in terms of frequency bin. Each frequency bin is equal to 

the distance between the centre frequencies of two adjacent bandpass filters. In 

this case, the stopband cutoff frequency corresponds to the frequency where the 

magnitude of the response is equal to -20dB. Figures 5.6 and 5.7 can be used for 

design purposes. Note that when a and (3 are close to the origin, the spectral 

hole as well as the transition band will be increased. However, when a and p 

are close to unity, the filter characteristics become sharper. Unfortunately in this 

case, the ripple in the passband will also increase. 

0.95 

0.75 

°"0 

x- "\ =0.15 

o- *\ =0.12 

+- V\ =0.10 

•*- y\ =0.09 

1 0 2 0.3 0.4 0.5 0.6 0.7 

0( 

0.8 

Figure 5.6: Transition band versus a for individual channel while r\ is the 

parameter. 
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Figure 5.7: Ripple versus a for individual channel while r\ is the parameter. 

A plot of the phase characteristics versus normalised frequency for a specific bin 

when a is equal to 0.2 and for different values of r\ is depicted in Figure 5.8. It 

is seen that the phase response of the proposed structure is approximately linear 

in the passband of each bandpass filter. 

Since the proposed filter bank provides reduced overlap as well as minimal 

spectral hole characteristics between adjacent channels, it is an attractive solution 

for adaptive filtering. In other words, due to improved orthogonalisation 

properties of the proposed filter bank (reduced overlap), it is expected this will 

lead to faster convergence when compared to the conventional adaptive FS 

structures. Referring to Figure 5.2, each subfilter is generally comprised of a 

single complex coefficient while the complex L M S algorithm [Widrow et al. 

(1975)] is employed to recursively update the weight vector. Other types of 

subfilters such as pole-zero filters can also be used [Shynk (1989a)]. Assuming 

that one is dealing with real signals, it is desirable to use real operations. In such 
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cases, the kth and the (N-k)th bandpass filters can be combined together. The 

resulting bandpass filter is realised by using the IIR comb filter together with two 

second order digital resonators in series as follows: 

-1 
Hr(z~

l) = 
1 

l - 2 c o s — z +z l-2cos 

K = \,...,(NI2)-2 

n(k + l) _, _2 
(5.6) 

0.22 0.23 
Normalised Frequency 

0.25 

Figure 5.8: Phase response of the proposed bandpass filter ( N - 2 0 , 

oc = 0.2, fc =0.225, ri = 0.1 (solid line), r| = 0.12 (dashed line), 

rj = 0.15 (dotted line)). 

In order to provide symmetric conditions, two additional zeros are added to the 

comb filter using 1-z"2. Hence, the transfer function given by Equation (5.6) can 

also be used for k = 0 and k = (N/2)-\. The proposed real valued 

implementation requires a subfilter which consists of a two tap delay line with 

real weights as follows: 

Fk(n,z) = wxk(n) + w2k(n)Z-
x (5-7) 
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The centre frequency of k th bandpass filter occurs at: 

2nk n 
w = + — (5.8) N N 

To ensure that the bandpass filter gain is unity, the transfer function can be 

normalised as follows: 

1 , ~ sin( + —) 

|G| = [^1 N N (5 9) 
1 ' 1 + B \ • i, n , . ,2nk 3TC, .Ink n , {D'y) 

H 4 sin ( )sin( + — ) s m ( + ) 
2N N N N IN 

where G is the gain of the bandpass filter at the centre frequency. For adaptive 
filtering applications, the constant gain criteria can be dropped, as it is absorbed 
by the corresponding adaptive subfilters. Note that there are 6 multiplications per 

channel per output sample for the proposed approach which is three times the 

number required by the conventional FS structure. Clearly, in situations where 

computational burden is not a main concern then the proposed approach will 

provide superior performance in terms of improved convergence rate. 

In practice for finite word length arithmetic implementation of the proposed 

approach one needs to consider two important issues. First, because the poles of 

each resonator lie exactly on the unit circle, it is clear that any round-off errors 

could result in filter instability. In this case, it is suggested that z'x be replaced 

by fe"1, where 0 « l % < \ [Shynk (1989a), (1992)]. Secondly, even if poles and 

zeros are moved inside the unit circle, the zeros may not be exactly cancelled by 

the poles of the resonator due to the coefficient quantisation noise. That is, the 

poles may be placed either before or after the zeros of the comb filter. 

Depending on the extent to which this mismatch occurs it may cause notches or 

peaks in the bandpass region of the proposed filters. It is important to note that 

typical Digital Signal Processing (DSP) chips are characterised by 32-bit fixed-

point arithmetic (multiplication and accumulation) and 16-bit memory allocation. 
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In this case the degradation in filter characteristics and its performance is 

negligible as verified by our simulations and confirmed by the independent work 

of Kuo and Rodrigues [Kuo and Rodrigues (1986)] where an implementation of a 

conventional FS structure (based on pole-zero cancellation) was done using the 

TMS32010 chip. 

5.3 Performance Analysis 

The properties of the conventional and normalised T D L L M S algorithms are 

reviewed in this section. These properties are used for comparison purposes. 

The performance of the adaptive self-orthogonalising L M S algorithm using a 

filter bank in terms of the convergence condition, minimum of M S E and the 

excess M S E is then presented. 

5.3.1 Conventional and Normalised TDL LMS Algorithm 

The adaptive weights ( W ) in the T D L adaptive digital filter as shown in Figure 

5.1 are adjusted by the conventional L M S algorithm as follows [Widrow and 

Steams (1985)]: 

W(n + \) = V/(n) + 2\LtX(n)e(n) (5.10) 

W(n)=[wx(ri)w2(n)...wn(n)f where T denotes transpose of a matrix and p., is a 

convergence factor which controls stability and the performance of the algorithm. 

Xn)=[x(n)x(n-\)...x(n-(N-\))]T and N is equal to the number of adaptive 

weights. This algorithm minimises the M S E that is defined as: 

MSE = E[e(n)e(n)] (5.11) 

where the T indicates the complex conjugate and E[.] denotes the statistical 

expectation. After convergence, the optimum weight vector (Wopt) and minimum 

of M S E (e^J are given respectively, by: 

W 0 , = R ; P , and E^=E[d(n)d(n)]-T>*xIiyx (5.12) 
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where the asterisk denotes complex conjugate transpose of a matrix. R and P 
X X 

are the input autocorrelation matrix and cross-correlation vector, respectively. 

These are defined as follows: 

Rx = E[X(n)X'(n)] and Px = E[d(n)X(n)] (5.13) 

The excess M S E (eA) and the time constants (x(.) relating to relaxation of the 

learning curve are given respectively by [Widrow and Stearns (1985)]: 

1 £A=VtTr(Kx)emin=\itNGxtmin and ! , • = — - (5.14) 
4 P A 

where \<i<N, A,/s are the eigenvalues of the input autocorrelation matrix. 

Tr(Rx) denotes the sum of the principal diagonal elements of the matrix R^ and 

is equal to NG2X. The time domain normalised L M S algorithm uses a time varying 

convergence factor as follows [Lee and Un (1986)]: 

^n) = ^ (5'15) 

o\» 
where o2x(n) is the power of the input signal and is estimated as follows: 

G2x(n) = ya
2
x(n-\) + (\-y)x(n)x(n), 0 < y < l (5.16) 

where y is the so-called smoothing constant which controls estimation accuracy 

and tracking capability of time variations. Consequently, the excess M S E for this 

algorithm is written as [Lee and Un (1986)]: 

It is seen from Equation (5.17) that the steady-state performance of the 

normalised L M S is independent of the input signal power. Equations (5.14) and 

(5.17) will be used later for comparing the T D L L M S with the FS filter bank 

approach. 

From Equation (5.14), it is clear that the convergence speed is most affected by 

the largest time constant (TM) corresponding to the minimum eigenvalue. 

Therefore, in order to speed up the convergence rate, the value of l^ must be 
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increased. Note that the convergence speed of different methods must be 

compared under the same steady-state M S E . This means that Tr(Rx) which is 

equal to the sum of eigenvalues must be fixed (see Equation (5.14)). As a result, 

the value of X^ becomes maximum, when all the eigenvalues are identical [Lee 

and U n (1986)]. 

