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Abstract 
The work reported in this thesis is motivated by the need to construct a navigation 

system for mobile robots which can operate in unknown and partially known 

environments, and which has the capability to progressively learn an environment A new 

environment mapping procedure is described that constructs high resolution maps of an 

environment using ultrasonic range sensing. The ultrasonic range maps are converted into 

quadtrees. Quadtrees are used by the navigation system as the data structure that models 

the environment. 

This thesis presents a new algorithm for a mobile robot to explore an unknown 

environment using the quadtree data structure and the distance transform path planning 

methodology. Past approaches to robot path planning have concentrated on finding the 

shortest path to a goal. A path planner should also support finding a variety of other kinds 

of paths to a goal. For example a path planner could support finding "conservative", 

"adventurous" and "safe" paths. Conservative paths favour known areas, while 

adventurous paths avoid known areas. Safe paths keep a safe distance from obstacles, 

while simultaneously keeping the path length to the goal as short as possible. It is shown 

that the new mobile robot exploration algorithm can generate a wide variety of path 

planning behaviours by a novel use of distance transforms. 

Much of the research effort into path planning for mobile robots has concentrated on 

the problem of finding paths by translation of the robot body only. The problem of 

finding paths which require the rotation of the robot body have been largely ignored. This 

thesis presents an new algorithm for path planning with three degrees of freedom which 

is based upon an extension to the "safe" path planning behaviour. 

Finally it is shown that the new algorithms that have been presented are 

computationally efficient, and have desirable features that are absent from other path 

planning algorithms. 
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Chapter 1 
The Overview 

Research into mobile robotics is driven by the goal of building machines with the 

capabilities of humans. The aim of this research is to create machines which will replace 

humans in performing tasks that w e find tedious, dirty or hazardous. The "intelligence" 

of a robot is a measure of the sophistication of the robot, and the type of environment 

that it can exist in. Clearly a parts delivery robot operating on the factory floor, which 

navigates by following a buried wire, requires very little machine intelligence, compared 

with a robot whose task is to guide a motor vehicle through traffic at high speed. To 

achieve the latter task, the robot must simultaneously address the problems of 

"perception", "mobility" and "intelligence" in a changing environment, and therefore this 

robot can be regarded as an intelligent robot. The challenge of mobile robotics research is 

to develop intelligent technology that does not operate only in a limited domain, but in the 

"real world". 

The purpose of an autonomous mobile robot is to perform tasks for a user. For the 

correct and efficient performance of user tasks, a mobile robot must have the capability to 

interact with the environment in which it is operating. A n essential interaction capability is 

navigation. Navigating a mobile robot in a known environment requires little or no 

interaction with the environment. However, a robot m a y have to operate in partially 

known or completely unknown environments. In such circumstances the robot must learn 

and understand the structure of the environment. The robot must acquire and handle 

information about the existence and location of objects and areas of unoccupied space. 

Building a coherent world model within the limitations of current perception sensing 

technology is a complex task. This involves the extraction of range information from the 

environment, taking into account noise and the inaccuracy of sensor information. This 

introduces uncertainty into the environment map and makes the task of navigating a robot 

more challenging. 
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The work reported in this thesis is motivated by the need to construct a navigation 

system for mobile robots which can operate in unknown and partially known 

environments, and which has the capability to progressively learn an environment. In this 

thesis a navigation system will be described that has the capability of sensing the 

environment, and incorporating the freshly sensed data into an internal model of the 

environment. To efficiently model an environment, it is necessary to develop a data 

structure which can support the inclusion of freshly sensed data, and which supports path 

planning. In summary, the contribution of the research reported in this thesis furthers the 

development of data structures and algorithms for: 

* environment mapping with sonar range data. 

* path planning for mobile robots. 

* path planning behaviours for mobile robots. 

* path planning for mobile robots with 3 degrees of freedom. 

The detailed description of the research goals of this thesis are provided in the 

remaining paragraphs of this chapter. 

Environment Mapping 

The first goal of this research was to build a practical and reliable navigation system 

which was capable of operating in real-time or near real-time. T o achieve this aim 

ultrasonic range sensing (referred to as "sonar" for short) was chosen as the perception 

medium ahead of computer vision. Using computer vision as the perception medium 

requires the storage and quick processing of large quantities of data. Real-time computer 

vision requires expensive dedicated processing hardware, while sonar has minimal 

storage and processing requirements. Another reason for the choice of sonar as the 

perception medium was to allow concentration on the research issues of robot navigation 

and mapping with range data, rather than the issue of extracting range from computer 

vision. 
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One of the drawbacks of sonar is the noise and uncertainty associated with sonar 

range readings. In this thesis it is shown how clean and reliable data can be obtained from 

a noisy sonar signal and how this data can be integrated into an environment map for use 

in a robot navigation system. This work is described in Chapter 2. 

Path Planning 

A review of past mobile robot path planning research is presented in Chapter 3. Past 

research into path planning for mobile robots has concentrated on the problem of finding 

the shortest path in a known environment. However for a mobile robot operating in a 

partially known or a completely unknown environment, it is difficult to design a path 

planner which can effectively handle the unknown regions of the environment. For a path 

planner to be effective, the navigation system must have a mechanism to use the freshly 

sensed environment data. The second goal of this research was to develop a path planning 

algorithm which allows a mobile robot to operate in partially known and completely 

unknown environments, and which can handle sensor data describing the structure of the 

unknown parts of an environment. Such a path planning algorithm is presented in 

Chapter 4. The path planning results are presented using the sonar data results given in 

Chapter 2. 

Path Planning Behaviours 

A robot path planning system should not only find "optimum" paths i.e. the shortest 

paths to goals, but the system should also be able to generate "conservative" and 

"adventurous" paths. Conservative paths are paths which favour known areas, so the 

robot will attempt to travel in regions which it knows about. Adventurous paths on the 

other hand are paths which avoid known areas, causing the robot to operate in regions 

which have not previously been visited. A robot navigation system should also possess a 

"learn all" behaviour, which allows the robot to systematically map all the unknown 

regions of an environment. A useful path planning behaviour that a robot can possess 
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once an environment is completely known, is a behaviour which allows the robot to 

efficiently "visit all" the free space in an environment. Such a path planning behaviour is 

relevant for flooring cleaning and security surveillance robots. 

The biggest challenge in building a competent path planner is to reconcile the 

conflicting requirements of finding the "best" path from some start location to a goal 

location. The best path is not necessarily the shortest path to the goal. A mobile robot 

should keep the length of the path as short as possible, while simultaneously keeping a 

safe distance from obstacles and avoiding unknown regions of the environment. 

The third goal of my thesis was to construct a robot path planner which is capable of 

exihibiting different types of path planning behaviours. In Chapter 5 the concept of 

behaviours for mobile robot path planning is introduced. This chapter shows how the 

path planner described in Chapter 4 can be extended to induce the robot navigation control 

system to exhibit the path planning behaviours of finding "best", "adventurous", 

"conservative", "learn all" and "visit all" paths. Experimental results using the sonar data 

collected in Chapter 2 are reported. 

In Chapter 6 a comparison of the new robot path planning algorithms with another 

similar class of path planning algorithms is presented. 

Path Planning with 3 Degrees of Freedom 

Much of the research effort into path planning for mobile robots has concentrated on 

the problem of finding paths from a start position to a goal position by translation of the 

robot body only. The problem of finding paths which require the rotation of the robot 

body have been largely ignored. The fourth and last goal of this research was to develop a 

path planning algorithm for mobile robots which have 3 degrees of freedom (DOF) of 

movement. In Chapter 7 of this thesis an algorithm is presented which is based upon the 

extension of ideas presented in earlier chapters. It is shown that this new algorithm is 
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computationally superior to other 3 D O F path planners, and has desirable path planning 

features that are absent from other 3 DOF path planners. 

Finally, in Chapter 8 the conclusions that have been drawn from this research are 

presented, and mobile robot navigation problems which deserve further research attention 

are discussed. 
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Chapter 2 
Environment Mapping using Sonar 
2.1 introduction 

This chapter describes a new method of producing high resolution maps of an indoor 

environment with an autonomous mobile robot equipped with sonar range finding 

sensors, which is based upon investigating obstacles in the near vicinity of a mobile 

robot The mobile robot examines the straight line segments extracted from the sonar 

range data describing obstacles near the robot. The mobile robot then moves parallel to 

the straight line sonar segments, in close proximity to the obstacles, continually applying 

the "sonar mapping test". The sonar mapping test exploits the physical constraints of 

sonar data, and eliminates noisy data. This test determines whether or not a sonar line 

segment is a true obstacle edge or a false reflection. L o w resolution sonar sensors can be 

used with the described method. This environment mapping procedure can be integrated 

with most path planning algorithms and different types of range finding sensors. 

The experimentation in this work was carried out on a Model T Denning Mobile 

Robot (Figure 2.1), equipped with a twenty four element Polaroid Corp. Ultrasonic 

Range Finder sensor array [Polaroid 82]. The control system of the Model T uses three 

microprocessors. A supervisory 68008 microcomputer communicates with the outside 

world, the drive and steer system, and the sonar system. The robot communicates with 

the outside world using a serial link to a V A X minicomputer. The three wheel 

synchronous drive and steer system in the Model T is controlled by a Z80 microcomputer. 

The sonar array built by Denning Mobile Robotics is arranged in a ring configuration, 

with each of the sonar sensors spaced 15 degrees apart. The ring is controlled by a Z80 

microprocessor which selects sensors, activates the ranging and returns the corresponding 

range data. The sonar data is sent to the supervisory 68008 microcomputer, which passes 
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the data onto the V A X minicomputer. The V A X interprets the sonar data and performs the 

navigation functions of mapping and path planning. 

Figure 2.1 

Denning Corp. Model T Mobile Robot Research Vehicle. 

The remainder of this chapter is organised in the following manner. Section 2.2 

reviews the research which has been undertaken in the past into environment mapping for 

mobile robots. Section 2.3 reviews the reported uses of sonar in mobile robotics, and the 

problems associated with sonar sensing. In Section 2.4 a new approach to environment 

mapping using sonar is presented. Section 2.5 presents the experimental results obtained 

from an implementation of the new approach. Finally in Section 2.6 the conclusions 

which have been drawn from this research are presented. 
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2.2 Environment Mapping 

Research efforts into environment mapping with mobile robots follow a variety of 

approaches. These can be broadly classified into two groupings; "adaptive" models and 

"rigid" models. Adaptive models reflect the nature and clutter of the environment Typical 

adaptive models represent the environment as a network of free space regions [Brooks 

84, Chatila 82, Crowley 85, Iyengar et. al. 86, Rao et. al. 86], or as a graph of obstacle 

vertices [Thompson 77]. Environment mapping methods which use adaptive models 

require accurate sensor information. Rigid models impose a structure, such as a grid, onto 

the environment without any regard to the nature and clutter of the environment [Elfes 87, 

Jarvis et. al. 86, Moravec 80, Thorpe 84]. Adaptive model environment mapping 

methods offer elegant and efficient solutions, but in practice are difficult to implement. 

The converse can be said of rigid model environment mapping methods. 

Environment mapping by a mobile robot can be accomplished either by operating in 

"mapping" or "learning" modes. W h e n a robot is operating in mapping mode [Crowley 

85] it traverses the entire environment in a systematic manner, while scanning with 

onboard sensors and updating a map. The map is then used for all subsequent path 

planning exercises. Difficulties arise with this method if the environment is allowed to 

alter after the mapping has been completed. Work on environment mapping using the 

mapping mode is reported in Chapter 5. 

The other mode of learning is to sense the environment while executing paths which 

have been generated by a path planner. As the robot encounters obstacles en route to a 

goal, the mapping process updates the model of the environment, and the path planner 

plans a new path to the goal which avoids the obstacles [Elfes 87, Iyengar et. al. 86, 

Jarvis et. al. 86, Rao et. al. 86, Thorpe 84]. The paths generated by these methods will 

initially be negotiable paths from the start to the goal location. The lengths of these paths 

are not optimum, but as knowledge of the environment increases better paths are 
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generated until eventually global optimality is attained. Research into using the learning 

mode to generate a map of the environment is described in Chapter 4. 

The environment mapping methods presented by [Iyengar et. al. 86, Rao et. al. 86] 

have problems since they uses heuristics to plan local paths around obstacles. These 

methods assume that a robot can always recognise the line of sight distances to obstacles, 

and that obstacle edges can always be precisely detected. Such restrictions make it 

difficult to implement this mapping algorithm using current sensor technology. Since line 

of sight sensing cannot be guaranteed, obstacles in an environment can be arranged in a 

configuration which will cause a heuristic path planner to fail [Cahn et. al. 75, Chattergy 

85]. 

Since one of the goals of this research was to produce a practical and reliable mobile 

robot navigation system, a rigid model using grids was selected as the representation of 

the environment map. However this rigid model can be easily transformed into an 

adaptive model for use in path planning activities, as shown later in Chapter 4. 

The environment mapping method presented in this chapter can used to operate in both 

"mapping" and "learning" modes to obtain information about the environment. This map 

making method assumes that the location of the robot is known at all times. In the 

implementation of this mapping method, dead-reckoning was used satisfactorily. Finally 

this environment mapping method does not have the short comings of using heuristics to 

plan paths, nor does it assume that the robot has the ability to measure the exact shape of 

obstacles and the line of sight distances to obstacles. 

2.3 Sonar and Mobile Robots 

The application of sonar sensors in robotics is increasingly attracting interest and 

research. This is partly due to the low cost of the sensor and the ease with which the 

sonar data can be processed to directly provide range information. Sonar has been used 

by mobile robots for navigation [Brooks 86, Chatila 82, Chatila et. al. 85, Chattergy 85, 

-9-



Crowley 85], determination of position [Crowley 85, Drumheller 87, Durrant-Whyte et. 

al. 89, Miller 84, Miller 85] and mapping purposes [Crowley 85, Elfes 87, Flynn 85]. 

The Hilare mobile robot project [Bauzil et. al. 81, Chatila 82, Chatila et. al. 85, 

Chattergy 85] uses sonar sensors as proximity indicators for close up obstacle detection 

and for parallel wall following. [Chattergy 85] uses sonar with a heuristic navigation 

system to detect and follow obstacle boundaries. Both these approaches used sonar for 

collision avoidance with stationary obstacles only. The M T T AI Lab mobile robot [Brooks 

86] uses sonar for collision avoidance with both stationary and moving obstacles. 

Sonar has been used to determine the position of a mobile robot in an environment 

[Durrant-Whyte et. al. 89, Drumheller 87, Miller 84, 85]. [Miller 84, 85] assumed that 

the environment was known, and that an accurate map of the environment was available. 

The map was searched to determine the location of the robot The position of the robot 

found in the map search had to confirm the set of sonar readings collected from the 

environment This approach had limitations since it did not take into account the 

uncertainty and noise of sonar data. 

[Drumheller 87] used a similar approach to Miller. This approach also required an 

accurate map of the environment, but it could handle noisy data. The method was 

implemented using the Polaroid sonar sensor. This approach coped with the uncertainties 

of sonar by modelling the sonar sensor and data to account for false reflection and beam 

spread errors. 

[Durrant-Whyte et. al. 89] used a different approach to position estimation. This 

approach used an extended Kalman filter to integrate sonar readings into a known 

(precisely taught) environment map, and to derive an estimate of the mobile robot 

location. 

False reflections can cause extremely large errors in sonar readings. False reflections 

are caused by the long wavelength of sound. A sonar beam aimed at a target object 
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surface may not reflect an echo directly to the sensor. Instead an echo may or may not be 

detected when the sonar beam bounces off some objects other than the target object. 

Hence the sonar sensor measures a distance to a target which is much longer than the 

actual distance to the target False reflections of a sonar beam occur whenever the angle of 

incidence is greater than the critical angle of reflection, causing the beam to be reflected 

away from the sensor, and giving the effect of the sonar beam penetrating the obstacle. 

Refer to Figure 2.2 for an illustration of false reflection of a sonar beam. False reflections 

occur quite often, and for this reason it is almost impossible to obtain a reasonably 

accurate "sonar profile" of the environment surrounding the robot 

Figure 2.2 

The problem of false reflections of a sonar beam. 

Sonar beam spread creates a number of problems. Objects can be perceived to be 

much wider than they really are. This effect is exacerbated with larger distances between 

sensor and object. Similarly openings between obstacles, such as open doors, may be 

perceived to be closed. Beam spread can also cause ranging errors. A range measure is 

not necessarily the distance in the direction the sensor is facing, since the width of the 

beam may cause an echo from one edge to be returned before the echo from the sensor 

direction. These ranging errors have the effect of producing a blurred image of the 

surroundings, particularly corners. Refer to Figure 2.3 for an illustration summary of 

beam spread problems. 
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Figure 2.3 

The problem of Sonar beam spread. 

Due to false reflections and beam spread a sonar profile may bear little resemblance to 

the actual environment as shown in the example in Figure 2.4. Figure 2.4 (A) shows the 

plan of an indoor environment, which contains two obstacles. Figure 2.4 (B) shows a 

sonar profile obtained of the environment shown in Figure 2.4 (A). It is obvious that 

there is little resemblance between the actual environment and the sonar profile. In fact it 

is difficult to say from what position in the environment the sonar profile was obtained. 

Figure 2.4 (C) shows where the sonar scan was done in the environment. 
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c 
Figure 2.4 

The combination of false reflections and sonar beam spread causes problems. 

The sonar beam spread problem has been countered in several different ways. [Elfes 

87] treats sonar beam spread with a probabilistic approach. Elfes regards a sonar reading 

as an assertion about two 3 D spaces, one that is "probably empty" and another that is 

"somewhere occupied". The definition of the probability density functions is based on 

beam geometry and the spatial sensitivity pattern of the sensor. The functions are 

parameterised by the spread of the beam and the range of the sample. Twenty four sonar 

sensors are mounted in a ring around the robot. The probability density functions derived 
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from the range readings for each sensor are combined and projected onto a two 

dimensional grid. In this probability map, the value stored in each grid cell indicates if the 

cell is empty, occupied or unknown. By combining information from many readings as 

the robot moves through an environment, areas known to be empty or occupied are 

expanded, and the uncertainties associated with the region are decreased. Consequently 

the shape and location of obstacles in the environment becomes known with increasing 

accuracy. This approach tackles the problems associated with sonar sensing by building 

the environment map with multiple sonar views taken from different locations. However 

it does not provide a complete solution to false reflections, since no mechanism is 

provided to cancel the effect on the probability functions of the false reflection sonar 

readings that were projected onto the probability map at an earlier stage. 

[Crowley 85] countered the beam spread problem by narrowing the width of the 

beam. H e generated a narrower beam by focusing a wide sonar beam with a parabolic 

horn. The narrowed beam was rotated by a stepper motor and sonar readings were taken 

at regular intervals. From the sonar readings, a line based model of the surrounding 

environment was constructed using recursive line fitting. The newly constructed local 

model was then matched with a map which had either been supplied to the robot or learnt 

by the robot on previous mapping experiments, to determine the robot's location and to 

update the map if necessary. This approach does not take into account the uncertainty and 

noise that false sonar reflections can introduce into a line based environment model. 

[Flynn 85] attempted to remove the uncertainty and noisiness of sonar data, by sensor 

fusion. Sonar and infrared sensors were used together, each compensating for the 

deficiencies in the other. Data from both sensors was fused to generate a more accurate 

representation than could be achieved by either sensor alone. This method had limited 

success in dealing with beam spread and false reflection problems, because of the 

deficiencies of the infrared sensor. However sensor fusion of sonar with infrared was 

able to detect openings, such as doorways, that would otherwise go undetected if only 

sonar sensing was used. Flynn gives a treatment of sonar error due to atmospheric effects 
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such as the change in the speed of sound caused by temperature and humidity changes. 

The timing circuitry of the Polaroid sonar sensor is identified by Flynn as another source 

of range precision error. 

[Drumheller 87] modelled sonar beam spread by assuming that the location of an end 

point of any sonar reading m a y be in error by as much as E, where E was a constant that 

bounded the unpredictable beam spread errors. The value of E was determined 

experimentally. Drumheller introduced a new concept called the "sonar barrier test". The 

sonar barrier test was used to eliminate the noise introduced to the sonar profile by false 

reflections. The sonar barrier test checked that the .sonar profile for a proposed location of 

the robot was consistent with the fact that sonar beams do not penetrate known solid 

objects. The sonar barrier test was very effective at eliminating localisations of the robot 

which do verify the sonar profile, but are in fact incorrect Drumheller showed that false 

reflections of sonar beams could be handled effectively by the sonar barrier test 

2.4 The New Approach 

In summary, past research has shown that to devise an effective environment mapping 

procedure using sonar, the procedure must handle the sonar sensing problems of false 

reflections and beam spread. The approaches described in the previous section had 

problems dealing with both the .sonar sensing problems. In this section a new approach to 

environment mapping using sonar is presented. This approach handles the beam spread 

problem by sampling data describing obstacles at a closer range. The false reflections 

problem is dealt with by applying the sonar barrier test The sonar barrier test is used in a 

context that is different from the original intentions of its designer [Drumheller 87]. 

