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ABSTRACT 

Fipronil is a new-generation pesticide aerially applied in semi-arid and agricultural areas of 

Australia to control locust outbreaks. Seasonal conditions that give rise to locust plagues are 

also ideal for breeding birds, with over 100 different avian species observed in areas of locust 

control operations. Despite the potential for exposure, there is very little research regarding the 

toxicological effects of fipronil in birds. Available avian toxicity information shows a high 

species-specific variability in fipronil sensitivity across the few species tested, making it 

extremely difficult to predict the toxicity of fipronil on unstudied species at high risk of 

exposure in the wild.  

 

The aim of this thesis was to increase our understanding of the impact of fipronil on native 

birds at risk of exposure as a result of locust-control spraying. This was done firstly by 

examining the toxicity, effects, and duration of symptoms following exposure to fipronil and 

it’s major metabolite, fipronil-sulfone, in sensitive and non-sensitive avian species; secondly 

by evaluating the metabolism of fipronil in a selected bird species to gain insight into the 

mechanisms underlying variation in species sensitivity; and thirdly by examining whether 

exposure to fipronil at sub-lethal levels adversely affects exposed birds and their offspring. 

 

Four previously unstudied species from three avian orders were examined in this study: two 

Passeriformes (zebra finch and house finch), one Psittaciformes (budgerigar), and one 

Galliformes (king quail). Three of these species are among the top 20 avian species predicted 

to be present at locust-control events. 

 

Fipronil was moderately toxic to budgerigars and the two finch species tested, but was highly 

toxic to king quail, which is consistent with reported fipronil sensitivities for other galliforms. 

In contrast to earlier studies claiming biological metabolites of fipronil to have greater toxicity 

than the parent fipronil compound in vertebrates, fipronil-sulfone was equitoxic to king quail, 
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but significantly less toxic to zebra finch. Clear differences were also observed between the 

highly sensitive galliforms and the moderately sensitive passeriforms with respect to the onset 

and duration of signs of fipronil intoxication. During the course of this study we consequently 

discovered that the solvent used in the fipronil-based locust control formulation contributed 

significantly to the toxicity of the product. 

 

Sublethal effects of fipronil were also examined in northern bobwhite quail, another galliform. 

In addition to being the standard US EPA avian test species for toxicity, bobwhites are also the 

most fipronil-sensitive species of those tested. Reduced feeding behaviour and progressive 

significant losses in body mass were observed across all fipronil-treated bobwhite quail over a 

3-day period. This loss in body mass also correlated with an increase in fipronil-sulfone 

residue levels in brain, liver and adipose tissue over this period.   

 

Because fipronil is highly lipophilic, it has great potential to be transferred into the lipid-rich 

yolk of eggs laid by pesticide-exposed female birds. The potential for maternal transfer of 

fipronil residues into eggs and consequent developmental effects was therefore examined in 

two experiments. The first examined the effect of fipronil exposure on breeding success in 

female Zebra Finches, and the second was an in ovo study using domestic fertile chicken eggs 

to examine fipronil effects on embryo development and survival. Behavioural and 

developmental abnormalities were observed in fipronil-exposed chicks that hatched from both 

of these studies, with a reduced hatchability rate observed for the zebra finch eggs. Domestic 

chicken hatchlings from fipronil-treated eggs showed reduced feeding behaviour, resulting in 

loss in body mass over the 48-hour period post hatch. Fipronil and fipronil-sulfone residues 

were detectable in brain and liver of fipronil-exposed chicks in both studies.  
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The substantially greater sensitivity of avian embryos to fipronil highlights the need to 

consider reproductive effects of pesticide exposure when evaluating the ecotoxicological risks 

in using them. This is especially important for those used to control insect outbreaks, as these 

are usually coincident with breeding events across many vertebrate taxa. The lipophilic nature 

of fipronil will potentially have far greater impact on many vertebrate populations, as 

developing young of reptiles and birds can be exposed through fipronil-contaminated yolk and 

developing mammals gain exposure through maternally derived milk lipids. This emphasises 

the need to evaluate pesticides across all life stages in species at risk.   
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THESIS FORMAT 

In general, the chapters of this thesis are each in the format of a peer-reviewed paper and have 

either been published in a journal or in preparation to be submitted for publication. For this 

reason, there is a degree of overlap between the introduction, methods and discussion sections 

of each chapter. The collective references for each chapter have been listed at the end of the 

thesis. 
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CHAPTER 1. INTRODUCTION  

WHAT IS FIPRONIL? 

Fipronil is a broad-spectrum insecticide belonging to a new class of pesticides: the phenyl-

pyrazoles. It was developed by Rhone-Poulenc Agro in the late 1980s (Bobe et al. 1998a; 

Bobe et al. 1998b; Moffat 1993) and is the active ingredient in many animal health and pest 

control formulations currently available on the market. Commonly used products include 

Frontline® flea and tick treatments, Maxforce® cockroach bait and Termidor® termite control 

(NPTN 1997).  

 

In Australia fipronil is registered for agricultural use as a locust-control pesticide under the 

trade name Adonis®. It was introduced in hope of replacing Fenitrothion, an organophosphate 

(OP) pesticide, due to rising concerns regarding the hazardous effects of OPs on non-target 

species and the environment (Lahr 1998; Sarikaya et al. 2004; van Barneveld 1999). The 

appeal of fipronil is that it provides effective control at significantly lower application rates 

than fenitrothion; between 0.25 and 1.0 g a.i./ha (grams of active ingredient per hectare) as 

compared to up to 267 g a.i./ha of fenitrothion required to have the same effect (APLC 2005). 

The Australian Plague Locust Commission (APLC), a federal agency that monitors and 

controls locust populations, has been spraying fipronil on large areas of arid zone habitat in 

Australia since 1997 (APLC 2005; APVMA 2003).  

 

In the locust control context, fipronil is typically used at times when locusts are very abundant. 

Unfortunately this coincides with breeding seasons for many native vertebrates, such as birds 

and lizards; the conditions that promote locust plagues also enhance breeding success in 

vertebrates inhabiting semiarid regions of Australia. Further, because large numbers are 

readily available, flightless juvenile locusts are an attractive food source to many semi-

nomadic avian species. In Australia, over one hundred different bird species have been 

observed in areas common to locust-control spraying events (Szabo 2005). Birds are 
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particularly susceptible as fipronil-contaminated locusts can remain alive for 7-10 days (EPA 

2001) and feeding on these insects provides a major route of pesticide exposure. Granivorous 

birds are also at high risk of exposure; our lab has shown that high levels of fipronil and its 

metabolites are detectable in seeds after fipronil spraying events suggesting that ingestion of 

contaminated seeds is also a likely route of exposure (Szabo 2005). Dermal contact of body 

surfaces to chemical on vegetation and soil is also a potential route of exposure for non-target 

animals.  

 

This chapter covers available information on fipronil with respect to insecticidal properties, 

environmental fate and toxicity data of both target and non-target species. It also highlights 

gaps in the current literature, particularly with regard to avian toxicology information. In this 

regard, there is no research explaining the species-specific variability among the few avian 

species tested for fipronil toxicity, nor are there data assessing the toxic effects of fipronil in 

species that are at high risk of exposure. Furthermore, studies examining behavioural and other 

sub-lethal effects of fipronil on avian species are even rarer. The research proposed aims to 

resolve this lack of essential information in two ways: Firstly to examine whether fipronil has 

identifiable sublethal effects in exposed birds and their offspring that compromise population 

health, and secondly to evaluate the metabolism of fipronil and its byproducts in selected bird 

species to gain insight into the mechanisms underlying variation in species sensitivity. Results 

from this research will provide critically needed information for understanding the 

ecotoxicological risks of using fipronil for locust control in Australia. 

 

MODE OF ACTION OF FIPRONIL 

Fipronil [(±)- 5-amino -1- (2, 6 -dichloro -",","-trifluoro-p-tolyl) -4- trifluoromethylsulfinyl-

pyrazole - 3-carbonitrile] is the first phenyl pyrazole insecticide to be introduced. It is an 

effective nerve agent that acts by blocking #-aminobutyric acid (GABA) receptors, which are 

ligand-gated chloride channels prevalent in the nervous systems of insects, molluscs, 
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nematodes and across all vertebrate species (Bloomquist 2003; Hainzl and Casida 1996; 

Moffat 1993; North 1995). GABA is a major inhibitory neurotransmitter that regulates neural 

function and prevents over-stimulation of the synaptic pathways (Garrett and Grisham 1999). 

By interfering with the normal regulatory actions of GABA via its receptors, fipronil results in 

neural excitation and convulsions. Exposure of insects at sufficient doses causes severe 

paralysis and ultimately, death (Bobe et al. 1998a).  Concentrations of fipronil required to 

inhibit 50% (IC50) of GABA receptors were derived from radio-ligand binding studies, 

revealing that fipronil has higher affinity for the insect GABA receptors (composite IC50 value 

of 7nM for housefly and fruit fly) than for vertebrate receptors (composite IC50 value of 

1103nM for six vertebrate species; (Hainzl et al. 1998). This higher relative toxicity for insects 

may be due to fipronil blocking glutamate-gated chloride channel (GluCl) receptors which are 

unique to the CNS of insects and nematodes (Bloomquist 2003; Zhao et al. 2003; Zhao et al. 

2004). 

 

FATE OF FIPRONIL  

Technical grade fipronil (>98%) is a white solid at room temperature with a melting range of 

200-201°C.  It has low solubility in water (~2mg/L) but is highly soluble in acetone (>50%) 

and other organic solvents (Aventis 2001; Colliot et al. 1992). Fipronil is considered a 

moderately persistent pesticide due to its long half-life. The total toxic component of fipronil 

(which includes fipronil and all it’s degradates) is 188 days on average in field soil (Ying and 

Kookana 2002). The half-life of fipronil on treated surfaces is three to seven months, 

depending on surface conditions. Residues are still detectable in treated vegetation three weeks 

after application (Tingle et al. 2003). Fipronil degrades to various metabolites (Figure 1.1) 

depending on the conditions. 
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In the Environment 

Exposure of fipronil to sunlight produces the major photoproduct, desulfinyl fipronil 

(MB46513) (Bobe et al. 1998a; Ying and Kookana 2002). In a study on pea and pear leaf 

surfaces, the desulfinyl photoproduct formed 45% of the total fipronil residues persistence 

(Hainzl and Casida 1996). In soil, degradation is dependent on the moisture content; residue 

analyses from soils with high moisture content revealed the sulfide derivative (MB45950) to 

be the main product via reduction processes, whereas in soils of low moisture content the 

sulfone degradate (MB46136) was the major product (Ying and Kookana 2002). Fipronil also 

hydrolyses in soil or water to form an amide degredate (RPA200766) (Bobe et al. 1998b).   

 
 

 
 

MB 45950 
Sulfide RPA 200766 

Amide 

Fipronil 

MB 46136 
Sulfone 

MB 46513 
Desulfinyl 

  
 

  

Reduction in Soil Hydrolysis Water  
or Soil 

 

Oxidation in Soil Photolysis Water or Soil 

 
Figure 1.1 Fipronil degradation pathways (adapted from Bobe et al. 1998a) 
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In Plants 

In plants the major fipronil metabolite formed is the sulfone (MB46136) via oxidation (Fenet 

et al. 2001).  The amide metabolite (RPA200766) and very low levels of the sulfide 

(MB45950) are also detected (JMPR 2001). The desulfinyl photoproduct  (MB46513) is not a 

detectable residue in plant tissue after fipronil exposure (JMPR 2001; Zhou et al. 2004).  
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Figure 1.2. Metabolism of fipronil in animals (adapted from JMPR 1997) 

 

In Animals 

The Joint Meeting on Pesticide Residues (JMPR) published two toxicology assessment reports 

(1997 and 2001) reviewing all unpublished data and research on fipronil. This report indicated 

that the main route of fipronil and metabolite excretion in vertebrates is via defecation; 45-
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75% of administered dose in rats; 18-64% for goats; and 28-42% for hens. The major 

metabolite detected in the tissues of treated animals was the sulfone (MB 46136) (JMPR 1997, 

2001). The metabolic pathway of fipronil in animals was proposed from this data (Figure 1.2). 

In a published fipronil study on it’s metabolism in mice, the sulfone (MB46136) was the major 

fipronil residue detected in tissue, whereas the desulfinyl photoproduct (MB46513) was not 

detected (Hainzl and Casida 1996), hence confirming that fipronil-desulfinyl (MB46513) is not 

a by-product of metabolism. 

 

DEGRADATE TOXICITY 

Fipronil-sulfone (MB 46136), which is the major product formed during metabolism, has been 

reported as more toxic to both fish and bird species than the parent fipronil compound 

(USEPA 1996) and 6-fold greater binding affinity than fipronil at vertebrate GABA receptors 

(Hainzl et al. 1998). In studies on freshwater invertebrates the sulfide metabolite was reported 

to be 1.9 times more toxic than fipronil (USEPA 1996). Lethal dose studies have demonstrated 

that, despite not being a product of metabolism, the desulfinyl photoproduct is toxic to both 

houseflies and mice, with mean lethal dose (LD50) values approximately 2-fold those for 

fipronil. The authors also concluded from this study that the amide metabolite (RPA200766) is 

inactive due to it’s very low relative potency at GABA receptors (Hainzl and Casida 1996). 

 

EXPOSURE RISKS TO NON -TARGET SPECIES 

Fipronil is an effective insecticide, however it is evident that fipronil does not act exclusively 

on the GABA receptors of target insects. The range of studies that have assessed the effects of 

fipronil exposure on non-target species are summarised in Appendix 1. Exposure risks due to 

locust-control spray events are real; studies evaluating application levels demonstrated that 

fipronil, along with it’s sulfone, sulfide and desulfinyl metabolites do not migrate below the 

first 10cm of soil with residue levels remaining higher in the top 5cm (Bobe et al. 1998a) 
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therefore a wide range of terrestrial animals can easily come in contact with the compounds 

and become exposed.  

 

As a result of its significant impact on bees and wasps (Appendix 1), fipronil was deregistered 

in France in February of 2004 due to the assumption that its use was responsible for the 

dramatic decline in honeybee populations and the associated economic losses (Hopquin 2004). 

Based on the toxicity data, the United States Environmental Protection Agency (USEPA) has 

classed fipronil as “very highly toxic” to aquatic organisms (Aventis 2001; USEPA 2005). 

 

In summary, the appraisal of fipronil by the Joint Meeting of Pesticide Residues (JMPR) is that 

fipronil has similar metabolic fates in all species studied. Defecation was the main route of 

fipronil elimination. Of the amount absorbed, distribution in tissues is extensive, but relatively 

highest in tissues with higher lipid content. The main compound detected in egg yolk and 

tissues was the fipronil-sulfone (MB46136), whereas both the parent compound and the 

fipronil-sulfone were the major compounds detected in milk and fat (JMPR 2001).  

