
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1991

Environment exploration and path planning
algorithms for mobile robot navigation using sonar
Alexander Zelinsky
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact Manager
Repository Services: morgan@uow.edu.au.

Recommended Citation
Zelinsky, Alexander, Environment exploration and path planning algorithms for mobile robot navigation using sonar, Doctor of
Philosophy thesis, Department of Computer Science, University of Wollongong, 1991. http://ro.uow.edu.au/theses/1295

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Environment Exploration and Path Planning Algorithms
for Mobile Robot Navigation using Sonar

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

(Computer Science)

from

THE UNIVERSITY OF WOLLONGONG

by

ONIVERSITY Of

Alexander Zelinsky, B.Math(Hons) W'gong

Department of Computer Science

Department of Electrical and Computer Engineering

1991

I hereby declare that I a m the sole author of this thesis. I also declare

that the material presented within is m y own work, except where duly

acknowledged, and that I a m not aware of any similar work either

prior to this thesis or currently being pursued.

A. Zelinsky

(ii)

Abstract
The work reported in this thesis is motivated by the need to construct a navigation

system for mobile robots which can operate in unknown and partially known

environments, and which has the capability to progressively learn an environment A new

environment mapping procedure is described that constructs high resolution maps of an

environment using ultrasonic range sensing. The ultrasonic range maps are converted into

quadtrees. Quadtrees are used by the navigation system as the data structure that models

the environment.

This thesis presents a new algorithm for a mobile robot to explore an unknown

environment using the quadtree data structure and the distance transform path planning

methodology. Past approaches to robot path planning have concentrated on finding the

shortest path to a goal. A path planner should also support finding a variety of other kinds

of paths to a goal. For example a path planner could support finding "conservative",

"adventurous" and "safe" paths. Conservative paths favour known areas, while

adventurous paths avoid known areas. Safe paths keep a safe distance from obstacles,

while simultaneously keeping the path length to the goal as short as possible. It is shown

that the new mobile robot exploration algorithm can generate a wide variety of path

planning behaviours by a novel use of distance transforms.

Much of the research effort into path planning for mobile robots has concentrated on

the problem of finding paths by translation of the robot body only. The problem of

finding paths which require the rotation of the robot body have been largely ignored. This

thesis presents an new algorithm for path planning with three degrees of freedom which

is based upon an extension to the "safe" path planning behaviour.

Finally it is shown that the new algorithms that have been presented are

computationally efficient, and have desirable features that are absent from other path

planning algorithms.

(iii)

Acknowledgements
My decision to undertake a Ph.D on a part time basis has turned out to be a 6 year test

of endurance for m y family and friends. I must thank all the people who have helped m e

along the way. First, I must thank m y supervisors Dr. Phillip McKerrow and Prof. Chris

Cook for their assistance and guidance. I a m grateful for their encouragement to persevere

with the work in spite of difficulties and frustrations in tasks of this nature. I must also

thank Dr. Greg Doherty who waded through this document and made much appreciated

suggestions.

The sonar mapping work described in this thesis was carried out at the Intelligent

Robotics Research Centre, Monash University, Australia where I spent 6 months of study

leave. I thank Prof. Ray Jarvis, Director of the Intelligent Robotics Research Centre, for

providing m e with the opportunity to work at the Centre. I a m grateful for the first class

mobile robot, the computing power and the excellent support staff that were provided by

the Centre during the course of the work. I extend m y special thanks to Jullian Byrne and

Kemal Ajay for all their assistance in helping to solve the software and hardware

problems that cropped up from time to time.

I must also thank m y students Glen Conners, Gerrard Drury, Graham Heathcote,

Harald Kolodziej, Grant Moule and Graham Shaw who ported m y path planning software

from a crude VT100 display to run on the user friendly Macintosh. This enabled us to

find bugs in m y software and algorithms and made it possible to use screen dumps from

the Macintosh in the many diagrams which illustrate this thesis. I a m grateful for their

willingness to question what I said and wrote; through their inquisitiveness I was able to

correct and refine m y work.

O n a personal note I would like to thank m y parents, particularly m y mother, for

encouraging m e to pursue m y studies. I a m also very grateful to m y friends George Perm

and Irene Maya Romanova, who cared for m y children, thus giving m e the opportunity to

(iv)

work long hours at the research laboratory. I am also thankful to George and Irene for all

their nurturing personal support. Without their support I could not have completed this

work. I am blessed to have friends like this. I must also thank my sons Misha and Tima

who have been willing to put up with my coming and going at strange hours, and have

never once forgotten who I am.

(v)

Publications from this Thesis
A. Zelinsky and CD. Cook, "Environment Mapping for Mobile Robots", Proceedings

of the 2nd National Australian Robot Conference, Perth, May 1986.

A. Zelinsky, "Robot Navigation with Learning", Australian Computer Journal, Vol. 20,

No.2, May 1988.

A. Zelinsky, "Navigation with Safety", Proceedings of the 1989IEEE/RSJ International

Workshop on Intelligent Robots and Systems, Tsukuba Japan, September 1989.

A. Zelinsky, "Robot Path Planning with Safety", Proceedings of the 13th Australian

Computer Science Conference, Melbourne, February 1990.

A. Zelinsky, "Path Planning for Mobile Robots with 3 DOF", Proceedings of the 14th

Australian Computer Science Conference, Sydney, February 1991.

A. Zelinsky, "Environment Modelling with Autonomous Mobile Robots using Sonar",

Second International Advanced Robotics Workshop on Sensor Fusion and Environment

Modelling, Oxford U K , September 1991.

A. Zelinsky, "Mobile Robot Map Making using Sonar", Journal of Robotic Systems, to

appear October 1991.

A. Zelinsky, "A Mobile Robot Map Exploration Algorithm", IEEE Journal of Robotics

and Automation, accepted subject to revision.

(vi)

Table of Contents
1. The Overview 1

2. Environment Mapping Using Sonar 6

2.1 Introduction 6

2.2 Environment Mapping 8

2.3 Sonar and Mobile Robots 9

2.4 The New Approach 15

2.4.1 Sonar Preprocessing 17

2.4.2 Line Fitting and Extracting Sonar Edges 20

2.4.3 Using the Sonar Mapping Test to Process Noisy Data... 22

2.4.4 The Environment Mapping Algorithm 28

2.5 Results 32

2.6 Conclusions 40

3. Review of Path Planning 41

3.1 Introduction 41

3.2 Philosophy of Mobile Robot Navigation 42

3.3 Review of Mobile Robot Navigation Research 45

3.3.1 Vertex Graphs 46

3.3.2 Free Space 47

3.3.3 Superimposed Grid 48

3.3.4 Potential Field 55

3.3.5 Path Planning with 3 Degrees-of-Freedom 57

3.3.6 Path Planning with Consideration of Robot Safety 62

3.4 Data Structures 66

3.5 Conclusions 68

4. Path Planning 72

4.1 Introduction 72

4.2 Environment Exploration Algorithm 74

4.3 Path Planning using Distance Transforms 76

4.4 Path Execute Algorithm 82

4.5 Model Update Algorithm 89

4.6 Partial Distance Transform Algorithm 92

4.7 Examples of the EEA 94

4.8 Experimental Results of the EEA 100

4.9 Conclusions 103

(vii)

5. Path Planning Behaviours 105
5.1 Introduction 105

5.2 Path Planning Behaviours 107

5.2.1 Optimum Path Planning Behaviour 111
5.2.2 Conservative Path Planning Behaviour 112
5.2.3 Adventurous Path Planning Behaviour 113
5.2.4 Learn All Path Planning Behaviour 114
5.2.5 Visit All Path Planning Behaviour 120
5.2.6 Forgetful Path Planning Behaviour 122

5.3 Algorithms for Path Planning Behaviours 125
5.4 Planning Safe Paths 131
5.5 Planning Best Paths 143
5.6 Experimental Results 146

5.6.1 Conservative Path Planning Experiment 147
5.6.2 Adventurous Path Planning Experiment 149
5.6.3 Learn All Path Planning Experiment 152

5.6.4 Visit All Path Planning Experiment 157

5.6.5 Forgetful Path Planning Experiment 159
5.6.6 Safest Path Planning Experiment 163
5.6.7 Best Path Planning Experiment 166

5.7 Conclusions 168

6. Comparison of Distance Transform Path Planners 170
6.1 Introduction 170

6.2 Random Data 174

6.3 Spiral and Maze Path 179

6.4 Obstacle Data 184
6.5 Conclusions 195

7. Path Planning for Mobile Robots with 3DOF 198

7.1 Introduction 198
7.2 A New 3 D O F Path Planning Algorithm 202

7.3 Results 215

7.4 Conclusions 219

8. Conclusions and Further Work 221

8.1 Conclusions 221

8.2 Further Work 224

(viii)

Bibliography 227

Appendix A: Fine Path Planning 236

Appendix B: Random Data 242

Appendix C: Spiral and Maze 260

Appendix D: Obstacles 263

Appendix E: Indoor Environment 274

Chapter 1
The Overview

Research into mobile robotics is driven by the goal of building machines with the

capabilities of humans. The aim of this research is to create machines which will replace

humans in performing tasks that w e find tedious, dirty or hazardous. The "intelligence"

of a robot is a measure of the sophistication of the robot, and the type of environment

that it can exist in. Clearly a parts delivery robot operating on the factory floor, which

navigates by following a buried wire, requires very little machine intelligence, compared

with a robot whose task is to guide a motor vehicle through traffic at high speed. To

achieve the latter task, the robot must simultaneously address the problems of

"perception", "mobility" and "intelligence" in a changing environment, and therefore this

robot can be regarded as an intelligent robot. The challenge of mobile robotics research is

to develop intelligent technology that does not operate only in a limited domain, but in the

"real world".

The purpose of an autonomous mobile robot is to perform tasks for a user. For the

correct and efficient performance of user tasks, a mobile robot must have the capability to

interact with the environment in which it is operating. A n essential interaction capability is

navigation. Navigating a mobile robot in a known environment requires little or no

interaction with the environment. However, a robot m a y have to operate in partially

known or completely unknown environments. In such circumstances the robot must learn

and understand the structure of the environment. The robot must acquire and handle

information about the existence and location of objects and areas of unoccupied space.

Building a coherent world model within the limitations of current perception sensing

technology is a complex task. This involves the extraction of range information from the

environment, taking into account noise and the inaccuracy of sensor information. This

introduces uncertainty into the environment map and makes the task of navigating a robot

more challenging.

-1-

The work reported in this thesis is motivated by the need to construct a navigation

system for mobile robots which can operate in unknown and partially known

environments, and which has the capability to progressively learn an environment. In this

thesis a navigation system will be described that has the capability of sensing the

environment, and incorporating the freshly sensed data into an internal model of the

environment. To efficiently model an environment, it is necessary to develop a data

structure which can support the inclusion of freshly sensed data, and which supports path

planning. In summary, the contribution of the research reported in this thesis furthers the

development of data structures and algorithms for:

* environment mapping with sonar range data.

* path planning for mobile robots.

* path planning behaviours for mobile robots.

* path planning for mobile robots with 3 degrees of freedom.

The detailed description of the research goals of this thesis are provided in the

remaining paragraphs of this chapter.

Environment Mapping

The first goal of this research was to build a practical and reliable navigation system

which was capable of operating in real-time or near real-time. T o achieve this aim

ultrasonic range sensing (referred to as "sonar" for short) was chosen as the perception

medium ahead of computer vision. Using computer vision as the perception medium

requires the storage and quick processing of large quantities of data. Real-time computer

vision requires expensive dedicated processing hardware, while sonar has minimal

storage and processing requirements. Another reason for the choice of sonar as the

perception medium was to allow concentration on the research issues of robot navigation

and mapping with range data, rather than the issue of extracting range from computer

vision.

-2-

One of the drawbacks of sonar is the noise and uncertainty associated with sonar

range readings. In this thesis it is shown how clean and reliable data can be obtained from

a noisy sonar signal and how this data can be integrated into an environment map for use

in a robot navigation system. This work is described in Chapter 2.

Path Planning

A review of past mobile robot path planning research is presented in Chapter 3. Past

research into path planning for mobile robots has concentrated on the problem of finding

the shortest path in a known environment. However for a mobile robot operating in a

partially known or a completely unknown environment, it is difficult to design a path

planner which can effectively handle the unknown regions of the environment. For a path

planner to be effective, the navigation system must have a mechanism to use the freshly

sensed environment data. The second goal of this research was to develop a path planning

algorithm which allows a mobile robot to operate in partially known and completely

unknown environments, and which can handle sensor data describing the structure of the

unknown parts of an environment. Such a path planning algorithm is presented in

Chapter 4. The path planning results are presented using the sonar data results given in

Chapter 2.

Path Planning Behaviours

A robot path planning system should not only find "optimum" paths i.e. the shortest

paths to goals, but the system should also be able to generate "conservative" and

"adventurous" paths. Conservative paths are paths which favour known areas, so the

robot will attempt to travel in regions which it knows about. Adventurous paths on the

other hand are paths which avoid known areas, causing the robot to operate in regions

which have not previously been visited. A robot navigation system should also possess a

"learn all" behaviour, which allows the robot to systematically map all the unknown

regions of an environment. A useful path planning behaviour that a robot can possess

-3-

once an environment is completely known, is a behaviour which allows the robot to

efficiently "visit all" the free space in an environment. Such a path planning behaviour is

relevant for flooring cleaning and security surveillance robots.

The biggest challenge in building a competent path planner is to reconcile the

conflicting requirements of finding the "best" path from some start location to a goal

location. The best path is not necessarily the shortest path to the goal. A mobile robot

should keep the length of the path as short as possible, while simultaneously keeping a

safe distance from obstacles and avoiding unknown regions of the environment.

The third goal of my thesis was to construct a robot path planner which is capable of

exihibiting different types of path planning behaviours. In Chapter 5 the concept of

behaviours for mobile robot path planning is introduced. This chapter shows how the

path planner described in Chapter 4 can be extended to induce the robot navigation control

system to exhibit the path planning behaviours of finding "best", "adventurous",

"conservative", "learn all" and "visit all" paths. Experimental results using the sonar data

collected in Chapter 2 are reported.

In Chapter 6 a comparison of the new robot path planning algorithms with another

similar class of path planning algorithms is presented.

Path Planning with 3 Degrees of Freedom

Much of the research effort into path planning for mobile robots has concentrated on

the problem of finding paths from a start position to a goal position by translation of the

robot body only. The problem of finding paths which require the rotation of the robot

body have been largely ignored. The fourth and last goal of this research was to develop a

path planning algorithm for mobile robots which have 3 degrees of freedom (DOF) of

movement. In Chapter 7 of this thesis an algorithm is presented which is based upon the

extension of ideas presented in earlier chapters. It is shown that this new algorithm is

-4-

computationally superior to other 3 D O F path planners, and has desirable path planning

features that are absent from other 3 DOF path planners.

Finally, in Chapter 8 the conclusions that have been drawn from this research are

presented, and mobile robot navigation problems which deserve further research attention

are discussed.

-5-

Chapter 2
Environment Mapping using Sonar
2.1 introduction

This chapter describes a new method of producing high resolution maps of an indoor

environment with an autonomous mobile robot equipped with sonar range finding

sensors, which is based upon investigating obstacles in the near vicinity of a mobile

robot The mobile robot examines the straight line segments extracted from the sonar

range data describing obstacles near the robot. The mobile robot then moves parallel to

the straight line sonar segments, in close proximity to the obstacles, continually applying

the "sonar mapping test". The sonar mapping test exploits the physical constraints of

sonar data, and eliminates noisy data. This test determines whether or not a sonar line

segment is a true obstacle edge or a false reflection. L o w resolution sonar sensors can be

used with the described method. This environment mapping procedure can be integrated

with most path planning algorithms and different types of range finding sensors.

The experimentation in this work was carried out on a Model T Denning Mobile

Robot (Figure 2.1), equipped with a twenty four element Polaroid Corp. Ultrasonic

Range Finder sensor array [Polaroid 82]. The control system of the Model T uses three

microprocessors. A supervisory 68008 microcomputer communicates with the outside

world, the drive and steer system, and the sonar system. The robot communicates with

the outside world using a serial link to a V A X minicomputer. The three wheel

synchronous drive and steer system in the Model T is controlled by a Z80 microcomputer.

The sonar array built by Denning Mobile Robotics is arranged in a ring configuration,

with each of the sonar sensors spaced 15 degrees apart. The ring is controlled by a Z80

microprocessor which selects sensors, activates the ranging and returns the corresponding

range data. The sonar data is sent to the supervisory 68008 microcomputer, which passes

-6-

the data onto the V A X minicomputer. The V A X interprets the sonar data and performs the

navigation functions of mapping and path planning.

Figure 2.1

Denning Corp. Model T Mobile Robot Research Vehicle.

The remainder of this chapter is organised in the following manner. Section 2.2

reviews the research which has been undertaken in the past into environment mapping for

mobile robots. Section 2.3 reviews the reported uses of sonar in mobile robotics, and the

problems associated with sonar sensing. In Section 2.4 a new approach to environment

mapping using sonar is presented. Section 2.5 presents the experimental results obtained

from an implementation of the new approach. Finally in Section 2.6 the conclusions

which have been drawn from this research are presented.

-7-

2.2 Environment Mapping

Research efforts into environment mapping with mobile robots follow a variety of

approaches. These can be broadly classified into two groupings; "adaptive" models and

"rigid" models. Adaptive models reflect the nature and clutter of the environment Typical

adaptive models represent the environment as a network of free space regions [Brooks

84, Chatila 82, Crowley 85, Iyengar et. al. 86, Rao et. al. 86], or as a graph of obstacle

vertices [Thompson 77]. Environment mapping methods which use adaptive models

require accurate sensor information. Rigid models impose a structure, such as a grid, onto

the environment without any regard to the nature and clutter of the environment [Elfes 87,

Jarvis et. al. 86, Moravec 80, Thorpe 84]. Adaptive model environment mapping

methods offer elegant and efficient solutions, but in practice are difficult to implement.

The converse can be said of rigid model environment mapping methods.

Environment mapping by a mobile robot can be accomplished either by operating in

"mapping" or "learning" modes. W h e n a robot is operating in mapping mode [Crowley

85] it traverses the entire environment in a systematic manner, while scanning with

onboard sensors and updating a map. The map is then used for all subsequent path

planning exercises. Difficulties arise with this method if the environment is allowed to

alter after the mapping has been completed. Work on environment mapping using the

mapping mode is reported in Chapter 5.

The other mode of learning is to sense the environment while executing paths which

have been generated by a path planner. As the robot encounters obstacles en route to a

goal, the mapping process updates the model of the environment, and the path planner

plans a new path to the goal which avoids the obstacles [Elfes 87, Iyengar et. al. 86,

Jarvis et. al. 86, Rao et. al. 86, Thorpe 84]. The paths generated by these methods will

initially be negotiable paths from the start to the goal location. The lengths of these paths

are not optimum, but as knowledge of the environment increases better paths are

-8-

generated until eventually global optimality is attained. Research into using the learning

mode to generate a map of the environment is described in Chapter 4.

The environment mapping methods presented by [Iyengar et. al. 86, Rao et. al. 86]

have problems since they uses heuristics to plan local paths around obstacles. These

methods assume that a robot can always recognise the line of sight distances to obstacles,

and that obstacle edges can always be precisely detected. Such restrictions make it

difficult to implement this mapping algorithm using current sensor technology. Since line

of sight sensing cannot be guaranteed, obstacles in an environment can be arranged in a

configuration which will cause a heuristic path planner to fail [Cahn et. al. 75, Chattergy

85].

Since one of the goals of this research was to produce a practical and reliable mobile

robot navigation system, a rigid model using grids was selected as the representation of

the environment map. However this rigid model can be easily transformed into an

adaptive model for use in path planning activities, as shown later in Chapter 4.

The environment mapping method presented in this chapter can used to operate in both

"mapping" and "learning" modes to obtain information about the environment. This map

making method assumes that the location of the robot is known at all times. In the

implementation of this mapping method, dead-reckoning was used satisfactorily. Finally

this environment mapping method does not have the short comings of using heuristics to

plan paths, nor does it assume that the robot has the ability to measure the exact shape of

obstacles and the line of sight distances to obstacles.

2.3 Sonar and Mobile Robots

The application of sonar sensors in robotics is increasingly attracting interest and

research. This is partly due to the low cost of the sensor and the ease with which the

sonar data can be processed to directly provide range information. Sonar has been used

by mobile robots for navigation [Brooks 86, Chatila 82, Chatila et. al. 85, Chattergy 85,

-9-

Crowley 85], determination of position [Crowley 85, Drumheller 87, Durrant-Whyte et.

al. 89, Miller 84, Miller 85] and mapping purposes [Crowley 85, Elfes 87, Flynn 85].

The Hilare mobile robot project [Bauzil et. al. 81, Chatila 82, Chatila et. al. 85,

Chattergy 85] uses sonar sensors as proximity indicators for close up obstacle detection

and for parallel wall following. [Chattergy 85] uses sonar with a heuristic navigation

system to detect and follow obstacle boundaries. Both these approaches used sonar for

collision avoidance with stationary obstacles only. The M T T AI Lab mobile robot [Brooks

86] uses sonar for collision avoidance with both stationary and moving obstacles.

Sonar has been used to determine the position of a mobile robot in an environment

[Durrant-Whyte et. al. 89, Drumheller 87, Miller 84, 85]. [Miller 84, 85] assumed that

the environment was known, and that an accurate map of the environment was available.

The map was searched to determine the location of the robot The position of the robot

found in the map search had to confirm the set of sonar readings collected from the

environment This approach had limitations since it did not take into account the

uncertainty and noise of sonar data.

[Drumheller 87] used a similar approach to Miller. This approach also required an

accurate map of the environment, but it could handle noisy data. The method was

implemented using the Polaroid sonar sensor. This approach coped with the uncertainties

of sonar by modelling the sonar sensor and data to account for false reflection and beam

spread errors.

[Durrant-Whyte et. al. 89] used a different approach to position estimation. This

approach used an extended Kalman filter to integrate sonar readings into a known

(precisely taught) environment map, and to derive an estimate of the mobile robot

location.

False reflections can cause extremely large errors in sonar readings. False reflections

are caused by the long wavelength of sound. A sonar beam aimed at a target object

-10-

surface may not reflect an echo directly to the sensor. Instead an echo may or may not be

detected when the sonar beam bounces off some objects other than the target object.

Hence the sonar sensor measures a distance to a target which is much longer than the

actual distance to the target False reflections of a sonar beam occur whenever the angle of

incidence is greater than the critical angle of reflection, causing the beam to be reflected

away from the sensor, and giving the effect of the sonar beam penetrating the obstacle.

Refer to Figure 2.2 for an illustration of false reflection of a sonar beam. False reflections

occur quite often, and for this reason it is almost impossible to obtain a reasonably

accurate "sonar profile" of the environment surrounding the robot

Figure 2.2

The problem of false reflections of a sonar beam.

Sonar beam spread creates a number of problems. Objects can be perceived to be

much wider than they really are. This effect is exacerbated with larger distances between

sensor and object. Similarly openings between obstacles, such as open doors, may be

perceived to be closed. Beam spread can also cause ranging errors. A range measure is

not necessarily the distance in the direction the sensor is facing, since the width of the

beam may cause an echo from one edge to be returned before the echo from the sensor

direction. These ranging errors have the effect of producing a blurred image of the

surroundings, particularly corners. Refer to Figure 2.3 for an illustration summary of

beam spread problems.

-11-

Figure 2.3

The problem of Sonar beam spread.

Due to false reflections and beam spread a sonar profile may bear little resemblance to

the actual environment as shown in the example in Figure 2.4. Figure 2.4 (A) shows the

plan of an indoor environment, which contains two obstacles. Figure 2.4 (B) shows a

sonar profile obtained of the environment shown in Figure 2.4 (A). It is obvious that

there is little resemblance between the actual environment and the sonar profile. In fact it

is difficult to say from what position in the environment the sonar profile was obtained.

Figure 2.4 (C) shows where the sonar scan was done in the environment.

-12-

c
Figure 2.4

The combination of false reflections and sonar beam spread causes problems.

The sonar beam spread problem has been countered in several different ways. [Elfes

87] treats sonar beam spread with a probabilistic approach. Elfes regards a sonar reading

as an assertion about two 3 D spaces, one that is "probably empty" and another that is

"somewhere occupied". The definition of the probability density functions is based on

beam geometry and the spatial sensitivity pattern of the sensor. The functions are

parameterised by the spread of the beam and the range of the sample. Twenty four sonar

sensors are mounted in a ring around the robot. The probability density functions derived

-13-

from the range readings for each sensor are combined and projected onto a two

dimensional grid. In this probability map, the value stored in each grid cell indicates if the

cell is empty, occupied or unknown. By combining information from many readings as

the robot moves through an environment, areas known to be empty or occupied are

expanded, and the uncertainties associated with the region are decreased. Consequently

the shape and location of obstacles in the environment becomes known with increasing

accuracy. This approach tackles the problems associated with sonar sensing by building

the environment map with multiple sonar views taken from different locations. However

it does not provide a complete solution to false reflections, since no mechanism is

provided to cancel the effect on the probability functions of the false reflection sonar

readings that were projected onto the probability map at an earlier stage.

[Crowley 85] countered the beam spread problem by narrowing the width of the

beam. H e generated a narrower beam by focusing a wide sonar beam with a parabolic

horn. The narrowed beam was rotated by a stepper motor and sonar readings were taken

at regular intervals. From the sonar readings, a line based model of the surrounding

environment was constructed using recursive line fitting. The newly constructed local

model was then matched with a map which had either been supplied to the robot or learnt

by the robot on previous mapping experiments, to determine the robot's location and to

update the map if necessary. This approach does not take into account the uncertainty and

noise that false sonar reflections can introduce into a line based environment model.

[Flynn 85] attempted to remove the uncertainty and noisiness of sonar data, by sensor

fusion. Sonar and infrared sensors were used together, each compensating for the

deficiencies in the other. Data from both sensors was fused to generate a more accurate

representation than could be achieved by either sensor alone. This method had limited

success in dealing with beam spread and false reflection problems, because of the

deficiencies of the infrared sensor. However sensor fusion of sonar with infrared was

able to detect openings, such as doorways, that would otherwise go undetected if only

sonar sensing was used. Flynn gives a treatment of sonar error due to atmospheric effects

-14-

such as the change in the speed of sound caused by temperature and humidity changes.

The timing circuitry of the Polaroid sonar sensor is identified by Flynn as another source

of range precision error.

[Drumheller 87] modelled sonar beam spread by assuming that the location of an end

point of any sonar reading m a y be in error by as much as E, where E was a constant that

bounded the unpredictable beam spread errors. The value of E was determined

experimentally. Drumheller introduced a new concept called the "sonar barrier test". The

sonar barrier test was used to eliminate the noise introduced to the sonar profile by false

reflections. The sonar barrier test checked that the .sonar profile for a proposed location of

the robot was consistent with the fact that sonar beams do not penetrate known solid

objects. The sonar barrier test was very effective at eliminating localisations of the robot

which do verify the sonar profile, but are in fact incorrect Drumheller showed that false

reflections of sonar beams could be handled effectively by the sonar barrier test

2.4 The New Approach

In summary, past research has shown that to devise an effective environment mapping

procedure using sonar, the procedure must handle the sonar sensing problems of false

reflections and beam spread. The approaches described in the previous section had

problems dealing with both the .sonar sensing problems. In this section a new approach to

environment mapping using sonar is presented. This approach handles the beam spread

problem by sampling data describing obstacles at a closer range. The false reflections

problem is dealt with by applying the sonar barrier test The sonar barrier test is used in a

context that is different from the original intentions of its designer [Drumheller 87].

Instead of determining a robot localisation based on the fact that a sonar profile cannot

penetrate known solid objects, the test is used to determine the shape of unknown objects

given the fact that a sonar profile m a y appear to pass through objects. T o reflect the new

context of use of the sonar barrier test, the test will be referred to as the "sonar mapping

test"

-15-

Producing an accurate map of an indoor environment from a sonar profile sampled in

one location is virtually impossible, as shown in Figure 2.4. However the sonar profile

does indicate the approximate location and size of obstacles and probable areas of free

space. The task of the environment mapping process is to determine whether or not the

data contained in a particular sonar profile is correct or not. Testing the correctness of the

sonar profile is done by moving the robot into closer proximity to the obstacles identified

in the .sonar profile, and applying the sonar mapping test The conclusions drawn from

investigating and testing the sonar profile data are incorporated into the environmental

map.

Most path planners approximate the robot with a cylinder and then shrink the cylinder

to a point and expand all the objects in the environment by the radius of the cylinder. This

strategy is useful in known environments. But in unknown environments this requires

unnecessary extra processing, and important information is discarded, namely the fact that

the volume of space that the robot occupies is free space. This can provide considerable

additional knowledge about the environment. Also the volumes of the paths swept by the

robot are definitely free space in a static environment and many of them are likely to be

free space in a dynamic environment. The work done by [Flynn 85] with sensor fusion

showed that sonar data fused with infrared data produced improved maps. The new

mapping algorithm presented in this section fuses the free space volumes swept by a

moving robot with the range data collected by sonar sensors to build a detailed map of the

environment.

The remainder of this section is organised in the following manner. Section 2.4.1

describes how the raw sonar data which has been collected is preprocessed to remove

incorrect readings. Section 2.4.2 explains how lines are fitted to the clean sonar data, .and

how the most reliable segments are extracted from the newly constructed lines. In Section

2.4.3 a description is presented of h o w the sonar mapping test is used to validate the

sonar readings which were collected in the first sonar scan of the environment Finally in

-16-

Section 2.4.4 an algorithm is presented which describes how the immediate environment

surrounding a mobile robot can be systematically mapped.

2.4.1 Sonar Preprocessing

To obtain reliable sonar range data the sensing system preprocesses all the incoming

sonar data to remove the incorrect range readings. To achieve the aim of clean and reliable

sonar range data the preprocessor executes the following steps:

Calibrating: Variations in the speed of sound caused by changes in temperature and

humidity give inaccurate sonar readings. Such errors need to be compensated.

Compensation can be achieved by equipping the mobile robot with onboard sensors

for temperature and humidity, allowing the errors to be corrected onboard the robot

before the sonar data is used for further processing. This is the approach used by

[Flynn 85]. Another way to compensate for the effect of temperature and humidity

changes is to calibrate the sonar sensors. This is done by obtaining the sonar range

measurement to a target at a known distance and normalising the measured distance

with respect to the known distance. This calibration constant is used to compensate all

subsequent sonar range data readings for the effects of atmospheric changes. Since the

work described in this thesis was carried out in an air conditioned indoor environment,

where the fluctuations in temperature and humidity are small, the calibration approach

was used.

Thresholding: As shown in Figure 2.5. range data which falls outside the distance

interval [RmZrt,RM] is discarded, where Rm/rt is the minimum sensor range, and R M is

the the maximum useful range. The maximum useful range R M is defined as the

min(Rg,Rmax), where R^^x *s tne maximum sensor range, and R« is defined as

H/SinG. H is the height the sonar sensors are mounted above the floor, and 20 is the

angular dispersion of the sonar beam. Using range thresholding removes all errors

caused by faulty sensors, and some errors caused by false reflections. Sensors which

-17-

are faulty return range measures which are lower than the threshold range, while false

reflections will result in range measures which are higher than the threshold range.

Minimum
Sensor Range

Dispersion | R
Sensor Range j^~

Maximum
Sensor Range

R,

The range interval of the sonar sensor is:
[Rmh.mintRj.Rma)]

where Rp =H/Sine

6 =• The angular dispersion of the sonar beam

H - The height of the sonar sensor above the loor

Figure 2.5

The useful range interval of a sonar sensor

Averaging: A set of Cn range readings from the same sonar sensor, sampled from

the same robot position are usually dispersed. The dispersion of the data is due to false

reflections and the varying sensitivity of sonar transducers. It was found

experimentally that the sonar range data may be clustered around two different mean

values, rather than just one mean value. This phenomenon occurred when a sensor was

directed at two obstacles which were placed at staggered distances. The sensor detected

the closest obstacle most of the time. However sometimes a false reflection occurred on

the sonar beam which was directed at the closest obstacle. This resulted in the obstacle

which was furthest away from the sensor being detected. To reduce the dispersion of

the sonar data, an analysis of the data is done to identify the clustered sets of range

readings. A cluster is considered to be a contiguous set of range readings which

accounts for a significant proportion Cn of the collected sonar range readings. The

-18-

value of Cp is determined experimentally. This is discussed in the Results section. The

mapping algorithm discussed here requires knowledge of the closest obstacle to the

robot T o accomplish this task, the cluster of sonar range readings with the shortest

distance measures is averaged. This averaged value is used in all subsequent

processing of the mapping algorithm. Refer to Figure 2.6 for an illustration of

averaging.

Sonar readings dustered
around one mean value.

H H
Distance

Sonar readings clustered
around two mean values.

Distance

Figure 2.6

Sonar data is not always clustered around one mean value.

-19-

2.4.2 Line Fitting and Extracting Sonar Edge Segments

The preprocessed sonar readings obtained from the sonar sensors which surround the

robot form a sonar profile of the environment. This sonar profile can be regarded as a

robot centred polar coordinate map, since the sonar data represents depth readings from

sensors positioned at known angles. The polar coordinate sonar profile is converted into a

cartesian world coordinate profile. The cartesian coordinate sonar profile is passed to a

recursive line fitting procedure, which fits straight lines to the data. Recursive line fitting

of sonar data is not new and has previously been done by [Crowley 85] and [Drumheller

87] using the algorithm described in [Duda et. al. 73]. The algorithm is illustrated in

Figure 2.7. A straight line is initially computed between the two end points of the

collection of sonar range points. The sonar range points in the collection are tested to

determine the point where the perpendicular distance to the approximating straight line is

greatest. If this largest perpendicular distance is below a tolerance T, then the computed

line is accepted as representing the collection of sonar range points. Otherwise the

collection of points is divided into two collections at the point where the perpendicular

distance was greatest. The line fitting procedure is then invoked recursively for each of

the two groups.

1T--jT...b-'-|-

Figure 2.7

Stages of recursive line fitting

-20-

Straight line segments extracted from a sonar profile are called "sonar edges". Sonar

edges represent the best approximation of the sonar images of the surfaces of obstacles.

Sonar edge profiles of the environment include noise and uncertain data. In order to

minimise the effect of noise, the sonar edges that are used to approximate obstacle edges

are those which contain a contiguous set of N sonar range points i.e. sonar range readings

that occur consecutively in the sonar profile. A n example of extracting sonar edges is

shown in Figure 2.8. Figure 2.8 (A) shows a small room and the accompanying sonar

profile generated by recursive line fitting. The bold segments extracted from the sonar

profile are the sonar edge segments which best approximate surface edges. In this

example the number of contiguous readings N in a sonar edge has been set to 4. Figure

2.8 (B) shows the extracted sonar edges.

B

Figure 2.8

Extracting sonar edge segments.

-21-

2.4.3 Using the Sonar Mapping Test to Process Noisy Sonar Data

After a mobile robot equipped with sonar sensing has scanned an indoor environment

the following is known; the volume of space Vr, occupied by the mobile robot, and the

two concentric volumes of space derived from the sonar profile which enclose Vr. Refer

to Figure 2.9 for a diagram of the three volumes of space. The space occupied by the

robot is "definitely free", the inner concentric volume space V e , described by the sonar

profile, is "probably empty". The remaining volume of space V 0 , described by the sonar

profile is "somewhere occupied".

This volume of space is definitely free space. V r

This volume of space is probably free space. V

This volume of space is somewhere occupied. VQ

Figure 2.9

Volumes of Space in an indoor environment

-22-

The Ye volume space is verified to be empty if a mobile robot can travel through this

space without collision. T o verify the volume space V 0 , the location and the size of

obstacles in this space must be determined accurately. This is done by moving the robot

into closer proximity of regions of space to be verified, and examining their sonar

profiles.

Sampling the sonar profile of obstacles from a short distance D has the effect of

greatly reducing the noise in the sonar data due to beam spread. This allows the surfaces

of obstacles to be detected with high accuracy, which is particularly useful when trying to

accurately m a p an environment which contains small objects and objects of irregular

dimensions i.e. many edges and corners. There is a trade off between the accuracy of

object edge detection and the discomfort of approaching obstacles too closely. The closer

objects are approached to obtain sonar profiles, the greater is the accuracy of the detected

sonar edges. However there is also a greater chance of collision with the obstacle. The

value of D is determined experimentally; this is discussed in the Results section.

Eliminating beam spread from sonar data does not remove all the noise, as there is still

the problem of false reflections. False reflections are eliminated by applying the sonar

mapping test. The sonar mapping test is used to determine the shape of unknown objects

given the fact that a sonar profile may appear to pass through objects. False reflections

can be eliminated in the following manner (refer to Figure 2.10 for an example). Locate

the robot in close proximity to an object whose shape is unknown, and carry out a sonar

scan. From the sonar profile extract the sonar edge closest to the robot This sonar edge is

not blurred due to the minimal effect of beam spread. It was experimentally found that

sonar edges close to the robot were measured accurately if the beam axis of the sonar

sensors was positioned perpendicularly or nearly perpendicularly to the sonar edges. The

closest sonar edge becomes the tracking edge used by the sonar mapping test. The

tracking edge is extended in the direction where the edges of the obstacle being

-23-

investigated are unknown. Extending the tracking edge will cause the tracking edge to

either cut across or pass behind the distance measures of neighbouring sonar sensors.

A sonar scan of an obstacle. The closest sonar edge is extracted and this edge is
tracked, to investigate if the neighbouring readings are correct or are false
reflections.

The robot tracks the sonar edge, and takes a fresh sonar of the obstacle. If a
sonar edge is found, it confirms the hypothesis that the previous sonar readings
were false reflections. This process continues until the object has been completely
investigated.

The robot tracks the sonar edge continually applying the sonar mapping test. If
the sonar mapping test confirms that the previous sonar readings were correct,
the robot then ceases tracking the sonar edge. The robot then searches for a new
obstacle surface edge to investigate, and determine whether or not the obstacle
has a convex corner.

Figure 2.10

Sonar Mapping Test

If the tracking edge cuts across the range measures of neighbouring sensors, then one

of two possibilities has occurred; the range measures are correct and they represent a

discontinuity in the obstacle edge being tracked i.e a gap of free space, or the range

-24-

measures are incorrect due to false reflection errors. A hypothesis is made that the range

readings are incorrect and that the sonar beams are seemingly penetrating solid objects.

To test the sonar mapping hypothesis, the robot is moved along the extended tracking

edge until it is positioned in a location which is perpendicular to the suspect sonar

readings. A fresh sonar scan is taken of the sonar mapping test region. If the nearest

sonar edge has an orientation which is close to that of the track edge, and mates neatly

with the track edge, then the hypothesis of the .sonar mapping test is true. Otherwise the

hypothesis is false, and a gap between obstacles has been found. The robot decides,

based on the sonar profile, whether or not it can pass through the gap.

Convex Comer formed Comer projected onto the map

Figure 2.11

Investigating and mapping Convex Comers

If the robot can navigate through the gap, it does so and then proceeds to do a sonar

scan to find the closest sonar edge of the obstacle which it is currently tracking. The

closest edge and the previous tracking edge are projected to form a convex corner. Figure

2.11 shows an example of a robot mapping a convex corner. In this example the robot

investigates and maps a surface edge of an obstacle by continually applying the sonar

mapping test, until the test confirms that the tracking edge has terminated. This occurs

/ -

-25-

when the robot moves from position A to position B. The robot investigates the gap of

free space, and searches for a new edge to track, as shown at location C. Once a new

sonar edge to track has been extracted, this edge and the previous tracking edge are

projected together to form a convex comer. This corner together with the associated free

space are then projected onto the environment grid map.

Edges projected over gap Edges projected onto the map

reespace.

Figure 2.12

Investigating and mapping Impassable Gaps

However if the robot cannot pass through a gap, the robot performs a sonar scan to

find the closest sonar edge of an obstacle that is currently not being tracked. The closest

sonar edge and the current tracking edge are projected with free space between the two

edges onto the environment map. Figure 2.12 shows an example of a robot mapping an

impassable gap. This example shows a situation where the sonar mapping test confirms

that the tracking edge A has terminated and that a gap exists, through which the robot is

not able to pass. In this situation the robot finds the sonar edge which is preventing the

robot passage, which in this case is sonar edge B. The freshly extracted sonar edge and

the current tracking edge are extended to cover the gap. The new sonar edge and the

current tracking edge, together with the associated free space, are then projected onto the

environment grid map. The freshly sensed sensed edge becomes the new tracking edge.

-26-

W h e n the tracking edge passes behind the distance measures of neighbouring sensors,

this indicates that following the tracking edge too far could cause collision with another

obstacle. It was found experimentally that the sonar profile for potential object collision

edges was not subject to false reflections. To minimise beam spread errors the robot

moves toward a potential collision edge, until the robot is D distance away from the edge.

Once the robot is in close proximity to the potential collision edge a fresh sonar scan is

done. The freshly sensed potential collision and tracking edges are extended to form a

concave corner of the object being tracked. This concave comer is projected onto the

environment map. Figure 2.13 shows an example of mapping a concave comer. This

example shows a situation where it is not possible to apply the sonar mapping test In this

case a collision will result with surface edge B if the robot continues to track the sonar

edge A. To avoid the collision, the robot extracts the potential collision sonar edge and

extends this edge to form a concave comer with the current tracking edge. The comer

together with the associated free space are then projected onto the environment grid map.

The potential collision sonar edge becomes the new tracking edge.

Concave Corner formed Corner projected onto the map

Figure 2.13

Investigating and mapping Concave Corners

-27-

2.4.4 The Environment Mapping Algorithm

The algorithm for a mobile robot equipped with sonar sensors mapping an unknown

environment begins with the robot "waking up" in a unknown world. After waking up,

the robot scans the environment with its sonar sensors, to ensure that it is further than

R-rnin (^e minimum sensor range) from any obstacles. Sonar readings that are equal to

Rmin indicate that the robot is at most a distance of R^-^ from neighbouring obstacles;

the distance could be less. To ensure that the robot is at a distance greater than R m / n from

obstacles, the robot moves away from obstacles that are located R m / n from itself. The

wake up procedure can also be used to "herd" the robot to a desired location. This is

done by surrounding the robot with obstacles such as humans, thus forcing the robot to

move in a desired direction. If the robot is completely surrounded and can not move, it

goes to "sleep" and then wakes up after a timeout Tout, when it will again attempt to

move away from the obstacles that it perceives are too close.

Upon completion of the wake up procedure, the robot takes a fresh sonar scan of the

environment. The sonar scan is examined for obstacles within a radius of ̂ ynax °ft n e

robot The distance -^max represents the radius of the cylindrical volume around the robot

which needs to be investigated and learnt. Sonar beam spread at large distances can give

the effect that openings through which the robot can pass e.g. doorways, are perceived to

be closed. The distance Dmax is set to a value such that openings through which the

robot can pass do not appear to be closed. The obstacles within D m a x of the robot are

isolated to contiguous sectors of the sonar profile, i.e. consecutive sonar readings which

are all less than T>max- The robot systematically examines, in clockwise order, the

obstacle sectors in the sonar profile in order to accurately map the surfaces of obstacles in

the environment In each sector the robot moves into close proximity to the obstacle in the

sector, and the sonar mapping test is applied to a fresh sonar scan. Refer to Figure 2.14

for an illustration of finding obstacles within D m a x of the robot. In this example

distances that are within D ^ ^ of the robot are shown in the shaded circular area. Range

readings within Dmax are isolated into contiguous sectors. Should two sonar sectors be

-28-

separated by a single sonar reading, a simple heuristic is used to decide whether the

separating sonar reading is a false reflection and that the two sonar sectors can be

merged. If the separating sonar reading is sufficiently greater than its neighbouring sonar

readings, then the separating reading is considered to be a false reflection. In this case the

separating reading is replaced with the average of its neighbouring sonar readings. In the

this example the false reflections have been removed and sonar sectors have been

merged. The sectors are numbered in the order they will be investigated by the robot.