Instead of determining a robot localisation based on the fact that a sonar profile cannot 

penetrate known solid objects, the test is used to determine the shape of unknown objects 

given the fact that a sonar profile m a y appear to pass through objects. T o reflect the new 

context of use of the sonar barrier test, the test will be referred to as the "sonar mapping 

test" 

-15-



Producing an accurate map of an indoor environment from a sonar profile sampled in 

one location is virtually impossible, as shown in Figure 2.4. However the sonar profile 

does indicate the approximate location and size of obstacles and probable areas of free 

space. The task of the environment mapping process is to determine whether or not the 

data contained in a particular sonar profile is correct or not. Testing the correctness of the 

sonar profile is done by moving the robot into closer proximity to the obstacles identified 

in the .sonar profile, and applying the sonar mapping test The conclusions drawn from 

investigating and testing the sonar profile data are incorporated into the environmental 

map. 

Most path planners approximate the robot with a cylinder and then shrink the cylinder 

to a point and expand all the objects in the environment by the radius of the cylinder. This 

strategy is useful in known environments. But in unknown environments this requires 

unnecessary extra processing, and important information is discarded, namely the fact that 

the volume of space that the robot occupies is free space. This can provide considerable 

additional knowledge about the environment. Also the volumes of the paths swept by the 

robot are definitely free space in a static environment and many of them are likely to be 

free space in a dynamic environment. The work done by [Flynn 85] with sensor fusion 

showed that sonar data fused with infrared data produced improved maps. The new 

mapping algorithm presented in this section fuses the free space volumes swept by a 

moving robot with the range data collected by sonar sensors to build a detailed map of the 

environment. 

The remainder of this section is organised in the following manner. Section 2.4.1 

describes how the raw sonar data which has been collected is preprocessed to remove 

incorrect readings. Section 2.4.2 explains how lines are fitted to the clean sonar data, .and 

how the most reliable segments are extracted from the newly constructed lines. In Section 

2.4.3 a description is presented of h o w the sonar mapping test is used to validate the 

sonar readings which were collected in the first sonar scan of the environment Finally in 
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Section 2.4.4 an algorithm is presented which describes how the immediate environment 

surrounding a mobile robot can be systematically mapped. 

2.4.1 Sonar Preprocessing 

To obtain reliable sonar range data the sensing system preprocesses all the incoming 

sonar data to remove the incorrect range readings. To achieve the aim of clean and reliable 

sonar range data the preprocessor executes the following steps: 

Calibrating: Variations in the speed of sound caused by changes in temperature and 

humidity give inaccurate sonar readings. Such errors need to be compensated. 

Compensation can be achieved by equipping the mobile robot with onboard sensors 

for temperature and humidity, allowing the errors to be corrected onboard the robot 

before the sonar data is used for further processing. This is the approach used by 

[Flynn 85]. Another way to compensate for the effect of temperature and humidity 

changes is to calibrate the sonar sensors. This is done by obtaining the sonar range 

measurement to a target at a known distance and normalising the measured distance 

with respect to the known distance. This calibration constant is used to compensate all 

subsequent sonar range data readings for the effects of atmospheric changes. Since the 

work described in this thesis was carried out in an air conditioned indoor environment, 

where the fluctuations in temperature and humidity are small, the calibration approach 

was used. 

Thresholding: As shown in Figure 2.5. range data which falls outside the distance 

interval [RmZrt,RM] is discarded, where Rm/rt is the minimum sensor range, and R M is 

the the maximum useful range. The maximum useful range R M is defined as the 

min(Rg,Rmax), where R^^x *s tne maximum sensor range, and R« is defined as 

H/SinG. H is the height the sonar sensors are mounted above the floor, and 20 is the 

angular dispersion of the sonar beam. Using range thresholding removes all errors 

caused by faulty sensors, and some errors caused by false reflections. Sensors which 
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are faulty return range measures which are lower than the threshold range, while false 

reflections will result in range measures which are higher than the threshold range. 

Minimum 
Sensor Range 

Dispersion | R 
Sensor Range j^~ 

Maximum 
Sensor Range 

R, 

The range interval of the sonar sensor is: 
[Rmh.mintRj.Rma) ] 

where Rp =H/Sine 

6 =• The angular dispersion of the sonar beam 

H - The height of the sonar sensor above the loor 

Figure 2.5 

The useful range interval of a sonar sensor 

Averaging: A set of Cn range readings from the same sonar sensor, sampled from 

the same robot position are usually dispersed. The dispersion of the data is due to false 

reflections and the varying sensitivity of sonar transducers. It was found 

experimentally that the sonar range data may be clustered around two different mean 

values, rather than just one mean value. This phenomenon occurred when a sensor was 

directed at two obstacles which were placed at staggered distances. The sensor detected 

the closest obstacle most of the time. However sometimes a false reflection occurred on 

the sonar beam which was directed at the closest obstacle. This resulted in the obstacle 

which was furthest away from the sensor being detected. To reduce the dispersion of 

the sonar data, an analysis of the data is done to identify the clustered sets of range 

readings. A cluster is considered to be a contiguous set of range readings which 

accounts for a significant proportion Cn of the collected sonar range readings. The 
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value of Cp is determined experimentally. This is discussed in the Results section. The 

mapping algorithm discussed here requires knowledge of the closest obstacle to the 

robot T o accomplish this task, the cluster of sonar range readings with the shortest 

distance measures is averaged. This averaged value is used in all subsequent 

processing of the mapping algorithm. Refer to Figure 2.6 for an illustration of 

averaging. 

Sonar readings dustered 
around one mean value. 

H H 
Distance 

Sonar readings clustered 
around two mean values. 

Distance 

Figure 2.6 

Sonar data is not always clustered around one mean value. 
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2.4.2 Line Fitting and Extracting Sonar Edge Segments 

The preprocessed sonar readings obtained from the sonar sensors which surround the 

robot form a sonar profile of the environment. This sonar profile can be regarded as a 

robot centred polar coordinate map, since the sonar data represents depth readings from 

sensors positioned at known angles. The polar coordinate sonar profile is converted into a 

cartesian world coordinate profile. The cartesian coordinate sonar profile is passed to a 

recursive line fitting procedure, which fits straight lines to the data. Recursive line fitting 

of sonar data is not new and has previously been done by [Crowley 85] and [Drumheller 

87] using the algorithm described in [Duda et. al. 73]. The algorithm is illustrated in 

Figure 2.7. A straight line is initially computed between the two end points of the 

collection of sonar range points. The sonar range points in the collection are tested to 

determine the point where the perpendicular distance to the approximating straight line is 

greatest. If this largest perpendicular distance is below a tolerance T, then the computed 

line is accepted as representing the collection of sonar range points. Otherwise the 

collection of points is divided into two collections at the point where the perpendicular 

distance was greatest. The line fitting procedure is then invoked recursively for each of 

the two groups. 

1T--jT...b-'-|-

Figure 2.7 

Stages of recursive line fitting 
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Straight line segments extracted from a sonar profile are called "sonar edges". Sonar 

edges represent the best approximation of the sonar images of the surfaces of obstacles. 

Sonar edge profiles of the environment include noise and uncertain data. In order to 

minimise the effect of noise, the sonar edges that are used to approximate obstacle edges 

are those which contain a contiguous set of N sonar range points i.e. sonar range readings 

that occur consecutively in the sonar profile. A n example of extracting sonar edges is 

shown in Figure 2.8. Figure 2.8 (A) shows a small room and the accompanying sonar 

profile generated by recursive line fitting. The bold segments extracted from the sonar 

profile are the sonar edge segments which best approximate surface edges. In this 

example the number of contiguous readings N in a sonar edge has been set to 4. Figure 

2.8 (B) shows the extracted sonar edges. 

B 

Figure 2.8 

Extracting sonar edge segments. 
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2.4.3 Using the Sonar Mapping Test to Process Noisy Sonar Data 

After a mobile robot equipped with sonar sensing has scanned an indoor environment 

the following is known; the volume of space Vr, occupied by the mobile robot, and the 

two concentric volumes of space derived from the sonar profile which enclose Vr. Refer 

to Figure 2.9 for a diagram of the three volumes of space. The space occupied by the 

robot is "definitely free", the inner concentric volume space V e , described by the sonar 

profile, is "probably empty". The remaining volume of space V 0 , described by the sonar 

profile is "somewhere occupied". 

This volume of space is definitely free space. V r 

This volume of space is probably free space. V 

This volume of space is somewhere occupied. VQ 

Figure 2.9 

Volumes of Space in an indoor environment 
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The Ye volume space is verified to be empty if a mobile robot can travel through this 

space without collision. T o verify the volume space V 0 , the location and the size of 

obstacles in this space must be determined accurately. This is done by moving the robot 

into closer proximity of regions of space to be verified, and examining their sonar 

profiles. 

Sampling the sonar profile of obstacles from a short distance D has the effect of 

greatly reducing the noise in the sonar data due to beam spread. This allows the surfaces 

of obstacles to be detected with high accuracy, which is particularly useful when trying to 

accurately m a p an environment which contains small objects and objects of irregular 

dimensions i.e. many edges and corners. There is a trade off between the accuracy of 

object edge detection and the discomfort of approaching obstacles too closely. The closer 

objects are approached to obtain sonar profiles, the greater is the accuracy of the detected 

sonar edges. However there is also a greater chance of collision with the obstacle. The 

value of D is determined experimentally; this is discussed in the Results section. 

Eliminating beam spread from sonar data does not remove all the noise, as there is still 

the problem of false reflections. False reflections are eliminated by applying the sonar 

mapping test. The sonar mapping test is used to determine the shape of unknown objects 

given the fact that a sonar profile may appear to pass through objects. False reflections 

can be eliminated in the following manner (refer to Figure 2.10 for an example). Locate 

the robot in close proximity to an object whose shape is unknown, and carry out a sonar 

scan. From the sonar profile extract the sonar edge closest to the robot This sonar edge is 

not blurred due to the minimal effect of beam spread. It was experimentally found that 

sonar edges close to the robot were measured accurately if the beam axis of the sonar 

sensors was positioned perpendicularly or nearly perpendicularly to the sonar edges. The 

closest sonar edge becomes the tracking edge used by the sonar mapping test. The 

tracking edge is extended in the direction where the edges of the obstacle being 
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investigated are unknown. Extending the tracking edge will cause the tracking edge to 

either cut across or pass behind the distance measures of neighbouring sonar sensors. 

A sonar scan of an obstacle. The closest sonar edge is extracted and this edge is 
tracked, to investigate if the neighbouring readings are correct or are false 
reflections. 

The robot tracks the sonar edge, and takes a fresh sonar of the obstacle. If a 
sonar edge is found, it confirms the hypothesis that the previous sonar readings 
were false reflections. This process continues until the object has been completely 
investigated. 

The robot tracks the sonar edge continually applying the sonar mapping test. If 
the sonar mapping test confirms that the previous sonar readings were correct, 
the robot then ceases tracking the sonar edge. The robot then searches for a new 
obstacle surface edge to investigate, and determine whether or not the obstacle 
has a convex corner. 

Figure 2.10 

Sonar Mapping Test 

If the tracking edge cuts across the range measures of neighbouring sensors, then one 

of two possibilities has occurred; the range measures are correct and they represent a 

discontinuity in the obstacle edge being tracked i.e a gap of free space, or the range 
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measures are incorrect due to false reflection errors. A hypothesis is made that the range 

readings are incorrect and that the sonar beams are seemingly penetrating solid objects. 

To test the sonar mapping hypothesis, the robot is moved along the extended tracking 

edge until it is positioned in a location which is perpendicular to the suspect sonar 

readings. A fresh sonar scan is taken of the sonar mapping test region. If the nearest 

sonar edge has an orientation which is close to that of the track edge, and mates neatly 

with the track edge, then the hypothesis of the .sonar mapping test is true. Otherwise the 

hypothesis is false, and a gap between obstacles has been found. The robot decides, 

based on the sonar profile, whether or not it can pass through the gap. 

Convex Comer formed Comer projected onto the map 

Figure 2.11 

Investigating and mapping Convex Comers 

If the robot can navigate through the gap, it does so and then proceeds to do a sonar 

scan to find the closest sonar edge of the obstacle which it is currently tracking. The 

closest edge and the previous tracking edge are projected to form a convex corner. Figure 

2.11 shows an example of a robot mapping a convex corner. In this example the robot 

investigates and maps a surface edge of an obstacle by continually applying the sonar 

mapping test, until the test confirms that the tracking edge has terminated. This occurs 

/ -
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when the robot moves from position A to position B. The robot investigates the gap of 

free space, and searches for a new edge to track, as shown at location C. Once a new 

sonar edge to track has been extracted, this edge and the previous tracking edge are 

projected together to form a convex comer. This corner together with the associated free 

space are then projected onto the environment grid map. 

Edges projected over gap Edges projected onto the map 

reespace. 

Figure 2.12 

Investigating and mapping Impassable Gaps 

However if the robot cannot pass through a gap, the robot performs a sonar scan to 

find the closest sonar edge of an obstacle that is currently not being tracked. The closest 

sonar edge and the current tracking edge are projected with free space between the two 

edges onto the environment map. Figure 2.12 shows an example of a robot mapping an 

impassable gap. This example shows a situation where the sonar mapping test confirms 

that the tracking edge A has terminated and that a gap exists, through which the robot is 

not able to pass. In this situation the robot finds the sonar edge which is preventing the 

robot passage, which in this case is sonar edge B. The freshly extracted sonar edge and 

the current tracking edge are extended to cover the gap. The new sonar edge and the 

current tracking edge, together with the associated free space, are then projected onto the 

environment grid map. The freshly sensed sensed edge becomes the new tracking edge. 
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W h e n the tracking edge passes behind the distance measures of neighbouring sensors, 

this indicates that following the tracking edge too far could cause collision with another 

obstacle. It was found experimentally that the sonar profile for potential object collision 

edges was not subject to false reflections. To minimise beam spread errors the robot 

moves toward a potential collision edge, until the robot is D distance away from the edge. 

Once the robot is in close proximity to the potential collision edge a fresh sonar scan is 

done. The freshly sensed potential collision and tracking edges are extended to form a 

concave corner of the object being tracked. This concave comer is projected onto the 

environment map. Figure 2.13 shows an example of mapping a concave comer. This 

example shows a situation where it is not possible to apply the sonar mapping test In this 

case a collision will result with surface edge B if the robot continues to track the sonar 

edge A. To avoid the collision, the robot extracts the potential collision sonar edge and 

extends this edge to form a concave comer with the current tracking edge. The comer 

together with the associated free space are then projected onto the environment grid map. 

The potential collision sonar edge becomes the new tracking edge. 

Concave Corner formed Corner projected onto the map 

Figure 2.13 

Investigating and mapping Concave Corners 
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2.4.4 The Environment Mapping Algorithm 

The algorithm for a mobile robot equipped with sonar sensors mapping an unknown 

environment begins with the robot "waking up" in a unknown world. After waking up, 

the robot scans the environment with its sonar sensors, to ensure that it is further than 

R-rnin (^e minimum sensor range) from any obstacles. Sonar readings that are equal to 

Rmin indicate that the robot is at most a distance of R^-^ from neighbouring obstacles; 

the distance could be less. To ensure that the robot is at a distance greater than R m / n from 

obstacles, the robot moves away from obstacles that are located R m / n from itself. The 

wake up procedure can also be used to "herd" the robot to a desired location. This is 

done by surrounding the robot with obstacles such as humans, thus forcing the robot to 

move in a desired direction. If the robot is completely surrounded and can not move, it 

goes to "sleep" and then wakes up after a timeout Tout, when it will again attempt to 

move away from the obstacles that it perceives are too close. 

Upon completion of the wake up procedure, the robot takes a fresh sonar scan of the 

environment. The sonar scan is examined for obstacles within a radius of ̂ ynax °ft n e 

robot The distance -^max represents the radius of the cylindrical volume around the robot 

which needs to be investigated and learnt. Sonar beam spread at large distances can give 

the effect that openings through which the robot can pass e.g. doorways, are perceived to 

be closed. The distance Dmax is set to a value such that openings through which the 

robot can pass do not appear to be closed. The obstacles within D m a x of the robot are 

isolated to contiguous sectors of the sonar profile, i.e. consecutive sonar readings which 

are all less than T>max- The robot systematically examines, in clockwise order, the 

obstacle sectors in the sonar profile in order to accurately map the surfaces of obstacles in 

the environment In each sector the robot moves into close proximity to the obstacle in the 

sector, and the sonar mapping test is applied to a fresh sonar scan. Refer to Figure 2.14 

for an illustration of finding obstacles within D m a x of the robot. In this example 

distances that are within D ^ ^ of the robot are shown in the shaded circular area. Range 

readings within Dmax are isolated into contiguous sectors. Should two sonar sectors be 
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separated by a single sonar reading, a simple heuristic is used to decide whether the 

separating sonar reading is a false reflection and that the two sonar sectors can be 

merged. If the separating sonar reading is sufficiently greater than its neighbouring sonar 

readings, then the separating reading is considered to be a false reflection. In this case the 

separating reading is replaced with the average of its neighbouring sonar readings. In the 

this example the false reflections have been removed and sonar sectors have been 

merged. The sectors are numbered in the order they will be investigated by the robot. 

Figure 2.14 

Deciding which obstacles to Investigate and map 

The mobile robot moves along the axis of an obstacle sector, to a position that is 

distance D from the obstacle being investigated. A fresh sonar scan is taken of the 

environment, and a recursive line fit is applied to the sonar data belonging to the obstacle 

sector under investigation. The closest sonar edge is extracted from the straight line sonar 

profile. This sonar edge becomes the tracking edge which the robot follows to obtain the 

sonar profile of the obstacle. The tracking of the sonar edge, and its incorporation into the 

environment map, using the sonar mapping test is described in detail in Section 2.4.3. 
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Figure 2.15 

Deciding which obstacles to Investigate and map 

Initially the robot tracks the closest sonar edge in a clockwise direction, until one of 

three possible conditions occurs: the robot moves outside of the sonar sector being 

mapped, the robot is no longer within the distance ̂ max °f ̂  home position, or the 

robot moves to a position which is no longer in line of sight to the home position i.e. 

moves behind an obstacle. The first two conditions are verified by encoders on the 

robot's wheels and the third condition is verified by sonar. Refer to Figure 2.15 for 

examples of the three conditions to terminate tracking. In the example position A satisfies 

all three tests. Position B fails the inside sonar sector test. Position C fails the home 

visible test. Position D fails the test of being within Dmax of home. W h e n one of the 

three above conditions occurs, the mobile robot finishes tracking and mapping the current 

sonar edge, and backtracks to the position where it began investigating the obstacle. Once 

the robot has returned to its initial tracking position, it then proceeds to investigate the 

remaining unmapped portion of the obstacle sector. This is done by tracking the closest 
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sonar edge in a counter clockwise direction. Once the mobile robot has completely 

investigated the current obstacle sector, the robot returns to the home position. At this 

point the next obstacle sector which needs to be investigated is selected, and the whole 

procedure is repeated. 

Every motion by the mobile robot without collision indicates that the path volumes 

swept by the robot are definitely free space. Every time the robot moves the environment 

map is updated to include the new known areas of free space. 

Figure 2.16 

Updating free space while the home location is visible 

During the tracking of sonar edges in obstacle sectors, termination of the tracking is 

based upon the home position being in line of sight of the current robot position. Should 

the home position be visible, then the triangular region enclosed by the home position, 

the previous robot position and the current robot position is updated as free space on the 

environment map. Refer to Figure 2.16 for an illustration of updating free space when the 

home location is visible. In this example the robot movements are shown with arrows. 

After the robot moves from position A to Position B the sector enclosed between A, B 

and H o m e is updated as free space. Similarly after the robot reaches Position C, the free 

space sector enclosed between B, C and H o m e is updated as free space. 
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Once the mobile robot has investigated all the obstacles within a radius of Dmax of 

the robot, all the sectors which were perceived to be free space are projected onto the 

environment map. 

It should be noted that free space regions generated from sonar data are not written 

over the information previously recorded about the region if the same region has been 

labelled as an obstacle region. This action is necessary to prevent false reflections of sonar 

beams, which were not screened out by preprocessing and the sonar mapping test, from 

corrupting the environment map. 