 

The JMPR reviews a majority of the unpublished studies on fipronil that have been conducted 

in private labs associated with the compound’s development, manufacture and testing. 

However, much essential information and details are obscured due to confidentiality issues 

associated with commercial studies of pharmacologically active substances. A higher degree of 

transparency would allow greater understanding of the physiological and biochemical nature 

of the substance and possible adverse reactions (Woodward 2005a, 2005b). 

 

AVIAN FIPRONIL ECOTOXICITY RISKS AS A RESULT OF LOCUST-CONTROL SPRAYING 

Ecotoxicology has been described as the science of predicting the effects of potential toxic 

agents on natural ecosystems and non-target species (Hoffman et al. 2003). Pesticides have the 

potential to cause a significant ecological impact. Rather than specifically attempting to define 
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the toxicological mechanisms, ecotoxicological research attempts to evaluate the cause-and-

effect relationships impacting on population and ecosystem levels. Avian toxicity data shown 

in Table 1.1 demonstrates that there is high species-specific variability in fipronil sensitivity in 

the few species studied; it is highly toxic to galliforms yet practically non-toxic to mallard 

ducks (USEPA 2005).  

 

           Table 1.1 Reported avian fipronil lethal doses (LD50s) 

Species Reported LD50 Reference 

Northern bobwhite quail Colinus virginianus 11.3 mg/kg 

Aventis 2001 Ring-necked pheasants Phasianus colchicus 31 mg/kg 

Red-legged partridge Afectonis rufa 34 mg/kg 

Field sparrows Spizella pusilla 1120 mg/kg 
Avery et al. 1998 Pigeons Columba livia >2000 mg/kg 

Mallard ducks Anas platyhynchos 2150 Aventis 2001 

 

 

Although LD50 evaluations are a good measure of acute lethality, knowledge of effects of 

sublethal doses are equally important for assessing the biological effects of chemicals, 

especially if the compound has carcinogenic or teratogenic effects on parents or their offspring 

at doses considered non-hazardous by acute toxicity study standards. Surprisingly, there is no 

published research regarding physiological or behavioural sub-lethal effects of fipronil on 

avian species. This knowledge is essential for understanding the potential risks of exposing 

free-living vertebrates to fipronil.  
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CHAPTER 2. FIPRONIL AND FIPRONIL-SULFONE TOXICITY IN AVIAN SPECIES AT 

RISK OF EXPOSURE  

 

This chapter is in preparation for Toxicology Letters 

M. Kitulagodage, W.A. Buttemer, M.J. Hooper and L.B. Astheimer.  Fipronil and fipronil-

sulfone toxicity in selected avian species 

M. J. Hooper assisted with experimental design and dosing of house finch. 

ABSTRACT 

Fipronil, a phenyl pyrazole pesticide, is used in Australia to control locust outbreaks. Locust 

populations build to plague proportions when rainfall occurs in late winter and spring, 

promoting early vegetation growth. These conditions also attract breeding birds, with over 100 

species identified at locust control operations. Avian exposure to fipronil and its main 

metabolite fipronil sulfone occurs via direct contact and by ingesting contaminated insects or 

seeds. Available avian toxicity information shows high species-specific variability in fipronil 

sensitivity for the few species tested. We established fipronil LD50 estimates (Up-and-Down 

protocol; OCED 2003) for two Passeriformes: house finch and zebra finch; a Psittaciformes: 

budgerigar; and a Galliformes, king quail (670 mg/kg, 310 mg/kg, 148 mg/kg and 23 mg/kg, 

respectively). We also determined fipronil sulfone LD50 estimates for zebra finch and king 

quail (>820 and 30 mg/kg, respectively). The onset and duration of signs of fipronil 

intoxication differed conspicuously between orders.  Both passerines showed signs of 

intoxication within 20 minutes of treatment, but only at lethal doses. Budgerigars displayed 

intoxication signs as early as 10 minutes after fipronil exposure and up to 48 hours after 

ingesting sublethal and lethal doses.  By contrast, the galliforms did not show any definite 

signs of intoxication until at least 2 days after treatment, but birds did not eat or drink during 

this period. Fipronil and fipronil sulfone affects galliforms differently from other orders tested, 

which may contribute to their greater sensitivity.  
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INTRODUCTION 

Fipronil is a new generation, phenyl pyrazole insecticide, registered for animal health and pest 

control use worldwide (APVMA 2003, BASF 2005). Fipronil and its sulfone metabolite are 

both effective neurotoxins that act by targeting gamma-amino butyric acid (GABA) receptors 

(Hainzl et al. 1996); these receptors are prevalent throughout the central nervous system of 

both vertebrates and insects. Fipronil has shown to have a much higher affinity for insect than 

for vertebrate GABA receptors (Hainzl et al. 1998) (hence its effectiveness as an insecticide), 

however there is little information regarding toxicological effects of fipronil or any of its 

metabolites on vertebrates and, as it is a new generation pesticide, there is even less 

information on signs of intoxication.  

 

When fipronil was reviewed in the United States in 1994, the USEPA guidelines for pesticide 

registration only required acute oral avian toxicity data for one upland game and one 

waterfowl species (Hoffman et al. 1995). Species tested from these groups differ in their 

sensitivity to this pesticide by nearly 2 orders of magnitude; fipronil is highly toxic to three 

galliform species studied with LD50 values less than 34 mg.kg-1 (Goodyear 1994a, Stavola 

1994a, Stavola 1994b), yet it is practically non-toxic to the mallard duck Anas platyrhynchus, 

with an LD50 greater than 2150 mg.kg-1 (Goodyear 1994b, USEPA 1996).  Fipronil toxicity 

studies have also been undertaken for additional species including house sparrow Passer 

domesticus, a passerine, with an LD50 of 1000 mg.kg-1 (Goodyear 1994c), and rock pigeon 

Columba livia, a columbiform, with an LD50 greater than 500 mg.kg-1 (Stavola 1994c) 

demonstrating that avian fipronil sensitivity is highly variable across the few species tested.  

 

There is also considerable variation in vertebrate toxicity associated with the sulfone 

metabolite of fipronil (fipronil-sulfone), and often at variance with fipronil. Fipronil-sulfone 

has been reported as being just as toxic as fipronil in mice (Hainzl et al. 1998), or more toxic 

than fipronil in avian species and freshwater fish (USEPA 1996). Hainzl et al. (1998) showed 
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that the fipronil-sulfone has an average 6-fold greater binding affinity than fipronil for GABA 

receptors in vertebrate brains (human, dog, mouse, chicken, quail and salmon) studied in vitro. 

However, the high variability in the effects of fipronil and the lack of a reliable fipronil 

biomarker makes it difficult to extrapolate existing toxicity data to unstudied species at risk of 

exposure. 

 

In Australia fipronil is registered for agricultural use as a locust-control pesticide (APVMA 

2009; APLC 2007). The Australian Plague Locust Commission (APLC) conducts locust 

management in eastern Australia through aerial application of several insecticides, including 

fipronil, on locust bands and swarms.  The rainy conditions that give rise to locust 

aggregations, also promotes plant growth and insect abundance, which attract many native 

vertebrates and stimulate their breeding. In Australia, over one hundred avian species have 

been observed in areas sprayed with fipronil for locust control (Szabo 2005). 

 

A risk assessment of locust-control impacts on Australian arid-zone species, based on a current 

atlas of Australian bird distribution and APLC GIS data for locust control locations, identified 

twenty avian species expected to co-occur with locust outbreaks.  These include the zebra 

finch, Taeniopygia guttata, budgerigar Melopsittacus undulatus and button quail Turnix varia 

(Szabo 2005). In this study we examined fipronil toxicity in four previously unstudied 

granivorous species: zebra finch, budgerigar, house finch Carpodacus mexicanus and king 

quail Coturnix chinensis, the latter chosen as a surrogate species for button quail. We also 

examined the sensitivity of zebra finch and king quail to fipronil-sulfone. In addition to 

determining the pesticide sensitivity in these species, we made careful observations of clinical 

signs of toxicity, which have not been documented previously for avian species.  
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MATERIALS AND METHODS 

Chemicals 

Fipronil (C12H4Cl2F6N4OS or (±)-5-amino-1-(2,6-dichloro-",","-trifluoro-p-tolyl)-4-

trifluoromethylsulphinylpyrazole-3-carbonitrile), CAS No. 120068-37-3, 97% purity; fipronil-

sulfone (C12H4Cl2F6N4O2S or 1-(2,6-Dichloro-4-trifluromethylphenyl)-3-cyano-4-

trifluoromethanesulfonyl-5-aminopyrazole), CAS No. 120068-36-2, 98.2% purity. Both 

fipronil and fipronil-sulfone were obtained from Chem Services, Inc., USA. 

 

Experimental Animals 

Adult house finches were obtained from the wild at The Institute of Environmental and Human 

Health (Lubbock, Texas, USA) and were housed in individual cages (45 x 30 x 40 cm). Adult 

zebra finches were obtained from a breeding colony at the University of Wollongong 

(Wollongong, NSW, Australia). Adult king quails and adult native bush budgies were 

purchased from aviculturalists in Australia. The zebra finch, quail and budgies were housed in 

individual cages (39 x 44 x 34 cm). All species were held for 14 days prior to treatment to 

allow environmental adjustment. Commercial seed mix, water and grit were provided ad 

libitum. 

 

Preparation of test substances 

Due to the low water solubility of technical grade fipronil (Sigma-Aldrich 2006), fipronil and 

fipronil-sulfone solutions were prepared using a minimum amount of acetone solvent (approx. 

60!l acetone per 20 mg fipronil compound). Acetone was chosen as the solvent due to the high 

solubility of fipronil in acetone (545.9 g/L; BASF 2005). Solutions were then further diluted in 

canola oil to achieve the desired dosing concentration. Canola oil is the carrier used in the 

commercial fipronil formulation. Control solutions consisted of acetone and canola oil alone. 
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Up-and-Down estimation of LD50 

Acute oral toxicity test procedures employed in this study follow those outlined in the 

Organisation for Economic Co-operation and Development (OECD) guidelines for testing of 

chemicals (OECD 2003). This protocol was introduced in 1998 to minimize the number of 

animals required to estimate acute oral toxicity to a chemical. In summary, the first animal is 

given an estimated sublethal dose as determined from available literature (175 mg.kg-1 body 

weight (bw) is the recommended default starting dose); if this animal survives, the dose 

administered to the next animal is increased by a factor identified from the OECD dose 

progression table (default 3.2; OECD 2003); if the first animal dies, the dose is decreased by 

the same factor. Birds were tested individually and observed routinely for at least 48 h after 

dose administration. Each administered dose and the respective survival outcome were entered 

progressively into the statistical analysis program provided with the OECD guideline 

documentation (Acute Oral Toxicity [Guideline 425] Statistical Program Version 1.0, Westat 

2001), from which calculations were made to determine when a confidence interval had been 

reached. From this established confidence interval, the estimated LD50 (eLD50) value was 

then calculated using the maximum likelihood method. This calculated eLD50 allows for the 

substance to be ranked and classified according to the Globally Harmonised System for 

classifying chemicals that cause acute toxicity (OECD 1998). 

 

Test procedure 

Birds were fasted overnight prior to testing and weighed on the day of dosing. Test solutions 

were prepared fresh on the day of dosing and either fipronil, fipronil-sulfone or control 

solution was administered as a single oral dose via gavage in accordance with the OECD 

Acute Oral Toxicity Testing guideline recommendations to limit maximum liquid dose 

volumes to no more than 2ml/100g bw (OECD 2003). Doses were based on guidelines from 

the OECD Up-and-Down dose progression schedule (OECD 2003). Food was returned 30 

minutes after dosing and birds were video-recorded for the first three hours following 
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treatment, and checked and weighed periodically during daylight hours over the duration of 

their involvement with the experiment.  

 

RESULTS 

 
Fipronil Toxicity and Clinical Signs  

The house finch eLD50 value for fipronil of 679.7 mg.kg-1 was calculated from progressive 

doses of 55, 550 and 820 mg.kg-1 bw, with mortalities occurring at 820 mg.kg-1. For zebra 

finch the eLD50 value of 311.8 mg.kg-1 was calculated from doses of 17.5, 26, 37.5, 55, 82, 

175, 260, 375, and 550 mg.kg-1 bw, with mortalities occurring at the three highest doses.  For 

budgies the eLD50 of 147.5 mg.kg-1 was calculated from doses of 69, 81, 120, 175, 260 and 

375 mg.kg-1 bw, with mortalities occurring at the three highest doses. The fipronil eLD50 

results are summarised in Table 2.1. Signs of fipronil intoxication observed in house finches, 

zebra finches and budgerigars included involuntary and rapid wing flapping. These signs were 

observed only at lethal doses of fipronil in both finch species, with onset observed as early as 

20 min after treatment, mortality occurring within two to four hours after treatment. Signs of 

fipronil intoxication were observed in budgerigars at both lethal and sublethal doses as early as 

10 min after treatment; mortality occurring as early as 20 min up to 48 hours after treatment. In 

budgies administered with a sublethal dose of fipronil, duration of these signs of fipronil 

intoxication, including involuntary movements and convulsions, persisted for up to 48 h post 

treatment. 

 

The king quail eLD50 for fipronil of 22.8 mg.kg-1 was calculated from doses of 17.5, 37.5, 81 

and 175 mg.kg-1 bw with mortalities occurring at the three higher doses. Signs of fipronil 

intoxication in quail were only observed at lethal doses. Initial signs included cessation of 

feeding and inactivity; birds usually huddled in a corner of the cage, resting on their sternum 

(sternal recumbancy), eyes closing. These signs were observed as early as 20 min after 
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treatment. Gular fluttering was also a common observation. It was not until 2 days after 

treatment that signs of intoxication such as fanned tail feathers, and involuntary and rapid wing 

flapping were observed. Mortality occurred from as early as 24 h after treatment and continued 

up to 3 days after treatment. 

 

Table 2.1. Acute fipronil toxicity in House Finch, Zebra Finch, King Quail and Budgerigar 
Average body weight of house finch = 19.1 ± 0.4g; zebra finch = 12.6 ± 0.4g; king quail = 
40.3 ± 0.4g and budgerigar = 29.3 ± 1.0g. Control solutions were non-toxic to all individuals 
tested. 