5.3.2 Adaptive Self-Orthogonalising LMS Algorithm 

Using a two tap delay line filter as given by Equation (5.7) at the output of each 

bandpass filter, the self-orthogonalising L M S algorithm updates the weights as 

follows [Narayan et al. (1983), Lee and U n (1986)]: 

wXk(n + l) = wXk(n) + 2[lfk(n)yk(n)e(n) (5.18) 

w2k(n + l) = w2k(n) + 2\lfk(n)yk(n-l)e(n) (5.19) 

where yk(n) is the signal at the output of kth bandpass filter and 

HW=-£U (5-20) 

is the time-varying adaptive step size for the kth bandpass filter and \if is a 

positive constant. The signal power can be estimated using a single-pole lowpass 

filter [Lee and U n (1986)] as follows: 

a^(n) = ̂ ( M - l ) + (l-y)y2(n) 0 < y < l (5.21) 

It is well known that the eigenvalue disparity of the input correlation matrix is 

related to the power variation in the input signal spectrum [Makhoul (1975)]. 

Passing the input signal through a filter bank provides an effective means for 

compensating the power variation. This can be done by properly normalising the 

signal power at the output of each bin. Under these circumstances, the elements 

of the main diagonal of the autocorrelation matrix will be equal to unity 

(assuming perfect orthogonalisation) which means that fast convergence is 

obtained. This implies that if the filter bank provides less correlated output the 
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speed of the convergence will be increased. The output of the filter bank is 

expressed as: 

y(n) = Rx(n) (5.22) 

where 

y(n) = [y0(n),yx(n),...,yN_x(n)]
T (5.23) 

and 

Kkm=rk(m) forfc = 0,l,...,AMandm = 0,l,...,AM (5.24) 

where in this case N is equal to the number of bins and rk(m) is the impulse 

response of the k th bandpass filter and it is assumed that its value for m greater 

than N, is approximately equal to zero. This approximation is justified by 

examining the impulse responses of the bandpass filters which are very close to 

zero for m>N. The autocorrelation matrix of the new input to the adaptive 

weights (the output of the bandpass filters) is: 

Ry = E[y(n)y
T(n)) = RE[x(n)xT(n)]RT 

= RRXR
T (5.25) 

The Wiener optimal solution is obtained as follows: 

W ' = R P (5.26) 
T opt y y K ' 

using 

P = E[d(n)y(n)] = E[d(n)RX(n)] = RPX (5.27) 

and substituting Equations (5.27) and (5.12) into Equation (5.26), we have: 

W^R^RP^R^RR^P, 

= RyRRxWopt (5.28) 

The minimum M S E for the adaptive bandpass filtering (e^n) becomes: 

^L = E[d(n)d(n)]-ryR-y
xPy 

= E[d(n)d(n)]-PXR
TK^ (5'29) 

Assuming that R is not singular, substituting Equation (5.25) into Equation 

(5.29) leads to: 

e l = E[d(n)d(n)]-rxRx
xFx =e.n (5-30) 
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Note that for the case of any transform (R) (such as D C T or D F T ) applied to the 

input vector, the minimum M S E is also obtained to be equal to e ^ [Lee and U n 

(1986)]. The excess M S E of the L M S for the filter bank is given by: 

t{ «H /Tr[R y]£l=^ /mR,]e i n i n (5.31) 

First w e consider the case when a fixed step size factor is used. Also, assume 

that the filter bank perfectly orthogonalises the input signal. In this case, the 

matrix R̂ ,, only has non zero elements on principal diagonal ry(k,k) and their 

values correspond to the power of the signal at the kth bin which are 

approximately equivalent to the eigenvalues of the input autocorrelation matrix. 

The eigenvalue disparity can be considered as the signal power variation among 

the filter bank bins. Note that the filter bank only diagonalises the 

autocorrelation matrix and does not affect the eigenvalue disparity of the 

autocorrelation matrix. It is also clear that the sum of the signal power of the 

filter bank output is equal to the input signal power. So, w e can write: 

Tr(Ry) = \-Tr(Rx) (5.32) 
N 

From Equations (5.14), (5.31) and (5.32), it can be concluded that the T D L and 

filter bank methods both have the same steady-state M S E and the same time 

constant provided that \x,f = N\it. 

Now if the signals at the output of the individual bins are normalised, the 

equivalent autocorrelation matrix becomes equal to an identity matrix (assuming 

perfect orthogonalisation conditions). This means that all the eigenvalues 

become equal to unity thus resulting in fast convergence speed (X^ lX^n -> 1). 

This normalisation is, in fact, performed by using a time varying convergence 

factor which is inversely proportional to the signal power at the output of each 

bin (see Equations (5.20) and (5.21)). In this case, w e obtain: 

Tr(Ry)~N (5-33) 
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Note that the steady-state performance (that is, the excess MSE) becomes 

independent of the input signal power and is equivalent to the normalised TDL 

L M S algorithm provided p/0 = pr0 (see Equation (5.17)). Considering Equation 

(5.33), the self-orthogonalising L M S algorithm converges provided that: 

1 1 
0<p,< = — (534) 

P/ Tr[Ry] N ^ } 

In summary, orthogonalising the input sequence through the use of the proposed 

filter bank increases the convergence speed; however, it does not improve the 

steady state error performance. These results are consistent with those reported 

in [Lee and Un (1986), Marshal et al. (1989)] where orthogonalisation is carried 

out by multiplying the input sequence by a unitary transformation matrix. 

5.4 Simulation Results 

The proposed filter bank was used for the implementation of the ALE. For the 

comparison purposes, the adaptive line enhancer was also implemented using 

TDL and conventional FS filter bank. For the T D L method the structure shown 

in Figure 5.1 is employed while for the FS method the equivalent FS filter bank 

of the DFT transform is used (see Equation 5.2). It has been shown that for the 

ALE application, both the D C T and the DFT FS filter banks have similar 

performance [Narayan et al. (1983)]. 

In each method, the reference signal (input of the adaptive filter) is formed by 

delaying the input signal by A to provide uncorrected noise components. For 

situations where the broadband noise component of the input signal is white, A is 

usually selected equal to one sample delay. This is justified by the fact that the 

correlation between two adjacent samples of a white noise sequence is equal to 

zero. It has been shown that there exists an optimum choice for A that slightly 

improves the performance of the T D L method in terms of bias and noise variance 
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of the input frequency estimates [Reddy et al. (1981), Gupta (1985), 

Yoganandam et al. (1988)]. However, this optimum value which has only been 

given for the case of one and two sinusoids buried in white noise is a function of 

the input frequencies. Since the input frequencies are not known a priori, an 

estimation technique is required to obtain a near-optimum value for A which 

results in increased computational complexity. In our simulation for 

simplification purposes, the value of A is set equal to one step delay. The filter 

input consists of two sinusoidal components plus white noise as follows: 

x(n) = Cx cos(0. 2 7 5 T M ) + C2 cos(0.4757m) + v(n) (5.35) 

where v(n) is a zero mean white noise sequence. Note that the frequencies were 

chosen such that they do not fall exactly on the null of the bandpass filters. 

Otherwise, the effect of the leakage could not be observed. The eigenvalues of 

the input signal correlation matrix are widely spread by setting the power of the 

two components at different values. 

In the FS method, the frequency resolution is determined by the number of the 

bins in the filter bank. The input frequency is detected by examining the sum of 

the squares of the adaptive weight (i.e., wXk + w>lk) at the output of each bin. 

Detection is said to be accomplished if this value is above a specific threshold. 

Clearly, the threshold value is application dependent. If the two input spectral 

lines fall in the passband of a particular bandpass filter, the algorithm will not be 

able to distinguish them. O n the other hand, the frequency resolution of the T D L 

method is determined by the number of T D L filter weights. In order to estimate 

the input frequency, one needs to take an F F T from the adaptive weights after the 

adaptation process is completed. The input frequency is detected if there is any 

peak above the background noise. Clearly, both the T D L and FS methods yield 

the same frequency resolution provided the number of adaptive weights in the 

T D L filter is equal to the number of frequency bins in the FS filter bank. In these 
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simulations, the number of T D L adaptive weights and the number of bandpass 

filters (AT) of the FS structures (i.e., the proposed IIR and D F T FS filter banks) 

are chosen to be equal to 40. The values of a and (3 are set equal to 0.2 and 0.3, 

respectively. Referring to Figures 5.6 and 5.7, the amount of the ripple in the 

passband and the transition bandwidth become approximately equal to -38dB 

and 0.84bin (bin= 1 / N), respectively. 