Figure 2.14

Deciding which obstacles to Investigate and map

The mobile robot moves along the axis of an obstacle sector, to a position that is

distance D from the obstacle being investigated. A fresh sonar scan is taken of the

environment, and a recursive line fit is applied to the sonar data belonging to the obstacle

sector under investigation. The closest sonar edge is extracted from the straight line sonar

profile. This sonar edge becomes the tracking edge which the robot follows to obtain the

sonar profile of the obstacle. The tracking of the sonar edge, and its incorporation into the

environment map, using the sonar mapping test is described in detail in Section 2.4.3.

-29-

Figure 2.15

Deciding which obstacles to Investigate and map

Initially the robot tracks the closest sonar edge in a clockwise direction, until one of

three possible conditions occurs: the robot moves outside of the sonar sector being

mapped, the robot is no longer within the distance ̂ max °f ̂ home position, or the

robot moves to a position which is no longer in line of sight to the home position i.e.

moves behind an obstacle. The first two conditions are verified by encoders on the

robot's wheels and the third condition is verified by sonar. Refer to Figure 2.15 for

examples of the three conditions to terminate tracking. In the example position A satisfies

all three tests. Position B fails the inside sonar sector test. Position C fails the home

visible test. Position D fails the test of being within Dmax of home. W h e n one of the

three above conditions occurs, the mobile robot finishes tracking and mapping the current

sonar edge, and backtracks to the position where it began investigating the obstacle. Once

the robot has returned to its initial tracking position, it then proceeds to investigate the

remaining unmapped portion of the obstacle sector. This is done by tracking the closest

-30-

sonar edge in a counter clockwise direction. Once the mobile robot has completely

investigated the current obstacle sector, the robot returns to the home position. At this

point the next obstacle sector which needs to be investigated is selected, and the whole

procedure is repeated.

Every motion by the mobile robot without collision indicates that the path volumes

swept by the robot are definitely free space. Every time the robot moves the environment

map is updated to include the new known areas of free space.

Figure 2.16

Updating free space while the home location is visible

During the tracking of sonar edges in obstacle sectors, termination of the tracking is

based upon the home position being in line of sight of the current robot position. Should

the home position be visible, then the triangular region enclosed by the home position,

the previous robot position and the current robot position is updated as free space on the

environment map. Refer to Figure 2.16 for an illustration of updating free space when the

home location is visible. In this example the robot movements are shown with arrows.

After the robot moves from position A to Position B the sector enclosed between A, B

and H o m e is updated as free space. Similarly after the robot reaches Position C, the free

space sector enclosed between B, C and H o m e is updated as free space.

-31-

Once the mobile robot has investigated all the obstacles within a radius of Dmax of

the robot, all the sectors which were perceived to be free space are projected onto the

environment map.

It should be noted that free space regions generated from sonar data are not written

over the information previously recorded about the region if the same region has been

labelled as an obstacle region. This action is necessary to prevent false reflections of sonar

beams, which were not screened out by preprocessing and the sonar mapping test, from

corrupting the environment map.

2.5 Results

The general algorithm for mapping an unknown environment using sonar is described

in the procedure B U I L D _ M A P which is shown in Algorithm 2.1. The procedure

W A K E U P performs the action of waking the robot up. The procedure

F I N D _ O B S T A C L E extracts obstacles that are in close proximity to the robot from a sonar

profile. It does this by identifying the contiguous sonar sector readings that are within

Dmax distance of the robot The function M I D D L E finds the middle area of obstacle

region currently being investigated. The procedure M O V E moves the robot from its

present location to a new location, and also updates the environment map with the free

space volumes swept by the robot during the execution of the move motion. Once the

robot has moved sufficiently close to an obstacle under investigation, it maps the obstacle

and updates the environment map. Obstacle mapping is performed by the procedure

M A P P E R and the details of this procedure were discussed in Section 2.4.3. The

B A C K T R A C K procedure retraces the robot path from the current location back to the

point where it began investigating an obstacle. The U P D A T E _ F R E E procedure updates

the environment map with the areas which are not occupied by obstacles within ̂ >max °f

the robot i.e. free space areas. Note that all the algorithms described require parameter

passing to subroutines in one of two ways: by reference which allows the value to change

(underlined), or by value which does not allow the variable to change (plain).

-32-

procedure BUILD_MAP (M m)

perform W A K E U P (Sonar. Current)

perform FIND_OBSTACLE (Sonar, ObstacleSectors)

Home := Current

dowhile (There are more ObstacleSectors)

Aim := MIDDLE (ObstacleSector)

perform M O V E (Current. Aim, Map)

perform M A P P E R (Clockwise, Home, ObstacleSector, Current. Map. History)

perform B A C K T R A C K (Current. Aim, History)

History := Nil

perform M A P P E R (Anticlockwise, Home, ObstacleSector, Current. Map. History)

perform B A C K T R A C K (Current. Aim, History)

History := Nil

perform M O V E (Current. Home, Map)

enddo

perform UPDATE_FREE (Sonar, Map.)

end procedure

Algorithm 2.1

Mapping an unknown environment

The sonar generated environment maps were obtained from four different setups of a

Robotics Laboratory at Monash University. The layout of the laboratory was varied by

moving and rearranging the laboratory furniture. In order to be able to quickly change the

layout of the laboratory and to test different obstacle configurations, cardboard boxes of

various shapes and sizes were used to build different room layouts. Figures 2.17, 2.18,

2.19 and 2.20 illustrate the different laboratory layouts and the corresponding sonar

maps. Each result is represented by two diagrams. Diagram (A) shows a configuration of

obstacles in an indoor environment which must be mapped. Diagram (B) shows the robot

produced sonar map of the environment described in Diagram (A). In the sonar map

diagram the dark shaded areas are obstacles, the lightly shaded areas are unknown regions

which have not been mapped, and the unshaded areas are free space. The sonar maps also

show the paths that were executed by the robot during map making. These execution

-33-

paths are shown as directed arrows, and they are labelled in the order in which they were

executed i.e path A B , followed by path C D etc.

To produce accurate maps a robot must be able to estimate its position and orientation

in an environment. In all the experiments the robot was accurately located to a home

position initially. From this home position the robot investigated its surroundings.

Estimation of the robot position during the course of mapping the surroundings of the

home position was done by dead reckoning. Once the robot completed mapping, it

returned to the home position, where its estimates of position and orientation were

corrected by comparison with a global source i.e. beacons etc. In the future it is proposed

to use a beacon system to correct the robot location, but in these experiments the errors in

location were corrected manually. It was found during the course of experimentation that

the drift in the robot position was small, less than 0.25 ft when the robot had returned to

its home position. Thus the mapping errors due to dead reckoning errors were negligible.

The environment map grid size was set at 0.5 ft. The motivation for this choice of grid

size was that the floor of the experimental laboratory was made up of 1.0 ft. square tiles.

Thus it was easy to verify the correctness and the accuracy of the robot generated maps.

In terms of the variables previously mentioned in the text, the algorithm parameters

used in these experiments were:

0.9 ft (The minimum range of the sonar sensor)

25.6 ft. (The maximum range of the sonar sensor)

2.32 ft (The height of the sonar range sensor above the floor)

15° (The angular dispersion of the sonar beam spread)

H/Sinq = 9.0 ft (The practical sensor range)

min(Ro,Rmax)
 = 9-0 ft. (The useful range of the sonar sensor)

0.35 (The proportion of sonar readings which account for a cluster)

10 (The number of sonar readings taken prior to cluster analysis)

-34-

^min

^max

H

6

R8

cp

N = 3 (The minimum number of sonar readings in a sonar edge)

T = 0.2 ft (The maximum allowable perpendicular deviation of a sonar

reading)

D = 1 . 0 ft. (The distance from obstacles for sonar range scans)

^max = 4.0 ft. (The maximum radius in which obstacles are mapped)

^out = 30 sec. (The time the robot sleeps before waking up, to try to move)

This set of parameter values was used for all the reported results. This set may not be

optimum, since they were selected based upon trial and error experimentation. Since

theoretically predict the behaviour of a low resolution sonar rangefinder such as the

Polaroid Corp. Ultrasonic Rangefinder is very difficult, an effective way of determining

operating parameters for the mapping algorithm is to run extensive tests of the system in

the environment where it is to be used, and to adjust the various system parameters until

the system is "tuned".

The program for these experiments was written in PASCAL on a VAX-11/750

minicomputer. The execution times of the mapping program for the four different

laboratory layouts are given in Figures 2.17 - 2.20 and are as follows:

Figure 2.17 - 5.50 minutes

Figure 2.18 - 2.39 minutes

Figure 2.19 - 8.29 minutes

Figure 2.20 - 4.11 minutes

The execution times reduced by 30% when I/O functions such as terminal status

displays, debug information etc. were disabled.

-35-

1

8

/• \zzzz- _:

i ii 11
y y

H S||f | || || || |
M & '&• 1 1; II11
mi . ..• II11
H <!11 i s H i i
11 i 1 i Ills si*̂ :'* 1 S 1 * is i 1
p*il i|| 111
^i^|BfflHHfflHH|BBfflHB|iill-

~H l|ll|l|lipiiliilllil —
li^^ii^^^^il^^i^iiy^iy^li
lli!i!!ll!l̂ !ilî i!i!i!!u!!iii!î ii

::":::: ~x

.

ftft

ft

¥ft

'ft
'ft:

ftft

*s

; , • ; •

: • • • •

h

::.:
•

i

:..
;>>

• ' . .

"

ft'i
:

•:x

h

}M

'

•

:ft

1

>ft J

!
!

: * : '•:•

ft:' i

1
J
'• :ft:

• ft:

> ftft
•: ft:':
!: ̂
i ift

:: >:ft

i. xft

ftl

,

'i''

: • ; • : •

<y.':

y.-::

_:•-•••

::

:•: •

:•:> !

g

/

II

ftx": |!

:ft

ftft

Li

j J

fti:

- ; • : - :

•j*;-.-

ftft:

:•.' : • :

•x>

ftft
ftft.
iii

ftft.
Si;

"::

::::.

ĵ
•:••:•:•

fts

::ft:

"."
^
•i

%%&%^&y%m
'•••• • • * •

ft xi'
ft S ?
:j ftft

ft ft*

• : . •

. . •

: .

• ; : : " :

:: ftx

• ftft

ft 'ft:

ftft: I

Kft :!

• :-ft

:• 'ft:

:: :ft:
'•: ft': •X-

_
: • • •

1

B

Figure 2.17

Sonar mapping an indoor environment with a robot.

-36-

file:///zzzz

y \
_ _ _ L j

vj

W'\lk\
** 1 IH ̂ j| i|j g& «

1 ii li 1

: :

;;?!

B

Figure 2.18

Sonar mapping an indoor environment with a robot.

-37-

iii 1
m m W 1 W\%W%, nil

M H % % 1 jT \.

R ,
,

>̂ _ J?

I W)% 1 1
H W *l M 1
l p l l 1
fjfili 1
g ii« ̂
iftipl l
1 H W ii 1
i»ii! i i iH-i i
| i i |

'iljNPll W'%mW?xwMM
liill^ii

I 1 ' : ' i J

I 1 * E ^WyW.'^Wi
xs ss I*:

s s ftft

M ll ̂ || ||
|| | S ft

^ H ̂ 11 JS 1 i Is 1 i i

1 1 r r If § %

S" JL C ̂" ssiiSaiî d̂
| £ j i

7 t j$ s|
% | ::x
& | | ft:

ft. | 1 I
ft & ftft: 1
I** •*$ ^ % 1

ftft ift ftx ftx 'ft: ftft: ift

C

B

Figure 2.19

Sonar mapping an indoor environment with a robot.

-38-

11 § ll p
::::::: ::_r>:_::"' z Robot _.

:::L jz z — \ ^ > -

i| is n i r | | | | H H m 1 n n ̂ m

J
i ^

B

Figure 2.20

Sonar mapping an indoor environment with a robot.

-39-

2.6 Conclusions

The environment mapping algorithm presented in this chapter allows a mobile robot to

map an unknown indoor environment. It has been demonstrated how high resolution

maps of indoor environments can be produced using a low resolution sonar rangefinder,

such as the Polaroid Corp. Ultrasonic Rangefinder. It has also been shown that the noise

and uncertainty of sonar data can be effectively handled by using the sonar mapping, test.

The sonar mapping test effectively discriminates false reflections of sonar sound waves,

thus allowing the mobile robot to produce accurate maps of the environment. The map is

sufficiently rich in detail that it can be used by higher level mobile robot navigation

functions such as path planning, object recognition etc. The mapping technique described

in this chapter yields an inexpensive and reasonably fast system that is suitable for indoor

environments.

-40-

Chapter 3
Review of Path Planning

3.1 Introduction

The problem of finding optimum paths for robot manipulators and autonomous

mobile robots through environments cluttered with obstacles has attracted much research

interest. A great deal of this research has concentrated on situations where the

environment in which the robot operates is completely known and supplied to a path

planner. For a robot navigating in a partially known or completely unknown environment

these path planning techniques are often not directly applicable or extendible. For example

difficulties arise in deciding how to treat the unexplored regions of the environment. A

typical approach is to treat unexplored regions as obstacles, and only proceed into the

unexplored regions if the goal lies there. In this chapter a review will be presented of path

planning algorithms which allow a mobile robot to function in known, unknown and

partially known environments. O n completion of the review, a list of desirable features

for a mobile robot path planning algorithm will be given. A discussion will also be

presented of the type of data structure that is necessary to support a superior path planning

algorithm.

Before reviewing past research into path planning, it is useful to think about the path

planning problem from the human stand point. In other words, to look at h o w humans

tackle the task of path planning. Examining the path planning problem from this view

point could provide an insight into useful strategies and features that a robot path planner

should possess. These strategies and features should be kept in mind while evaluating

robot path planning algorithms.

The remainder of this chapter is organised in the following manner. Section 3.2

discusses the philosophy of robot navigation used in this thesis. Section 3.3 reviews past

robot path planning research. Section 3.4 discusses the various data structures that can be

-41-

used to model a robot's environment to support path planning. Finally in Section 3.5 the

conclusions that have drawn from the review of mobile robot path planning research are

presented. In this section the data structure that has been chosen to model the environment

is described, together with an outline of the features that the new path planning

algorithms, which have been developed in this research, use to overcome the

shortcomings of previous approaches.

3.2 Philosophy of Mobile Robot Navigation

Before developing navigation algorithms for a mobile robot, it is useful to think about

how humans perform the task of navigation. Consider a person in an unfamiliar city who

asks for directions to a particular destination. The reply may be that the destination is a

certain distance in a certain direction. The person will then proceed to the goal using the

most direct route. If the person is fortunate the goal is achieved without deviation from

the planned path. However this is rarely the case, since both stationary and moving

obstacles will be encountered. Should an obstacle be met during the course of the journey

to the goal the person classifies the obstacle as either stationary or moving. If the obstacle

is stationary the person notes the location and features of the obstacle, whilst for moving

obstacles the person notes only the features of the obstacle. At this point the person

revises the original plan using the new information. If the obstacle which is blocking the

person's passage to the goal is stationary, he or she revises the plan to go around the

obstacle, based on his or her knowledge of the environment. For the case of the moving

obstacle, assuming the person is patient, he or she will wait until the moving obstacle is

out of the way. Such a strategy is a safe one, particularly in potentially dangerous

situations, such as crossing busy streets. If a moving obstacle comes to rest for a

significant period of time, then it too can be treated as a stationary obstacle. This process

of planning and executing the plans continues until the person either reaches the goal or

deduces that the goal is not reachable. A goal is unreachable if it can not be reached from

any route. For example the goal is unreachable when all the routes have been cut due to

flooding.

-42-

Should the person later need to travel to the same goal, then one of three approaches

can be used. The person can proceed to the goal using the knowledge of the environment

learnt on previous journeys. This approach will produce better paths than were previously

executed, and is favoured if the person is in a hurry or is in a conservative mood. With

the second approach the person can choose to be adventurous and can spend time

exploring alternative paths to the goal, and in doing so learn more about the environment.

A third approach can be taken if a significant period of time has transpired since the

previous journey. In this case the person may have forgotten some information about the

structure of the environment. The way to navigate to the goal is to follow the strategy of

navigation in an unknown environment. This means the robot must relearn the

environment.

On the other hand, the person could be an inquisitive tourist, and may wish to

systematically visit all locations of interest in the city. The person will devise a plan which

will minimise the distance which must be traversed to visit all the locations of interest.

However it should be noted that most probably this plan will not include a solution based

on the "travelling salesman" problem. Instead a path is generated which visits all locations

but in the process performs some backtracking. This path is easy to compute.

Another observation that can be made about people navigating from one location to

another is that they do not always select the shortest paths to a goal location. A path

which minimises the distance to the goal, but also takes into account the discomfort of

clipping the comers of obstacles, and the cost of venturing into unknown areas may be

selected. People tend to choose to walk in uncluttered areas, and only come into close

proximity to obstacles, or venture into the unknown, if necessary.

Fortunately, humans are approximately cylindrical in shape, so there is no need to

compute complex paths in crowded situations. However an awkward object such as a

ladder is being carried from one location to another, what navigation strategy should be

used? Obviously people do not sit down and compute the best solution path. A path

-43-

which has maximal clearance from obstacles is likely to be chosen even though this path

may be longer than the shortest path. Such a path has the advantage of niinimising the

chances of collision with obstacles when making turns. People only try to squeeze

through tight comers, only when it is necessary. In such cases a best first strategy is

used, where the ladder is moved around the comer, starting from a position which has the

greatest clearance. A s the ladder is moved, a check for potential collisions with the walls

is continually performed, and the motion path of the ladder is modified accordingly. A

situation may arise where the ladder gets stuck and another approach must be tried. The

final solution path is probably not an optimum path; however it is a negotiable path which

can be found with the minimum mental effort.

These observations are pertinent to mobile robot navigation. A robot must have the

capability to operate in an environment about which it possesses incomplete knowledge,

and the robot must have a mechanism to acquire new knowledge about the environment

and to add this new information to the knowledge the robot has previously learnt

It may often be desirable for a robot to follow the shortest path to a goal. However the

safety of the robot becomes important when there are uncertainties in the environment

information, such as the exact shape and position of obstacles. Due to the limitations of

current sensor technology there will often be uncertainty. This problem is compounded

by the uncertainty in the control of a robot i.e. the precise position of a robot is not

always known by the robot's control system. Therefore the capability to plan paths with

consideration of safety of the robot is essential for a mobile robot navigation system.

The observed human strategy of moving objects such as ladders can assist in path

planning for non cylindrical robots with 3 degrees of freedom (DOF). This avoids the

need to search the entire solution space, which is computationally very expensive. Such

approaches will be discussed in the next section. Only the areas of the environment that

have the least chance of collision, and thus have the greatest chance of success are

searched.

-44-

A robot should have the capability of executing different kinds of path planning

behaviours, such as adventurous, conservative and safe paths, rather than just the

shortest path. Exploring new areas is computationally expensive, so the capability to

decide whether or not this computation should be undertaken is very useful. Similarly a

robot having the capability of visiting all the locations in an environment has a purpose,

particularly for floor cleaning or security robots.

In Chapter 4 of this thesis a new algorithm will be presented which imitates the

human navigation skill of reaching a goal in an unknown environment. This algorithm is

based on a single concept which is easily extended to accommodate the path planning

behaviours discussed earlier in this section. Research work concerning different robot

path planning behaviours is presented in Chapter 5. In Chapter 7 an algorithm for robot

path planning with 3 D O F is presented which takes into account the observations made in

this section.

3.3 Review of Mobile Robot Navigation Research

This section outlines several approaches to mobile robot path planning and the

drawbacks of each approach. The abstract representation of the environment used by each

path planner is discussed, together with what information is made explicit by each

environment model and what information is thrown away by the choice of abstract

representation. The diverse approaches to path planning are classified into four groupings;

vertex graph, free space, superimposed grid and potential field methods. These are

presented in Sections 3.3.1 to 3.3.4 respectively. The problem of path planning for

mobile robots with 3 D O F is treated separately in Section 3.3.5. Finally in Section 3.3.6

the consideration of robot safety during path planning is discussed. This topic is given a

separate treatment since all path planners touch on the issue of robot safety in some way.

Each path planner has its own approach to the problem, ranging from ignoring the issue

to having a specific mechanism to deal with the matter. This section reviews the

approaches to robot safety used by the various types of path planners.

-45-

3.3.1 Vertex Graphs

In vertex graph path planning [Keirsey 84, Lozano-Perez et. al. 79, Lozano-Perez 83,

Moravec 80, Thompson 77] the obstacles in the environment map are expanded by the

radius of the robot and the robot is conceptually shrank to a point. The problem of finding

a path for the whole robot through the obstacle strewn environment is exactly the same as

finding a path for a point through the expanded obstacles. Conceptually this method is

equivalent to placing a string at the initial and goal positions and drawing it taut. A graph

is constructed by joining the "line of sight" vertices. The graph is searched by a standard

AI search technique such as breadth first or A * [Dijkstra 59, Hart et. al. 68, Tarjan 81] to

find the shortest path from the initial position to the goal. Modifications of the A *

algorithm [Keirsey 84, Thompson 77] are attempts to avoid building parts of the graph by

heuristic pruning. Refer to Figure 3.1 for an example of vertex graph path planning. In

this figure the robot shown as a black square, and is assumed to be cylindrical. The

obstacles in the environment are expanded by the radius of the cylindrical robot. All the

line of sight vertices are connected. The broken lines indicate the possible paths between

the start and goal positions. The solid line indicates the solution path.

Vertex graph methods in their endeavour to find the shortest path through the graph

clip the comers of obstacles and run down the edges of obstacles. This is called the "too

close" problem [Thorpe 84]. In practice following such paths may result in collisions with

obstacles due to the inaccuracies of a mobile robot This problem can be countered by

expanding the obstacles an extra amount to avoid such collisions. However the penalty

for this strategy is that possible solution paths are blocked. Another source of error is

introduced by approximating the robot to be cylindrical, which could exclude potential

solution paths.

A problem with vertex graph path planners is that they have no mechanism to handle

the "too close" problem. Also it is assumed that the shortest path is always the best path.

In addition vertex graph planners have problems with partially known environments. One

-46-

way to avoid the problem is to treat the unknown regions as obstacles [Thompson 77]. In

the solution put forward by [Keirsey 84], the search graph is built as the environment is

explored. However this method cannot find the shortest path to the goal which includes

the traversal of unknown regions; instead it can only search for the shortest path from the

available knowledge of the environment The robot will only venture into unknown areas

if no solution path exists in its available knowledge.

Figure 3.1

Vertex Graph Path Planning.

3.3.2 Free Space

Free space path planners deal with the free space available for a robot to navigate in

rather than dealing with the obstacles to avoid. One approach is to model the free space as

convex polygons [Chatila 82, Crowley 85], The approach adopted by [Brooks 83] is to

model the free space as generalised cones. [Kuan et. al. 85] use a hybrid of convex

polygons and generalised cones called mixed space. A n alternate method is to use

Voronoi diagrams [O'Rourke 84, Miller 85] or modified Voronoi diagrams [Eari et. al.

90]. Effectively with all these methods a path is steered down the middle of "corridors"

of free space. The individual free space areas which are passable to the robot (i.e. wide

enough) are included in a graph. The graph forms a network of possible paths. This

graph is searched for the shortest path using the same methods as discussed in Section

3.3.1. The drawback of free search methods is the strategy of moving down the middle of

corridors, since this approach may deviate significantly from the shortest solution path.

This is called the "too far" problem [Thorpe 84]. Refer to Figure 3.2 for an example of

free space path planning. In this figure the robot is shown as a black square and is

-47-

assumed to be cylindrical. The obstacles in the environment are expanded by the radius of

the cylindrical robot. All the free space is decomposed into interconnected regions. The

broken lines indicate the free space regions. The heavy dotted lines depict possible paths

between the start and goal positions. The solid line indicates the solution path

Figure 3.2

Free Space Path Planning.

3.3.3 Superimposed Grid

Grid path planning methods superimpose onto the environment a regular grid [Jarvis

et. al. 86, Thorpe 84]. Each grid point can be 4 or 8 connected to its neighbours, thus

forming a graph. Each node or grid cell contains information about whether the node is

inside or outside an obstacle. The graph is searched for the shortest path using the

techniques described in Section 3.3.1. Refer to Figure 3.3 for an example of

superimposed grid path planning. In this figure the robot is shown as a black square and

is assumed to be cylindrical. The obstacles in the environment are expanded by the radius

of the cylindrical robot The solid lines indicate the solution path to the goals.

-48-

4 Connected 8 Connected

Figure 3.3

Superimposed Grid Path Planning.

The superimposed grid approach has its Emitations; for example the solution path can

suffer the "too close" problem, or it can zigzag, or due to a large grid size not be the true

shortest path [Jarvis et. al. 86]. The path planner described by [Thorpe 84] remedies

some of the drawbacks of the superimposed grid, by the use of cost functions, whose

values depend on how close the node is to obstacles. This avoids the "too close" problem

and the approach uses a concept called "path relaxation" which is applied to the solution

path. It has the effect of easing the zigzags and gives a better approximation of the true

shortest path. In generating solution paths, this path planner takes into account the cost of

exploring unmapped regions.

A novel approach to path planning for mobile robots using distance transforms was

first presented by [Jarvis et. al. 86]. This approach considers the task of path planning to

be finding paths from the goal location back to the start location. This path planner

procedure propagates distances through free space grid cells from the goal cell (cells are

assumed to be 8 connected). The distance wave front flows around obstacles and

eventually through all free space in the environment. For any starting point within the

environment representing the initial position of the mobile robot, the shortest path to the

goal is traced by walking down hill via the steepest descent path. If there is no downhill

path, and the start cell is on a plateau then it can be concluded that there is no path from

-49-

the start cell to the goal cell i.e. the goal is unreachable. Initially all the cells are initialised

to high values. Refer to Figure 3.4 for an example of the distance transform.

7

7

7

8

6 S

6 S

4

4

4

4

5

6

3

3

3

4

5

6

2

2

5

2

1

1

1

4

2

1

Goal

J

3

2

1

1

1

2

3

2

2

2

2

2

3

Figure 3.4

Distance Transform Path Planning.

Despite the high computational overhead, distance transform path planning offers

several advantages.These include the fact that the shortest path to the goal is known from

all free space grid cells, thus supporting multiple robots. The distance transform also

readily supports multiple goals (refer to Figure 3.5). In this case a robot heads towards its

nearest goal, similar to a fire evacuation drill where people evacuate a building via the

closest fire exit.

Figure 3.5

Distance Transform Path Planning with multiple goals.

Another significant advantage that distance transform path planning has over other path

planning methods is that it can easily be induced to exhibit different types of robot

navigation behaviours. [Jarvis et. al. 86, 88] described how the distance transform could

be modified to produce "conservative", "adventurous" and "visit all" path planning

-50-

behaviours in addition to the "optimum" i.e. shortest path behaviour. [Jarvis et. al. 86]

used a "factor" function to give a weight to the distance transform depending on whether

the grid cell type was known or unknown. If an "optimum" path planning behaviour is

required then the same factor is used for both known and unknown cells. Thus neither

type of grid cell is favoured, and the distance transform calculates the shortest path to the

goal irrespective of whether the path traverses known or unknown regions. Refer to

Figure 3.6 for an example of "optimum" distance transform path planning behaviour. In

this example the environment consists of three types of grid cells; blocked (shown in

black), known free space (shown in white) and unknown free space (shown in grey). The

optimum path planning behaviour selects the shortest path from the start (S) to the goal

(G) via the free space grid cells without favouring either the known or unknown grid

cells.

Figure 3.6

Distance Transform Optimal Path Planning.

If adventurous behaviour is required then the factor in known cells is doubled, thus

causing the robot to favour unknown regions i.e travel in regions which have not

previously been visited. Refer to Figure 3.7 for an example of adventurous distance

transform path planning behaviour. This example uses the same environment shown in

Figure 3.6. The adventurous path planning behaviour selects the shortest path from the

start (S) to the goal (G) via the free space grid cells and favours unknown grid cells.

-51-

Figure 3.7

Distance Transform Adventurous Path Planning.

If on the other hand a conservative behaviour is sought, which causes the robot to

favour known cells i.e. travel in regions which are known, then the factor in unknown

cells is doubled. Refer to Figure 3.8 for an example of conservative distance transform

path planning behaviour. This example uses the same environment shown in Figure 3.6.

The conservative path planning behaviour selects the shortest path from the start (S) to the

goal (G) via the free .space grid cells and favours known grid cells.

Figure 3.8

Distance Transform Conservative Path Planning.

The experimental results of the "visit all" path planning behaviour were reported in

[Jarvis et. al. 88], however the algorithm for the behaviour was not published. A n

algorithm similar to the following was probably used. To achieve the "visit all" path

planning behaviour, instead of descending along the path of steepest descent to the goal,

-52-

the robot follows the path of steepest ascent. In other words the robot moves away from

the goal keeping track of the cells it has visited. The robot only moves into a grid cell

which is closer to the goal if it has visited all the neighbouring cells which lie further away

from the goal. Refer to Figure 3.9 for an example of the "visit all" path planning

behaviour. Figure 3.9 (A) shows an environment with one obstacle, start (S) and goal

(G) locations and values of the distance transform. Figure 3.9 (B) shows the "visit all"

path from S to G.

13

13

S

12

12

12

1 1

1 1

1 1

10

10

10

9

9

9

8

8

8

7

7

7

7

8

6

7

6

5

7

8

5

I 4
9

9

9

9

9

9

8

8

8

8

8

8

7

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

5

4

4

4

4

4

4

3

3

3

3

3

3

3

2

2

2

2

2

3

2

1

1

1

2

3

2

1

G

1

2

7

6

5

4

3

2

1

1

1

2

7

8

S

4

3

2

2

2

2

2

7

6

5

4

3

3

3

3

3

3

7

6

5

4

4

4

4

4

4

4

A

s

Z7

G

~"t

tC.

i:::::: j

B

Figure 3.9

Distance Transform Visit All Path Planning.

-53-

While the [Jarvis et. al. 88] strategy does not guarantee the "visit all" path will be an

optimum path i.e. the shortest possible and not unnecessarily visiting any cell more than

once, the "visit all" produces a reasonable path with minimal secondary visits to grid

cells.

The [Jarvis et. al. 86] distance transform has a problem with not being able to

uniquely specify the shortest path This is caused by considering diagonal neighbours to

have the same cost as vertical and horizontal neighbours. However this problem can be

overcome by considering the diagonal path to have the correct euclidean distance of V2. It

has been shown by [Borgefors 84] that the euclidean distances for distance transforms

can be accurately estimated as 3 units for horizontal paths and 4 units for vertical paths, as

shown in Figure 3.10. Figure 3.10 (A) shows ambiguous optimum paths and Figure

3.10 (B) shows unambiguous optimum paths.

7

7

7

8

6

6

5

5

4

4

4

4

5

6

3

3

3

4

5

6

2

2

5

2

1

1

1

4

2

1

Go.l

1

3

2

1

1

1

2

3

2

2

2

2

2

3

23 20

24 21

I

2

5 Wm

B ill

17

18

14

13

14

15

18

21

11

10

11

14

17

20

8

7

7

4

3

4

6

3

Goal

3

iiffivHtf SB

11

7

4

3

4

7

10

8

7

6

7

8

11

B

Figure 3.10

The ambiguity of optimum paths.

-54-

All superimposed grid path planning methods suffer from the problem that a grid is

inefficient in memory when an environment is largely empty space and contains only a

few obstacles.

3.3.4 Potential Field

Potential field path planning [Adams et. al. 90, Arkin 89, Khatib 86, Krogh 84] is a

method of navigating a robot through an unmapped environment to a goal. This approach

attempts to design a real-time path generator which bypasses the computational

complexities of other path planning methods. The potential field path planners do not

model the environment nor do they build graphs to be searched. Since the environment is

not searched globally the solution path is not necessarily the shortest path.

The potential field strategy of navigation is based upon the premise that each obstacle

in the environment exerts a repulsion which varies inversely with distance between the

robot and the obstacle, and becomes mfinite as the robot approaches the obstacle. This

force of repulsion depends not only on the position but also the velocity of the robot with

respect to the obstacle. The goal however, exerts an attraction upon the robot. The

strength and direction of the obstacles and the goal are represented by "avoidance" and

"attraction" vectors. The sum of these vectors creates an acceleration vector for the robot

to follow. This approach has the advantage that it takes into account the dynamics of the

mobile robot when it is generating the solution path [Khatib 86, Krogh 84]. Other

approaches ignore the dynamics of the system [Arkin 89], and the potential field is

regarded as a cost function. The problem then converts into finding the direction of

steepest descent of the potential field i.e. the direction to follow to reach the goal. Refer

to Figure 3.11 to for an example of potential field path planning. In this example a robot

is located at the location marked X, near two obstacles, trying to reach the goal located at

G. The potential field path planner yields the vector C as the direction and magnitude of

the robot's acceleration. The dotted path shows the robot's path to the goal.

-55-

Cg : Attraction Vector.
Co,i ; 0,2 : Obstacles in the path Vectors.
Co : S u m of Obstacle Avoidance Vectors.
C : S u m of Attraction and Avoidance vectors, gives

the direction of acceleration to the goal.

Figure 3.11

Potential Fields Path Planning.

The major problem with potential field path planners is that they are subject to local

minima. Since the planner tends to guide the robot toward lower potential areas, the robot

can reach a state of equilibrium, or a potential basin, and becomes trapped. Potential field

path planners have problems handling dead end situations, concave obstacles and closely

grouped obstacles. A solution to this problem, put forward by [Arkin 89], is to execute a

random robot motion, in the hope that the robot will escape the potential minima. [Adams

et. al. 90] suggests that the goal should be temporarily relocated, when a local minima is

detected, and a new potential field to the relocated goal is calculated which may escape the

minima. Both the [Adams et. al. 90, Arkin 89] approaches are ad. hoc. and neither can

guarantee that the robot will not remain caught in the local minima.

[Khosla et.al. 88] constructed a potential field based on superquadrics to counter the

problem of local minima. Using this approach the potential field is less susceptible to local

minima, however the problem is not completely eliminated. Constructing potential field

without local minima was first reported by [Rimon et.al. 88]. The computation effort

required to construct the potential field for the [Khosla et.al. 88, Rimon et.aL 88]

approaches can be enormous. Neither of these approaches can easily deal with the

obstacles or the goal position being moved, since this requires the recalculation of the

-56-

potential function. Another drawback is that the potential functions can only be calculated

for obstacles with simple geometric shapes.

Given the local minima problem of potential field, there have been several attempts

[Krogh et.al. 86, Warren 89] to use the best features of both graph search and potential

field. These approaches used the graph search solutions for global planning and potential

field for local planning. The problem of local minima is not eliminated, but these path

planners are less susceptible to local minima than other potential field methods. One

drawback of these methods is that the global work space must be known at the time of

planning, unlike potential field planners of the past which require no global knowledge.

Another form of path planning which does not require an environment model is

heuristic navigation. Heuristic navigation [Cahn et. al. 75, Chattergy 85] guides the robot

to the goal by using strategies or rules to decide, based on local sensor information,

which path of those available is "best". C o m m o n heuristic strategies are: minimise the

estimated path to the goal or minimise the deviation angle from the path or a linear

combination of the previous two strategies. A n additional guard can be added to the

heuristic to stop the robot from back tracking along the solution path. Heuristic path

planners can solve a wide variety of path planning problems, but a problem can always be

found where a particular heuristic strategy fails [Cahn et. al. 75]. Heuristic path planners

like potential field path planners tend to get caught in dead ends.

3.3.5 Path Planning with 3 Degrees of Freedom (3 DOF)

Many path planners do not address the problem that path planning may require

rotation as well as translation to negotiate a path to the goal. This problem is called the

"piano movers" problem [Schwartz et. al. 83]. Refer to Figure 3.12 for an example of

path planning with both translation and rotation.

-57-

Figure 3.12

Path planning with translation and rotation.

Most path planners ignore the problem of rotation by approximating the robot to be

cylindrical. The penalty for this practice is that it excludes potential solution paths, as

shown in Figure 3.13. In this example the path between the rectangular shaped robot,

and the goal is shown with the heavy line. The obstacles in the environment are drawn as

blocks with dark shading. The obstacles which have been expanded by the radius of the

cylinder approximating the robot are lightly shaded. The path between the obstacles has

been excluded. In the worst case if there exist only solution paths which require rotation,

then no solution to the problem will be found.

Goal

Figure 3.13

Excluding potential solution paths.

-58-

Solutions to this problem have been put forward by [Brooks et. al. 85, Donald 87,

Ilari et. al. 90, Jarvis 83, Lozano-Perez 83, Noborio et. al. 89, Schwartz et. al. 83].

These past approaches can be broadly classified into three groupings; global, local and

hybrid methods.

The global approach [Brooks et. al. 85, Jarvis 83, Lozano-Perez 83, Schwartz et. al.

83] constructs a visibility graph representing all the collision free path configurations of

the mobile robot, and then searches this graph for a solution path. Figure 3.14 shows a

solution to the problem posed in Figure 3.13. In the case of a 3 D O F robot this graph is a

3 dimensional graph. In practice this 3 dimensional graph is very large in size, since each

graph is made up of a collection of 2 dimensional graphs (slices) stacked on top of each

other. Each slice represents the visibility graph for the collision free paths for the robot in

a particular orientation. It is obvious that such path planners have the drawback of being

extremely expensive computationally, and thus are not practical for real mobile robot

applications.

The local approach [Donald 87] does not construct a graph representation of all the

collision free configurations of the mobile robot Rather this approach places a grid over

the configuration space. The grid is searched for a solution path using heuristics to guide

the search. The search heuristics are generated from the information about the geometry

of the local robot configuration space. A heuristic guided search does not require any

preprocessing, and therefore runs much faster than global planning methods. However as

stated previously heuristic path planners are susceptible to failure.

-59-

Figure 3.14.

Path planning for a rectangular shaped robot with 3 DOF.

The hybrid approach is a compromise between global and local approaches [Ilari et.

al. 90, Noborio et. al. 89]. Both these approaches compute a coarse path for the robot

which is likely to yield a 3 D O F path. This coarse path is then searched for a fine path

using a set of heuristics.

The [Hari et. al. 90] approach assumes that the collision free paths for a mobile robot

with 3 D O F are likely to lie in the middle of free space between obstacles. Initially the

environment model is preprocessed to find all the global paths which exist To this

network of global paths the start and goal locations are added. Refer to Figure 3.15 for an

example of the Pari et. al. 90] path planner. In this figure the dark line shows the global

path which lies in the middle of the free space between obstacles. The robot follows this

global path and continually checks using local information what orientations of the robot

are collision free.

The [Noborio et. al. 89] approach uses a quadtree as the model of the environment

The quadtree is searched for a-codpse path of free space quadrants which the minimum course

width of the robot can negotiate. This coarse path is then searched for a fine path using

heuristics. Since the [Noborio et. al. 89] path planning technique is based on heuristic

search it can fail, although the probability of this occurring is lower than for other

heuristic path planning methods. Refer to Figure 3.16 for an example of this path planner.

-60-

In this figure the dark line shows a global path which passes through quadrants of free

space. The robot follows this global path and continually checks what orientations of the

robot are collision free using local information.

Figure 3.15

Ilari et. al. 3 DOF path planner.

Like vertex graph planners, 3 D O F path planners [Brooks et. al. 85, Lozano-Perez

83, Schwartz et. al. 83] assume that the shortest path is the "best" path, and hence suffer

the "too close" problem. Not one of these path planners takes information about clearance

from obstacles into account during path generation. The [Ilari et. al. 90] approach can

select solution paths which maximise the clearance of the path from obstacles while

simultaneously minimising the length of the path to the goal. However since this approach

is based on selecting paths through the middle of free space, this path planner suffers

from the "too far" problem. The [Noborio et. al. 89] path planner does not take clearance

from obstacles into account. The planner searches for a negotiable path for the minimum

width of the robot while at the same time minimising the path length to the goal. This

results in the planner selecting a path only through the free space quadrants that can

accommodate the minimum width of the robot. The effect of this strategy is that the

[Noborio et. al. 89] path planner will avoid the smaller sized free space quadrants which

are generally located in close proximity to the boundaries of obstacles. Therefore the

-61-

likelihood of this path planner suffering the "too close" problem is reduced. However it

cannot be guaranteed that the [Noborio et. al. 89] path planner will not suffer the "too

close" problem. The structure of the quadtree environment model will determine whether

the "too close" problem will occur.

Start

—»^r

/Vfinal

Figure 3.16

Noborioef. al. 3 DOF path planner.

3.3.6 Path Planning with Consideration of Robot Safety

It is obvious from the review of past research into mobile robot path planning

discussed in earlier sections that much of the research, with the exception of path planning

using potential field, has concentrated on rrnnimising the travelling distance between the

start and goal locations. The shortest path between the start and goal locations may reduce

the robot's travelling time and the computational complexity of the path planning.

However, the safety of the robot should not be ignored. The safety of the robot becomes

important particularly when there are uncertainties in the environment information, such as

the exact shape and position of obstacles. This problem is compounded by the uncertainty

-62-

in the dynamic control of a robot i.e. the precise position of the robot is not always known

by the robot's control system. Thus both minimum distance to a goal and safety of the

robot need to be considered simultaneously during path planning.

This problem is illustrated by the following example. Consider a large open space

environment such as an indoor sports hall, with a table placed in the middle. A mobile

robot's navigation task is to travel from one comer of the hall to the corner which is

diagonally opposite. This navigation task requires the avoidance of the desk in the middle

of the hall. The solution paths to this path planning problem generated by the path

planning methods discussed in earlier sections, can generally be broken down into three

classes; "too close", "too far" and "safe" paths. The three classes of solution path to the

problem of navigating in an indoor sports hall are shown in Figure 3.17.

Figure 3.17

Three solution classes to the problem of finding a path between a start (S) and a goal (G).

Path planners which generate path trajectories which are "too close" to obstacles m a y

cause collision with obstacles due to the inaccuracies of a practical mobile robot. A s

-63-

discussed in Section 3.3.1 this problem can be countered by expanding the obstacles by

an extra amount to avoid such collisions. This has the effect of adding a safety criteria to

the planned motion path. However the penalty for this strategy is that possible solution

paths are blocked.

The "too far" class of path planners generate path trajectories which minimise the

chance of collision with obstacles. The "too far" path trajectories have the maximum

safety from obstacles in the environment. However the penalty for this strategy is that the

"too far" path planners can produce unnecessarily long paths. There is no mechanism that

allows the control of the degree of safety from obstacles.

The "too close" and "too far" path planning approaches do not take clearance

information into account. Both approaches consider the shortest path as best while there

may be a safer path with more clearance. Such information is important for a practical

mobile robot which could better spend its time and energy looking at alternative paths

rather than trying to do calculations for the precise motion necessary to pass through a

narrow corridor.

The potential field class of path planners generate "safe" paths which do take into

account robot safety. However as stated earlier, since no global search is undertaken the

generated solution path is not necessarily an optimum path. Also potential field path

planners have the problem of local minima in the potential field. A s yet there have not

been developed any effective mechanisms for handling local minima. For these reasons

path planning using potential field should be rejected as a viable approach to path planning

with robot safety criteria.

Path planning with consideration for robot safety has been reported by [Kambhampati

et. al. 86, Suh et. al. 88, Thorpe 84]. [Thorpe 84] used a grid based approach called "path

relaxation" to find the "best" path from the start to the goal. This method is based upon

extending the A * algorithm to include three criteria, the cost of the distance from the goal,

the cost of nearby objects, and the cost of operating near or in an unmapped environment

-64-

The cost of nearby objects was calculated by searching the grid space for obstacle nodes,

calculating a repulsion cost for each obstacle, and finally summing the costs of all the

repulsion costs of the nearby objects. This is a heavy computational burden.

A similar approach to [Thorpe 84] was presented by [Kambhampati et. al. 86] using a

quadtree projected onto the environment instead of a grid. The quadtree is searched using

the A * algorithm for the "best" path from the start to the goal. The cost of the path at

each quadtree node consisted of two criteria: the cost of the distance from the goal and the

cost of nearby objects. The cost of near objects was computed prior to path planning,

using a variant of the [Samet 88] distance transform for quadtrees, which is of

complexity O(n), where n the number of leaf nodes in the quadtree. While this is an

improvement on the [Thorpe 84] approach, since a search at a node for nearby obstacles

is not required, the [Kambhampati et. al. 86] algorithm can not handle unknown

environments. Unlike the [Thorpe 84] path planner the [Kambhampati et. al. 86] path

planner does not produce a trajectory path which a robot can readily execute. It generates

only a coarse path which consists of a chain of free space quadrants which join the start

to the goal. For this planning method to be of any use for a practical robot this chain of

free space quadrants must be searched for a fine motion path.