Species NOAEL a 
(mg.kg-1) 

eLD50 
(mg.kg-1) 

95% CI b 
(mg.kg-1) n 

House Finch Carpodacus mexicanus 550 679.7 550 – 820 7 

Zebra Finch Taeniopygia guttata 175 311.8 178.7 – 649 10 

King Quail Coturnix chinensis 17.5 22.8 17.5 – 37.5 8 

Budgerigar Melopsittacus undulatus 69 147.5 85.4 – 343 9 

a No Observable Adverse Effects Level (NOAEL) 
b Confidence Interval (CI)  

 

 
Fipronil-sulfone Toxicity in Zebra Finch and King Quail 

The zebra finch eLD50 for fipronil-sulfone was determined as being greater than 820 mg.kg-1 

from progressive doses of 375, 550 and 820 mg.kg-1 bw; only one mortality occurred at 820 

mg.kg-1 from four birds administered at this highest dose. The fipronil-sulfone eLD50 results 

are summarised in Table 2.2. The signs of fipronil-sulfone intoxication observed in zebra finch 

were identical to those of fipronil intoxication and were only observed at the highest fipronil-

sulfone dose 820 mg.kg-1. Signs of fipronil-sulfone intoxication were also observed in the three 

finches that survived and the single finch that did not survive this dose. Onset of signs were 

observed as early as 20 min after treatment in the finch that did not survive, with mortality 

occurring within two to four hours after treatment. For the finches that survived, complete 

remission was observed by 24 h post dose. 
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Table 2.2. Acute fipronil-sulfone toxicity in King Quail and Zebra Finch 
Average body weight of zebra finches used for fipronil-sulfone dosing study = 12.4 ± 0.3g; king 
quail = 47.9 ± 1.1g. 

Species NOAEL 
(mg.kg-1) 

eLD50 
(mg.kg-1) 

95% CI 
(mg.kg-1) n 

King Quail Coturnix chinensis 5.5 29.9 0 to > 20,000 11 

Zebra Finch Taeniopygia guttata 375 > 820 - 8 

 

 

The king quail eLD50 value for fipronil-sulfone, of 29.9 mg.kg-1, was calculated from 

progressive doses of 5.5, 17.5, 37.5, 55, 82 and 240 mg.kg-1; the only dose at which mortalities 

did not occur was 5.5 mg.kg-1. Signs of fipronil-sulfone intoxication in quail were identical to 

signs of fipronil intoxication and were observed at both lethal and sublethal doses. For birds 

that survived the administered dose of fipronil-sulfone, signs persisted for up to 48 h after 

treatment.  

 

For all four species tested, mortalities from either fipronil or fipronil-sulfone followed violent 

whole-body convulsions.  Posture assumed on death was the head arched back slightly, legs 

extended, wings dropped ventrally and tail feathers fanned out, with rigor mortis following 

almost immediately.  The no observable adverse effect limit (NOAEL) for each tested species 

is summarised in Tables 1 and 2 for fipronil and fipronil-sulfone respectively. Excessive 

preening and ptiloerection was observed in all treated birds at all doses; recovery was based on 

return to normal activity, behaviour and feeding. No signs of intoxication or abnormal 

behaviours were observed in birds given the canola oil control. 

 

Body Weight & Feeding Behaviour 

In king quail, exposure to a lethal dose of either fipronil or fipronil-sulfone, resulted in 

significant and progressive loss in body mass (Figure 2.1) until death ensued. These 

individuals did not appear to feed or drink after treatment. This was also observed in a number 

of king quail exposed to a sublethal dose of fipronil-sulfone, however recovery, based on gain 
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in body mass and return to normal feeding behaviour, varied from 48 hours to up to four days 

post dose. King quail administered with a sublethal dose of fipronil, however, did not show 

mass loss. Although these birds did not feed or drink on the first day of treatment, a return to 

normal feeding behaviour was observed within 24 hours. No mass losses or abnormal feeding 

behaviour were observed in either of the finch species or budgies; budgies were even observed 

feeding in the periods between convulsive episodes.  

 

! 
Figure 2.1. Measured loss in king quail body mass as a percentage of initial pre-
dose body mass after single lethal oral doses of fipronil (mean data for birds dosed 
with 37.5 – 175 mg.kg-1) or fipronil sulfone (mean data for birds dosed at 17.5-82 
mg.kg-1). Bars indicate standard error. n = 4,2,3 for fipronil data points and n = 
5,3,2 for fipronil-sulfone data points at 24, 48 and 72 hour time-points 
respectively. 

 

DISCUSSION 

 
Although fipronil sensitivity is highly variable across the few avian species studied (USEPA 

1996), when these data are combined with results from this study there appears to be pattern at 

the ordinal level. The passeriforms tested appear to be moderately sensitive to fipronil; house 

finch, zebra finch (this study) and house sparrow (Goodyear 1994c), as did the budgerigar, a 

psittaciform species. By contrast, galliform species are highly sensitive to fipronil; the eLD50 

determined from this study for king quail is consistent with fipronil sensitivity observed in 
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bobwhite quail (Kitulagodage et. al unpublished data) and those reported for two other 

galliform species (Goodyear 1994a, Stavola 1994a, Stavola 1994b). This is the first study to 

examine fipronil toxicity in a psittaciform species.  

 

There have been varying reports on the relative toxicity of vertebrates to fipronil-sulfone 

(USEPA 1996) in relation to the parent fipronil compound. Hainzl et al. (1998) demonstrated 

in vitro that sulfone had almost a 6-fold greater binding affinity to mouse brain GABA-

receptors than fipronil, however reported mouse LD50s of 41 and 50 mg/kg for fipronil and 

fipronil-sulfone, respectively. When comparing the toxicity of fipronil-sulfone to fipronil in 

this study we can see that they are relatively equitoxic in king quail. In zebra finch however, 

fipronil-sulfone is at least 2.5-fold less toxic than fipronil.  

 

The signs of fipronil intoxication we observed in treated birds including involuntary limb 

movement, tremors and convulsions have been previously stated for fipronil-treated rats, mice 

and beagles and for fipronil-sulfone treated rats in unpublished reports submitted for pesticide 

registration purposes by Rhone Poulenc Agro, the original manufacturer of fipronil (JMPR 

1997). With respect to the onset and duration of signs of fipronil intoxication, clear differences 

were observed between the galliform and passeriform species. Signs were identical for both 

Passeriformes (zebra finch and house finch), with rapid onset and complete remission by 24 h 

post treatment. For the Galliformes (king quail), expected signs of fipronil intoxication were 

not observed until at least 2 days after treatment, and lasted up to 72 h post-dosing.  At lethal 

doses of fipronil, quail did not eat or drink after treatment, reflected by a progressive loss in 

body mass. This treatment-related reduced feeding behaviour and weight loss has also been 

observed in fipronil-treated bobwhite quail, another galliform, in addition to identical onset 

and duration of signs of intoxication (Kitulagodage et. al unpublished data). Although signs of 

fipronil intoxication persisted up to 48 h post treatment in the psittaciform species tested 

(budgerigar), no such effects on feeding behaviour or weight loss was observed. It is 
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interesting to note that identical signs of intoxication observed in fipronil-treated king quail 

including reduced feeding behaviour and weight loss were also observed in fipronil-sulfone 

treated king quail. A study on fipronil treated bobwhite quail demonstrated a significant 

correlation between weight loss and fipronil-sulfone residue levels in brain, liver and adipose 

tissue (Kitulagodage et. al unpublished data).  This suggests that the sulfone metabolite of 

fipronil may be responsible for the observed reduction in feeding behaviour and progressive 

weight loss in both quail species. Such reductions in feeding may exacerbate the toxic effects 

of pesticides and contribute to the greater fipronil sensitivity in Galliformes. 

 

This study suggests fipronil sensitivity varies more across the avian orders than among species 

within a given order. Further research is needed, however, to elucidate the influence of the 

sulfone metabolite on the toxicity of fipronil across the different avian orders. This information 

would improve prediction of likely ecotoxicological impacts of fipronil on unstudied avian 

species at risk of exposure. 
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CHAPTER 3. FORMULATION TOXICITY: SOLVENT USED CONTRIBUTES TO TOXICITY 

OF FORMULATED PRODUCT  

 

This chapter has been published as 

 

Kitulagodage M, Astheimer LB, Buttemer WA (2008) Diacetone alcohol, a dispersant solvent, 

contributes to acute toxicity of a fipronil-based insecticide in a passerine bird. Ecotoxicology 

and Environmental Safety 71: 597–600 

 

ABSTRACT 

Fipronil, a phenyl pyrazole pesticide, is aerially applied in eastern Australia to control locust 

outbreaks, usually as “Adonis 3UL Insecticide®” (BASF), an ultra low (UL) volume 

formulation containing 0.3% active pesticide. We tested the toxicities of technical-grade 

fipronil, the Adonis 3UL formulation and its components in zebra finch, a native bird at risk of 

exposure in locust control regions. We estimated oral-dose LD50 by the Up-and-Down 

method.  Under laboratory conditions, we identified unexpectedly high toxicities due 

exclusively to diacetone alcohol (DAA), a solvent making up 12.5% of the Adonis 3UL 

formulation. In contrast, finches were asymptomatic when exposed to 0.3% technical grade 

fipronil dissolved in a minimum amount of acetone. Depending upon the behaviour and 

persistence of DAA under field conditions, this formulation of Adonis 3UL may pose a far 

greater threat to the health of small birds and possibly other vertebrates than expected for 

fipronil alone. 
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INTRODUCTION 

 
Many pesticide studies have demonstrated significant differences between the toxicities of 

formulation components and the active ingredient (Marc et al. 2001; Paul et al. 2005; Peixoto 

2005; Braconi et al. 2006; Skandrani et al. 2006). For example the presence of surfactants 

increase the toxicity of Roundup® (Mann et al. 1999) and Arsenal 250NA® herbicides 

(Grisolia et al. 2004) while additives are known to increase the toxicity of 5 insecticide 

formulations; Dicarzol 200®, Lannate 20®, Pirimor G®, Kiros EV® and Talstar® (Skandrani 

et al. 2006). These findings demonstrate the importance of including appropriate formulation 

blank controls when assessing pesticide formulation toxicity. 

 

Adonis 3UL insecticide®, a commercial fipronil-based pesticide formulation registered for use 

in Australia, is used to control locusts in semi-arid and agricultural areas (APLC 2007). There 

is no toxicological information specific to this formulation, which contains 0.3% fipronil 

(active ingredient, by mass) and 12.5% diacetone alcohol (DAA, by mass; BASF 2003). 

Furthermore, although DAA is a commonly used solvent listed as an “inert of unknown 

toxicity” by the Environmental Protection Agency in the United States (USEPA 2004), its 

toxicological effects on vertebrates have not been examined. Fipronil is an effective 

neurotoxin targeting gamma-amino butyric acid (GABA) receptors (Hainzl et. al 1996), and, 

despite the abundance of these receptors in vertebrate brains, there is still little available 

information regarding toxicological effects of fipronil in vertebrates. Available information 

however, demonstrates there is high species-specific variability in fipronil sensitivity across 

the few avian species studied; fipronil is highly toxic to the two galliform species tested, yet 

considered non-toxic to the mallard duck (USEPA 1996). This variability makes it extremely 

difficult to predict the toxicity of fipronil on unstudied species. 

 

In the course of evaluating the sensitivity of fipronil in zebra finches (Taeniopygia guttata), a 
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native Australian bird species, we identified the toxicity of the commercial Adonis 3UL 

formulation to be greater than that of formulations using technical-grade fipronil 

(Kitulagodage et al. unpubl. data). Consequently, the objective of this study was to examine 

the toxicity of Adonis 3UL and its ingredients technical-grade fipronil, a lab-made formulation 

mimicking the Adonis 3UL mixture, and DAA. 

 

MATERIALS AND METHODS 

 
Chemicals 

Fipronil (C12H4Cl2F6N4OS or (±)-5-amino-1-(2,6-dichloro-a,a,a-trifluoro-p-tolyl)-4-

trifluoromethylsulphinylpyrazole-3-carbonitrile), CAS No. 120068-37-3, 97% purity was 

obtained from Chem Services, Inc., USA (Cat. No. PS-2136). Adonis 3UL Insecticide® was 

obtained from BASF Australia Ltd. and contained 0.3% fipronil, 12.5% DAA in the carrier 

canola oil. Diacetone alcohol (DAA; C6H12O2 or 4-Hydroxy- 4-methyl-2-pentanone), CAS 

No. 123-42-2, purity 99% was obtained from Sigma- Aldrich Pty. Ltd., USA (Cat. No. 

H41544). 

 

Experimental Animals 

Adult male zebra finches were obtained from a breeding colony at the University of 

Wollongong. Birds were housed two per cage (38 x 44 x 34 cm) for at least 14 days prior to 

treatment to allow environmental adjustment. Commercial finch seed mix, water and grit were 

provided ad libitum. 

 

Preparation of test substances 

We prepared a lab version of the Adonis 3UL fipronil formulation, “Lab-Adonis”, containing 

0.3% technical grade fipronil and 12.5% DAA (15 mg fipronil dissolved in 625 mg DAA) 

prepared to a total volume of 5 ml using canola oil (the carrier used in Adonis 3UL). A 0.3% 
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fipronil formulation, “Fipronil stock”, was prepared using 15 mg technical-grade fipronil 

dissolved in 60ml of acetone, then prepared to a total volume of 5 ml using canola oil. Acetone 

was chosen as the solvent due to the high solubility of fipronil in acetone (545.9 g/L; BASF 

2005). A 12.5% DAA formulation, “DAA stock”, was prepared using 125 mg DAA prepared 

in 1 ml of canola oil. In addition we used fresh commercial Adonis 3UL and a canola oil 

control. The composition of substances tested is summarised in Table 3.1. 

 
Table 3.1 Proportion of Fipronil and DAA per test substance. 
Test Substance Fipronil (w/v)% DAA (w/v)% 

Adonis 3UL 0.3 12.5 

Lab-Adonis 0.3 12.5 

DAA stock 0 12.5 

Fipronil stock 0.3 0 

Control 0 0 

 

Up-and-Down estimation of LD50 

Acute oral toxicity test procedures employed in this study follow those outlined in the 

Organisation for Economic Co-operation and Development (OECD) guidelines for testing of 

chemicals (OECD 2003). This protocol was introduced in 1998 to minimize the number of 

animals required to estimate acute oral toxicity to a chemical. In summary, the first animal is 

administered an estimated sublethal dose as determined from available literature (175 mg/kg is 

the recommended default starting dose); if this animal survives, the dose administered to the 

next animal is increased by a factor identified from the OECD dose progression table (default 

3.2; OECD 2003); if it dies, the dose is decreased by the same factor. Birds were tested 

individually and observed routinely, during the immediate 48 h after dose administration. The 

“stopping criteria” to determine when a confidence range has been reached is as follows: if 

three animals survive at the highest dose in the progression, the chemical is considered to be of 

low acute toxicity hazard to the species; if five reversals are observed in any six consecutive 

animals tested (a reversal is a change in survival outcome) then a “confidence interval” of 
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lethality between those two dosing concentrations has been reached. From this established 

confidence interval, the estimated LD50 (eLD50) value was calculated statistically using the 

maximum likelihood method as per OECD guidelines (OECD 2003). This eLD50 allows for 

the substance to be ranked and classified according to the Globally Harmonised System for the 

classification of chemicals, which cause acute toxicity (OECD 1998). 