2.5 Results 

The general algorithm for mapping an unknown environment using sonar is described 

in the procedure B U I L D _ M A P which is shown in Algorithm 2.1. The procedure 

W A K E U P performs the action of waking the robot up. The procedure 

F I N D _ O B S T A C L E extracts obstacles that are in close proximity to the robot from a sonar 

profile. It does this by identifying the contiguous sonar sector readings that are within 

Dmax distance of the robot The function M I D D L E finds the middle area of obstacle 

region currently being investigated. The procedure M O V E moves the robot from its 

present location to a new location, and also updates the environment map with the free 

space volumes swept by the robot during the execution of the move motion. Once the 

robot has moved sufficiently close to an obstacle under investigation, it maps the obstacle 

and updates the environment map. Obstacle mapping is performed by the procedure 

M A P P E R and the details of this procedure were discussed in Section 2.4.3. The 

B A C K T R A C K procedure retraces the robot path from the current location back to the 

point where it began investigating an obstacle. The U P D A T E _ F R E E procedure updates 

the environment map with the areas which are not occupied by obstacles within ̂ >max °f 

the robot i.e. free space areas. Note that all the algorithms described require parameter 

passing to subroutines in one of two ways: by reference which allows the value to change 

(underlined), or by value which does not allow the variable to change (plain). 
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procedure BUILD_MAP ( M m ) 

perform W A K E U P ( Sonar. Current) 

perform FIND_OBSTACLE (Sonar, ObstacleSectors) 

Home := Current 

dowhile (There are more ObstacleSectors ) 

Aim := MIDDLE (ObstacleSector) 

perform M O V E ( Current. Aim, Map) 

perform M A P P E R (Clockwise, Home, ObstacleSector, Current. Map. History) 

perform B A C K T R A C K ( Current. Aim, History) 

History := Nil 

perform M A P P E R (Anticlockwise, Home, ObstacleSector, Current. Map. History) 

perform B A C K T R A C K ( Current. Aim, History) 

History := Nil 

perform M O V E ( Current. Home, Map) 

enddo 

perform UPDATE_FREE ( Sonar, Map.) 

end procedure 

Algorithm 2.1 

Mapping an unknown environment 

The sonar generated environment maps were obtained from four different setups of a 

Robotics Laboratory at Monash University. The layout of the laboratory was varied by 

moving and rearranging the laboratory furniture. In order to be able to quickly change the 

layout of the laboratory and to test different obstacle configurations, cardboard boxes of 

various shapes and sizes were used to build different room layouts. Figures 2.17, 2.18, 

2.19 and 2.20 illustrate the different laboratory layouts and the corresponding sonar 

maps. Each result is represented by two diagrams. Diagram (A) shows a configuration of 

obstacles in an indoor environment which must be mapped. Diagram (B) shows the robot 

produced sonar map of the environment described in Diagram (A). In the sonar map 

diagram the dark shaded areas are obstacles, the lightly shaded areas are unknown regions 

which have not been mapped, and the unshaded areas are free space. The sonar maps also 

show the paths that were executed by the robot during map making. These execution 
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paths are shown as directed arrows, and they are labelled in the order in which they were 

executed i.e path A B , followed by path C D etc. 

To produce accurate maps a robot must be able to estimate its position and orientation 

in an environment. In all the experiments the robot was accurately located to a home 

position initially. From this home position the robot investigated its surroundings. 

Estimation of the robot position during the course of mapping the surroundings of the 

home position was done by dead reckoning. Once the robot completed mapping, it 

returned to the home position, where its estimates of position and orientation were 

corrected by comparison with a global source i.e. beacons etc. In the future it is proposed 

to use a beacon system to correct the robot location, but in these experiments the errors in 

location were corrected manually. It was found during the course of experimentation that 

the drift in the robot position was small, less than 0.25 ft when the robot had returned to 

its home position. Thus the mapping errors due to dead reckoning errors were negligible. 

The environment map grid size was set at 0.5 ft. The motivation for this choice of grid 

size was that the floor of the experimental laboratory was made up of 1.0 ft. square tiles. 

Thus it was easy to verify the correctness and the accuracy of the robot generated maps. 

In terms of the variables previously mentioned in the text, the algorithm parameters 

used in these experiments were: 

0.9 ft (The minimum range of the sonar sensor) 

25.6 ft. (The maximum range of the sonar sensor) 

2.32 ft (The height of the sonar range sensor above the floor) 

15° (The angular dispersion of the sonar beam spread) 

H/Sinq = 9.0 ft (The practical sensor range) 

min(Ro,Rmax)
 = 9-0 ft. (The useful range of the sonar sensor) 

0.35 (The proportion of sonar readings which account for a cluster) 

10 (The number of sonar readings taken prior to cluster analysis) 
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N = 3 (The minimum number of sonar readings in a sonar edge) 

T = 0.2 ft (The maximum allowable perpendicular deviation of a sonar 

reading) 

D = 1 . 0 ft. (The distance from obstacles for sonar range scans) 

^max = 4.0 ft. (The maximum radius in which obstacles are mapped) 

^out = 30 sec. (The time the robot sleeps before waking up, to try to move) 

This set of parameter values was used for all the reported results. This set may not be 

optimum, since they were selected based upon trial and error experimentation. Since 

theoretically predict the behaviour of a low resolution sonar rangefinder such as the 

Polaroid Corp. Ultrasonic Rangefinder is very difficult, an effective way of determining 

operating parameters for the mapping algorithm is to run extensive tests of the system in 

the environment where it is to be used, and to adjust the various system parameters until 

the system is "tuned". 

The program for these experiments was written in PASCAL on a VAX-11/750 

minicomputer. The execution times of the mapping program for the four different 

laboratory layouts are given in Figures 2.17 - 2.20 and are as follows: 

Figure 2.17 - 5.50 minutes 

Figure 2.18 - 2.39 minutes 

Figure 2.19 - 8.29 minutes 

Figure 2.20 - 4.11 minutes 

The execution times reduced by 30% when I/O functions such as terminal status 

displays, debug information etc. were disabled. 
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Figure 2.17 

Sonar mapping an indoor environment with a robot. 
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Sonar mapping an indoor environment with a robot. 
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Sonar mapping an indoor environment with a robot. 
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Sonar mapping an indoor environment with a robot. 
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2.6 Conclusions 

The environment mapping algorithm presented in this chapter allows a mobile robot to 

map an unknown indoor environment. It has been demonstrated how high resolution 

maps of indoor environments can be produced using a low resolution sonar rangefinder, 

such as the Polaroid Corp. Ultrasonic Rangefinder. It has also been shown that the noise 

and uncertainty of sonar data can be effectively handled by using the sonar mapping, test. 

The sonar mapping test effectively discriminates false reflections of sonar sound waves, 

thus allowing the mobile robot to produce accurate maps of the environment. The map is 

sufficiently rich in detail that it can be used by higher level mobile robot navigation 

functions such as path planning, object recognition etc. The mapping technique described 

in this chapter yields an inexpensive and reasonably fast system that is suitable for indoor 

environments. 
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Chapter 3 
Review of Path Planning 

3.1 Introduction 

The problem of finding optimum paths for robot manipulators and autonomous 

mobile robots through environments cluttered with obstacles has attracted much research 

interest. A great deal of this research has concentrated on situations where the 

environment in which the robot operates is completely known and supplied to a path 

planner. For a robot navigating in a partially known or completely unknown environment 

these path planning techniques are often not directly applicable or extendible. For example 

difficulties arise in deciding how to treat the unexplored regions of the environment. A 

typical approach is to treat unexplored regions as obstacles, and only proceed into the 

unexplored regions if the goal lies there. In this chapter a review will be presented of path 

planning algorithms which allow a mobile robot to function in known, unknown and 

partially known environments. O n completion of the review, a list of desirable features 

for a mobile robot path planning algorithm will be given. A discussion will also be 

presented of the type of data structure that is necessary to support a superior path planning 

algorithm. 

Before reviewing past research into path planning, it is useful to think about the path 

planning problem from the human stand point. In other words, to look at h o w humans 

tackle the task of path planning. Examining the path planning problem from this view 

point could provide an insight into useful strategies and features that a robot path planner 

should possess. These strategies and features should be kept in mind while evaluating 

robot path planning algorithms. 

The remainder of this chapter is organised in the following manner. Section 3.2 

discusses the philosophy of robot navigation used in this thesis. Section 3.3 reviews past 

robot path planning research. Section 3.4 discusses the various data structures that can be 
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used to model a robot's environment to support path planning. Finally in Section 3.5 the 

conclusions that have drawn from the review of mobile robot path planning research are 

presented. In this section the data structure that has been chosen to model the environment 

is described, together with an outline of the features that the new path planning 

algorithms, which have been developed in this research, use to overcome the 

shortcomings of previous approaches. 

3.2 Philosophy of Mobile Robot Navigation 

Before developing navigation algorithms for a mobile robot, it is useful to think about 

how humans perform the task of navigation. Consider a person in an unfamiliar city who 

asks for directions to a particular destination. The reply may be that the destination is a 

certain distance in a certain direction. The person will then proceed to the goal using the 

most direct route. If the person is fortunate the goal is achieved without deviation from 

the planned path. However this is rarely the case, since both stationary and moving 

obstacles will be encountered. Should an obstacle be met during the course of the journey 

to the goal the person classifies the obstacle as either stationary or moving. If the obstacle 

is stationary the person notes the location and features of the obstacle, whilst for moving 

obstacles the person notes only the features of the obstacle. At this point the person 

revises the original plan using the new information. If the obstacle which is blocking the 

person's passage to the goal is stationary, he or she revises the plan to go around the 

obstacle, based on his or her knowledge of the environment. For the case of the moving 

obstacle, assuming the person is patient, he or she will wait until the moving obstacle is 

out of the way. Such a strategy is a safe one, particularly in potentially dangerous 

situations, such as crossing busy streets. If a moving obstacle comes to rest for a 

significant period of time, then it too can be treated as a stationary obstacle. This process 

of planning and executing the plans continues until the person either reaches the goal or 

deduces that the goal is not reachable. A goal is unreachable if it can not be reached from 

any route. For example the goal is unreachable when all the routes have been cut due to 

flooding. 
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Should the person later need to travel to the same goal, then one of three approaches 

can be used. The person can proceed to the goal using the knowledge of the environment 

learnt on previous journeys. This approach will produce better paths than were previously 

executed, and is favoured if the person is in a hurry or is in a conservative mood. With 

the second approach the person can choose to be adventurous and can spend time 

exploring alternative paths to the goal, and in doing so learn more about the environment. 

A third approach can be taken if a significant period of time has transpired since the 

previous journey. In this case the person may have forgotten some information about the 

structure of the environment. The way to navigate to the goal is to follow the strategy of 

navigation in an unknown environment. This means the robot must relearn the 

environment. 

On the other hand, the person could be an inquisitive tourist, and may wish to 

systematically visit all locations of interest in the city. The person will devise a plan which 

will minimise the distance which must be traversed to visit all the locations of interest. 

However it should be noted that most probably this plan will not include a solution based 

on the "travelling salesman" problem. Instead a path is generated which visits all locations 

but in the process performs some backtracking. This path is easy to compute. 

Another observation that can be made about people navigating from one location to 

another is that they do not always select the shortest paths to a goal location. A path 

which minimises the distance to the goal, but also takes into account the discomfort of 

clipping the comers of obstacles, and the cost of venturing into unknown areas may be 

selected. People tend to choose to walk in uncluttered areas, and only come into close 

proximity to obstacles, or venture into the unknown, if necessary. 

Fortunately, humans are approximately cylindrical in shape, so there is no need to 

compute complex paths in crowded situations. However an awkward object such as a 

ladder is being carried from one location to another, what navigation strategy should be 

used? Obviously people do not sit down and compute the best solution path. A path 
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which has maximal clearance from obstacles is likely to be chosen even though this path 

may be longer than the shortest path. Such a path has the advantage of niinimising the 

chances of collision with obstacles when making turns. People only try to squeeze 

through tight comers, only when it is necessary. In such cases a best first strategy is 

used, where the ladder is moved around the comer, starting from a position which has the 

greatest clearance. A s the ladder is moved, a check for potential collisions with the walls 

is continually performed, and the motion path of the ladder is modified accordingly. A 

situation may arise where the ladder gets stuck and another approach must be tried. The 

final solution path is probably not an optimum path; however it is a negotiable path which 

can be found with the minimum mental effort. 

These observations are pertinent to mobile robot navigation. A robot must have the 

capability to operate in an environment about which it possesses incomplete knowledge, 

and the robot must have a mechanism to acquire new knowledge about the environment 

and to add this new information to the knowledge the robot has previously learnt 

It may often be desirable for a robot to follow the shortest path to a goal. However the 

safety of the robot becomes important when there are uncertainties in the environment 

information, such as the exact shape and position of obstacles. Due to the limitations of 

current sensor technology there will often be uncertainty. This problem is compounded 

by the uncertainty in the control of a robot i.e. the precise position of a robot is not 

always known by the robot's control system. Therefore the capability to plan paths with 

consideration of safety of the robot is essential for a mobile robot navigation system. 

The observed human strategy of moving objects such as ladders can assist in path 

planning for non cylindrical robots with 3 degrees of freedom (DOF). This avoids the 

need to search the entire solution space, which is computationally very expensive. Such 

approaches will be discussed in the next section. Only the areas of the environment that 

have the least chance of collision, and thus have the greatest chance of success are 

searched. 
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A robot should have the capability of executing different kinds of path planning 

behaviours, such as adventurous, conservative and safe paths, rather than just the 

shortest path. Exploring new areas is computationally expensive, so the capability to 

decide whether or not this computation should be undertaken is very useful. Similarly a 

robot having the capability of visiting all the locations in an environment has a purpose, 

particularly for floor cleaning or security robots. 

In Chapter 4 of this thesis a new algorithm will be presented which imitates the 

human navigation skill of reaching a goal in an unknown environment. This algorithm is 

based on a single concept which is easily extended to accommodate the path planning 

behaviours discussed earlier in this section. Research work concerning different robot 

path planning behaviours is presented in Chapter 5. In Chapter 7 an algorithm for robot 

path planning with 3 D O F is presented which takes into account the observations made in 

this section. 

3.3 Review of Mobile Robot Navigation Research 

This section outlines several approaches to mobile robot path planning and the 

drawbacks of each approach. The abstract representation of the environment used by each 

path planner is discussed, together with what information is made explicit by each 

environment model and what information is thrown away by the choice of abstract 

representation. The diverse approaches to path planning are classified into four groupings; 

vertex graph, free space, superimposed grid and potential field methods. These are 

presented in Sections 3.3.1 to 3.3.4 respectively. The problem of path planning for 

mobile robots with 3 D O F is treated separately in Section 3.3.5. Finally in Section 3.3.6 

the consideration of robot safety during path planning is discussed. This topic is given a 

separate treatment since all path planners touch on the issue of robot safety in some way. 

Each path planner has its own approach to the problem, ranging from ignoring the issue 

to having a specific mechanism to deal with the matter. This section reviews the 

approaches to robot safety used by the various types of path planners. 
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3.3.1 Vertex Graphs 

In vertex graph path planning [Keirsey 84, Lozano-Perez et. al. 79, Lozano-Perez 83, 

Moravec 80, Thompson 77] the obstacles in the environment map are expanded by the 

radius of the robot and the robot is conceptually shrank to a point. The problem of finding 

a path for the whole robot through the obstacle strewn environment is exactly the same as 

finding a path for a point through the expanded obstacles. Conceptually this method is 

equivalent to placing a string at the initial and goal positions and drawing it taut. A graph 

is constructed by joining the "line of sight" vertices. The graph is searched by a standard 

AI search technique such as breadth first or A * [Dijkstra 59, Hart et. al. 68, Tarjan 81] to 

find the shortest path from the initial position to the goal. Modifications of the A * 

algorithm [Keirsey 84, Thompson 77] are attempts to avoid building parts of the graph by 

heuristic pruning. Refer to Figure 3.1 for an example of vertex graph path planning. In 

this figure the robot shown as a black square, and is assumed to be cylindrical. The 

obstacles in the environment are expanded by the radius of the cylindrical robot. All the 

line of sight vertices are connected. The broken lines indicate the possible paths between 

the start and goal positions. The solid line indicates the solution path. 

Vertex graph methods in their endeavour to find the shortest path through the graph 

clip the comers of obstacles and run down the edges of obstacles. This is called the "too 

close" problem [Thorpe 84]. In practice following such paths may result in collisions with 

obstacles due to the inaccuracies of a mobile robot This problem can be countered by 

expanding the obstacles an extra amount to avoid such collisions. However the penalty 

for this strategy is that possible solution paths are blocked. Another source of error is 

introduced by approximating the robot to be cylindrical, which could exclude potential 

solution paths. 

A problem with vertex graph path planners is that they have no mechanism to handle 

the "too close" problem. Also it is assumed that the shortest path is always the best path. 

In addition vertex graph planners have problems with partially known environments. One 
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way to avoid the problem is to treat the unknown regions as obstacles [Thompson 77]. In 

the solution put forward by [Keirsey 84], the search graph is built as the environment is 

explored. However this method cannot find the shortest path to the goal which includes 

the traversal of unknown regions; instead it can only search for the shortest path from the 

available knowledge of the environment The robot will only venture into unknown areas 

if no solution path exists in its available knowledge. 

Figure 3.1 

Vertex Graph Path Planning. 

3.3.2 Free Space 

Free space path planners deal with the free space available for a robot to navigate in 

rather than dealing with the obstacles to avoid. One approach is to model the free space as 

convex polygons [Chatila 82, Crowley 85], The approach adopted by [Brooks 83] is to 

model the free space as generalised cones. [Kuan et. al. 85] use a hybrid of convex 

polygons and generalised cones called mixed space. A n alternate method is to use 

Voronoi diagrams [O'Rourke 84, Miller 85] or modified Voronoi diagrams [Eari et. al. 

90]. Effectively with all these methods a path is steered down the middle of "corridors" 

of free space. The individual free space areas which are passable to the robot (i.e. wide 

enough) are included in a graph. The graph forms a network of possible paths. This 

graph is searched for the shortest path using the same methods as discussed in Section 

3.3.1. The drawback of free search methods is the strategy of moving down the middle of 

corridors, since this approach may deviate significantly from the shortest solution path. 

This is called the "too far" problem [Thorpe 84]. Refer to Figure 3.2 for an example of 

free space path planning. In this figure the robot is shown as a black square and is 
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assumed to be cylindrical. The obstacles in the environment are expanded by the radius of 

the cylindrical robot. All the free space is decomposed into interconnected regions. The 

broken lines indicate the free space regions. The heavy dotted lines depict possible paths 

between the start and goal positions. The solid line indicates the solution path 

Figure 3.2 

Free Space Path Planning. 

3.3.3 Superimposed Grid 

Grid path planning methods superimpose onto the environment a regular grid [Jarvis 

et. al. 86, Thorpe 84]. Each grid point can be 4 or 8 connected to its neighbours, thus 

forming a graph. Each node or grid cell contains information about whether the node is 

inside or outside an obstacle. The graph is searched for the shortest path using the 

techniques described in Section 3.3.1. Refer to Figure 3.3 for an example of 

superimposed grid path planning. In this figure the robot is shown as a black square and 

is assumed to be cylindrical. The obstacles in the environment are expanded by the radius 

of the cylindrical robot The solid lines indicate the solution path to the goals. 
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4 Connected 8 Connected 

Figure 3.3 

Superimposed Grid Path Planning. 

The superimposed grid approach has its Emitations; for example the solution path can 

suffer the "too close" problem, or it can zigzag, or due to a large grid size not be the true 

shortest path [Jarvis et. al. 86]. The path planner described by [Thorpe 84] remedies 

some of the drawbacks of the superimposed grid, by the use of cost functions, whose 

values depend on how close the node is to obstacles. This avoids the "too close" problem 

and the approach uses a concept called "path relaxation" which is applied to the solution 

path. It has the effect of easing the zigzags and gives a better approximation of the true 

shortest path. In generating solution paths, this path planner takes into account the cost of 

exploring unmapped regions. 

A novel approach to path planning for mobile robots using distance transforms was 

first presented by [Jarvis et. al. 86]. This approach considers the task of path planning to 

be finding paths from the goal location back to the start location. This path planner 

procedure propagates distances through free space grid cells from the goal cell (cells are 

assumed to be 8 connected). The distance wave front flows around obstacles and 

eventually through all free space in the environment. For any starting point within the 

environment representing the initial position of the mobile robot, the shortest path to the 

goal is traced by walking down hill via the steepest descent path. If there is no downhill 

path, and the start cell is on a plateau then it can be concluded that there is no path from 
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the start cell to the goal cell i.e. the goal is unreachable. Initially all the cells are initialised 

to high values. Refer to Figure 3.4 for an example of the distance transform. 
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Figure 3.4 

Distance Transform Path Planning. 

Despite the high computational overhead, distance transform path planning offers 

several advantages.These include the fact that the shortest path to the goal is known from 

all free space grid cells, thus supporting multiple robots. The distance transform also 

readily supports multiple goals (refer to Figure 3.5). In this case a robot heads towards its 

nearest goal, similar to a fire evacuation drill where people evacuate a building via the 

closest fire exit. 

Figure 3.5 

Distance Transform Path Planning with multiple goals. 

Another significant advantage that distance transform path planning has over other path 

planning methods is that it can easily be induced to exhibit different types of robot 

navigation behaviours. [Jarvis et. al. 86, 88] described how the distance transform could 

be modified to produce "conservative", "adventurous" and "visit all" path planning 
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behaviours in addition to the "optimum" i.e. shortest path behaviour. [Jarvis et. al. 86] 

used a "factor" function to give a weight to the distance transform depending on whether 

the grid cell type was known or unknown. If an "optimum" path planning behaviour is 

required then the same factor is used for both known and unknown cells. Thus neither 

type of grid cell is favoured, and the distance transform calculates the shortest path to the 

goal irrespective of whether the path traverses known or unknown regions. Refer to 

Figure 3.6 for an example of "optimum" distance transform path planning behaviour. In 

this example the environment consists of three types of grid cells; blocked (shown in 

black), known free space (shown in white) and unknown free space (shown in grey). The 

optimum path planning behaviour selects the shortest path from the start (S) to the goal 

(G) via the free space grid cells without favouring either the known or unknown grid 

cells. 

Figure 3.6 

Distance Transform Optimal Path Planning. 

If adventurous behaviour is required then the factor in known cells is doubled, thus 

causing the robot to favour unknown regions i.e travel in regions which have not 

previously been visited. Refer to Figure 3.7 for an example of adventurous distance 

transform path planning behaviour. This example uses the same environment shown in 

Figure 3.6. The adventurous path planning behaviour selects the shortest path from the 

start (S) to the goal (G) via the free space grid cells and favours unknown grid cells. 
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Figure 3.7 

Distance Transform Adventurous Path Planning. 