[Suh et. al. 88] presented a method based on variational calculus, in which the cost for

robot safety is considered explicitly in path planning. This approach is based upon

decomposing the environment into free space channels, and finding the centre line of these

channels, in other words the "too far" paths. [Suh et. al. 88] defined the cost of a path P

as the sum of costs for its length and its safety. The safety component of the cost is a

function of the integration of the distance between a point on the path P and the "too far"

path. However this algorithm, like all free space path planning methods, does not give

any solution if the environment is not delimited by boundaries and can be decomposed

into free space channels.

-65-

3.4 Data Structures

The data structures that have been used in path planning research can be broadly

classified into two groupings; "adaptive" models and "rigid" models. Adaptive models are

high level descriptions, and the structure of these models is dependent upon the nature

and clutter of the environment. Typically such models represent the environment as a

network of free space regions [Chatila 82, Chatila et. al. 85, Crowley 85, Iyengar et. al.

86, Rao et. al. 86] or as a graph of obstacle vertices [Moravec 80, Thompson 77]. The

adaptive model environment mapping methods offer elegant solutions; however these

methods require accurate sensor information and are therefore difficult to implement in

practice.

O n the other hand rigid models impose a structure, typically a grid, onto the

environment without any regard to the nature and clutter of the environment [Elfes 87,

Jarvis et. al. 86, Thorpe 84] and so the implementation of such environment mapping

methods is easier than adaptive models. The disadvantage of the rigid model approach is

the inefficiency in memory usage to represent large areas of free space.

The quadtree data structure [Samet 88] is a good compromise between adaptive

models and rigid models. Since quadtrees use a hierarchical structure, they have the

advantage of having a grid like structure, but they are also adaptive to the clutter of the

environment. Refer to Figure 3.18 for an example of a quadtree environment model. In

this figure the nodes of the tree are labelled numerically, starting from the South Western

comer in a clockwise direction. Obstacles are shaded areas, while free spaces are white

space.

Both [Kambhampati et. al. 86] and [Samet 88] comment on the savings in memory

resulting from the use of a quadtree representation compared to a grid based

representation. [Kambhampati et. al. 86] shows that the number of leaf nodes in a

quadtree is proportional to the sum of the perimeters of the obstacles in the environment.

-66-

[Samet 88] reports that if the resolution of a quadtree is doubled, then the number of

nodes in the quadtree will double, while with grids, doubling the resolution quadruples

the grid size. Mobile robot path planning using quadtrees has been reported by

[Kambhampati et. al. 86, Noborio et. al. 88]. Both of these approaches find paths only in

known environments.

12 M M
•S24 431 p 131 134 421

11 14 41

34

44

11 12 13 14

y-y-hh

131 132 133 134

66kh

n
32 33 34 41 42 43 44

66b Mhh
311 312 313 314 341 342 343 344 421 422 423 424 431 432 433 434

an a a n A wu an El H U H u u

Figure 3.18

A two dimensional environment and its corresponding quadtree.

The quadtree data structure is implemented in the following manner. Each node of the

quadtree has storage for the pointers to the node's parent and its four children. Storage is

also provided for the node classification; free, obstacle or grey (neither free nor obstacle).

Storage within the leaf node is provided for the path cost which is generated during path

planning. Refer to Figure 3.19 for a diagram of the node structure.

-67-

Node Classification Path Cost Value

Parent Node A

SW
Child A

NW
Child *

N E
Child *

SE
Child *

Figure 3.19

The structure of a quadtree node.

3.5 Conclusions

Section 3.2 of this chapter discussed the desirable features of a robot path planner

from a human stand point. In Section 3.3 a extensive review of past research into path

planning was undertaken. In that section the shortcomings and the benefits of each path

planning method were discussed. This section links the conclusions that were reached in

earlier sections with the research goals of this thesis to form a list of research questions

which require investigation.

To support the research goals stated in Chapter 1 distance transforms were chosen as

the methodology to be investigated for path planning. Unlike other path planning

methods, distance transforms support the concept of path planning behaviours. However

the main drawbacks of using distance transforms with the grid data structure, are the

inefficiency of grids when the environment is largely free space, and the zigzag nature of

the solution paths. Also, there are no memory savings using grids when a mobile robot is

operating in an unknown environment whose structure must be mapped, because the

robot must model all the space in the environment whether it is known or unknown. In

such situations, an adaptive model of the environment, such as vertex graph or free space

methods would be more appropriate. To build an adaptive model using the noisy sonar

data extracted in Chapter 2 is a complicated task. It is therefore proposed to investigate

quadtrees as the compromise data structure to model the environment.

-68-

Quadtrees were explored for the following reasons. Firstly they can be a more

efficient data structure than rigid models such as grids. Secondly quadtrees are a much

more effective data structure to support the inclusion of noisy sonar data than adaptive

models. Thirdly past research into path planning with quadtrees has assumed that the

environments are known. However quadtrees could offer a way of supporting path

planning in unknown and partially known environments, due to the recursive nature of

this data structure. The recursive nature of the quadtree seems to support the strategy

humans use to navigate to a goal in an unknown environment. Chapter 4 investigates path

planning in unknown and partially known environments using the quadtree data structure

and distance transforms. That chapter also explores how noisy sonar data can be

incorporated into the quadtree model as the robot learns the environment en route to the

goal.

One problem that must be overcome using distance transforms for path planning with

quadtrees is that the distance transform will only yield a cej&se- path of free space cocvnse

quadrants joining the start and goal positions, thus producing similar results to the

[Kambhampati et. al. 86] algorithm. The problem of extracting a fine robot motion path

from a coarse solution path necessitates further investigation. The potential spin off from

solving this problem is that the zigzag path problem in grids can be overcome. Fine paths

in quadtrees will have less points in the path, longer straight sections and less zigzags. In

Chapter 4 this problem is scrutinised and a solution proposed.

Applying the distance transform to quadtrees is a much more expensive approach to

path planning than the [Kambhampati et. al. 86, Noborio et. al. 88] approaches. This is

because the distance transform generates paths from every location to the nearest goal,

while the [Kambhampati et. al. 86, Noborio et. al. 88] approaches search only for the

shortest path to a goal. This disadvantage is offset by the fact that distance transforms

support path planning behaviours of the type described in Section 3.2, multiple robots

-69-

and multiple goals. Chapter 5 investigates how the path planning behaviours can be

implemented with quadtrees.

A drawback of using distance transforms for path planning is that they suffer from the

"too close" problem since they do not take obstacle clearance information into account

Chapter 5 shows how the distance transform can be extended to take obstacle clearance

information into account This extension can be regarded as the construction of a potential

field function between the start and goal locations which contains no local minima. This

extension takes care of the "too close" and "too far" problems which hampers other path

planners.

Applying the distance transform to quadtrees in certain situations e.g large areas of

free space, can significantly improve the storage efficiency and the execution time of the

distance transform, compared to the use of grids as reported by [Jarvis et. al. 86].

However it is unclear in exactly which situations the quadtrees will out perform grids. In

robot environments which are of low resolution i.e. contain a small number of cells, the

grid will out perform the quadtree, due to the memory overheads of storing the

hierarchical data structure. In Chapter 6 a comparative study of distance transforms using

grids and quadtrees is presented. This study determines when it is best to use quadtrees

instead of grids. The study determines the resolution size which is most economical to

represent the environment with quadtrees, and which obstacle shapes, what obstacle

sizes, and what degree of obstacle clutter, make the quadtree a more efficient data

structure.

As discussed in Section 3.3.5, existing 3 DOF path planning algorithms have heavy

computational burdens because of the high cost of building and searching a 3 dimensional

graph. In Chapter 7, a new 3 D O F path planning algorithm is presented which only

constructs and searches two slices of the 3 dimensional graph. This new algorithm is

based upon further extensions to distance transforms.

-70-

The key idea of this algorithm is to calculate a distance transform between the start

and goal configurations taking into account obstacle clearance information. By taking this

information into account the steepest descent path through the distance transform provides

a coarse path for the robot to follow. Searching the coarse path for a solution path gives

the robot a higher chance of finding a 3 D O F fine path. A solution path is most likely not

to lie in close proximity to obstacles. Existing 3 D O F path planners waste valuable time

searching for paths in close proximity to obstacles, and as a result suffer the "too close"

problem. The [Ilari et. al. 90] approach solved this problem, but it suffers from the "too

far" problem. The "too close" and "too far" problems are taken care of by the new 3 D O F

algorithm.

The new algorithm treats the values of the distance transform as guiding heuristics.

However this algorithm is guaranteed to find a solution if one exists, unlike other

heuristic based 3 D O F path planners. Since this algorithm has a heuristic nature it does

not have the computational burden which is associated with other 3 D O F path planners.

-71-

Chapter 4
Path Planning

4.1 Introduction

Exploring an environment with a mobile robot can be accomplished in one of two

ways; either by operating in "mapping" or "learning" modes. W h e n a robot is operating in

"mapping" mode [Crowley 85, Lumelsky et. al. 89, Moravec 80], it traverses the entire

environment in a systematic manner, while scanning with on board sensors and updating

a map. The map is then used for all subsequent path planning exercises. Difficulties arise

with this method if the environment is allowed to alter after the mapping has been

completed. The other mode of learning is to sense the environment, while executing paths

which have been generated by a path planner. A s obstacles are encountered en route to a

goal, the model of the environment is updated and a new path to the goal is planned to

avoid the obstacles [Iyengar et. al. 86, Rao et. al. 86].

This chapter describes a new environment exploration algorithm (referred to as "EEA"

for short) which is based on the "learning" mode of environment exploration. This

algorithm was implemented as part of the research for this thesis. The E E A is not

restricted to the recognition of line of sight distances to obstacles, and it can be used with

current generation sensing technology. The E E A can be induced to exhibit the "mapping"

or "visit all" path planning behaviour. This feature is discussed in Chapter 5.

Unlike most other path planners the EEA does not expand all the objects in the

environment by the robot's radius. Therefore it is the responsibility of the path execution

procedure to ensure that the robot does not collide with any obstacles. This is achieved by

making sure the robot stays entirely within the boundaries of the free space quadrant

which the robot is traversing. Conceptually this is equivalent to shrinking the robot to a

point, and shrinking the boundaries of the quadrant by the robot radius. The quadrants in

the quadtree of the lowest resolution are of sufficient size to fully accommodate the mobile

-72-

robot. This strategy has the penalty of excluding possible solution paths. Since paths are

generated through free space nodes of a quadtree which have been reduced, only paths in

the horizontal and vertical directions can be considered. Considering paths that pass over

the shared comer of adjacent free space quadrants could cause a collision. Diagonal comer

paths tend to clip obstacles [Kambhampati et. al. 86]. Thus the restriction to horizontal

and vertical paths will result in safer robot paths. However the penalty to the E E A for this

approach is that paths are no longer distance optimum [Kambhampati et. al. 86].

The EEA assumes that the robot accurately knows its own current world coordinates

at all times, as well as the coordinates of the goal. The robot has no knowledge about the

location and shape of obstacles. N o constraints are imposed upon the shape or location of

the obstacles.

The remainder of this chapter is organised in the following manner. Section 4.2

provides an overview of the design E E A . This section describes h o w the E E A

decomposes into a set of modules, each module has a specific task. Sections 4.3 - 4.8 in

this chapter explain the workings of each module of the EEA. The E E A algorithm is based

on the use of distance transforms.Section 4.3 describes an efficient algorithm to generate

distance transforms for quadtrees. The distance transform yields only a coarse solution

path, which consists of a chain of free space quadrants between the start and goal

positions. Section 4.4 presents a procedure to extract the coarse solution path, and shows

how the shortest path through the free space quadrants can be extracted from the coarse

solution path. Section 4.5 describes a procedure for the inclusion of fresh sensor data into

the quadtree model. Section 4.6 describes a mechanism to speed up the generation of the

distance transform. Examples of a robot navigation system using the E E A are presented in

Section 4.7. These results were obtained using a simulation program developed on a

Macintosh II microcomputer. Section 4.8 presents the experimental results using the

sonar range data collected in Chapter 2. Finally Section 4.9 presents the conclusions that

were reached and the insights that were gained from investigating the problem of

environment exploration.

-73-

4.2 Environment Exploration Algorithm

Upon initialisation the E E A requires two pieces of information; the notional size m x

n of the environment to be learnt, and a position reference (x,y) of the cylindrical robot

to some reference point A quadtree Q of sufficient size is generated to cover the area in

which the robot will operate. The smallest quadtree leaf resolution size is of diameter d, a

size which allows the robot to pass through. The size of quadtree Q - (2d)1, where i is an

integer such that (2d)1 > s and s = max (m, n).

The EEA is composed of a number of processes. Figure 4.1 shows the architecture

of the processes which constitute the EEA. The main process in the E E A is the Navigation

process. This process is responsible for three subprocesses; Path Planning, Path

Execution and Model Update.

Navigate

Model Update

Optimise Move Divide Consolidate

Figure 4.1

Process Architecture of the EEA.

The Path Planning process, when supplied a goal location applies the distance

transform to the quadtree model of the environment, and produces all the possible

solution paths from any location in the environment to the goal. The exact workings of

this process are explained in Section 4.3.

The Path Execution process locates the start location in the quadtree, and then traces a

coarse least cost path through the free space quadrants to the goal. The subprocess

-74-

Optimise is used to find the shortest path through the coarse solution path. Once the

shortest path to the goal has been planned, the robot executes this path. The Move process

controls the motion of the robot and the sensors on board the robot Sensing the

environment is the responsibility of the Path Execution process and is done within the

Move process. The EEA is an algorithm which only senses for obstacles which obstruct

the robot's path to a goal. The Path Execute process is described in detail in Section 4.4.

The Model Update process is invoked when the Path Execute process detects an

obstacle which is not present in the quadtree model of the environment. The Divide

process has the responsibility of recursively subdividing the quadtree until leaves are

obtained which span regions that are entirely free space or obstacle filled. The fresh

sensor data is incorporated into the quadtree. The Consolidate module is responsible for

merging the leaves which are of the same node classification and share a common parent.

The workings of the Model Update process .are explained in Section 4.5.

Algorithm 4.1 shows how the three main processes which constitute the Navigation

process fit together and interact

procedure NAVIGATION(Q, start, goal)
repeat

cost = 0
perform PATH_PLANNING(Q, goal, cost)
if (goal reachable) then

perform PATH_EXECUTE(Q, start, goal, stop, sensors)
if (stop * goal) then

perform MODEL_UPDATE(Q, start, stop, sensors)
start = stop

end if
end if

until (stop = goal or goal not reachable)
end procedure

Algorithm 4.1

Component Processes of the EEA.

Given the cartesian coordinates of the start and goal locations, the best path planning

strategy in an unknown environment is to optimistically assume that the unknown regions

of the environment are free space. The confidence in this assumption is low. The

NAVIGATION process invokes the PATH_PLANNING process, which plans a straight

-75-

line path to the goal and calculates the distance transform cost between the start and goal

locations.

If the path cost returned by the path planner is finite, then a solution path exists

between the start and goal locations; otherwise the goal is unreachable. If the goal is

reachable, the path generated by the planning process is passed onto the

P A T H _ E X E C U T E process, which ensures the planned path is executed by the robot.

Since the environment is unknown, the robot proceeds cautiously towards the goal.

One of two conditions will occur, either the robot reaches the goal or it encounters an

obstacle. If the goal is attained the P A T H _ E X E C U T E process reports a success to the

N A V I G A T I O N procedure. In the case of an obstacle blocking the robot's path, the

P A T H J E X E C U T E process returns the location of the robot and the robot's sensor

readings at this location, to the N A V I G A T I O N process.

The NAVIGATION process invokes the MODELJJPDATE process, which given the

robot's location and sensor readings updates the environment model Q i.e. the quadtree

structure. Upon completion of the updating of the environment model, the

P A T H _ P L A N N I N G process is invoked again.

Essentially the PATH_PLANNING process locates the leaves of the quadtree where

the current location and goal are found and then applies the distance transform to generate

a solution path, or deduces that no solution path exists. The revised plan is then attempted

by the robot This cycle of plan - execute - update continues until the robot successfully

reaches the goal, or the N A V I G A T I O N process deduces that the goal is unreachable.

4.3 Path Planning using Distance Transforms

When the distance transform is applied to the quadtree structure, distances are

propagated through the quadtree from the goal quadrant leaf to the neighbouring quadrant

leaves, which in turn propagate the distance transform to their neighbouring leaves. This

process is continued until the distance transform flows through the the whole quadtree.

-76-

The distance transform is measured in multiples of the minimum sized quadrant Except in

the case of the quadrant leaf containing the goal, the distance transform is calculated as the

straight line distance from the goal location to the nearest edge of neighbouring leaves

(note: the goal can be located anywhere within the goal quadrant). This measure identifies

the neighbouring quadrants which are closest to the goal. Refer to Figure 4.2 for a result

of applying this algorithm. Once the distance transform has been computed, the shortest

path to closest goal is known for every quadrant of free space. Note: The distance

transform values stored in all the quadrants are initialised to °° (in practice this is the

largest available integer) before the path planner is invoked.

8

4

3 2

StfSftwwwi

0

6

9

9

10

10

3

11

9

7

5

Figure 4.2

The distance transform applied to a quadtree.

In this research the first algorithm which was developed computed the distance

transform based on the concept described in the previous paragraph i.e. one of radiating

the paths from the goal. The algorithm is given in the procedure P A T H _ P L A N N I N G

shown in Algorithm 4.2. In this algorithm the procedure G E T _ N E I G H B O U R S finds the

neighbouring leaves to the current leaf in a given direction, and returns a list of

neighbours. If more than one neighbour exists then they are accessed in E A S T - W E S T or

N O R T H - S O U T H order, using the N E X T . N E I G H B O U R function.

-77-

G E T _ N E I G H B O U R S is based on Samet's neighbour finding algorithm [Samet 82]. The

function E X T R A C T retrieves the distance transform value of a quadrant leaf from the

quadtree data structure. The S T O R E function records a new distance transform value for a

quadtree leaf in the quadtree data structure. The function SIZE returns the size of a

quadtree node. The returned size is a multiple of the size of the smallest allowable

quadrant in the quadtree.

procedure PATH_PLANNING(Q, leaf, cost)
minimum = EXTRACT(leaf)
if (cost < minimum) then
perform STORE(leaf, cost)
for direction = EAST, WEST, NORTH and SOUTH do
perform GET_NEIGHBOURS(leaf, direction, neighbours)
do while (more neighbours)

newcost = cost + SIZE (leaf)
perform PATH_PLANNING(Q, neighbour, newcost)
neighbour = NEXT_NEIGHBOUR(neighbours)

end do
end for
end if

end procedure
Algorithm 4.2

The path planning algorithm.

W h e n the P A T H _ P L A N N I N G algorithm described above was implemented, it was

found to be extremely inefficient in speed of computation. In fact the performance was

inferior to the [Jarvis et. al. 86] grid based distance transform. This is due to the recursive

nature of the algorithm, which propagates the distance transform from the goal in a

selected direction along a path until a boundary of the quadtree is reached or an obstacle is

encountered. At this point the algorithm backtracks one quadrant along the propagated

path and then selects another direction to propagate the distance transform further into the

quadtree. Thus this algorithm propagates the distance transform in a "spike" fashion

instead of the preferred "wave front" fashion. The effect of this strategy is that most

nodes in the quadtree are visited many times, and a significant portion of these visits are

unnecessary.

-78-

To overcome this problem a new algorithm was developed which is described in the

procedure FAST_PATH shown in Algorithm 4.3. This algorithm is based on the concept

of alternatively sweeping the distance transform from the North Western (NW) and South

Eastern (SE) comers of the quadtree. In the first sweep from the NW comer, the distance

transform is propagated only in the eastern and southern directions. Once the distance

transform sweep from the NW comer has covered the entire quadtree, another sweep of

the distance transform is then undertaken. This time the distance transform sweeps from

the SE comer of the quadtree back to the NW comer of the quadtree, and the distance

transform is propagated only in the western and northern directions. This procedure of

alternatively sweeping the distance transform from the opposite comers of the quadtree is

repeated until the distance transform values of the free space quadrants stabilise i.e. stop

changing. Refer to Figure 4.3 which illustrates with an example how the distance

transform is propagated using the alternate comer sweeps algorithm. Figure 4.3 (A - F)

shows the propagation of the distance transform from the NW comer of the quadtree.

Figure 4.3 (G - L) shows the propagation of the distance transform from the SE comer

of the quadtree. After only two sweeps the distance transform has almost converged to its

correct final values. One more sweep from each comer will yield the correct distance

transform values.

procedure FAST_PATH(Q, goal, cost)
leafg = LOCATE(goal)
perform STORE(leafg, cost)
repeat

change = FALSE
perform PATH_NW(Q, change)
perform PATH_SE(Q, change)

until (change = FALSE)
end procedure

Algorithm 4.3

Faster path planning algorithm.

-79-

M a x — w

I
Max

Goal

Max

Max

jpdaxf

Max

Max

Max

Goal

1 —HMax

Max

Max

Goal

Max

B

Max

Max

Goal

1

1

gpfax|

3

Max

Max

Goal

1

t

fiMax

3

Max

Max m

Goal

1

1

|iMax

3

Ktex

S

Goal

1

1

1

|Max|

i

1

3

5

Goal

f
1 — 1

1

pax]

3

7

t
5

Goal

1

1

IiMsni

3

H

3

5

GoaM

1

— 1

|Max|

3

7

S

Goal I 1

1 -*WMml

3

2

5

- Goal

1

1

|Maxi|

3

J K L

Figure 4.3

Distance transform computed using the alternate corner sweeps algorithm.

When the FAST_PATH algorithm was implemented it was found to be significantly

faster in speed of computation than the PATH_PLANNING algorithm. In some cases the

new algorithm out performed the old by a factor of 20. Consequently all the results

-80-

reported in this thesis use the F A S T J P A T H algorithm In the pseudo code explanation of

FAST_PATH, the function LOCATE is used to determine in which free space leaf the

goal is located. The procedures PATH_NW and PATH_SE perform the alternate comer

sweeps of the distance transform. The pseudo code for PATH_NW and PATH_SE is

almost identical, and is shown in algorithms 4.4 and 4.5 respectively. In both

PATH.NW and PATH_SE, the functions GREY and WHITE are used to determine the

type of a quadtree node. A node is GREY if the node is an interior node of the quadtree

i.e. not a leaf node. A node is WHITE if it is a free space leaf node. The function

NEXT_DrRECTION generates the new direction in which the distance transform is to be

propagated. The new direction is generated in clockwise order, so the next direction after

NORTH is EAST, and the next direction after EAST is SOUTH etc.

procedure PATH_NW(Q, change)
if (GREY(Q)) then

for quadrant = NW, NE, SW and SE do
perform PATH_NW(SON(Q, .quadrant))

end for
else if (WHITE(Q)) then

direction = EAST
do while (direction != WEST)

perform GET_NEIGHBOURS(Q, direction, neighbours)
do while (more neighbours)

cost = SIZE(neighbour) + EXTRACT(Q)
minimum = EXTRACT(neighbour)
if (cost < minimum) then

change = TRUE
perform STORE(neighbour, cost)

end if
neighbour = NEXT_NEIGHBOUR(neighbours)

end do
direction = NEXT_DIRECTION(direction)

end do
end if

end procedure
Algorithm 4.4
Propagate the distance transform the NE comer algorithm.

The PATH_NW algorithm works in the following manner. Firstly, the procedure

finds the north western quadrant which is white i.e. free space and the distance transform

is propagated to quadrants on the southern and western boundaries of this quadrant.

Next, the north eastern quadrant is found and the the distance transform is propagated to

quadrants on the southern boundary of this quadrant. Lastly, the south western quadrant

-81-

is found and the the distance transform is propagated to quadrants on the eastern

boundary of this quadrant. If any of the quadrants which are visited are grey i.e. interior

quadtree nodes, then the PATH_NW procedure recursively calls itself, until a leaf

quadtree node is found i.e. black or white. The PATHJSE algorithm works in a similar

manner as PATH_NW and therefore its workings will not be explained.

procedure PATH_SE(Q, change)
if (GREY(Q)) then

for quadrant = SE, SW, NE and NW do
perform PATH_SE (SON(Q, quadrant))

end for
else if (WHITE{ Q)) then

direction = WEST
do while (direction != EAST)

perform GETJNEIGHBOURS(Q, direction, neighbours)
do while (more neighbours)

cost = SIZE(neighbour) + EXTRACT(Q)
minimum = EXTRACT(neighbour)
if (cost < minimum) then

change = TRUE
perform STORE(neighbour, cost)

end if
neighbour = NEXT_NEIGHBOUR(neighbours)

end do
direction = NEXT_DIRECTION(direction)

end do
end if

end procedure
Algorithm 4.5
Propagate the distance transform the SW corner algorithm.

4.4 Path Execute Algorithm

Upon the completion of path planning, the NAVIGATION process is ready to execute

the planned path. The general algorithm for path execution is given in the procedure

PATH_EXECUTE shown in Algorithm 4.6. Before the robot can be moved to the goal

location, a path must be selected using the distance transform information stored in the

quadtree. The algorithm must first isolate the location of the robot into a leaf of the

quadtree Q. The distance transform stored in this leaf is examined. If the distance

transform equals zero, then the start and goal points are located in the same leaf; therefore

the robot can proceed directly to the goal. If the distance transform is greater than zero,

the vertical or horizontal neighbouring leaf with the minimum distance transform must be

-82-

found. A subgoal point in the minimum valued distance transform quadrant is selected,

and the robot proceeds to this subgoal. The robot will either reach the subgoal or it will

encounter an obstacle, which is not stored in the map. If the robot reaches the subgoal,

the next subgoal is found and the path to this subgoal is attempted. This method is applied

repeatedly until the goal is attained or an obstacle blocks the robot's path. If an obstacle is

sensed the robot stops. The path execution is terminated and the robot location and the

sonar sensor values are returned to the NAVIGATION process.

procedure PATH_EXECUTE(Q, start, goal, stop, sensors)
obstacle = FALSE
repeat

leaf = LOCATE(Q, start)
distance_transform = EXTRACT(leaf)
if (distance_transform = 0) then

subgoal = goal
else

subgoal = OPTIMISE(Q, leaf,goal)
end if
perform MOVE(subgoal, stop, sensors)
if (stop * subgoal) then

obstacle = TRUE
end if
3tart = subgoal

until (start = goal or obstacle)
end procedure

Algorithm 4.6
Path Execution algorithm.

The MOVE procedure is responsible for interfacing the NAVIGATION process to the

motion control system of the mobile robot. This procedure ensures that the robot

physically reaches the planned subgoal. If an obstacle is encountered en route to the

subgoal, the MOVE procedure returns the location where the robot stopped and a sonar

map of the obstacle. The sonar map is generated using the mapping techniques presented

in Chapter 2.

The function OPTIMISE is responsible for selecting the robot's next subgoal. This

function searches the vertical and horizontal neighbours of the quadrant leaf in which the

robot is located, to find the leaf quadrant which yields the least cost path. Finding a

neighbouring quadrant with the minimum distance transform does not guarantee a least

cost path, since the distance transform stored in a quadrant represents the cost of

-83-

traversing the quadrant from a boundary edge to the goal. To determine the true cost of

the path to the goal the path cost between the robot's location and the boundary edge of

the neighbour quadrant must be calculated and added to the quadrant's distance transform.

Once the free space quadrant with the least cost has been found, a path can be executed to

this quadrant from the robot's current location.

During path execution a number of strategies can be used to generate a path through

the free space quadrants. A reasonable strategy would be to steer through the middle of

the intersection of entry and exit boundary edges of quadrants. Such a strategy generates

relatively "safe" paths, and is reasonable during the exploration of an environment by the

robot However such a strategy suffers the "too far" problem, in situations where the free

space quadrants are large.

An optimum path can be found by constructing a visibility graph, between the robot's

location and the goal. This visibility graph can be easily constructed since a coarse path of

free space quadrants to the goal is already known. The function F U L L given in Algorithm

4.7 dynamically constructs and searches a visibility graph for an optimum solution. A n

example of the application of the F U L L function is shown in Figure 4.4. This is an

example of how the shortest path between a start (S) and a goal (G) is found. The path is

found by extending the visibility graph into the next free space quadrant. This is done by

joining the end points of the intersection edge between the two quadrants, to the closest

nodes of the visibility graph. The A D D _ T O _ P A T H function is responsible for extending

the visibility graph. Figure 4.4 (A) - (B) show how the visibility graph is extended. The

N E X T _ Q U A D R A N T function is responsible for finding the next free space quadrant in

the solution path to the goal. The r^IND J N T E R S E C T I O N function finds the overlapping

segment which is shared by the current quadrant and the next quadrant in the solution

path. The S T R A I G H T E N _ P A T H function straightens paths in the visibility graph. In this

function, checks are undertaken to see whether or not the nodes that have been freshly

added to the visibility graph, can bypass any of the parent nodes of the new nodes. T o

allow a parent node to be bypassed, a clear path must be visible between the new node

-84-

and its grandparent node. The clear path must lie inside the boundaries of the free space

quadrants which form the coarse solution path. Figure 4.4 (C) shows paths being

straightened. The ADD_TO_PATH extends the visibility graph by adding new nodes to

the closest end points of the current visibility graph. This practice can introduce redundant

paths into the visibility graph i.e. paths which lead to nowhere. The DELETE_PATH

function is responsible for removing any redundant paths from the visibility graph. Figure

4.4 (D) shows the deletion of redundant paths. Once the visibility graph between the

robot's location and the goal has been constructed, as shown in Figure 4.4 (E), the graph

is searched for the shortest path. The SHORTEST.PATH function checks path lengths in

the visibility graph and deletes all paths except the shortest path, refer to Figure 4.4 (F).

function FULL(Q, start, goal)
path = NIL
path = ADD_TO_PATH(path, start)
leafs = LOCATE(Q, start)
repeat

leafn = NEXT_QUADRANT(Q, leafs)
distance_transform = EXTRACT(leafn)
if (distance_transform = 0) then

path = ADD_TO_PATH(path, goal)
else

edge = FIND_INTERSECTION(leafs, leafn)
path = ADD_TO_PATH(path, BEGIN(edge))
path = ADD_TO_PATH(path, END(edge))

end if
path = STRAIGHTEN_PATH(path)
path - DELETE_PATH(path)
leafs = leafn

until (distance_transform = 0)
path = SHORTESTJPATH(path)
return (path)

end function
Algorithm 4.7
Full Optimum Path algorithm.

-85-

G n
— _ B

G jl

"""5 s" *>?v^
>- $

G ii

A • T T • i m

i i l||
' i H

— s ^ • ^ s

Figure 4.4

Finding the full optimum path between S and G.

The work effort of computing the visibility graph is likely to be wasted in an

environment which is not well known, since an unexpected obstacle will result in path

replanning. A solution to this problem is as follows. Instead of constructing the "full"

visibility graph, look ahead n quadrants and construct a "reduced" visibility graph

between the robot's location and the mid point of the exit edge of the nth quadrant (except

in the case of the goal quadrant where the goal takes the place of the midpoint of the exit

edge). The "reduced" visibility graph approach will not always yield the optimum path,

but it will give a path which is near optimum. The function R E D U C E D given in

-86-

Algorithm 4.8 dynamically constructs and searches a "reduced" visibility graph for a

solution path.

function REDUCED(Q, start, goal, lookahead)
count = 0
path = NIL
path = ADD__T0_PATH (path, start)
leafs = LOCATE(Q, start)
repeat

count = count + 1
leafn = NEXT_QUADRANT(Q, leafs)
leafl = NEXT_QUADRANT(Q, leafn)
distance_transform = EXTRACT(leafn)
if (distance_transform = 0) then

path = ADD_TO_PATH(path, goal)
else if (count = lookahead) then

edge = FIND_INTERSECTION(leafn, leafl)
path = ADD_T0_PATH(path, MIDDLE(edge))

else
edge = FIND_INTERSECTI0N(leafs, leafn)
path = ADD_T0_PATH(path, BEGIN(edge))
path = ADD_T0_PATH(path, END(edge))

end if
path = STRAIGHTEN_PATH(path)
path = DELETE_PATH(path)
leafs = leafn

until (distance_transform = 0 or count = lookahead)
path = SHORTEST_PATH(path)
return (path)

end function
Algorithm 4.8
Reduced Optimum Path algorithm.

Choosing the size of the look ahead can be related to the confidence in the knowledge

of the environment. In a completely unknown environment a one quadrant look ahead is

sufficient. Once an environment is well known, the optimisation of the paths can be

improved by looking ahead more than one quadrant.

Figure 4.5 shows an example of constructing an optimum path using a "reduced"

visibility graph. The optimum path which is generated by the construction and search of a

"full" visibility graph is shown with the broken line in Figure 4.5 (F). The "reduced"

visibility graph is constructed by looking ahead a number of quadrants to the middle of

the exit edge of the look ahead quadrant. The number of quadrants that is looked ahead in

this example is 1 (one). Figure 4.5 (A) - (E) shows the construction of "reduced"

-87-

visibility graphs. A new visibility graph is constructed each time the robot enters the next

quadrant. This strategy produces a reasonable path, shown with the heavy line in Figure

4.5 (F). The look ahead is performed at the locations marked with *. While this path is

not optimum, it is superior to the "too far" paths, which are generated by steering down

the middle of free space quadrants.

^ > -

Jt.
G H |

||i G ll

SA ii
• ^ S

Figure 4.5

Finding the reduced optimum path between S and G.

This path optimisation strategy produces reasonable paths. However situations do

arise where the robot must steer through a sequence of quadrants which result in zigzag

paths despite the optimisation strategy. This is because paths between quadrants sharing a

-88-

comer are not considered. This can be countered with the rule: "if the entry and exit

edges of a free space quadrant are normal to one another, and the neighbouring comer

quadrant is free space, then the path segment through this quadrant can be omitted". This

causes the robot to steer diagonally between two free space quadrants. Refer to Figure 4.6

for an example of the zigzag rule. In this example the original solution path between the

start (S) and the goal (G) is shown with the broken line. The smoothed solution path

generated using the zigzag rule is shown with the heavy line.The function OPTIMISE is

constructed by combining the function R E D U C E D with the zigzag smoothing rule.

Figure 4.6

Smoothing a Solution path using the zigzag rule.

4.5 Model Update Algorithm

Once the robot has completed path execution, the NAVIGATION module is ready to

update the environment and confidence models of the environment The general algorithm

for the M O D E L _ U P D A T E process is given in the Algorithm 4.8. The execution of the

planned path terminates on one of two conditions; either the robot reaches the goal or an

obstacle is encountered. If the robot reaches the goal, the environment model does not

change. If an obstacle is encountered the environment model must be updated to reflect

the presence of the freshly sensed obstacle. To perform the update of the model, the

algorithm must know the current location of the robot the sensor readings at this location,

and the location of the robot when this procedure was last invoked.

-89-

Once the algorithm updating the environment models is invoked, the current leaf

location of the robot in the quadtree is found with the LOCATE function. This leaf is

checked using the SAFE function to make sure that none of the obstacle sensor readings

are inside the leaf quadrant. If the sensor readings occur inside the leaf quadrant in which

the robot is currently located, then the leaf quadrant is divided into four quadrants using

the DIVIDE procedure. Leaf division continues until the leaf is isolated from the sensor

readings, or the size of the leaf reaches the smallest allowable resolution. Upon the

completion of isolating the current robot leaf location from the sensor readings, the sensor

readings detected by the robot are each in turn isolated to a leaf of the smallest size

resolution; this may require the division of leaf quadrants. Once a sensor reading has been

isolated, the leaf is classified to be occupied by an obstacle and this information is

recorded in the quadtree using the STORE_COLOUR procedure.

procedure MODEL_UPDATE(Q, start, stop, sensors)
exit = FALSE
repeat

leaf = LOCATE(Q, stop)
if (SAFE(leaf, sensors) then

perform STORE_COLOUR(leaf, WHITE)
exit = TRUE

else if (leaf is smallest resolution) then
colour = CLASSIFY(leaf, sensors)
perform STORE_COLOUR(leaf, colour)
exit = TRUE

else
perform STORE_COLOUR(leaf, GREY)
perform DIVIDE(leaf, child)

end if
until (exit)
for (i = 1 to number of sensor readings) do

exit = FALSE
repeat

leaf = LOCATE(Q, sensor[i])
if (leaf is smallest resolution) then

perform STORE_COLOUR(leaf, BLACK)
exit = TRUE

else
perform STORE_COLOUR(leaf, GREY)
perform DIVIDE(leaf, child)

end if
until (exit)

end for
perform CONSOLIDATE(Q)

end procedure
Algorithm 4.8

Model Update algorithm. -90-

Isolating a sensor reading to the smallest resolution leaf may be seen as unnecessarily

fragmenting the leaves of the quadtree which span obstacles. The C O N S O L I D A T E

procedure detects the neighbouring leaves in a quadtree that are part of the same obstacle,

and prunes these leaves back to their parent node. If the path planning procedure deduces

that a goal is not reachable from any direction this implies that the goal is surrounded by

obstacles. The C O N S O L I D A T E procedure can then prune the quadtree, to reflect the

knowledge that the region surrounding the goal is one obstacle. Refer to Figure 4.7 for an

example of the consolidation algorithm. Figure 4.7 (A) shows the environment prior to

consolidation. The letter F marks quadrants that are free space, and the letter B marks

quadrants that are blocked with obstacles. Figure 4.7 (B) shows the same environment

after consolidation of the quadtree.

p ® 1

|E

P |
E j

PM
•e:-|

Fii

FI

B

Figure 4.7

The Consolidation algorithm at work

-91-

4.6 Partial Distance Transform Algorithm

Computing the full distance transform every time the robot encounters an obstacle is

an unacceptable computational burden. Considerable savings can be made if the distance

transform is only partially updated when the environment model changes. A novel method

is presented here which allows the quadtree to be efficiently used to limit the

recomputation of the distance transform.

If the robot start and goal locations can be found in the same minimal subtree of the

quadtree, the distance transform need only be calculated for the subtree. Considering a

subset of the possible solution paths will yield either locally optimum paths or no solution

paths. Finding locally optimum paths is acceptable when the robot is learning an

environment T o find globally optimum paths, or if no solution paths can be found

locally, the algorithm simply moves up one level in the quadtree structure and computes

the distance transform for the fresh subtree. Refer to Figure 4.8 for an example of the

partial distance transform in partially known environments. K n o w n portions of obstacles

are shaded dark, while unknown portions are shaded lightly. Figure 4.8 (A) shows the

distance transform values for an entire quadtree. In this case a large portion of the distance

transform is redundant since the start (S) and the goal (G) are close to each other. If S and

G can be isolated to a c o m m o n subtree, then the distance transform need only be

calculated for this subtree as shown in Figure 4.8 (B).

¥*A

••:•••:••:••: 1 :•

fa''

11

9 9

J*-;*f i ai|B

••.".•••

v:;9X;X'

8 |7

•2^1
•1-p

8

6

S

r
Figure 4.8

Quadtree based Partial Distance Transforms.

-92-

Such a strategy is useful when the robot gets closer to the goal. The partial distance

transform update mechanism can be easily incorporated into the N A V I G A T I O N process.

It should be noted that the penalty for this strategy is that the navigation algorithm no

longer supports multiple robots. However for a single robot operating in an unknown or

partially unknown environment the partial distance transform offers substantial

computational savings.

As an aside, the [Jarvis et. al. 86] distance transform based on grids can be modified

in a similar fashion to take advantage of partial distance transforms. In this case the start

and goal locations are isolated to a common subgrid. The distance transform is then

calculated for this subgrid. Refer to Figure 4.9 for an example of the partial distance

transform based on grids. This figure shows the distance transform values for an entire

grid. In this case a large portion of the distance transform is redundant since the start (S)

and the goal (G) are close to each other. If S and G can be isolated to a common subgrid,

then the distance transform need only be calculated for this subgrid. The common subgrid

in this figure is highlighted by the broken line box.

Figure 4.9

Grid based Partial Distance Transforms.

A modified N A V I G A T I O N process which incorporates the partial distance transform

is described by the procedure N A V I G A T I O N _ 2 and is given in Algorithm 4.9. The first

-93-

step this algorithm performs is to find the two quadtree leaves which contain the start and

goal locations. In the next step the algorithm finds the common subtree of the two

quadrant leaves containing start and goal. This is done by the procedure ISOLATE. The

steps of path planning, path execution and model updating are performed in the same

manner they were performed in the NAVIGATION process. The difference is that if the

algorithm deduces that a goal is unreachable, it attempts to move up one level in the

quadtree and recomputes the distance transform.

procedure NAVIGATI0N_2{ Q, start, goal)
SQ = ISOLATE (Q, LOCATE (Q, start), LOCATE (Q, goal))
repeat

perform PATH_PLANNING (SQ, goal)
if (goal reachable) then

perform PATH_EXECUTE (SQ, start, goal, location, sensors)
if (location * goal) then

perform MODEL_UPDATE (SQ, start, location, sensors)
start = location
SQ = ISOLATE (SQ, LOCATE(SQ, Start), LOCATE(SQ, goal)

end if
else

SQ = PARENT (Q, SQ)
if (SQ = nil) then

goal not reachable
end if

until (location = goal or goal not reachable)
end procedure

Algorithm 4.9
Partial Distance Transform algorithm.

4.7 Examples of the EEA

In this section examples are presented using the simulation program that was

developed on a Macintosh II microcomputer to verify that the design of the EEA was

correct

The first example of the EEA using the full distance transform running on an 8 x 8

pixel map in a completely unknown environment is shown in Figure 4.10. This example

shows a robot exploring an environment by planning a path from a start location (S) to a

goal location (G) and executing the path. Planned paths are shown as broken lines and

actual paths are shown as solid lines. Known portions of obstacles are shaded dark, while

-94-

unknown portions are shaded lighdy. Finally after the robot reaches G, the best known

path from S to G is shown.

7

S«-
8

8

H g§§K

6 5

6

1 :1
•.•.•.•.•.•.•.•.•.IG

4

7

S«-
8

9

(7

6-• 5-

7

•J-K*

R-

M fL •_•'

3-

5

t

,G

2

4

f

9

10

8

7.

8

-5- •4.

6

R-

9
1

2

4

7

S**
9

10

8

7"

8

(.:-:•

•5-

6

•3-

1

•2

4

S*.

(•..,:•

ll

Figure 4.10

Path Planning an unknown environment.

The second example which is presented in Figures 4.11-4.16 shows the variety of

path execution strategies that can be used to find a path between the start and goal

locations. This example uses a full distance transform running on a 32 x 32 pixel map in a

completely known environment. Figure 4.11 (A) shows a512x512 pixel map cluttered

-95-

with obstacles and the start and goal locations. This 512 x 512 pixel map is converted into

a quadtree in Figure 4.11 (B). The quadtree is constructed with a leaf resolution of 16

pixels which results in a 32 x 32 pixel quadtree map. The coarse solution path of free

space quadrants between the start and goal locations is shown in Figure 4.11 (C). Figure

4.11 (D) shows the execution path which is generated by steering through the middle of

the intersection edge of the free space quadrants. This path zigzags due to the nature of the

coarse solution path.

C D

Figure 4.11

Path Planning in an known environment.

-96-

The execution path shown in Figure 4.11 can be improved by using the zigzag rule

described in Section 4.4.1. Figure 4.12 (A) shows the improved execution path which is

generated by steering through the middle of the intersection edge of the free space

quadrants in combination with the zigzag rule. Figure 4.12 (B) shows the execution path

which is generated by using the F U L L path look ahead function to optimise the execution

path in combination with the zigzag rule. Figure 4.12 (C) shows the execution path which

is generated by using the R E D U C E D path look ahead function with a one (1) quadrant

look^ead to optimise the execution path in combination with the zigzag rule. It should be

noted in this case the zigzag rule has no effect. This is because the next step of the

execution path is generated by looking ahead only one quadrant from the current position.