 

Test procedure 

Birds were fasted overnight prior to testing and weighed on the day of dosing (average zebra 

finch weight of 13g). Adonis 3UL, Lab-Adonis, the DAA stock, the fipronil stock, or the 

canola oil control were administered as a single oral dose via gavage. Dosing volumes 

followed OECD Up-and- Down guideline recommendations of maximum liquid dose volumes 

of 2ml/100g body weight (OECD 2003). Food was returned 30 minutes after dosing and birds 

were video-recorded for the first three hours following treatment and checked periodically 

over the next 48 h. Adonis 3UL was administered at progressive doses of 26, 37.5 and 55 mg 

fipronil/kg body weight (bw) based on a 3.2 factor according to the OECD dose progression 

schedule (OECD 2003). To compare toxicity levels, doses of Adonis 3UL, the Lab-Adonis, the 

fipronil stock, the DAA stock, and the canola oil control were administered on a ml/kg bw 

basis at progressive doses of 8.7, 12.5 and 18.3 ml solution/kg bw (equivalent to 26, 37.5 and 

55 mg fipronil/kg for solutions containing fipronil). 

 

Vaporisation of DAA in test solutions 

The vapour pressure of DAA is 0.97mm Hg at 20° C and it has a slow relative evaporation rate 

of 0.14 (nBuAc = 1.0; Celanese 2000). To investigate whether significant amounts of DAA 

might be evaporated after aerial application, thus reducing likely avian exposure, we weighed 

200ml aliquots of each formulation (DAA alone, Lab-Adonis, Adonis 3UL, and canola oil) at 

2-min intervals over 20 minutes. This was measured in triplicate under standard lab conditions 

with constant room temperature of 21°C. 
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RESULTS 

 
Adonis 3UL toxicity 

The eLD50 for technical-grade fipronil (OECD up-down method) was established in a 

previous study (Table 6.2; Kitulagodage et al. unpubl. data). In the present study a lethal dose 

confidence interval of fipronil in Adonis 3UL was established in 5 reversals (i.e., 6 

individuals) and thus an eLD50 value of 45.41 mg fipronil/kg. This is equivalent to an eLD50 

of 15.14 ml Adonis 3UL/kg (Table 3.2). 

 

Table 3.2 Acute toxicity of Adonis 3UL and Technical-grade Fipronil in Zebra Finch 

Toxicity Units eLD50 Confidence interval 

Adonis 3UL  
45.41 mg fipronil/kg 

15.14 ml Adonis 3UL/kg 

37.5 – 55 mg fipronil/kg (a) 

12.5-18.3 ml Adonis 3UL/kg (a) 

Technical Fipronil  310.2 mg/kg 175 – 550 mg/kg (b) 
(a) Present study  
(b) Kitulagodage et al. unpubl. data 
 

 

Formulation component toxicity 

Using the OECD methods, identical eLD50 values of 15.14 ml/kg were calculated for Adonis 

3UL, Lab-Adonis and the DAA stock (Table 3.3). This was based on established identical 

toxicity confidence intervals, lying between 12.5 and 18.3 ml/kg. Both the fipronil stock and 

the control solutions were non-toxic to all birds at the doses administered (8.7, 12.5 and 18.3 

ml/kg); despite the fipronil stock containing the same concentration of fipronil as Adonis 3UL 

and the Lab-Adonis solutions.  

 

The comparative vaporisation test demonstrated all the test solutions had slow rates of 

evaporation. The total evaporative loss over 20 min as a percentage of initial mass was 0.4% 

(± 0.02) for DAA, 1.4% for both 1 Canola oil (± 0.02) and the DAA formulation (± 0.04), and 
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2.3% (± 0.03) for Adonis. The resulting evaporation rates were 2.0, 6.6 and 10.4 mg/h 

respectively. 

 
Table 3.3 Acute toxicities of test solutions administered to Zebra Finch 

Test Solution eLD50 
(ml/kg) 

Confidence interval 
(ml/kg) n 

Adonis 3UL 15.14 12.5 – 18.3 7 

Lab-Adonis 15.14 12.5 – 18.3 7 

DAA stock 15.14 12.5 – 18.3 7 

Fipronil stock Non-toxic Non-toxic 5 

Control Non-toxic Non-toxic 5 
 
 

Signs of Intoxication 

Identical signs of intoxication were observed in all birds dosed with both lethal and sublethal 

amounts of Adonis 3UL, lab-Adonis, and the DAA formulation. These included ataxia, wing 

drop, fanned tail feathers, diarrhoea and loss of righting reflex. Signs were observed as early as 

1 min after treatment. When birds died, mortality occurred overnight with no specific posture 

on death. Of those birds that survived, recovery, based on return to normal activity, behaviour 

and feeding, was observed 24-h post treatment. No signs of intoxication were observed in birds 

given the fipronil stock or the canola oil control. 

 

DISCUSSION 

 
These results clearly demonstrate that the presence of DAA render fipronil formulations far 

more toxic to birds than would be predicted from evaluations of fipronil alone. This is shown 

by Adonis 3UL, Lab-Adonis and the DAA stock having identically toxic effects on zebra 

finches. By contrast, fipronil administered in a formulation lacking DAA (fipronil stock) was 

not toxic at the same administered doses. Therefore, the toxicity observed appears to be 

directly attributable to DAA exposure. The presence of DAA in the formulations is responsible 
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for the 7-fold difference between the eLD50s in zebra finch for Adonis 3UL (45.41 mg 

fipronil/kg) and technical fipronil (310.2 mg fipronil/kg; Kitulagodage et al. unpubl. data). 

Importantly, all test substances containing DAA provoked identical signs of intoxication in 

zebra finches, but very distinct to those observed in birds dosed with higher amounts of 

technical-grade fipronil without DAA (Kitulagodage et al. unpubl. data). Fipronil acts by 

targeting gamma-aminobutyric acid (GABA) receptors, resulting in neural excitation and 

convulsions (Cole et al. 1993). Signs observed in zebra finches dosed with high amounts of 

technical-grade fipronil included involuntary wing flapping and convulsions; consistent with 

expected fipronil toxicity effects. Such indicators of fipronil toxicity were not observed in 

zebra finches in the current study, further demonstrating that DAA, not fipronil, was 

responsible for the observed toxicity in zebra finches dosed with our formulations.  

 

Little is known about the ecotoxicity of DAA to terrestrial species, although it is known to 

have low toxicity to a few aquatic organisms tested (toxicity values greater than 100 mg/L; 

OECD 2000). To accurately assess the ecotoxicological impact of Adonis 3UL as a locust-

control method, a better understanding of the behaviour of Adonis under field conditions is 

required. Considering that Adonis 3UL is applied as an aerial spray (APLC 2007), the rate of 

vaporisation of the formulation and its components should be assessed. Available physical and 

chemical data (Celanese 2000) and results of our simple comparative test, however, indicate 

that DAA has a slow evaporation rate. When released in air, DAA is expected to have a half-

life between 10 and 30 days (JSL 2005). Furthermore, about half of airborne DAA may 

accumulate in water, where it is stable indefinitely at pH 7 (OECD 2000; JSL 2005). With 

respect to the release of Adonis 3UL into the environment via aerial spraying, a significant 

proportion of the DAA released is likely to accumulate in surface water where it will remain as 

DAA for periods of weeks or months. In Australia, Adonis 3UL is used to control locusts in 

large areas of arid zone habitat (APLC 2007). Although pesticide spraying in the vicinity of 

water bodies is strictly prohibited in operational guidelines for locust control, small pools of 
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water, and subsequent rainfall cannot be easily avoided and these sources of water will be 

highly attractive to terrestrial animals in these arid areas. Thus, the use of Adonis UL 

formulations with DAA represents a significant exposure risk for birds and other terrestrial 

vertebrates using water sources on or adjoining sprayed areas.  

 

In addition to being an ingredient in the Adonis 3UL formulation, DAA has been used in an 

8.5UL (8.5 g fipronil/L; pers. comm. APLC 2007) and a 10UL (10 g fipronil/L) Adonis 

formulation (Peveling et al. 2003) which are all Ultra Low Volume (ULV) liquid formulations. 

ULV formulations are typically dispersed as fine droplet particles at very low application rates 

(Micronair 2006), therefore reducing the amount of active ingredient and solution needed to 

achieve insect control compared to high volume methods (AFPM 1999). There is no public 

information regarding the function of DAA in the Adonis formulation. However, since its most 

common use is in printing inks to achieve favourable flow and levelling characteristics 

(Celanese 2000), it is likely that DAA is an effective dispersant in Adonis. Clearly, DAA in 

Adonis formulations should be replaced with an alternative solvent. 

 

CONCLUSIONS 

It is clear that DAA toxicity may pose a greater risk to birds than fipronil in relation to the 

Adonis 3UL formulation used in locust control. Care and due diligence are essential in 

developing new formulations. This study demonstrates that assessment of the active ingredient 

toxicity alone, in this case fipronil, is inadequate in evaluating the toxicity of pesticide 

formulations. 
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CHAPTER 4. REDUCED FEEDING BEHAVIOUR AND WEIGHT LOSS IN FIPRONIL 

TREATED BOBWHITE QUAIL 

 

This chapter has been published as 

Malsha Kitulagodage, John Isanhart, William A. Buttemer, Michael J. Hooper, Lee B. 

Astheimer (2011) Fipronil toxicity in northern bobwhite quail Colinus virginianus: Reduced 

feeding behaviour and sulfone metabolite formation. Chemosphere, 83(4): 524-530 

 
M. J. Hooper assisted with experimental design and J. Isanhart assisted with sample collection. 
 

ABSTRACT 

Fipronil is a phenyl pyrazole insecticide registered for agricultural use in many countries. 

Avian exposure to fipronil occurs mainly by ingesting contaminated insects or seeds. There is 

little information regarding the toxicological effects of fipronil in avian species and even less 

research documenting avian behavioural responses to fipronil ingestion. We examined the 

effects of a single oral dose of fipronil in northern bobwhite quail, the most fipronil-sensitive 

species tested to date, in respect to signs of intoxication and the metabolic fate of fipronil. 

Fipronil-treated birds did not eat or drink following pesticide administration, and as a result 

lost a significant amount of body mass. Treated birds also appeared withdrawn and did not 

respond to disturbance within the first hour after treatment. Identifiable signs of fipronil 

toxicity were not observed until at least 2 days after treatment. Chemical analyses indicated a 

difference between fipronil and fipronil-sulfone residue distribution and bioaccumulation, with 

significantly higher (30- to 1000-fold) tissue concentrations of the sulfone detected at all time 

points from 8 to 96h post-dose in brain, liver and adipose tissues. Tissue sulfone 

concentrations increased significantly in fipronil-treated birds, peaking at 72h post-dose.  Body 

mass decreased at all time points in dosed birds. The coincidence of the particular intoxication 

symptoms with the time course of rise in brain sulfone levels after fipronil dosing gives insight 

into possible mechanisms of toxicity in this highly sensitive species. 
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INTRODUCTION 

 
Fipronil is a phenyl-pyrazole pesticide developed by Rhone-Poulenc Agro in the late 1980s 

(Bobe et al., 1998a, 1998b; Moffat 1993). It is aerially applied as an agricultural insecticide in 

many countries including Russia, South Africa and Australia (APLC, 2007; BASF 2005). It is 

typically used at times when insect pests are abundant; these seasonal conditions also attract 

many vertebrates, such as birds and lizards, presenting a high fipronil exposure risk to these 

species. In Australia over one hundred different bird species have been observed in areas 

common to fipronil spraying events for locust control (Szabo, 2009), with ingestion of 

contaminated seeds and insects a likely route of exposure for these birds and indeed many 

other vertebrates.  

 

Publicly available toxicity studies by Rhone-Poulenc identify that reduced feeding behaviour 

was observed in fipronil-treated northern bobwhite quail (Goodyear, 1994a), ring-necked 

pheasant (Stavola, 1994a), and in the red-legged partridge (Stavola, 1994b) at various dosage 

levels. This reduction in food consumption also resulted in significant losses in body mass, 

most significantly in the bobwhite quail, with birds reported as severely emaciated. These 

observations have not been reported in peer-reviewed literature, however they are of potential 

consequence as fipronil has also been shown to be highly toxic to these galliform species, with 

LD50 values of 11.3, 31 and 34 mg.kg-1 reported for bobwhite quail (Goodyear, 1994a) ring-

necked pheasant (Stavola, 1994a) and red-legged partridge (Stavola, 1994b), respectively.  

 

Fipronil is an effective neurotoxicant targeting gamma-amino butyric acid (GABA) receptors 

(Hainzl et al., 1996), and despite the abundance of these receptors in vertebrate brains, there is 

still little available information regarding toxicological effects of fipronil in vertebrates. 

Available information demonstrates there is high species-specific variability in fipronil 

sensitivity across the few avian species studied, ranging from highly toxic to Galliformes, as 

mentioned above, to practically non-toxic to the mallard duck (LD50 greater than 2150 mg.kg-1; 
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Goodyear, 1994b; USEPA, 1996). This variability makes it extremely difficult to predict the 

toxicity of fipronil in unstudied species. 

 

In this study we examined fipronil toxicity in bobwhite quail, the most fipronil-sensitive 

species, at the cited LD50 of 11.3 mg.kg-1. In addition to detailed behavioural observations, the 

metabolic fate of fipronil in these birds was assessed in order to gain further insight into 

underlying mechanisms responsible for their high sensitivity to fipronil. 

 

MATERIALS AND METHODS 

 
Chemicals 

Fipronil (C12H4Cl2F6N4OS or (±)-5-amino-1-(2,6-dichloro-",","-trifluoro-p-tolyl)-4-

trifluoromethylsulphinylpyrazole-3-carbonitrile), CAS No. 120068-37-3, of 97% purity was 

obtained from Chem Services, Inc., USA. 

 

Experimental Animals 

Northern bobwhite quail (Colinus virginianus) adult males (44 weeks old) were obtained from 

Diamond H Ranch (Bandera, Texas, USA). Birds were housed indoors in individual cages (25 

x 25 x 61cm) for 14 days prior to treatment to allow environmental adjustment. Room 

temperature and humidity were maintained at 23.0 ± 2.0°C and 50.0 ± 5.0% respectively 

throughout the study. Commercial poultry feed (game bird flight conditioner, Purina Mills, St. 

Louis, MO, USA) and tap water were provided ad libitum. 

 

Preparation of test substances 

Due to the low water solubility of technical grade fipronil (Tingle et al., 2003), the fipronil 

solution was prepared using a minimum amount of acetone solvent (approx. 60 !l acetone per 

20 mg fipronil). Acetone was chosen as the solvent due to the high solubility of fipronil in 
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acetone (545.9 g.L-1; BASF, 2005). The solution was then diluted in canola oil to the required 

dose concentration of 11.3 mg ml-1 (confirmed by AgriSolutions Pty. Ltd., Brisbane, 

Queensland, Australia). Canola oil is the vehicle used in common fipronil formulations for 

locust-control (e.g. Adonis®; BASF, 2003). Control solutions consisted of acetone and canola 

oil, only. 