If on the other hand a conservative behaviour is sought, which causes the robot to 

favour known cells i.e. travel in regions which are known, then the factor in unknown 

cells is doubled. Refer to Figure 3.8 for an example of conservative distance transform 

path planning behaviour. This example uses the same environment shown in Figure 3.6. 

The conservative path planning behaviour selects the shortest path from the start (S) to the 

goal (G) via the free .space grid cells and favours known grid cells. 

Figure 3.8 

Distance Transform Conservative Path Planning. 

The experimental results of the "visit all" path planning behaviour were reported in 

[Jarvis et. al. 88], however the algorithm for the behaviour was not published. A n 

algorithm similar to the following was probably used. To achieve the "visit all" path 

planning behaviour, instead of descending along the path of steepest descent to the goal, 
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the robot follows the path of steepest ascent. In other words the robot moves away from 

the goal keeping track of the cells it has visited. The robot only moves into a grid cell 

which is closer to the goal if it has visited all the neighbouring cells which lie further away 

from the goal. Refer to Figure 3.9 for an example of the "visit all" path planning 

behaviour. Figure 3.9 (A) shows an environment with one obstacle, start (S) and goal 

(G) locations and values of the distance transform. Figure 3.9 (B) shows the "visit all" 

path from S to G. 
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Distance Transform Visit All Path Planning. 
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While the [Jarvis et. al. 88] strategy does not guarantee the "visit all" path will be an 

optimum path i.e. the shortest possible and not unnecessarily visiting any cell more than 

once, the "visit all" produces a reasonable path with minimal secondary visits to grid 

cells. 

The [Jarvis et. al. 86] distance transform has a problem with not being able to 

uniquely specify the shortest path This is caused by considering diagonal neighbours to 

have the same cost as vertical and horizontal neighbours. However this problem can be 

overcome by considering the diagonal path to have the correct euclidean distance of V2. It 

has been shown by [Borgefors 84] that the euclidean distances for distance transforms 

can be accurately estimated as 3 units for horizontal paths and 4 units for vertical paths, as 

shown in Figure 3.10. Figure 3.10 (A) shows ambiguous optimum paths and Figure 

3.10 (B) shows unambiguous optimum paths. 
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The ambiguity of optimum paths. 
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All superimposed grid path planning methods suffer from the problem that a grid is 

inefficient in memory when an environment is largely empty space and contains only a 

few obstacles. 

3.3.4 Potential Field 

Potential field path planning [Adams et. al. 90, Arkin 89, Khatib 86, Krogh 84] is a 

method of navigating a robot through an unmapped environment to a goal. This approach 

attempts to design a real-time path generator which bypasses the computational 

complexities of other path planning methods. The potential field path planners do not 

model the environment nor do they build graphs to be searched. Since the environment is 

not searched globally the solution path is not necessarily the shortest path. 

The potential field strategy of navigation is based upon the premise that each obstacle 

in the environment exerts a repulsion which varies inversely with distance between the 

robot and the obstacle, and becomes mfinite as the robot approaches the obstacle. This 

force of repulsion depends not only on the position but also the velocity of the robot with 

respect to the obstacle. The goal however, exerts an attraction upon the robot. The 

strength and direction of the obstacles and the goal are represented by "avoidance" and 

"attraction" vectors. The sum of these vectors creates an acceleration vector for the robot 

to follow. This approach has the advantage that it takes into account the dynamics of the 

mobile robot when it is generating the solution path [Khatib 86, Krogh 84]. Other 

approaches ignore the dynamics of the system [Arkin 89], and the potential field is 

regarded as a cost function. The problem then converts into finding the direction of 

steepest descent of the potential field i.e. the direction to follow to reach the goal. Refer 

to Figure 3.11 to for an example of potential field path planning. In this example a robot 

is located at the location marked X, near two obstacles, trying to reach the goal located at 

G. The potential field path planner yields the vector C as the direction and magnitude of 

the robot's acceleration. The dotted path shows the robot's path to the goal. 
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Cg : Attraction Vector. 
Co,i ; 0,2 : Obstacles in the path Vectors. 
Co : S u m of Obstacle Avoidance Vectors. 
C : S u m of Attraction and Avoidance vectors, gives 

the direction of acceleration to the goal. 

Figure 3.11 

Potential Fields Path Planning. 

The major problem with potential field path planners is that they are subject to local 

minima. Since the planner tends to guide the robot toward lower potential areas, the robot 

can reach a state of equilibrium, or a potential basin, and becomes trapped. Potential field 

path planners have problems handling dead end situations, concave obstacles and closely 

grouped obstacles. A solution to this problem, put forward by [Arkin 89], is to execute a 

random robot motion, in the hope that the robot will escape the potential minima. [Adams 

et. al. 90] suggests that the goal should be temporarily relocated, when a local minima is 

detected, and a new potential field to the relocated goal is calculated which may escape the 

minima. Both the [Adams et. al. 90, Arkin 89] approaches are ad. hoc. and neither can 

guarantee that the robot will not remain caught in the local minima. 

[Khosla et.al. 88] constructed a potential field based on superquadrics to counter the 

problem of local minima. Using this approach the potential field is less susceptible to local 

minima, however the problem is not completely eliminated. Constructing potential field 

without local minima was first reported by [Rimon et.al. 88]. The computation effort 

required to construct the potential field for the [Khosla et.al. 88, Rimon et.aL 88] 

approaches can be enormous. Neither of these approaches can easily deal with the 

obstacles or the goal position being moved, since this requires the recalculation of the 
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potential function. Another drawback is that the potential functions can only be calculated 

for obstacles with simple geometric shapes. 

Given the local minima problem of potential field, there have been several attempts 

[Krogh et.al. 86, Warren 89] to use the best features of both graph search and potential 

field. These approaches used the graph search solutions for global planning and potential 

field for local planning. The problem of local minima is not eliminated, but these path 

planners are less susceptible to local minima than other potential field methods. One 

drawback of these methods is that the global work space must be known at the time of 

planning, unlike potential field planners of the past which require no global knowledge. 

Another form of path planning which does not require an environment model is 

heuristic navigation. Heuristic navigation [Cahn et. al. 75, Chattergy 85] guides the robot 

to the goal by using strategies or rules to decide, based on local sensor information, 

which path of those available is "best". C o m m o n heuristic strategies are: minimise the 

estimated path to the goal or minimise the deviation angle from the path or a linear 

combination of the previous two strategies. A n additional guard can be added to the 

heuristic to stop the robot from back tracking along the solution path. Heuristic path 

planners can solve a wide variety of path planning problems, but a problem can always be 

found where a particular heuristic strategy fails [Cahn et. al. 75]. Heuristic path planners 

like potential field path planners tend to get caught in dead ends. 

3.3.5 Path Planning with 3 Degrees of Freedom (3 DOF) 

Many path planners do not address the problem that path planning may require 

rotation as well as translation to negotiate a path to the goal. This problem is called the 

"piano movers" problem [Schwartz et. al. 83]. Refer to Figure 3.12 for an example of 

path planning with both translation and rotation. 
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Figure 3.12 

Path planning with translation and rotation. 

Most path planners ignore the problem of rotation by approximating the robot to be 

cylindrical. The penalty for this practice is that it excludes potential solution paths, as 

shown in Figure 3.13. In this example the path between the rectangular shaped robot, 

and the goal is shown with the heavy line. The obstacles in the environment are drawn as 

blocks with dark shading. The obstacles which have been expanded by the radius of the 

cylinder approximating the robot are lightly shaded. The path between the obstacles has 

been excluded. In the worst case if there exist only solution paths which require rotation, 

then no solution to the problem will be found. 

Goal 

Figure 3.13 

Excluding potential solution paths. 
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Solutions to this problem have been put forward by [Brooks et. al. 85, Donald 87, 

Ilari et. al. 90, Jarvis 83, Lozano-Perez 83, Noborio et. al. 89, Schwartz et. al. 83]. 

These past approaches can be broadly classified into three groupings; global, local and 

hybrid methods. 

The global approach [Brooks et. al. 85, Jarvis 83, Lozano-Perez 83, Schwartz et. al. 

83] constructs a visibility graph representing all the collision free path configurations of 

the mobile robot, and then searches this graph for a solution path. Figure 3.14 shows a 

solution to the problem posed in Figure 3.13. In the case of a 3 D O F robot this graph is a 

3 dimensional graph. In practice this 3 dimensional graph is very large in size, since each 

graph is made up of a collection of 2 dimensional graphs (slices) stacked on top of each 

other. Each slice represents the visibility graph for the collision free paths for the robot in 

a particular orientation. It is obvious that such path planners have the drawback of being 

extremely expensive computationally, and thus are not practical for real mobile robot 

applications. 

The local approach [Donald 87] does not construct a graph representation of all the 

collision free configurations of the mobile robot Rather this approach places a grid over 

the configuration space. The grid is searched for a solution path using heuristics to guide 

the search. The search heuristics are generated from the information about the geometry 

of the local robot configuration space. A heuristic guided search does not require any 

preprocessing, and therefore runs much faster than global planning methods. However as 

stated previously heuristic path planners are susceptible to failure. 
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Figure 3.14. 

Path planning for a rectangular shaped robot with 3 DOF. 

The hybrid approach is a compromise between global and local approaches [Ilari et. 

al. 90, Noborio et. al. 89]. Both these approaches compute a coarse path for the robot 

which is likely to yield a 3 D O F path. This coarse path is then searched for a fine path 

using a set of heuristics. 

The [Hari et. al. 90] approach assumes that the collision free paths for a mobile robot 

with 3 D O F are likely to lie in the middle of free space between obstacles. Initially the 

environment model is preprocessed to find all the global paths which exist To this 

network of global paths the start and goal locations are added. Refer to Figure 3.15 for an 

example of the Pari et. al. 90] path planner. In this figure the dark line shows the global 

path which lies in the middle of the free space between obstacles. The robot follows this 

global path and continually checks using local information what orientations of the robot 

are collision free. 

The [Noborio et. al. 89] approach uses a quadtree as the model of the environment 

The quadtree is searched for a-codpse path of free space quadrants which the minimum course 

width of the robot can negotiate. This coarse path is then searched for a fine path using 

heuristics. Since the [Noborio et. al. 89] path planning technique is based on heuristic 

search it can fail, although the probability of this occurring is lower than for other 

heuristic path planning methods. Refer to Figure 3.16 for an example of this path planner. 
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In this figure the dark line shows a global path which passes through quadrants of free 

space. The robot follows this global path and continually checks what orientations of the 

robot are collision free using local information. 

Figure 3.15 

Ilari et. al. 3 DOF path planner. 

Like vertex graph planners, 3 D O F path planners [Brooks et. al. 85, Lozano-Perez 

83, Schwartz et. al. 83] assume that the shortest path is the "best" path, and hence suffer 

the "too close" problem. Not one of these path planners takes information about clearance 

from obstacles into account during path generation. The [Ilari et. al. 90] approach can 

select solution paths which maximise the clearance of the path from obstacles while 

simultaneously minimising the length of the path to the goal. However since this approach 

is based on selecting paths through the middle of free space, this path planner suffers 

from the "too far" problem. The [Noborio et. al. 89] path planner does not take clearance 

from obstacles into account. The planner searches for a negotiable path for the minimum 

width of the robot while at the same time minimising the path length to the goal. This 

results in the planner selecting a path only through the free space quadrants that can 

accommodate the minimum width of the robot. The effect of this strategy is that the 

[Noborio et. al. 89] path planner will avoid the smaller sized free space quadrants which 

are generally located in close proximity to the boundaries of obstacles. Therefore the 
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likelihood of this path planner suffering the "too close" problem is reduced. However it 

cannot be guaranteed that the [Noborio et. al. 89] path planner will not suffer the "too 

close" problem. The structure of the quadtree environment model will determine whether 

the "too close" problem will occur. 

Start 

*—»*^r 

/Vfinal 

Figure 3.16 

Noborioef. al. 3 DOF path planner. 

3.3.6 Path Planning with Consideration of Robot Safety 

It is obvious from the review of past research into mobile robot path planning 

discussed in earlier sections that much of the research, with the exception of path planning 

using potential field, has concentrated on rrnnimising the travelling distance between the 

start and goal locations. The shortest path between the start and goal locations may reduce 

the robot's travelling time and the computational complexity of the path planning. 

However, the safety of the robot should not be ignored. The safety of the robot becomes 

important particularly when there are uncertainties in the environment information, such as 

the exact shape and position of obstacles. This problem is compounded by the uncertainty 
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in the dynamic control of a robot i.e. the precise position of the robot is not always known 

by the robot's control system. Thus both minimum distance to a goal and safety of the 

robot need to be considered simultaneously during path planning. 

This problem is illustrated by the following example. Consider a large open space 

environment such as an indoor sports hall, with a table placed in the middle. A mobile 

robot's navigation task is to travel from one comer of the hall to the corner which is 

diagonally opposite. This navigation task requires the avoidance of the desk in the middle 

of the hall. The solution paths to this path planning problem generated by the path 

planning methods discussed in earlier sections, can generally be broken down into three 

classes; "too close", "too far" and "safe" paths. The three classes of solution path to the 

problem of navigating in an indoor sports hall are shown in Figure 3.17. 

Figure 3.17 

Three solution classes to the problem of finding a path between a start (S) and a goal (G). 

Path planners which generate path trajectories which are "too close" to obstacles m a y 

cause collision with obstacles due to the inaccuracies of a practical mobile robot. A s 
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discussed in Section 3.3.1 this problem can be countered by expanding the obstacles by 

an extra amount to avoid such collisions. This has the effect of adding a safety criteria to 

the planned motion path. However the penalty for this strategy is that possible solution 

paths are blocked. 

The "too far" class of path planners generate path trajectories which minimise the 

chance of collision with obstacles. The "too far" path trajectories have the maximum 

safety from obstacles in the environment. However the penalty for this strategy is that the 

"too far" path planners can produce unnecessarily long paths. There is no mechanism that 

allows the control of the degree of safety from obstacles. 

The "too close" and "too far" path planning approaches do not take clearance 

information into account. Both approaches consider the shortest path as best while there 

may be a safer path with more clearance. Such information is important for a practical 

mobile robot which could better spend its time and energy looking at alternative paths 

rather than trying to do calculations for the precise motion necessary to pass through a 

narrow corridor. 

The potential field class of path planners generate "safe" paths which do take into 

account robot safety. However as stated earlier, since no global search is undertaken the 

generated solution path is not necessarily an optimum path. Also potential field path 

planners have the problem of local minima in the potential field. A s yet there have not 

been developed any effective mechanisms for handling local minima. For these reasons 

path planning using potential field should be rejected as a viable approach to path planning 

with robot safety criteria. 

Path planning with consideration for robot safety has been reported by [Kambhampati 

et. al. 86, Suh et. al. 88, Thorpe 84]. [Thorpe 84] used a grid based approach called "path 

relaxation" to find the "best" path from the start to the goal. This method is based upon 

extending the A * algorithm to include three criteria, the cost of the distance from the goal, 

the cost of nearby objects, and the cost of operating near or in an unmapped environment 
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The cost of nearby objects was calculated by searching the grid space for obstacle nodes, 

calculating a repulsion cost for each obstacle, and finally summing the costs of all the 

repulsion costs of the nearby objects. This is a heavy computational burden. 

A similar approach to [Thorpe 84] was presented by [Kambhampati et. al. 86] using a 

quadtree projected onto the environment instead of a grid. The quadtree is searched using 

the A * algorithm for the "best" path from the start to the goal. The cost of the path at 

each quadtree node consisted of two criteria: the cost of the distance from the goal and the 

cost of nearby objects. The cost of near objects was computed prior to path planning, 

using a variant of the [Samet 88] distance transform for quadtrees, which is of 

complexity O(n), where n the number of leaf nodes in the quadtree. While this is an 

improvement on the [Thorpe 84] approach, since a search at a node for nearby obstacles 

is not required, the [Kambhampati et. al. 86] algorithm can not handle unknown 

environments. Unlike the [Thorpe 84] path planner the [Kambhampati et. al. 86] path 

planner does not produce a trajectory path which a robot can readily execute. It generates 

only a coarse path which consists of a chain of free space quadrants which join the start 

to the goal. For this planning method to be of any use for a practical robot this chain of 

free space quadrants must be searched for a fine motion path. 

[Suh et. al. 88] presented a method based on variational calculus, in which the cost for 

robot safety is considered explicitly in path planning. This approach is based upon 

decomposing the environment into free space channels, and finding the centre line of these 

channels, in other words the "too far" paths. [Suh et. al. 88] defined the cost of a path P 

as the sum of costs for its length and its safety. The safety component of the cost is a 

function of the integration of the distance between a point on the path P and the "too far" 

path. However this algorithm, like all free space path planning methods, does not give 

any solution if the environment is not delimited by boundaries and can be decomposed 

into free space channels. 
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3.4 Data Structures 

The data structures that have been used in path planning research can be broadly 

classified into two groupings; "adaptive" models and "rigid" models. Adaptive models are 

high level descriptions, and the structure of these models is dependent upon the nature 

and clutter of the environment. Typically such models represent the environment as a 

network of free space regions [Chatila 82, Chatila et. al. 85, Crowley 85, Iyengar et. al. 

86, Rao et. al. 86] or as a graph of obstacle vertices [Moravec 80, Thompson 77]. The 

adaptive model environment mapping methods offer elegant solutions; however these 

methods require accurate sensor information and are therefore difficult to implement in 

practice. 

O n the other hand rigid models impose a structure, typically a grid, onto the 

environment without any regard to the nature and clutter of the environment [Elfes 87, 

Jarvis et. al. 86, Thorpe 84] and so the implementation of such environment mapping 

methods is easier than adaptive models. The disadvantage of the rigid model approach is 

the inefficiency in memory usage to represent large areas of free space. 

The quadtree data structure [Samet 88] is a good compromise between adaptive 

models and rigid models. Since quadtrees use a hierarchical structure, they have the 

advantage of having a grid like structure, but they are also adaptive to the clutter of the 

environment. Refer to Figure 3.18 for an example of a quadtree environment model. In 

this figure the nodes of the tree are labelled numerically, starting from the South Western 

comer in a clockwise direction. Obstacles are shaded areas, while free spaces are white 

space. 

Both [Kambhampati et. al. 86] and [Samet 88] comment on the savings in memory 

resulting from the use of a quadtree representation compared to a grid based 

representation. [Kambhampati et. al. 86] shows that the number of leaf nodes in a 

quadtree is proportional to the sum of the perimeters of the obstacles in the environment. 
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[Samet 88] reports that if the resolution of a quadtree is doubled, then the number of 

nodes in the quadtree will double, while with grids, doubling the resolution quadruples 

the grid size. Mobile robot path planning using quadtrees has been reported by 

[Kambhampati et. al. 86, Noborio et. al. 88]. Both of these approaches find paths only in 

known environments. 
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Figure 3.18 

A two dimensional environment and its corresponding quadtree. 

The quadtree data structure is implemented in the following manner. Each node of the 

quadtree has storage for the pointers to the node's parent and its four children. Storage is 

also provided for the node classification; free, obstacle or grey (neither free nor obstacle). 

Storage within the leaf node is provided for the path cost which is generated during path 

planning. Refer to Figure 3.19 for a diagram of the node structure. 
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Node Classification Path Cost Value 

Parent Node A 

SW 
Child A 

NW 
Child * 

N E 
Child * 

SE 
Child * 

Figure 3.19 

The structure of a quadtree node. 

3.5 Conclusions 

Section 3.2 of this chapter discussed the desirable features of a robot path planner 

from a human stand point. In Section 3.3 a extensive review of past research into path 

planning was undertaken. In that section the shortcomings and the benefits of each path 

planning method were discussed. This section links the conclusions that were reached in 

earlier sections with the research goals of this thesis to form a list of research questions 

which require investigation. 

To support the research goals stated in Chapter 1 distance transforms were chosen as 

the methodology to be investigated for path planning. Unlike other path planning 

methods, distance transforms support the concept of path planning behaviours. However 

the main drawbacks of using distance transforms with the grid data structure, are the 

inefficiency of grids when the environment is largely free space, and the zigzag nature of 

the solution paths. Also, there are no memory savings using grids when a mobile robot is 

operating in an unknown environment whose structure must be mapped, because the 

robot must model all the space in the environment whether it is known or unknown. In 

such situations, an adaptive model of the environment, such as vertex graph or free space 

methods would be more appropriate. To build an adaptive model using the noisy sonar 

data extracted in Chapter 2 is a complicated task. It is therefore proposed to investigate 

quadtrees as the compromise data structure to model the environment. 
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Quadtrees were explored for the following reasons. Firstly they can be a more 

efficient data structure than rigid models such as grids. Secondly quadtrees are a much 

more effective data structure to support the inclusion of noisy sonar data than adaptive 

models. Thirdly past research into path planning with quadtrees has assumed that the 

environments are known. However quadtrees could offer a way of supporting path 

planning in unknown and partially known environments, due to the recursive nature of 

this data structure. The recursive nature of the quadtree seems to support the strategy 

humans use to navigate to a goal in an unknown environment. Chapter 4 investigates path 

planning in unknown and partially known environments using the quadtree data structure 

and distance transforms. That chapter also explores how noisy sonar data can be 

incorporated into the quadtree model as the robot learns the environment en route to the 

goal. 