The detection and removal of a zigzag requires at least a two quadrant look ahead. Figure

4.12 (D) shows the execution path which is generated by using the R E D U C E D path look

ahead function with a two (2) quadrant look ahead to optimise the execution path in

combination with the zigzag rule. It should be noted that the execution paths produced by

a F U L L path look ahead and a two (2) quadrant R E D U C E D path look ahead are identical,

as shown by Figures 4.12 (B) and (D). In a known environment F U L L look ahead

should be used, since the R E D U C E D look ahead requires the construction of a small

visibility graph from the entry point of every quadrant in the coarse solution path.

However in the case of unknown or partially known environments where it is highly

unlikely that the final execution path between the start and goal locations will be found on

the first path planning effort, the R E D U C E D look ahead function is very useful.

-97-

_fi

•

T
inirr
»^F

•« -
r

©
- /

z_ s •BSSSOI
n i 3H»

*

Wr

-
•

z

= L. i

SN§

M

::£99!!llliaB

•;.

a • • ___ •r

B

---tk-
mmu 1 1 •

-1
pp*--
^

©

7_ *

iH nm
-H5
S I E

1—--* PH|M • * • - « .
• 1 B-

-

"S: '
"D LIB
1
•
r

j
*H

*• ••will

T

©

H I

^

Ss®

• ••H^g u

i*t

r
V

i !i 3
[" I I

i — '

i • f

Figure 4.12

Improved Path Planning in an known environment.

-98-

The third example of a partial distance transform running on an 8 x 8 pixel map in a

completely unknown environment is shown in Figure 4.13. This figure shows the robot

exploring an environment by planning a path from a start location (S) to a goal location

(G), and executing the planned path. Planned paths are shown as broken lines, actual

paths are shown as solid lines. Known portions of obstacles are shaded dark, while

unknown portions are shaded lightly. Finally after the robot reaches G, the best path from

S to G is shown. Figures 4.13 (D) and (E) show how as the robot gets closer to G, path

planning can be performed using the Partial Distance Transform.

s

\

p^^_

11

8

6

9

S

M*M*

\

bm
7

I

I

lilt

1 1
IG-

(4

F2"

•?

2

i l l

JQ.
I

(4

.."

Figure 4.13

The Partial Distance Transform.

-99-

4.8 Experimental Results of the EEA

In this section four experimental results of the EEA using sonar data are presented. In

Chapter 2 of this thesis a method was presented for building environment maps for a

mobile robot from live sonar data. Chapter 2 presented four experimental results of map

making (namely Figures 2.17 - 2.20). These four results have been used as input to the

EEA. The E E A was implemented on a Macintosh II microcomputer.

Figure 4.14 shows the results of the EEA operating on the environment map described

in Figure 2.17. Figure 4.14 (A) shows the initial map together with the start (S) and goal

(G) locations, which were supplied to the E E A . From the map data a quadtree

representation of the environment was built as shown in Figure 4.14 (B). A path between

the start and goal positions was planned using the two (2) quadrant R E D U C E D look

ahead function. The planned path is shown in Figure 4.14 (C). During the course of path

execution to the goal the robot encounters an obstacle at the position (R) as shown in

Figure 4.14 (C). At this point the navigation system instructs the mobile robot to collect

more sonar range readings and build a new map. From the new map data the quadtree is

reconstructed and a new path is planned to the goal as shown in Figure 4.14 (D).

Figures 4.15,4.16 and 4.17 show the results of the EEA operating on the environment

maps described in Figures 2.18, 2.19 and 2.20. Diagram A in all the figures shows the

initial map together with the start and goal locations, which were supplied to the EEA.

The quadtree representation of the environment map, and the planned path between the

start and goal locations using the two (2) quadrant R E D U C E D look ahead function are

shown in Diagram B in all of the figures.

-100-

B

®

-i
<D

--0

Figure 4.14

Operating the EEA with sonar range data from Figure 2.17.

-101-

- *

©

-r'
+ ©

:

A B
Figure 4.15

Operating the EEA with sonar range data from Figure 2.18.

A B
Figure 4.16

Operating the EEA with sonar range data from Figure 2.19.

-102-

©
a.

©

Figure 4.17

Operating the EEA with sonar range data from Figure 2.20.

4.9 Conclusions

This chapter has shown that quadtrees and distance transforms provide an effective

mechanism for developing an algorithm (EEA) to explore an environment with a mobile

robot. It has been shown that environments can be efficiently modelled with quadtrees,

and distance transforms can be applied to plan paths in known and unknown portions of

an environment. The E E A provides an elegant way of planning paths in unknown regions

of an environment. The algorithm assumes that all unknown areas are free space. This

assumption allows unknown regions to be efficiently modelled and path planning is

straight forward. However, should the assumption prove to be false i.e the unknown

areas are not free space, the E E A can readily incorporate new environment data into the

quadtree and replan a fresh path. The E E A approach to path planning which consists of

making an optimistic plan, attempting to execute the plan and modifying the plan in the

event of a failure of the original plan, is in keeping with human path planning strategies

which were discussed in Section 3.2.

A n efficient method for propagating the distance transform through a quadtree was

developed. Despite the efficiency of this new technique the distance transform is

-103-

•™1

-1

„#!
&

computationally expensive. The problem of expensive computation of the distance

transform was addressed by limiting the recomputation of the distance transform to a

partial update. The affect of the partial distance transform on the E E A is that the algorithm

does less work as the robot gets closer to the goal.

Path planning using quadtrees and distance transforms yields a coarse solution path of

free space quadrants. In this chapter a new mechanism was developed for the efficient

extraction of a fine path from the coarse path. This was done by the construction of a

dynamic visibility graph. The type of fine path that can be generated with this new

technique is flexible. The visibility graph can be used to fully or partially optimi.se the path

between the start and goal locations. Full path optimisation is only useful if the

environment is known. Fully optimising a path in an unknown environment is likely to be

a computational waste, since an unexpected obstacle will necessitate replanning the path.

The partial optimisation of the fine path is a cheap and useful strategy in an unknown

environment.

Despite the limitation that the EEA stipulates that paths must lie completely within the

boundaries of free space quadrants, and that paths between quadrants are allowed only in

the horizontal and vertical directions, the E E A produces "reasonable" paths. While a

solution path is not a shortest path to the goal, the path is a "negotiable" path. A negotiable

path avoids clipping the comers of obstacles and does not run along the edges of

obstacles. Such a path strategy is acceptable since there are uncertainties in the exact shape

and position of obstacles in the environment, and the precise position of the robot is not

always known.

In this chapter it was shown that the EEA can operate with a real mobile robot using

live sonar data to navigate autonomously in an unknown environment Experiments were

performed which required the robot to navigate to goals that were located in unknown

regions of the environment. In all the experiments the robot was able to successfully reach

each desired goal, and in doing so, explore and build maps of the environment.

-104-

http://optimi.se

Chapter 5
Path Planning Behaviours

5.1 Introduction

The second goal of this thesis was to build a robot path planner that is capable of

inducing different types of path planning behaviours. A robot path planner should not

only find the "optimum" paths i.e. shortest distance to the goal, but the system should

also be able to generate "conservative", "adventurous", and "visit all" paths. A robot path

planner should also produce a behaviour, which allows the robot to systematically "learn

all" the unknown regions of an environment. In all the discussions this far, it has been

assumed that the robot is dealing with a static non-changing environment Thus once the

robot discovers an obstacle the information regarding the shape and position of the

obstacle does not change thereafter. However, in practice environments are dynamic. The

position of obstacles in the environment can change. A robot path planner can be adapted

to operate in a dynamic environment by the addition of a "forgetful" behaviour. This

behaviour can co-exist with the other robot path planning behaviours. The "forgetful"

behaviour causes the robot to gradually forget information that has been acquired about

the environment Knowledge about parts of the environment which have not been sighted

by the robot for a significant time gradually decay and finally disappear. The effect of the

forgetful behaviour upon robot knowledge of the environment can be looked upon as the

vapour trail behind a jet airplane.

Section 5.2 describes a method for extending the capabilities of the Environment

Exploration Algorithm (EEA), to include "conservative", "adventurous", "visit all",

"learn all" and "forgetful" path planning behaviours. Section 5.3 describes how the

original algorithm for the E E A which was presented as Algorithm 4.1 can be reformulated

to include the concept of path planning behaviours.

-105-

A great deal of past research into mobile robot navigation has concentrated on the

problem of finding the shortest paths through known environments. The biggest

challenge in building a competent path planner is to reconcile the conflicting requirements

of finding what is a "safe" path from a start location to a goal location. The "safe" path

should be the shortest possible path, which maintains a safe distance from obstacles.

Section 5.4 presents a mechanism which allows the E E A to plan "safe" paths for a robot

to execute. This section also describes how the consideration of safety distance from

obstacles can be extended to the [Jarvis et. al. 86] path planner which is based on distance

transforms applied to grids.

The third goal of this thesis was to construct a path planner which could find the

"best" path from a start location to a goal location. The "best" path should be the shortest

possible path, staying outside unknown areas, and at the same time keeping a safe

distance from obstacles. Section 5.5 presents a method for further extending the

capabilities of the E E A , to include the consideration of safety distance from obstacles

while staying outside unknown areas.

Section 5.6 presents experimental results of robot path planning behaviours using the

sonar range data which was collected in Chapter 2.

Finally in Section 5.7 the conclusions that were reached and the insights that were

gained from investigating the problem of path planning behaviours are presented.

The path planning behaviours presented in this chapter are applicable to a robot which

has been approximated as a cylinder.

-106-

5.2 Path Planning Behaviours

This section describes how the following six different path planning behaviours can be

implemented:

* optimum path behaviour

* conservative path behaviour

* adventurous path behaviour

* learn all behaviour

* visit all behaviour

* forgetful behaviour

Section 3.3.3 of this thesis reviewed the work of [Jarvis et. al. 86], w h o used distance

transforms based on grids to generate "optimum", "conservative", "adventurous", and

"visit all" paths. This approach used a "factor" function to give different weights to the

distance transform depending on the type of grid cell; known or unknown. Using the

factor function set to 1 for known and unknown cells produced an optimum path

behaviour. However the factor function could be varied to induce different behaviour. If

an "adventurous" behaviour was required the factor in known cells was doubled. If on the

other hand, a "conservative" behaviour was sought in which the robot avoided unknown

cells, the factor in unknown cells was doubled.

To implement path planning behaviours with the EEA, a mechanism for representing

known and unknown regions in a quadtree is required. To achieve this aim, additional

space needs to be provided within each quadtree node to store the "confidence" the

navigation system has in a node belonging to a particular class e.g. 9 0 % confidence that

this node is a free node. The confidence value in a quadtree node is updated by the

navigation system every time the robot visits or observes the node. W h e n the robot visits

a quadtree node the confidence value of the node is calculated by determining the area that

has been swept by the robot inside the quadrant during the execution of a planned path,

and dividing it by the area of the quadrant. Quadtree nodes which are sighted by the

-107-

robots environment sensors have their confidence values updated. This update is done

by determining the area that has been sighted by the robot and dividing it by the area of

the quadrant

The allocation of memory to store confidence values in internal nodes of the quadtree

can be viewed as unnecessary overhead since confidence values apply only to the leaf

nodes of the quadtree. However the tree structure of the quadtree can be exploited to keep

track of how much of the environment is known. The leaf nodes in the quadtree contain

the confidences about the structure of the environment. A postorder traversal of the

quadtree summing up the confidences of the leaves, dividing this sum by (4) four, and

passing the result up to the parent node, will yield at the root node the overall confidence

level that the E E A possesses about the structure of the environment

Figures 5.1 and 5.2 show the growth in the confidence values of the leaf nodes of a

quadtree environment model as a robot equipped with a tactile sensor navigates in an

unknown environment, from a start location (S) to a goal location (G). Figure 5.1 (A)

shows the initial conditions in which the robot has no knowledge about its environment.

The robot assumes that the environment is free space. However the confidence in this

assumption is 0%. A s the robot navigates towards the goal, as shown in Figures 5.1 (B)

- (D) and 5.2 (A) - (D), it acquires more information about the environment and the

confidence values of the free space quadrants that have been traversed grow accordingly.

The implementation of path planning behaviours described in this research uses a

"factor" function, similar to the [Jarvis et. al. 86] approach. The "factor" function uses the

confidence values of the free space quadrants to give the relevant weighting to the distance

transform, for each path planning behaviour. The E E A evaluates the "factor" function by

a set of rules. The evaluation rules for each behaviour are described in the following three

subsections.

-108-

©

• 1
ilffjj

1

©
. Ijl

5E1E1LJ

B

(

©r*

0

i stif

ij :

•tr
0

l i . :

0

0

xftiftlpiiiM

im °

j ||

{[j

JKW

©

0

©-1
40

a

mM
so

I!:!0' 1:

50

a

I I I

li|

B|(||! 1
0

0

0

a

C D

Figure 5.1

Growth in the confidence values of free space quadrants during path execution.

-109-

0

arn
40

0

wjkw
•Sit*

so

1E1
SB

0

I
ll

3^1

M °

1 @
oj

0

0

0

0

0

®r\

0

|

51 50

•

50 ™ 6

0

0

©

I

•

B

an
.'.nrr-^r. Kf.
I 11

'ISSBB*

mm

m

50 50

©

s

©--1
40

0

Ml
50

113
50

9

• ©

gJL 50 ^ 6

0 9

C D

Figure 5.2

This figure continues the experiment which was started in Figure 5.1.

-110-

5.2.1 O p t i m u m Path Planning Behaviour

If the robot is in the behaviour mode of planning "optimum" paths, free spaces and

unknown spaces are considered to be the of the same class, since the best assumption that

can be made of unknown space is that it is free space. In this case the "factor" function is

set to a value of 1. W h e n the distance transform is propagated through the quadtree it is

multiplied by the "factor" function. In the case of planning "optimum" paths this results in

a normal distance transform propagation. Figure 5.3 shows the distance transform which

corresponds to the behaviour of planning an "optimum" path, for the environment

exploration expedition which was described in Figures 5.1 and 5.2. In this figure the

broken line shows the "optimum path" between the start (S) and goal (G) locations.

14

©•,
16 ••.

* • • • •

19

H io
*n;:'xx:-

,••

12

9

PIIII
11

15

•Miiii'ii;':':':':*:' { CZ 1

m 9 *:";•• :••:•.• •.•:••.'••.••:•

• .*,-;l:l![;l:f:!;!:!:!

I P III '6 '5 4

11 9

13

7

11

Figure 5.3

Optimum path planning behaviour.

-Ill-

5.2.2 Conservative Path Planning Behaviour

Once a robot has learnt a portion of the environment, there could be a need to find a

path to a goal using the free space quadrants in which the E E A possesses the greatest

knowledge. In this case the factor function evaluates to 1 + [1 - confidence], where [1-

confidence] is a measure of the confidence the system has in a leaf not being free space.

Unknown quadrants are assumed to be free spaces, with zero (0) confidence. W h e n the

distance transform is propagated through the quadtree using the factor function, this

results in a weighted distance transform which has higher costs for the traversal of

unknown regions. Figure 5.4 shows the distance transform which corresponds to the

behaviour of planning a "conservative" path, for the environment exploration expedition

which was described in Figures 5.1 and 5.2. In this figure the broken line shows the

"conservative" path between the start (S) and goal (G) locations.

28

©-,
29 '*•.

36

ji 20

Biol

23

18

l l l l l l i

20

28

mmwm °
•i;j;i;i];;i;i;i;j;i;j

ii-rii&iii-l-:-:-:-! *

;
*

jJMjl 12j io| a

17 14

22

•

19

Figure 5.4

Conservative path planning behaviour.

-112-

5.2.3 Adventurous Path Planning Behaviour

A robot may operate in an exploratory frame of mind and favour unknown spaces en

route to a goal. In this case the function factor evaluates to 1 + confidence, where

confidence is a measure of the confidence the system has in a quadrant being free space.

When the distance transform is propagated through the quadtree, this results in a weighted

distance transform which has higher costs for the traversal of known regions. Figure 5.5

shows the distance transform which corresponds to the behaviour of planning an

"adventurous" path, for the environment exploration expedition which was described in

Figures 5.1 and 5.2. In this figure the broken line shows the "adventurous" path between

the start (S) and goal (G) locations.

14

,..•'

©••'-'
18

24

•hof
Hl'ibl

13

.,.,,.,.,,.t., |.|.t |.

9
"i'l :*i*i ;'-':."i"ri •

12

20

mmmm °

lllllli

I:i:!:.;i;pj:;|:!:i:ij

mm Llliiil4

14 11

16 12

Figure 5.5

Adventurous path planning behaviour.

-113-

5.2.4 Learn All Path Planning Behaviour

The robot may operate in the behaviour mode of planning "learn all" paths. This path

planning behaviour can be accomplished by making the centroids of free space quadrants

with the lowest confidence values the goals. Once the robot has entered a goal quadrant,

the robot traverses the whole quadrant in a systematic manner, so that the robot gains

100% confidence about the contents of the quadrant. To achieve the "learn all" mode of

robot navigation, the distance transform for "adventurous" path planning is used. This

causes the robot to traverse free space quadrants with low confidence values en route to

the goal. T o improve the efficiency of the learn all mode, the robot should also

systematically sweep the low confidence free space quadrants en route to the goal.

The systematic sweep of a free space quadrant should be performed in a manner that

prevents the robot from passing over any portion of the quadrant more than once. This

can be achieved using the following heuristic strategy. Each quadrant to be swept has

entry and exit edges through which the robot enters and leaves the quadrant. The

navigation task is to reach the exit edge from the entry edge with a path which traverses

the entire contents of the quadrant. This task can be achieved by moving the robot to a

comer of the quadrant which is furthest from the exit edge. From this comer there is a

choice of two comers to which the robot can be moved. The comer which is furthest from

the exit edge is selected. The progressive sweep of the quadrant creates a rectangular

unswept region. The robot enters the unswept region and moves to the furthest comer

from the exit edge. This procedure is repeated until the robot reaches the exit edge. Refer

to Figure 5.6 for an example of systematically sweeping a free space quadrant.

-114-

jjjjjjj

::;:::::;::;

entry edge

Figure 5.6

Systematic sweeping of a free space quadrant with a cylindrical robot.

The tree structure of the quadtree is exploited to keep track of how much of the

environment has been learnt. A postorder traversal of the quadtree summing up the

confidences of the leaves, dividing this sum by (4) four, and passing the result up to the

parent node, will yield at the root node the overall confidence level that the E E A possesses

about structure of the environment. The "learn all" path planning behaviour monitors the

overall confidence value, and continues exploring the environment until the overall

confidence value has reached 100%. Using this approach it is possible to set a threshold

on the level of knowledge that is to be acquired by the "learn all" path planning behaviour.

For example it could be decided to set the threshold at 8 0 % , the E E A will continue to

learn the environment until the overall confidence value stored in the root of the quadtree

has reached the threshold value. Adopting a hierarchical structure to store the confidence

levels about the environment assists in the search for the lowest confidence quadrant

which needs to be explored next by the EEA. Rather than perform a breadth first search of

the quadtree for the quadrant with the lowest confidence value, a depth first search is

performed. The child of the root node with the lowest confidence value is selected. If the

selected node is a leaf node then the search is terminated, otherwise the children of the

selected node are searched for the lowest confidence valued child. This search continues

until a leaf node is reached. While this strategy does not guarantee that the lowest

-115-

confidence node in the quadtree is selected, a quadrant will be selected which requires

exploration.

Figures 5.7 - 5.10 show an example of a robot equipped with a tactile sensor

progressively learning an unknown environment until the robot has gained 100%

confidence in the environment The robot starts learning from a start location (S) and once

it completes learning it will stop at the goal location (G). Figure 5.7 (A) shows the initial

conditions in which the robot has no knowledge about its environment The robot

assumes that the environment is free space. However the confidence in this assumption is

0%. The robot systematically sweeps the environment, as shown in Figures 5.8 - 5.10.

When an obstacle is encountered the environment quadtree model is updated and the

confidence values of the free space quadrants that have been traversed are updated

accordingly. Figure 5.10 (D) shows that the robot has learnt the entire contents of all the

free space quadrants that can be reached. Upon completion of learning the robot returns to

the goal specified in Figure 5.7 (A).

1 X'

© II

©

100

75

1 1 1 ! Pi

39

:,xx;xx
" O i x

25

... . .

i

50

©

B
Figure 5.7

Learn all path planning behaviour.

-116-

B

75

100

100

MB j
TBI

109
100

25

100

0 |
i \ ji

i ' :i

! 1 ^

gW|
too

ji [:

100

a

^

100

100

uLT

i

Figure 5.8

This figure continues the experiment which was started in Figure 5.7.

-117-

100

100

73

J^g^g

100 100

25

100

n n n B

(G) <••>» —

0 ii!
ii ii

g

II ~
100 100

0

100

100

100

•

100

100

100

1
11

100 too

25

100 100

100

100

100

1

100

p.

too

k#l
1

o i

1

P

• wy^tt^ISlII •

i i

100 100

25

100 109

a

109

109

199

9

B

100

100

100

g»gggf<fi*f!r

100 100

25

100

•

J '
1

m

100

W.
Wi

100

0

100

100

100

0

100

100

100

100

:

I—0-gii |

109 100 100

25

100

100

100

100

Figure 5.9

This figure continues the experiment which was started in Figure 5.7.

-118-

100

ffl

100

100

I H H H

100 100

23

100

Is

- f 1 1 'BUI
• 100 09

0

100

100

100

9

100

100

109 100

25

too

p0

1

•
I6 1 1 | |

100

In
100

a

100

100

100

a

B

100

100

100

li!

too

too

109

f l ill
SI
114 M>l

too

too

too

\

too \

fS \ \iV\
1

1
I]

Figure 5.10

This figure concludes the robot navigation experiment which was started in Figures 5.7.

-119-

5.2.5 Visit All Path Planning Behaviour

In the previous discussion of path planning behaviours it was stated that it was

desirable for a robot to possess a path planning behaviour which causes it to "visit all"

free space quadrants. The path planning behaviour of "visit all" is useful in a known

environment where the the path planning task for the robot is to traverse all the regions of

free space. Such a behaviour would be useful in floor cleaning and security surveillance

robots. The "visit all" behaviour has been implemented by [Jarvis et. al. 88] using grids.

This behaviour can also be implemented using quadtrees. The quadtree implementation is

based on the approach used by [Jarvis et. al. 88]. It follows the sequence of free space

quadrants that take the robot along the longest path to the goal. As each quadrant is visited

it is systematically swept in the same manner as in the "learn all" behaviour. Before a

quadrant is swept a check is made to see whether there is a neighbouring quadrant with a

higher distance transform that has not been previously visited. W h e n such a neighbouring

quadrant exists then the current quadrant is not swept, instead the robot proceeds directly

to the quadrant with the higher distance transform value. Once the robot enters this

quadrant the check for neighbouring quadrants with a higher distance transform value is

repeated. A free space quadrant is not swept unless the quadrant is surrounded by

quadrants with lower distance transform values or quadrants that have already been

systematically swept. Such a strategy is necessary to prevent the robot from crossing

quadrants which have been swept. This m a y seem to be an unnecessary measure;

however if the robot was a floor painting robot, the robot could easily paint itself into a

comer and would have no recourse other than traversing areas covered with wet paint.

The visit all behaviour implemented with quadtrees produces a reasonable path between

the start and goal locations. However the resulting path using quadtrees is generally

inferior to the one produced using grids. This is due to the fact that quadtree distance

transform values are less exact measures of the distance to the goal than grid distance

transform values. It is desirable to follow the rings of distance transform contours as they

radiate from the goal. It is easier to follow the distance transform contours with grids

-120-

rather than with quadtrees. Refer to Figure 5.11 for an example of the visit all behaviour

implemented with quadtrees and grids for an identical environment with the same start(S)

and goal(G) locations.

Figure 5.11

This Figure shows the Visit All path planning behaviour for quadtrees and grids.

-121-

5.2.6 Forgetful Path Planning Behaviour

In the introductory discussions of this chapter, it was stated that a "forgetful"

behaviour is a useful mechanism that allows a robot to operate in a dynamic environment.

The "forgetful" behaviour co-exists with the other path planning behaviours. This

behaviour causes the robot to gradually forget information about the environment that has

been acquired by other path planning behaviours.

The "forgetful" behaviour is implemented by traversing the quadtree on a regular clock

period, and decaying the confidences of all the leaves of the quadtree by a fixed amount.

Once the confidences of the quadtree leaves reaches (0) zero, the neighbouring leaves

which belong to the same parent quadrant are merged into one quadrant leaf. This has the

affect of pruning the quadtree back one level. The new consolidated leaf is regarded as

free space. However the confidence in this assumption is 0%.

Refer to Figures 5.12 and 5.13 for an example of the "forgetful" behaviour in

combination with the "learn all" behaviour. Figure 5.12 (A) shows an unknown

environment and the start (S) and the goal (G) locations. In this example Figures 5.12 (B)

- 5.13 (D) show the robot learning the entire structure of the environment while at the

same time forgetting portions of the environment it has not sighted for long periods of

time. A s the robot which is equipped with a tactile sensor, as it navigates towards the goal

(G), it acquires more information about the environment and the confidence values of the

free space quadrants that have been learnt grow accordingly. While the robot is learning

the environment, the forgetful behaviour is simultaneously decaying the acquired

knowledge about the environment by 4 % every 30 clock ticks. Figure 5.13 (F) shows the

robot reaching the goal (G). At this point the "learn all" behaviour will cause the robot to

relocate the goal (G) to a quadrant with the lowest confidence value. The robot will then

plan a "learn all" path to the new goal. The co-existence of the "learn all" and "forgetful"

behaviours causes the robot to operate continuously. This type of behaviour is suitable for

a security surveillance robot.

-122-

B

Figure 5.12

Learn all behaviour in combination with the forgetful behaviour.

-123-

B

32

48

©
f> /

32 0

68 —

:i...; ;i
Sifflgl B ij

I ii!!i!i|i!ii
iiSji'j 'i ;i

'•ik::
•jvi-]i i;

| MJ$f,:

ij | iji.lipfiiii.ijtiii-

\\\r

L

— 7 2

1
1
80 —

W 76

0

4
HP •\W

0

80

d fc

£7
0

Figure 5.13

Continuation of the experiment which was started in Figure 5.12.

-124-

5.3 Algorithms for Path Planning Behaviours

The path planning behaviours which were described in Section 5.2 can be incorporated

into the EEA (Algorithm 4.1). The revised pseudo code EEA is shown as the procedure

NAVIGATION in Algorithm 5.1.

procedure NAVIGATION(Q, start, goal, behaviour)
repeat

cost = 0
perform PATH_PLANNING(Q, goal, cost, behaviour)
if (goal reachable) then

perform PATH_EXECUTE(Q, start, goal, stop, sensors)
if (stop * goal) then

perform MODEL_UPDATE(Q, start, stop, sensors)
start = stop

end if
end if

until (stop = goal or goal not reachable)
end procedure

Algorithm 5.1

Component processes of the EEA.

Since the original EEA has been revised the algorithms of the component processes of

the EEA must also be revised. The original PATH_PLANNING process which is based

on the fast computation of the distance transform (Algorithms 4.3,4.4 and 4.5) has been

revised to include path planning behaviours. The new PATH_PLANNING algorithms

are described in Algorithms 5.2,5.3 and 5.4.

procedure PATH_PLANNING(Q, goal, cost, behaviour)
leafg = LOCATE(goal)
perform STORE(leafg, cost)
repeat

change = FALSE
perform PATH_NW(Q, change, behaviour)
perform PATH_SE(Q, change, behaviour)

until (change = FALSE)
end procedure

Algorithm 5.2

Path planning algorithm.

-125-

procedure PATH_NW(Q, change, behaviour)
if (GREY(Q)) then

for quadrant = NW, NE, SW and SE do
perform PATH_NW(SON(Q, quadrant))

end for
else if (WHITE(Q)) then

direction = EAST
do while (direction != WEST)

perform GET_NEIGHBOURS(Q, direction, neighbours)
do while (more neighbours)

cost = FACTOR(behaviour, leaf)*SIZE(neighbour)+EXTRACT(Q)
minimum = EXTRACT(neighbour)
if (cost < minimum) then

change = TRUE
perform STORE(neighbour, cost)

end if
neighbour = NEXT_NEIGHBOUR(neighbours)

end do
direction = NEXTJDIRECTION(direction)

end do
end if

end procedure
Algorithm 5.3
Propagate the distance transform the NE comer algorithm.
procedure PATH_SE(Q, change, behaviour)

if (GREY(Q)) then
for quadrant = SE, SW, NE and NW do

perform PATH_SE (S0N(Q, .quadrant))
end for

else if (WHITE(Q)) then
direction = WEST
do while (direction != EAST)

perform GET_NEIGHBOURS(Q, direction, neighbours)
do while (more neighbours)

cost = FACTOR(behaviour, leaf)*SIZE(neighbour)+EXTRACT(Q)
minimum = EXTRACT(neighbour)
if (cost < minimum) then

change = TRUE
perform STORE(neighbour, cost)

end if
neighbour = NEXT_NEIGHBOUR(neighbours)

end do
direction = NEXT_DIRECTION(direction)

end do
end if

end procedure
Algorithm 5.4
Propagate the distance transform the SW corner algorithm.

In Algorithms 5.3 and 5.4 the function FACTOR is the only process which has not

been previously described. In this process the function CONFIDENCE extracts the

confidence value of a quadtree node. The details of FACTOR are given in Algorithm 5.5.

-126-

function FACTOR(behaviour, Q)
if (BLACK(Q)) then

COSt = oo

else if (WHITE(Q.)) then
if (behaviour = OPTIMUM) then

cost =1.0
else if (behaviour = CAUTIOUS) then

cost = 1.0 + (1 - CONFIDENCE(Q)
else

cost = 1.0 + CONFIDENCE(Q)
endif

else
cost =0.0

endif
return (cost)

end function
Algorithm 5.5

Factor algorithm.

During the course of exploring an environment the robot will traverse free space

quadrants which have been visited earlier in the robot's journey. A mechanism is needed

to update the free space confidence of a quadrant that has been revisited. The free space

confidence, which is calculated for the current visit by the robot to the quadrant, must be

added to the free space confidence generated on previous visits to the quadrant by the

robot. The free space confidence currently stored in a quadrant must be adjusted to

describe the free space confidence of the portion of the quadrant not swept by the robot on

this visit. This is done by multiplying the confidence value stored in the leaf by the free

space confidence of the area not swept by the robot on this visit Algorithm 5.6 details a

procedure called UPDATE_FREE_CONFIDENCE. This procedure describes the

calculation of the updated free space confidence of a quadrant given the path length of the

current journey through the quadrant and the confidence value currently stored in the

quadrant.

procedure UPDATE_FREE_CONFIDENCE(quadrant, path_length)
confidence = [path_length * ROBOT_AREA] / AREA(quadrant)
new = GET_CONFIDENCE(quadrant) * [1 - confidence] + confidence
perform STORE_CONFIDENCE(quadrant, new)

end procedure

Algorithm 5.6

Ufxiate free space confidence algorithm.

-127-

The U P D A T E _ F R E E _ C O N F T D E N C E procedure must be incorporated into the

PATH_EXECUTION algorithm which was described in Algorithm 4.6. The revised

algorithm is described in Algorithm 5.7.

procedure PATH_EXECUTE(Q, start, goal, 3top, sensors)
obstacle = FALSE
repeat

leaf = LOCATE(Q, start)
distance_transform = EXTRACT(leaf)
if (distance_transform = 0) then

subgoal = goal
else

subgoal = OPTIMISE(Q, leaf,goal)
end if
perform MOVE(3ubgoal, stop, sensors)
if (stop * subgoal) then

obstacle = TRUE
end if
perform UPDATE_FREE(Q, start, stop)
start = subgoal

until (start = goal or obstacle)
end procedure

Algorithm 5.7
Path Execution algorithm.

The update of free space confidence values can also include the information detected by

sonar sensors on board the robot. As the sonar maps described in Chapter 2 are grid

based, it a straight forward procedure to calculate what percentage of a quadrant is

covered with free space cells detected by sonar. This value can be incorporated into the

updated confidence value in exactly the same manner as the area swept by the robot

during path execution. Examples of this update are provided in Section 5.6.

Once the robot has completed path execution, the navigation system is ready to update

the environment map and the confidence model of the environment. Path execution

terminates on one of two conditions; either the robot reached the goal or it encountered an

obstacle. If the robot reaches the goal, the environment map does not change; however

the confidence that the environment is being correctly modelled increases. If the robot

encounters an obstacle the environment map is updated to show the presence of the

obstacle and the confidence model of the environment is also updated. The general

-128-

algorithm for updating the quadtree model of the environment was presented in Algorithm

4.10. This algorithm must be revised to include the update of the confidence model of the

environment.

Once the algorithm to update the environment models is invoked, it finds the leaf node

in the quadtree where the robot is located. This leaf is checked to see if the obstacle

sensor readings occur inside this quadrant. If sensor readings occur inside this leaf

quadrant then the leaf quadrant is divided into four sub quadrants. Quadrant division

continues until the leaf in which the robot is located is isolated from the leaves the sensor

readings are in, or the leaf reaches the smallest size resolution allowable. Every time a leaf

is divided the free space confidence of the new leaves is calculated by determining what

portion of each child quadrant has been swept by the robot Once the location of the robot

has been isolated from the sensor readings and the free space confidences have been

updated, the sensor readings detected by the robot are each in turn isolated to a leaf of the

smallest size resolution. This operation may require the division of leaf quadrants and the

updating of free space confidences.

Isolating the sensor reading to the smallest resolution leaf may be seen as unnecessarily

fragmenting the leaves which span obstacles. A consolidation procedure which can detect

that neighbouring leaves are part of the same obstacle is called to prune and the quadtree

back to the parent of the leaves. Also the consolidation procedure combines the free space

confidences of the merged children nodes. This is done by summing up the confidence

values of all the children nodes and dividing the sum by (4) four. The revised

M O D E L J J P D A T E algorithm is presented in Algorithm 5.8.

-129-

procedure MODEL_UPDATE(Q, start, stop, sensors)
exit = FALSE
repeat

leaf = LOCATE(Q, stop)
if (SAFE(leaf, sensors) then

perform STORE_C0LOUR(leaf, WHITE)
confidence = CALCULATE_CONFIDENCE(start, stop, leaf)
perform STORE_CONFIDENCE(leaf, confidence)
exit = TRUE

else if { leaf is smallest resolution) then
colour = CLASSIFY(leaf, sensors)
perform STORE_COLOUR(leaf, colour)
perform STORE_CONFIDENCE(leaf, 1.0)
exit = TRUE

else
perform STORE_COLOUR(leaf, GREY)
perform DIVIDE(leaf, child)
for i = 1 to 4 do

confidence = CALCULATE_CONFIDENCE(3tart, stop, leaf)
perform STORE_CONFIDENCE(child[i], confidence)

end for
end if

until (exit)
for (i = 1 to number of sensor readings) do

exit = FALSE
repeat

leaf = LOCATE(Q, sensor[i])
if (leaf is smallest resolution) then

perform STORE_CONFIDENCE(leaf, 1.0)
perform STORE_COLOUR(leaf, BLACK)
exit = TRUE

else
memory = GET_CONFIDENCE(leaf) / 4
perform DIVIDE(leaf, child)
for i = 1 to 4 do

perform STORE_CONFIDENCE(child[i], memory)
end for

end if
until (exit)

end for
perform CONSOLIDATE(Q)

end procedure
Algorithm 5.8
Model Update algorithm.

-130-

5.4 Planning Safe Paths

Section 3.3.6 discussed the problem of considering the safety of a robot during path

planning. This section presents a method for planning paths that take into account robot

safety. The method is based upon an extension to the distance transform methodology of

path planning. This section will show how path planning with robot safety criteria can be

incoiporated into E E A and the [Jarvis et. al. 86] grid based path planner.

The distance transform can be modified to include distance from obstacles safety

information. Conceptually the distance transform is equivalent to dropping the goal

"pebble" into the environment "pond" and watching the resulting wave front flow around

obstacles and eventually through all free space in the environment. The "pebble in the

pond" concept can be extended further, by observing that as the wave front flows into

obstacles, some of the wave front is reflected back. In other words the obstacles are

exerting a repulsive potential, and the strength of this potential varies inversely with the

distance from the obstacle. The distance transform can be inverted into an "obstacle

transform" where the obstacle cells become the goals. The resulting transformation yields

for each free cell in the data structure the minimal distance from the centre of the free

space cell to the boundary of an obstacle cell. Refer to Figure 5.14 for an example of the

obstacle transform. Figure 5.14 (A) shows the grid based obstacle transform and Figure

5.14 (B) shows the quadtree based obstacle transform. The obstacle transform values for

the quadtree represent the distance to the nearest obstacle from the centre of the quadrant.

The grid based obstacle transform values represent the distance to the nearest obstacle

from the furthest boundary of the grid cell. To determine the distance to nearest obstacle

from the centre of any grid cell, subtract 0.5 from the obstacle transform value.

-131-

3

3

3

3

3

3

2

2

2

2

2

2

2

1

1

1

1

t

2

1

t

2 2

1

1

2 2

2

2

2

2

2

2

0
2

0

2

0

o

0.5 0.5 0

1

.5

.5 Jjjjj

•5 1

5 |

5 0.5

1

C .5

0.5

0.5

0.5

0.5 0.5

1

I

-

0.5 0.5

B

Figure 5.14

Obstacle Transforms grid based and quadtree based.

Prior to planning a path a preprocessing step generates the obstacle transform. In the

grid based distance transform, this is a straight forward affair. The obstacles cells are

marked as goals, and the distance transform is calculated. The use of such a

preprocessing step in quadtree based path planning was first described by [Kambhampati

et. al. 86]. This approach used the obstacle transform information together with the A *

algorithm to plan safe paths. The preprocessing algorithm used by [Kambhampati et. al.

-132-

86] is a variant of the [Samet 88] distance transform for quadtrees algorithm. The Samet

algorithm exploits the structure of the quadtree to efficiently generate the obstacle

transform. The research reported in this section uses the [Kambhampati et. al. 86]

preprocessing algorithm to generate the obstacle transform.

Planning safe paths is done by propagating a new cost function from the goal cell

through the free space cells, which is a weighed sum of the distance and obstacle

transforms. This cost function will be refered to as the "path transform" (PT). The path

transform for a cell c is defined as:

PT(c) = DT(c) + a obstacle(OT(c))

where DT(c) is the value of the distance transform from the goal. The function

obstacle(OTfc)) is a cost function which represents the degree of discomfort the nearest

obstacle exerts on a cell c. The weight a is a constant \. 0 which determines by how far

the solution path will avoid obstacles.

Finding the shortest path to a goal with consideration of robot safety using path

transforms is done in the same manner as finding the shortest path using distance

transforms, by following the steepest descent path of the path transform. The path

transform unlike potential field planning does not yield a transform with local minima,

because all the costs of paths to the goal from each cell are calculated. The path transform

value stored for each cell is the minimum propagated path cost to the goal. Examples of

the path transform applied to grids and quadtrees with different values of a are shown in

Figures 5.15 and 5.16 respectively. The lightly shaded quadrants in both figures indicate

the solution path from a start location (S) to a goal location (G). Figures 5.15 (A) and

5.16 (A) show the path transform with a = 0.0. This results in a normal distance

transform where the shortest path to the goal is best. Figures 5.15 (B) and 5.16 (B)

shows the path transform with a = 0.5. This results in a solution path which deviates

around the obstacles, and takes a safer path to the goal. Figures 5.15 (C) and 5.16 (C)

-133-

show the path transform with a = 1.0. This results in a solution path which deviates

further around the obstacles, and takes the safest path to the goal.

34|

| 31 1

9

6

3

0

10

7

4

11

8

12

11

15

14

1<1

28

25

22

19

18

/
16

29

26

23

22

/
20

19

-S'P | 20

30

27

26

24

23

22

23

31

30

38

35

34

33

26

25

26

29

28

29

39

38

37

35

36

33

32

31

32

42

41

39

38

37

36

35

34

35

45

/
43

42

41

40

39

38

37

38

9>
47

46

45

44

43

42

41

40

41

76

1 65 |

19

8

7
d>

20

/>
12

11

21

IJ
21

25

U
25

29

21

29

54

50

46

41

33
.>
25
33

53

42

3 f
3»

/
29

37

45

54

M
r 46
42

41

40

34

38

55

47

54

72

67

59

jfl

59

II
46

38

38

50

42

41

64

(50

56

5*

63

67

62

54

46

44

63

60

/
59

60

59

55

51

49

47

64

r4
<a
62

61

58

55

53

51

50

9>
66

65

65

62

59

57

55

54

53

B

Figure 5.15

The path transform applied to grids with different values of a.

-134-

9

7

5

4 I

8

6

5

4

3

2 1

ff§6: 'ftx
xS

4i

ft ;3|

;'2:

1

G 1

8

i

4

2 3

B

168

166

164

216 162

198

221

220

216

162

[108 |54|

228

216

162

108

54

lXR[X 54

198

168

1 JO

108 162

Figure 5.16
The path transform applied to quadtrees with different values of a.

-135-

The path transform like the distance transform when applied to quadtrees yields a

coarse solution path of free space quadrants between the start and goal locations. The

Optimise Path algorithm presented in Section 4.4 could be used to find a fine solution

path. However since this algorithm finds the path to the goal which is shortest, the

.solution path is likely to run down the sides of obstacles or clip the comers of obstacles.

Applying the Optimise Path algorithm to the path planning problem posed in Figure

5.16(b) will generate a path which runs along the edges of the obstacle. Using such a

strategy defeats the whole purpose of generating the path transform.

A n alternate strategy for generating a safe path is for the robot to steer through the

middle of the intersection of entry and exit boundary edges of quadrants. This strategy

generates relatively safe paths, and is reasonable during the exploration of an environment

by the robot. However this strategy suffers the "too far" problem, in situations where the

free space quadrants are large in size.

Choosing the mid point of the intersection of the boundary edges of quadrants does

not guarantee that this point is the safest point along the intersection edge. The safest point

on the intersection edge is found by examining the obstacle transform values of the

quadrants which are adjacent and normal to the intersection edge. The obstacle transform

values represent the distance from the centre of the quadrant to the nearest obstacle. While

it is not possible to calculate the exact distances the intersection edge is from the nearest

obstacle, an acceptable approximation can be made. The safest point is located at the point

which lies in between the obstacle transform values. Refer to Figure 5.17 for an example

of a fine solution path which is generated by using the safest points on the intersection

edge between the entry and exit edges of solution path quadrants. The obstacle transform

values of each quadrant are displayed, together with the safety values of the safest points.

The safest points are marked with the heavy crosses. The obstacle transform values of

adjacent quadrants which do not exist are assumed to be (0) zero. This only exists for

-136-

quadrants which are located on the outside perimeter of the quadtree. This strategy keeps

the solution path away from the outside boundaries of the quadtree.

Figure 5.17

The fine solution path generated by using the safest points on the intersection edges.

The fine solution path which is described by a sequence of safest points along the

intersection edge of quadrants suffers the "too far" problem, and tends to make

unnecessary detours. The solution path is in need of shortening and straightening.

The review of planning "safe" paths in Section 3.3.6 discussed the path improvement

technique reported by [Thorpe 84] called "path relaxation". This technique was based

upon sliding points of the solution path a small distance, and recomputing the safety cost

of the path. This procedure of sliding and recomputing the cost of the solution path was

iterated until the change in path cost between iterations converged to a small difference.

The approach used by Thorpe could be applied to this problem. However the

computational cost of iterating until a solution emerges is high. Instead, an improved path

can be achieved by relaxing the safety criteria of the safest points. The user decides what

is the desirable minimum distance smin the solution path can safely approach an obstacle.

The safest point is expanded along the intersection edge, such that all points along the

-137-

expanded safety interval are at least J T O „ from any obstacle. The Optimise Path process

(Algorithm 4.7) can n o w be used to find a fine solution path. Normally this algorithm

uses the full intersection edge between quadrants to shorten and straighten the solution

path. However in this situation only the expanded safety edge component of the

intersection edge is used to pull -taû t the solution path. Figure 5.18 shows the results of -fcqut

applying the path improvement algorithm to the problem posed in Figure 5.17. The safety

edges are marked as broken lines between heavy crosses. The safety edges have been

specified to have a safety criteria of Smin = 1.5. The resulting solution path is shorter and

straighter than the original solution given in Figure 5.17.