Using a self-orthogonalising LMS algorithm for the filter banks (i.e., the 

proposed IIR and D F T FS filter bank) and normalised L M S algorithm for the 

conventional T D L method (p/0 = p,0 = 0.01, y = 0.9), the learning curves are 

obtained. Note that the values of the step size factors (p;0 and p/0) should be 

equal so that the same steady state performance (i.e., e^n =£min and z{ = £A), is 

achieved. Figure 5.9 shows the learning curves for the case when 

(q = i, c2 = o.i). 

J I - — 1 1 ' ' 

'o 200 400 600 800 1000 
Number of Adaptation 

Figure 5.9: Learning curves using self-orthogonalising L M S algorithm for 

proposed filter bank (solid line) and D C T (dashed line) and 

normalised L M S algorithm for T D L method (dotted line) 

(n Q=iito = 0.0\, y = 0.95, SNR =&0dB,Cx=l,C2=0.l). 
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Figure 5.10 corresponds to the case when the eigenvalues of the input signal 

correlation matrix are widely spread (C, = 1, C 2 = 0.05). From the given results, it 

is clear that the proposed method provides faster convergence rate when 

compared to the T D L and conventional FS method. 

o 500 1000 1500 
Number of Adaptation 

2000 2500 

Figure 5.10: Learning curves using self-orthogonalising L M S algorithm for 

proposed filter bank (solid line) and D C T (dashed line), 

normalised L M S algorithm for T D L method (dotted line) 

(p/0 = U,0 =0.01, y = 0.95, SNR = 80dB, Cx =1, C2 = 0.05. 

Figure 5.11 shows the learning curves of the T D L and D F T domain and the 

proposed structure for the case of the SNR = 40dB. In this case, since the 

correlation amongst the input samples is reduced, the T D L method also results in 

fast convergence rate. The learning curves for the proposed filter bank and T D L 

method for fixed step size factor is shown in Figure 5.12 (SNR =40dB). It is 

evident from Figure 5.12 that both methods have similar convergence speed 

under the same M S E condition (that is, \if I (Number of bins) = \it= 0.03). 
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Figure 5.11: M S E learning curves using self-orthogonalising L M S 

algorithm for proposed filter bank (solid line) and D C T 

(dashed line) and using normalised L M S algorithm for T D L 

method (dotted line) (u/0 = u,0 = 0.01, y = 0.95, SNR=40dB, 

Cx = \, Q = 0.1). 
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1200 1400 

Figure 5.12: M S E Learning curves using fixed step size factor for proposed 

IIR filter bank (solid line) and T D L (dashed line), 

SNR=40dB, C,=l, Q=0.1, \if / (Number of bins) = \lt= 0.03. 
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5.5 Conclusion 

A novel modular Infinite-Impulse-Response (IIR) filter bank primarily aimed at 

adaptive line enhancement applications was introduced. The proposed IIR FS 

filter is composed of a constrained IIR comb filter followed by parallel digital 

resonators. The comb filter consists of AT equally spaced zeros on the unit circle 

as well as zeros and poles whose positions are controlled by two parameters 

within the unit circle. The appropriate selection of these parameters using 

graphical characteristics is given so that the desired transition band and the ripple 

in the passband are obtained. 

The proposed filter bank is characterised by reduced spectral overlap as well as 

reduced spectral hole between adjacent channels when compared to the 

conventional Frequency Sampling (FS) structures. As a result, the signals at the 

outputs of the proposed bandpass filters are less correlated. This property is 

expected to lead to improved convergence rate characteristics. The proposed 

filter bank also possesses the desirable features in that it is modular and has 

approximately linear phase characteristics in the passband. 

The analysis of minimum of Mean-Squared-Error (MSE), excess MSE and 

convergence condition was also given and compared with Tapped-Delay-Line 

(TDL) method. Computer simulations for Adaptive Line Enhancer (ALE) 

application were included to demonstrate the performance of the proposed 

structure. Under the same steady-state M S E conditions, the performance of the 

proposed approach was compared with those obtained by the T D L and FS 

methods. It is clear from the results that the proposed approach provides superior 

performance in terms of improved convergence rate as expected. 



CHAPTER 6: 

Parallel IIR Adaptive Line Enhancer 

6.1 Introduction 

This chapter considers the use of an IIR Parallel Adaptive Line Enhancer (PALE) 

for enhancement and frequency estimation of sinusoids buried in noise. The 

problems resulting from local minima and saddle points associated with the error 

surface of the conventional P A L E are addressed and a new structure is proposed 

as a solution. 

ALE's based on the TDL filter and FS structures require a large number of 

adaptive weights to provide adequate enhancement of sinusoidal signals. In an 

effort to reduce the number of weights, adaptive IIR filtering has been proposed 

for A L E application. Different forms of implementation including direct 

[Friedlander (1982, 1984), Rao and Kung (1984), Nehorai (1985), Ng (1987)], 

cascaded and parallel [Chicharo and N g (1990a) David (1984), Hush and 

Ahmed. (1984), Hush et al. (1986), Ahmed et al. (1984), Kwan and Martin 

(1989)] structures for the IIR A L E have been suggested. In order to estimate and 

to enhance a number (N) of sinusoids buried in noise, the order of numerator and 

denominator polynomials in direct form are equal to 2A^. In modular structures, 

however, each module is usually composed of a second order IIR bandpass filter 

which is itself used to estimate one input frequency. Modular structures have 

some advantages when compared to the direct form implementation. Firstly, 
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since the order of the denominator of each module is a polynomial of order two, 

they offer simple stability monitoring. Secondly, estimation of frequencies 

which are equivalent to the resonant frequencies of the bandpass filter can be 

easily computed. Finally, individual components are available at the output of 

bandpass filters in the time domain for further processing. 

Various adaptive algorithms have been proposed for the IIR ALE [Friedlander 

and Smith (1984), Rao and Kung (1984), Nehorai (1985), Chicharo and Ng 

(1990)]. Chicharo and N g (1992) in a comparative study of various algorithms 

conclude that the selection of an appropriate algorithm depends on the 

application. They suggest, however; that for applications where the signal to 

noise ratio is moderate, the gradient based algorithms are suitable, particularly 

where minimal computational burden is desired. 

This chapter presents a novel IIR PALE model structure which can be viewed as 

a modification of the conventional IIR P A L E scheme introduced by David (1984) 

and Hush and A h m e d (1984). The conventional P A L E is shown in Figure 6.1 

which is composed of parallel IIR bandpass filters whose peaks are allowed to 

vary adaptively. One problem associated with the conventional recursive P A L E 

is that its error surface is not quadratic. Therefore, if gradient-based algorithms 

are used the adaptive parameters may converge to local minima or saddle points. 

For the situations where the input frequencies are completely unknown a priori, 

it has been recommended to initialise the adaptive parameters at equally spaced 

intervals in the range from dc to /, / 2 [Hush and A h m e d (1984)]. However, even 

if the initial values are chosen as suggested, it is possible for some of the 

parameters to get trapped in the saddle points or local minima. 
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For the proposed structure, the error signal is established separately for each 

module as depicted in Figure 6.2. It will be shown that this modification 

provides an effective means of retrieving all the input sinusoidal components for 

situations where there is no a priori information regarding the location of the 

input frequencies. 

IIR 
Bandpass Filter 

1 

IIR 
Bandpass Filter 

i 

IIR 
Bandpass Filter 

1 

y1 (n) 

y2 (n) \ 

Hr-* 

y m (
n ) 

Figure 6.1: Conventional parallel recursive A L E . 

Gradient-based algorithms such as Recursive Prediction Error (RPE) and 

Pseudolinear Regression (PLR) algorithms for the proposed structure are derived. 

These algorithms have been found to converge under a wide variety of conditions 

and are very straightforward to implement in real time [Bitmead et al. (1986), 

Widrow and Stearns (1986)]. Error surface analysis is used to provide some 

insight into the convergence behaviour of the given structure. It is shown that the 

error surface of succussive modules in the proposed structure are improved by 

the module which has just converged to a particular frequency. In this aspect, 

the proposed P A L E model structure can be regarded as a hybrid combination of 

conventional parallel and cascaded configuration. 
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x(n) 

Figure 6.2: The proposed IIR parallel A L E . 