One problem that must be overcome using distance transforms for path planning with 

quadtrees is that the distance transform will only yield a cej&se- path of free space cocvnse 

quadrants joining the start and goal positions, thus producing similar results to the 

[Kambhampati et. al. 86] algorithm. The problem of extracting a fine robot motion path 

from a coarse solution path necessitates further investigation. The potential spin off from 

solving this problem is that the zigzag path problem in grids can be overcome. Fine paths 

in quadtrees will have less points in the path, longer straight sections and less zigzags. In 

Chapter 4 this problem is scrutinised and a solution proposed. 

Applying the distance transform to quadtrees is a much more expensive approach to 

path planning than the [Kambhampati et. al. 86, Noborio et. al. 88] approaches. This is 

because the distance transform generates paths from every location to the nearest goal, 

while the [Kambhampati et. al. 86, Noborio et. al. 88] approaches search only for the 

shortest path to a goal. This disadvantage is offset by the fact that distance transforms 

support path planning behaviours of the type described in Section 3.2, multiple robots 
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and multiple goals. Chapter 5 investigates how the path planning behaviours can be 

implemented with quadtrees. 

A drawback of using distance transforms for path planning is that they suffer from the 

"too close" problem since they do not take obstacle clearance information into account 

Chapter 5 shows how the distance transform can be extended to take obstacle clearance 

information into account This extension can be regarded as the construction of a potential 

field function between the start and goal locations which contains no local minima. This 

extension takes care of the "too close" and "too far" problems which hampers other path 

planners. 

Applying the distance transform to quadtrees in certain situations e.g large areas of 

free space, can significantly improve the storage efficiency and the execution time of the 

distance transform, compared to the use of grids as reported by [Jarvis et. al. 86]. 

However it is unclear in exactly which situations the quadtrees will out perform grids. In 

robot environments which are of low resolution i.e. contain a small number of cells, the 

grid will out perform the quadtree, due to the memory overheads of storing the 

hierarchical data structure. In Chapter 6 a comparative study of distance transforms using 

grids and quadtrees is presented. This study determines when it is best to use quadtrees 

instead of grids. The study determines the resolution size which is most economical to 

represent the environment with quadtrees, and which obstacle shapes, what obstacle 

sizes, and what degree of obstacle clutter, make the quadtree a more efficient data 

structure. 

As discussed in Section 3.3.5, existing 3 DOF path planning algorithms have heavy 

computational burdens because of the high cost of building and searching a 3 dimensional 

graph. In Chapter 7, a new 3 D O F path planning algorithm is presented which only 

constructs and searches two slices of the 3 dimensional graph. This new algorithm is 

based upon further extensions to distance transforms. 
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The key idea of this algorithm is to calculate a distance transform between the start 

and goal configurations taking into account obstacle clearance information. By taking this 

information into account the steepest descent path through the distance transform provides 

a coarse path for the robot to follow. Searching the coarse path for a solution path gives 

the robot a higher chance of finding a 3 D O F fine path. A solution path is most likely not 

to lie in close proximity to obstacles. Existing 3 D O F path planners waste valuable time 

searching for paths in close proximity to obstacles, and as a result suffer the "too close" 

problem. The [Ilari et. al. 90] approach solved this problem, but it suffers from the "too 

far" problem. The "too close" and "too far" problems are taken care of by the new 3 D O F 

algorithm. 

The new algorithm treats the values of the distance transform as guiding heuristics. 

However this algorithm is guaranteed to find a solution if one exists, unlike other 

heuristic based 3 D O F path planners. Since this algorithm has a heuristic nature it does 

not have the computational burden which is associated with other 3 D O F path planners. 
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Chapter 4 
Path Planning 

4.1 Introduction 

Exploring an environment with a mobile robot can be accomplished in one of two 

ways; either by operating in "mapping" or "learning" modes. W h e n a robot is operating in 

"mapping" mode [Crowley 85, Lumelsky et. al. 89, Moravec 80], it traverses the entire 

environment in a systematic manner, while scanning with on board sensors and updating 

a map. The map is then used for all subsequent path planning exercises. Difficulties arise 

with this method if the environment is allowed to alter after the mapping has been 

completed. The other mode of learning is to sense the environment, while executing paths 

which have been generated by a path planner. A s obstacles are encountered en route to a 

goal, the model of the environment is updated and a new path to the goal is planned to 

avoid the obstacles [Iyengar et. al. 86, Rao et. al. 86]. 

This chapter describes a new environment exploration algorithm (referred to as "EEA" 

for short) which is based on the "learning" mode of environment exploration. This 

algorithm was implemented as part of the research for this thesis. The E E A is not 

restricted to the recognition of line of sight distances to obstacles, and it can be used with 

current generation sensing technology. The E E A can be induced to exhibit the "mapping" 

or "visit all" path planning behaviour. This feature is discussed in Chapter 5. 

Unlike most other path planners the EEA does not expand all the objects in the 

environment by the robot's radius. Therefore it is the responsibility of the path execution 

procedure to ensure that the robot does not collide with any obstacles. This is achieved by 

making sure the robot stays entirely within the boundaries of the free space quadrant 

which the robot is traversing. Conceptually this is equivalent to shrinking the robot to a 

point, and shrinking the boundaries of the quadrant by the robot radius. The quadrants in 

the quadtree of the lowest resolution are of sufficient size to fully accommodate the mobile 
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robot. This strategy has the penalty of excluding possible solution paths. Since paths are 

generated through free space nodes of a quadtree which have been reduced, only paths in 

the horizontal and vertical directions can be considered. Considering paths that pass over 

the shared comer of adjacent free space quadrants could cause a collision. Diagonal comer 

paths tend to clip obstacles [Kambhampati et. al. 86]. Thus the restriction to horizontal 

and vertical paths will result in safer robot paths. However the penalty to the E E A for this 

approach is that paths are no longer distance optimum [Kambhampati et. al. 86]. 

The EEA assumes that the robot accurately knows its own current world coordinates 

at all times, as well as the coordinates of the goal. The robot has no knowledge about the 

location and shape of obstacles. N o constraints are imposed upon the shape or location of 

the obstacles. 

The remainder of this chapter is organised in the following manner. Section 4.2 

provides an overview of the design E E A . This section describes h o w the E E A 

decomposes into a set of modules, each module has a specific task. Sections 4.3 - 4.8 in 

this chapter explain the workings of each module of the EEA. The E E A algorithm is based 

on the use of distance transforms.Section 4.3 describes an efficient algorithm to generate 

distance transforms for quadtrees. The distance transform yields only a coarse solution 

path, which consists of a chain of free space quadrants between the start and goal 

positions. Section 4.4 presents a procedure to extract the coarse solution path, and shows 

how the shortest path through the free space quadrants can be extracted from the coarse 

solution path. Section 4.5 describes a procedure for the inclusion of fresh sensor data into 

the quadtree model. Section 4.6 describes a mechanism to speed up the generation of the 

distance transform. Examples of a robot navigation system using the E E A are presented in 

Section 4.7. These results were obtained using a simulation program developed on a 

Macintosh II microcomputer. Section 4.8 presents the experimental results using the 

sonar range data collected in Chapter 2. Finally Section 4.9 presents the conclusions that 

were reached and the insights that were gained from investigating the problem of 

environment exploration. 
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4.2 Environment Exploration Algorithm 

Upon initialisation the E E A requires two pieces of information; the notional size m x 

n of the environment to be learnt, and a position reference (x,y) of the cylindrical robot 

to some reference point A quadtree Q of sufficient size is generated to cover the area in 

which the robot will operate. The smallest quadtree leaf resolution size is of diameter d, a 

size which allows the robot to pass through. The size of quadtree Q - (2d)1, where i is an 

integer such that (2d)1 > s and s = max (m, n). 

The EEA is composed of a number of processes. Figure 4.1 shows the architecture 

of the processes which constitute the EEA. The main process in the E E A is the Navigation 

process. This process is responsible for three subprocesses; Path Planning, Path 

Execution and Model Update. 

Navigate 

Model Update 

Optimise Move Divide Consolidate 

Figure 4.1 

Process Architecture of the EEA. 

The Path Planning process, when supplied a goal location applies the distance 

transform to the quadtree model of the environment, and produces all the possible 

solution paths from any location in the environment to the goal. The exact workings of 

this process are explained in Section 4.3. 

The Path Execution process locates the start location in the quadtree, and then traces a 

coarse least cost path through the free space quadrants to the goal. The subprocess 
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Optimise is used to find the shortest path through the coarse solution path. Once the 

shortest path to the goal has been planned, the robot executes this path. The Move process 

controls the motion of the robot and the sensors on board the robot Sensing the 

environment is the responsibility of the Path Execution process and is done within the 

Move process. The EEA is an algorithm which only senses for obstacles which obstruct 

the robot's path to a goal. The Path Execute process is described in detail in Section 4.4. 

The Model Update process is invoked when the Path Execute process detects an 

obstacle which is not present in the quadtree model of the environment. The Divide 

process has the responsibility of recursively subdividing the quadtree until leaves are 

obtained which span regions that are entirely free space or obstacle filled. The fresh 

sensor data is incorporated into the quadtree. The Consolidate module is responsible for 

merging the leaves which are of the same node classification and share a common parent. 

The workings of the Model Update process .are explained in Section 4.5. 

Algorithm 4.1 shows how the three main processes which constitute the Navigation 

process fit together and interact 

procedure NAVIGATION( Q, start, goal ) 
repeat 

cost = 0 
perform PATH_PLANNING( Q, goal, cost ) 
if ( goal reachable ) then 

perform PATH_EXECUTE( Q, start, goal, stop, sensors ) 
if ( stop * goal ) then 

perform MODEL_UPDATE( Q, start, stop, sensors ) 
start = stop 

end if 
end if 

until ( stop = goal or goal not reachable ) 
end procedure 

Algorithm 4.1 

Component Processes of the EEA. 

Given the cartesian coordinates of the start and goal locations, the best path planning 

strategy in an unknown environment is to optimistically assume that the unknown regions 

of the environment are free space. The confidence in this assumption is low. The 

NAVIGATION process invokes the PATH_PLANNING process, which plans a straight 
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line path to the goal and calculates the distance transform cost between the start and goal 

locations. 

If the path cost returned by the path planner is finite, then a solution path exists 

between the start and goal locations; otherwise the goal is unreachable. If the goal is 

reachable, the path generated by the planning process is passed onto the 

P A T H _ E X E C U T E process, which ensures the planned path is executed by the robot. 

Since the environment is unknown, the robot proceeds cautiously towards the goal. 

One of two conditions will occur, either the robot reaches the goal or it encounters an 

obstacle. If the goal is attained the P A T H _ E X E C U T E process reports a success to the 

N A V I G A T I O N procedure. In the case of an obstacle blocking the robot's path, the 

P A T H J E X E C U T E process returns the location of the robot and the robot's sensor 

readings at this location, to the N A V I G A T I O N process. 

The NAVIGATION process invokes the MODELJJPDATE process, which given the 

robot's location and sensor readings updates the environment model Q i.e. the quadtree 

structure. Upon completion of the updating of the environment model, the 

P A T H _ P L A N N I N G process is invoked again. 

Essentially the PATH_PLANNING process locates the leaves of the quadtree where 

the current location and goal are found and then applies the distance transform to generate 

a solution path, or deduces that no solution path exists. The revised plan is then attempted 

by the robot This cycle of plan - execute - update continues until the robot successfully 

reaches the goal, or the N A V I G A T I O N process deduces that the goal is unreachable. 

4.3 Path Planning using Distance Transforms 

When the distance transform is applied to the quadtree structure, distances are 

propagated through the quadtree from the goal quadrant leaf to the neighbouring quadrant 

leaves, which in turn propagate the distance transform to their neighbouring leaves. This 

process is continued until the distance transform flows through the the whole quadtree. 
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The distance transform is measured in multiples of the minimum sized quadrant Except in 

the case of the quadrant leaf containing the goal, the distance transform is calculated as the 

straight line distance from the goal location to the nearest edge of neighbouring leaves 

(note: the goal can be located anywhere within the goal quadrant). This measure identifies 

the neighbouring quadrants which are closest to the goal. Refer to Figure 4.2 for a result 

of applying this algorithm. Once the distance transform has been computed, the shortest 

path to closest goal is known for every quadrant of free space. Note: The distance 

transform values stored in all the quadrants are initialised to °° (in practice this is the 

largest available integer) before the path planner is invoked. 
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Figure 4.2 

The distance transform applied to a quadtree. 

In this research the first algorithm which was developed computed the distance 

transform based on the concept described in the previous paragraph i.e. one of radiating 

the paths from the goal. The algorithm is given in the procedure P A T H _ P L A N N I N G 

shown in Algorithm 4.2. In this algorithm the procedure G E T _ N E I G H B O U R S finds the 

neighbouring leaves to the current leaf in a given direction, and returns a list of 

neighbours. If more than one neighbour exists then they are accessed in E A S T - W E S T or 

N O R T H - S O U T H order, using the N E X T . N E I G H B O U R function. 
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G E T _ N E I G H B O U R S is based on Samet's neighbour finding algorithm [Samet 82]. The 

function E X T R A C T retrieves the distance transform value of a quadrant leaf from the 

quadtree data structure. The S T O R E function records a new distance transform value for a 

quadtree leaf in the quadtree data structure. The function SIZE returns the size of a 

quadtree node. The returned size is a multiple of the size of the smallest allowable 

quadrant in the quadtree. 

procedure PATH_PLANNING( Q, leaf, cost ) 
minimum = EXTRACT( leaf ) 
if ( cost < minimum ) then 
perform STORE( leaf, cost ) 
for direction = EAST, WEST, NORTH and SOUTH do 
perform GET_NEIGHBOURS( leaf, direction, neighbours ) 
do while ( more neighbours ) 

newcost = cost + SIZE ( leaf ) 
perform PATH_PLANNING( Q, neighbour, newcost ) 
neighbour = NEXT_NEIGHBOUR( neighbours ) 

end do 
end for 
end if 

end procedure 
Algorithm 4.2 

The path planning algorithm. 

W h e n the P A T H _ P L A N N I N G algorithm described above was implemented, it was 

found to be extremely inefficient in speed of computation. In fact the performance was 

inferior to the [Jarvis et. al. 86] grid based distance transform. This is due to the recursive 

nature of the algorithm, which propagates the distance transform from the goal in a 

selected direction along a path until a boundary of the quadtree is reached or an obstacle is 

encountered. At this point the algorithm backtracks one quadrant along the propagated 

path and then selects another direction to propagate the distance transform further into the 

quadtree. Thus this algorithm propagates the distance transform in a "spike" fashion 

instead of the preferred "wave front" fashion. The effect of this strategy is that most 

nodes in the quadtree are visited many times, and a significant portion of these visits are 

unnecessary. 
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To overcome this problem a new algorithm was developed which is described in the 

procedure FAST_PATH shown in Algorithm 4.3. This algorithm is based on the concept 

of alternatively sweeping the distance transform from the North Western (NW) and South 

Eastern (SE) comers of the quadtree. In the first sweep from the NW comer, the distance 

transform is propagated only in the eastern and southern directions. Once the distance 

transform sweep from the NW comer has covered the entire quadtree, another sweep of 

the distance transform is then undertaken. This time the distance transform sweeps from 

the SE comer of the quadtree back to the NW comer of the quadtree, and the distance 

transform is propagated only in the western and northern directions. This procedure of 

alternatively sweeping the distance transform from the opposite comers of the quadtree is 

repeated until the distance transform values of the free space quadrants stabilise i.e. stop 

changing. Refer to Figure 4.3 which illustrates with an example how the distance 

transform is propagated using the alternate comer sweeps algorithm. Figure 4.3 (A - F) 

shows the propagation of the distance transform from the NW comer of the quadtree. 

Figure 4.3 (G - L) shows the propagation of the distance transform from the SE comer 

of the quadtree. After only two sweeps the distance transform has almost converged to its 

correct final values. One more sweep from each comer will yield the correct distance 

transform values. 

procedure FAST_PATH( Q, goal, cost ) 
leafg = LOCATE( goal ) 
perform STORE( leafg, cost ) 
repeat 

change = FALSE 
perform PATH_NW( Q, change ) 
perform PATH_SE( Q, change ) 

until ( change = FALSE ) 
end procedure 

Algorithm 4.3 

Faster path planning algorithm. 
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Figure 4.3 

Distance transform computed using the alternate corner sweeps algorithm. 

When the FAST_PATH algorithm was implemented it was found to be significantly 

faster in speed of computation than the PATH_PLANNING algorithm. In some cases the 

new algorithm out performed the old by a factor of 20. Consequently all the results 
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reported in this thesis use the F A S T J P A T H algorithm In the pseudo code explanation of 

FAST_PATH, the function LOCATE is used to determine in which free space leaf the 

goal is located. The procedures PATH_NW and PATH_SE perform the alternate comer 

sweeps of the distance transform. The pseudo code for PATH_NW and PATH_SE is 

almost identical, and is shown in algorithms 4.4 and 4.5 respectively. In both 

PATH.NW and PATH_SE, the functions GREY and WHITE are used to determine the 

type of a quadtree node. A node is GREY if the node is an interior node of the quadtree 

i.e. not a leaf node. A node is WHITE if it is a free space leaf node. The function 

NEXT_DrRECTION generates the new direction in which the distance transform is to be 

propagated. The new direction is generated in clockwise order, so the next direction after 

NORTH is EAST, and the next direction after EAST is SOUTH etc. 

procedure PATH_NW( Q, change ) 
if ( GREY( Q ) ) then 

for quadrant = NW, NE, SW and SE do 
perform PATH_NW( SON(Q, .quadrant) ) 

end for 
else if ( WHITE( Q ) ) then 

direction = EAST 
do while ( direction != WEST ) 

perform GET_NEIGHBOURS( Q, direction, neighbours ) 
do while ( more neighbours ) 

cost = SIZE( neighbour ) + EXTRACT( Q ) 
minimum = EXTRACT( neighbour ) 
if ( cost < minimum ) then 

change = TRUE 
perform STORE( neighbour, cost ) 

end if 
neighbour = NEXT_NEIGHBOUR( neighbours ) 

end do 
direction = NEXT_DIRECTION( direction ) 

end do 
end if 

end procedure 
Algorithm 4.4 
Propagate the distance transform the NE comer algorithm. 

The PATH_NW algorithm works in the following manner. Firstly, the procedure 

finds the north western quadrant which is white i.e. free space and the distance transform 

is propagated to quadrants on the southern and western boundaries of this quadrant. 

Next, the north eastern quadrant is found and the the distance transform is propagated to 

quadrants on the southern boundary of this quadrant. Lastly, the south western quadrant 
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is found and the the distance transform is propagated to quadrants on the eastern 

boundary of this quadrant. If any of the quadrants which are visited are grey i.e. interior 

quadtree nodes, then the PATH_NW procedure recursively calls itself, until a leaf 

quadtree node is found i.e. black or white. The PATHJSE algorithm works in a similar 

manner as PATH_NW and therefore its workings will not be explained. 

procedure PATH_SE( Q, change ) 
if ( GREY( Q ) ) then 

for quadrant = SE, SW, NE and NW do 
perform PATH_SE ( SON(Q, quadrant) ) 

end for 
else if ( WHITE{ Q ) ) then 

direction = WEST 
do while ( direction != EAST ) 

perform GETJNEIGHBOURS( Q, direction, neighbours ) 
do while ( more neighbours ) 

cost = SIZE( neighbour ) + EXTRACT( Q ) 
minimum = EXTRACT( neighbour ) 
if ( cost < minimum ) then 

change = TRUE 
perform STORE( neighbour, cost ) 

end if 
neighbour = NEXT_NEIGHBOUR( neighbours ) 

end do 
direction = NEXT_DIRECTION( direction ) 

end do 
end if 

end procedure 
Algorithm 4.5 
Propagate the distance transform the SW corner algorithm. 

4.4 Path Execute Algorithm 

Upon the completion of path planning, the NAVIGATION process is ready to execute 

the planned path. The general algorithm for path execution is given in the procedure 

PATH_EXECUTE shown in Algorithm 4.6. Before the robot can be moved to the goal 

location, a path must be selected using the distance transform information stored in the 

quadtree. The algorithm must first isolate the location of the robot into a leaf of the 

quadtree Q. The distance transform stored in this leaf is examined. If the distance 

transform equals zero, then the start and goal points are located in the same leaf; therefore 

the robot can proceed directly to the goal. If the distance transform is greater than zero, 

the vertical or horizontal neighbouring leaf with the minimum distance transform must be 
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found. A subgoal point in the minimum valued distance transform quadrant is selected, 

and the robot proceeds to this subgoal. The robot will either reach the subgoal or it will 

encounter an obstacle, which is not stored in the map. If the robot reaches the subgoal, 

the next subgoal is found and the path to this subgoal is attempted. This method is applied 

repeatedly until the goal is attained or an obstacle blocks the robot's path. If an obstacle is 

sensed the robot stops. The path execution is terminated and the robot location and the 

sonar sensor values are returned to the NAVIGATION process. 

procedure PATH_EXECUTE( Q, start, goal, stop, sensors ) 
obstacle = FALSE 
repeat 

leaf = LOCATE( Q, start ) 
distance_transform = EXTRACT( leaf ) 
if ( distance_transform = 0 ) then 

subgoal = goal 
else 

subgoal = OPTIMISE( Q, leaf,goal ) 
end if 
perform MOVE( subgoal, stop, sensors ) 
if ( stop * subgoal ) then 

obstacle = TRUE 
end if 
3tart = subgoal 

until ( start = goal or obstacle ) 
end procedure 

Algorithm 4.6 
Path Execution algorithm. 