Figure 5.18

The fine solution path generated using the expanded safety edge and the Optimise Path Algorithm.

Applying the path improvement algorithm to the problem of finding "safe" paths posed

in Figure 5.16 results in the solutions given in Figure 5.19. This figure illustrates the path

improvement algorithm applied to the three G©jtase-paths generated with cc = 0.0,0.5 and coarse

1.0. The safety edges have been specified to have a safety criteria oismin = 1.0.

-138-

Figure 5.19

The path improvement algorithm applied to the three cov^se-paths shown in Figure 5.16. coarse

The details of the distance safety cost function must be discussed. Various cost

functions were used, but some had properties that were hard to handle. Linear cost

functions similar to those reported by [Kambhampati et. al. 86] were investigated first.

Such functions have the advantage of ease of computation. However, these functions did

not exert enough repulsion to always deviate the robot from the shortest path. Increasing

the slope of the cost function reduced the distance over which the function exerted an

influence. To remedy this situation exponential functions were used. These functions had

the desired effect of altering the solution path. However, the problem with exponential

functions is that they never reach zero, so all the objects have an effect on the solution

path, even when the robot is located at significant distances from obstacles. T o solve this

problem the exponential function was truncated at a fixed distance, but this left furrows

or trenches in the path cost function, and the solution paths tended to get caught in these

furrows. Similar experiences with these types of cost functions were reported by [Thorpe

84], Thorpe found that the most effective cost function was a cubic function that ranges

-139-

from zero at some maximum distance, set by the user, to the obstacles maximum cost at

zero distance. Such a cost function has the advantages of: creating a saddle between the

repulsion potential peaks of neighbouring obstacles, ease of computation, and having its

effects bounded in a local area. This research found experimentally that a cubic function

of the type suggested by [Thorpe 84] produced satisfactory results. Experiments using

quadratic functions instead of cubic functions also produced satisfactory results. In the

results presented in this section a cubic function of the following form was used as the

function obstacle:

obstacle(x) = a3 - x3

where x is the value of the obstacle transform for a free space quadrant, and a. is the

maximum range of the effect of the obstacle function. In the results reported in this

section a was set to (4) four.

An interesting spin-off of the path transform when applied to grids is that it forms a

better contour path for a robot to execute the behaviour of "visit all" path planning than the

contour path generated by the distance transform. The distance transform forms circular

contour patterns which radiate from the goal points. The path transform, on the other

hand, forms contour patterns which slope towards the goal, but also follow the shape

profile of obstacles in the environment Figures 5.20 and 5.21 show the distance and path

transforms for a path planning problem in an indoor environment. These figures also

show the robot execution paths for the "visit all" path planning behaviour for each form of

transform. The path transform produces the better execution path, since it produces a path

which has less turns and has more path segments that are straight. The distance transform

in Figure 5.20 produces a path which requires 37 turns and has an average length of 2.00

units for each path segment. In contrast the path transform in Figure 5.21 produces a path

which requires 19 turns and has an average length of 4.05 units for each path segment.

-140-

4B

I 45

I 42

I 41

40

1 39
40

41

••

47

44

41

39

37

36

37

38

•

46

©
40

37

34

33

34

35

•

47

44

41

•
30

31

32

•

48

45

44

S
27

28

29

•

\gg\

•
•

24

25

26

\gg\

4

3

4

21

22

23

•

3

©
3

B
18

19

22

•

4

3

4

15

18

21

•

7

6

7

e

11

14

17

20

\gg\

10

9

10

1 1

12

15

18

21

•

13

12

13

14

15

16

19

22

|

\

/
< ^

®

\

\

\

•
•
•

(G)
vl)

Figure 5.20

Visit all path planning behaviour using the distance transform.

-141-

••
534

51 1

488

465

442

441

440

441

••

•
533

440

417

394

371

348

347

418

•

•
534

©
488

465

442

395

324

395

•

•
535

464

535

•
\gg\

372

301

372

•

•
558

557

558

•
•
349

278

349

•

•
•
\fg\

•
•
•
326

255

325

•

•
94

93

94

\gg\

•
303

232

303

•

•
93

©
93

•
•
280

209

280

•

•
94

23

94

\gg\

•
257

186

257

•

•
1 17

46

1 17

164

187

210

163

256

•

•
140

69

70

93

1 16

139

162

255

•

•
163

162

163

164

187

210

233

256

•

ww
m •

•
•
•
•

• H\ZyZ

• r®̂

• «

•
•
•

MI

dTi
W

•

_ •
1
•
•
•
•
•
•
•

Figure 5.21

Visit all path planning behaviour using the path transform.

-142-

5.5 Planning Best Paths

This section presents a method for extending the EEA and the [Jarvis et. al. 1986] grid

based path planner to allow planning "best" paths that take into account both robot safety

and the cost of traversing unknown regions in the environment. This method is based

upon fusing the "conservative" and "safe" path planning behaviours.

Section 5.5.2 presented the mechanism for generating the "conservative" path planning

behaviour. This behaviour was generated by propagating a distance transform through the

quadtree multiplied by a factor function. The factor function which was used evaluated to

1 + [1 - confidence], where [1- confidence] was the measure of the confidence that the

system had in a leaf not being free space. Unknown quadrants were assumed to be free

spaces, with zero (0) confidence.

Section 5.4 presented the mechanism for planning "safe" paths. This was done by

propagating through the quadtree the "path transform" which was a weighted sum of the

distance and obstacle transforms.

The "best" path planning behaviour can be achieved by propagating a new cost

function through the quadtree. The new cost function is generated by multiplying the

"conservative" factor function by the values of the path transform. The new cost function

BEST for a leaf quadrant q is defined as:

BEST(q) = (1 + (1 - confidence(q))) * PT(q)

where PT(q) is the value of the path transform from the goal, and confidence(q) is the

confidence value of the leaf q being free space.

Once the transform for "best" path planning has been generated, a fine solution path

must be found, using the path improvement algorithm described in Section 5.4. Figure

5.22 shows an example of planning "best" paths between a start (S) and a goal (G).

Figure 5.22 (A) shows the confidence values the E E A has in the free space quadrants

-143-

prior to path planning. Figure 5.22 (B) shows the transform associated with the "best"

path planning behaviour using a safety weighting of a = 0.5. Figure 5.22 (B) also shows

the fine solution path which was found using a safety criteria of Smin = 1-0 an^ * e zigzag

rule (Section 4.4.1).

B

Figure 5.22

Best path planning behaviour with quadtrees.

-144-

The cost function B E S T which used to compute "best" paths for quadtrees can be used

to compute the "best" paths for grids. The function confidence(q) is evaluated in a

different manner. In the grid data structure grid cells are either known or unknown,

therefore the confidence(q) is evaluated in the following manner

confidence(q) = 0ifq is unknown

confidence(q) = lifq is known

Figure 5.23 shows an example of planning "best" paths for grids between a start (S)

and a goal (G). In this figure cells that are occupied by obstacles are coloured black and

free space cells are coloured white. Unknown cells are shown in two shades of grey. The

light grey cells are unknown free space cells and the darker grey cells are unknown

obstacle cells. This figure shows the transform associated with the "best" path planning

behaviour using a safety weighting of a = 0.4, and it also shows the fine solution path to

the goal. The results obtained with the "best" path planning behaviour for grids are

similar to those obtained by [Thorpe 84]. Thorpe's approach, based on an A * type

algorithm, was reviewed in Section 3.3.6. Thorpe searches for the nearest obstacle to the

grid cell which is considered to be part of the solution path, while the "best" path

approach computes the repulsion costs for all grid cells prior to path planning.

-145-

|'073;

III!

Hi!
$jao%

i^i'oi

2038

•&186.

i?r?5

III!

§06j

|'067

KS
;;).5P?i

llfi

1942

©
1888

Is!!
&0P:

|9iJ:

|ois|

ilsl
150t

|jB7l

1955

1754

1701

M7M

$7J?1

|'76|

•:;)055:

$2o§

$$§M

%§M

1784

1552

1409

ifeoi

Ilil

;::1049j

lull
:V489-

||'75'|

1583

1417

1350

13J1

:|42'|

$§M

IJII

|'479;

fill
1382

1268

1215

1 162

1 1SQ3

§037

ixii

Q

3)79;

|029;

fix!
M* IS

1181

1066

1013

<~\7A

980

916

915

864

ROCP

$WM
|080i

|877|

1'951'$

779

765

714

713

—Sj4\

iSSSSI 1-ft ft:; " I essea F««,
fcfefc : W * fcfife : fcfcl; II B H j 1

IIIJI

760 :

577

590

578

563

526

637

FT* E£* EM BEE*

605

404

389

388

389

376

487

i:i637;;

202

187

108

337

§635$

;:;639:|:

201

(*D
149

|447|

i:j6p i')i

:;:603'i;

202

187

;:;3pp:;:

&0.1:

|45ii|

:;:60l|

Figure 5.23

Best path planning behaviour with grids.

5.6 Experimental Results

The preceding sections of this chapter described eight different path planning

behaviours, these being: "optimum", "adventurous", "conservative", "learn all", "visit

all", "forgetful", "safest" and "best" path planning behaviours. This section presents one

result for each type of path planning behaviour, with the exception of the "optimum" path

behaviour for which results were presented in Chapter 4. The seven experimental results

are presented in separate subsections. Each experiment uses the sonar data which was

collected in Chapter 2. Chapter 2 presented four experimental results of map making

(namely Figures 2.17 - 2.20). These four results have been used as input to the extended

EEA. The extensions to the navigation algorithm to include path planning behaviours

were implemented on a Macintosh II microcomputer.

-146-

5.6.1 Conservative Path Planning Experiment

Figure 5.24 shows the results of the E E A operating in "conservative" path planning

mode on the environment map shown in Figure 2.17. This experiment shows the E E A

favouring a path to the goal which lies in a region of the environment that has been

mapped. The E E A avoids the unknown regions of the environment, through which a

solution path to the goal passes if the "optimum" path planning behaviour was selected.

The map shown in Figure 2.17 was converted into a quadtree model by the EEA. The

quadtree model is displayed in Figure 5.24 (A) together with the confidence values of the

free space quadrants which were extracted from the sonar map, and the start (S) and goal

(G) positions. Figure 5.24 (B) displays the distance transform associated with

"conservative" path planning and the solution path between the start and goal positions

using F U L L path optimisation (Algorithm 4.7) and the zigzag rule (Section 4.4).

-147-

B

Figure 5.24

Conservative path planning behaviour.

-148-

5.6.2 Adventurous Path Planning Experiment

Figures 5.25 and 5.26 show the results of the E E A operating in "adventurous" path

planning behaviour mode on the environment map shown in Figure 2.17. This

experiment uses the same data the "conservative" path planning experiment used (Section

5.6.1). This experiment shows how the E E A deliberately avoids mapped regions, and

instead favours a path to a goal which passes through unknown regions. The quadtree

model is displayed in Figure 5.25 (A) together with the confidence values of the free

space quadrants which were extracted from the sonar map, and the start (S) and goal (G)

locations. Figure 5.25 (B) displays the distance transform associated with "adventurous"

path planning and the solution path between the start and goal. The solution path is

computed using the using two (2) quadrant R E D U C E D look ahead path optimisation

(Algorithm 4.8) and the zigzag rule.

During the course of path execution to the goal the robot encounters an obstacle at the

position R as shown in Figure 5.25 (B). At this point the E E A instructs the mobile robot

to collect more sonar range readings and build a new map. From the new map data the

quadtree is reconstructed with new confidence values as shown in Figure 5.26 (A). The

"adventurous" distance transform is recomputed using the reconstructed quadtree, and a

new path is planned from the position R to the goal G as shown in Figure 5.26 (B). The

new path is computed using the using the two (2) quadrant R E D U C E D look ahead path

optimisation function and the zigzag rule.

-149-

B

Figure 5.25

Adventurous path planning behaviour.

-150-

23

81

100

0

a

0

0

0

0

0

0

100

100

100
-1 a J
i H
aawafrm

100

100

100

100

-1
-f

n
0

0

100

100

100

1

100

100

100

100

100

100

1

too

100

inn

7b

100

100

100BB

100

100

100

100

100

100

100

100

38

a

0

0 0

0

100

10"

100

a

100

10n

100

100

0
a

0

yLU

0

0

100

ipn

0

a

0

0 0

100 100

inn

a

0

0

0

0

100 100

100

B

Figure 5.26

Continuation of the Adventurous path planning behaviour example started in Figure 5.25.

-151-

5.6.3 Learn All Path Planning Experiment

Figures 5.27 - 5.30 show the results of the E E A operating in "learn all" path planning

behaviour mode on the environment map shown in Figure 2.20. Diagram (A) of each

figure shows the growing confidence values of quadrants in the quadtree as the

environment is progressively learnt. Diagram (B) of each figure shows the "learn all"

distance transform for the updated quadtree model. The quadtree model is displayed in

Figure 5.27 (A) together with the confidence values of the free space quadrants which

were extracted from the sonar map, and the start (S) and goal (G) locations. Figure 5.27

(B) displays the distance transform and the "learn all" path between the start and goal

positions.

Once the goal specified in Figure 5.27 has been reached the EEA relocates the goal into

the quadrant with the lowest confidence value, and a "learn all" path is generated from the

current robot location to the new goal. Figure 5.28 shows the new goal position and the

robot's "learn all" path to the new goal. During the course of the "learn all" behaviour the

robot encounters an obstacle as it tries to reach the goal specified in Figure 5.29. At this

point the E E A instructs the mobile robot to collect more sonar range readings, build a new

map and reconstruct the quadtree with new confidence values, as shown in Figure 5.30

(A). Since the goal was located in a position which was occupied by an obstacle, it is

assumed that the goal has been reached, and the goal is relocated as shown in Figure 5.30

(A). A new "learn all" path is planned and executed from the current robot location to the

relocated goal. Once the robot has reached this goal, it has completely learnt the

environment. At this point it proceeds directly to the first goal that was specified in Figure

5.27.

-152-

ITf

50

50

50

0

100

100

100

100

100

100

-JO

100

100 100

0

0

0

0

100

100

100

100

100

13

86

100

75

54'oo
100100

XF)
56

84

30

A

24

27

30

33

34

28

32

32

34

34

30

33

32

3 1 j

19

28

28

BIG

26

30

24

24

26

26

27

13

20

R

*

- %

5

12

77

B

Figure 5.27

Learn all path planning behaviour.

-153-

1 7

50

50

50

0

100

100

100

100

100

100

3 0

100

100100

1 °
0

0

©
0

100

100

100

100

100

13

100

100

100

JB^IOO

100 100

,0d)
56

84

3d

B

Figure 5.28

This figure continues the experiment started in Figure 5.27.

-154-

1 7

50

50

50

0

100

100

100

100

100

100

58

100

loojioo

u ° 1
0
0

©
100

100

100

100

100

100

100

100

100

100

^Mm

100

100

100

100

100

100

100

B

Figure 5.29

This figure continues the experiment started in Figure 5.27.

•155-

11

15

19

23

7-
n

*

*
19

13

[©

10 10

BIG

12

asm RS
16

23

31

24 20

28

16 24

32

B

Figure 5.30

This figure continues the experiment started in Figure 5.27.

-156-

5.6.4 Visit All Path Planning Experiment

Figure 5.31 shows the results of the navigation system operating in "visit all" path

planning behaviour mode on the environment map shown in Figure 2.20. Figure 5.31

(A) shows the quadtree model of the environment together with distance transform

associated with "visit all" path planning, and the start (S) and goal (G) locations. Figure

5.31 (B) displays the "visit all" solution path between the start and goal positions. To

ensure that the robot does not get caught in a comer and have to traverse quadrants which

have already been completely swept, the robot moves to the quadrant with the highest

distance transform value. A quadrant is only swept if there are no neighbouring quadrants

with higher distance transform values. The paths the robot takes when it moves to

quadrants with higher distance transform values are shown with broken lines in Figure

5.31 (B). The arrow heads on the broken lines indicate the directions of robot motion.

At the very end of the execution of the "visit all" path the robot encounters an obstacle

at the goal position. At this point the E E A instructs the mobile robot to collect more sonar

range readings, build a new map and reconstruct the quadtree, as shown in Figure 5.31

(B). The new sonar data only changes the classification of one quadrant in the quadtree

from free space to occupied by an obstacle. The structure of the quadtree has not changed

and therefore it is not necessary to generate a fresh distance transform, and a new visit all

path is not planned.

-157-

10

7

5

3

4

6

4

3

2

1

5

B

2

6

12

©
8

6 7

4

10

10

8

6

8

18

14

B

Figure 5.31

Visit all path planning behaviour

-158-

5.6.5 Forgetful Path Planning Experiment

Figures 5.32 - 5.34 show the results of the E E A operating in a combination of

"optimum" path planning and "forgetful" behaviour modes on the environment map

shown in Figure 2.17. The quadtree model of the environment is displayed in Figure 5.32

(B) together with distance transform associated with "optimum" path planning, and the

start (S) and goal (G) locations. Once the "optimum" path distance transform has been

generated, a fine execution path is planned using the F U L L path optimisation function and

the zigzag rule. While the robot is executing the "optimum" path, the "forgetful"

behaviour is simultaneously decaying the knowledge of the environment by 2 0 % every 30

clock ticks.

Figure 5.32 (B) shows the solution path which has been executed between the start

and goal locations, and the associated free space confidence values after 60 clock ticks.

Figure 5.32 (A) displays the solution path which has been partially executed between the

start and goal positions, and the associated free space confidence values after 120 clock

ticks. Figure 5.32 (B) displays the executed path, and the associated free space

confidence values after 180 clock ticks. Shortly after the 180 clock tick snap shot, the

robot encounters an obstacle. At this point the E E A instructs the mobile robot to collect

more sonar range readings and build a new map and reconstruct the quadtree. Figure 5.34

(A) shows the quadtree model with the new confidence values. A new "optimum" path is

planned and executed from the current robot position to the goal. This is shown in Figure

5.34 (B).

-159-

25

47

0

0

64

100

0

0

0

100

o ||

0 B

0

0

100

100

100

100

100

100

83

©
100

100

100 100

100

100

100

ad

100

100

0

iool|

100

100

50

0

3 °

0 0

0

0 0

©•
0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7
•

0

0

24

80 80

0

0

0

0

0 JSU

0

0

0

60

60

60

60

60

60

0

0

43

65

60

60

a

0

60

60

0

©0

60

60

0 0

0

SA

60

60 60

60

0

10

K o

60 i

io

0

1 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B

Figure 5.32

Optimum and Forgetful path planning behaviours.

-160-

0

18

18

II

0

0

40

0

0

0

40

0 fl

1 .

0

0

0

20

20

20

20

20

20

0

0

3

0̂
25

20

20

•

0

20

20

0

©0

20

20

0 0

0

14

20

20

0

20 |

20

20

0

0

1 °

jo

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

A

0

0

0

1 6

0

20

0

20

0

0

1

0

0

-0
^ 5

©

0

u

0

B

Figure 5.33

This figure continues the experiment started in Figure 5.32.

-161-

0

35

100

100

0

0

0 0

0

0

0

0

0

1 °
M

0

0

0

0

0 0

-<y

0

0

Wi-mm
100 100

0

0

©
100

0

0

0

0

0

0

60

72

0

0

0 0

1 °
1 °
§1 o
l o
B o
1 0

H8

0

0

0

0

0 0

n

**©

0

0

Wtmm

100 100 _

0

0

100

0

0

0

0

B

Figure 5.34

This figure continues the experiment started in Figure 5.32.

-162-

5.6.6 Safest Path Planning Experiment

Figures 5.35 and 5.36 show the results of the E E A operating in the "safest" path

behaviour mode on the environment map shown in Figure 2.18. The quadtree model of

the environment is displayed in Figure 5.35 (A) together with the start (S) and goal (G)

locations. In Figure 5.35 (B) the "safest" path distance transform has been generated

using a weighting of a = 0, which results in "optimum" path planning behaviour. The

fine execution path has been planned using the F U L L path optimisation function and the

zigzag rule together with a safety clearance of smin = 2.0. Since the fine path passes

through quadrants of the smallest resolution which are in close proximity to obstacles, the

safety clearance feature has no effect on the path. Figure 5.35 (B) shows the "safest" path

distance transform has been generated using a weighting of a = 0.1. The fine execution

path has been planned using the F U L L path optimisation function and the zigzag rule,

together with a safety clearance of smin = 2.0. This fine path is safer than the path

generated in Figure 5.35 (A). The safety clearance feature causes the fine path to be

generated through the middle of the free space quadrants which lie in the solution path.

Figure 5.36 (A) shows the "safest" path distance transform has been generated using a

weighting of a = 0.3. The fine execution path has also been planned using the F U L L

path optimisation function, the zigzag rule, and a safety clearance otsmin = 2.0. This fine

path is safer than the paths shown in Figure 5.35 (A) and (B). Even though some of the

quadrants in the solution path are further than 2 units from the nearest obstacle, the safety

clearance feature causes the fine path to be generated through the middle of these free

space quadrants. This is due to the close proximity of the outside boundary of the

quadtree. Figure 5.36 (B) shows the "safest" path distance transform has been generated

using a weighting of a = 0.5. The fine execution path has also been planned using the

F U L L path optimisation function, the zigzag rale, and a safety clearance of smin = 2.0.

This fine path is safer than all other attempts at generating safe paths. Due to the large

safety clearance from obstacles, the fine path can be pulled taut through the free space

quadrants which form the coarse solution path.

-163-

10

7 6

4--
5 H —

3
1—
2

4 -+--
1
i

3 ©

5

14

JU--

5 6 7

, Bp&

) 3
0

10

9

7

5

7

17

13

B

Figure 5.35

Safest path behaviour.

-164-

40

-£ 1
20

14

1
,V

— 3 3 —

31

31

24

13

42

52

"40 ©

51 51

14

-©
0

15

14

50

38

26

27

72

52

B

Figure 5.36

This figure continues the experiment started in Figure 5.35.

-165-

5.6.7 Best Path Planning Experiment

Figure 5.37 shows the results of the E E A operating in the "best" path behaviour mode

on the environment map shown in Figure 2.17. This experiment shows the E E A

operating in the same environment shown in Figure 5.24. Figure 5.24 showed the E E A

operating in "conservative" path planning mode. The "conservative" planning behaviour

kept the solution path in known regions of the environment. However, the path skirted

the edges of obstacles. Avoiding the edges of obstacles while favouring known regions of

the environment can be achieved by the "best" path planning behaviour. Figure 5.37

shows the robot executing a safe path with greater clearance from obstacles compared to

the path shown in Figure 5.24. Figure 5.37 (A) shows the quadtree model of the

environment, the confidence values of the free space quadrants which were extracted from

the sonar map (Figure 2.17), and the start (S) and goal (G) locations. Figure 5.37 (B)

shows the distance transform for the "best" path which was generated using a weighting

of a = 0.4, together with a fine solution path that uses a safety clearance of s„an - 2-0.

Note: The distance transform values marked with (*) in Figure 5.37 (B) were too large to

display in the available space.

-166-

B

Figure 5.37

Best path planning behaviour.

-167-

5.7 Conclusions

This chapter has shown how the Environment Exploration Algorithm (EEA) can be

extended to exhibit different types of path planning behaviours, other than the "optimum"

path behaviour. It was shown how the "conservative", "adventurous" and "visit all" path

planning behaviours which were formulated by [Jarvis et. al. 86, 88] for grid based

distance transforms could be incorporated to operate within the E E A . This chapter

presented four new path planning behaviours, namely: the "learn all", "forgetful", "safe"

and "best" path planning behaviours.

Operating the extended EEA in the "learn all" path planning behaviour proved to be an

efficient and effective mechanism for systematically mapping all the unknown regions of

an environment It was also shown that the "forgetful" behaviour was a useful behaviour

that could coexist with other path planning behaviours in a meaningful way.

This chapter developed a new transform called the "path transform" which is superior

to the distance transform since the path transform can simultaneously consider the safety

of the robot while finding the shortest path to the goal. The path transform has the

desirable properties of potential field path planners without suffering the penalty of local

minima. It was shown how the path transform can be applied to the grid and quadtree data

structures to produce "safe" path planning behaviour. A new path improvement

mechanism for "safe" paths in quadtrees was derived and presented. It was also shown

how the path transform could be used with the grid data structure to produce a new "visit

all" path. It was shown that the "visit all" path that is generated using path transforms is

superior to the "visit all" path that is generated using distance transforms.

A new path planning behaviour called "best" path was derived from fusing the "safe"

and "conservative" behaviours. The "best" path planning behaviour was implemented for

the grid and quadtree data structures. The grid implementation of "best" path resulted in

-168-

similar results to those obtained by [Thorpe 84]. Thorpe did not use distance or path

transforms to obtain his results.

In this chapter it was shown that the extended EEA can operate with a real mobile robot

using live sonar data to navigate autonomously in an unknown environment. Experiments

were successfully performed which required the robot to navigate to goals while under the

control of a specific path planning behaviour.

Finally, the approach to path planning behaviours described in this chapter is in

keeping with the human path planning strategies which were discussed in Section 3.2.

-169-

Chapter 6

Comparison of Distance
Transform based Path Planners

6.1 Introduction

This chapter presents a comparison of path planners that use distance transforms.

This study analyses the performances of the Environment Exploration Algorithm (EEA)

which was presented in Chapters 4 and 5, and the [Jarvis et. al. 86] grid based algorithm

which was reviewed in Chapter 3. It is inappropriate to compare the E E A with other types

of path planning algorithms, since distance transforms generate paths from every position

in the environment to the nearest goal, while most other path planners plan only a single

path from one location to a goal. It therefore follows that distance transforms may be

computationally more expensive than other path planners. However distance transforms

compensate for their computational burden by supporting multiple robots, multiple goals

and different types of path planning behaviours, rather than just the shortest path to the

goal. The most suitable comparison to make with the E E A algorithm is the [Jarvis et. al.

86] grid based algorithm.

It is intuitively obvious that the E E A algorithm which uses quadtrees will outperform

the Jarvis grid algorithm if the environment is free of obstacles. The converse is obvious

if the environment is maze like. Environments which are totally free of obstacles, or are

heavily cluttered in maze like patterns, occur rarely in practice. It is not obvious which

distance transform algorithm is superior in a typical indoor environment i.e. which one

has the best average case performance. Figure 6.1 shows three different types of

environments in which path planning can take place to navigate a robot from a start (S) to

a goal (G). Figure 6.1 (A) shows an environment which is clear of obstacles. Figure 6.1

(B) shows a maze like environment. Figure 6.1 (C) shows a typical indoor environment

The purpose of this research is to determine which distance transform algorithm is best

-170-

suited to a specific environment given the size of the environment and the degree of clutter

caused by obstacles in the environment.

I

A B C

Figure 6.1

Three types of path planning environments.

[Samet 84] presents a theorem which states that the number of quadrants in a quadtree

is proportional to the the perimeter of the regions contained in an environment map. Samet

also states that increasing the map resolution leads to a linear growth in the number of

quadrants in the quadtree. Therefore the cost of computing the distance transform in

quadtrees will increase linearly as the resolution of the map grows. In grids, the cost of

computing the distance transform does not increase linearly, due to the quadrupling of the

number of cells in the grid every time the map resolution is doubled. This research will

use Samet's findings to find which distance transform algorithm is best suited to a

specific environment given the size of the environment and the degree of clutter caused by

obstacles in the environment.

The time to compute the distance transform for quadtrees is heavily dependent on how

quickly the neighbours of a free space quadrant can be found. In the grid data structure

finding the neighbouring grid cell is a trivial exercise. Finding the neighbours in a

quadtree is not a straightforward matter. [Samet 82] proposed an algorithm for neighbour

finding in a quadtree. The basic idea is to ascend the quadtree until a common ancestor is

located and then descend back down the quadtree in search of the neighbouring quadrant

A n alternate approach to searching for neighbours is to a build a list of neighbours for

•171-

each quadrant leaf. This list is built after the quadtree has been constructed. The overhead

for keeping a list of neighbours for each quadrant leaf is the extra memory required to

store the list and the processing time required to create the list.

To evaluate the cost of this additional storage this study also compares the generation

of distance transforms for quadtrees using neighbour lists and not using neighbour lists.

The purpose of the comparison is to see whether the memory overhead for storing

neighbour lists results in a significant improvement in the computation time of the

distance transform. Another overhead which should be considered is the computational

cost of building a quadtree. It is assumed that the environment in which the mobile robot

will operate is modelled as a 2 dimensional array. Therefore there is no work to be done

to obtain a grid representation of the environment. However this array representation

must be converted into a quadtree, which is done using the [Samet 81] quadtree

construction algorithm. The quadtree is constructed only once if a robot is operating in a

completely known environment. In partially known environments the quadtree

continually grows as the robot acquires fresh sensor data. In such situations it is difficult

to estimate h o w much the quadtree will grow each time sensor data is included in the

environment model. The time to build a complete quadtree can be regarded as the worst

case. However, in practice, the worst case scenario will not arise since a quadtree can be

extended in a manner that prevents complete reconstruction using Algorithm 4.10 (Model

Update).

In the first stage of path planning for both grid and quadtree data structures, the

distance transform is propagated through the regions of free space. The second stage is to

find a "fine" path from the start location to the goal location. Finding a "fine" path with

grids is a straight forward exercise. However with quadtrees finding a "fine" path

requires the construction of a visibility graph. There is obviously less computational

effort associated with finding a "fine" path with grids, compared to quadtrees. To

compute the "fine" paths for both data structures is an insignificant effort, when

-172-

compared to the work needed to compute the distance transforms. This fact is highlighted

in the experimental results presented in Table 6.1.

M a p Size

8x8

16x16

32x32

64x64

128 x 128

256x256

512x512

% Grid Fine Path

—

—

—

0.353

0.186

0.099

0.049

% Quadtree Fine
Path

—

—

1.980

1.838

1.376

1.212

0.818

Table 6.1

Fine Path Planning statistics.

This table shows the average percentages that the computation of the "fine" path is of

the whole process of path planning, for grids and quadtrees of various map sizes. The

statistics in this table were derived from averaging the results of four (4) different

environments. The diagrams which describe each environment and the associated path

planning statistics are presented in Appendix A. In Table 6.1 the minus (-) signs mean

that no statistics could be calculated because the time to compute the "fine" path was too

small to measure. Even though the computation of the "fine" path for quadtrees is

considerably slower than for grids, this time is not a significant component of the overall

path planning computational effort. The real effort in path planning resides in the

computation of the distance transform. This study concentrates on the analysis of what

-173-

configurations and concentrations of obstacles in an environment affect the computation

of the distance transform.

This Chapter has been organised in the following manner. Section 6.2 presents the

results of using random data to compare the performance of the quadtree based distance

transform with the grid based distance transform. Section 6.3 presents the results of

comparing the performance of the two distance transform based path planners using spiral

and maze data. Section 6.4 presents the results of using various obstacle shapes in five

(5) different proportions to compare the performance of the two path planners. Section

6.5 presents the results of comparing the performance of the two path planners using

three (3) different indoor environments.

Finally in Section 6.6 the conclusions that were reached and the insights that were

gained from comparing the two distance transform based path planners are presented.

All the experimental work reported in this chapter was done using a Macintosh II

microcomputer. All timings reported in this chapter are in clock ticks. A clock tick

represents one sixtieth (1/60) of one second.

6.2 Random Data

This section reports on the experimental results which were obtained using random

data with different percentage concentrations of blocked cells on various environment

map sizes. The aim of these experiments was to observe what effect different

concentrations of random data had on the speed of computation of the distance transform,

and the memory requirements for the grid and quadtree data structures.

Experiments were conducted for eight (8) different concentrations of random data. The

concentration of random data is defined to be the ratio of obstacle cells to total number of

cells in the environment. For example a 3 0 % concentration of random data means that

3 0 % of the cells in the environment map are obstacles i.e. not free space. The

concentrations of random data used in this research were 0%, 5%, 10%, 2 0 % , 3 0 % ,

-174-

4 0 % , 5 0 % and 6 0 % . The random data experiments were conducted for seven (7)

different sized maps. The map sizes which were used were 8x8, 16x16, 32x32, 64x64,

128x128, 256x256 and 512x512. The figures which describe the experimental

environments and the associated path planning statistics are presented in Appendix B.

Figures 6.2 and 6.3 summarise the results of this experiment Figure 6.2 shows eight

(8) graphs which correspond to the computation time for each different concentration of

random data. Figure 6.3 shows eight (8) graphs which correspond to the memory

requirements for each different concentration of random data. Higher resolution versions

of the graphs shown in both figures are presented in Appendix B.

Examining the results presented in Figures 6.2 and 6.3 led to the following

conclusions. A s expected, the distance transform applied to quadtrees in a random

concentration of 0 % out performed the distance transform applied to grids both in

computation time and memory requirements as shown in Figures 6.2 (A) and 6.3 (A).

The computation time varied by a single order of magnitude. The time to compute the

distance transform in a grid data structure is dependent on the number of cells in the grid,

and thus the computation time quadruples as the resolution of the map doubles. The time

to compute the distance transform in a quadtree includes the time required to build the

quadtree. The time required to construct the quadtree is dependent upon the number of

cells in the map. Hence the computation time of the distance transform for quadtrees

follows a similar trend to computation time in grids. The memory advantages of the

quadtree over the grid are significant for 0 % concentration. The memory requirements for

the quadtree remain static for all sizes of the environment map, while the memory

requirements of the grid quadruple as the size resolution of the map doubles.

Examining the results also shows that the computation time for grids and quadtrees

increases until the random concentration reaches 3 0 % , for higher concentrations of

random data the computation time decreases. This is due to the fact that as the number of

obstacle cells increases the number and length of free space solution paths in the

-175-

environment decreases. The amount of memory required for building a quadtree

ch'ininishes as the random data concentration increases. This is due to the fact that a

quadtree is less fragmented because of the increased likelihood that more random obstacle

cells will be neighbours to other obstacle cells, and hence can be consolidated into larger

obstacles.

For all concentrations of random data other than 0% the grid out performs the quadtree

in both computation time and memory requirements. Obstacle cells which are randomly

distributed cause severe fragmentation of the quadtree. Even low concentrations of

obstacle cells cause undesirable fragmentation of the quadtree. The computation time and

memory requirements of the distance transform for quadtrees without neighbour lists is

an order of magnitude greater than the corresponding measures for grids. Computing the

distance transform for quadtrees with neighbour lists, results in computational savings of

approximately 3 0 % at the expense of a two fold increase in memory requirements.

It can be concluded that quadtrees are completely unsuitable in environments where the

obstacles are randomly distributed as single blocked cells.

-176-

Bandon Data Concentration - OX Tlaa

MO 400
Bap Slsa

B

Bandoa. Data Concentration - IOS Tina »»«<«» Data Concentration - 201 Tlaa

P^IH«"» Data Concentration - 30X Tlaa Panrina Data Concentration - 40X Tina

too

Bandon Data Concentration - EO* Tine

TOO 400
Bap Slsa

coo

,0*

10*

I0S

a io4

6
H l0S

IO2

10'

Band on Data

r
Concentration - 60S Tlaa

/

f ^^^.
f ^ y y y y y ^ ^ ^ y - - - ^ " " "

f ^ ^ "

7
$

•» UKDDI
• QT0T TOTAL
.a. nTmenTTTiTii

300
Bap Slsa

H
Figure 6.2

Computation Times for Path Planning in Random Environments.

too

-177-

7 Bandon Data Concentration - OX Benory

10« <

10* V

10*

to2K

10

* ORB MEMORY
-•• OT MEMORY
•e- QTHBRMEMORY

y-tZ-t-

100 200 300 400
Hap Slsa

9
•
a

Z

I0»

10'

10*

I0S

10*

10*

I02

Bandoa
r

Data Cone mtrntlon - SX Senary

r

r /^>^^
firs -a- MBHBHMV

• OTMEMORY
• OTMR MEMORY

200 >00 400

Bap Sic*

B

Bandoa Data Concentration - 20X Honor?

UO

s

Z

!0«

,0'

10*

10*

10*

10*

10*

Bandoa Data
•

Concentration - 40X Heaory

' ^-^L----^^^^

yZ— ^^ ^
1' f*/^

V
-a. ORB MEMORY
<- OTMEMORY
• aTWRMMRY

i
• 1 ' 1 ' 1 • 1 ' 1 ' 1

200 TOO 400
Bap Slsa

.0*

I07

10*

I09

I0<

10*

I02

"««*"» Data Concentr atlon - SOX lienor-/

—~*^

^ Jty^^Zyy^ ' "^

7^ V
O OdOF-CMORY
•+• 0TKM0RY
•» OTFBR MEMORY

ci

p 1 • 1 • 1 ' 1 • 1 • 1

200 TOO 400
Bap Slsa

a
1
a
Z

I0»

I07

10*

10*

10*

10*

10*

Bandoa Data Concentration - 60X Senary

•

f ^ - — r ^ ^ ^ ^

f ̂ ^^S-—
'f^ ff / -a- GRBHEMORY
if yy OTKtMORY
y -a- OTIBRPMEMORY

200 TOO 400
Bap Slsa

G H
Figure 6.3

Memory Requirements for Path Planning in Random Environments.

-178-

6.3 Spiral and Maze Data

This section reports on the experimental results which were obtained using spiral and

maze configurations on various environment map sizes. The aim of these experiments

was to observe what effect such configurations of the environment had upon the speed of

computation of the distance transform, and the memory requirements for the grid and

quadtree data structures.

Experiments were conducted for the two environment configurations shown in Figure

6.4. Figure 6.4 (A) shows a spiral map configuration with a goal at the centre of the

spiral. Figure 6.4 (B) shows a maze map configuration with a goal at the centre of the

maze. The spiral and maze were selected to be circular in shape. Circular shapes are the

worst case type of obstacle to represent with a quadtree; this shape ensures that the

quadtree that represents this shape is not neady aligned to the boundaries of the obstacle.

Every time the resolution of the map is increased the quadrants along the perimeter of the

circular obstacle will divide into smaller quadrants.The experiments were conducted for

seven (7) different sized maps. The map sizes which were used were 8x8,16x16, 32x32,

64x64,128x128, 256x256 and 512x512. The path planning statistics for this experiment

are presented in Appendix C.

Figure 6.4

Spiral and Maze Path Planning Environments.

-179-

Figures 6.5 and 6.6 each show two (2) graphs which summarise the results of this

experiment. In both figures graph (A) shows the computation time results and graph (B)

shows the memory requirements results. For this experiment the computation time should

only be analysed for map sizes greater than 32x32 cells, since no solution path can be

found for smaller map sizes. Path planning was performed on the smaller maps to

determine the memory requirements.

Examining the results for the spiral experiment presented in Figure 6.5 led to the

following conclusions. As expected the distance transform applied to grids in a spiral

environment outperformed the distance transform applied to quadtrees both in

computation time and memory requirements. The results are in line with Samet's theorem

due to the long perimeter of the spiral.

The computation time for quadtrees and grids varied significantly, for a map size of

64x64 cells. However as the resolution of the map doubled, the computation time for

quadtrees doubled while with grids the computation time quadrupled. For a 512x512

sized map the computation time for the quadtrees was a factor of three (3) times greater

than the computation time for grids. For quadtrees with neighbour lists the computation

time was only a factor of two (2) times greater than the computation time for grids. If this

trend continued then for larger sized maps quadtrees would outperform grids. However

this hypothesis could not be proved due to the memory constraints of the experimental

test bed.

A similar trend to the pattern of computation times in the spiral map is evident in the

memory requirements of the spiral map. For a 512x512 sized map the memory

requirements for quadtrees are of the same order as the memory requirements for grids. If

this trend continued for larger sized maps, quadtrees would significantly outperform

grids. However this hypothesis could not be verified.

-180-

Computing the distance transform for quadtrees with neighbour lists, resulted in

similar figures to those obtained using random data. Neighbour lists yield average

computational savings of approximately 3 5 % at the expense of a two fold increase in

memory requirements.

It can be concluded that quadtrees are not as good as grids for solving path planning

problems in spiral map environments for all sized maps up to and including 512x512

sized maps. Quadtrees could be better than grids for solving path planning problems in

spiral map environments for maps which are greater than 512x512 cells in size.

Examining the results for the maze experiment presented in Figure 6.6 led to the

following conclusions. The distance transform applied to grids in a maze environment out

performed the distance transform applied to quadtrees both in computation time and

memory requirements for all sized environment maps up to and including 256x256 sized

maps. Quadtrees out performed grids for 512x512 sized maps in all respects with the

exception of the memory requirements for quadtrees with neighbour lists. The results is

also in line with Samet's theorem, due to the reduced length of the perimeter of the maze

compared to the perimeter of the spiral.

Computing the distance transform for quadtrees with neighbour lists, resulted in

similar results to those obtained for the spiral and random maps i.e. neighbour lists have

average computational savings of approximately 3 2 % at the expense of a two fold

increase in memory requirements.

It can be concluded that quadtrees are better than grids for solving path planning

problems in maze map environments for environment maps which are greater than

256x256 cells in size.

-181-

Spiral Time Data

i • \ > \ • i • 1 • \ 1 1

0 tOO 200 300 400 500 600

Dap Size

1 0 I 1 1 1 i • 1 ' i 1 i 1 1

0 100 200 300 400 500 600
Hap Size

Figure 6.5

Computation Time and Memory Requirements for Path Planning in a Spiral environment.

-182-

Haze Time Data

•*>• QTDT TOTAL
-o- QTNBRDT TOTAL

100 200 300 400

Hap Size
500 600

Haze Hemory Data

100 200 300 400

Hap Size
500 600

Figure 6.6

Computation Time and Memory Requirements for Path Planning in a Maze environment.

-183-

6.4 Obstacle Data

In Sections 6.2 and 6.3 experiments were performed on the worst case situations that

can arise using distance transform path planners. Environment set ups of this kind are not

likely to occur in practice. It is far more likely that a smaller set of reasonably sized

obstacles which are uniformly distributed will occur. This section reports on the

experimental results which were obtained using various configurations of obstacles with

different environment map sizes. The aim of these experiments was to observe what

effect such configurations of the environment had upon the speed of computation of the

distance transform, and the memory requirements for the grid and quadtree data

structures.

Experiments were conducted for five (5) obstacle configurations. The first obstacle

configuration which was tested is shown in Figure 6.7. This figure shows a circular

obstacle at the centre of the map. Placing a circular obstacle at the centre of a map causes

the greatest fragmentation of the quadtree. The other four (4) obstacle configurations had

two, three, four and five obstacles respectively. The figures which describe these four (4)

obstacle configurations are presented in Appendix D. These obstacle configurations also

included objects with straight line edges. However these obstacles were orientated to

ensure that the edges of the obstacles did not align with any quadrant boundaries in the

quadtree. The experiments were conducted for seven (7) different sized maps. The map

sizes which were used were 8x8, 16x16, 32x32, 64x64, 128x128, 256x256 and

512x512. The path planning statistics for this experiment are presented in Appendix D.

Figures 6.8 - 6.10 summarise the results of this experiment Figure 6.8 contains three

graphs which show the computation time results, the memory requirements, and the

relationship between perimeters of obstacles and computation time for the path planning

experiment depicted in Figure 6.7. Figures 6.9 and 6.10 each show six (6) graphs which

correspond to the path planning statistics for the other four obstacle configurations (there

-184-

are 3 graphs for each obstacle configuration). Higher resolution versions of the graphs

shown in Figures 6.9 and 6.10 are presented in Appendix D.

G

S

Figure 6.7

Path Planning in a One Obstacle environment.

Examining the results presented in Figure 6.8 led to the following conclusions. The

distance transform applied to quadtrees out performed the distance transform applied to

grids both in computation time and memory requirements for environment maps which

are greater than or equal to 32x32 cells in size. The results confirm Samet's theorem and

show that there is a linear relationship between the perimeter length of the obstacle and

time of computation of the distance transform in a quadtree, as shown by the Perimeter

Data graph in Figure 6.9. The distance transform in quadtrees is dependent only on the

perimeter of obstacles in the environment, while the grid distance transform in contrast is

dependent on the number of cells in the grid.