Extensive experiments were performed and the results show that the proposed 

method has similar convergence rates as the cascaded configuration. However, it 

is superior to the serial structure in terms of phase and amplitude distortion 

associated with individual sinusoids. In other words, each sinusoid only passes 

through one module rather than successive modules as in the case of cascaded 

structures. It is worth noting that parallel structures have the lower degradation 

in performance due to quantisation noise for a fixed number of bits and round off 

accumulation error when compared with direct or cascaded configurations 

[Rabiner and Gold (1975), Liu and Kaneko (1969)]. 

The proposed structure is very suitable for the detection of a set or comb of 

frequencies which are used in Frequency C o m b Multiple Access ( F C M A ) 

scheme [Stevenson and Yates (1989)]. The F C M A scheme is efficient in the 

sense that the information is carried within the phase and frequency of each 

sinusoid. The receiver requires the detection of many frequencies across the 

transmission bandwidth. The detection is commonly performed using the FFT 
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technique. For situations where the signal frequencies are prime factor, the D F T 

(or equivalently FFT) requires a large number of samples to accurately estimate 

the parameters of the sinusoids thus resulting in an increased acquisition time as 

stated earlier. In such cases, the proposed technique can be considered as an 

alternative method. Once the bandpass filters in the P A L E structure converges to 

the input sinusoidal locations, the input frequencies become equivalent to the 

resonant frequencies of the bandpass filters. Since the individual sinusoids are 

available at the outputs, the C N F T algorithm developed in Chapter 2 can be 

employed to obtain the phase and amplitude associated with each sinusoid. 

This chapter is organised as follows: In Section 6.2, the IIR bandpass filter 

parametisation is presented. The adaptive algorithm is derived in Section 6.3 

while the error surface analysis is given in Section 6.4. Simulation results are 

included in Section 6.5 and finally, Section 6.6 concludes the paper. 

6.2 The IIR Bandpass Filter Parametisation 

A number of filter parametisations have been suggested for a second order 

module of IIR bandpass filter. One such parametisation is the bilinear bandpass 

filter which is computationally more efficient [Kwan and Martin (1989)] when 

compared to the filter structure proposed by Chicharo and N g (1990), David 

(1984) and Hush and A h m e d (1984). Further, it provides unbiased frequency 

estimates when the input signal is composed of single sinusoid buried in white 

noise [Kwan and Martin (1990)]. This filter is designed based on a bilinear 

transformation of a second order analogue bandpass filter and its transfer 

function is given by: 
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where -2 < h < 2 and g is the parameter which controls the bandwidth. In order 

to obtain guaranteed stability it is necessary to satisfy the inequality; 0.5<g< 1. 

The parameter g determines the bandwidth of the filter and the centre frequency 

can be set independently from the bandwidth of the filter and is given by [see 

Appendix (A)]: 

/ =-LCos-*(—) (6.2) 
p 2n 2 v J 

Using the above bandpass filter for the A L E , the parameter h is adapted such 

that the centre frequency is located at the input spectral lines. The parameter g 

is either fixed or time varying during the adaptation process. In order to speed 

up the convergence, a wider bandwidth can be used at the beginning of the 

process [David (1986), Nehorai (1985)]. For such cases the value of g changes 

according to some heuristic rule as the adaptive algorithm proceeds. After the 

adaptation process, the input frequency is obtained from Equation (6.2). 

The above bandpass filter has exactly unity gain and zero phase characteristics at 

the resonant frequency. Therefore, individual enhanced sinusoids are available 

at the output of the bandpass filter with undistorted amplitude and phase 

characteristics. These signals can be used for further processing such as 

estimating phase and amplitude parameters. Note that the bandpass filter given 

by Equation (6.1) was used in Chapter 2 to enhance the known sinusoids buried 

in noise. 

6.3 Gradient-Based Adaptive Algorithms 

Gradient-based adaptive algorithms are used to adjust the h coefficients in the 

bandpass filter transfer functions. From Figure 6.2, the error signals are 

described as follows: 

i 

e2(n) = x(n)-^yj(n) (6.3) 
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where y.{n) is the output of i th bandpass filter. The recursive gradient-based 

formula for updating the coefficients is given by [Widrow and Stearns (1986)]: 

/i,.(n + l) = /i/(n)-U,V,j. (6.4) 

where \it is a positive scalar step size which controls the algorithm convergence 

rate and Vft is the partial derivative of the mean squared error with respect to hr 

The goal of this algorithm is to search for the values of h{ which minimises the 

mean squared error £. =E[e2(n)]. For on-line processing the error signal is 

examined at each instant of time and an instantaneous estimate of £. is used and 

given by £, = ef(n). Although this approximation leads to noisy estimates of the 

filter coefficients, it provides a simple and computationally efficient approach. A 

normalised factor based on the instantaneous estimate of power of the gradient 

signal can be used which makes the algorithm faster as well as providing good 

performance in low S N R situations [Chicharo and N g (1990a), Hush and Ahmed 

(1984)]. The normalisation factor is incorporated in Equation (6.4) as follows: 

V 
/*,.(n +l) = ̂ ( n )-u,—±- (6.5) 

e is a small real number to ensure that division by zero does not occur, r; is a 

smoothed estimate of the power of the V^ and is given by: 

ri(n + l) = yTi(n) + (\-y)Vh
2 (6.6) 

y is a forgetting factor in the range of 0 < y < 1 and provides an averaging effect. 

The derivative of the squared error (Equation (6.3)) with respect to h. results in: 

V„ =-2ei(n)^ = -2ei(n)y{(n) (6.7) 
' dht 

where yf(n) is the filtered version of y,(n) and is an estimate for ' • Taking 

the derivative of the output of the i th bandpass filter with respect to ht, w e have: 

M.^.^a.ft.^ (6.8) 
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Assuming that the adaptation step size p(. is chosen sufficiently small, the 

coefficients adapt slowly and the following approximation is valid: 

dyt(n-\) dy^n-l) _ dy,.(n-2) dy,.(n-2) 

dh,(n) 'dh,(n-\) ' dht(n) dh((n-2)
 { } 

Therefore, Equation (6.7) leads to the following recursive form: 

y!(n) = -gyi(n-\)-ghiy;(n-l)-(2g-\)yf(n-2)} (6.10) 

Using Equation (6.10) together with Equations (6.5), (6.6) and (6.7), provides the 

means for updating the coefficients. This algorithm is referred to as a Recursive 

Prediction Error (RPE) method and can be further simplified by ignoring the 

recursive part of Equation (6.10), that is [Shynk (1989b)]: 

y!(k) = -g{yi(k-i)} (6.ii) 

The resulting algorithm is often referred to as an approximate gradient or 

Pseudolinear Regression (PLR) algorithm [Shynk (1989b)]. It is interesting to 

note that the gradient signal is easily implemented by multiplying the one step 

delay of the output of the bandpass filter by the value of g (see Figure 6.2). 

6.4 Error Surface Analysis 

In this section, error surface analysis is employed to provide some insight into 

the convergence behaviour of the proposed structure. It is well known that IIR 

filters can produce nonquadratic error surfaces with local minima and saddle 

points. Hence special care must be taken when gradient search techniques are 

used [Widrow and Stearns (1986)]. First, the error surface associated with each 

module of the proposed structure is derived. It is shown that these error surfaces 

have minima occurring at the input frequency locations as well as local minima 

and saddle points. Based on the characteristics of these error surfaces, then a 

novel scheme is presented so that convergence to the saddle points and local 

minima is avoided. The error signal associated with the first module is given by 

[Stearns (1981), Chicharo and N g (1990a), Chicharo (1992)]: 
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E(ef) = ̂ Oxx(z)\l-H
x
BP(hl,z)\

2^ (6.12) 

where H^h^z) is given by Equation (6.1) and Ort(z) is the power spectrum of 

the input signal and the path of integration is along the unit circle on the z-plane. 