The MOVE procedure is responsible for interfacing the NAVIGATION process to the 

motion control system of the mobile robot. This procedure ensures that the robot 

physically reaches the planned subgoal. If an obstacle is encountered en route to the 

subgoal, the MOVE procedure returns the location where the robot stopped and a sonar 

map of the obstacle. The sonar map is generated using the mapping techniques presented 

in Chapter 2. 

The function OPTIMISE is responsible for selecting the robot's next subgoal. This 

function searches the vertical and horizontal neighbours of the quadrant leaf in which the 

robot is located, to find the leaf quadrant which yields the least cost path. Finding a 

neighbouring quadrant with the minimum distance transform does not guarantee a least 

cost path, since the distance transform stored in a quadrant represents the cost of 
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traversing the quadrant from a boundary edge to the goal. To determine the true cost of 

the path to the goal the path cost between the robot's location and the boundary edge of 

the neighbour quadrant must be calculated and added to the quadrant's distance transform. 

Once the free space quadrant with the least cost has been found, a path can be executed to 

this quadrant from the robot's current location. 

During path execution a number of strategies can be used to generate a path through 

the free space quadrants. A reasonable strategy would be to steer through the middle of 

the intersection of entry and exit boundary edges of quadrants. Such a strategy generates 

relatively "safe" paths, and is reasonable during the exploration of an environment by the 

robot However such a strategy suffers the "too far" problem, in situations where the free 

space quadrants are large. 

An optimum path can be found by constructing a visibility graph, between the robot's 

location and the goal. This visibility graph can be easily constructed since a coarse path of 

free space quadrants to the goal is already known. The function F U L L given in Algorithm 

4.7 dynamically constructs and searches a visibility graph for an optimum solution. A n 

example of the application of the F U L L function is shown in Figure 4.4. This is an 

example of how the shortest path between a start (S) and a goal (G) is found. The path is 

found by extending the visibility graph into the next free space quadrant. This is done by 

joining the end points of the intersection edge between the two quadrants, to the closest 

nodes of the visibility graph. The A D D _ T O _ P A T H function is responsible for extending 

the visibility graph. Figure 4.4 (A) - (B) show how the visibility graph is extended. The 

N E X T _ Q U A D R A N T function is responsible for finding the next free space quadrant in 

the solution path to the goal. The r^IND J N T E R S E C T I O N function finds the overlapping 

segment which is shared by the current quadrant and the next quadrant in the solution 

path. The S T R A I G H T E N _ P A T H function straightens paths in the visibility graph. In this 

function, checks are undertaken to see whether or not the nodes that have been freshly 

added to the visibility graph, can bypass any of the parent nodes of the new nodes. T o 

allow a parent node to be bypassed, a clear path must be visible between the new node 
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and its grandparent node. The clear path must lie inside the boundaries of the free space 

quadrants which form the coarse solution path. Figure 4.4 (C) shows paths being 

straightened. The ADD_TO_PATH extends the visibility graph by adding new nodes to 

the closest end points of the current visibility graph. This practice can introduce redundant 

paths into the visibility graph i.e. paths which lead to nowhere. The DELETE_PATH 

function is responsible for removing any redundant paths from the visibility graph. Figure 

4.4 (D) shows the deletion of redundant paths. Once the visibility graph between the 

robot's location and the goal has been constructed, as shown in Figure 4.4 (E), the graph 

is searched for the shortest path. The SHORTEST.PATH function checks path lengths in 

the visibility graph and deletes all paths except the shortest path, refer to Figure 4.4 (F). 

function FULL( Q, start, goal ) 
path = NIL 
path = ADD_TO_PATH( path, start ) 
leafs = LOCATE( Q, start ) 
repeat 

leafn = NEXT_QUADRANT( Q, leafs ) 
distance_transform = EXTRACT( leafn ) 
if ( distance_transform = 0 ) then 

path = ADD_TO_PATH( path, goal ) 
else 

edge = FIND_INTERSECTION( leafs, leafn ) 
path = ADD_TO_PATH( path, BEGIN( edge ) ) 
path = ADD_TO_PATH( path, END( edge ) ) 

end if 
path = STRAIGHTEN_PATH( path ) 
path - DELETE_PATH( path ) 
leafs = leafn 

until ( distance_transform = 0 ) 
path = SHORTESTJPATH( path ) 
return ( path ) 

end function 
Algorithm 4.7 
Full Optimum Path algorithm. 
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Figure 4.4 

Finding the full optimum path between S and G. 

The work effort of computing the visibility graph is likely to be wasted in an 

environment which is not well known, since an unexpected obstacle will result in path 

replanning. A solution to this problem is as follows. Instead of constructing the "full" 

visibility graph, look ahead n quadrants and construct a "reduced" visibility graph 

between the robot's location and the mid point of the exit edge of the nth quadrant (except 

in the case of the goal quadrant where the goal takes the place of the midpoint of the exit 

edge). The "reduced" visibility graph approach will not always yield the optimum path, 

but it will give a path which is near optimum. The function R E D U C E D given in 
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Algorithm 4.8 dynamically constructs and searches a "reduced" visibility graph for a 

solution path. 

function REDUCED( Q, start, goal, lookahead ) 
count = 0 
path = NIL 
path = ADD__T0_PATH ( path, start ) 
leafs = LOCATE( Q, start ) 
repeat 

count = count + 1 
leafn = NEXT_QUADRANT( Q, leafs ) 
leafl = NEXT_QUADRANT( Q, leafn ) 
distance_transform = EXTRACT( leafn ) 
if ( distance_transform = 0 ) then 

path = ADD_TO_PATH( path, goal ) 
else if ( count = lookahead ) then 

edge = FIND_INTERSECTION( leafn, leafl ) 
path = ADD_T0_PATH( path, MIDDLE( edge ) ) 

else 
edge = FIND_INTERSECTI0N( leafs, leafn ) 
path = ADD_T0_PATH( path, BEGIN( edge ) ) 
path = ADD_T0_PATH( path, END( edge ) ) 

end if 
path = STRAIGHTEN_PATH( path ) 
path = DELETE_PATH( path ) 
leafs = leafn 

until ( distance_transform = 0 or count = lookahead) 
path = SHORTEST_PATH( path ) 
return ( path ) 

end function 
Algorithm 4.8 
Reduced Optimum Path algorithm. 

Choosing the size of the look ahead can be related to the confidence in the knowledge 

of the environment. In a completely unknown environment a one quadrant look ahead is 

sufficient. Once an environment is well known, the optimisation of the paths can be 

improved by looking ahead more than one quadrant. 

Figure 4.5 shows an example of constructing an optimum path using a "reduced" 

visibility graph. The optimum path which is generated by the construction and search of a 

"full" visibility graph is shown with the broken line in Figure 4.5 (F). The "reduced" 

visibility graph is constructed by looking ahead a number of quadrants to the middle of 

the exit edge of the look ahead quadrant. The number of quadrants that is looked ahead in 

this example is 1 (one). Figure 4.5 (A) - (E) shows the construction of "reduced" 

-87-



visibility graphs. A new visibility graph is constructed each time the robot enters the next 

quadrant. This strategy produces a reasonable path, shown with the heavy line in Figure 

4.5 (F). The look ahead is performed at the locations marked with *. While this path is 

not optimum, it is superior to the "too far" paths, which are generated by steering down 

the middle of free space quadrants. 
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Figure 4.5 

Finding the reduced optimum path between S and G. 

This path optimisation strategy produces reasonable paths. However situations do 

arise where the robot must steer through a sequence of quadrants which result in zigzag 

paths despite the optimisation strategy. This is because paths between quadrants sharing a 
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comer are not considered. This can be countered with the rule: "if the entry and exit 

edges of a free space quadrant are normal to one another, and the neighbouring comer 

quadrant is free space, then the path segment through this quadrant can be omitted". This 

causes the robot to steer diagonally between two free space quadrants. Refer to Figure 4.6 

for an example of the zigzag rule. In this example the original solution path between the 

start (S) and the goal (G) is shown with the broken line. The smoothed solution path 

generated using the zigzag rule is shown with the heavy line.The function OPTIMISE is 

constructed by combining the function R E D U C E D with the zigzag smoothing rule. 

Figure 4.6 

Smoothing a Solution path using the zigzag rule. 

4.5 Model Update Algorithm 

Once the robot has completed path execution, the NAVIGATION module is ready to 

update the environment and confidence models of the environment The general algorithm 

for the M O D E L _ U P D A T E process is given in the Algorithm 4.8. The execution of the 

planned path terminates on one of two conditions; either the robot reaches the goal or an 

obstacle is encountered. If the robot reaches the goal, the environment model does not 

change. If an obstacle is encountered the environment model must be updated to reflect 

the presence of the freshly sensed obstacle. To perform the update of the model, the 

algorithm must know the current location of the robot the sensor readings at this location, 

and the location of the robot when this procedure was last invoked. 

-89-



Once the algorithm updating the environment models is invoked, the current leaf 

location of the robot in the quadtree is found with the LOCATE function. This leaf is 

checked using the SAFE function to make sure that none of the obstacle sensor readings 

are inside the leaf quadrant. If the sensor readings occur inside the leaf quadrant in which 

the robot is currently located, then the leaf quadrant is divided into four quadrants using 

the DIVIDE procedure. Leaf division continues until the leaf is isolated from the sensor 

readings, or the size of the leaf reaches the smallest allowable resolution. Upon the 

completion of isolating the current robot leaf location from the sensor readings, the sensor 

readings detected by the robot are each in turn isolated to a leaf of the smallest size 

resolution; this may require the division of leaf quadrants. Once a sensor reading has been 

isolated, the leaf is classified to be occupied by an obstacle and this information is 

recorded in the quadtree using the STORE_COLOUR procedure. 

procedure MODEL_UPDATE( Q, start, stop, sensors ) 
exit = FALSE 
repeat 

leaf = LOCATE( Q, stop ) 
if ( SAFE( leaf, sensors ) then 

perform STORE_COLOUR( leaf, WHITE ) 
exit = TRUE 

else if ( leaf is smallest resolution ) then 
colour = CLASSIFY( leaf, sensors ) 
perform STORE_COLOUR( leaf, colour ) 
exit = TRUE 

else 
perform STORE_COLOUR( leaf, GREY ) 
perform DIVIDE( leaf, child ) 

end if 
until ( exit ) 
for ( i = 1 to number of sensor readings ) do 

exit = FALSE 
repeat 

leaf = LOCATE( Q, sensor[i] ) 
if ( leaf is smallest resolution ) then 

perform STORE_COLOUR( leaf, BLACK ) 
exit = TRUE 

else 
perform STORE_COLOUR( leaf, GREY ) 
perform DIVIDE( leaf, child ) 

end if 
until ( exit ) 

end for 
perform CONSOLIDATE( Q ) 

end procedure 
Algorithm 4.8 

Model Update algorithm. -90-



Isolating a sensor reading to the smallest resolution leaf may be seen as unnecessarily 

fragmenting the leaves of the quadtree which span obstacles. The C O N S O L I D A T E 

procedure detects the neighbouring leaves in a quadtree that are part of the same obstacle, 

and prunes these leaves back to their parent node. If the path planning procedure deduces 

that a goal is not reachable from any direction this implies that the goal is surrounded by 

obstacles. The C O N S O L I D A T E procedure can then prune the quadtree, to reflect the 

knowledge that the region surrounding the goal is one obstacle. Refer to Figure 4.7 for an 

example of the consolidation algorithm. Figure 4.7 (A) shows the environment prior to 

consolidation. The letter F marks quadrants that are free space, and the letter B marks 

quadrants that are blocked with obstacles. Figure 4.7 (B) shows the same environment 

after consolidation of the quadtree. 

p ® 1 

|E 

P | 
E j 

PM 
•e:-| 

Fii 

FI 

B 

Figure 4.7 

The Consolidation algorithm at work 
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4.6 Partial Distance Transform Algorithm 

Computing the full distance transform every time the robot encounters an obstacle is 

an unacceptable computational burden. Considerable savings can be made if the distance 

transform is only partially updated when the environment model changes. A novel method 

is presented here which allows the quadtree to be efficiently used to limit the 

recomputation of the distance transform. 

If the robot start and goal locations can be found in the same minimal subtree of the 

quadtree, the distance transform need only be calculated for the subtree. Considering a 

subset of the possible solution paths will yield either locally optimum paths or no solution 

paths. Finding locally optimum paths is acceptable when the robot is learning an 

environment T o find globally optimum paths, or if no solution paths can be found 

locally, the algorithm simply moves up one level in the quadtree structure and computes 

the distance transform for the fresh subtree. Refer to Figure 4.8 for an example of the 

partial distance transform in partially known environments. K n o w n portions of obstacles 

are shaded dark, while unknown portions are shaded lightly. Figure 4.8 (A) shows the 

distance transform values for an entire quadtree. In this case a large portion of the distance 

transform is redundant since the start (S) and the goal (G) are close to each other. If S and 

G can be isolated to a c o m m o n subtree, then the distance transform need only be 

calculated for this subtree as shown in Figure 4.8 (B). 
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Quadtree based Partial Distance Transforms. 
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Such a strategy is useful when the robot gets closer to the goal. The partial distance 

transform update mechanism can be easily incorporated into the N A V I G A T I O N process. 

It should be noted that the penalty for this strategy is that the navigation algorithm no 

longer supports multiple robots. However for a single robot operating in an unknown or 

partially unknown environment the partial distance transform offers substantial 

computational savings. 

As an aside, the [Jarvis et. al. 86] distance transform based on grids can be modified 

in a similar fashion to take advantage of partial distance transforms. In this case the start 

and goal locations are isolated to a common subgrid. The distance transform is then 

calculated for this subgrid. Refer to Figure 4.9 for an example of the partial distance 

transform based on grids. This figure shows the distance transform values for an entire 

grid. In this case a large portion of the distance transform is redundant since the start (S) 

and the goal (G) are close to each other. If S and G can be isolated to a common subgrid, 

then the distance transform need only be calculated for this subgrid. The common subgrid 

in this figure is highlighted by the broken line box. 

Figure 4.9 

Grid based Partial Distance Transforms. 

A modified N A V I G A T I O N process which incorporates the partial distance transform 

is described by the procedure N A V I G A T I O N _ 2 and is given in Algorithm 4.9. The first 
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step this algorithm performs is to find the two quadtree leaves which contain the start and 

goal locations. In the next step the algorithm finds the common subtree of the two 

quadrant leaves containing start and goal. This is done by the procedure ISOLATE. The 

steps of path planning, path execution and model updating are performed in the same 

manner they were performed in the NAVIGATION process. The difference is that if the 

algorithm deduces that a goal is unreachable, it attempts to move up one level in the 

quadtree and recomputes the distance transform. 

procedure NAVIGATI0N_2{ Q, start, goal ) 
SQ = ISOLATE ( Q, LOCATE ( Q, start ), LOCATE ( Q, goal ) ) 
repeat 

perform PATH_PLANNING ( SQ, goal ) 
if ( goal reachable ) then 

perform PATH_EXECUTE ( SQ, start, goal, location, sensors ) 
if ( location * goal ) then 

perform MODEL_UPDATE ( SQ, start, location, sensors ) 
start = location 
SQ = ISOLATE ( SQ, LOCATE( SQ, Start ), LOCATE( SQ, goal ) 

end if 
else 

SQ = PARENT ( Q, SQ ) 
if ( SQ = nil ) then 

goal not reachable 
end if 

until ( location = goal or goal not reachable ) 
end procedure 

Algorithm 4.9 
Partial Distance Transform algorithm. 

4.7 Examples of the EEA 

In this section examples are presented using the simulation program that was 

developed on a Macintosh II microcomputer to verify that the design of the EEA was 

correct 

The first example of the EEA using the full distance transform running on an 8 x 8 

pixel map in a completely unknown environment is shown in Figure 4.10. This example 

shows a robot exploring an environment by planning a path from a start location (S) to a 

goal location (G) and executing the path. Planned paths are shown as broken lines and 

actual paths are shown as solid lines. Known portions of obstacles are shaded dark, while 
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unknown portions are shaded lighdy. Finally after the robot reaches G, the best known 

path from S to G is shown. 
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Figure 4.10 

Path Planning an unknown environment. 

The second example which is presented in Figures 4.11-4.16 shows the variety of 

path execution strategies that can be used to find a path between the start and goal 

locations. This example uses a full distance transform running on a 32 x 32 pixel map in a 

completely known environment. Figure 4.11 (A) shows a512x512 pixel map cluttered 
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with obstacles and the start and goal locations. This 512 x 512 pixel map is converted into 

a quadtree in Figure 4.11 (B). The quadtree is constructed with a leaf resolution of 16 

pixels which results in a 32 x 32 pixel quadtree map. The coarse solution path of free 

space quadrants between the start and goal locations is shown in Figure 4.11 (C). Figure 

4.11 (D) shows the execution path which is generated by steering through the middle of 

the intersection edge of the free space quadrants. This path zigzags due to the nature of the 

coarse solution path. 

C D 

Figure 4.11 

Path Planning in an known environment. 
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The execution path shown in Figure 4.11 can be improved by using the zigzag rule 

described in Section 4.4.1. Figure 4.12 (A) shows the improved execution path which is 

generated by steering through the middle of the intersection edge of the free space 

quadrants in combination with the zigzag rule. Figure 4.12 (B) shows the execution path 

which is generated by using the F U L L path look ahead function to optimise the execution 

path in combination with the zigzag rule. Figure 4.12 (C) shows the execution path which 

is generated by using the R E D U C E D path look ahead function with a one (1) quadrant 

look^ead to optimise the execution path in combination with the zigzag rule. It should be 

noted in this case the zigzag rule has no effect. This is because the next step of the 

execution path is generated by looking ahead only one quadrant from the current position. 

The detection and removal of a zigzag requires at least a two quadrant look ahead. Figure 

4.12 (D) shows the execution path which is generated by using the R E D U C E D path look 

ahead function with a two (2) quadrant look ahead to optimise the execution path in 

combination with the zigzag rule. It should be noted that the execution paths produced by 

a F U L L path look ahead and a two (2) quadrant R E D U C E D path look ahead are identical, 

as shown by Figures 4.12 (B) and (D). In a known environment F U L L look ahead 

should be used, since the R E D U C E D look ahead requires the construction of a small 

visibility graph from the entry point of every quadrant in the coarse solution path. 

However in the case of unknown or partially known environments where it is highly 

unlikely that the final execution path between the start and goal locations will be found on 

the first path planning effort, the R E D U C E D look ahead function is very useful. 
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Figure 4.12 

Improved Path Planning in an known environment. 
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The third example of a partial distance transform running on an 8 x 8 pixel map in a 

completely unknown environment is shown in Figure 4.13. This figure shows the robot 

exploring an environment by planning a path from a start location (S) to a goal location 

(G), and executing the planned path. Planned paths are shown as broken lines, actual 

paths are shown as solid lines. Known portions of obstacles are shaded dark, while 

unknown portions are shaded lightly. Finally after the robot reaches G, the best path from 

S to G is shown. Figures 4.13 (D) and (E) show how as the robot gets closer to G, path 

planning can be performed using the Partial Distance Transform. 
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The Partial Distance Transform. 
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4.8 Experimental Results of the EEA 

In this section four experimental results of the EEA using sonar data are presented. In 

Chapter 2 of this thesis a method was presented for building environment maps for a 

mobile robot from live sonar data. Chapter 2 presented four experimental results of map 

making (namely Figures 2.17 - 2.20). These four results have been used as input to the 

EEA. The E E A was implemented on a Macintosh II microcomputer. 

Figure 4.14 shows the results of the EEA operating on the environment map described 

in Figure 2.17. Figure 4.14 (A) shows the initial map together with the start (S) and goal 

(G) locations, which were supplied to the E E A . From the map data a quadtree 

representation of the environment was built as shown in Figure 4.14 (B). A path between 

the start and goal positions was planned using the two (2) quadrant R E D U C E D look 

ahead function. The planned path is shown in Figure 4.14 (C). During the course of path 

execution to the goal the robot encounters an obstacle at the position (R) as shown in 

Figure 4.14 (C). At this point the navigation system instructs the mobile robot to collect 

more sonar range readings and build a new map. From the new map data the quadtree is 

reconstructed and a new path is planned to the goal as shown in Figure 4.14 (D). 

Figures 4.15,4.16 and 4.17 show the results of the EEA operating on the environment 

maps described in Figures 2.18, 2.19 and 2.20. Diagram A in all the figures shows the 

initial map together with the start and goal locations, which were supplied to the EEA. 

The quadtree representation of the environment map, and the planned path between the 

start and goal locations using the two (2) quadrant R E D U C E D look ahead function are 

shown in Diagram B in all of the figures. 
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Operating the EEA with sonar range data from Figure 2.17. 
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Operating the EEA with sonar range data from Figure 2.18. 
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Figure 4.16 

Operating the EEA with sonar range data from Figure 2.19. 
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Figure 4.17 

Operating the EEA with sonar range data from Figure 2.20. 

4.9 Conclusions 

This chapter has shown that quadtrees and distance transforms provide an effective 

mechanism for developing an algorithm (EEA) to explore an environment with a mobile 

robot. It has been shown that environments can be efficiently modelled with quadtrees, 

and distance transforms can be applied to plan paths in known and unknown portions of 

an environment. The E E A provides an elegant way of planning paths in unknown regions 

of an environment. The algorithm assumes that all unknown areas are free space. This 

assumption allows unknown regions to be efficiently modelled and path planning is 

straight forward. However, should the assumption prove to be false i.e the unknown 

areas are not free space, the E E A can readily incorporate new environment data into the 

quadtree and replan a fresh path. The E E A approach to path planning which consists of 

making an optimistic plan, attempting to execute the plan and modifying the plan in the 

event of a failure of the original plan, is in keeping with human path planning strategies 

which were discussed in Section 3.2. 