Computing the distance transform for quadtrees with neighbour lists, resulted in

similar results to those obtained in Sections 6.2 and 6.3. Using quadtrees with neighbour

lists has average computational savings of approximately 1 8 % at the expense of a two

fold increase in memory requirements.

Examining the results presented in Figures 6.9 and 6.10 led to the following

conclusions. A s the degree of clutter from obstacles in the environment increased the

-185-

performance of the grid based distance transform improved. For the two obstacle

environment the distance transform applied to quadtrees outperformed the distance

transform applied to grids both in computation time and memory requirements for

environment maps which are greater than or equal to 64x64 cells in size. Similarly for

three obstacle environments the distance transform applied to quadtrees out performed the

distance transform applied to grids for environment maps which are greater than or equal

to 128x128 cells in size. The degradation of performance of quadtree distance transform

is shown in the Perimeter Data graphs by the increased slope of the line which represents

the perimeter length versus the computation time. The slope of this line depends on both

the total perimeter length of all the obstacles in the environment, and the complexity of the

environment i.e. the number of obstacles in the environment To perform accurate path

planning the shapes of the obstacles shown in the experimental environments must be

modelled with reasonable accuracy. This requires a map resolution of at least 128x128

cells. The quadtree distance transform performs well at this level at resolution for all the

experiment maps with the exception of the highly cluttered 5 obstacle environment.

It can be concluded that quadtrees are better than grids for solving path planning

problems in uncluttered obstacle environments. The map resolution of the environment is

dependent on the number of obstacles. If only one obstacle needs to be represented the

resolution can be as low as 32x32 cells. Higher map resolutions are needed as the number

of obstacles increases. Generally for environments with four or less obstacles a resolution

of at least 128x128 is needed. Quadtrees are better than grids for cluttered environments if

it is a requirement that the obstacles in the environment be accurately modelled. At high

map resolutions in cluttered environments quadtrees offer substantial memory savings in

addition to the computational savings.

Computing the distance transform for quadtrees with neighbour lists for the four (4)

obstacle environments resulted in average computational savings of approximately 2 5 %

for the two obstacle environment, 1 6 % for the three and four obstacle environments, and

-186-

1 8 % for the five obstacle environment. For all four obstacle environments the

computational savings were offset by a two fold increase in memory requirements.

1 Obstacle Time Data

0) 10

S

to'

10"=

an
•3 io5

E
9)
* 104

to*

10"

30000

20000 -

E

10000

300 400
Bap Size

1 Obstacle Memory Data

•a- GRID MEMORY
•+• QT MEMORY
• QTNBR MEMORY

100 200 300 400
Dap Size

1 Obstacle Perimeter Data

— i > 1

500 600

200

Perimeter

Figure 6.8

Path Planning Statistics for a One Obstacle environment.

-187-

2 Obstacles Time Date 2 Obstacles Memory Data

300 400

flap Slsa
no 400

Bap Size

B

13000-

10000-

5000 -

0-

2 Obstaclss Perimeter Data

••- QRDDT
• OTDT TOTAL

200 400 COO

Perimeter

3 Obstacles Time Data 3 Obstacles Memory Data

200 400

Bap Slsa

3 Obstacles Perimeter Data

2000

Figure 6.9

Path Planning Statistics for a Two and Three Obstacle environments.

-188-

4 Obstacles Time Data

300 400
Bap Slsa

SM

4 Obstacles Memory Data

B

4 Obstacles Perimeter Data

S Obstacles Time Data 5 Obstacles Memory Data

300 400
Bap Site

UO

5 Obstacles Perimeter Data

3000

Figure 6.10

Path Planning Statistics for Four and Five Obstacle environments.

•189-

6.5 Indoor Environment Data

In Section 6.4 path planning experiments were performed in environments which were

cluttered with obstacles. All the obstacles in that experiment were made up of shapes that

caused the greatest possible fragmentation of the quadtree. In practice, environments of

this kind are extremely rare. It is far more likely that an environment will contain a variety

of obstacle shapes. These shapes will range from shapes that cause minimal

fragmentation of the quadtree e.g. walls in an indoor environment to complex polygonal

shapes which cause high fragmentation of the quadtree. This section reports on the

experimental results which were obtained for indoor environments with different

environment map sizes. The aim of these experiments was to observe what effect such

configurations of the environment had upon the speed of computation of the distance

transform, and the memory requirements for the grid and quadtree data structures.

Experiments were conducted for three (3) indoor environments. The environments

which were tested are shown in Figure 6.11. Figure 6.11 (A) shows a map of a computer

laboratory. The laboratory contains a mixture of shapes ranging from straight line walls

to circular tables. Figure 6.11 (B) shows the maze like map of a horse stable. Figure 6.11

(C) shows the the map of two rooms in a house.The experiments were conducted for

seven (7) different sized maps. The map sizes which were used were 8x8, 16x16,

32x32, 64x64, 128x128, 256x256 and 512x512. The path planning statistics for this

experiment are presented in Appendix E.

Figures 6.12 - 6.14 summarise the results of this experiment. Each of these figures

contains two graphs which show the computation time and the memory requirement

results for the path planning environments shown in Figure 6.11.

-190-

wit
11 B

Figure 6.11

Path Planning in three indoor environments.

-191-

5 Computer Laboratory Time Data

-a- GRIDDT
•+• QTDT TOTAL
•*- QTNBRDT TOTAL

— i 1 1 1 1 —

200 300 400
Bap Size

600

Computer Laboratory Memory Data

100 200 300 400
Hap Size

500 600

Figure 6.12

Path Planning statistics for the Computer Laboratory.

-192-

Horse Stables Time Data

-a- GRIDDT
•+• QTDT TOTAL
-*• QTNBRDT TOTAL

100 200 300

Hap Size
400 500 600

Horse Stables Hemory Data

100 200 300 400

Hap Size
500 600

Figure 6.13

Path Planning statistics for the Horse Stables.

-193-

Boom Time Data

-Q- GRIDDT
— OTDT TOTAL
-o- QTNBRDT TOTAL

100 200 300 400

Hap Size

— I 1 —]

500 600

Boom Hemory Data

100 200
-i 1 r

300 400

Hap Size
500 600

Figure 6.14

Path Planning statistics for the House with 2 Rooms.

-194-

Examining the results presented in Figures 6.12 - 6.14 led to the following

conclusions. The memory requirements for all three environments begins to level out and

grows at a small rate for environments greater than 64x64 cells in size. This is because the

number of complex obstacles in all three environments is relatively small. The simple

obstacles, such as walls, align to low resolution quadrants and therefore do not require

any additional memory at higher map resolutions. Since the distance transform applied to

quadtrees is dependent on the number of quadrants in the quadtree, the computation

performance of the quadtree distance transform is significantly superior to the grid

distance transform as the map resolution increases. The quadtree distance transform

outperformed the distance transform applied to grids both in computation time and

memory requirements for environment maps which are greater than or equal to 128x128

cells in size, with the exception of the room environment where the grid was superior in

map sizes smaller than 256x256. If the path planning environments need to be precisely

modelled then quadtrees offer significant savings both in memory and computational

requirements for maps which are greater than 128x128 cells in size.

Computing the distance transform for quadtrees with neighbour lists for the three (3)

indoor environments resulted in average computational savings of approximately 1 6 % for

the computer laboratory, 1 8 % for the horse stables, and 2 6 % for the room environment For

all three environments the computational savings were offset by a two fold increase in

memory requirements.

6.6 Conclusions

This chapter compared the performances of the quadtree and grid distance transform

path planners. Experiments were performed using a wide ranging variety of test

environments on different map resolution sizes. From these experiments the following

insights were gained.

-195-

Apart from the trivial case where an environment contains no obstacles quadtrees

should not be considered unless the map resolution size is at least 32x32 cells. Grids are

the most appropriate data structure for smaller map sizes i.e 8x8 and 16x16. If the

required m a p resolution is suitable for quadtrees then the shape and distribution of the

obstacles in the environment must be considered to decide whether or not the quadtree is

the best data structure to model the environment.

It was shown that if the environment is made up of small pixel sized obstacles

randomly distributed, the quadtree is an unsuitable data structure to model the

environment. Similarly, if path planning is to be done in an environment containing a

circular spiral quadtrees are also unsuitable. Grids should be used instead. Quadtrees are

unsuitable in a maze environment unless the map resolution is at least 512x512 cells.

Clearly the above obstacle configurations are worst case situations and are not likely to

occur in practice. If an environment contains a small number of obstacles the quadtree is

the most efficient data structure. One obstacle environments can be represented in a

quadtree with a m a p resolution as low as 32x32 cells. A s the number of obstacles

increases the required m a p resolution for the quadtree increases. It was shown that in

environments containing up to three obstacles the quadtree was the most efficient data

structure for map resolutions of 128x128 and higher. In environments which have more

than three obstacles quadtrees are the preferred data structure if the m a p resolution is

256x256 and higher. The obstacle shapes in these experiments caused heavy

fragmentation to the quadtree.

Further investigations were carried out using indoor environments with a mixture of

obstacle shapes. Some obstacles caused minimal fragmentation of the quadtree while

others caused heavier fragmentation. The results showed that quadtrees were the

preferable data structure in map resolution sizes of 128x128 and higher in the majority of

test cases. Quadtrees were the best suited data structure for all the test cases for map

resolution sizes greater than 128x128 cells.

-196-

Quadtrees are a highly suitable data structure if it is a requirement that the obstacles in

the environment be accurately modelled e.g for object recognition. At high map

resolutions in cluttered environments quadtrees offer substantial memory savings in

addition to the computational savings.

If path planning is to take place in a completely known environment, then the extra

computational overhead of building neighbour lists can be justified. It was found in all the

experiments that computing the distance transform with neighbour lists produced an

average saving in computation time of at least 16%. As the environments become more

complex the savings in time increased. Throughout all the experiments it was found that

the penalty for the use of neighbour lists was a two fold increase in memory

requirements.

The experiments that were performed in this chapter assumed that the environment was

known and that the cost of constructing the quadtree was included in the path planning

statistics. The Environment Exploration Algorithm (EEA) described in Chapter 4 operates

in unknown environments. This algorithm progressively builds the quadtree while the

environment is being explored and therefore the costs of constructing the quadtree are

small. Also since the E E A assumes that unknown areas are free space, the cost of path

planning will initially be low. A s the knowledge of the environment increases the cost of

path planning will steadily become greater. Path planning with grids will be expensive

from the outset. It can therefore by safely assumed that the E E A will perform

satisfactorily in learning environments of the type that were experimented with in this

chapter.

-197-

Chapter 7

Path Planning for Mobile Robots
with 3 DOF

7.1 Introduction

As reported in Chapter 3 much of the research effort into mobile robot path planning

has concentrated on the problem of finding paths from a start position to a goal position

by translation of the robot's body only. The problem of finding paths which require the

rotation of the robot's body have been largely ignored. This chapter will present a new

path planning algorithm for mobile robots which have 3 degrees of freedom (DOF) of

movement, operating in cluttered environments. This algorithm (referred to as "3DOFA"

for short) has the desirable property of potential field path planners, that of taking

information about clearance from obstacles into account when planning paths. However

this method does not have the potential field drawback of suffering from local minima

problems. In addition the 3 D O F A does not have the computational burden which is

normally associated with 3 D O F path planners [Brooks et. al. 85, Lozano-Perez 83,

Schwartz et. al. 83]. The 3 D O F A is guaranteed to find a solution path if one exists. The

3 D O F A is based on an extension to the path planning methodology of distance

transforms. The remainder of this section will discuss what features are necessary and

desirable for a 3 D O F mobile robot path planning algorithm. Section 7.2 presents the

detail workings of the 3DOFA. Path planning results of the new algorithm are presented

in Section 7.3. Finally in Section 7.4 a summary of conclusions about the new algorithm

are presented.

Section 3.3.5 reviewed 3 D O F path planning. From this review a number of

observations were made about the shortcomings of past approaches to this problem. The

global approach [Brooks et. al. 85, Lozano-Perez 83, Schwartz et. al. 83] of building 3

dimensional graphs is extremely expensive in computational effort. Another drawback of

the global approach is that it suffers from the "too close" problem since it assumes that

-198-

that the shortest path is the best path. The alternative to a global approach is a local

approach [Donald 87] which uses heuristics to guide the search. A heuristic guided search

greatly improves the execution time of path planning. However, heuristic search is prone

to failure and the resulting solution path may be neither the shortest nor the safest It is

simply a negotiable path from the start configuration to the goal configuration.

The [Ilari et. al. 90] approach to 3 DOF path planning seeks to find the shortest global

path between the start and goal locations which passes through the middle of the free

space between obstacles. This path is then searched for a fine path of legal robot

orientations using heuristics. A major drawback of the [Ilari et. al. 90] approach is that it

suffers from the "too far" problem.

A similar idea to the [Ilari et. al. 90] approach has been presented by [Noborio et. al.

89] which is based on quadtrees. This method finds a coarse solution path of free space

quadrants between the start and goal locations, such that the minimum width of the robot

can pass through the solution path quadrants. The co^Fse path is refined using heuristics, course

Since this method does not take clearance from obstacles information into account, and

searches for the shortest negotiable path, this method can at times suffer the "too close"

problem.

Both the [Ilari et. al. 90] and the [Noborio et. al. 89] approaches are susceptible to

failure since they are based on heuristic searches. However the probability of this

occurring is lower than for other heuristic methods, since the heuristics are being used to

refine a global path which is likely to yield a solution.

In Section 5.3 an extension to the distance transform called the "path transform" was

presented. Instead of propagating a distance from the goal wave front through free space,

a new wave front is propagated which is a weighted sum of the distance from the goal

together with a measure of discomfort from moving too close to obstacles. This has the

effect of producing a distance transform which has the desirable properties of potential

-199-

field path planners i.e. it avoids the "too close" and "too far" clearance from obstacle

problems, without suffering from local minima problems.

The path transform offers an elegant and straight forward approach to finding a global

path between a start and a goal compared to the [Ilari et. al. 90] search for a global path.

The [Ilari et. al. 90] approach to finding a global path is based upon constructing a

Voronoi diagram for all the free space regions in the environment and then processing the

Voronoi diagram to remove branches in the diagram which are not relevant to path

planning. Figure 7.1 (A) shows an example of the Illari method of building a Voronoi

diagram. Figure 7.1 (B) shows the path planning version of the Voronoi diagram after it

has been processed to remove the irrelevant branches in the diagram. This example

highlights a deficiency of Voronoi diagrams. Voronoi diagrams are sensitive to noise on

the boundaries of obstacles. The small triangular obtrusion on the boundary causes an

unnecessary deviation in the global path. There seems to be no mechanism available to

limit the effect of distant small obstacles.

A B

Figure 7.1

Ilari et. al. Global Path Planning.

The next step is to add the start and the goal locations to the global path network. Ilari

joins the start and goal locations to the global path by computing the shortest straight line

to the global path network which does not intersect with an obstacle. This practice has the

-200-

nasty side affect of possibly creating non-optimal paths between the start and goal

locations. Illari then searches the global path network using the A * search for a path

which maximises clearance from obstacles while minimising the length of the path to the

goal.

The Ilari approach to constructing the global path network is cumbersome and the

resulting path network has serious limitations. The path transform can achieve the same

objectives sought by Ilari without the drawbacks of Dari's approach. The path transform

is based upon combining the "obstacle transform" described in Section 5.4 with the

distance transform. The obstacle transform represents the distance from each free space

cell to the nearest obstacle. Joining the highest values in the obstacle transform with line

segements will yield a Voronoi diagram. Instead of generating a Voronoi diagram a cost

function is applied to the obstacle transform which varies inversely with the distance to

the nearest obstacle. The cost function exerts its influence over a limited distance. Once

the path transform has been generated, a solution path to the goal is known for each grid

cell. This solution path minimises the distance to the goal while keeping a safe distance

from obstacles.

The second stage of Ilari's path planner refines the global path to produce a 3 DOF

path by using heuristics. Ilari notes the drawback of using a heuristic which is based

solely on minimising the distance to the goal. Ilari proposes two types of heuristics to

refine the global path. The first class of heuristic tries to select points in free space that

keep the robot close to the goal while not straying from the global path. This heuristic is

computed along the whole length of the global path prior to the search for a 3 D O F path.

The path transform provides the same facility as this heuristic without the need for

preprocessing. The path transform can be regarded as a heuristic which pushes a robot

away from obstacles in the direction of the goal. In contrast the Ilari path planner pushes

the robot toward the goal by the need to keep the robot on the global path, rather than the

need to keep away from obstacles.

-201-

The second class of heuristic designed by Ilari has the purpose of keeping the body of

the mobile robot aligned closely to the global path. This heuristic requires that every point

in free space must be assigned a most suitable orientation value prior to path planning. A

suitable orientation is an orientation which has the most chance of overcoming, with the

fewest reorientations, future bottlenecks along the proposed path. The path transform

does not provide an equivalent to this class of heuristic.

Section 7.2 presents a straight forward extension to the path transform which allows it

to perform in an equivalent manner to the Ilari orientation heuristic. The extended path

transform can then be used as the basis for a new algorithm (3DOFA) for planning paths

for mobile robots with 3 D O F . The new algorithm does not have the computational

burden which is normally associated with 3 D O F path planners and is guaranteed to find a

solution path if one exists.

Section 7.3 presents the experimental results of implementing the 3DOFA. Finally in

Section 7.4 the conclusions that were reached and the insights that were gained from

investigating the problem of 3 D O F path planning are presented.

7.2 A New 3 DOF Path Planning Algorithm

The objective in path planning is for the robot to move from a start configuration to a

goal configuration. The path transform can only guide a point robot to a point goal

configuration. The single point path transform specifies a robot with two degrees of

freedom (translation only along the x and y axis). Selecting one control point on the

rectangular robot does not provide the path transform with enough information to

determine whether or not the robot has reached the goal configuration. If w e consider the

robot to have two control points, one at each end, w e have enough information to

determine whether the goal configuration has been reached. The problem remains of how

to extend the path transform to consider the movement of more than one control point on

the robot.

-202-

A path transform is computed for each control point on the robot. The path transform

will describe a solution path from the start configuration to the goal configuration for each

control point. Figure 7.2 shows a robot with two control points and the path transforms

which correspond with each control point Figure 7.2 (A) shows a rectangular robot start

and goal configurations (the heavy dot discriminates between the two ends of the robot).

The two control points which have been selected on the robot correspond to the mid

points of the two ends of the robot. Figures 7.2 (B) and (C) show the path transforms for

each control point. The movement of the individual control points is not independent.

Only movements of the control points that do not violate the geometry of the robot are

allowed. Consequently situations will arise where all the path transforms drive the robot

into "conflict" situations, where all the control points are working against each other. A

conflict resolution function is needed to handle this problem. This function selects a single

control point, and the path transform values of this control point are used to guide the

robot to the next grid cell. The conflict resolution function selects the control point with

the largest path transform value, because this is the control point which is furthest from its

goal configuration. The chosen control point is then moved closer to the goal. This is

done by moving down the steepest descent gradient of the path transform (i.e. the

neighbouring cell with the smallest path transform value). This algorithm uses a 4

connected grid i.e. diagonal neighbours are not considered, since diagonal paths tend to

clip obstacles. The remaining control point is moved to a grid cell which does not violate

the geometry of the robot, and does not cause a collision with obstacles in the

environment. In Figure 7.2 the conflict resolution function selects the control point in

Figure 7.2 (A). The robot moves towards the goal as shown in Figure 7.2 (D). Once a

move has been successfully completed, the conflict resolution function selects the next

control point to guide the next movement of the robot. This procedure is repeated until all

the control points on the robot reach their respective goal configurations.

-203-

B

{fist ,77

! 1,56
\ m] ,35

.1 114

1 i 113

HS,i4

176

85

64

43

22

91

177

| 86

135

114

91

0

178

107

178

91

199

1?8^

199

182

220 mm

219 g

220 III!

291 big

274 H |

273 ii-,.

Yftrffir

ftftft ft-.; ft

h*~* movfe 4

f boat |

™$iBI

Figure 7.2

3 DOF Path Planning with Path Transforms.

Checking if a proposed move produces an illegal geometric configuration of the robot

can be done in a straightforward manner. The control points must always be separated

from each other by the same fixed distance. After each proposed move the distances

between all the control points are calculated, and compared to the distances between the

control points of the initial robot configuration.

-204-

A collision check must be made every time the robot is moved, because the obstacles

in the environment were not expanded by the radius of the cylinder approximating the

robot This is not a trivial task and may seem to be an expensive computation. However a

hierarchical collision testing procedure is used to implement collision testing based on the

idea of distance space bubbles [Verwer 90]. Under the Verwer approach the robot is

inside a space bubble which is of sufficient radius to encapsulate the entire robot The

distance to the closest obstacle is measured from the centre of the bubble. If this distance

is greater than the radius of the bubble then no collision has occurred. If on the other hand

this distance is less than the radius of the bubble, then a collision is possible and further

testing is necessary. The bubble encapsulating the robot is burst and the robot is then

enclosed with two smaller bubbles, and the test for collision is repeated once more. This

process continues until it can be confirmed that no collision has occurred, or the bubbles

reach a resolution, beyond which no further testing is done. In this case the conclusion is

made that a collision has occurred. Refer to Figure 7.3 for an example of collision

detection using the bubbles hierarchy. This figure shows from left to right the series of

tests for collision between a rectangular robot and an obstacle. The first figure shows that

a collision has occurred with the enclosing bubble. The robot is split along its longest

side, giving two smaller rectangles. These rectangles are enclosed by bubbles, and these

bubbles tested for collision.

Figure 7.3

Distance Space Bubble Hierarchy.

This hierarchical collision checking procedure suits this path planning method for the

following reasons. During the computation process of the path transform, the obstacle

-205-

transform is calculated. The obstacle transform gives for each free space cell the distance

to the closest obstacle. Thus the information necessary for checking the distance of a

space bubble from its nearest obstacle is already available. Secondly this path planner

deliberately steers the robot away from obstacles, and it only approaches obstacles if it is

absolutely necessary. Thus the bubble hierarchy is very suitable to this path planning

method, since checking for collisions will be done primarily at the highest levels. This

will give a cheap and efficient collision detection mechanism. The bubble hierarchy is

computed prior to path planning and is stored as a binary tree. The bubble hierarchy can

generate superfluous bubbles i.e. bubbles which only cover interior parts of the robot It

is only necessary to store the distance space bubbles which enclose the outside surfaces of

the robot W h e n the bubble hierarchy is being computed the superfluous bubbles are

omitted and not stored in the binary tree.

Following the steepest descent path for control points with the largest path transform

values will not necessarily guarantee that the robot will reach its desired goal

configuration. A "deadlock" situation can arise where the robot is caught in the situation

where one control point moves the robot in one direction, and on the very next move

another control point pushes the robot back in the opposite direction. This produces an

undesirable oscillating behaviour. Figure 7.4 shows an example of this behaviour. Figure

7.4 (A) shows a rectangular robot parked in a garage. The path planning task is to repark

the robot in the garage to face in the opposite direction. T w o control points are selected on

the robot; these correspond to the mid points of the two ends of the robot Figures 7.4 (A)

and (B) show the path transforms for each control point. The 3 D O F A selects to move the

control point in Figure 7.4 (A). The resulting motion is shown in Figure 7.4 (C). The 3

D O F A then selects to move the control point in Figure 7.4 (B). This results in the motion

shown in Figure 7.4 (D).

-206-

(1 move

•

B

Figure 7.4

Deadlock situations during path planning.

The solution to this problem is to keep a record of all the moves made by the robot

This information is kept in an "open" list; each entry in the list records the grid cells that

all the control points are located in. Before a robot move is attempted this list is checked

for the proposed robot configuration. If the proposed move has already been performed

earlier, then this move is abandoned and another move is selected. The next move that is

selected for a control point is the one with the smallest path transform value, other than

the grid cell which has been rejected. This mechanism solves the deadlock situation. At

the end of path planning the open list shows all the intermediate moves of the control

points between the start and goal configurations.

The 3 D O F A is a similar to the A * [Hart et. al. 68] algorithm because it uses an open

list and backtracking to select other grid cells as candidates for the next move. The A *

algorithm uses the straight line distance to the goal, as the heuristic to guide the robot to

the goal. The 3 D O F A uses the path transform values as the heuristic to guide the robot to

the goal. The path transform values are a much more powerful heuristic than the straight

-207-

line distance to the goal, and therefore will guide the search through configuration space

much more efficiently. The path transform produces a potential field valley between

obstacles, through which the robot moves. By choosing suitable control points on the

robot, the robot will naturally orientate itself with the potential contours of the path

transform. Thus using the path transform with two control points creates an orientation

heuristic similar to the [Ilari et. al. 90] orientation heuristic but without the extra work.

Since the path transform acts as a heuristic to guide the robot to the goal, the robot can

be guided into situations where no solution path exists. For example consider the case of

moving a long rectangular robot down a narrow corridor, and around a sharp bend (as

shown in Figure 7.5). If the robot is too long, there is no solution path, even though the

path transform indicates there is a path to the goal for a point robot The robot is trapped.

Figure 7.5

Move a long rectangular robot around a corner in a narrow corridor.

The only option is to backtrack along the open list, and m o v e the invalid

configurations from the open list to a "closed" list. The elements contained in the closed

list are configurations of the robot which have been tried and are known not to belong to

the solution path. This idea is similar to the way the A * search escapes dead end

situations. Figure 7.6 shows an example of the A * algorithm backtracking. Figures 7.6

(A) - (D) show the A * search algorithm backtracking out of a dead end. Once the robot

has backed out the the dead end and then moves along the correct path to the goal, the

open list will contain only the moves from the start to the goal which bypass the dead end.

The closed list will contain all the moves which were tried to escape the dead end.

-208-

Start
y^ - ^ M a m v p M I P W

Goal Start 1

8

Goal

Start up Goal Start
P

Goal

Figure 7.6

The A* search algorithm escaping from a dead end.

If a solution path for the mobile robot to move between the start and goal

configurations does not exist, for example if the robot is surrounded by impassable

narrow corridors, it should be understood that this path planning algorithm will search the

entire solution space. Although this is a drawback, a path planner is usually invoked only

when it is known that a solution path between the start and goal configurations exists.

Due to the exhaustive search properties of this algorithm it should be clear that the

algorithm will find the solution to a path planning problem if it exists.

The situation can arise that a solution path can be unnecessarily long. The open list is

checked for any configuration of the robot earlier on in the solution path which could

directly reach the current robot configuration. If the solution path can be shortened, the

robot configurations which have been by-passed are deleted from the open list and are

added to the closed list Figure 7.7 shows an example of a solution path being shortened.

Figure 7.7 (A) shows the 3 D O F A rotating the robot about one control point After the

robot rotated to the location shown with the broken line in Figure 7.7 (A), the 3 D O F A

-209-

deduced that this location could also be reached with less effort by rotating in the opposite

direction. This is shown in Figure 7.7 (B).

/

Rotate Rotate

A B

Figure 7.7

Shortening the solution path.

The detailed algorithms for this 3 D O F path planning method are as follows. The

pseudo code algorithm for the 3 D O F A is presented in the function P A T H _ P L A N N I N G

which is shown in Algorithm 7.1. The function P A T H J P L A N N I N G takes as input the

environment grid map and the start and goal configurations of two control points. This

function returns a list of moves which contains the solution path between the start and

goal configurations.

The P A T H _ P L A N N I N G function contains two calls to the function

P A T H _ T R A N S F O R M . The P A T H J T R A N S F O R M function computes the path transform

that guides a control point to its goal configuration. The path transform is computed for

both control points. The pseudo code details of the P A T H _ T R A N S F O R M function are

not provided since these details were presented in Section 5.4.

In the next phase of planning the P A T H _ P L A N N I N G function must decide which

control point to move. The job of deciding which control point to move is done by the

function M A X _ M I N . The pseudo code details of this function are shown in Algorithm

7.2.

-210-

function PATH_PLANNING(map, bubbles, startpi, startP2, goalpi, goalp2)
open = NIL
closed = NIL
dtpi = PATHJTRANSFORM (map, startpi, goalpl)
dtp2 = PATHJTRANSFORM(map, startp2, goalp2)
RECORD(startpi, startp2, open)
while (dtpi [startpi] * 0 and dtp2 [startp2] * 0) do

MAX_MIN(dtpi, startpi, dtp2, startp2, min, max)
valid = FALSE
neighboursmax = FIND_NEIGHBOTJRS (dtmax, max)
while (neighboursmax * NIL and not (VALID)) do

movemax = NEXT(neighboursmax)
neighboursmin = FIND_NEIGHBOURS (dtmin/ min)
while (neighboursmin * NIL and not (VALID)) do

movemin ™ NEXT(neighboursmin)
if (VALID_M0VE(movemax, movemin, map, bubbles, open, closed

RECORD (movemax, moverain, open)
SHORTEN(open, closed)
valid - TRUE

end if
end do

end do
if not (valid) then

RECORD(startpi, startp2, closed)
BACKTRACK (open, startpi, startp2)

else
SET(movemax, movemin, startpi, startp2)

end do
return (open)

end function
Algorithm 7.1

3D0F Path Planning Algorithm.

procedure MAX_MIN(dtpi, startpl, dtp2, startp2, min, max)

if (dtpi [startpj > dtp2[startp2]) then
max = startpi
min = startp2

else
max = startp2
min = startpi

end if
end procedure

Algorithm 7.2

Select the Control Point that needs to be moved.

The next step of path planning is to decide where to move the selected control point

The FIND_NEIGHBOURS function which is described in Algorithm 7.3, finds all the

possible moves for a control point, and then ranks these moves in descending path

transform value order.

-211-

function FIND_NEIGHBOURS(dt, start)
neighbours = NIL
neighbours = ADD(neighbours, start)
for (i-l to 4)

neighbours = ADD (neighbours, GET_NEIGHBOUR(i, start))
neighbours = SORT(neighbours)
return { neighbours)

end function

Algorithm 7.3

Find all the Possible Moves for a Control Point and Rank them.

The next stage of planning performed by the PATH_PLANNING is to step through

the list of desirable moves returned by the FTND_NEIGHBOURS function. The NEXT

function is responsible for selecting the next best move which should be attempted. The

PATH_PLANNING function attempts to move both the control points to the position

selected by the NEXT function. The implementation particulars of the NEXT function are

straightforward and are therefore not presented. Once the next move has been selected the

VALID_MOVE function which is described in Algorithm 7.4 tests if the proposed move

is legal. The VALID_MOVE function evaluates four conditions to test whether or not a

proposed move is valid. The function tests that the proposed move does not violate the

geometry of the robot, the move does not cause a collision with any obstacle and the

move is absent from the open and closed lists.

function VALID_M0VE(movemax, movemin, map, bubbles, open, closed)
if (VALID_GEOMETRY (movemax, movemin)) and

(NO_COLLISION(movemax, movemin, map, bubbles)) and
(ABSENT (movemax, movemin, closed)) and
(ABSENT (movemax, moverain, open)) then

valid = TRUE
else

valid = FALSE
end if
return (valid)

end function

Algorithm 7.4

Check if a proposed move is valid.

The VALID_MOVE function checks that the proposed move does not violate the

geometry of the robot by insuring that after the move the control points are still separated

by a fixed distance. This check is performed by the function VALID_GEOMETRY,

-212-

which is described in Algorithm 7.5. This function calculates the distance between the

new locations of the control points and compares this against a precomputed constant

called CONTROL_POINT_DISTANCE. This constant represents the distance between

the two control points on the robot

function VALID_GEOMETRY (movemax, movemin)
d = DISTANCE (movemax, movemin)
if (d = CONTROL_POINT_D I STANCE) then

valid = TRUE
else

valid = FALSE
end if
return (valid)

end function

Algorithm 7.5

Check if the separation of control points is valid.

The next check done by VALID_MOVE is to verify that the proposed move does not

cause a collision with any obstacles in the environment. This check is done by the

function NO_COLLISION which is described in Algorithm 7.6 This function uses

distance space bubbles to check for collisions. The distance space bubbles are

precomputed prior to path planning and are stored in a binary tree. The function performs

operations on the distance space bubble which is stored at the root of the binary tree. The

first operation performed on the distance space bubble is to locate the bubble's centre to a

grid cell on the obstacle transform map. The next operation checks if the proposed robot

move is collision free. This is done by checking that the radius of the distance space

bubble is less than the obstacle transform value stored in the grid cell to which the centre

of the bubble was located. If the radius of the distance space bubble is greater than the

obstacle transform value stored in the grid cell then further collision checking is

necessary. Further collision checking is done by splitting the current distance space

bubble into two smaller bubbles, and then recursively calling the NO_COLLISIONS

function to check the two smaller distance space bubbles. Splitting a distance space bubble

is straightforward and is done by finding the two descendant children of the current

distance space bubble in the precomputed binary tree.

-213-

function N0_C0LLISI0NS (movemax, movemin, map, bubbles)
if (EXIST(bubbles)) then

pos = FIND (bubbles, movemax, movemin)
if (bubbles.radius < map[pos]. ot) then

valid = TRUE
else

pos = SPLIT(bubbles, bubblel, bubble2)
valid = NO_C0LLISI0NS (movemax, movemin, map, bubblel)
if (valid) then

valid = N0_C0LLISI0NS (movemax, movemin, map, bubble2)
end if

end if
else

valid = FALSE
end if
return (valid)

end function
Algorithm 7.6

Check for collisions using distance space bubbles.

The last two checks in the V A L I D _ M O V E function ensure that the proposed move has

not been tried previously. The first check ensures that the proposed move is not present

on the closed list of moves. The closed list contains moves which are known not to

belong to the solution path. The final check ensures that the proposed move is not present

on the open list of moves. The open list contains moves which are known to belong to the

solution path. The checking of the open and closed lists is done by the A B S E N T function.

The implementation particulars of the A B S E N T function are straight forward and are

therefore not presented.

If the function V A L I D _ M O V E determines that the proposed move is legal the

P A T H J P L A N N I N G function uses the procedure R E C O R D to add the new move to the

open list. The S H O R T E N function checks if the solution path described by the open list

can be shortened. This function checks if the last robot position recorded on the open list

can be reached from previous moves on the open list If the solution path can be shortened

the S H O R T E N function transfers the moves that are to be bypassed to the closed list The

implementation particulars of the R E C O R D and S H O R T E N functions is straight forward

and are therefore not presented.

-214-

If all the possible moves which are available to the robot at a particular location in the

environment are invalid, the P A T H . P L A N N I N G function adds the current location of the

robot onto the closed list using the R E C O R D function. This indicates that no solution path

exists using this configuration of control points. The P A T H _ P L A N N T N G function must

now back track along the open list using the B A C K T R A C K function to enable the robot

to escape the dead end. Once a move has been successfully performed the S E T procedure

marks the current location of the control points as the start locations for the next iteration

of the search for the next move. The P A T H . P L A N N I N G function keeps generating

moves, attempting moves, and recording valid moves until both the control points reach

their goal configurations. The implementation particulars of the B A C K T R A C K and SET

functions is straightforward and are therefore not presented.

7.3 The Results

The 3DOFA was implemented in C programming language on a SUN 4/260 computer

operating under the U N I X operating system. The implementation did not provide a

graphics animation of the robot moving from the start configuration to the goal

configuration. The aim of this research was to prove that the new 3 D O F A worked, so a

user interface was not considered to be essential. The 3 D O F computer program provided

the list of robot moves that needed to be made to solve the path planning problem.

Results are provided for solving the path planning problem which was posed in Figure

7.4, where a rectangular robot had to be reparked in the same location but facing in the

opposite direction. T w o control points have been selected on the mid points of the ends of

the robot. The path transforms for each control point are given in Figures 7.8 (A) and (B).

The computer program provided a list of moves that were attempted to solve the problem,

in addition to the final solution path. The solution path was computed in less than 4

seconds of elapsed running time. The output from the computer program was converted

by hand into a graphical representation. The graphical details of the search for a solution

path are shown in Figure 7.9. Figures 7.9 (A) - (P) show the stages of search for a

-215-

solution path from the start to the goal configurations for the rectangular robot The dot on

the robot marks the control point which is guiding the path planner. The search can take

the path planner into dead end situations as shown in Figure 7.9 (H). However when the

search reaches the stage shown in Figure 7.9 (J), the planner deduces the that the current

configuration can be reached from the configuration shown in Figure 7.9 (G). The

solution path is amended not to include the configurations shown in Figures 7.9 (H) and

(I). Once the robot reaches the goal, the complete solution path can be determined. The

complete solution path is shown in Figures 7.9 (A) - (G) and (J) - (P).

B

Figure 7.8

The path transforms for each control point to repark the robot in the opposite direction.

-216-

Figure 7.9

Diagrams A - P show the stages of search for a solution path from the start to the goal configurations

for a rectangular robot. The complete solution path is shown in Diagrams A - G and J - P.

-217-

Another path planning experiment was performed using the same rectangular robot in

the same environment as the one shown in Figure 7.8. The experiment involved moving

the robot from a different start configuration to the same goal configuration shown in

Figure 7.8. The path transforms computed in Figure 7.8 were applicable to this

experiment Figure 7.10 displays the final solution path between the start and goal

configurations. The solution path for this experiment was computed in just over 7 seconds

of elapsed running time. In this experiment the path transform values initially caused the

path planner to move the robot into the narrow impassable corridor in the bottom right

hand comer of the environment. W h e n the path planner realised that it could not negotiate

the bend, the path planner back tracked out of the narrow corridor. The planner then

investigated an alternative solution path for the robot The path transform values kept the

solution path in the middle of the available free space areas in the environment Using the

path planning strategy that favours moving the control point which is furthest from its

goal produces satisfactory solution paths. This feature is shown in this experiment by the

neat move the robot performs as it swings around to the correct orientation before parking

in the garage.

Figure 7.10

3DOF Path Planning Experiment.

-218-

7.4 The Conclusions

This chapter presented a new path planning algorithm for robots with 3 degrees of

freedom. This algorithm is based upon selecting two control points on the robot and then

constructing a path transform of the robot work space for each control point The path

transform functions as a heuristic to guide the search through the work place for a solution

path. The path transform is an effective guide since it steers the search into areas of the

work space where solutions are more likely. The path transform has the additional benefit

of functioning as an orientation heuristic. The control points are naturally driven into the

valleys of the path transform, thus minimising potential collisions. Collision detection is

implemented using a hierarchy of space bubbles. Space bubbles allow for the quick

testing of collisions between robot and obstacles in the environment Experimentation

showed that the new algorithm yields solutions to non-trivial path planning problems that

can be computed quickly.

A disadvantage of this path planner is only suitable for 2-dimensional path planning

problems. This is because the number of discrete configurations of the robot is

exponential with the number of DOF's. A robot operating in 3-dimensional space has

typically 6 D O F . Despite this disadvantage the 3 D O F A algorithm is superior to the 3 D O F

path planner reported by [Brooks et. al. 85] in terms of time complexity and quality of the

solution path. The savings in time are due to the search of a reduced solution space.

Quality of solution path means that the algorithm takes into account the discomfort of

approaching obstacles too closely, in addition to minimising the distance to the goal.

The 3DOF path planner reported by [Noborio et. al. 89] was shown to be an order of

magnitude faster than the the planner reported by [Brooks et. al. 85]. Given the different

hardware platforms used by [Noborio et. al. 89] and the work reported in this research it

is difficult to conclude which path planner is fastest. However given the increasing

expense of calculating the grid distance transform as the resolution of the map increases, it

unlikely that the 3 D O F A would out perform the [Noborio et. al. 89] path planner.

-219-

It was shown by [Ilari et. al. 90] that their path planner is in the order of 100 to 200

times faster in search than path planners which only use distance to the goal as the search

heuristic. Since the algorithm reported in this research uses similar heuristics to those used

by Ilari et. al., the 3 D O F A algorithm should perform with a comparable efficency.

However the 3 D O F A has a number of advantages over the Ilari et. al. algorithm. The

3 D O F A does not require the two stage search used by Ilari et. al. to find a solution path.

By using a single stage search the 3 D O F A is able to elegantly backtrack if the planner

chooses to explore a path to the goal which has no solution. Backtracking with the Hari et.

al. algorithm is awkward since this planner keeps the robot on the global path, and the

planner cannot explore alternatives. The Ilari et. al. approach to backtracking requires

checking whether the robot is trapped. If the robot is trapped then the current global path

is removed from the path network and a search for a new global path is performed.

However the most important advantage the 3 D O F A has over the Ilari et. al. algorithm is

the quality of the solution path. The 3 D O F A does not suffer from the "too far" problem

and the final solution path does not require a path smoothing process. Hari et. al. smooth

the final solution path to remedy the deficiencies of the planning process.

-220-

Chapter 8

Conclusions and Further Work

8.1 Conclusions

In Chapter 1 it was stated that the goals of the research reported in this thesis were to

further the development of data structures and algorithms in four areas of mobile robotics.

Namely:

* Environment Mapping with sonar range data.

* Path Planning for mobile robots.

* Path Planning behaviours for mobile robots.

* Path Planning for mobile robots with 3 degrees of freedom.

A n environment mapping method using sonar range data was presented in Chapter 2 of

this thesis. This method allowed a mobile robot to map an unknown indoor environment. It

was demonstrated how high resolution maps of indoor environments could be produced

using the low resolution Polaroid Corp. Ultrasonic Rangefinder. The noise and uncertainty of

sonar data was handled by applying the sonar mapping test The sonar mapping test is a new

approach to environment mapping, and it was shown to discriminate effectively against false

reflections of sonar sound waves, thus allowing the mobile robot to produce accurate maps of

the environment The map was sufficiently rich in detail that it could be used by higher level

mobile robot navigation functions such as path planning, object recognition etc. The

mapping technique described in this research yields an inexpensive and reasonably fast

method for mapping indoor environments.

In all the research work reported in this thesis it was assumed that an accurate measure of

the robot's true location within the environment was known at all times. The reported work

-221-

used dead reckoning to track the robot's position. All the reported experiments were

conducted in a small area. The drift in the information about the robot was small and

therefore conveniently ignored. To apply the work reported in this thesis to mobile robots

operating in large indoor environments an accurate position estimation system such as

external beacons is essential.

The second goal of this research was to make a contribution to path planning for mobile

robots. A new Environment Exploration Algorithm (EEA) was presented in Chapter 4. The

new algorithm is based upon using quadtrees and distance transforms in a novel way. It was

shown that quadtrees and distance transforms provide an effective mechanism for exploring

and learning the structure of an environment with a mobile robot The environment can be

efficiently modelled with quadtrees, and distance transforms can be applied to explore paths

in known and unknown portions of the environment. The problem of expensive computation

of the distance transform was addressed by limiting the recomputation of the distance

transform to a partial update. A new mechanism was provided for the efficient extraction of

"fine" solution paths from the "coarse" chain of free space quadrants between the start and

goal locations. The new mechanism allows the solution path between the start and goal

locations to be fully or partially optimised. This is useful because fully optimising a path in an

unknown environment could be computationally wasteful, since unexpected obstacles will

necessitate replanning.

The third goal of this research was to investigate how a mobile robot path planner could

be endowed with the ability to exhibit different types of path planning behaviours, other than

the "optimum" path planning behaviour which only finds the shortest path to a goal. In

Chapter 5 of this thesis it was shown how the E E A algorithm could be extended to exhibit

different path planning behaviours. This was achieved by varying the manner in which the

distance transform was generated. It was shown how the "conservative", "adventurous" and

"visit all" path planning behaviours which were formulated by [Jarvis et. al. 86, 88] for grid

-222-

based distance transforms could be incorporated to operate with the EEA. In Chapter 5 four

(4) new path planning behaviours were presented, namely: the "learn all", "forgetful", "safe"

and "best" path planning behaviours.

Chapter 5 showed how the EEA when operating in the "learn all" path planning behaviour

was an efficient and effective mechanism for systematically mapping all the unknown regions

of an environment. It was demonstrated that a "forgetful" behaviour is a useful behaviour that

could coexist with other path planning behaviours in a meaningful way. Chapter 5 presented

a new transform called the "path transform" which is more suitable for path planning than the

distance transform. The path transform has the desirable properties of potential field path

planners without suffering the penalty of local minima. It was shown how the path transform

can be applied to the grid and quadtree data structures to produce the "safe" and "best" path

planning behaviours, and how it can be used with the grid data structure to produce a new

"visit all" path. The new "visit all" path is superior to the "visit all" path generated using

ordinary distance transforms.