It is assumed that the input signal is composed of multiple sinusoidal components 

buried in white noise of power a*. Hence, the power spectrum will be equal to: 

i m 

<Mz) = "Xc?+oi (6.13) 
*=i 

where Ci is the amplitude of the i th input frequency. Substituting Equation 

(6.13) into Equation (6.12) we obtain: 

£(ei
2) = -^|l-JrY^(^,C01)|

2+.--+-|-|l-JrYiP(/z1,C0j|
2 

2 

• 

2TT 

(6.14) 
h^J|l-7/^(^,co)|2Jco 

1 2K 

-\\\-HlBP(hx,a)
2d(i) = g (6.15) 

0 

0 

Using the analytical solution given in Appendix D, the integral on the right hand 

side of Equation (6.14) is: 

27t 

Note that the output noise power does not depend on the updated filter 

coefficient. The output noise power only depends on the bandwidth control 

parameter. This property leads to asymptotically unbiased frequency estimates 

for the case where the input signal is composed of a single sinusoid buried in 

white noise. A straightforward proof is given in Appendix E. Figure 6.3(a) 

shows the error surface associated with E(ex). In this case we have three (m = 3) 

sinusoids buried in white noise. The sinusoidal components have an amplitude 

equal to 5, while the white noise is zero mean with unit variance. It is evident 

that the error surface has three unique minima, one corresponding to each of the 

input frequencies. If the first module is initialised at -2, it converges to the 
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closest minimum to the dc frequency (/z, -> h\) provided the step size factor is 

sufficiently small. Therefore the error surface associated with the second module 

(£(e2))is given by: 

^ 2 ) = ̂ r^(co)|l-<(^,co)-//B
2,(^,co)|2Jco (6.16) 

Equation (6.16) is computed by using a numerical algorithm developed by 

Astrom et al. (1970) for evaluating complex integrals of this form. The error 

surface given by Equation (6.16) is depicted in Figure 6.3(b). It has a saddle 

point at dc frequency, one maximum corresponding to the frequency which has 

been detected by the first module and two minima related to the two left 

frequencies in the input signal. W h e n module one has converged, the value of 

the next parameter (h^) must lie on the right hand side of the maximum of the 

error surface. This can be achieved simply by checking the second adaptive 

parameter at each time step to ensure that it is greater than \. Otherwise, it may 

converge to the saddle point which occurs at dc. Once the second parameter has 

converged to the next minimum (h^ -> h2), the error surface for the third module 

(E(e2)) is expressed as: 

1 f2* 

2n*° 

Equation (6.17) was computed and the result is shown in Figure 6.3(c). In this 

case, there exits two maxima, two saddle points and one minimum. The maxima 

occurs at the frequencies which have already been identified by the previous 

modules. The minimum corresponds to the third component in the input signal. 

The third module converges to this minimum provided the parameter i\ is located 

on the right hand side of the second maximum. 

£(e3
2) = ̂ f2"o^(o3)l-//iP(/?1\co)-//^(/i2\o3)-//^(^,co)|

2Jco (6.17) 
OTT JO 
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Figure 6.3: The error surfaces associated with a) E(e2), b) E(e\), c) E(e\), 

Cl =C2 = C3 =5, cn =1, K =-1.618, K =-0.618, h\ =0.618. 
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From the error surfaces shown in Figure 6.3, it is evident that each module 

converges to optimum weights provided hi+x > ht during the adaptation process. 

This can be easily accomplished by checking the adaptive parameters at each 

time instant to see if hl+l is greater than hn and if not, to replace hi+x by a value 

slightly bigger than hr If all the adaptive parameters are identically initialised 

close to -2, the whole frequency range is swept by the adaptive algorithm. Once 

the i th module has converged, the next adaptive parameter is placed at an 

appropriate location which ensures the convergence to the next optimum weight. 

In this way, the first module converges to the minimum closest the dc frequency 

and the next modules converge to the next minimum and so on. 

Now consider the situation where the number of modules are greater than the 

number of input frequencies. In this case the error surfaces of the last modules 

have saddle points at half the sampling frequency. As a result, the last adaptive 

parameters will converge to the value of 2. This fact may be used for 

determining the number of input components without any further processing. 

6.5 Simulation Results 

Computer simulations were used to establish the performance of the proposed 

structure and adaptive processes described in the previous sections. The 

objective is to show that although the performance surface is not uni-modal, the 

proposed scheme is able to identify all input frequencies. First consider the case 

where the input sequence is composed of 3 sinusoids buried in zero mean, unit 

variance white noise and three modules are used. The input data is expressed as 

follows: 

x(n) = X Q sin (2nffi) + u(n) (6-1») 
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The amplitude of each component is set to the value of 5 and the input 

normalised frequencies are equal to 0.1, 0.2 and 0.3. The actual values of 

adaptive parameters, fy, \ and /̂  are -1.618, -0.618 and 0.618, respectively. 

Using the R P E algorithm, the parameter estimate trajectories for the conventional 

parallel structure is depicted in Figure 6.4. For this case w e have assumed that 

the frequencies are completely unknown, so the initial values for adaptive 

parameter are set in a comb pattern in the possible range of h which is between -

2 and 2. It is seen that only two frequencies have been identified and one 

parameter has been trapped in a local minima. The results of the trajectories of 

the estimates using the suggested scheme and R P E algorithm are plotted in 

Figure 6.5 which clearly shows that all frequencies have been successfully 

identified. 

Under the same signal conditions and filter bandwidth (g), simulation tests were 

also conducted for the cascaded configuration using the R P E algorithm. It was 

observed that the proposed structure provides the same convergence speed as the 

cascaded implementation under the same steady state Mean-Squared-Error 

(MSE) conditions. The same steady state error conditions can be achieved by 

using the same bandwidth and step size factor for both methods. The trajectories 

of the estimates for the serial configuration are given in Figure 6.6(a). A typical 

learning curve for the third module of the serial configuration is also shown in 

Figure 6.6(b). For comparison purposes, the learning curve of the proposed 

method is also included. Note that in the serial structure, individual sinusoids are 

distorted in phase and amplitude by successive filter characteristics. For 

example, the third sinusoid must pass through those filters which have already 

been converged to the other input frequencies. While in the proposed structure, 

the input sinusoid only passes through one filter which also possesses 

approximately linear phase characteristics. 
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Figure 6.4: Parameter estimate trajectories for conventional P A L E using 

RPE algorithm, C, = C2 = C3 = 5, o„ = 1, g = 0.95, y = 0.95, 

U., = U.2 = U.3 = 0.008, /z,* = —1.618, ^=-0.618, /^=0.618. 
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Figure 6.5: Parameter estimate trajectories for the proposed P A L E using 

RPE method, Cx = C2 = C3 = 5, o„ = l, p, =p2 = U-3 = 0.008, 

g = 0.95, 5 = 0.95, ^ = -1.618, ^=-0.618, h\ = 0.618. 
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Figure 6.6: (a) Parameter estimate trajectories for serial configuration using 

R P E method, Cx = C2 = C 3 = 5, o„ = 1, g = 0.95, y = 0.95, 

p , = p 2 = p 3 = 0.008, /if =-1.618, /£ =-0.618, ^=0.618, (b) 

Learning curves of the third module in the proposed (solid line) 

and serial (dotted line) structures. 



Extensive simulation tests were also performed and it was observed that by using 

the P L R algorithm, the parameters converge to the minima corresponding to the 

input frequencies without the need for a checking procedure as suggested in the 

previous section. A typical result is depicted in Figure 6.7. From Figure 6.7, it 

is evident that when the first module has converged, the second and the third 

adaptive parameters are located in the vicinity of a local minimum (see Figure 

6.3). However, they successfully converged to the optimum weights (/£ and h\). 

This result is consistent with those reported in [Ng (1987)] where an Adaptive 

Notch Filtering (ANF) was implemented using a direct form structure. Ng 

(1987) showed by simulation results that the P L R algorithm for A N F may work 

when R P E method does not. Figure 6.8 plots the parameter estimate trajectories 

for the case when the number of input components were equal to 2 while four 

modules were used. It is seen that the parameters of the last two modules have 

converged to the saddle points which occurs at the value of 2. One can possibly 

use this fact to determine the number of sinusoids present in the input signal. 

6.6 Conclusion 

The existence of local minima and saddle points in the error surface associated 

with the conventional parallel IIR adaptive line enhancer was discussed. It was 

stated that because of these characteristics the adaptive weights may converge to 

local minima and saddle points if gradient search algorithms are used. 