A n efficient method for propagating the distance transform through a quadtree was 

developed. Despite the efficiency of this new technique the distance transform is 
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computationally expensive. The problem of expensive computation of the distance 

transform was addressed by limiting the recomputation of the distance transform to a 

partial update. The affect of the partial distance transform on the E E A is that the algorithm 

does less work as the robot gets closer to the goal. 

Path planning using quadtrees and distance transforms yields a coarse solution path of 

free space quadrants. In this chapter a new mechanism was developed for the efficient 

extraction of a fine path from the coarse path. This was done by the construction of a 

dynamic visibility graph. The type of fine path that can be generated with this new 

technique is flexible. The visibility graph can be used to fully or partially optimi.se the path 

between the start and goal locations. Full path optimisation is only useful if the 

environment is known. Fully optimising a path in an unknown environment is likely to be 

a computational waste, since an unexpected obstacle will necessitate replanning the path. 

The partial optimisation of the fine path is a cheap and useful strategy in an unknown 

environment. 

Despite the limitation that the EEA stipulates that paths must lie completely within the 

boundaries of free space quadrants, and that paths between quadrants are allowed only in 

the horizontal and vertical directions, the E E A produces "reasonable" paths. While a 

solution path is not a shortest path to the goal, the path is a "negotiable" path. A negotiable 

path avoids clipping the comers of obstacles and does not run along the edges of 

obstacles. Such a path strategy is acceptable since there are uncertainties in the exact shape 

and position of obstacles in the environment, and the precise position of the robot is not 

always known. 

In this chapter it was shown that the EEA can operate with a real mobile robot using 

live sonar data to navigate autonomously in an unknown environment Experiments were 

performed which required the robot to navigate to goals that were located in unknown 

regions of the environment. In all the experiments the robot was able to successfully reach 

each desired goal, and in doing so, explore and build maps of the environment. 
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Chapter 5 
Path Planning Behaviours 

5.1 Introduction 

The second goal of this thesis was to build a robot path planner that is capable of 

inducing different types of path planning behaviours. A robot path planner should not 

only find the "optimum" paths i.e. shortest distance to the goal, but the system should 

also be able to generate "conservative", "adventurous", and "visit all" paths. A robot path 

planner should also produce a behaviour, which allows the robot to systematically "learn 

all" the unknown regions of an environment. In all the discussions this far, it has been 

assumed that the robot is dealing with a static non-changing environment Thus once the 

robot discovers an obstacle the information regarding the shape and position of the 

obstacle does not change thereafter. However, in practice environments are dynamic. The 

position of obstacles in the environment can change. A robot path planner can be adapted 

to operate in a dynamic environment by the addition of a "forgetful" behaviour. This 

behaviour can co-exist with the other robot path planning behaviours. The "forgetful" 

behaviour causes the robot to gradually forget information that has been acquired about 

the environment Knowledge about parts of the environment which have not been sighted 

by the robot for a significant time gradually decay and finally disappear. The effect of the 

forgetful behaviour upon robot knowledge of the environment can be looked upon as the 

vapour trail behind a jet airplane. 

Section 5.2 describes a method for extending the capabilities of the Environment 

Exploration Algorithm (EEA), to include "conservative", "adventurous", "visit all", 

"learn all" and "forgetful" path planning behaviours. Section 5.3 describes how the 

original algorithm for the E E A which was presented as Algorithm 4.1 can be reformulated 

to include the concept of path planning behaviours. 
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A great deal of past research into mobile robot navigation has concentrated on the 

problem of finding the shortest paths through known environments. The biggest 

challenge in building a competent path planner is to reconcile the conflicting requirements 

of finding what is a "safe" path from a start location to a goal location. The "safe" path 

should be the shortest possible path, which maintains a safe distance from obstacles. 

Section 5.4 presents a mechanism which allows the E E A to plan "safe" paths for a robot 

to execute. This section also describes how the consideration of safety distance from 

obstacles can be extended to the [Jarvis et. al. 86] path planner which is based on distance 

transforms applied to grids. 

The third goal of this thesis was to construct a path planner which could find the 

"best" path from a start location to a goal location. The "best" path should be the shortest 

possible path, staying outside unknown areas, and at the same time keeping a safe 

distance from obstacles. Section 5.5 presents a method for further extending the 

capabilities of the E E A , to include the consideration of safety distance from obstacles 

while staying outside unknown areas. 

Section 5.6 presents experimental results of robot path planning behaviours using the 

sonar range data which was collected in Chapter 2. 

Finally in Section 5.7 the conclusions that were reached and the insights that were 

gained from investigating the problem of path planning behaviours are presented. 

The path planning behaviours presented in this chapter are applicable to a robot which 

has been approximated as a cylinder. 
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5.2 Path Planning Behaviours 

This section describes how the following six different path planning behaviours can be 

implemented: 

* optimum path behaviour 

* conservative path behaviour 

* adventurous path behaviour 

* learn all behaviour 

* visit all behaviour 

* forgetful behaviour 

Section 3.3.3 of this thesis reviewed the work of [Jarvis et. al. 86], w h o used distance 

transforms based on grids to generate "optimum", "conservative", "adventurous", and 

"visit all" paths. This approach used a "factor" function to give different weights to the 

distance transform depending on the type of grid cell; known or unknown. Using the 

factor function set to 1 for known and unknown cells produced an optimum path 

behaviour. However the factor function could be varied to induce different behaviour. If 

an "adventurous" behaviour was required the factor in known cells was doubled. If on the 

other hand, a "conservative" behaviour was sought in which the robot avoided unknown 

cells, the factor in unknown cells was doubled. 

To implement path planning behaviours with the EEA, a mechanism for representing 

known and unknown regions in a quadtree is required. To achieve this aim, additional 

space needs to be provided within each quadtree node to store the "confidence" the 

navigation system has in a node belonging to a particular class e.g. 9 0 % confidence that 

this node is a free node. The confidence value in a quadtree node is updated by the 

navigation system every time the robot visits or observes the node. W h e n the robot visits 

a quadtree node the confidence value of the node is calculated by determining the area that 

has been swept by the robot inside the quadrant during the execution of a planned path, 

and dividing it by the area of the quadrant. Quadtree nodes which are sighted by the 
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robots environment sensors have their confidence values updated. This update is done 

by determining the area that has been sighted by the robot and dividing it by the area of 

the quadrant 

The allocation of memory to store confidence values in internal nodes of the quadtree 

can be viewed as unnecessary overhead since confidence values apply only to the leaf 

nodes of the quadtree. However the tree structure of the quadtree can be exploited to keep 

track of how much of the environment is known. The leaf nodes in the quadtree contain 

the confidences about the structure of the environment. A postorder traversal of the 

quadtree summing up the confidences of the leaves, dividing this sum by (4) four, and 

passing the result up to the parent node, will yield at the root node the overall confidence 

level that the E E A possesses about the structure of the environment 

Figures 5.1 and 5.2 show the growth in the confidence values of the leaf nodes of a 

quadtree environment model as a robot equipped with a tactile sensor navigates in an 

unknown environment, from a start location (S) to a goal location (G). Figure 5.1 (A) 

shows the initial conditions in which the robot has no knowledge about its environment. 

The robot assumes that the environment is free space. However the confidence in this 

assumption is 0%. A s the robot navigates towards the goal, as shown in Figures 5.1 (B) 

- (D) and 5.2 (A) - (D), it acquires more information about the environment and the 

confidence values of the free space quadrants that have been traversed grow accordingly. 

The implementation of path planning behaviours described in this research uses a 

"factor" function, similar to the [Jarvis et. al. 86] approach. The "factor" function uses the 

confidence values of the free space quadrants to give the relevant weighting to the distance 

transform, for each path planning behaviour. The E E A evaluates the "factor" function by 

a set of rules. The evaluation rules for each behaviour are described in the following three 

subsections. 
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Figure 5.1 

Growth in the confidence values of free space quadrants during path execution. 
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Figure 5.2 

This figure continues the experiment which was started in Figure 5.1. 
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5.2.1 O p t i m u m Path Planning Behaviour 

If the robot is in the behaviour mode of planning "optimum" paths, free spaces and 

unknown spaces are considered to be the of the same class, since the best assumption that 

can be made of unknown space is that it is free space. In this case the "factor" function is 

set to a value of 1. W h e n the distance transform is propagated through the quadtree it is 

multiplied by the "factor" function. In the case of planning "optimum" paths this results in 

a normal distance transform propagation. Figure 5.3 shows the distance transform which 

corresponds to the behaviour of planning an "optimum" path, for the environment 

exploration expedition which was described in Figures 5.1 and 5.2. In this figure the 

broken line shows the "optimum path" between the start (S) and goal (G) locations. 

14 

©•, 
16 ••. 

* • • • • 

19 

H io 
*n;:'xx:-

,•• 

12 

9 

PIIII 
11 

15 

•Miiii'ii;':':':':*:' { CZ 1 

m 9 *:";•• :••:•.• •.•:••.'••.••:• 

• .*,-;l:l![;l:f:!;!:!:! 

I P III '6 '5 4 

11 9 

13 

7 

11 

Figure 5.3 

Optimum path planning behaviour. 
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5.2.2 Conservative Path Planning Behaviour 

Once a robot has learnt a portion of the environment, there could be a need to find a 

path to a goal using the free space quadrants in which the E E A possesses the greatest 

knowledge. In this case the factor function evaluates to 1 + [1 - confidence], where [1-

confidence] is a measure of the confidence the system has in a leaf not being free space. 

Unknown quadrants are assumed to be free spaces, with zero (0) confidence. W h e n the 

distance transform is propagated through the quadtree using the factor function, this 

results in a weighted distance transform which has higher costs for the traversal of 

unknown regions. Figure 5.4 shows the distance transform which corresponds to the 

behaviour of planning a "conservative" path, for the environment exploration expedition 

which was described in Figures 5.1 and 5.2. In this figure the broken line shows the 

"conservative" path between the start (S) and goal (G) locations. 
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Conservative path planning behaviour. 
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5.2.3 Adventurous Path Planning Behaviour 

A robot may operate in an exploratory frame of mind and favour unknown spaces en 

route to a goal. In this case the function factor evaluates to 1 + confidence, where 

confidence is a measure of the confidence the system has in a quadrant being free space. 

When the distance transform is propagated through the quadtree, this results in a weighted 

distance transform which has higher costs for the traversal of known regions. Figure 5.5 

shows the distance transform which corresponds to the behaviour of planning an 

"adventurous" path, for the environment exploration expedition which was described in 

Figures 5.1 and 5.2. In this figure the broken line shows the "adventurous" path between 

the start (S) and goal (G) locations. 
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Adventurous path planning behaviour. 
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5.2.4 Learn All Path Planning Behaviour 

The robot may operate in the behaviour mode of planning "learn all" paths. This path 

planning behaviour can be accomplished by making the centroids of free space quadrants 

with the lowest confidence values the goals. Once the robot has entered a goal quadrant, 

the robot traverses the whole quadrant in a systematic manner, so that the robot gains 

100% confidence about the contents of the quadrant. To achieve the "learn all" mode of 

robot navigation, the distance transform for "adventurous" path planning is used. This 

causes the robot to traverse free space quadrants with low confidence values en route to 

the goal. T o improve the efficiency of the learn all mode, the robot should also 

systematically sweep the low confidence free space quadrants en route to the goal. 

The systematic sweep of a free space quadrant should be performed in a manner that 

prevents the robot from passing over any portion of the quadrant more than once. This 

can be achieved using the following heuristic strategy. Each quadrant to be swept has 

entry and exit edges through which the robot enters and leaves the quadrant. The 

navigation task is to reach the exit edge from the entry edge with a path which traverses 

the entire contents of the quadrant. This task can be achieved by moving the robot to a 

comer of the quadrant which is furthest from the exit edge. From this comer there is a 

choice of two comers to which the robot can be moved. The comer which is furthest from 

the exit edge is selected. The progressive sweep of the quadrant creates a rectangular 

unswept region. The robot enters the unswept region and moves to the furthest comer 

from the exit edge. This procedure is repeated until the robot reaches the exit edge. Refer 

to Figure 5.6 for an example of systematically sweeping a free space quadrant. 

-114-



jjjjjjj 

::;:::::;::; 

entry edge 

Figure 5.6 

Systematic sweeping of a free space quadrant with a cylindrical robot. 

The tree structure of the quadtree is exploited to keep track of how much of the 

environment has been learnt. A postorder traversal of the quadtree summing up the 

confidences of the leaves, dividing this sum by (4) four, and passing the result up to the 

parent node, will yield at the root node the overall confidence level that the E E A possesses 

about structure of the environment. The "learn all" path planning behaviour monitors the 

overall confidence value, and continues exploring the environment until the overall 

confidence value has reached 100%. Using this approach it is possible to set a threshold 

on the level of knowledge that is to be acquired by the "learn all" path planning behaviour. 

For example it could be decided to set the threshold at 8 0 % , the E E A will continue to 

learn the environment until the overall confidence value stored in the root of the quadtree 

has reached the threshold value. Adopting a hierarchical structure to store the confidence 

levels about the environment assists in the search for the lowest confidence quadrant 

which needs to be explored next by the EEA. Rather than perform a breadth first search of 

the quadtree for the quadrant with the lowest confidence value, a depth first search is 

performed. The child of the root node with the lowest confidence value is selected. If the 

selected node is a leaf node then the search is terminated, otherwise the children of the 

selected node are searched for the lowest confidence valued child. This search continues 

until a leaf node is reached. While this strategy does not guarantee that the lowest 
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confidence node in the quadtree is selected, a quadrant will be selected which requires 

exploration. 

Figures 5.7 - 5.10 show an example of a robot equipped with a tactile sensor 

progressively learning an unknown environment until the robot has gained 100% 

confidence in the environment The robot starts learning from a start location (S) and once 

it completes learning it will stop at the goal location (G). Figure 5.7 (A) shows the initial 

conditions in which the robot has no knowledge about its environment The robot 

assumes that the environment is free space. However the confidence in this assumption is 

0%. The robot systematically sweeps the environment, as shown in Figures 5.8 - 5.10. 

When an obstacle is encountered the environment quadtree model is updated and the 

confidence values of the free space quadrants that have been traversed are updated 

accordingly. Figure 5.10 (D) shows that the robot has learnt the entire contents of all the 

free space quadrants that can be reached. Upon completion of learning the robot returns to 

the goal specified in Figure 5.7 (A). 
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Learn all path planning behaviour. 
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This figure continues the experiment which was started in Figure 5.7. 
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Figure 5.9 

This figure continues the experiment which was started in Figure 5.7. 
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Figure 5.10 

This figure concludes the robot navigation experiment which was started in Figures 5.7. 
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5.2.5 Visit All Path Planning Behaviour 

In the previous discussion of path planning behaviours it was stated that it was 

desirable for a robot to possess a path planning behaviour which causes it to "visit all" 

free space quadrants. The path planning behaviour of "visit all" is useful in a known 

environment where the the path planning task for the robot is to traverse all the regions of 

free space. Such a behaviour would be useful in floor cleaning and security surveillance 

robots. The "visit all" behaviour has been implemented by [Jarvis et. al. 88] using grids. 

This behaviour can also be implemented using quadtrees. The quadtree implementation is 

based on the approach used by [Jarvis et. al. 88]. It follows the sequence of free space 

quadrants that take the robot along the longest path to the goal. As each quadrant is visited 

it is systematically swept in the same manner as in the "learn all" behaviour. Before a 

quadrant is swept a check is made to see whether there is a neighbouring quadrant with a 

higher distance transform that has not been previously visited. W h e n such a neighbouring 

quadrant exists then the current quadrant is not swept, instead the robot proceeds directly 

to the quadrant with the higher distance transform value. Once the robot enters this 

quadrant the check for neighbouring quadrants with a higher distance transform value is 

repeated. A free space quadrant is not swept unless the quadrant is surrounded by 

quadrants with lower distance transform values or quadrants that have already been 

systematically swept. Such a strategy is necessary to prevent the robot from crossing 

quadrants which have been swept. This m a y seem to be an unnecessary measure; 

however if the robot was a floor painting robot, the robot could easily paint itself into a 

comer and would have no recourse other than traversing areas covered with wet paint. 

The visit all behaviour implemented with quadtrees produces a reasonable path between 

the start and goal locations. However the resulting path using quadtrees is generally 

inferior to the one produced using grids. This is due to the fact that quadtree distance 

transform values are less exact measures of the distance to the goal than grid distance 

transform values. It is desirable to follow the rings of distance transform contours as they 

radiate from the goal. It is easier to follow the distance transform contours with grids 

-120-



rather than with quadtrees. Refer to Figure 5.11 for an example of the visit all behaviour 

implemented with quadtrees and grids for an identical environment with the same start(S) 

and goal(G) locations. 

Figure 5.11 

This Figure shows the Visit All path planning behaviour for quadtrees and grids. 
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5.2.6 Forgetful Path Planning Behaviour 

In the introductory discussions of this chapter, it was stated that a "forgetful" 

behaviour is a useful mechanism that allows a robot to operate in a dynamic environment. 

The "forgetful" behaviour co-exists with the other path planning behaviours. This 

behaviour causes the robot to gradually forget information about the environment that has 

been acquired by other path planning behaviours. 

The "forgetful" behaviour is implemented by traversing the quadtree on a regular clock 

period, and decaying the confidences of all the leaves of the quadtree by a fixed amount. 

Once the confidences of the quadtree leaves reaches (0) zero, the neighbouring leaves 

which belong to the same parent quadrant are merged into one quadrant leaf. This has the 

affect of pruning the quadtree back one level. The new consolidated leaf is regarded as 

free space. However the confidence in this assumption is 0%. 

Refer to Figures 5.12 and 5.13 for an example of the "forgetful" behaviour in 

combination with the "learn all" behaviour. Figure 5.12 (A) shows an unknown 

environment and the start (S) and the goal (G) locations. In this example Figures 5.12 (B) 

- 5.13 (D) show the robot learning the entire structure of the environment while at the 

same time forgetting portions of the environment it has not sighted for long periods of 

time. A s the robot which is equipped with a tactile sensor, as it navigates towards the goal 

(G), it acquires more information about the environment and the confidence values of the 

free space quadrants that have been learnt grow accordingly. While the robot is learning 

the environment, the forgetful behaviour is simultaneously decaying the acquired 

knowledge about the environment by 4 % every 30 clock ticks. Figure 5.13 (F) shows the 

robot reaching the goal (G). At this point the "learn all" behaviour will cause the robot to 

relocate the goal (G) to a quadrant with the lowest confidence value. The robot will then 

plan a "learn all" path to the new goal. The co-existence of the "learn all" and "forgetful" 

behaviours causes the robot to operate continuously. This type of behaviour is suitable for 

a security surveillance robot. 
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Figure 5.12 

Learn all behaviour in combination with the forgetful behaviour. 
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Figure 5.13 

Continuation of the experiment which was started in Figure 5.12. 
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5.3 Algorithms for Path Planning Behaviours 

The path planning behaviours which were described in Section 5.2 can be incorporated 

into the EEA (Algorithm 4.1). The revised pseudo code EEA is shown as the procedure 

NAVIGATION in Algorithm 5.1. 

procedure NAVIGATION( Q, start, goal, behaviour ) 
repeat 

cost = 0 
perform PATH_PLANNING( Q, goal, cost, behaviour ) 
if ( goal reachable ) then 

perform PATH_EXECUTE( Q, start, goal, stop, sensors ) 
if ( stop * goal ) then 

perform MODEL_UPDATE( Q, start, stop, sensors ) 
start = stop 

end if 
end if 

until ( stop = goal or goal not reachable ) 
end procedure 

Algorithm 5.1 

Component processes of the EEA. 

Since the original EEA has been revised the algorithms of the component processes of 

the EEA must also be revised. The original PATH_PLANNING process which is based 

on the fast computation of the distance transform (Algorithms 4.3,4.4 and 4.5) has been 

revised to include path planning behaviours. The new PATH_PLANNING algorithms 

are described in Algorithms 5.2,5.3 and 5.4. 

procedure PATH_PLANNING( Q, goal, cost, behaviour) 
leafg = LOCATE( goal ) 
perform STORE( leafg, cost ) 
repeat 

change = FALSE 
perform PATH_NW( Q, change, behaviour ) 
perform PATH_SE( Q, change, behaviour ) 

until ( change = FALSE ) 
end procedure 

Algorithm 5.2 

Path planning algorithm. 
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procedure PATH_NW( Q, change, behaviour ) 
if ( GREY( Q ) ) then 

for quadrant = NW, NE, SW and SE do 
perform PATH_NW( SON(Q, quadrant) ) 

end for 
else if ( WHITE( Q ) ) then 

direction = EAST 
do while ( direction != WEST ) 

perform GET_NEIGHBOURS( Q, direction, neighbours ) 
do while ( more neighbours ) 

cost = FACTOR( behaviour, leaf )*SIZE( neighbour )+EXTRACT( Q ) 
minimum = EXTRACT( neighbour ) 
if ( cost < minimum ) then 

change = TRUE 
perform STORE( neighbour, cost ) 

end if 
neighbour = NEXT_NEIGHBOUR( neighbours ) 

end do 
direction = NEXTJDIRECTION( direction ) 

end do 
end if 

end procedure 
Algorithm 5.3 
Propagate the distance transform the NE comer algorithm. 
procedure PATH_SE( Q, change, behaviour ) 

if ( GREY( Q ) ) then 
for quadrant = SE, SW, NE and NW do 

perform PATH_SE ( S0N(Q, .quadrant) ) 
end for 

else if ( WHITE( Q ) ) then 
direction = WEST 
do while ( direction != EAST ) 

perform GET_NEIGHBOURS( Q, direction, neighbours ) 
do while ( more neighbours ) 

cost = FACTOR( behaviour, leaf )*SIZE( neighbour )+EXTRACT( Q ) 
minimum = EXTRACT( neighbour ) 
if ( cost < minimum ) then 

change = TRUE 
perform STORE( neighbour, cost ) 

end if 
neighbour = NEXT_NEIGHBOUR( neighbours ) 

end do 
direction = NEXT_DIRECTION( direction ) 

end do 
end if 

end procedure 
Algorithm 5.4 
Propagate the distance transform the SW corner algorithm. 