Chapter 6 of this research reported on a study which compared the performance of grid and

quadtree distance transform algorithms. This study showed that the quadtree distance

transform was a suitable mechanism for mobile robot path planning. The quadtree distance

transform out performed the grid distance transform in several typical path planning

situations. The grid was superior in random and spiral environments and in environments of

low resolution map sizes. However such environments are less likely to occur in practice. It

is more likely that a robot will need to operate in an environment with a map size of at least

128x128 cells, which contains a collection of reasonably sized obstacles. The fewer obstacles

there are in an environment, the greater the superiority in performance the quadtree distance

transform has over the grid distance transform. In can be stated that in general the quadtree

distance transform has an inferior worst case performance compared to the grid distance

-223-

transform. However the quadtree distance transform has a superior average case performance

compared to the grid distance transform.

The fourth and final goal of this research was to develop a path planning algorithm for

mobile robots with 3 degrees of freedom. In Chapter 7 of this thesis a new algorithm to

achieve this goal was presented. This algorithm was based upon selecting two control points

on the mobile robot and then constructing a path transform of the robot work space for each

control point. The path transform acted as a heuristic to guide the search through the work

place for a solution path in addition to controlling the orientation of the robot It was shown

that this new algorithm is computationally fast and that the algorithm takes into account the

discomfort of approaching obstacles too closely, while minimising the distance to the goal.

Overall, this research has shown how effective the distance transform is for path planning

in mobile robotics. A mobile robot path planner must do more than just plan the shortest path

to a single goal. It has been shown that distance transforms readily support not only planning

the shortest path to a goal but also a variety of other path planning options, such as path

planning behaviours, multiple goals, multiple robots and robots with 3 degrees of freedom.

8.2 Further Work

A drawback of the Environment Exploration Algorithm (EEA) is that the lowest size

resolution of the quadtree is considered to be the same size as the robot. This can exclude

possible paths if a quadrant leaf is only partially occupied. Further investigation is warranted.

Possible ways forward would be to further apply the quadtree division of space, but to have

exceptions to the rule that a robot can only travel within a quadtree leaf. Another possibility is

to "relax" the quadtree and move the quadrant leaf a sufficient amount until it is free space,

and then attempt a path through the overlapping quadrants.

-224-

Using quadtrees to represent polygonal shaped obstacles yields a quadtree with minimum

sized leaf quadrants along the edges of the polygon. The quadtree is large and the number of

leaves in the tree is proportional to the polygon's perimeter. Solutions put forward by [Samet

et. al. 85] using P M quadtrees and by [Ayala et. al. 85] using extended quadtrees offer

substantial reductions in the memory requirements to represent polygonal obstacles. However

the P M variants of the quadtree are not directly suitable for use with the path planning

techniques presented in this thesis, since these representations only store the vertex points of

a polygonal shape, thus making it difficult for the path planner to find a path through a

quadrant containing a polygonal edge. Given the substantial memory savings using P M and

extended quadtrees the question of whether or not these variants of quadtrees can be used in

path planning deserves further investigation.

In this thesis the E E A has been developed and presented for 2 dimensional problems.

Further work can be done to extend the E E A to handle 3 dimensional path planning

problems. Adding the third dimension to the E E A could be achieved by using octrees.

An issue that deserves further investigation is the speeding up of the computation of the

distance transform in both the grid and quadtree data structures, since the distance transform

in both data structures essentially generates all possible paths from the goal. Concurrent

processing could offer a solution to speeding up the computation of the distance transform.

One approach to implementing the computation of the distance transform concurrently is to

allocate a processing node to each grid or quadrant cell. Each node communicates with its

neighbouring cells. The distance transform radiates out from the processing node containing

the goal. A n alternate approach to this problem is to use a hierarchical arrangement of

processors. The processing work for computation of the distance transform is farmed out to a

set of slave processors. Given the considerable computational burden of the distance

-225-

transform the issue of speeding up the computation using concurrent processing deserves

further attention.

The choice of grid size for the 3 DOF path planning algorithm is an important

consideration. A decision must be made on the magnitude of robot motion at each step of the

path planning. One strategy could be to plan a path using a coarse grid. If no solution path is

found then attempt the problem on a finer grid. This is repeated until the finest grid is reached

or a solution is found. Such an approach could prove to be expensive, especially when no

solution path exists. Currently the grid size is chosen by selecting the smallest dimension of

the rectangle which bounds the robot, and adding a small safety factor. This has proven to be

satisfactory. However the issue requires further investigation.

The 3 D O F path planning algorithm is based upon cooniinating the motion of two control

points with a number of physical constraints. This algorithm can be regarded as a special case

of coordinating two robots. There is no reason why this algorithm cannot be extended to

coordinate the motion of multiple robots with 3DOF. A n issue of coordinating multiple robots

that requires further investigation is that of allowing the robots to operate at varying velocities

so that collisions can be avoided.

-226-

Bibliography

[Adams et. al. 90]

[Arkin 89]

[Ayala et. al. 85]

[Bauziler. al. 81]

[Borgefors 84]

[Brooks 83]

M.D. Adams, H. Hu and PJ. Probert, "Towards a Real-Time

Architecture for Obstacle Avoidance and Path Planning in

Mobile Robots", Proceedings of IEEE International

Conference on Robotics and Automation, pp584-589, May

1990.

R.C. Arkin, "Motor Schema - Based Mobile Robot

Navigation", International Journal of Robotics Research, Vol.

8No.4,pp92-112, 1989.

D. Ayala, P. Brunei, R. Juan and I. Navazo, "Object

Representation by means of Non-minimal Divsion Quadtrees

and Octrees", A C M Transactions on Graphics, Vol. 4 No. 1,

pp41-59, January 1985.

G. Bauzil, M. Birot and R. Ribes "A Navigation Sub-System

using Ultrasonic Sensors for the Mobile Robot HTLARE",

Proceedings of 1st Conference on Robot Vision and Sensory

Control, 1981.

G. Borgefors, "Distance Transform in Arbitary Dimensions",

Computer Vision, Graphics and Image Processing, 27,

pp321-345, 1984.

R.A. Brooks, "Solving the Find-Path Problem by a Good

Representation of Free Space", IEEE Trans, on Systems, Man

and Cybernetics, SMC-13 No.3, ppl90-197, March 1983.

-227-

[Brooks 84]

[Brooks et. al. 85]

[Brooks 86]

[Cahn et. al. 75]

[Chatila 82]

[Chatila et. al. 85]

[Chattergy 85]

R.A. Brooks, "Aspects of Mobile Robot Visual Map Making",

Proceedings of 2nd International Symposium of Robotics

Research, pp287-293, August 1984.

R.A. Brooks and T. Lozano-Perez, "A Subdivision Algorithm in

Configuration Space for Findpath with Rotation", IEEE Trans, on

Systems, Man and Cybernetics, SMC-15 No.2, pp224-233,

March/April 1985.

R.A. Brooks, "A Robust Layered Control System for a Mobile

Robot", IEEE Journal of Robotics and Automation, Vol. RA-2

No. 1, pp 14-23, March 1986.

D.F. Cahn and S.R. Phillips, " R O B N A V : A Range Based

Robot Navigation and Obstacle Avoidance Algorithm", IEEE

Trans, on Systems, Man and Cybernetics, SMC-55, ppl38-

145, September 1975.

R. Chatila, "Path Planning and Environment Learning",

European Conference on Artificial Intelligence, pp211-215,

July 1982.

R. Chatila and J-P. Laumond, "Position Referencing and

Consistent World Modelling for Mobile Robots", Proceedings

of IEEE International Conference on Robotics and Automation,

ppl38-145, March 1985.

R. Chattergy, "Some Heuristics for the Navigation of a

Robot", International Journal of Robotics Research, Vol. 4

No.l, pp59-66, 1985.

-228-

[Dijkstra56]

[Dmmheller87]

[Crowley 85] J.L. Crowley, "Navigation for an Intelligent Mobile Robot",

IEEE Journal of Robotics and Automation, Vol. RA-1 No. 1,

pp31-41, March 1985.

E.W. Dijkstra, "A Note on Two Problems in Connection with Gra]

Numerische Mathematik,l,pp269-271,1959.

M. Drumheller , "Mobile Robot Localization Using Sonar",

IEEE Trans, on Pattern Analysis and Machine Learning, Vol.

PAMI-9 No. 2, pp325-332, March 1987.

R.O. Duda and P.E. Hart, "Pattern Classification and Scene

Analysis", N e w York, Wiley, 1973.

B.R. Donald, "A Search Algorithm for Motion Planning with

Six Degrees of Freedom", Artifical Intelligence Vol. 31 No.3,

pp295-353, 1987.

[Durrant-Whyte et. al. 87] H.F. Durrant-Whyte and J.J. Leonard "Navigation by

Correlating Geometric Sensor Data", IEEE/RSJ International

Workshop on Intelligent Robots and Systems, Tsukuba Japan,

pp440-447, September 1989.

[Duda et. al. 73]

[Donald 87]

[Elfes 87]

[Flynn 85]

A. Elfes, "Sonar-Based Real World Mapping and Navigation",

IEEE Journal of Robotics and Automation, pp249-265, June

1987.

A.M. Flynn , "Redundant Sensors for Mobile Robot

Navigation", M I T Artificial Intelligence Lab., AI-TR-859,

September 1985.

-229-

[Hart et. al. 68] P.E. Hart, N.J. Nilsson and B. Raphael, "A Formal Basis

for the Heuristic Determination of Minimum Cost Paths",

IEEE Trans, of Systems Science and Cybernetics, SSC-4 No.

2, pp 100-107, July 1968.

[Ilari et. al. 90] J. Ilari, C. Torras,"2D Path Planning: A Configuration Space

Heuristic Approach", International Journal of Robotics

Research, Vol.9 No.l, pp75-91, February 1990.

[Iyengar et. al. 86] S.S. Iyengar, C C . Jorgensen, S.V.N. Rao and C R .

Weisbin, "Robot Navigation Algorithms using Learned Spatial

Graphs", Robotica, Vol.4, pp93-100, 1986.

[Jarvis 83] R.A. Jarvis, "Growing Polyhedral Obstacles for Collision Free

Paths", Australian Computer Journal, Vol. 15 No. 3, ppl03-

111, August 1983.

[Jarvis et. al. 86] R.A. Jarvis and J.C. Byrne, "Robot Navigation: Touching,

Seeing and Knowing", Proceedings of 1st Australian

Conference on Artificial Intelligence, November 1986.

[Jarvis et. al. 88] R.A. Jarvis, J.C. Byrne and K. Ajay, "An Intelligent

Autonomous Guided Vehicle: Localisation, Environment

Modelling and Collision-Free Path Finding", Proceedings of

19th-ISIR The International Symposium and Exposition on

Robots, pp767-792 November 1988.

[Kambhampati et. al. 86] S. Kambhampati and L.S. Davis, "Multiresolution Path

Planning for Mobile Robot", IEEE Journal of Robotics and

Automation, Vol. RA-2 No. 3, ppl35-145, September 1986.

-230-

[Keirsey et. al. 84]

[Khatib 86]

[Khosla et. al. 88]

[Krogh 84]

[Krogh et. al. 86]

[Kuan er. a/. 85]

D.M. Keirsey, E. Koch, J. McKisson et. al., "An Algorithm

of Navigation for a Mobile Robot", Proceedings of 1984 IEEE

International Conference on Robotics, pp 574-583, May

1984.

O. Khatib, "Real-Time Obstacle Avoidance for Manipulators

and Mobile Robots", International Journal of Robotics

Research, Vol. 5 No.l, pp90-98, 1986.

P. Khosla amd R. Volpe, "Superquadric Artificial Potential for

Obactacle Avoidance and Approach", Proceedings of IEEE

International Conference on Robotics and Automation,

ppl778-1784, May 1988.

B.H. Krogh, "A Generalised Potential Field Approach to

Obstacle Avoidance Control", First World Conference on

Robotics Research, August 1984.

B.H. Krogh and CE. Thorpe, "Integrated Path Planning and

Dynamic Steering Control for Autonomous Vehicles",

Proceedings of IEEE International Conference on Robotics and

Automation, ppl664-1669, April 1986.

D.T. Kuan, J.C. Zamiska and R.A. Brooks, "Natural

Decomposition of Free Space for Path Planning", Proceedings

of IEEE International Conference on Robotics and

Automation, ppl68-173, March 1985.

-231-

[Lozano-Perez et. al. 79] T. Lozano-Perez and M.A. Wesley, "An Algorithm for

Planning Collision Free Paths among Polyhedral Obstacles",

Communications of the A C M , Vol. 22 No. 10, pp560-570,

October 1979.

[Lozano-Perez 83]

[Lumelsky 87]

[Lumelsky 89]

[Miller 84]

[Miller 85]

[Moravec 80]

T. Lozano-Perez, "Spatial Planning: A Configuration Space

Approach", IEEE Trans, on Computers, C-32 No. 2, ppl08-

120, February 1983.

V.J. Lumelsky and A. A. Stepanov, "Path Planning Strategies

for a Point Mobile Automaton Moving Amidst Unknown

Obstacles of Arbitrary Shape", Algorithmica, Vol. 2 No. 4,

pp403-430, 1987.

V.J. Lumelsky, S. Mukhopadhyay and K. Sun, "Sensor-

Based Terrain Acquisition: a 'Seed Spreader* Strategy",

JJEEE/RSJ International Workshop on Intelligent Robots and

Systems, Tsukuba Japan, pp62-67, September 1989.

D.P. Miller, "Two Dimensional Mobile Robot Positioning

using onboard Sonar", Proceedings of 9th William T. Pecora

Memorial Remote Sensing Symposium, IEEE, USGS, NASA,

ASP, pp362-369, October 1984.

D.P. Miller, "Planning by Search Through Simulations", Phd

dissertation, Yale University, Department of Computer

Science, October 1985.

H.P. Moravec, "Obstacle Avoidance and Navigation in the

Real World by a Seeing Rover", Phd dissertation, Stanford

University, September 1980.

-232-

[Noborio et. al. 88]

[Noborio et. al. 89]

[Polaroid 82]

[Rao et. al. 86]

[Rimon et. al. 88]

[Samet 81]

[Samet 82]

H. Noborio, T. Naniwa and S. Arimoto, "A Fast Path-

Planning Algorithm by Synchronising Modification and Search

of its Path Graph Representation", Proceedings of IEEE

International Workshop on Artificial Intelligence for Industrial

Applications, pp351-357,1988.

H. Noborio, T. Naniwa and S. Arimoto, "A Feasible Motion-

Planning Algorithm for a Mobile robot on a Quadtree

Representation", Proceedings of IEEE International

Conference on Robotics and Automation, pp327-332, May

1989.

Polaroid Corporation, "Ultrasonic Range Finders", 1982.

S.V.N. Rao, S.S. Iyengar, CC. Jorgensen and CR.

Weisbin, "Robot Navigation in an Unexplored Terrain",

Journal of Robotic Systems, Vol.3 No.4, pp389-407, 1986.

E. Rimon and D.E. Koditschek, "Exact Robot Navigation

using Cost Functions", Proceedings of IEEE International

Conference on Robotics and Automation, ppl791-1796, May

1988.

H. Samet, "An Agorithm for Converting Rasters to

Quadtrees", IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. PAMI-3 No. 1, pp93-95,1981.

H. Samet, "Neighbour Finding Techniques for Images

Represented by Quadtrees", Computer Graphics and Image

Processing, Vol. 18 No. 3, pp37-57, 1982.

-233-

[Samet 84]

[Samet et. al. 85]

[Samet 88]

[Suh et. al. 88]

[Schwartz et. al. 83]

[Tarjan81]

[Thompson 77]

H. Samet, "The Quadtree and Related Heirarchical Data

Structures", A C M Computing Surveys, Vol. 16 No. 2,

pp 187-260, June 1984.

H. Samet and R.E. Webber, "Storing a Collection of

Polygons using Quadtrees", A C M Transactions on Graphics,

Vol. 4 No. 3, ppl82-222, July 1985.

H. Samet, "An Overview of Quadtrees, Octrees and Related

Hierarchical Data Structures", N A T O ASI Series, Vol. F40,

Theoretical Foundations of Computer Graphics, pp51-68,

Springer-Verlag Berlin Heidelberg, 1988.

S.H. Suh and K.G. Shin, "A Variational Dynamic

Programming Approach to Robot Path Planning with a

Distance Safety Criterion", IEEE Journal of Robotics and

Automation, Vol. RA-4 No. 3, pp334-349, September 1988.

J.T. Schwartz and M. Sharir, "On the Piano Movers Problem,

the Case of a Two Dimensional Rigid Polygonal Body Moving

Amidst Polygonal Barriers",Communications on Pure and

Applied Mathematics, Vol. 36, pp345-398,1983.

R. Tarjan, "Fast Algorithms for Solving Path Problems",

Journal of A C M , Vol. 28 No. 3, July 1981.

A.M. Thompson, "The Navigation System of the JPL Robot",

Proceedings of 5th International Joint Conference on Artificial

Intelligence, pp749-757, August 1977.

-234-

[Thorpe 84] C E . Thorpe, "FTDO:Vision and Navigation for a Robot

Rover", Phd dissertation, Carnegie Mellon University,

Department of Computer Science, December 1984.

[Warren 89] C.W. Warren, "Global Path Planning using Artificial Potential

Fields", Proceedings of IEEE International Conference on

Robotics and Automation, pp316-321, May 1989.

-235-

Appendix A

Fine Path Planning

This appendix presents the experimental results for determining the amount of

computational effort that is required to plan "fine" execution paths in quadtrees and grids.

Results are presented which show the proportion of "fine" path planning in the total path

planning task.

Four experimental results are presented in Tables A.1 - A.4. The layouts of the

environments which were used for the experiments are shown in Figure A.1. For each

environment layout data was collected from seven (7) different resolution size maps

ranging from 8 x 8 to 512 x 512 pixels. Each table contains the following information:

* time to compute the distance transform for grids which is shown as GRID DT.

* time to compute the distance transform for quadtrees which is shown as Q U A D T R E E

DT.

* time to compute the fine path for grids which is shown as GRID FINE PATH.

* time to compute the fine path for quadtrees which is shown as QUADTREE FINE

PATH.

* time to construct the quadtree which is shown as QUADTREE BUILD.

* total time for path planning using grids which is GRID D T + GRID FINE PATH and

is shown as TOTAL GRID.

* total time for path planning using quadtrees which is Q U A D T R E E BUILD +

Q U A D T R E E D T + Q U A D T R E E FINE PATH and is shown as TOTAL

QUADTREE.

* percentage proportion of planning fine paths in grids in the total path planning task

which is shown as % G R I D FP.

* percentage proportion of planning fine paths in quadtrees in the total path planning

task which is shown as % Q U A D T R E E FP.

-236-

From the results shown in Tables A. 1 - A.4 it can be concluded that fine path planning

is an insignificant percentage of the overall path planning task. The proportion of time

spent computing the fine path decreases as the map resolution size grows. The cost of

computing fine paths for grids is an order of magnitude less than the cost of computing

fine paths for quadtrees.

Figure A.1

The four path planning environments used for experimentation.

-237-

CD
•o
OJ
yO

ZT
•g
0)
3
3

5"
(Q
w
0>

2.
o
en
»̂

3" Q»
CD 7

§ ©
3

3
CD
3
CO
3

i
3

CO

c
CD

>

Ul
to
X

•to

Is)

o

4*.

1—»

4*

Ui

vO

to

VO
»—»

-o

to

o

o
o
4*

o
bv
vO

to
Ui
OV
X
to
u»
OV

Ov
vo
-J
Ov

4s»
Ul
vO

^4

Ul

4^

to

Ov
vo
OO

oo
oo
OV

p
o
O

vo

>—•
to
oo
X
to
oo

F— »

•o
4*-
4*.

4*.
Ov
O

to

£

p — '

1 — '

to

y-»

OV

Ul
oo
OV

p
1—»
y~*

Ui

to

00
vo

Ov
4*"
X

2

4*.

Ov

4*.
Ul
VO

i—»

it

to
VO

•o

Ul

o
to

o
to
vO

to

00
00

to
X
{Jy

to

oo
to

4*

s

o

~J

1—»

o

00
to

4*.

-o
^1

1

y->

4*.

5

Ov
X

Ov

Ul

©

o

y-»

u>

Ui

-o
4*

1

1

oo
X
oo

y-k

to

o

o

o

1—>

to

1

1

\
M
a
p

Size
2?
Ha

O
e

H~
re

So
» a
yy-

BT

so
S c

BT «

O
B M

-•a
a. -f

a a

8

o
a*
"0

o
c
OS

n
*J
"0

-238-

3"
CD
TJ
0)
tyy¥

3
•g
5T
3
3

5'
(Q
0)

s
5-
CO
~*

* 51
3- 0>
CD ^

s > CO

I
3
3
-n
<o
c

3
>

CD

Ui

to
X
Ui

to

to

o
00

o
1—»

o
OJ
Ui
OV

to

>—*

y-.

-
Ui
Ov
Ov

to

o
00
• — »

OJ

I — *

to

o
Ov

o
b
Ui
oo

I— »

y-.

y-*

Ov

to
Ul
OV
X
to
Ul
OV

Ul
(—«

8

Ul
4*.
Ul
Ov

OV

oo
OV

it
Ul

Ul
1—»

o
Ov

Ul
vO
00
oo

p

oo

I—»

4*.
o»
Ov

to
oo
X

to
oo

to
Ul

o

to
oo
OJ
to

IO

OJ
oo

y—>

to
-J

to
Ui
to

to
vO
vo
-J

p
Ov

o

to
Ov
00

2
X

2

OJ

o

1—*

J>
vo
to

-

-o

to
VO

OJ

o
to

Ul
OJ
oo

o
OJ
OJ
F — >

o
Ul

OJ
to
X
OJ
to

s

to
Ov
y.*

o

oo

1—»

o

Ov
4*.

VO

1

to

bo

5

OV

X

OV

o

OJ
Ui

o

o

OJ

y-»

o

o>
00

1

1

oo
X
oo

o

-

o

o

•—»

o

IO

1

1

M
a
p

Size
2-

o
s

2*

fo
^3.
68 O.
yy-

sr

SO
3 B

BT «t

(SB
e s
ft »•*

<D

ft 68
p» * • —

o

o
s
69
ft .

n
fb ;•
*0

-239-

3
CD
•o

•g
Q>
3
3

5"
(Q
CO

a?
W

*̂

o
CO

! H
^ 52.
CD &

*• >

1 **
3
CD
3
CO
3
O
3

y -

c
CD

>

O

Ui
l - ^ p

to
X
Ul
y--

to

4^
vO
OJ

oo
OJ

SI
Ul

o
-o
©

•o

VO
4s.

-J
OJ

to

4s.
VO
4s.

8

>—•
4s.
Ov
vo
vO
Ov

©
©
OJ

©

©
y-«

OJ

to

to
Ul
OV

X
to
Ul
OV

Ui

vo
4s.

Ui
VO

to
oo
Ov

F — »

to

©
oo

Ul
y-'

oo

t — »

I — '

Ov
©
Ov

Ul
vo
vo
(—>
to

©
I — •

©
OJ

p
oo
©

to
oo
X
to
oo

to

to
to

to
4s.
oo
oo

oo

Ul

©

y->

Ul
4*

to
-J
OJ

o

to
4s.
OJ

vo
to

©
to
vO
OJ

o
to

o
Ul

X
ov
4s.

Ov

o
vo

-J

oo
v©

©

~

Ui

to

Ov

8

00
Ui

to

1

to
vO

OJ

to
X
OJ

to

OJ

©

vO
-J

©

to

t— »

OJ

o

I — *

o

1

bo
p — »

00

Ov
X

Ov

OJ

4s-

o

o

to

OJ

Ov

1

1

00

X
oo

©

©

o

©

1—>

©

-

1

1

M
a
p

Size
Ha

H ~

a
i'o
t» ft

sr

ao
3 C

*flS
S- <D

o
e s
—• ft

sr "*
ft -t

y

ss.

ft 69
yy- • •

o

•fl

o
s
69
ft -
-1 «*
CD
•fl

-240-

H
3
CD
•o
»
3
•g
o>
3
3
3
(Q
CO

55"
o
o
3" fi)

CD CT
§ <0

s. >

1 *
3
CD
3
CO
3

O

a
3
3

n
to

c
CD

>

Ul

to
X
Ul
•—*

to

to

-o
y-'

Ov
OO

I — *

©
oo
oo
©

-o

5

Ul

o
OV

to
-J
p — »

oo
Ul

to
Ul
Ul
OJ

©
©
Ov
OJ

1—»

OJ
OJ

o

to
Ul
ON
X
to
Ul
OV

5
-o
Ov

Ul
OJ
vo
©

Ul

vo

4s.
OJ

to

ON

-o
oo
1—'

Ul
VO
>—»
OJ

©

4s.

Ul
OJ
vO

1—'

to
oo
X
I—»

to
oo

1—*

Ov
VO
oo

to
ON

vo
Ul

OJ

1—»

to
4s.

p — »

-J

o

to
00

ov
OV

©

Ov

o

2
X

2

OJ
vo
VO

Ov
©
y-.

to

4s.

OJ

4s.
©

2
Ov

©
*4s>
v©
vo

to

Ov
-4

OJ
to
X
OJ
to

vO
to

to
VO
Ul

©

•^4

vO

vO
to

OJ
vo
OV

1

I—»

ON
00

Ov
X
>—»
ON

OJ

ON
Ul

©

©

to

t— »

OJ

5

1

1

00

X
00

to

oo

©

o

©

to

oo

1

1

M
a
p

Size
2-
Ha

O
s
M

ft

a
i'o
68 ft
^*
BT

ao
3 B

*flS

as
3* fD

83 5
c a
5» y*
ft -1

OS*

xa

§H
ft cs
y .

ft
fO

O

>fl

o
B
69

°- ~
•fl

-241-

Appendix B
Random Data

This appendix presents the experimental results for determining the amount of

computational effort and computer memory that is required to produce the distance

transform in grids and quadtrees in environments which have been generated randomly.

The distance transform is computed for quadtrees with and without neighbour lists.

The Tables B.l - B.7 presented in this appendix show the times that are required to

compute the following tasks for the seven (7) concentrations of random data:

* distance transform for grids, which is shown as GRID DT.

* build the quadtree, which is shown as BUILD QT.

* distance transform for quadtrees, which is shown as Q T DT.

* total distance transform for quadtrees , which is BUILD Q T + Q T D T and is shown

as Q T D T TOTAL.

* build the quadtree neighbour list, which is shown as BUILD Q T NBR.

* distance transform for quadtrees with neighbour lists, which is shown as

QTNBRDT.

* total distance transform for quadtrees with neighbour lists, which is BUILD Q T +

BUILD Q T N B R + Q T N B R D T and is shown as Q T D T N B R TOTAL.

Tables B.l - B.7 also show the memory requirements in bytes to support the

computation of the distance transform for the following data structures:

* memory for grids, which is shown as GRID MEMORY.

* memory for quadtrees, which is shown as Q T M E M O R Y .

* memory for quadtrees with neighbour lists, which is shown as Q T N B R M E M O R Y .

This experiment was conducted with five (5) different sets of random data for each

map size with a particular concentration of blocked cells. This is to ensure that map

-242-

configurations which produce unreachable goals do not distort the statistics. Tables B.l -

B.7 show the maximum, minimum and average computation times and memory

requirements for the five (5) random data sets. Figures B.l - 2 show an example of a

typical random data set for an 8x8 map. Figures B.l (A) - (B) show random

environments with 0 % and 5 % concentrations. Figures B.2(A) - (F) show random

environments with 10%, 20%, 30%, 40%, 5 0 % and 6 0 % concentrations. Figures B.3 -

B.6 show in graphical form the average computation times for the experimental data

presented in Tables B.l - B.7. Figures B.7 - B.10 show in graphical form the average

memory requirements for the experimental data presented in Tables B.l - B.7.

G

S

G

S

B

Figure B.1

Random Environments 0% and 5%

-243-

_ • JL

•ZZ_ZZ1
ZZ1ZZ1Z

B

G

•-5
s

s

G

s

Figure B.2

Random environments 10%, 20%, 30%, 40%, 50% and 60%.

-244-

s

> 2 2

^§S
NJ
ON NJ Ji

>
<

o o >—
Os

> 2 2

*2K
00 OJ Ji
ji

Ul

o

to
ON NJ OJ

0 0 > j O

Ji

o

OJ
ji OJ

o o —
bo

H- >— NJ
VO OJ 00

OJ

o

o o >—
bo

>— — NJ

tO
O

Ji OJ Ul

Ul

— o to

Ul -o
ji

8

Ul Ji ON

© O >-
Os

OJ 00 NO
ON

Ul ON Ji

O O i—

so ̂ J
ji

to

Ul Ul Ul

o o o

o o o

n
o 3
3 3

5 S
o n
3

a
no
— •

a

US

C
—

r
a

3
>

VO Ji Ji VO 00
NJ i— NJ
O Ji- so
NJ

H- H- NJ
•~J -ON NJ

bo

— NJ
ON 00 OJ
ji

Ji oo so
NJ

O -J OJ O O O

9

> 2 2

tO NJ NJ
Ji OJ Ul
vo OJ vo
O ON NJ

£ tO NJ
O -J

i— 00 NJ
OJ O O

to to to
Ji OJ Ul
S O J -J

ON NJ

NJ *- NJ
NJ SO OJ
OJ Ul OJ
Ji NJ OS

00 Ul vO
NJ OS Ul
Ji 00 NJ

NJ O J>
00 Ul Ji
OS OS O

Ĵ ON VO
sj ̂ W
Ji NJ 00

OJ OJ OJ
tO NJ NJ

S

s
8

Ji NJ
NJ

Ji Ji Ul
Ji

>— vO —J
ji

O so OJ

bo
SO

bo
-U OJ oo Ul OJ

bo
ON <-n so
ji

o o o

o
H

a
H

z
W
50 > 2 2

— H- NJ
to

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ >— OJ NJ NJ OJ
ji

•— •— NJ
NJ

o © o

ta
G
r
D

9
50

> 2 2

OJ OJ Ji
SO 00 <-«
SO O NJ
Ĵ 00 00

OJ OJ
VO Ul
so O OJ

it t O J Ji
ON NJ
Ji to

ui oo ji

OJ to OJ
OJ 00 ON
oo OJ oo
NJ NJ O

O OJ Ji
NJ NJ 00

Ul NJ 00
M VO O0
O Os Os

Ji Ji Ji
00 00 00

2 H

2
50 *?

70

>2 2
*2Z

Os J* oo -J -J 00

b\

> 2 2
< 2 >
^ x

— — NJ

J* © © OJ H- os
OS

NJ OS -J
00 bo

oo Os —
NJ

o © o

H
O
H
>

r

/O
H

a
H

z
ES
50

-245-

Os

o

Ji VO 00

Ul

o

NJ f NJ
NJ Os -O
ji

Ji

o

to to OJ
Ji.Ji.p-.

OJ

©

NJ NJ NJ
OJ NJ 00
NJ

NJ

O

to >— to
NJ 00 Ul

NJ NJ NJ
y-' © -O

,— >-. SJ
VO Ji >—
ON

Ji Ji Ji

n
§ 2
3 2
C. 09

o <"
3

O
50

5

o

Ul Ji

bs
os ji

ji
OJ -o J> OJ OS Ji Ji

bs
Ul NJ NJ OJ

ji
NJ NJ Ul
Ov

NJ >— Ji
NJ

CO

C
F
o
3

>22

Ji. OJ Ul
Ji © "O
bs

OS Ji oo
^J NJ NJ

© -̂ J Ji
OJ Ji. OJ

bo

© oo to
oo oo OJ

o 2 ji Ul £ & y -
ji

Ji NJ Ul
O ON OJ
ji

o o ©

O
H

H

Ul OJ OS
O OS OJ
to

-J Ji 00
h- ON VO

© -O Ji
—J oo so

bo

i— vo tO
NJ OJ 00
ON

yt ON Ji
© »J ~J
NJ

VO ON J-
>1 oo w

ji. to ui
NJ 00 Ul

bs

>
< as
«

VO vo
>— 00

-o to 00
00 © 00

NJ >— NJ
—. Ui vO

bs

^ ^ ^
VO ON K
- w g
Ji to ©

»P so ©
ON OJ O
OJ ~J >->
NJ ON ON

00 00 VO

Ul oo o

~J -O 00
ui O ©
OJ ~J vS
OJ NJ OS

Ul Ji Ul
NJ 00 Ji
O so O
OJ OS 00

OJ to OJ

VO Ul Ji
-j voce
ON to oo

OJ OJ OJ
NJ NJ NJ

OJ NJ Ji
Ji NJ OJ

bo

Ul Ji -o
-J •— 00
ji

OS Ul -O
^J Ul OS
ON

O Ji vo
O NJ Ji

NJ

Ji -o
Ji -J

NJ —* OJ
00 00 00
ON

O © ©

O
H

2
o
50

9
a
z
03
50

>22

vO vO ©
ji

>ss

^ag
Ji Ul
vO VO

-O vo OJ
00 NJ ON

y -

>22

OJ OJ -^
ON © Ji

bs

>-> © OJ

ji

to — Ji

bo
O vo •-* VO 00

ji

-J -J -J ji Os OJ

bs
o o ©

ON ON "O
-J © OJ
ON OJ
OJ NJ

fc

ON Ul ON
<-» Ul Ji
ON OJ 00
OJ ON O

ji OJ ui
NJ NJ Ji
OJ OJ Ul
Ji NJ ON

2 V O ©
-J 00

SO tO 2

ON Ul -O
Ul NJ NJ
so ON Ji

Ji Ji Ji
00 OO 00

Ul OJ Os
© vo NJ
ON

^1 Ul vo
Ji 00 00
to

00
to
to

^j vo

— o
00 Ul

bo

©
-o

> J U l C C
Ji OJ vO

OJ NJ Ji
Ul Ul Ji

CD

C
F
a

9
o

2 H

2
o
70

H
O
H
>

r

9
a
H
Z
03
50

-246-

http://Ji.Ji.p

s

Ji. Ul OJ

bs

Os Os -O
ji

>22
*5t
y* >— OJ
00 —« ON
Ui ON so

H
D)
CT

5"
CD

>22

NJ >— OJ
© OJ 00
>— NJ Ul

>22
^5£
OJ OJ OJ
00 -O SO
OJ Ul -o
OJ ON ON
Ji NJ NJ

>22

00 Ul OS
OJ *— -J
NJ

>22

OJ OJ Ji
VO O0 •—

Ul

o

vo Ji JO
OJ to 00
to

ON Os ON

Ji. Ul Ul
ui •— O N

bs

OJ •—• -o
ON ON -O
>- o to
ON

>—• OJ
ON ^j ON

vO OJ VO

Ul Ji Ul
O -J OJ

Ji

o

Ji to -o
Os NJ NJ
bo

H- I— tO
~J Os O
to

ON tO ©
tO © ON
«-» NJ -J
ON

Os to ©
OJ H- o°
SO Ji OJ

OJ OJ OJ
•p ^J VQ

o o >2
^1 VO ON
NJ NJ 00

OJ i— Ul
OJ © ^J
© >o ©

Ul Ul Ul
~J Ul VO
to

OJ

o

OJ >— OS
OJ >—> -J
to

Ji

bo
NJ OS

00 ON vO
O ~J 00
OJ Ul ©
ON

00 ON VO
H- vo vo
00 © Ul
ji

Ji OJ Ul
Ul 00 Ul

to to —
bo

Ul Ul Ul
~J Ul VO

to

o

Ul to 00
Ji- Ji Ul

Ji
ji

to Ul

^J OS vO
OJ OJ ©
SO NJ NJ
to

~0 Os so
Ul OS •—
OJ NJ -J
ON

NJ NJ OJ
VO 00 ©
Ji -o to
NJ © Ji
— Ji ©

Ji OJ Ul
ji oo OJ
•— © vo

Ul Ul Ul
OJ >— Ul

to © -0
OJ NJ ©
bs

NJ
to

© Ji

ui OJ oo
OJ Ul OJ
OJ VO vo
to

y y

OJ 00
OS Ul

Ul so Ji

NJ >— NJ
O v© >—
Ul 00 >—
00 -O Ul
VO NJ NJ

OJ NJ Ul
OJ NJ NJ
O OO VO

Ji. Ji Ji
>— © OJ
ON

Ul

NJ
00

bo

© *.
--J OJ

O oo OJ
ji

OJ to OJ
to Ul 00
O Ji vo

OJ to OJ
OJ Os vo
p ^J 00
bo

OJ NJ OJ
© -O Ji
ch © -i
NJ jS NJ

NJ >— NJ
— ON ui
NJ >J Ji
to

NJ NJ NJ
vl vl SO
ON

•O ~J -J
ui ui ui

-j ̂ i -o

© © ©

~J Ĵ -o

OJ OJ OJ
NJ NJ NJ

© © ©

© © ©

n
£ 3
f» y\

3 §

W B
s. oo

5 «
3

G
50

5

O
H
03

a
F
o
O
H

o

3
O
H
y

y\

9

's
z
w
70

03

G

F
a
o
H

- J

"1
CL

2
rt>
3
o
Ji.
©
VO
ON

73

N
PI
• •
u>
to
X

OJ
to

50
>
-Z

o
o
yt
yt

7-
W
73

C
r
H
73

> 2
• Z X

ON ON OS
Ul W O
-J 00 >—
Ji © Ul
Ji oo to

Os ON ON
*»• to U I

>— -O Ul
ui © to
© Ji ©

Ul Ul Ul

st^ NJ VO Ji-
OO ON Ji

Ji OJ Ji
— VO NJ
© >o OJ -J oo to
OS Ji ©

X

NJ NJ NJ
-O OS O0
-O SO Ji
OJ -pi ON
© Ji Ji

Ji Ji Ji
00 00 00

>
<

— — to
OJ © NJ
VO Ul NJ

NJ — Ji
OJ OJ OJ
ui oo Ji
bs

Ji i— Os

2 00 Ji

tO NJ
ON

Ul Ji 00
00 Ul Ul
«J OV sj
ji

Ji J> Ul
oo Ji os
vo Ĵ Os

OJ to Ul
oo ON oo
vo 00 -O
to

NJ NJ NJ
Ji © vO
vO '—. —-

-J -J -J

O
H

rz
03
50

-247-

s

> 2
• z

to >— Ul
OJ •— si
<— O Ji

> 2 2
^ 2 >

z x
OS ON OS
Ji OJ Ji

Ul

©

ui >— to
«— to 00
NJ 00 NJ

Ov ON ON
ON Ji 00

Ji

©

ON to vo
00 vo 00
>— © to

2

x

ON ON
OJ 00

OJ

©

* 3 8
00 Ul

8*

S S 2

8

vo si i—
N- Ji p—
O Ji VO

OS Ul 00
Ul Ji to
00 00 Ji

Ul Ul Ul
Ul Ul ON

Ji Ji Ji
Ul Ul so

Ul

Os Ul si
N! OS vo

OJ OJ
00 Os

Ji

©

OJ OJ OJ

© o ©
ui ui ui

NJ NJ NJ
Ul Ul Ul

o
§ 3

i i
o n

3

O
70

o
03

G
r
a
^

5S
• z

oo Ul ©
OJ to Ul
OJ to OJ

>— _ to
OJ ON OJ
Ji ON ON

ON Ul to

NJ N-> Ji
00 ON 00
ON >— •—
Ul Ji 00

O OV 00

© NJ so
00 ON 00
y* 00 OJ

ON Ji 00
IO Ul si

o to o
Ji Ul -o

OJ NJ Ji
OJ NJ Ul
OJ OJ OJ
OJ OJ NJ

OJ — OJ
P 00 ON
VO tO tO
•—* M Ul

© © o

s

> 2
• z

•O 00 M
•o ui si

•— to
Ji si Ji
i— J> OJ

to OJ ©

NJ H- Ji
SO ON 00
to -O 00
vO si >—

-O ON vo
>— OJ ©
Ji NJ Ji
—' 00 OJ

OS Ji oo
OJ Ul oo
to 00 OJ
SO i— NJ

OJ NJ Ji
OJ NJ Ul
si -J -J
VO 00 si

OJ N- OJ
•— 00 Ol
to Ul ON
VO -O Ul

tO NJ NJ
Ul Ul Ul

o
H

o

^2

Ul Ul Ul

^ ̂ g
•o 3 a
Ul ON Ji

Ul Ul Ul
Ul U> si
OJ 00 00
to oo ui
>— 00 Q\

Ji Ji Ji
NJ •— OJ
Ji NJ OJ
Ji H- VO
Ul Ov NJ

NJ >— NJ
p vo NJ

t o o
Ul si <—
Ji to OS

00 00 00
NJ •— OJ
•*»• •&• Ts>

2§£

Ul Ul Ul

to >— OJ
VO OS SO
Ji »— to
•o Os O

OJ OJ OJ
NJ NJ NJ

9

2

s
> 2
• z

00 NJ Ji
00 Ji VO
SO Ul Ul

ON OJ i—
00 OJ VO
© Ul i-«

>— to
Ji 00 Ul
OJ ON VO
OJ OO -J

Ji OJ Ul
>— Ul •—
ON 00 OJ
Ji NJ OJ

OJ NJ Ul
si o to
OO NJ 00
OJ vo vo

NJ >— NJ
i— Ji 00
.— — -J
OJ ON vo

NJ >— tO
© >— OJ
to vo ui
>— to Ji

© o ©

O
H

3
Z
03
70

> 2
<t yy

• z

Os Os ON
UI UI ON

to >— to

232
NJ NJ NJ
NJ NJ OJ
-4 U\ O

NJ NJ NJ
Ji OJ Ji
© •— SO

X

NJ NJ NJ
NJ NJ OJ
VO OJ Ji

00 00 vo
o to J>

M M tO
00 Ul NJ © © ©

03

a.

9
z
03
50

> 2
<t y-

• z

to to to
Ul Ji Ul
© -J NJ
NJ >•- si
VO OS NJ
i— 00 ©

fc? fc? &
ON Os ON
ui OJ oo
to p Ji
00 © >-•
ON 00 ON

NJ NJ NJ
si <JN si
© 00 Ul
Ul >— to
si vo VO
00 NJ OS

to to to
Ul Ul Os
VO Sl H-
Ul NJ ON

2 ON OJ

Ji to

NJ NJ NJ
OJ NJ OJ
M 00 Ji

S2£

— © y~
NJ vo Ji
OJ t— OS
Ul OJ Ji
Ul Os ©

Ji Ji Ji
00 oo oo

2 H

w
2
o
50

Z
03
50

> 2
<t yy

• z
X

OS Ji si
— si to
00 OJ Ji

>
<

VO Ul Ji
Ji vO OS
OS vO OJ

— — to
si i-» 00
NJ Ov 00
Ji OS Ul

X

Ji. OJ Ul
Ji 00 Ji
ON 00 to
Ul © Ji

X

Ji OJ Ul
© © Ul
ON © si
si 00 si

X

NJ NJ NJ
OJ NJ Ji
si OJ s©
Ul si Ul

NJ NJ NJ
Ul Ul Ul

H

O
H

9
S
z
03
33

-248-

s

ui Ji Os
OJ Ji Ul
si © vo

Ul

o

X

— oo to
tO © si
© vS si

ji

©

Ji OJ Ul
Ul NJ si

£8S

OJ

©

S Ji sj _ 00 p
00 00 Ji
tO H- O

to

o

Ji OJ Ji
— vo OJ
oo p vo
ON tO Ji

X

Ji OJ ON
Ul to Ul
OS vp so
VO © OJ

Ul

NJ tO NJ
•OS OJ 00
00 y- s]
00 Ul Ul

NJ NJ NJ
NJ NJ NJ

o
o
3
o
o
3

ET.
O
3

s
3

•8

o.
50

O

tO NJ NJ
OS i- vO
00 00 Ul

X

tO NJ NJ
sj tO so
OJ Ji 00

to to to
Ji — vo
OJ Ul OJ

X

tO N- NJ
© vo OJ
si Ul o

X

si si si
Ji OJ Ul

00 OO 00
si Ul 00 s

Ul Q\
vo © Ch ON Ch

03

G
y-*t

r
o
y .