The conventional parallel structure was modified such that the convergence to 

local minima is avoided. The proposed structure employs a bilinear transformed 

second order H R bandpass filter as a building block. The normalised Recursive 

Prediction Error (RPE) and Pseudolinear Regression (PLR) algorithms were 

derived for the proposed filter parametisation. 
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Figure 6.7: Parameter estimate trajectories for the proposed P A L E using 

PLR algorithm, Cx = C2 = C3 = 5,o„ = 1, mx = m2 = mi= 0.008, 
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Figure 6.8: Parameter estimate trajectories when the input signal is 

composed of two components and four modules are used in the 

proposed PALE structure, u, = p2 = p3 = m = 0.003, 

C,=C2=5, a„ = l,s = 0.95, Y = 0.95, ^ = -1.618, ^ = -0.618. 
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Based on error surface analysis, it was shown that although the proposed 

structure is not unimodal, its convergence characteristics are predictable if all the 

parameters are properly initialised. Accordingly, a new scheme was developed 

which successfully detects the input frequencies even in situations where a priori 

information regarding the location of the input frequencies does not exist. 

The convergence speed of the proposed structure is similar to that of the serial 

configuration. However, it is superior to the cascaded structures in the sense that 

w e expect to obtain reduced phase and amplitude distortion of the enhanced 

sinusoidal components. Simulation tests were conducted to evaluate the 

proposed configuration and the results are compared with those of the 

conventional parallel and cascaded structures. 



C H A P T E R 7: 

Conclusions and Suggestions for Further Research 

7.1 Conclusions 

This thesis deals with the enhancement of noise-corrupted sinusoidal components 

as well as the estimation of amplitude, phase and frequency of each constituent 

sinusoid. Several new techniques were developed to accurately estimate the 

parameters of the sinusoids. Chapters 2, 3 and 4 consider the problem of 

sinusoidal estimation when the frequency locations are known in advance while 

Chapter 5 and 6 deal with the situations where sinusoidal frequencies are 

unknown. 

Chapter 2 assumed a priori knowledge of the input frequency locations and 

presented a new sliding algorithm for estimating the amplitude and phase of the 

Fourier coefficients of noise corrupted harmonic signals. The proposed method 

was similar in principle to the Notch Fourier Transform (NFT) technique 

suggested by Tadokoro and Abe (1987) except that it employs an Infinite Impulse 

Response (IIR) rather than a Finite Impulse Response (FIR) notch filter 

parametisation. This modification provides a bandwidth controlled filter bank 

whose resonant frequencies are equally spaced in the frequency spectrum. In this 

sense the proposed technique can be regarded as a Constrained Notch Fourier 

Transform (CNFT). This structure is most suitable for the enhancement and 

characterisation of harmonic signals. The filter bank was designed such that 
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phase characteristics of each bandpass filter become equal to zero at the resonant 

frequency. Therefore, the retrieved signal can be obtained in the time domain 

with the same phase and amplitude as the input signal. The bandwidth control 

parameter offers an efficient means for obtaining the required enhancement 

without necessarily increasing the order of the filter as it is in the N F T filter bank 

structure. Therefore a substantial saving in memory storage is achieved. The 

N F T filter bank was found to be equivalent to the real valued Frequency 

Sampling (FS) structure which has an FIR parametisation. 

Chapter 2 also proposed a similar technique to the CNFT for the signals 

containing sinusoids at arbitrarily (i.e., nonequally spaced) known frequencies. 

The main feature of the modified C N F T is that it uses a second order H R 

bandpass filter whose bandwidth and centre frequency can be adjusted 

independently. In this approach, the bandwidth control facility provides the user 

with an effective means of achieving the required resolution as well as reducing 

spectral leakage. 

New sliding computational algorithms were derived for both the NFT [Tadokoro 

and Abe (1987)] and C N F T filter banks for the purpose of estimating the Fourier 

coefficients of the sinusoidal components. The sliding N F T algorithm has similar 

parametisation to the real valued conventional Goertzel algorithm except that it is 

presented in a sliding form. The given algorithms estimate the parameters (phase 

and amplitude) of individual components at every sample update. 

The proposed approach provides an interesting interpretation for the relationship 

between the frequency resolution and the required acquisition time. Both 

methods provide accurate estimates once the transient of the filter has elapsed. 

The transient time itself depends on the bandwidth; that is, as the bandwidth 
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reduces, the transient time of the filter increases (or vice versa). The required 

acquisition time in both methods (i.e., N F T and C N F T ) is determined by the 

bandwidth of the corresponding bandpass filter parametisation. W h e n the input 

frequencies are closely spaced, high resolution is required to resolve the input 

sinusoids. This resolution is achieved by using narrower bandwidth bandpass 

filters which also results in increased acquisition time. Based on this approach, 

there is a trade off between the frequency resolution and the acquisition time. 

In the NFT method the bandwidth depends on the order of the filter while in the 

C N F T method it depends to a large extent on the contraction pole factor. It was 

observed that the same acquisition time is obtained if both methods have same 

bandwidth (as expected). However, in situations where the input frequencies are 

mutually prime factor the proposed second order IIR bandpass filter together with 

the C N F T sliding algorithm yields faster acquisition time than the N F T method. 

This is due to the fact that the IIR bandpass filter can be tuned arbitrarily while 

the resonant frequencies of the N F T are constrained to be equally spaced. The 

N F T yields accurate estimates provided that the spectral lines fall exactly at the 

resonant frequencies. In order to obtain a bandpass filter at the desired frequency 

location, the N F T requires a higher order bandpass filter thus resulting in 

increased acquisition time. Simulation tests were conducted to evaluate the 

relative performances of both the N F T and the C N F T methods. 

In Chapter 3, the Generalised Frequency Sampling (GFS) filter bank together 

with the C N F T algorithm was proposed for the sliding coefficient estimation of 

sinusoidal components given a priori information of the input frequencies. The 

G F S structure was derived based on the Least M e a n Square (LMS) spectrum 

analyser. First, it was shown that the L M S spectrum analyser is equivalent to an 

IIR filter bank which has similar parametisation as the resonator based filter bank 
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proposed by Padmanabhan and Martin (1990). Unlike the N F T or conventional 

FS filter bank whose resonant frequencies and nulls are distributed uniformly, the 

G F S filter bank possesses a useful feature where the resonant frequencies and 

nulls are set arbitrarily at any desired frequency location. The resonant 

frequency can be tuned at the desired spectral line while the nulls are placed at 

other input sinusoids. As a result, leakage can be effectively minimised. 

Since the gain and phase characteristics of the GFS filter bank are equal to unity 

and zero at the resonant frequencies, the output sinusoids have exactly the same 

phase and amplitude as the input sinusoids. It was shown that the G F S filter 

bank together with the C N F T algorithm provide faster acquisition time when 

compared with the conventional frequency sampling structure. It is also 

computationally more efficient than the direct L M S technique under similar 

acquisition times and accuracy conditions. Simulation tests were carried out to 

demonstrate the performance of the given technique and the results were 

compared with those of the L M S method. 

In Chapter 4, the required acquisition time associated with the Discrete Fourier 

Transform (DFT) for estimating the sinusoidal coefficients was discussed. It was 

shown that the D F T requires a large number of samples when the input 

frequencies have a small c o m m o n factor. The same problem exists for the sliding 

Goertzel algorithm based on the FS structure, since it is in fact equivalent to the 

D F T computation. In order to achieve fast detection and accurate estimation of 

sinusoidal parameters, a new sliding Goertzel algorithm was developed based on 

a second order digital resonator. The proposed technique exhibits good 

performance in low signal to noise ratio (SNR) conditions. This was verified by 

extensive simulation tests which were carried out under different S N R 

conditions. Further, the algorithm provides the following advantages when 



Chapter 7: Conclusions and Suggestions for Further Research 138 

compared with the conventional and modified Goertzel algorithms. Firstly, it 

computes Fourier coefficients in less than one signal period. Therefore, faster 

detection time is achieved particularly when the mutual common factor of the 

input frequencies is small. Secondly, the algorithm is quite suitable for the 

situations where the sinusoidal parameters (phase and amplitude) are time 

varying. Finally, it is less prone to numerical overflow problems in fixed-point 

arithmetic implementation. Simulation tests were carried out to demonstrate the 

performance of the proposed algorithm and the results were compared with those 

obtained by the conventional and modified Goertzel algorithms. 