 

Test procedure 

Birds were fasted overnight prior to testing and weighed on the day of dosing (mean + SE, 

bobwhite quail weight of 193 ± 11g). Test solutions were prepared fresh on the day of dosing 

and administered using a gavage needle as a single oral dose. Treatment group quail (25 birds) 

were administered with fipronil solution at 1ml/200g body weight to achieve a dose of 11.3 

mg.kg-1; control group quail (15 birds) were administered with a volume-based equivalent dose 

of control solution. Dose volumes followed the Organization for Economic Co-operation and 

Development (OECD) guidelines for Acute Oral Toxicity Testing (OECD, 2003) and were 

adjusted according to body weight. Food was returned 30 minutes after dosing and birds were 

observed constantly for the first six hours following treatment, and then monitored for 20 

minutes each hour during daylight hours over the 96 hour duration of the study. Behavioural 

observations were documented throughout the study. Birds were weighed and euthanised in 

groups at 8, 24, 48, 72 and 96 hours post-dose; brain, liver and adipose tissue were collected 

for fipronil residue analysis.  

 

Chemical Extraction and Analysis  

Tissue samples collected for analysis of fipronil and fipronil derivatives were extracted and 

analysed at AgriSolutions Pty. Ltd. (Brisbane, Queensland, Australia). Samples were 

homogenized, extracted in hexane and then filtered and liquid-liquid partitioned with 

acetonitrile. Residues were then isolated and purified via activated carbon and reverse phase 

C18 solid phase extraction chromatography. The final purified extracts were brought up in 
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acetonitrile, and passed through a 0.45 um polytetrafluoroethylene filter prior to quantitative 

analysis via gas chromatography tandem mass spectrometry (GC/MS/MS). The level of parent 

fipronil and fipronil metabolite for each sample were expressed as mg compound per kg of 

tissue sample.   

 

Statistical Analysis 

Comparative fipronil and fipronil-sulfone residue levels in brain, liver and adipose tissue for 

each time-point (eight, 24, 48, 72 and 96h) were analysed using a t-test. The effect of time as a 

factor on fipronil-sulfone levels were examined using one-way analysis of variance (1-way 

ANOVA) with Tukey’s post-hoc tests. Correlation plots were used to assess the relationship 

between tissue residue concentrations and percent body mass loss; fipronil and fipronil-sulfone 

residue levels detected in brain tissue (n=24), liver tissue (n=23) and adipose tissue (n=16) 

from each fipronil-treated quail were plotted against its respective percentage loss in body 

mass. This percentage loss in body mass was measured as (pre-treatment weight - final weight 

when euthanized) / pre-treatment weight.  Pearson correlation coefficients (r) were calculated 

for each data set, i.e. loss in body mass (%) vs. (a) brain fipronil, (b) brain sulfone, (c) liver 

fipronil, (d) liver sulfone, (e) adipose fipronil and (f) adipose sulfone levels (mg.kg-1). Analysis 

was performed using GraphPad Prism software (Version 5.02, GraphPad Software Inc., CA, 

USA). 

 

RESULTS 

 
Signs of Intoxication  

Signs observed immediately after treatment included: ptiloerection, sternal recumbancy, 

withdrawal, eyes closing, and lack of response to disturbance. It was not until at least 48h after 

treatment that involuntary movements including tremors and convulsions, typical signs of 

fipronil toxicity (JMPR, 1997), were observed (Figure 4.1).  
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Figure 4.1. Onset of signs of intoxication observed in fipronil treated bobwhite 
quail after administration of an 11mg kg-1 single oral dose of fipronil. Bars 
indicate earliest and latest onset of signs observed.  

 

Other observations at this stage included: gular fluttering, head nutation and whole body 

shivering. Percentages of treated birds exhibiting signs observed are presented in Table 4.1. No 

treated birds appeared to eat or drink for the duration of the study after dosing. A single 

mortality of a dosed bird occurred, this individual was found dead on the morning of the third 

day after treatment. Posture assumed was the head arched back slightly, legs extended, wings 

dropped ventrally and tail feathers fanned out; brain liver and adipose tissue samples were 

collected. No signs of intoxication or behavioural abnormalities were observed in birds given 

the control solution.  

 

Table 4.1 Percentage of treated birds displaying observed signs of intoxication at 8, 24, 48, 72 and 96h 
post-dose after administration of a single 11.3 mg kg-1oral dose of fipronil. Control group birds did not 
display any signs of intoxication throughout the study. 

 Treatment group birds (%) displaying signs of intoxication observed 

Time 
post-dose Sternal 

recumbancy 

Lack of 
response to 
disturbances Tremors Convulsions 

Gular 
fluttering 

Head 
nutation 

Whole 
body 

shivers 
8h 84% 80% 0% 0% 4% 4% 0% 

24h 84% 80% 0% 0% 4% 4% 0% 

48h 92% 80% 60% 4% 16% 12% 20% 

72h 100% 100% 76% 36% 28% 24% 56% 

96h 100% 100% 100% 48% 28% 24% 64% 

Whole body shivering 

Head nutation 

Gular fluttering 

Convulsions 

Tremors 

Lacks response to disturbances 

Sternal recumbancy 

 

Hours post-dose 
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Feeding Behaviour & Body Mass  

Once dosed, absence of feeding behaviour was only observed in fipronil-treated birds, this was 

not observed in any control group birds. Birds from both groups had lost approximately 2.5 

percent of their initial body mass 8h after dosing (Table 4.2). The control group birds re-

gained and exceeded their pre-dose body mass by 40h post-dose and maintained these weights 

throughout the remainder of the study. In contrast, fipronil-dosed birds continued to lose 

weight throughout the study and by 96h post-dose had lost approximately 15% of their pre-

dose body mass. The significant progressive weight loss in fipronil-treated quail limited the 

study duration to 96h for ethical reasons as outlined in the OECD Humane Endpoint Guidance 

Document (OECD, 2000). 

 

Table 4.2 Progressive change (!) in body mass of fipronil-treated bobwhite quail 
compared with control group calculated as % of pre-dose weight are represented as 
Means ± SE. Treatment group birds were administered a single oral dose of 
fipronil at 11.3 mg kg-1. No control group birds were weighed at 24h post-dose. 

 Treatment Group  Control Group 

Time post-dose ! body mass (%) n  ! body mass (%) n 

8h -2.48% ± 0.004 5  -2.52 ± 0.005 5 

24h -5.05% ± 0.005 5  - - 

48h -9.34% ± 0.012 15  3.78 ± 0.004 10 

72h -13.95% ± 0.018 10  3.39 ± 0.006 5 

96h -14.85% ± 0.015 5  3.26 ± 0.006 5 

 

Fipronil Disposition 

Fipronil and its sulfone metabolite were the only detectable residues in all three tissues above 

the Limit of Quantification (LOQ) of 0.02 mg kg-1. No fipronil or fipronil metabolites were 

detected in tissue samples collected from control birds. Sulfone metabolite concentrations were 

significantly greater than those of fipronil in brain (p < 0.003), liver (p < 0.0049) and adipose 

tissue (p < 0.0155) in fipronil-treated birds at all times following dosing (Figure 4.2). Sulfone 

concentrations increased significantly over the first 72 hours in brain (p < 0.001) and liver (p < 
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0.0061) then dropped slightly between 72 and 96 hours in both (not statistically significant; 

Figure 4.2A). Although mean sulfone concentrations increased in adipose tissue at each time 

point, this was not statistically significant (Figure 4.2C).  

 

8 24 48 72 96
0

5

10

15
Fipronil in brain

Fipronil-sulfone in brain

A

Hours post-dose

R
es

id
ue

 le
ve

l (
m

g/
kg

)

8 24 48 72 96
0

10

20

30
Fipronil in liver

Fipronil-sulfone in liver

B

Hours post-dose

R
es

id
ue

 le
ve

l (
m

g/
kg

)

8 24 46 72 96
0

20

40

60

80

100
Fipronil in adipose

Fipronil-sulfone in adipose

C

Hours post-dose

R
es

id
ue

 le
ve

l (
m

g/
kg

)

 
 

Comparing the three tissue types, at 8h post-dose, sulfone concentrations in adipose tissue 

were significantly higher than in brain (15-fold, p < 0.0162) and 6-fold higher than in liver (p 

< 0.0196). The concentrations of both sulfone and fipronil residues remained significantly 

higher (p < 0.001) in adipose tissue than those in brain and liver throughout the post-dose 

sampling period.  

 

Fipronil and sulfone concentrations detected in tissue of the quail found dead 72 hours post-

Figure 4.2. Fipronil and sulfone residue 
levels detected in (A) brain, (B) liver and 
(C) adipose tissue of bobwhite quail after 
11 mg kg-1 administered single oral dose 
of fipronil. LOQ = 0.02mg kg-1. Bars 
indicate standard error. n = 5 for each 
data point in (A) and (B); n = 5,2,4,5 for 
both the fipronil and sulfone data points 
at 8, 48, 72 and 96 hour time-points 
respectively in (C)  
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dose (Table 4.3) did not differ more than one standard deviation from the mean of levels 

detected in the 72 hour time point group in all cases apart from sulfone levels detected in 

adipose tissue which differed by two standard deviations.   

 

Table 4.3 Fipronil and sulfone residue levels in brain, liver and adipose tissue of lone bobwhite 
quail found dead 72 hours post-dose and of quail euthanised 72 hours post-dose (represented as 
Means ± SD). All birds were administered a single oral dose of fipronil at 11.3 mg kg-1. Tissues 
were analysed for their fipronil and fipronil-derived sulfone content. 

  72h mortality                    72h group 

  Residue level (mg kg-1) Mean residue level (mg kg-1) n 
Fipronil Brain  0.02               0.07 ± 0.09 4 
 Liver  0.00               0.03 ± 0.06 4 
 Adipose 1.86               1.07 ± 0.99 3 

Sulfone Brain  11.14               10.25 ± 2.25 4 
 Liver  24.96               22.25 ± 9.61 3 
 Adipose  98.53               73.07 ± 16.35 3 

 

 
Relationship between weight loss and residue levels 

There was a strong positive relationship between loss in body mass and sulfone levels across 

all three tissues (p < 0.0063, all comparisons; Figure 4.3), with the strongest correlation found 

in brain tissue (p < 0.0001; Figure 4.3B). No significant relationship was observed between 

weight loss and fipronil residue levels for any of the three tissue types sampled.   

 

DISCUSSION  

 
Feeding behaviour 

The absence of feeding behaviour and consequent weight loss observed in bobwhite quail 

treated with fipronil in this study are consistent with reports on three fipronil-sensitive 

galliform species: bobwhite quail (Goodyear, 1994a), ring-necked pheasant (Stavola, 1994a) 

and red-legged partridge (Stavola, 1994b). It should be noted that not all methodological 

details and specific results are provided in these non-peer-reviewed reports as they were 

submitted for pesticide registration purposes by Rhone Poulenc Agro, therefore subject to 
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Figure 4.3. Relationship between percentage loss in body mass and detected residue levels of (A) 
fipronil in brain, (B) sulfone in brain, (C) fipronil in liver (D) sulfone in liver, (E) fipronil in adipose, 
and (F) sulfone in adipose tissue of bobwhite quail after 11mg kg-1 administered single oral dose of 
fipronil. Percentage loss in body mass is the measured as difference between pre-treatment weight and 
final weight at time individual was euthanised for tissue sample collection. 
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confidentiality requirements. In the peer-reviewed literature, Avery et al. (1998) examined the 

selective feeding response of red-winged blackbirds (Agelaius phoeniceus) to fipronil-treated 

rice seeds and noted no adverse toxic effects over a 3-hour period of visual observation. 

However, birds demonstrated a significant avoidance of the treated rice, which had been dyed 

blue. The fact that red-winged blackbirds have demonstrated a strong colour avoidance 

response to food dyed blue in other studies (Avery et al., 1999; Werner et al., 2008) suggests a 

bias in the study design negates the authors’ conclusion that fipronil had little effect on the 

blackbirds.   

 

The absence of feeding behaviour observed in our fipronil treated quail has also been reported 

in common grackles (Quisculas quiscula) exposed to four different organophosphate 

insecticides and discussed as ‘pesticide-induced anorexia’ (Grue, 1982), resulting in a loss of 

over 25% of bird body mass before death. In respect to fipronil, ingestion clearly results in 

cessation of feeding in bobwhite quail, to the extent that the resulting loss in body mass itself 

is potentially lethal. In addition to this, galliform species are highly sensitive to fipronil, with 

LD50s ranging between 11.3 mg kg-1 to 34 mg kg-1 (Tingle, et al. 2003). This toxicity of 

fipronil to galliform species is on par with that of fenthion, which is commonly used as an 

avicide (pheasants LD50 of 17.8 mg kg-1; ANC, 2005). However, fipronil is not registered or 

used as an avicide and the high sensitivity and observed effect on feeding behaviour poses a 

significant risk to non-target organisms with similar sensitivity to fipronil as bobwhite quail. 

 

Consequences for the cited LD50 value 

The treatment dose of fipronil administered to bobwhite quail in this study was 11.3 mg kg-1; 

the cited fipronil LD50 for this species (Goodyear, 1994). By day 3 post-dose, all treatment 

group birds were in a prolonged state of lack of feeding and rapid weight loss, two attributes 

identified in the Humane Endpoint Guidance Document (OECD, 2000) as being associated 

with an animal in a moribund state. By these toxicity testing standards, OECD recommends 



Chapter 4                         Reduced feeding behaviour and weight loss in fipronil treated bobwhite quail 

 

   40 

that such conditions be defined as an experimental endpoint requiring euthanasia. The 

summary report (Goodyear, 1994) in which the LD50 value of 11.3 mg kg-1 is cited does not 

provide study details and does not refer to weight loss over the 21 day study.  

 

The behavioural effects observed in our fipronil-treated quail (Figure 3.1), consistent with 

previously reported observations for this species and two other Galliformes (Goodyear, 1994a; 

Stavola, 1994a; Stavola, 1994b) are of significant consequence to these fipronil-sensitive 

species in the wild. Their lack of response to disturbance would make them considerably more 

vulnerable to predation, also prolonged period without feeding and significant weight loss 

would have a negative impact on energy reserves for thermoregulation and general immune 

system requirements. Under free-living conditions, all dosed quail would likely die of 

starvation (thus making this dose effectively an LD100). These factors not only have a 

significant impact on survival of individuals, but also then have a flow-on effect at the 

population level (Walker, 2003).  