> 2
< 9 X

NJ NJ OJ
Ul *- >-*
oo o •-
Ul OJ s

X

ui Ji ON
vo OJ oo
oo to _

Ul OJ
s

OJ H- Ul

X

OJ OJ Ji
si OJ to
- o o * .

Ul
si

£8

X

NJ >-* OJ
SO Ul OS
OJ H- Ul
ON vo O
Ul Ul OJ

OJ to OJ
~ Ji ©
OJ OS NJ

Ul Ul oo
vo Os Ji
00 ON 2 © © ©

o

o
H

o
H

o
H
H
o
H

tO NJ OJ
00 OJ Ji
Ui vo 00 OJ Ul

ON ON Os

00 00 oo
OJ © si
>— >— oo
ui Os Ji

si NJ •-
VO tO vo
© 00 OS

Os Ji Os
H- 00 si
© 00 Ji

> 2 2
Z X

© vo
tO si

X

ON Ji sj
to Ul p—
Ul Ji Ul
00 si 00

OJ >— ui
Ul s] 00

S2
Ul vo

s

OJ OJ Ji
si Ul NJ
OJ NJ ON
OJ 00 Ul
OJ OJ NJ

X

NJ t— OJ
so Us OS
Ul OJ OS
Ji 00 si
to O OS

X

OJ to OJ
NJ •-» SO
to Ul to
qo •-
VO
s^

si Ul 00
O si Ul
00 si ON
00 ON Ji

ON ON ON
OJ OJ OJ
Ji OJ Os
S U l OJ

p fcj
Ul Ji O

OS ON OS

Ul OJ OS
OJ vO si
si to OJ

— © ON

Ul Ul Ul
ON OS si
VO OS tO
SO 00 so
OJ (ON O

tO NJ OJ
vo to OJ
sj Ul Ul
OJ 00 Ul

•— OJ
so vo ©
— Ji Ul
Ul © OJ s

tO NJ NJ
— © OJ
Ul H- s]
Ul H- —
OJ NJ >—

X

sj Ul 00
OJ VO >—
SO 00 Ji

si OS VO
Ul OS ©
© VO 00

X

si si VO
VO p si
Os ON —

y- 2 °
ON ON OS
Ji tO vo
VO OJ >—
vO NJ OJ
si Q Os

© o o
"O si si
NJ NJ Ji
00 so 00
to si 00
~ ON ©

OJ OJ Ji

vO © £
oo go os
Ul © Si

to >— OJ

o © —
— NJ si
Ji vO OJ
Ji ON OJ

ji OJ ji
© OJ Ch
— vo OJ
NJ NJ NJ

NJ NJ NJ

W - J >
00 © VO
NJ — —
sj OJ NJ

Ji Ji Ji
si si 00
oo •— OJ
vo Ji >—
to Ul p
OJ ON Ji

»- to
00 VO OJ
Ul Ul ©
OJ Ji si
VO ON 00

ON Os OS
vO 00 VO
© 00 >—

— — to
VO © OJ
Ji Ji VO

8Si

OJ OJ OJ
OJ to OJ
—' 00 OJ
00 Ov vO
O © 00
00 00 Ji

NJ H- NJ
© OJ Ji
—• Ji Ul
Ji to OJ
Ji si ON

si sj si
H- © NJ
Ul OJ NJ

33S3
SO >— Ji
NJ 00 "-
NJ 00 vo
NJ 00 Ji

X

to — to
— Ji Ul

2££
Ul 00 Ul

^ ^ —
to -O Ji
O ON Ji
OJ •-
vO

vo OJ
Ov NJ

© © •-
so •— VO
00 Ji Ji
O OJ si

Os ON Ch

OJ OJ OJ
NJ NJ NJ

© © O

Ji Ji Ul

° ~z ̂
—. Ji Ji

Ji
Ul

X

ji Ul
Ji Ov si
H- ON so
NJ NJ ON
00 Ji 00

X

— p to
Ul Ov Ul
si to 00
00 vo —

© © ©

Ji Ji Ji
00 00 00

o o
Os OS

9

2

s
y<
O
H
O
H
Z
00
50 03

o
2 H

2
o
50 y*
50

H
O
H
>

r

o
H

a
H
Z
03
50

-249-

H- >— NJ
Ul P NJ
NJ SO NJ
M O O J>

Ul
©

Ul Ji
Ji H-

Os
to

to to to

Ji
©

OJ OJ Ji
VO sl NJ
ON Ji Ji
Ji to to
H- H- Ul

OJ
©

Ji OJ Ji
NJ VO OO
sl 00 ©
SO ON Ul
Ji SO ©

to

o

Ji OJ Ul
Ji 00 (3s
sl NJ Ji
Ji 00 to
SO Ul H-

OJ NJ OJ
O sl Ul
OJ Ji ©
NJ sj Ch
OJ 00 OJ

sj OS 00
SO Ul Ul
© Ul vo
to OJ Ji

Ji Ji Ji
00 00 00

222

n
O "0

o
3

o
50

5

a

S U l Os
go OJ

00 Ji ©

S U l ON
VO tO

Ul Ji H-

S U l OS
00 OJ

OJ Ul Ji

Ul Ul

Ji Ul

Ul Ul Ul
Ji Ji Ji
OJ to Ul

Ji Ji Ji
oo go vp
00 O Ji

X

Ji Ji Ji
OJ NJ OJ
© VO NJ

NJ NJ NJ
Ul Ul Ul
sl sl sl

03

G
r
u
a

< S3
X

00 Ul H-

H- 00 00

8SS

X

NJ NJ OJ
00 NJ OJ
VO © NJ
00 H- OS
H- VO Ul

VO so
>— OJ
Ji ON
00 00

Ul
Ji Ov v© sl

OS OJ 00

X
OJ NJ OJ
H- ON vo
OJ sl Ji
NJ so vo
SO so Ji
>— Ul sl

O vo NJ
Ul sl OJ
VO OJ o
Ji sl NJ
VO O Ul

X

Ul Ji OS
00 Ji ON
H- NJ OJ
00 OJ NJ
NJ OJ vo

© © ©

o

3

232£
2£2

to to OJ
SO tO OJ
ui Os oo
00 NJ 00
00 ON ON

OJ OJ
Os OJ

X

Ji

o

X

>— Ov Ul
OJ ON OS
H- OJ NJ
© 00 OJ

OJ NJ OJ
H- ON VO
OJ 00 Ul
sl Ul Ji
00 OJ VO
Ji sl O

X

Ui Ji OS
00 Ji ON

2S0i
tO NJ SO

NJ NJ NJ
Ul Ul Ul
sl sl sl

o
H

O
H
$

OJ OJ OJ
Ji Ji Ji
to © Ul
00 to Ul
SO Ui OJ
OJ Ji sl

OJ IO Ul
Ji 00 ©
Ji H- tO
NJ Ul NJ

OJ NJ Ji

gggo 00

Ul Ji OS
Ji OJ SO

OJ OJ OJ
sl sj 00
00 Ul •-
Ul 00 OJ
SO oo p
•— NJ O

OJ OJ OJ
OJ OJ OJ
Os OJ 00
OJ ON VO
H- 00 Ji
Ji 00 ©

Ji © Os
M O IO
sl ON OS
Ji so VQ

sl ON 00

tO Ul 2
ON 00 ON
NJ ON OJ

Ul

2
Ji sl
00 H-
NJ Ul

sl ON 00
OJ Ul Ul
Ji ON Ul

tO NJ NJ
NJ H- OJ
NJ Oi >—
H- a\ ui
yy vO Ji
00 © VO
sl Ul ON

Os to go
OJ O0 Ov
ON Ul ©
OJ to Ul

g » Ji Ji 00
Ul © sl
VO OJ Ul
00 H- OJ

NJ •— tO
© 00 to
— sl OS
Ji OS to
sl so NJ
sl 00 Ji

Ji NJ sl
OJ Ul OJ
Ji Ul OJ

NJ NJ
NJ
OS ON

sl ON H-

VO NJ OJ

2 si vo

NJ NJ

tO H- tO
O O O U
OJ VO 00
Ji Ul Ul
Ul H- Ji
ON sl tO

NJ NJ NJ
OJ NJ Ji
Ji VO OJ
VO © •—
OJ 00 ON
OJ 00 00

£ to
© sl _
oo oo OJ
00 ON NJ
NJ OJ VO
Ji OJ 00

NJ H- NJ
© Ul Ji
OJ OJ Ui
OJ VO Ji

NJ >— tO
— 00 OS
— •— Ul
Ji to OJ

8 00 00

o o

ON ON sl
sj NJ SO
VO NJ H-

Ul NJ VO
NJ 00 OJ

00 00 00
Ul Ul Ul
ON Ji vo
VO 00 Ul
- VO Ul

OS to

8

Os Os 00
VO Ji H-
00 OJ >—
si Q\ >—
VO © Sl

OJ to
00 vo 00 Ul OS
>— to Os
OS Ul sl

© © ©
sl sl 00
SO Sl H-

OJ OJ OJ
Ji Ji Ji
OJ H- Ul
OJ ON ON
Ul 00 H-

•- © ON

OJ OJ OJ
NJ NJ NJ

X

© © o

© © ©

Ji Ji Ji
00 00 00

Ji OJ Ji
© — Ul
OJ © sl
NJ OJ OS
ON Ji ON

to Ul
si

NJ NJ
Ul Ul
sl sj

9

5
50

O
H

3
Z
03
70 CO

£
r
a
-\

z
03

JL
s

2
o
70 z

< 03
50

>

r

o
H

a
H
Z
03
50

-250-

s

• z X

ON Ji UJ
Ji NO UJ
SO Ji Ji
00 <— Ji

Ul

©

5^
• z

Ul Ul oo
00 •— SO
— — so

51
X

to to to
ii OJ Ul
Ji OJ ~
sl Os tO

X

to to to
Ji UJ Ji
sj sl SO
— Os Os

£2

^ 2 X

Ul UJ NO
—• vo Ji

IO 00 00

>
<

NJ tO tO
Ul Ul Ul
Ul «~ 00
•>- — so

tO ta- UJ
Ji so 00
sj sl —
Ui Ji —
00 00 Os

>22
< 2 >
* X 169616

149696

159691

>22
< 2 >
*• X 192313

154111
173251

^z

to to to
— — SJ
SO NJ 00

to

o

> 2
< «

• Z
X

-- — JO
oo ui to
00 UJ Ji
Sl — Ji
VO OJ —.
sl OS NJ

>
<

2
>

x
©
Ul

UJ
Ji ui Os
OJ OJ JS.

taUl Q
— Os ©

IO IO Ji
sl UJ Ji
Ji tO NJ
sl 00 UJ
IO 00 Ji
Ul oo oo

NJ NJ tO

s n N>
sl © Os

•— so Ui
UJ — sl
NJ 00 O
00 00 oo
1— — sl
00 OS Ji

r" rr >
X

oo oo oo
ON Ul sl
sl NJ sl

Ul

> 2 2
< 5 >
^ X

Os Os sl
NO Os UJ
SO to g
OS to ©
> 2 2
< 2 >
^ X

sl Ol sl
p so NJ
Ji — 00

H- -ta to
Os UJ ©
so to oo
-ta OS Sl

2 SO Ji

so «-

> 2 2
. < 2 >
^ X

SO so so
Ul Ul Ul
UJ UJ UJ
ON OS OS

>
<
2 2
2 >
^ x

00 00 OO
Ul Ul LA

> 2 2
< 2 >
** x

© © ©

c -c
3 n

§ §

S 6
5 «
3

Q
50

S
03
C

r
o

9

5
> 2
< = x

Ui Ji so

sl op to
SO Ji ©

X

UJ to Ul
SO Ul •-
Ul Ji oo
OO & SO
to to ©

NJ ta- UJ
Ul SO 00

8so Os
so UJ

SO so Ji

>
< ^ 2 X

Ji UJ Ji
UJ sl sl

8 £2
= 82

i— — to
sj UJ ta-
© Ji p
0O OJ Ji
ON NO OS
00 © SO

© © ©
00 00 00
Ul Ul Ul

9

s

> 2 2

^2g
Ul Ul Ul

sl 00 OS
Os — OJ
to NJ J

Ul Ul Ul
Ji Ji Ul
Ji NJ Ji
-ta ta- 00
ta- ta- 00
00 sl —
IO SO Ji

Ul Ul Ul
UJ UJ UJ

a 2 si
SO "- 00
SO ta- 00
UJ p Ul
ta- © sj

Ji Jk Ji
so sl so
NJ SO 00
to to OJ
Ji NJ 00
to NJ ON

Ji Ji Ul

NO oo p

N>£2
UJ NJ UJ
IO ON 00
•« -ta ON

UJ UJ UJ
sl ON sj

285
— — so

to to to
UJ to UJ
Ji 00 oo
— NO —
NJ — Ul
-ta Ul NJ
-J 00 SO

UJ UJ UJ
tO NJ tO

9

2
o
73

> 2

^z X
NJ — Ji

©-E8
Ul oo to
OS SO ON

Os Os sl
sl -ta UJ
ta- NJ M

— 00 ©
— NO —

825!
UJ Os oo
UJ UJ to
Os © oo
— oo to

X

^ 2! 2?
00 00 ©
Ul 00 Ul
to Ul Ul
— OJ ©
UJ •— 00

X

22 sl
Ul
Ul to
NJ Ul NJ
S U J UJ

Ji UJ

NJ -ta UJ
Ul NO —
UJ 00 NJ
Ul SO 00
Os © 00
UJ Ul OS

© © ©

9
a
H

z
03
50 > 2 2

< 5 >
zx

UJ UJ UJ
Ul Ji NO
Ji © ta.
NJ © NJ

UJ UJ UJ
sl Os sl
— SO Ul
to O —

OJ OJ OJ
00 00 SO
Ul — M.

© ta. ta.

UJ UJ
sl
Os
— 00 oo

= 8
tO NJ NJ
00 oo oo
sl ̂ sl
NJ SO ON

IO NJ NJ

Ui Ov
Os UJ s © © ©

03

s
r
o

9
Z
03
50

> 2
< 3 x
sl sl sl
00 00 00
to — UJ
sl OJ —
— Ji Ul
UJ Ji NJ
ON SO Os

00 oo oo
sl sl SO
si UJ Ji
© 00 Ji
sl Ul tO
00 Ji sl
Ji — so

<

X
00 00 oo
OS Ul sl
tO ON tO
P sl Ul
© Ul Ji
VO — J*
Ji © UJ

SO SO so
to © UJ
— Ul »
sl tO Ji
00 Ul SO
UJ SO ON

to © ©

sl sl sl
OJ — Ul
Ul Ji Ji
SO sl vo
p — to
Ch sl to

£22
.< 2 >

^ X
Ji Ji Ji
sl Ul 00
© sl Ji
Ul 00 Os
00 UJ UJ
Ji — sl
Os Ov 00

Ji Ji Ji
00 00 00

9
2
o
50

> 2 2

UJ NJ Ul
— Ul NJ

2 NJ Ji

to ui
ui ui O

>
< z >

*• X

>
<

X

sl OS sl
UJ sl SO
NJ UJ UJ
SO Ul Ji
Ji Ul 00

Os Os sl
sl Ul Ul
SO NJ Ji
sl Ov sl
Ov UJ 00
NJ © NJ

> 2 2
< 2 >
•* X sl Os 00

vo vo —
© Ji —
00 © UJ

•£ 9? °
Ji Ji to

>
<

2
>

X
sl Ch ©
OS *— Ul
— sl UJ
O sl UJ
sl os Os
00 NJ sl

> 2 2
^ z >
*• X to NJ UJ

00 Ji —
UJ UJ p
UJ © *
— Ul —
tO vo sl

> 2 2
< 2 >

^ X tO NJ UJ
Ul © —
sl NJ ON
Ji sl sl
tO Ul sl
sl tO sl

> 2 2
< 2 >
^ X

© © ©
00 oo oo
ui ui ui

3
>

r

o
H

a
H

z
cs
73

-251-

7 Random Data Concentration = OX Time
O r

200 300
Hap Size

-, fiandom Data Concentration = 5% Time
07r

0° i

100 200 300 400
Hap Size

500 600

Figure B.3

Computation Times for path planning in 0% and 5% random environments.

-252-

7 Random Data Concentration = 1 0 % Time

100 200 300 400 500 600
Bap Size

7 Random Data Concentration = 20% Time
10'F

100
T

200 300 400
Bap Size

500 600

Figure B.4

Computation Times for path planning in 10% and 20% random environments.

-253-

Bap Size

Random Data Concentration = 40% Time

flap Size

Figure B.5

Computation Times for path planning in 3 0 % and 4 0 % random environments.

-254-

7 Random Data Concentration = 50% Time

200 300
Bap Size

600

.07r
Random Data Concentration - 60% Time

200 300
flap Size

Figure B.6

Computation Times for path planning in 50% and 60% random environments.

600

-255-

10' r
7 Random Data Concentration = 0% flemory

200 300 400
Hap Size

600

Random Data Concentration = 5% flemory

100 200 300 400

Sap Size

500 600

Figure B.7

Memory Requirements for path planning in 0% and 5% random environments.

-256-

8 Random Data Concentration = 10% flemory
0°F

-o- GRID MEMORY
•+• OTMEMORY
*....Q.I.NiRMEMORY.

100
— I • 1 1 | —

200 300 400
Hap Size

500

Q Random Data Concentration = 20% flemory
08r

0' <

-a- GRID MEMORY
•+- QTMEMORY
• ..9T..INBR.MEM0RY..

, 1 1 r -

200 300
flap Size

600

600 100 400 500

Figure B.8

Memory Requirements for path planning in 10% and 20% random environments.

-257-

10° tr 8 Random Data Concentration = 3 0 % flemory

100 200 300 400
flap Size

500 600

Q Random Data Concentration = 40% flemory
108r

E

100 200 300 400
flap Size

500 600

Figure B.9

Memory Requirements for path planning in 30% and 40% random environments.

-258-

P Random Data Concentration = 50% flemory
108r

-Q- GRID MEMORY
-»- OTMEMORY
-o- QT NBRJMEMORY..

• 1 1

200 300 400
flap Size

100 500 600

Random Data Concentration = 60% flemory

100

-Q- GRID MEMORY
•+• OTMEMORY
* ..QI..NBR MEMORY_

200 300
Hap Size

400 500 600

Figure B.10

Memory Requirements for path planning in 50% and 60% random environments.

-259-

Appendix C
Spiral and Maze

This appendix presents the experimental results for determining the amount of

computational effort and computer memory that is required to produce the distance

transform in grids and quadtrees in spiral and maze environments. The distance transform

is computed for quadtrees with and without neighbour lists.

The Tables C.l - C.2 presented in this appendix show the computation times and

memory requirements that are needed to compute the distance transforms for the spiral

and maze environments. The legend key to Tables C.l - C.2 is the same as the key to

tables presented in Appendix B.

-260-

"0
Q)
3

u
3
3

CO
Q)

co si
o
01

CO
•g.

S

O

m

i.
3
3

3
(D
3

Ui

to
X
Ut

N>

v©
00
O
oo

2
00
Ul
o j
ON

8
oo
tO

4V
i — -

to

Ul

yy*

4V
OJ
-4
-J

S
Ul
-J
OJ

1
Ul
4V.

o

3\
SJ

vO
4V
NJ
4v
UJ

8
NJ
OS
Ui
-J
OJ

NJ
Ul
OV
X
NJ
Ul
ON

y ^

ON
ON
ON

NJ
ON
to

Ul
NJ
OJ

Ul

VO
^4
Ul

Ul
OO
4^
vO
OO

4V
ON

2

OJ
ON
VO
4*.
NJ

NO
OJ

OJ
00
Ul
oo

oo
-4

o
NJ
tO

OO

X

NJ
OO

OJ
NJ

9s
Ul
Ul
OJ
ON

OJ
vO

NJ
OJ
oj
Ul

N>
OJ

oo
VO
ON

NJ
O
to

NJ

Ul

3
OJ

vO
4*

y-»

Ui
Ul

o
ON

OJ
-J
OJ
ON
OO

o

2
X

2

ON

y-.

y-.

ON
OJ
00
4v

Ul
NJ

to
y-»

o

to

ON
NJ

vo
VO

2

oo
ON

©

y ^

OJ
OJ

00

Ui

-J
-o

00

OJ
NJ
X
OJ
to

to

vo

1

to

v©
OO

-

o

OJ

Ul

o

to
00

s

Ul

i

ON

X

ON

OJ

s
4*.

to

OJ

Ul

to
Ul
vO
to

I — .

-

4V.

OJ
vO

OO

X
oo

O

NJ
Ui
ON

I-*

o

y ~

OJ
to

o

o

-

4̂ .
oo

M
a
p

Size

3 3.
o a.

3
09

a
O

O

a

2

is
>n

5
a
H Z

09
50

e
ft03

50

©

ffz
— 09

50

3^,
o Z
^ 50

"H.
&

i
CO

C
??
CO

-261-

13
M
3

"0
0)
3
3

<§
CO
ft H
<T O"

2 P
o>
N

a
m
3
<

3
3

3
O
3

Ul

10
X
Ul

to

OJ
vO
Ov
4V

2
00
Ul
-0
ON

y-»

OO
•-»

OJ

OJ
^4

i

OJ

vo
4V
>-»
-O

ON
to
1—»

OJ

8

to
Ul

NJ

vO
OO

to

i

-
N>

OJ
Ul
OJ
4V

to
Ul
ON

X
to
Ui
O N

v©

>—p »

O

NJ
ON
NJ

5

4V.

O N

Ui
'J
ON

y-.

ON
NJ
OJ
-O

to
-J
to
NJ
OO
OO

O
OJ
Ul
Ul

4V

to

NJ
4v
OJ

Ul

VO
OJ
ON

O

00

X

to
00

to

3
Ul

ON
Ul
Ul
OJ
ON

to
Ul

ON

s
ON

-0
OJ

>-*

vO
OJ

to
00

4v
to

0

OJ

4V
Ul
ON
00

to
NJ
NJ
to
-4
NJ

2
X

Ul
00
Ui

• — »

ON
OJ
00
4*.

OJ
Ul

NJ

00

to

NJ
to
y-»

Ul
to

§

OJ
^4
Ul

^1
ON

1-^

4V
00
ON

VO
Ui
OJ

to
00

OJ

to
X
OJ
NJ

4v
to

i
ON

vO

-O
NJ
^1

•O
OJ
Ov

N>
4x

00

4V
4V
NJ

OJ
4v

4v
00
Ul

Ul
0
to
4V

ON

X
ON

NJ
y-.

g
4̂ .

NJ

OJ
O

OJ

to

NJ
4V

to

1—*

-0

OJ

to
to

OJ
•0

00

X
00

H-

to
Ul
Ov

0

y ~

y y -

OJ
00
4v

y--

O

y»P*

-J
to
4V

M
a
p

Size

M65

3-
2 65
•n

60

a.

5
y \

y \

i

H

a
H Z

03
50

e

50

O

ff z
— 89

50

|9
0 z
"̂ 09

N

CO

C
CO

262-

Appendix D

Obstacles

This appendix presents the experimental results for determining the amount of

computational effort and computer memory that is required to produce the distance

transform in grids and quadtrees in environments with various configurations of

obstacles. The distance transform is computed for quadtrees with and without neighbour

lists.

The Tables D.l - D.5 presented in this appendix show the computation times and

memory requirements that are needed to compute the distance transforms for the five (5)

configurations of obstacle data. The legend key to Tables D.l - D.5 is the same as the key

to tables presented in Appendix B, with the exception that Tables D.l - D.5 also show the

total perimeter length of all the obstacles in environment map. The perimeter is measured

in quadrant cells, and is shown in the tables as PERIMETER.

Figures D.l shows four of the five obstacle configurations that were used for this

experiment. Figures D.l (A) - (D) show the test environments with two, three, four and

five obstacles. Figures D.2 - D.5 show in graphical form the computation times and the

memory requirements for the experimental data presented in Tables D.l - D.5.

-263-

0

s

B

Figure D.1

Path Planning Environments of Two, Three, Four and Five Obstacles.

-264-

13
CD
3

01
3
3
3

OJ

i
co H

9 &

& P
CD _ j .

O
CT
OT
5T
o
CD

m
3
<

3
3

3
CD
3

Ul

to
X
Ul
1—*

N>

N>

VO
OJ
Ov

2
oo
Ui
«o
ON

Ul
4*.
Ul

Ui
VO

OJ
1—»

OJ
ON

Ul
-J

oo
Ui
oo

1—»

p — »

p — »

o

to
-o
vO
vO

<—>
Ui
^4
On
to

OJ
oo
to

to
Ui
ON
X
to
Ul
Ov

Ov

-o
OJ
4V

to

to

5

4V
i — .

Ov

oo
OJ
y-'

to

-o

to
v©
O
00
oo

Ui

-o
•̂ 4

4*.
oo

y-»

2

Ui
Ov
00

8

•—>
vo
©

i — »

to
00
X
to
00

oo
to

ON
Ul
Ui
OJ
ON

to

4*.
OJ

4*.

Ul
4*.

4*.
ON

to
4*.

to
vO
1—>

to

4*.
to
4*.

to
-o
00
-o
to

vO
OJ

Ov
4**
X

2

45»
• — »

Ui

y-»

ON
OJ
OO

4*.

to

vO

to

oo

ON
vO
fc

OJ
O

o

ON

-o

OJ
OJ

8

JV
ON

OJ

to
X
OJ
to

s

4>.

Ov

^4

Ui
v©

OV
OJ

OJ
00
-J
to

4v
o

Ov

u»
OJ

^4

oo

to
4V

ON

X

ON

to
4*.

O
to
4V

-

4s*

4V

to

to
OJ
OJ
ON

to
oo

OJ

OJ

to

4*.
45»
v©
Ov

to

00
X
00

N-

to
Ul
ON

-

1—k

Ul

y-'

ON

I — .

00
4*

o

OJ

4V

to
to

o
00

00

M
a
p

Size

2
3?

3s
09

S

5
o
H
a
©
H

H
o
SL

2
§©
3 H
o ^
©
H

H Z
08
50 O

tflH

! *
&09
50 ©

-09
50

2 H

3z
S3
«< 50 3̂

3

-1

o
or
CO
&

63

co

CO

-265

"0
2.
3
T3
0)
3
3

5'
<Q

w

f
o
en
—.
o
—1

0)

?
o
O
cr
w
O
CD

m
3
<

3
3

3
CD
3

H
Q>

g;
(D
O)
•

O

on
»—>
to
X
Ui
1—'

to
I — »

to
00
to

00
Ul
ON

1 — »

to
-J
to

to
ON

NO
O

OJ
vo
Ov
to

p — '

4*.

vo
O
Ui
Ov

Ui
OJ
0

NJ

O

OJ
0
to

^o
4*
OO
Ul

to

0
4*.
Ov

to
Ui
ON

X
to
Ui
Ov

OJ

on
00

to
Ov
to
y-.

fc

OJ
4*.
OJ

0
-0
ON

I—•»

•0
Ov
to

•0
ON
0

2

-0
-0
to

00
4V

NO
VO

ON
v©
to
00

on
to
to

y-'

to
00
X
•—.

to
oo

NO

Ov
Ul
Ui
OJ
ON

v©
OJ

Ui

2

Ui
VO
-J

OJ
00
00
ON

OJ
Ul
to

OJ
00

4V
00
OJ

^4
OJ
to
I — »

Ov

to

X

2

1—•*

00
^4

• — »

Ov
OJ
00
4*.

to
OJ

-J
-J

to

8

-J
Ui
Ov
00

to
OJ

ON

ON

to

OJ

to
00

J — >

OJ
4*.

OJ

to
X
OJ
to

45»
OJ

4v
0
vO
ON

00

Ul
OJ

ON

•O
-J
<—.
to

OJ
Ov

-O

Ul

I — *

s
ON

ON
ON

ON

X

ON

0

y-.

O
to
45*

to

Ui

^J

OJ
•0

fc

>—*
0

OJ

Ul

ON

0

OJ
4*.

00
X
00

0

to
Ui
ON

> « — *

£3

5^
to
0

00

OJ

to

4V
00
4s»
00

to
0

<
M
a
p

Size

Hi:
Qp>

yt

if
- \ y -

<<

09

a
©
©
H
O
H ©
H
H
0

s
0 **

©
H

O
H Z
09
50 ©

»H
O-09

50

©

~z
y-9

50

3z
^ 50

ft
"1

3
fD
-1

-266-

-o
at

3
o>
3
3
3
CO
<*>

a
yX

•5"
OJ
0)

CD
CD

o
CT
CO

I
CD

m
3
<

3
3

3
CD
3

01

O

Ui
•—•

to
X
Ul

to

t — »

OJ

o
oo
4V

oo
Ul
*o
ON

to
vO
-J

OJ
>—»
OJ

4*.

fc
OJ
p — »

ON
1 — »

o

to
to

s
to

8

OJ
00
-J

OJ
Ui
NO
NO
(-̂
ON

fc

to
Ui
Ov
X
to
Ul
Ov

OJ
p — >

Ov
oo

to
ON

to
y-'

fc

OJ
Ul

1—»

Ul

5

NO
P — »

oo

oo

OJ
to

y-L

4*.

o
ON

• — »

Ui
^4
p — »

p — '

NO

o
oo
oo

Ul
^4
to

to
oo
X
to
00

«o

5

Ov
Ui
Ui
OJ
Ov

vO
Ui

^1

oo
vO

oo
00
4*

4V
to
~J
oo
44.

Ui
4V
NO

44.
OJ

Ov
oo

-o

00

3
oo
4*.

to
00
ON

Ov
4*.
X

I — >

oo

Ov
OJ
oo
44.

to
44.

-J

to
©

to
• — »

ON
Ov
4*

to
4V

to
44.

p — »

•o

to

4V
1—'

oo
• 44.

to

OJ
to
X
OJ
to

fc

4*

o
VO
Ov

Ov

vO
OJ

vO
vO

VO
Ov
OJ
to

Ov

to

vo

y-»

-J

•o
4a.
4*.

ON

00

ON
X

Ov

©

©
to

to

to
VO

OJ

4*
OJ
00
4V

1-^

oo

Ov

to
Ov

-J
00
4v
O

44.

O

00
X
00

y—«

to
Ui
Ov

o

OJ

OJ

to
OJ
OJ
ON

to

NJ

44.

OJ
NO

O
44.

to
4v

M
a
p

Size

2

1?
3 s 08
a

a
H
©
H
H
O
y*

s

C8

3
a
HZ

63

50
©

» H

50

gJ-Z
— CO

53

3z
?08
^ 50

ft

i

" 1
-267-

-a
QJ
y-*y

3
OJ
3
3

3
CO
5J

oV
o
CO
y —

o
OJ
Tl

o
c

o
OJ

o
CD

m
3

3
3

3
CD
3

CO

a
(D

o
I

4v

Ui
y-.

to
X
Ui
—
to

| M ^

VO
44-
ON

g
00
Ul
^1
ON

> — « OJ
©
oo

44.
'O
oo ©

ON

o
oo oo

to
Ul
Ov OJ
to
©

OJ
Ui
to 00

44.
©
oo

Ul
NJ

fc

Ul
©
Ov
p — .

y~»

to

y-»

^
vO
©

to
Ul
ON

X
to
Ul
Ov

44.

to
vO
~

to
Ov to
» — .
fc

OJ
Ov
to

to
©
1 — »

NO

to OJ

oo I—»

p — »

to
oo p — *

Ov
©

h-*

•fc.

OJ

vo

p — *

ON
OJ

.
vO
ON 44.

to
Ui
OJ
©
Ui
ON

OO
44.
ON

to
oo
X
>—
to
oo

y->

O to
ON

ON
Ui
Ui
OJ
ON

!_>
©

oo
Ui
H—

NO
Ul to

2 ON
•o

to

Ul
oo 'O

ON
•o

-o
Ul OJ

p — »

to p — »

oo
Ui
ON

44.
to
4v

s X

2

to
Ul

1—'

Ov
OJ
oo
44.

to
Ov

44.

Ui

fc

OJ
1 — »

OJ
NO
to

to
oo
Ov

OJ
OJ

OJ
44.
Ul

Ui
vO
ON
00

to
to

OJ
to
X
OJ
to

44.

44.
©
VO
Ov

^J

1—.

©
-d

y-»

44.

OJ
OV

8

•^1

to

h-^

Ĵ

vO
ON

to
Ul
44.
^J
to

I N — *

©
ON

M

ON

X
l _

Ov

OO

y—*

©
to
44.

NJ

OJ
v©

44.
> — *

ON
ON
OO
OO

to 44-

Ul

OJ
yy.

p — »

p-^

Ov
vo Ov

4V
OJ

OO
X
oo

O

to Ul
ON

1—4

44.

Ui

> — '

<£ VO
ON

to

> — «

4v

N ^4
O
44.

to

Map
Size

Hs* a.

2

1? O 2'
=1 Q.
<<

09
e>
a.

©
H ©
H

a
©
H

H
o

E
2
§5 •n
<̂

©
H O

HZ
08 50

©
08H
e

I2

O-09
50 ©

HH

12 - 09
50

~©
2 H
»

|z
3 w
^ 50

*0
fD
•n

3 eter

-268-

"0
51
3
OJ
3
3

5'
CO

W

I
CO

55"
oo
cu
-n
<'
CD

O
CT
co
5J

o
CD

m
3
<
3'
3

3
CD
3

H

o
bi

Ui
p — *

to
X
Ul
y-»

to

p — »

©
vO
OJ

oo

1 — f c

©
44-
OO
Ul
^J
ON

N>
OO
OJ

^1
44.

8

oo
ON
00
OJ

to
oo
Ov
Ul

to
oo

Ul
44.
Ul

©

4V

oo
to

-J
to

Ul

Ul

s
-o
OJ
ON

to

s
44.

NJ
Ui
Ov

X
to
Ul
ON

to
-o
Ov
p — »

NJ
ON
to

fc

OJ
ON

©

OJ

o
OJ
OJ

OJ
OJ
vO
OJ

OJ
to

to
p — '

Ov
Ul

oo
Ul

NJ

©
y-»

to
oo

o
OJ
ON

oo
y-•

©
44-

oo

to
oo
X
p — *

to
00

ON
vO
^1

ON
Ul
Ui
OJ
ON

p - ^

©

to

4*.
OJ

1—»

OJ

fc

ON
OO

to
Ul
ON

OO
Ul
OJ

-J

1—*

©
to
Ul

p — •

to
00
OJ

©
44.

Ul
ON

to

X

p — f c

2

i — »

Os
OJ
OO
44.

to
oo

OJ
Ul

©

OJ
-J
00

OJ
*».
Ul
NO

to

to
44.

©

OJ
ON

OJ

©
44.

2
44.

oo
O

to
oo
©

OJ

to
X
OJ
to

Ul
00

i
ON

•o

•o

to

NO

Ui

oo

3

p — »

Ul

Ov
NO

to
oo
44.
00

©

OJ
ON

Ô
X
p — f c

ON

p-^

©
to
44.

to

OJ
to

OJ
44.

ON

©
44.
OO

NO

Ul

to
Ov

y-'

O
OJ
OJ
ON

^

OO

X
OO

p — k

to
Ul
ON

-

44.

Ul

VO
Ul

to

OJ

-

Ul

OJ
(—»
ON
00

to
00

Map
Size

2
i?

33

S
©
©
H
O
H

y \

H
o
SL

2

32
o ^
-1

©
H

H Z
09
50 ©

09H

50

-co
J0

ft

3 z
^ J0

*0
ft
-1

3*
.1

c/1

o
co
.—•>•

as

as
•a
*J
CO

£
CO

-269-

2 Obstacles Time Data

E

300 400
Hap Size

2 Obstacles Memory Data

15000

10000

E

5000

2 Obstacles Perimeter Data

Figure D.2

Path Planning Statistics for a Two Obstacle environment.

-270-

3 Obstacles Time Data

300 400

Bap Size
600

3 Obstacles Memory Data

ORD MEMORY
QT MEMORY
OT NBR MEMORY

100 200 300 400
Hap Size

500
— i

600

20000 -1
3 Obstacles Perimeter Data

1000

Perimeter
2000

Figure D.3

Path Planning Statistics for a Three Obstacle environment.

-271-

0

4 Obstacles Time Data

100 200 300 400
Hap Size

600

4 Obstacles Memory Data

20000
4 Obstacles Perimeter Data

1000

Perimeter
2000

Figure D.4

Path Planning Statistics for a Four Obstacle environment.

-272-

5 Obstacles Time Data

S
IM

H

-1 • r

300 400
Hap Size

600

5 Obstacles Memory Data

T
200 300 400

Hap Size

5 Obstacles Perimeter Data

•a- GRIDDT
-*- OTDT TOTAL

|000 2000

Perimeter
3000

Figure D.5

Path Planning Statistics for a Five Obstacle environment.

-273-

Appendix E

Indoor Environment

This appendix presents the experimental results for determining the amount of

computational effort and computer memory that is required to produce the distance

transform in grids and quadtrees in three (3) indoor environments. The distance transform

is computed for quadtrees with and without neighbour lists.

The Tables E.l - E.3 presented in this appendix show the computation times and

memory requirements that are needed to compute the distance transforms for the indoor

environments. The legend key to Tables E.l - E.3 is the same as the key to tables

presented in Appendix B.

-274-

"0
OJ
3
•v
0)
3
3
3-

(Q

W
GO
O
CO

? H
O S

i •
•o m
CT
O

s
o
^5
m
3

<

3
3

3
CD
3

Ul
p — »

NJ

X
Ul
1—fc

to

to

0
OJ
NO
to

y**

00
Ui
^4
Ov

1 — »

ON
^4
ON

p — »

• — >
1—'

00

vO

-J
NO
NO
VO

0

Ov
VO
OO

h — «

OO

to
4*.
VO
to

H-fc

u»
0
to
NJ
O

to
Ui
ON
X
to
Ul
ON

Ul
1—fc

0
OJ

to
Ov
to
1—1

4*.
1 — >

vO

-J
NO
00

to
•—fc
• 0

Ui
0
-0
to
0

Ul
0
to

-0
to

NO
NO
OJ

NO
4*.
to

to
00
X

to
00

1—>

to

Ui
Ui
OJ
ON

p — f c

Ui

Ui
•0
0

5
OJ

OJ
to
•—fc
Ov
0

OJ
ON

4*.
4*.

Ul
0
00

Ul
vO
to

0

2
X

2

OJ
t — I

00

ON
OJ
00

4*.

OJ
0

OJ
NJ
0

OJ
Ui

0

to
Ul

>o
ON

0

to

s

OJ

to
OV
VO

4*.
•0

-0
«o
ON

OJ
to
X
OJ
to

0
OJ

4*.

Ov

1—.

0

OJ
0
Ov

OJ

to

1 — «

Ul
to

00
ON

to
vO

to
OJ
Ul

OJ
00
00
OJ
to

ON

X
Ov

y-'

4*.

0
to
4s.

to

Ul
to

Ui
4*

Ov
OJ

2

OJ
to

-0

4*.
I — *

0
00
ON

00

X
00

_

to
Ul
ON

0

~

~

p — »

1 — '

00

4*.

-

~

OJ

p — »

00
00
00

M
a
p

Size

0?

2
3 2.
0 a.

03
c#
a

©

©
H

H

©
H
H
0

2
f- /-N

32
<<

©
H

0
H Z
09
©

03H

e
©•03

50

©
0

» z
- 0 3

50

1*
3^
0 Z
^ 53

-275-

•o
OJ
3

-o
0)
3
3
3
CO
CO
yi

w
o
—*
o

H
0)
o-

cu <0

o P
CD

Vi

a>
CT
CD

m
3
<

3
3

3
CD
3

Ul

NJ

X
Ul
p — »

to

to
Ov
OJ
to
4i.

2
00
Ui
^1
Ov

p— f c

p — »

Ui

OJ

o
Ui
Ov

ON
>—»

o
to

VO
Ui
to

y-'

©
oo

NJ
-O

o
fc—fc

p — f c

OJ

4*
i — •

to
4*.

to
Ul
ON
X
to
Ui

Ov

ON
Ul

oo
p — »

to
ON
to
p — »

4x

to

OJ

to

Ui

Ui
4*.
OJ

o
4*.

-O
OJ
Ul

00
Ul

to
OJ

to

©
OJ
00

o
00

to
oo
X

to
oo

p — »

ON
to

o

ON
Ui
Ui
OJ
ON

Ĵ

OO

O
Ui

NO
to
to

4*-
to
ON
Ul
ON

Ui
I — '
y-»

Ul
vO

ON
OO
•o

^4
vO
Ul
to

o

2
X

4*

o
OJ

I-P*

ON
OJ
00
4^

OJ
Ui

4*

5
NO

OJ
ON
1—*

to
00

4*.

o
OJ

Ul

o

4s.
00
00

ON
ON
OJ
00
4*

OJ

to
X
OJ

to

-J
•o

4*

8
ON

p-^

4*.

00

4*.
to
VO

to
VO

o
oo
oo

to
Ul
00

4*
to

OJ

y-*

Ul
to
NO
ON

o

ON
X
p — *

ON

OO

p — »

o
to
4s.

OJ

to

OJ

O

vO
p — •

to

o

it

00

to
Ul

p — '

-J
00
4*.

oo
X
oo

O

to
Ul
ON

~

-

to

4*
p — .

Ov

y-'

o

to

Ov
Ul
ON

Map
Size

2 0
2 C5
3 2.
OO.

eo

a.

©

©
H
O
H

H
o
yy-

s
o ^

5
O
HZ

03
50

s
&03

50

©
O
yfZ
-03

50

3 ^
© z
"* 03

CS
o
CA

re

CA

tf

CA

C
CA

-276-

-a
3
•v
yi

3
3

5'
<a
yQ

5T
y~y>

yi

o"
co QJ

(D

| m »
CD

3

33

o
o
3
en

m
3
<

3
3

3
CD
3

Ui

to
X
Ui
p—pfc

to

to
-o
to
-o
©

©
4*.
OO
Ul
>̂ 4
Ov

-J
OJ
Ul

4*.
OJ

i — »

-o
*o
oo
ON

p — »

to
Ul
1 — f c
p — 1

to

to
-o
1-^

to
©

4^

-J

to
Ul
to
*o
v©
00

to
Ul
ON

X
to
Ul
Ov

ON

oo
oo

to
Ov
to
1—1

4s.
OJ
Ul

OJ
.Cs.

io

OJ

oo
Ul
o

N>
©
NO

oo
4*.

to

to
> — 1

4*.
1—1

-o
oo

to
-j
OJ
4*.

to
4*.

to
00

X
to
oo

•o
©
ON

ON
Ul
Ul
OJ
ON

OJ
Ul

to
«o
©
NO

to
00
4s-

1—1

Ul
OJ
OV

o

1—1

-o
OJ
4*.

Ul

©

to
©
to
to

to
p — 1

to
Ov
00
00

• 2
X

OJ
NO
00

1—1

ON
OJ

oo
4s.

OJ
4s.

Ov
©
4*.

ON
OJ

oo

OJ
4*.
4*.

OJ

oo
Ui

4*
OV

4^
ON
Ul

ON
OJ

to
00

o

OJ

to
X
OJ
iSJ

v©
to

4*.
©
NO
Ov

p — i

4s.

to
Ui

o

to

p — 1

-J

oo
to
4*.

Ul
v©

to
to

VO
Ui

OJ

to
OJ

to

ON

X

ON

£

©
NJ
4s.

OJ

ON

oo

•o
1—1

Ul
NO

to

o

4s.
©

^J

Ui

©

©
to
00

oo

00

X
0O

OJ

to
Ui
ON

~

oo

VO

Ui
ON

oo

Ui

-

<o

to
ON

o
oo

M
a
p

Size

2_
2 O
3 2.
© Q .

03

a
©
H
©
H
a
H
©
H
H
9

3
o H

©
a

03
50

e
a 0 3
50

©
O

STZ
-03

50

2^
ft
3 •>

o Z
i 03
^ 5 0

©

o

tf

ft
CA

c
CA

-277-