A new modular IIR FS filter bank was presented in Chapter 5, for adaptive line 

enhancement applications. The technique can be used for the situations where 

the input frequencies are not known a priori. The proposed filter bank is 

composed of a constrained IIR comb filter followed by a bank of digital 

resonators. The characteristics of the filter bank in terms of the transition band 

and the amount of ripple in the passband were given. A design procedure using 

characteristic graphs was presented which can be used for selection of 

appropriate comb filter parameters. The structure preserves the modularity of the 

FS filter bank while providing reduced spectral overlap as well as minimal 

spectral hole between adjacent channels. 

By using the proposed IIR FS filter bank together with a self-orthogonalising 

L M S algorithm, faster convergence was achieved when compared with 

conventional adaptive FS methods. This is expected since the amount of overlap 

among the bandpass filters is significantly reduced. Analysis was given to 

provide insight into the minimum Mean-Squared-Error (MSE), steady-state 

excess M S E and convergence conditions of the adaptive FS filter bank technique. 

The minimum and excess M S E of the FS filter bank approach were obtained and 
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compared with those of the conventional and normalised L M S algorithms. The 

analysis showed that under the same excess M S E the convergence rate of the 

adaptive FS method is faster than that of the T D L method. It is well known that 

the convergence speed associated with the T D L is slow when the eigenvalues of 

the input autocorrelation matrix are widely spread. The eigenvalue disparity is 

due to large spectral dynamic range of the input signals. If the signal at the 

output of each bin of the filter bank is normalised, the eigenvalues of the 

resulting signals approach unity thus resulting in faster convergence rate. The 

normalisation is performed by the self-orthogonalising L M S algorithm which 

utilises a time varying step size factor for the adaptive weights. The step size 

factor is inversely proportional to the signal at the output of each bin thus 

resulting in faster convergence. Computer simulations were carried out to 

illustrate the performance of the proposed structure and the results were 

compared with those of the T D L and conventional FS methods. 

In an attempt to reduce the computational complexity associated with TDL and 

FS A L E , Chapter 6 proposed a new Parallel IIR Adaptive Line Enhancer (PALE). 

The proposed structure can be viewed as a modification of the conventional H R 

P A L E scheme introduced in [David (1984), Hush and A h m e d (1984)]. One of 

the difficulties associated with the conventional P A L E is that it has a multimodal 

error surface. Therefore, the adaptive parameters may converge to local minima 

or saddle points if gradient-based algorithm is used. The conventional H R P A L E 

was modified such that convergence is always achieved. The structure is 

comprised of parallel bandpass filter modules whose resonant frequencies are 

adjusted by using a gradient-based algorithm. Once convergence takes place, the 

input frequencies are determined by the resonant frequencies of the bandpass 

filter. The Recursive Prediction Error (RPE) and Pseudolinear Regression (PLR) 

algorithms were used together with the proposed P A L E structure. Error surface 
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analysis was employed to obtain the convergence characteristics of the given 

approach. It was shown that although the error surface is not unimodal, its 

dynamic characteristics behave in a particular pattern as each successive module 

converges to the input sinusoids. Based on the error surface analysis, a new 

heuristic scheme was developed which prevents the adaptive parameters from 

converging to local minima or saddle points. Extensive simulation tests were 

conducted to illustrate the performance of the given technique and the results are 

compared with those of the conventional parallel and serial structures. From the 

simulation results, it was evident that the convergence speed of the given 

structure is approximately the same as the serial configuration. However, the 

proposed structure is superior since the individual enhanced sinusoids are 

expected to have reduced phase and amplitude distortion. 

7.2 Suggestions For Further Research 

Some aspects of the research presented in this thesis need further investigation. 

This section outlines some of the important issues which need to be addressed. 

7.2.1 Phase and Amplitude Estimate Accuracy 

Throughout Chapter 2, 3 and 4, the accuracy of the estimates were evaluated 

based on Monte Carlo simulations. It would be interesting to obtain analytical 

values for the bias and noise variance of the estimates. For example, when using 

H R bandpass filters (Chapter 2 and 3), the contribution of noise on the amplitude 

estimate can be obtained by approximating the output noise as a sinusoid whose 

frequency is equal to the resonant frequency of the bandpass filter. The 

amplitude of the sinusoid is determined by using equivalent noise bandwidth as 

discussed in [Harris (1978)]. 
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The z-transform technique was applied, in Chapter 4, to derive the output signal 

of the resonator when the input signal was composed of single sinusoid. For the 

multiple sinusoid case, the same technique may be used to obtain the output 

components associated with each input frequency. From the results, it is possible 

to establish a relationship between the accuracy of the estimate and the 

acquisition time. 

7.2.2 Transient Effect Reduction 

It was shown that the acquisition time depends on the transient behaviour of the 

filter for the case of the C N F T algorithm. The amplitude and phase estimates 

were obtained after the transient of the filter has elapsed and the output filter has 

settled. It is possible to improve the proposed method by reducing the effect of 

the transient thus resulting in faster acquisition time. This may be accomplished 

by obtaining the transient characteristics of the filter and using these to provide 

an earlier estimates of the various parameters. 

7.2.3 Finite Word Implementation 

All the simulations in this thesis are carried out by using simulated data and 

double precision floating point arithmetic. From a practical point of view, the 

signals and the filter coefficients must be quantised with finite precision. The 

sample values of the input signal or the coefficients of the filter must rounded to 

the nearest quantisation level. Roundoff error resulting from arithmetic 

manipulation and the possibility of overflow should also be considered when 

using fixed-point arithmetic. All these issues may cause numerical problems and 

need to be examined when implementing the various algorithms developed in this 

thesis. 
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7.2.4 Comparison Between the C N F T and the R L S Algorithms 

The Recursive Least Square (RLS) algorithm has also been used for estimating 

the parameters of sinusoidal signals [Nehorai and Porat (1986), Chicharo and N g 

(1990c)]. It is known that the R L S algorithm yields faster convergence than the 

L M S algorithm at the cost of increased complexity. In Chapter 2, an equivalent 

filter bank for the L M S spectrum analyser was obtained. The resulting filter bank 

together with the sliding C N F T algorithm were used for the task of sinusoidal 

signal characterisation. This approach provided a suitable means for comparing 

the proposed C N F T algorithm with the L M S technique. The comparison 

between the proposed sliding C N F T and the R L S algorithms can be made by 

using the same procedure but with the R L S algorithm. 

7.2.5 Other Potential Applications For the IIR FS Filter Bank 

The IIR FS filter bank developed in Chapter 5 was particularly useful for the task 

of enhancement of spectral lines buried in noise. The adaptive IIR FS filter bank 

technique can also be employed for those applications in which the frequency 

domain information is of primary interest. Examples of such applications may be 

found in channel equalisation [Picchi and Prati (1984)] and system identifications 

[Bitmead and Anderson (1981)]. The structure is also worth applying to the 

frequency domain realisation of parallel IIR filtering [Shynk (1989a)]. This 

approach employs a zero-pole filter rather than a first order FIR filter at the 

output of each bandpass filter. 

7.2.6 Some Open Issues of the IIR Adaptive Line Enhancer 

Chapter 6 discussed the important issue of the existence of local minima and 

saddle points in the error surface of a P A L E structure. Based on the error surface 

analysis, the convergence behaviour of the given P A L E structure using gradient 

based algorithms was studied. The proposed structure was evaluated under the 
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assumption that the input noise is white. The application of the proposed 

technique for the estimation of sinusoids in the presence of coloured noise would 

be an interesting issue. Assuming that the noise model is known, it is feasible to 

extend the error surface analysis to obtain the convergence characteristics of the 

proposed P A L E structure. 

The bias of the estimates was only analysed for the single sinusoid case. Further, 

it was presumed that the input frequencies are constant during the adaptation 

process. All these imply that the instantaneous frequency estimation and analysis 

of the bias for multiple sinusoid case have not been examined. 

In summary, the research presented in this thesis like all other research raises 

more questions than it answers. The outstanding problems listed above are 

limited to those which are most relevant to this work. 
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Appendix A: 

Derivation of the Second Order IIR Bandpass Filter Parameters 

A bilinear transformed second order bandpass filter is given by [Padmanabhan 

and Martin (1987)]: 

1-oc^ 1-z-2 

2 l + aaz"'+aV2 HBP(z-
i) = (——)T ,: 5 _a (A-l) 

where -2 < a < 2 and a is the parameter which controls the bandwidth. In order 

to obtain guaranteed stability it is necessary to satisfy the inequality; 0<cc<l. 