 

Metabolic fate of Fipronil 

The increase in sulfone levels compared to fipronil levels, as measured in brain, liver and 

adipose tissue from this study (Figure 4.2), extend previous work, particularly in relation to 

our longer time course. Hainzl et al. (1998) demonstrated that after exposure to fipronil, 

sulfone levels in mouse brain increased and exceeded levels of fipronil over the 2h study 

period. The authors mention this also occurred in the liver, with sulfone levels increasing 2-

fold faster than the rate observed in brain. The conversion of fipronil to its sulfone metabolite 

is an oxidative process carried out by cytochrome P450 enzymes in both vertebrates and 

insects (Durham, 2002; Tang, 2004). Administration of piperonyl butoxide, a cytochrome 

P450 inhibitor, blocked sulfone formation in mice (Hainzl et al., 1998) and thus provides 

further support regarding fipronil metabolism.  
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Influence of weight loss on sulfone levels 

Our results clearly demonstrate a strong correlation between loss in body mass and increasing 

sulfone residue levels in brain, liver and adipose tissue (Figure 4.3). Similar results have been 

reported for DDT exposed birds where starvation-induced weight loss resulted in a significant 

increase in brains levels of the major metabolite, DDE (Ecobicho et al., 1969; Noakes et al., 

1965). These increased metabolite levels appear to be the result of mobilization of lipophilic 

residues from adipose depots during weight loss; these compounds are then redistributed to 

other target tissues (Hue, 2006; Villeneuve, 1975). Weight loss-induced mobilization of the 

high levels of sulfone stored in adipose tissue  (Figure 4.2C) appears to be occurring in 

fipronil-treated bobwhite quail, leading to redistribution of sulfone to brain (Figure 4.3B) and 

liver (Figure 4.3D). Although there is still a positive correlation between weight loss and 

sulfone levels in adipose tissue, it is weaker than for brain and liver tissue. This is most likely a 

consequence of fat stores being depleted at a faster rate than residues are being eliminated, a 

finding supported by Chevrier et al. (2000), where weight loss significantly increased adipose 

concentrations of 8 lipophilic toxic residues due to decreased adipose tissue storage capacity. 

The lack of correlation between weight loss and levels of fipronil residue in brain (Figure 

4.3A), liver (Figure 4.3B) and adipose (Figure 4.3C) tissue is most likely due to its rapid 

metabolisation to the sulfone as shown in Figure 4.2. 

 

Relationship between residue levels and intoxication  

Fipronil acts as an effective neurotoxicant by interfering with the normal regulatory actions of 

GABA via its receptors, resulting in neural excitation and convulsions (Bobe et al., 1998a). 

Exposure to fipronil at sufficient doses causes severe paralysis and ultimately death. Signs 

consistent with exposure to this neurotoxicant were observed in treated bobwhite quail after 

48h post-dose in this study (Figure 4.1). These signs, which included involuntary wing 

flapping and convulsions, have previously been observed in zebra finch (Taeniopygia guttata) 

and house finch (Carpodacus mexicanus) treated with lethal doses of fipronil (Kitulagodage et 
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al., unpublished data).  However, onset occurred much earlier in these passerine birds, as early 

as 4h post-dose, and did not continue beyond 24h. The onset of these signs of fipronil 

neurotoxicity in bobwhite quail coincided with the most rapid increase in brain levels of 

fipronil and sulfone between 48h and 72h post-dose (Figure 4.2A). As the brain has a high 

concentration of GABA receptors (Enna and Mohler, 2007), it is possible that the onset of 

signs observed in quail was due to the rise of both fipronil and sulfone levels in brain affecting 

sufficient GABA receptors to cause neural excitation. This relationship between brain residue 

levels and intoxication was also observed in brown-headed cowbirds (Molothrus ater) treated 

with DDT (Velzen et al., 1972); weight loss-induced mobilization of DDT and its metabolites 

resulted in accumulation of lethal levels in brain, causing tremors and other signs of DDT 

intoxication, and ultimately resulting in death.  

 

Why are bobwhite quail so sensitive to fipronil? 

Fipronil is significantly more toxic to the three Galliformes (bobwhite quail, ring-necked 

pheasant, red-legged partridge) tested compared with other avian species, including the house 

sparrow (Passer domesticus), LD50 of 1000 mg.kg-1 (Goodyear, 1994c) and the mallard duck 

(Anas platyrhynchos), LD50 < 2150 mg.kg-1 (Goodyear, 1994b). The absence of feeding 

behaviour and weight loss observed in fipronil treated galliform species were not reported in 

the less sensitive house sparrow or mallard duck. Zebra finch (Taeniopygia guttata) and house 

finch (Carpodacus mexicanus) were both shown to be less sensitive to fipronil than bobwhite 

quail (Kitulagodage et al., unpublished data), and like other non-galliform species, did not 

exhibit reduced feeding behaviour or weight loss. The absence of feeding observed after 

exposure to fipronil therefore, only appears to occur in the highly sensitive species, suggesting 

that the resulting weight loss enhances the effectiveness of the pesticide. The significance of 

weight loss with regard to pesticide toxicity was similarly demonstrated with DDT in brown-

headed cowbirds (Molothrus ater). A sublethal dose of DDT in combination with non-lethal 
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food restriction resulted in mortality, whereas individually, these factors had little effect on the 

health of the birds (Velzen et al., 1972).   

 

The strong correlation between increasing sulfone levels and weight loss also indicates that the 

conversion of fipronil to sulfone may enhance the effect on feeding behaviour observed. An 

issue of confusion in the literature however, is the reported relative toxicity of the sulfone 

compared with the parent compound, with the sulfone variously reported as being just as toxic 

(Hainzl et al., 1998), or more toxic (in vivo) than fipronil itself (USEPA, 1996). Hainzl et al. 

(1998) also demonstrated in vitro that the sulfone metabolite has a 6-fold greater binding 

affinity than fipronil for GABA receptors in vertebrate brains (composite data from six 

species). Considering that the sulfone is potentially more toxic than fipronil in vertebrates, 

high tissue sulfone levels, most importantly concentrations accumulated in the brain, may 

account in part for the high fipronil sensitivity in bobwhite quail.  Our findings suggest 

however, that the treatment-induced absence of feeding and resulting weight loss, in 

combination with the high accumulation of sulfone metabolite in brain tissue, is responsible 

for the low fipronil LD50 in bobwhite quail.  
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CHAPTER 5. MATERNAL TRANSFER OF FIPRONIL TO EGGS ADVERSELY AFFECTS 

CHICKS IN ZEBRA FINCHES AND CHICKENS 

 
 
This chapter has been published as 

Malsha Kitulagodage, William A. Buttemer and Lee B. Astheimer (2011) Adverse effects of 

fipronil on avian reproduction and development: maternal transfer of fipronil to eggs in zebra 

finch Taeniopygia guttata and in ovo exposure in chickens Gallus domesticus. Ecotoxicology, 

20(4): 653-660 

 

ABSTRACT 

Two studies were carried out to examine the impact of maternal fipronil exposure on 

embryonic and offspring development. In the first study, breeding female zebra finches were 

orally dosed with single sublethal levels of fipronil (1, 5, and 10 mg/kg body weight) to 

determine behavioural and developmental consequences on chicks following maternal 

pesticide exposure. Significant levels of fipronil and fipronil-sulfone residues were detected in 

eggs laid by females in all dosed groups, however these were undetectable in eggs laid 13 days 

after treatment. The level of sulfone detected in eggs was consistently higher than that of the 

parent fipronil compound. Of the seven eggs laid in the treatment groups, only one (14%) 

chick hatched and this was from the lowest dose group. This chick was severely 

underdeveloped at 10 days of age in comparison to control chicks and fiproles were detected in 

brain, liver and adipose tissues collected following euthanasia of this individual. In contrast, 

there was 100% hatchability of control group eggs and all chicks fledged nests on schedule.  In 

the second study, domestic chicken eggs were injected with 5.5, 17.5 and 37.5 mg/kg egg 

weight of fipronil directly into the yolk sac on day 12 of incubation. Treatment did not affect 

hatching success, however, behavioural and developmental abnormalities were observed in 

hatchlings from the highest dose group. These chicks also demonstrated reduced feeding rates, 
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as indicated by reduced body mass at 48-h period post hatch. Both fipronil and fipronil-sulfone 

residues were detected in brain and liver tissue of hatchlings at all pesticide dose levels tested. 

INTRODUCTION 

 
Fipronil is a new generation, broad-spectrum pesticide commonly used to control locust 

outbreaks in a number of countries including Australia and others within Africa. Seasonal 

conditions that promote increases in locust populations, such as rainfall and consequent plant 

growth, often stimulate breeding activities for a variety of terrestrial vertebrates including 

birds and lizards. This unfortunately results in locust-control spray events often being 

coincident with peak breeding periods for many non-target animals. In Australia, over one 

hundred different bird species are known to frequent areas that occasionally receive aerial 

application of fipronil for locust control (Szabo 2009). While little is known of the effects of 

fipronil on free-living birds there are many studies that have examined the impact of other 

pesticides on avian reproduction and development (DeWitt 1955, Fernie et al. 2009, Lundholm 

1997, Wiemeyer and Porter 1970). Results from these studies have demonstrated the 

importance of understanding the effects of pesticides on reproduction for better predicting their 

effects on avian populations. 

 

Despite the widespread use and obvious exposure risks of fipronil, there is very little known 

about the impact of fipronil exposure in breeding birds. Insectivorous birds are particularly 

susceptible as fipronil-contaminated locusts can remain alive for 7-10 days (EPA 2001) and 

feeding on these and sympatric insects, provides a major route of pesticide exposure. 

Granivorous birds are also at high risk of exposure as fipronil and its metabolites are 

detectable in seeds after fipronil spraying events (JMPR 2001), suggesting that ingestion of 

contaminated seeds is a likely route of exposure (Szabo 2005). Contact of dermal and plumage 

surfaces to chemical residues on vegetation and soil are also potential routes of exposure for 

non-target birds. Residue on plumage and nesting material may result in indirect exposure of 
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eggs to the pesticide, while direct exposure can occur in areas of spray operations (Hoffman et 

al. 2003). 

 

Fipronil acts by targeting gamma-amino butyric acid (GABA) receptors (Hainzl et al. 1998). 

These receptors are prevalent throughout the central nervous system of both vertebrates and 

insects, however fipronil has a much higher affinity for insect than for vertebrate GABA 

receptors hence its effectiveness as an insecticide. When fipronil was reviewed in the United 

States in 1994, the USEPA approved its registration for use with the provision that studies 

examining its chronic effects on avian reproductive be undertaken on two species: bobwhite 

quail (Colinus virginianus), a highly fipronil-sensitive species, and mallard duck (Anas 

platyrhynchos), a relatively low fipronil-sensitive species (Bryceland 1994a, 1994b). Both 

studies found no adverse reproductive effects on either species. However, these were non peer-

reviewed reports submitted for pesticide registration purposes, therefore were subject to 

confidentiality requirements and lack the details needed to scrutinize their methods and results. 

Following this, the Joint Meeting on Pesticide Residues (JMPR) published two toxicology 

assessment reports (1997 and 2001) reviewing unpublished data and research on fipronil. The 

only avian study reviewed was a fipronil dosing study on laying hens (Gallus domesticus); the 

highest levels of fipronil residues were reportedly detected in the yolk fraction of eggs laid by 

dosed hens (JMPR 1997, 2001), consistent with fipronil’s lipophilic nature. A study by Russ 

(2005) also found detectable levels of fipronil residue in the yolk of eggs laid by breeding 

female zebra (Taeniopygia guttata) finch administered with a single oral dose of fipronil 

(1.13x10-1 mg/kg). However, the study measured total fiproles (fipronil and its derivatives) 

and did not distinguish between levels of the parent fipronil compound and its metabolites.  

 

Yolk lipids are the primary source of energy and nutrients for the developing embryo (Speake 

et al. 1998), a process requiring substantial amounts of energy to fuel metabolism and growth. 

Thus, any contaminants incorporated into the yolk have opportunity to be absorbed by the 
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developing embryo. Because of the known adverse developmental affects of fipronil on 

vertebrates (Beggel et al. 2010, Stehr et al. 2006), maternal transfer of fipronil residues into 

yolks has potentially devastating effects on chicks. We have addressed this question through 

two experiments. We first examined the maternal transfer of both fipronil and its major 

metabolite (fipronil-sulfone) from exposed female zebra finches into eggs and hatchlings and 

its consequences on hatching success. Zebra finches are an ideal model as the species naturally 

co-occurs with locust-control operations in Australia and breed well in captivity over a large 

part of the year. In the second experiment, we injected known amounts of fipronil directly into 

the yolk of fertilised eggs to examine dose effects of this pesticide on chick development. 

Domestic chickens were chosen for these in ovo studies as there is a great deal known about 

normal embryonic and post-natal development of the chick, making it easier to assess any 

teratogenic effects of fipronil.  

 

MATERIALS AND METHODS 

 
Chemicals and Preparation of test substances 

Fipronil (C12H4Cl2F6N4OS or (±)-5-amino-1-(2,6-dichloro-",","-trifluoro-p-tolyl)-4-

trifluoromethylsulphinylpyrazole-3-carbonitrile), CAS No. 120068-37-3, of 97% purity was 

obtained from Sigma-Aldrich, Pty. Ltd., Australia (Fipronil PESTANAL®). Fresh test 

solutions were prepared on each day of dosing. Due to the low water solubility of technical 

grade fipronil (Tingle et al. 2003), the fipronil solution was prepared using a minimum amount 

of acetone solvent (approx. 60 !l acetone per 20 mg fipronil). Acetone was chosen as the 

solvent due to the high solubility of fipronil in acetone (545.9 g.L-1; BASF 2005). The 

solution was then diluted in canola oil to the required dose concentration. Canola oil is the 

vehicle used in common fipronil formulations for locust-control (e.g. Adonis®, BASF 2003). 

Control solutions consisted of acetone and canola oil only. 
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Maternal-transfer study 

Adult zebra finches (Taeniopygia gutatta) were obtained from a breeding colony at the 

University of Wollongong (Wollongong, NSW, Australia). Four outdoor aviaries at the 

University of Wollongong were set up for the three treatment groups and one control group, 

with each housing 5 breeding pairs (n = 20 females). Commercial seed mix (Finch Mix, 

Avigrain, Berkeley Vale, NSW, Australia), tap water and grit were provided ad libitum. 

Breeding pair formation was induced by the introduction of covered nest baskets and nesting 

material. Nests were checked daily to monitor dates of egg-laying, and all eggs laid prior to 

dosing were removed. Once all four breeding groups had started laying eggs, females were 

captured and weighed (mean + SE, zebra finch weight of 12.6 ± 0.4g) and all previously laid 

eggs removed. Females within a given cage were administered either fipronil or control 

solution as a single oral dose via gavage. Fipronil treatment doses were 1, 5 and 10mg/kg body 

weight and were known to be sublethal to adult zebra finch (Kitulagodage unpublished data, 

Kitulagodage et al. 2008). Dosing volumes followed OECD Acute Oral Toxicity Testing 

guideline recommendations of limiting maximum liquid dose volumes to 2ml/100g body 

weight (OECD 2003). Females were immediately returned to their respective aviaries and 

closely monitored for the next three hours, then checked regularly over the duration of the 

study. Once females recommenced laying, alternate eggs were collected for analysis of fipronil 

and metabolite residue levels; the remaining eggs were allowed to hatch. Behavioural 

observations were made of chicks in control and treatment nests up to 10 days after hatching 

and the chicks were then euthanised to collect brain, liver and adipose tissue for residue 

analysis. 