Subtracting the output of the above bandpass filter from the input signal results in 

the following notch filter transfer function: 

. 2aa _i _2 
2 1 + - Tz +Z I, ,1 + a ) l + a2 

2 l + aaz~x + a V 2 HN (z~
x) = (—^-) — ^ T-r (A-2) 

It can be easily shown that the bandpass filter given by Equation (A-l) has gain 

and phase characteristics which are unity and zero respectively at the peak 

frequency. The peak frequency occurs at the zero transmission of the resulting 

notch filter and is given by: 

1 _,, -aa 
—cos ( 
27T l + a 

/^-Lcos-'C—^-) (A-3) 

Note also that this notch filter has unity gain at dc and at half the sampling 

frequency. The peak frequency also depends on the bandwidth control 

parameter. Applying the following changes in variable to Equation (A-l), the 

proposed bandpass filter parametisation given by Equation (2.8) is obtained: 

i+^l h=^_ (A.4) 
2 l + a2 
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Appendix B: 

Derivation of the Sliding Computation for aN/2 

We first derive the sliding algorithm for co = 7t in the NFT case. The transfer 

function of the bandpass filter is given by (see Figure 2.1): 

l-z 

Evaluating Equation (B-l) at co = n results in [Liu and Lin (1992)]: 

HbN/2(e*) = e-
K^)K(-Ncos?f) (B-2) 

The (N /2)th component of the input signal is expressed as (Equation (2.2)): 

xNI2(n) = aNI2cos(nn) (B-3) 

Using Equation (B-2), the output is given by: 

nN , nN. /T3 A^ 
yNI2(n) = AT c o s — a „ n cos(nn-—) (B-4) 

Note that N = 2m, then two cases when m is an odd or even number are possible. 

In both cases it can be easily shown that: 

yN/2(n) = NaN/2cos(nn) (B-5) 

ANI2(n) is computed by: 

AN/2(n) = ±(-\)
nyN/2(n) (B-6) 

For the C N F T case , the filter transfer function is given by (see Figure 2.2): 

H (7-^-lz£l -1~Z"1 (B-7) 

The first term is the same as the NFT case and the value of the second term at 

co = 7t is: 

\Z£H - 1— QP (B-8) 
l-p^^ 1-P 

Using Equations (B-8) and (B-5), AN/2(n) is computed as follows: 
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AN/2(n) = -^-(-l)
nyNI2(n) (B-9) 

2p7v 
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Appendix C: 

Derivation of the Resonator Output Signal 

When the input frequency is the same as the resonance frequency of the 

resonator, the z-Transform of the output is given by: 

.-i^_ fljt(l-cos(Ptz
 l) + bksm(akz~ 

~~ -1 , -2\2 
yk(z )= k k ,•-»-.-»«. ( C 1 ) 

'* (\-2cosa)kz-
x+z'2)2 

Considering the following z-Transform pairs [Jury (1964)]: 

1-z"2 

px (n) = n sin &kn <^> Px (z~
x) = sin cotz

_1 —— _, _2 2 (C-2) 
(l-2cost&kz +z ) 

_._,. coscojtz"
1-2z"2+coscoJtz

-3 tn 1\ 
qx(n) = ncos(Okn^Qx(z )= k _, _2 2 (C-3) 

(l-2coscoA:z +z ) 
together with the following equalities: 

cosco^ px (n) - sin (Hkqx (n) = n sinfco^ (n -1)] (C-4) 

sin mkqx (n) + cosco^ px (n) = n sin [C0t (n +1)] (C-5) 

Using straight forward manipulations the following z-Transform pair will be 

obtained: 

-1 „ . 1-cosco.z-1 /r, ^, 
p2(n) = (w + 2)sin[a)t(w + l)]*» P2(z~

x) = 2sm(Ok — — - — j ^ - ^ (C-6) 

K A . _, cosco, -z
-1

 ((^ 7^ 
^2(n) = nsin[co,(n + l)]^C22(z-

1) = 2sinco,z ( 1_ 2 c o s ( 0^-i+ z- 2 )2 (C"7) 

From Equations (C-6) and (C-7), it can be found that: 

1 , K x sinco^z" ,n Qs 
^ ( ^ ( z - V o s c o , - Q l ( Z - ) z ) - ( 1_2 c o s ( f l t Z„ + ̂  (C-8) 

Using Equations (C-8) and (C-6), the output of the resonator in time domain, 

y», can be obtained. Now let us consider the case when the input frequency 

(G>4) is different from the resonant frequency of the resonator (cor). Without loss 
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of generality consider the following input sinusoid which is only composed of a 

sine term: 

x(n) = bk sin (£>kn (C-9) 

For the input signal given by Equation (C-9), the resonator output in z-domain is 

given by: 

Y(Z) = bksm(okz-
x
 (C_10) 

(l-2coscofcz
-1 +z_2)(l-2coscoJtz

_1 +z ) 

Using partial-fraction expansion, w e have: 

YU)_ I ( -Mnc o* + h^h } (c-ii) 
-2(coscor-coscor) l-2coscorz

_1+z~2 l-2coscojtz~
1+z 2 

From Equation (C-l 1), the output in time domain is easily obtained and given by 

Equation (4.29). 
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Appendix D: 

General Analytical Solution for Complex Integral 

A n analytic solution of the integral of the form: 

/ 
1 r B(z) B(z~X) __, 

| M ^ z - 4 (D-D n 2njuit A(z)A(z~x) 
unit 
circle 

where the transfer function is defined as: 
A(z) 

A(z) a0z +axz + a2 

is given by [Jury (1964)]: 

B(z) = b0z
2+bxz + b2 (D_2) 

j = B0a0ex - Bxa0ax + B2 (a
2 - a2ex) ,D_^ 

2 aQ[(al~a
2
2)ex -(aQax -axa2)ax] 

where 

*. 

*1 

B2 

V 

= b2+b2+b2 

= 2(b0bx+bxb2) 

= 2b0b2 

= a0+a2 

(D-4) 



Appendix E: 

Bias Analysis of the Frequency Estimate 

For an input signal which consists of single sinusoid buried in white noise (x(t)), 

we will show that the frequency estimate is asymptotically unbiased (i.e. for 

N^>°°, where N denotes the number of data points). Consider the error signal 

as follows: 

e(t,h) = HN(q~
])x(t) (E-l) 

where q~x denotes the unit delay operator and HN(q~
x) is given by: 

, , \ + hq~l +q~2 /T3 _,. 
HN (q'

x ) = \-HBP (q~
x) = g * * 2 (E-2) 

l + ghq +(2g-l)q 
We are looking for an appropriate h to minimise the mean squared error. In 

other words, the desired h should satisfy the following equation: 

1 N 

£ = arg Min — Ye2(t,h) (E-3) 
h N ,=1 

Since the stochastic processes e(t,h), *T, are ergodic, for N^>°° the 

stationary points of the loss function (Equation (E-3)) are the solutions of the 

following equation [Stoica and Nehorai (1988)]: 

WMM = 2E[^^-e(t,h)] = 0 (E-4) 
dh dh 

where E indicates the expectation operator for random processes. From Equation 

(E-l), the derivative of the error signal with respect to h is given by: 

MW^MMlllx't) (B-5) 
dh dh 

Substituting Equations (E-l) and (E-5) into Equation (E-4) we obtain 

dh 
ElHN(q-)x(ty^^-x(t)] = 0 (E-6) 

or equivalently: 



Appendix ^ 3 

^R(<»)*M22*„(<o*o = 0 (E-7) 

Using the following equality: 

2TC 

f 
2TC J0 dh n{ dh 

Equation (E-7) is further simplified: 

J__3 : 
27i dh 

— J|^(co)f 0 ^ ( 0 ) ^ = 0 (E-9) 
o 

It is worth noting that the above result can be directly derived from the error 

surface analysis as well. Assuming that the input signal is composed of a single 

sinusoid with frequency co, and amplitude C, corrupted by noise of power a2, 

Equation (E-9) becomes: 

^W^^flH.C^-O (E-,0) 

From Equation (6.15), it is evident that the second term in the left hand side of 

Equation (E-10) is equal to zero. The first term is zero only when h = -2cos(co,) 

and this verifies that the minimum occurs exactly at the frequency of the input 

component. 