 

In ovo exposure study 

Fertile domestic chicken eggs (Gallus domesticus) were obtained on the day laid from The 

University of Sydney’s Poultry Research Unit (Camden, N.S.W., Australia). Eggs were placed 

in Octagon 40 self-rotating incubators (Brinsea Products Ltd, Somerset, UK); held at the 
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University of Wollongong animal housing facilities in a room with a light: dark photoperiod of 

12h:12h, including 15min simulated dawn/dusk intervals using dimmed lighting. Incubators 

were set at 37.4°C and monitored daily to ensure humidity was maintained at levels that 

resulted in the optimal egg weight (water) loss of 14% over the 21-day incubation period 

(Rahn et al. 1974). In addition to being weighed, eggs were candled every third day to 

determine embryo viability; infertile eggs and early dead embryos were discarded once 

identified.  

 

After nine days of incubation, 38 eggs containing viable embryos were split into five groups 

(three pesticide- treated groups, one vehicle-treated control group and one untreated control 

group). Fipronil treatment doses were 5.5, 17.5 and 37.5 mg/kg egg weight (based on pilot 

study doses of fipronil up to 1 mg/kg showing no effect); the vehicle consisted of acetone and 

canola oil only. We simulated maternal transfer of fipronil or vehicle-control solution by direct 

injection into the yolk on day 12 of incubation using a 50ul Hamilton glass syringe with a 26-

gauge needle. The dosing volume of 0.36 ml solution/kg egg weight was adjusted accordingly 

for each egg. A hole at the injection site was made manually through the shell using a 1mm 

drill bit after candling to locate the position of the yolk sac and to avoid injecting into the 

developing embryo, while a polystyrene foam stopper was fitted onto the needle to enable 

injection at the same position in the yolk sac for each egg. Once injected, holes were sealed 

with melted paraffin wax and eggs then returned to the incubator. The vehicle-control group 

eggs were injected in the same manner with the acetone and canola oil control solution, 

whereas eggs in the control group were injection free. Eggs were then candled and weighed 

every second day and any eggs containing dead embryos were removed from the incubator 

once detected. Hatchlings were weighed as close to time of hatching as possible then placed in 

brooder boxes with heat-lamps. Commercial feed (chick starter feed, PETstock, Fairy 

Meadow, NSW, Australia) and tap water were provided ad libitum. 
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Behavioural and physical observations including ability to right itself, pecking response to 

food, and general gait and stance of each hatchling were observed within 24 h post-hatch. 

Chicks were euthanised at 48 h post-hatch and their brain and liver tissues collected for 

analysis of fipronil and metabolite residue levels. 

 

All experiments were conducted in accordance with the National Health and Medical Research 

Council Guidelines for research involving native animals, as approved by the University of 

Wollongong Animal Ethics Committee (ethics approval number: AE03/26). 

 

Assay Methods  

Analysis for residue levels of fipronil and the sulfone metabolite (MB 46136) of fipronil was 

conducted at AgriSolutions Pty. Ltd. (Brisbane, Queensland, Australia). Zebra finch eggs, 

zebra finch hatchling tissue samples and domestic chicken hatchling tissue samples were 

homogenised, extracted in hexane and then filtered and liquid-liquid partitioned with 

acetonitrile. Residues were then isolated, and purified extracts brought up in acetonitrile, and 

passed through a 0.45 um polytetrafluoroethylene filter prior to quantitative analysis via Gas 

Chromatography Mass Spectrophotometry (GC/MS). The level of parent fipronil and sulfone 

for each sample were expressed as mg fiproles per kg of tissue sample (Agrisolutions 2006). 

 

 Statistical Analysis 

Comparative fipronil and fipronil-sulfone residue levels in brain, and liver tissue collected 

from in ovo treated chicks 48 hours after hatching for each treatment group were analysed 

using a t-test. The effect of time between, and within, treatment groups on measured chick 

weights were examined using one-way analysis of variance (1-way ANOVA) with Tukey’s 

post-hoc tests. Analysis was performed using GraphPad Prism software (Version 5.02, 

GraphPad Software Inc., CA, USA). 
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RESULTS  

 
Maternal Transfer of Fipronil  

Fipronil and sulfone residues were detected in eggs from females in all three fipronil treatment 

groups, however only in eggs that were laid between 2 and 13 days post-treatment. The level 

of sulfone detected was consistently higher than that of fipronil in all eggs sampled and tended 

to persist longer (Table 5.1). At the lowest dose of 1 mg/kg, fipronil was only detected in eggs 

laid on day 2 post-treatment (0.01 mg/kg).  Sulfone levels appeared to reach peak levels 

between 4 to 6 days post-dosing in all pesticide-treatment groups.  No residue of either fipronil 

or sulfone was detected in eggs laid in the control group. 

 

Table 5.1 Fipronil and Sulfone levels in eggs laid by female zebra finch 
administered a single oral dose of Fipronil at 1, 5 or 10 mg/kg body mass. 
Residue levels corrected for Limit of Quantification (LOQ) of 0.01 mg/kg egg 
mass. For all samples n=1 except for (a) where n=2. ND = no detectable 
residue level. 

Maternal Dose 
of Fipronil 

Days Post-Maternal 
Dose eggs laid 

Fipronil in egg 
(mg/kg) 

Sulfone in egg 
(mg/kg) 

1 mg/kg 

1(a) ND ND 
2 (a) 0.01 0.13 
4 ND 0.19 
6 ND 0.10 

13 ND ND 
17 (a) ND ND 

5 mg/kg 

1 (a) 0.10 0.09 
2 (a) 0.08 0.36 
4 0.11 1.28 

12 ND 0.01 
18 ND ND 

10 mg/kg 

1 ND ND 
4 0.22 2.16 
6 0.08 2.63 
9 ND 0.08 

12 0.01 0.19 
13 ND 0.03 

  

Of the seven eggs of the pesticide-treatment group remaining in the nests, only one chick 

(14%) hatched, this was from the 1mg/kg treatment group, compared with 100% hatch rate of 
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control eggs (12 eggs). The one chick to hatch among the pesticide-treatment group appeared 

severely underdeveloped at 10 days of age. Its eyes were just opening and its legs were 

splayed with no demonstrated righting reflex. The hatchling was unable to remain erect and 

vocalisations were abnormal and muted. No feathers had emerged on its body and all primary 

feathers were still in sheaths approximately four mm long. Ventral feather tracks were visible, 

but not dorsal or head feather tracks. It weighed only 7.0 g when euthanased, but 0.83g of this 

mass was seed that was packed in its crop. In contrast, hatchlings from the control group 

weighed 8.4 ± 0.4g at nine days old, had little or no seed stored in their crop, displayed strong 

begging behaviour, were very vocal, and able to right themselves. Furthermore, their body 

feathers had begun emerged both ventrally and dorsally, and primary feathers were unsheathed 

with one hatchlings measured to be approximately nine mm long. Tissue samples from the 10-

day old pesticide-exposed chick contained fipronil in brain, liver, and fat tissues, while sulfone 

was detectable only in brain (Figure 5.1). No fiproles were detected in tissues of any control 

hatchlings (n=3). 
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Figure 5.1 Fipronil and fipronil-sulfone residue levels in brain, liver and adipose tissue of 
the single zebra finch chick hatched (n=1) from eggs laid by females receiving a single 
oral dose of fipronil at 1mg/kg.body mass 
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In ovo exposure study 

Of the 40 eggs incubated, two proved to be infertile prior to treatment (fertility rate of 95%). 

There was no difference in in ovo mortality post-treatment (Table 5.2); only one chick died 

during the hatching process after pipping and this was from the 5.5 mg/kg group. 

 

Table 5.2 Survival rates of domestic chickens after in ovo exposure to 
fipronil at 0, 5.5, 17.5 or 37.5 mg/kg. egg weight. 

Treatment group n In ovo mortality Mortality during 
hatching process 

Control 7 2 0 

Vehicle-control 7 1 0 

5.5 mg/kg 8 2 1 

17.5 mg/kg 8 2 0 

37.5 mg/kg 8 2 0 

 

 

Of the 28 chicks that successfully hatched, behavioural and developmental abnormalities were 

only observed in the highest dose group (37.5 mg/kg). Observed signs included unsteadiness 

and resting on haunches. These chicks appeared to be uninterested in food provided in 

comparison to control chicks that ate considerable amounts of feed. This reduced feeding 

behaviour was reflected by loss in body mass over the 48-hour period post hatch (Figure 5.2); 

measured chick weights differed significantly across the four treatment groups at 48 hours 

after hatching, F4, 15 = 4.258; p = 0.0168. Tukeys post-hoc comparisons of the treatment 

groups indicate that body mass observed in the 37.5 mg/kg egg weight group chicks at 48 

hours post hatch was significantly lower than those observed in control group chicks (p < 

0.05). One chick from this highest treatment group was found dead 48 hours post hatch and 

weighed 29.3 grams compared to its weight of 36.2 grams immediately after hatching, 

necropsy revealed no abnormal findings however. Loss in body mass was also observed within 

the 5.5 mg/kg treatment group with measured chick weights differing significantly across the 

three time points, F2, 11  = 8.409; p = 0.0061. Tukeys post-hoc comparison of the time points 
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indicate chick weights measured both 24 hours and 48 hours after hatching were significantly 

lower than those measured immediately after hatching within the 5.5 mg/kg group (p < 0.05 

and p < 0.01, respectively). There was no significant difference in chick weights within the 

17.5 or 37.5 mg/kg groups, or between any of the treatment groups either immediately after 

hatching or at 24 hours post-hatch.  
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Figure 5.2 Body mass of domestic chicken hatchling (represented as Means ± SE) after in ovo exposure 
to fipronil compared with control groups. Treatment group chicks were exposed to a single dose of 
fipronil via injection in ovo at 5.5, 17.5 or 37.5 mg/kg.egg weight. Measurements were taken 
immediately after hatching, at 24 hours after hatching and 48 hours after hatching. Asterisks indicate 
statistically significant differences; single asterisks indicate p < 0.05, two asterisks indicate p < 0.01 

 

 

Fipronil and its sulfone metabolite were the only detectable residues in brain and liver tissue 

collected 48 hours after hatching from the 5.5, 17.5 and 37.5 mg/kg treatment group chicks 

(Table 5.3). No fiproles were detected in control hatchlings.  Fipronil-sulfone concentrations 

were significantly greater than those of fipronil in both brain (p = 0.0003) and liver tissue (p < 

0.0001) for all fipronil in ovo treated hatchlings. Comparing the two tissue types, 

concentrations detected in liver tissue were significantly higher than those in brain tissue for 

both fipronil (p = 0.0061) and fipronil-sulfone (p < 0.001).  
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Table 5.3 Fipronil and Sulfone residue levels in brain and liver (measured as 
means ± SEM) of domestic chicken hatchlings exposed in ovo to fipronil at 5.5, 
17.5 or 37.5 mg/kg.egg weight. Samples were collected at 48 hours post hatching. 
For all samples n=4 except for the 37.5 mg/kg groups where n=5. 

Treatment  
Group 

Residue in Brain (mg/kg) 
 

Residue in Liver (mg/kg) 

Fipronil Sulfone  Fipronil Sulfone 

5.5 mg/kg 0.03 ± 0.01 2.48 ± 1.03  0.10 ± 0.05 6.46 ± 2.65 

17.5 mg/kg 0.22 ± 0.09 4.03 ± 1.15  0.27 ± 0.11 10.21 ± 2.88 

37.5 mg/kg 0.20 ± 0.08 8.51 ± 1.54  0.48 ± 0.11 17.71 ± 3.10 

 

 

DISCUSSION  

 
This is the first study to show unequivocally that both fipronil and its sulfone metabolite 

(fipronil-sulfone) are maternally transferred into eggs laid by fipronil-exposed females. This 

study also demonstrates that once fipronil is deposited in the avian eggs, it is absorbed by the 

developing embryo, and along with the fipronil-sulfone, accumulates in the tissue of the 

hatchlings. The higher levels of fipronil-sulfone detected in zebra finch eggs compared with 

fipronil residue levels is consistent with other studies examining post-exposure residue content 

in fipronil-exposed animals (JMPR 2001). Metabolic fate studies show that fipronil-sulfone 

formation occurs rapidly, being detectable within one hour after fipronil exposure in mice 

(Hainzl et al. 1998) and within the first eight hours in fipronil-treated avian species 

(Kitulagodage et al. unpublished data).  

 

The lack of detectable fipronil or fipronil-sulfone residue in zebra finch eggs laid on the day 

immediately after dosing is likely due to those eggs being formed prior to dosing. The peak 

levels of sulfones found in eggs laid 4-6 days after dosing is consistent with the temporal 

pattern of yolk formation in ovulating birds, resulting in a higher proportion of yolk being 

exposed to maternal fipronil and sulfone in later laid eggs (Astheimer and Grau 1985). 
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The most striking result was the significant reduction in hatching success among female zebra 

finches exposed to fipronil (14% compared to 100% in controls). The doses that were 

administered were known to be sublethal from previous studies (Kitulagodage unpublished 

data) and none of the females dosed with fipronil showed any adverse effects or signs of 

toxicity. 

 

The lowest fipronil dose used in this current study was 1 mg/kg, which for an adult zebra finch 

weighing 12g is equates to ingestion of 0.12 mg of fipronil. One sample of native grass seeds 

collected after locust control spray operations was found to contain 0.839mg/kg fipronil 

residue five days after application (Szabo 2005). Relating this field data to our study dose, in 

order to obtain a 1mg/kg dose of fipronil, a 12g zebra finch would have to eat 14g of 

contaminated seed. Zebra finch have been reported to consume their own body weight in seed 

over a 48-hour period, and can collect this amount daily during the breeding season when they 

are feeding their chicks (Zann 1996). The scenario of a zebra finch obtaining a 1mg/kg dose of 

fipronil in locust control areas is therefore feasible depending on whether the fipronil residue 

had accumulated in the seed or in the husk, as finches remove the husks from the seed prior to 

eating. 

 

The standard rate of fipronil application for controlling locusts in Australia is currently 0.9g of 

active ingredient per 300ml per hectare (APLC, pers. comm.).  Given the known exposure of 

zebra finches to locust-control pesticides in Australia (Fildes et al. 2006), further study of the 

dose sensitivity of reproductive output in zebra finches and sympatric species to fipronil is 

warranted.   

 

In the domestic chicken in ovo study, the effect of drilling through the shell and injecting a 

solution had no effect on embryo survival rates. Although no clinical signs of toxicity were 

observed in any of the hatchlings, only the groups treated with fipronil showed significant 
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body mass declines after hatching, with one of the chicks that died 48 h post hatching losing 

approximately 19% of its body weight. Loss in body mass resulting from fipronil exposure has 

been demonstrated in studies on adult king quail (Coturnix chinensis) and bobwhite quail 

(Kitulagodage et al. unpublished data) and reduced feeding rates were observed in these 

species. No clear signs of reduced feeding behaviour were reportable in the chicken hatchlings 

as food consumption was not quantified.  

 

The relative levels of fipronil and fipronil-sulfone residue detected in the brain and liver tissue 

of chicken hatchlings is consistent with the pattern seen in zebra finch eggs, with sulfone 

levels being significantly higher than fipronil levels across all treatment groups. These results 

do differ to the zebra finch hatchling tissue samples, however, as fipronil levels were higher 

than sulfone levels in the brain, and sulfone residue was not detected at all in the liver and 

adipose tissue. It is important to note though that this was based on measurements for one 

individual.  

 

Comparing tissue types, both fipronil and fipronil-sulfone appear to accumulate at higher 

levels in liver as opposed to brain of the chicken hatchlings in all fipronil-treatment groups and 

in the surviving chick from the fipronil-dosed female zebra finches. The highest residue levels 

in the zebra finch chick however, were detected in the adipose tissue. Although pesticide 

residues were not determined in adipose from the chicken hatchlings, fipronil-dosing studies in 

rats, goats (JMPR 2001), adult zebra finches and bobwhite quail (Kitulagodage et al. 

unpublished data) have also documented greater amounts of fiproles in body lipids compared 

to either brain, or liver. Because adipose tissues are typically mobilized during periods of 

reduced food availability and, in females, when synthesizing egg yolk, there is great potential 

for fipronil to exert its toxic effects long after the time of initial exposure. 
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One conspicuous difference between the species we studied was the much greater sensitivity 

of zebra finch chicks to fipronil content in yolk compared to chickens. This may be due, in 

part, to differences in the stage of embryo development when first encountering fipronil. The 

zebra finch embryos of fipronil-exposed mothers were metabolizing yolk containing this 

pesticide and its metabolites from very early embryogenesis. By contrast, the chicken embryos 

were nearly 60% developed when their yolk was injected on day 12 with fipronil. Another 

consideration is that injected pesticide would be located predominantly in a discrete location of 

the yolk, whereas maternal transfer would result in an even mix of the pesticide throughout 

each yolk layer deposited in accord with circulating levels of fiproles at the time of yolk 

synthesis. Resolution of ontogenetic and phylogenetic effects on fipronil sensitivity of 

developing avian embryos is thus of paramount importance when considering risk.  
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CHAPTER 6.  GENERAL CONCLUSIONS 

 
AVIAN SENSITIVITY TO FIPRONIL 

 
This research has demonstrated that variability in fipronil sensitivity across avian species 

appears to reflect a pattern at the ordinal level. The Passeriformes (zebra finch, house finch 

and house sparrow) and budgerigar, a psittaciform species, appear to be moderately sensitive 

to fipronil. The Galliformes, however, appear to be highly sensitive to fipronil (king quail, 

bobwhite quail, ring-necked pheasant and red-legged partridge).  

 

Fipronil acts as a gamma-aminobutyric acid (GABA) receptor antagonist and the expected 

signs of fipronil intoxication resulting from this mode of action were observed in all species. 

Clear differences, however, were observed in times of onset and duration of these signs 

between the different orders of avian species. The Passeriformes displayed rapid onset of signs 

of intoxication, with complete remission within 24 h of exposure. In contrast, signs of 

intoxication were not observed in the Galliformes until at least day 2, then lasting up to 3 days 

after exposure. Additional responses to fipronil exposure in the Galliformes were cessation of 

feeding, inactivity and lack of response to disturbances. These symptoms were, not observed in 

any of the other species. For the budgerigars, the only psittaciform species tested, their rapid 

onset of signs of intoxication were similar to those observed in passeriforms, but differed in 

persisting up to 2 days after exposure. 

 

While there have been varying reports indicating that the sulfone metabolite of fipronil 

(fipronil-sulfone) is just as toxic or more toxic than its parent fipronil compound in vertebrates 

(USEPA 1996; Hainzl et al. 1998), this is the first study demonstrating fipronil-sulfone to be 

less toxic than fipronil in vivo in a vertebrate species; fipronil-sulfone was at least 2.5-fold less 

toxic than fipronil in zebra finch. In king quail however, fipronil and its fipronil-sulfone 

metabolite, were relatively equitoxic. One major observation from this study was that identical 
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signs of intoxication observed in fipronil-treated king quail including anorexia and weight loss 

were also observed in fipronil-sulfone treated king quail, which raised questions about the 

influence of metabolism of fipronil to fipronil-sulfone on the overall toxicity of fipronil.  

 

Fipronil exposure in the highly sensitive bobwhite quail resulted in reduced feeding behaviour 

and progressive loss in body mass. Residue analysis of brain, liver and adipose tissue from 

fipronil-treated bobwhite quail revealed a significant positive correlation between weight loss 

and fipronil-sulfone residue levels, the most notable being the correlation against brain tissue, 

a body tissue with a high concentration of GABA receptors.  

 

As the fipronil-sulfone metabolite is just as toxic as the parent compound in Galliformes, the 

significant losses in body mass may exacerbate the toxic effects of pesticides. As these birds 

begin to rely on their fat stores where lipophilic fipronil residues are known to accumulate, 

susbsequent mobilisation of these energy stores will redistribute fipronil-sulfone metabolites to 

other tissues, as demonstrated by the correlation between weight loss and tissue residue levels.  

 

The rapid conversion of fipronil to fipronil-sulfone may be a determining factor in the 

differing sensitivity to fipronil between the galliformes and passeriforms. As fipronil-sulfone is 

over 2.5-fold less toxic than fipronil in zebra finch, metabolism of fipronil in this species 

would result in conversion to a less toxic metabolite. In king quail however, fipronil-sulfone is 

just as toxic as fipronil, therefore metabolism of fipronil in this species results in conversion to 

a metabolite of equivalent toxicity to the parent fipronil. This may contribute to the greater 

fipronil sensitivity in Galliformes. Further research is needed however to understand the 

impact of the sulfone metabolite on the toxicity of fipronil across the different avian orders. 

 

The prolonged periods without feeding and the significant weight loss observed in the 

galliform species exposed to fipronil would additionally have a negative impact on energy 
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reserves for thermoregulation and general immune system requirements. Inactivity and lack of 

response to disturbances, both displayed in the Galliformes after exposure to fipronil, would 

make these birds considerably more vulnerable to predation in the wild. These factors 

combined pose a significant risk to these non-target organisms, especially when considering 

the relatively small amount of fipronil they would need to be exposed to in order to elicit these 

effects. 

 

A LESSON LEARNED ABOUT EVALUATING FORMULATED PRODUCTS 

 
The formulation comparison study revealed the most unexpected finding of this research in 

demonstrating that the solvent ingredient (diacetone alcohol) contributes significantly to the 

toxicity of the commercial fipronil formulation (Adonis 3UL) used for locust control spraying 

in Australia. There is no available information on the ecotoxicity of diacetone alcohol for 

terrestrial organisms. While narcosis, decreased hemoglobin and erythrocytes numbers and 

hepatic lesions have been reported in rats after oral administration of sublethal doses of 

diacetone alcohol (OECD 2000), further information on this study, such as test methods used, 

is not publicly available. Assessment of the active ingredient toxicity alone, in this case 

fipronil, is inadequate in evaluating the toxicity of pesticide formulations. These findings 

clearly highlight the importance of identifying and differentiating between the toxicity of 

active ingredients and that of its formulation in order to understand the realistic risks of 

exposure of these pesticides to non-target organisms.   

 

POTENTIAL POPULATION-LEVEL IMPACTS FROM THE AGRICULTURAL USE OF FIPRONIL 

 
This is the first study to demonstrate that both fipronil and its fipronil-sulfone metabolite are 

maternally transferred into eggs laid by fipronil-exposed birds. This resulted in significantly 

reduced hatching success among the clutches laid by the female zebra finches exposed to 



Chapter 6                                                                                       General Conclusions 

 

   62 

fipronil. All of the females dosed with fipronil, however, were asymptomatic of signs of 

fipronil toxicity. This study also demonstrated that once fipronil is deposited in the avian eggs, 

it is absorbed by the developing embryo, and along with the fipronil-sulfone, accumulates in 

the tissue of the hatchlings and has adverse affects on development and behaviour. 

 

The lowest fipronil dose administered having reproductive effects on breeding female zebra 

finch in this study was 1 mg/kg. Based on fipronil residue levels detected in grass seeds 

collected after locust control spray operations, and on the feeding rates of zebra finch, it is 

feasible for a zebra finch to ingest enough fipronil-exposed seeds in the wild during a breeding 

event to equate to a 1mg/kg dose of fipronil. Further examination of fipronil exposure in seed-

eating birds requires assessment of whether fipronil residue accumulates in the seed or in the 

husk, as birds remove the husks from seed prior to ingesting it.  

 

Given the pronounced effects that low doses of fipronil have on developing embryos and the 

coincidence of breeding by many species when locust outbreaks occur, more attention must be 

paid to the potential of this pesticide to affect reproductive success. Such research should 

recognise that any fipronil accumulating in fat stores will likely be transferred to the egg yolk 

of birds and reptiles but also to milk of lactating mammals. Thus, predictions of fipronil effects 

on particular vertebrates are likely to vastly underestimate the impact of low-level exposure on 

free-living populations if such modelling relies on adult pesticide sensitivity alone.  
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APPENDIX 1. REPORTED EFFECTS OF FIPRONIL ON NON-TARGET ORGANISMS 

Organism Impact Reference 

Non-target Insects: 

Ground beetles 

(Carabidae) and darkling 

beetles (Tenebrionidae) 

 

Bees (Scelionidae) and  

Wasps (Sphecidae) 

 

Locust-control spraying reduced 

populations by 90% within two days of 

treatment regardless of dose 

 

Almost 100% decline was observed in 

both populations due to locust-control 

spraying.  

 

 

(Balanca and 

deVisscher 1997) 

 

 

(Balanca and 

deVisscher 1997) 

Aquatic Organisms: 

Black-fly larvae  

(Simulium vittatum) 

 

 

 

Water flea (Daphnia) 

 

 

 

Japanese carp 

 

Rainbow trout 

 

European carp 

 

An acute toxicity study of fipronil resulted 

in a median lethal concentration (LC50) 

value range of 0.31 – 0.18 µg/L after 48 

hours 

 

The median lethal dose of fipronil (LD50) 

was determined to be 0.19mg/L after 48 

hours 

 

LC50 of 0.34mg/L 

 

LC50 of 0.248 mg/L 

 

LC50 of 0.430 mg/L 

 

 

 

(Overmyer et al. 

2005) 

 

 

 

(Colliot et al. 1992) 

 

(Colliot et al. 1992) 

 

(Aventis 2001)  

 

(Aventis 2001)  

Vertebrates: 

Fringe-toed lizard 

(Acanthodactylus dumerili) 

 

Rats 

 

LD50 of 30mg/kg  

 

 

Acute oral LD50 of 97 mg/kg. 

 

(Peveling and Demba 

2003)  

 

(USEPA 1996) 
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Organism Impact Reference 

Vertebrates (cont’d): 

Rats 

 

 

 

 

 

 

 

Rats 

 

 

 

 

 

 

 

 

 

 

 

Goats 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an acute toxicity study on rats, the 

clinical signs of toxicity were observed 

within 24hrs of treatment and included 

tremors and convulsions of various types, 

hunched posture, and hind-leg splay. 

Motor activity had decreased by 40% 8hrs 

after treatment. 

 

In a biotransformation study three 

treatments were assessed using labelled 

fipronil; a 4mg/kg and a 150mg/kg single 

oral dose, and a daily dose of 4mg/kg over 

14 days. The majority of fipronil TRR 

(Total Radioactive Residues) i.e. fipronil 

and its residues, was excreted via faeces 

(45-75%). Of the fipronil absorbed, the 

highest radioactive concentrations were 

found in the fat; the main residue detected 

was fipronil sulfone (MB 46136). 

 

Three lactating goats were orally dosed 

daily for 7 days with either 0.05, 2 or 

10ppm labeled fipronil. 

The majority of the radioactivity was 

excreted via faeces. The 2ppm dosed goat 

proportionally absorbed the greatest 

fipronil and also had the highest 

percentage of residue detectable in the 

collected milk. Residues were not 

detected in milk at the 0.05 dose, however 

for both the 2 and 10ppm doses, residues 

levels were detected and rose over the 7 

days. 

  

 

 

 

 

 

 

 

(JMPR 2001) 

 

 

 

 

 

 

 

 

 

 

 

(JMPR 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(JMPR 2001) 
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Organism Impact Reference 

Vertebrates (cont’d): 

Hens 

 

 

 

 

 

 

 

 

 

 

 

Cows 

 

 

 

 

 

 

 

 

New Zealand white rabbits 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a study on laying hens, doses were 

same as for goats (0.05ppm, 2pp, and 

10ppm) however over a 28 day daily 

treatment schedule. The highest 

recoveries were from faeces (52-58%) and 

egg yolks (13-16%) and whites (~2%). 

The residue levels detected in the egg 

yolk were higher than those detected in 

the tissue of the hens. At all doses the 

main residue detected in both eggs and 

tissues was the sulfone (MB 46136). 

 

In a feeding study on lactating cows given 

daily doses of either 0.04, 0.13 or 

0.43ppm fipronil for 35 days, almost all 

the residue detected in milk was fipronil-

sulfone (MB 46136). Of the tissues 

collected, the highest TRR levels were 

detected in the fat, also mainly sulfone 

(MB 46136). 

 

Dermal LD50 for rabbits of 445mg/kg for 

males and 354mg/kg for females.  

Clinical signs of toxicity for rabbits 

described in this study included 

convulsions, sluggishness, salivation, 

spasms, tremors, hyperactivity and 

diarrhea. It is interesting to note that 

convulsions were not observed until 3 to 9 

days after treatments and some deaths did 

not occur until 11 to 14 days after 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(JMPR 2001) 

 

 

 

 

 

 

 

 

(JMPR 2001) 

 

 

 

 

 

 

 

 

 

 

 

(JMPR 2001) 
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Organism Impact Reference 

Vertebrates (cont’d): 

Dogs (Beagle) 

 

 

 

 

 

 

In three chronic dosing studies on beagles, 

the main observations reported were 

decreases in mean body weight and food 

consumption. Clinical signs of toxicity 

were observed at doses low as 1mg/kg; 

these included hunched posture, 

hypothermia, excessive salivation, 

irregular heart rate, convulsions, tremors, 

abnormal reflexes and apparent lack of 

vision.  

Some of the dogs deteriorated to such an 

extent due to effects of treatment that they 

had to be euthanased during the study.  

Serum concentrations of the fipronil-

sulfone (MB 46136) were higher than of 

that of the parent fipronil in treatment 

doses above 0.075mg/kg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(JMPR 1997) 
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