In Algorithms 5.3 and 5.4 the function FACTOR is the only process which has not 

been previously described. In this process the function CONFIDENCE extracts the 

confidence value of a quadtree node. The details of FACTOR are given in Algorithm 5.5. 
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function FACTOR( behaviour, Q ) 
if ( BLACK( Q ) ) then 

COSt = oo 

else if ( WHITE( Q.) ) then 
if ( behaviour = OPTIMUM ) then 

cost =1.0 
else if ( behaviour = CAUTIOUS ) then 

cost = 1.0 + (1 - CONFIDENCE(Q) 
else 

cost = 1.0 + CONFIDENCE(Q) 
endif 

else 
cost =0.0 

endif 
return ( cost ) 

end function 
Algorithm 5.5 

Factor algorithm. 

During the course of exploring an environment the robot will traverse free space 

quadrants which have been visited earlier in the robot's journey. A mechanism is needed 

to update the free space confidence of a quadrant that has been revisited. The free space 

confidence, which is calculated for the current visit by the robot to the quadrant, must be 

added to the free space confidence generated on previous visits to the quadrant by the 

robot. The free space confidence currently stored in a quadrant must be adjusted to 

describe the free space confidence of the portion of the quadrant not swept by the robot on 

this visit. This is done by multiplying the confidence value stored in the leaf by the free 

space confidence of the area not swept by the robot on this visit Algorithm 5.6 details a 

procedure called UPDATE_FREE_CONFIDENCE. This procedure describes the 

calculation of the updated free space confidence of a quadrant given the path length of the 

current journey through the quadrant and the confidence value currently stored in the 

quadrant. 

procedure UPDATE_FREE_CONFIDENCE( quadrant, path_length ) 
confidence = [path_length * ROBOT_AREA] / AREA( quadrant ) 
new = GET_CONFIDENCE( quadrant ) * [1 - confidence] + confidence 
perform STORE_CONFIDENCE( quadrant, new ) 

end procedure 

Algorithm 5.6 

Ufxiate free space confidence algorithm. 
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The U P D A T E _ F R E E _ C O N F T D E N C E procedure must be incorporated into the 

PATH_EXECUTION algorithm which was described in Algorithm 4.6. The revised 

algorithm is described in Algorithm 5.7. 

procedure PATH_EXECUTE( Q, start, goal, 3top, sensors ) 
obstacle = FALSE 
repeat 

leaf = LOCATE( Q, start ) 
distance_transform = EXTRACT( leaf ) 
if ( distance_transform = 0 ) then 

subgoal = goal 
else 

subgoal = OPTIMISE( Q, leaf,goal ) 
end if 
perform MOVE( 3ubgoal, stop, sensors ) 
if ( stop * subgoal ) then 

obstacle = TRUE 
end if 
perform UPDATE_FREE( Q, start, stop ) 
start = subgoal 

until ( start = goal or obstacle ) 
end procedure 

Algorithm 5.7 
Path Execution algorithm. 

The update of free space confidence values can also include the information detected by 

sonar sensors on board the robot. As the sonar maps described in Chapter 2 are grid 

based, it a straight forward procedure to calculate what percentage of a quadrant is 

covered with free space cells detected by sonar. This value can be incorporated into the 

updated confidence value in exactly the same manner as the area swept by the robot 

during path execution. Examples of this update are provided in Section 5.6. 

Once the robot has completed path execution, the navigation system is ready to update 

the environment map and the confidence model of the environment. Path execution 

terminates on one of two conditions; either the robot reached the goal or it encountered an 

obstacle. If the robot reaches the goal, the environment map does not change; however 

the confidence that the environment is being correctly modelled increases. If the robot 

encounters an obstacle the environment map is updated to show the presence of the 

obstacle and the confidence model of the environment is also updated. The general 
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algorithm for updating the quadtree model of the environment was presented in Algorithm 

4.10. This algorithm must be revised to include the update of the confidence model of the 

environment. 

Once the algorithm to update the environment models is invoked, it finds the leaf node 

in the quadtree where the robot is located. This leaf is checked to see if the obstacle 

sensor readings occur inside this quadrant. If sensor readings occur inside this leaf 

quadrant then the leaf quadrant is divided into four sub quadrants. Quadrant division 

continues until the leaf in which the robot is located is isolated from the leaves the sensor 

readings are in, or the leaf reaches the smallest size resolution allowable. Every time a leaf 

is divided the free space confidence of the new leaves is calculated by determining what 

portion of each child quadrant has been swept by the robot Once the location of the robot 

has been isolated from the sensor readings and the free space confidences have been 

updated, the sensor readings detected by the robot are each in turn isolated to a leaf of the 

smallest size resolution. This operation may require the division of leaf quadrants and the 

updating of free space confidences. 

Isolating the sensor reading to the smallest resolution leaf may be seen as unnecessarily 

fragmenting the leaves which span obstacles. A consolidation procedure which can detect 

that neighbouring leaves are part of the same obstacle is called to prune and the quadtree 

back to the parent of the leaves. Also the consolidation procedure combines the free space 

confidences of the merged children nodes. This is done by summing up the confidence 

values of all the children nodes and dividing the sum by (4) four. The revised 

M O D E L J J P D A T E algorithm is presented in Algorithm 5.8. 
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procedure MODEL_UPDATE( Q, start, stop, sensors ) 
exit = FALSE 
repeat 

leaf = LOCATE( Q, stop ) 
if ( SAFE( leaf, sensors ) then 

perform STORE_C0LOUR( leaf, WHITE ) 
confidence = CALCULATE_CONFIDENCE( start, stop, leaf ) 
perform STORE_CONFIDENCE( leaf, confidence ) 
exit = TRUE 

else if { leaf is smallest resolution ) then 
colour = CLASSIFY( leaf, sensors ) 
perform STORE_COLOUR( leaf, colour ) 
perform STORE_CONFIDENCE( leaf, 1.0 ) 
exit = TRUE 

else 
perform STORE_COLOUR( leaf, GREY ) 
perform DIVIDE( leaf, child ) 
for i = 1 to 4 do 

confidence = CALCULATE_CONFIDENCE( 3tart, stop, leaf ) 
perform STORE_CONFIDENCE( child[i], confidence ) 

end for 
end if 

until ( exit ) 
for ( i = 1 to number of sensor readings ) do 

exit = FALSE 
repeat 

leaf = LOCATE( Q, sensor[i] ) 
if ( leaf is smallest resolution ) then 

perform STORE_CONFIDENCE( leaf, 1.0 ) 
perform STORE_COLOUR( leaf, BLACK ) 
exit = TRUE 

else 
memory = GET_CONFIDENCE( leaf ) / 4 
perform DIVIDE( leaf, child ) 
for i = 1 to 4 do 

perform STORE_CONFIDENCE( child[i], memory ) 
end for 

end if 
until ( exit ) 

end for 
perform CONSOLIDATE( Q ) 

end procedure 
Algorithm 5.8 
Model Update algorithm. 
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5.4 Planning Safe Paths 

Section 3.3.6 discussed the problem of considering the safety of a robot during path 

planning. This section presents a method for planning paths that take into account robot 

safety. The method is based upon an extension to the distance transform methodology of 

path planning. This section will show how path planning with robot safety criteria can be 

incoiporated into E E A and the [Jarvis et. al. 86] grid based path planner. 

The distance transform can be modified to include distance from obstacles safety 

information. Conceptually the distance transform is equivalent to dropping the goal 

"pebble" into the environment "pond" and watching the resulting wave front flow around 

obstacles and eventually through all free space in the environment. The "pebble in the 

pond" concept can be extended further, by observing that as the wave front flows into 

obstacles, some of the wave front is reflected back. In other words the obstacles are 

exerting a repulsive potential, and the strength of this potential varies inversely with the 

distance from the obstacle. The distance transform can be inverted into an "obstacle 

transform" where the obstacle cells become the goals. The resulting transformation yields 

for each free cell in the data structure the minimal distance from the centre of the free 

space cell to the boundary of an obstacle cell. Refer to Figure 5.14 for an example of the 

obstacle transform. Figure 5.14 (A) shows the grid based obstacle transform and Figure 

5.14 (B) shows the quadtree based obstacle transform. The obstacle transform values for 

the quadtree represent the distance to the nearest obstacle from the centre of the quadrant. 

The grid based obstacle transform values represent the distance to the nearest obstacle 

from the furthest boundary of the grid cell. To determine the distance to nearest obstacle 

from the centre of any grid cell, subtract 0.5 from the obstacle transform value. 
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Figure 5.14 

Obstacle Transforms grid based and quadtree based. 

Prior to planning a path a preprocessing step generates the obstacle transform. In the 

grid based distance transform, this is a straight forward affair. The obstacles cells are 

marked as goals, and the distance transform is calculated. The use of such a 

preprocessing step in quadtree based path planning was first described by [Kambhampati 

et. al. 86]. This approach used the obstacle transform information together with the A * 

algorithm to plan safe paths. The preprocessing algorithm used by [Kambhampati et. al. 
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86] is a variant of the [Samet 88] distance transform for quadtrees algorithm. The Samet 

algorithm exploits the structure of the quadtree to efficiently generate the obstacle 

transform. The research reported in this section uses the [Kambhampati et. al. 86] 

preprocessing algorithm to generate the obstacle transform. 

Planning safe paths is done by propagating a new cost function from the goal cell 

through the free space cells, which is a weighed sum of the distance and obstacle 

transforms. This cost function will be refered to as the "path transform" (PT). The path 

transform for a cell c is defined as: 

PT(c) = DT(c) + a obstacle(OT(c)) 

where DT(c) is the value of the distance transform from the goal. The function 

obstacle(OTfc)) is a cost function which represents the degree of discomfort the nearest 

obstacle exerts on a cell c. The weight a is a constant \. 0 which determines by how far 

the solution path will avoid obstacles. 

Finding the shortest path to a goal with consideration of robot safety using path 

transforms is done in the same manner as finding the shortest path using distance 

transforms, by following the steepest descent path of the path transform. The path 

transform unlike potential field planning does not yield a transform with local minima, 

because all the costs of paths to the goal from each cell are calculated. The path transform 

value stored for each cell is the minimum propagated path cost to the goal. Examples of 

the path transform applied to grids and quadtrees with different values of a are shown in 

Figures 5.15 and 5.16 respectively. The lightly shaded quadrants in both figures indicate 

the solution path from a start location (S) to a goal location (G). Figures 5.15 (A) and 

5.16 (A) show the path transform with a = 0.0. This results in a normal distance 

transform where the shortest path to the goal is best. Figures 5.15 (B) and 5.16 (B) 

shows the path transform with a = 0.5. This results in a solution path which deviates 

around the obstacles, and takes a safer path to the goal. Figures 5.15 (C) and 5.16 (C) 
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show the path transform with a = 1.0. This results in a solution path which deviates 

further around the obstacles, and takes the safest path to the goal. 

34| 

| 31 1 

9 

6 

3 

0 

10 

7 

4 

11 

8 

12 

11 

15 

14 

1<1 

28 

25 

22 

19 

18 

/ 
16 

29 

26 

23 

22 

/ 
20 

19 

-S'P | 20 

30 

27 

26 

24 

23 

22 

23 

31 

30 

38 

35 

34 

33 

26 

25 

26 

29 

28 

29 

39 

38 

37 

35 

36 

33 

32 

31 

32 

42 

41 

39 

38 

37 

36 

35 

34 

35 

45 

/ 
43 

42 

41 

40 

39 

38 

37 

38 

9> 
47 

46 

45 

44 

43 

42 

41 

40 

41 

76 

1 65 | 

19 

8 

7 
d> 

20 

/> 
12 

11 

21 

IJ 
21 

25 

U 
25 

29 

21 

29 

54 

50 

46 

41 

33 
.> 
25 
33 

53 

42 

3 f 
3» 

/ 
29 

37 

45 

54 

M 
r 46 
42 

41 

40 

34 

38 

55 

47 

54 

72 

67 

59 

jfl 

59 

II 
46 

38 

38 

50 

42 

41 

64 

(50 

56 

5* 

63 

67 

62 

54 

46 

44 

63 

60 

/ 
59 

60 

59 

55 

51 

49 

47 

64 

r4 
<a 
62 

61 

58 

55 

53 

51 

50 

9> 
66 

65 

65 

62 

59 

57 

55 

54 

53 

B 

Figure 5.15 

The path transform applied to grids with different values of a. 
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The path transform applied to quadtrees with different values of a. 
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The path transform like the distance transform when applied to quadtrees yields a 

coarse solution path of free space quadrants between the start and goal locations. The 

Optimise Path algorithm presented in Section 4.4 could be used to find a fine solution 

path. However since this algorithm finds the path to the goal which is shortest, the 

.solution path is likely to run down the sides of obstacles or clip the comers of obstacles. 

Applying the Optimise Path algorithm to the path planning problem posed in Figure 

5.16(b) will generate a path which runs along the edges of the obstacle. Using such a 

strategy defeats the whole purpose of generating the path transform. 

A n alternate strategy for generating a safe path is for the robot to steer through the 

middle of the intersection of entry and exit boundary edges of quadrants. This strategy 

generates relatively safe paths, and is reasonable during the exploration of an environment 

by the robot. However this strategy suffers the "too far" problem, in situations where the 

free space quadrants are large in size. 

Choosing the mid point of the intersection of the boundary edges of quadrants does 

not guarantee that this point is the safest point along the intersection edge. The safest point 

on the intersection edge is found by examining the obstacle transform values of the 

quadrants which are adjacent and normal to the intersection edge. The obstacle transform 

values represent the distance from the centre of the quadrant to the nearest obstacle. While 

it is not possible to calculate the exact distances the intersection edge is from the nearest 

obstacle, an acceptable approximation can be made. The safest point is located at the point 

which lies in between the obstacle transform values. Refer to Figure 5.17 for an example 

of a fine solution path which is generated by using the safest points on the intersection 

edge between the entry and exit edges of solution path quadrants. The obstacle transform 

values of each quadrant are displayed, together with the safety values of the safest points. 

The safest points are marked with the heavy crosses. The obstacle transform values of 

adjacent quadrants which do not exist are assumed to be (0) zero. This only exists for 
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quadrants which are located on the outside perimeter of the quadtree. This strategy keeps 

the solution path away from the outside boundaries of the quadtree. 

Figure 5.17 

The fine solution path generated by using the safest points on the intersection edges. 

The fine solution path which is described by a sequence of safest points along the 

intersection edge of quadrants suffers the "too far" problem, and tends to make 

unnecessary detours. The solution path is in need of shortening and straightening. 

The review of planning "safe" paths in Section 3.3.6 discussed the path improvement 

technique reported by [Thorpe 84] called "path relaxation". This technique was based 

upon sliding points of the solution path a small distance, and recomputing the safety cost 

of the path. This procedure of sliding and recomputing the cost of the solution path was 

iterated until the change in path cost between iterations converged to a small difference. 

The approach used by Thorpe could be applied to this problem. However the 

computational cost of iterating until a solution emerges is high. Instead, an improved path 

can be achieved by relaxing the safety criteria of the safest points. The user decides what 

is the desirable minimum distance smin the solution path can safely approach an obstacle. 

The safest point is expanded along the intersection edge, such that all points along the 
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expanded safety interval are at least J T O „ from any obstacle. The Optimise Path process 

(Algorithm 4.7) can n o w be used to find a fine solution path. Normally this algorithm 

uses the full intersection edge between quadrants to shorten and straighten the solution 

path. However in this situation only the expanded safety edge component of the 

intersection edge is used to pull -taû t the solution path. Figure 5.18 shows the results of -fcqut 

applying the path improvement algorithm to the problem posed in Figure 5.17. The safety 

edges are marked as broken lines between heavy crosses. The safety edges have been 

specified to have a safety criteria of Smin = 1.5. The resulting solution path is shorter and 

straighter than the original solution given in Figure 5.17. 

Figure 5.18 

The fine solution path generated using the expanded safety edge and the Optimise Path Algorithm. 

Applying the path improvement algorithm to the problem of finding "safe" paths posed 

in Figure 5.16 results in the solutions given in Figure 5.19. This figure illustrates the path 

improvement algorithm applied to the three G©jtase-paths generated with cc = 0.0,0.5 and coarse 

1.0. The safety edges have been specified to have a safety criteria oismin = 1.0. 
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Figure 5.19 

The path improvement algorithm applied to the three cov^se-paths shown in Figure 5.16. coarse 

The details of the distance safety cost function must be discussed. Various cost 

functions were used, but some had properties that were hard to handle. Linear cost 

functions similar to those reported by [Kambhampati et. al. 86] were investigated first. 

Such functions have the advantage of ease of computation. However, these functions did 

not exert enough repulsion to always deviate the robot from the shortest path. Increasing 

the slope of the cost function reduced the distance over which the function exerted an 

influence. To remedy this situation exponential functions were used. These functions had 

the desired effect of altering the solution path. However, the problem with exponential 

functions is that they never reach zero, so all the objects have an effect on the solution 

path, even when the robot is located at significant distances from obstacles. T o solve this 

problem the exponential function was truncated at a fixed distance, but this left furrows 

or trenches in the path cost function, and the solution paths tended to get caught in these 

furrows. Similar experiences with these types of cost functions were reported by [Thorpe 

84], Thorpe found that the most effective cost function was a cubic function that ranges 
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from zero at some maximum distance, set by the user, to the obstacles maximum cost at 

zero distance. Such a cost function has the advantages of: creating a saddle between the 

repulsion potential peaks of neighbouring obstacles, ease of computation, and having its 

effects bounded in a local area. This research found experimentally that a cubic function 

of the type suggested by [Thorpe 84] produced satisfactory results. Experiments using 

quadratic functions instead of cubic functions also produced satisfactory results. In the 

results presented in this section a cubic function of the following form was used as the 

function obstacle: 

obstacle(x) = a3 - x3 

where x is the value of the obstacle transform for a free space quadrant, and a. is the 

maximum range of the effect of the obstacle function. In the results reported in this 

section a was set to (4) four. 

An interesting spin-off of the path transform when applied to grids is that it forms a 

better contour path for a robot to execute the behaviour of "visit all" path planning than the 

contour path generated by the distance transform. The distance transform forms circular 

contour patterns which radiate from the goal points. The path transform, on the other 

hand, forms contour patterns which slope towards the goal, but also follow the shape 

profile of obstacles in the environment Figures 5.20 and 5.21 show the distance and path 

transforms for a path planning problem in an indoor environment. These figures also 

show the robot execution paths for the "visit all" path planning behaviour for each form of 

transform. The path transform produces the better execution path, since it produces a path 

which has less turns and has more path segments that are straight. The distance transform 

in Figure 5.20 produces a path which requires 37 turns and has an average length of 2.00 

units for each path segment. In contrast the path transform in Figure 5.21 produces a path 

which requires 19 turns and has an average length of 4.05 units for each path segment. 
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Visit all path planning behaviour using the distance transform. 
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Visit all path planning behaviour using the path transform. 
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5.5 Planning Best Paths 

This section presents a method for extending the EEA and the [Jarvis et. al. 1986] grid 

based path planner to allow planning "best" paths that take into account both robot safety 

and the cost of traversing unknown regions in the environment. This method is based 

upon fusing the "conservative" and "safe" path planning behaviours. 

Section 5.5.2 presented the mechanism for generating the "conservative" path planning 

behaviour. This behaviour was generated by propagating a distance transform through the 

quadtree multiplied by a factor function. The factor function which was used evaluated to 

1 + [1 - confidence], where [1- confidence] was the measure of the confidence that the 

system had in a leaf not being free space. Unknown quadrants were assumed to be free 

spaces, with zero (0) confidence. 

Section 5.4 presented the mechanism for planning "safe" paths. This was done by 

propagating through the quadtree the "path transform" which was a weighted sum of the 

distance and obstacle transforms. 

The "best" path planning behaviour can be achieved by propagating a new cost 

function through the quadtree. The new cost function is generated by multiplying the 

"conservative" factor function by the values of the path transform. The new cost function 

BEST for a leaf quadrant q is defined as: 

BEST(q) = (1 + (1 - confidence(q))) * PT(q) 

where PT(q) is the value of the path transform from the goal, and confidence(q) is the 

confidence value of the leaf q being free space. 

Once the transform for "best" path planning has been generated, a fine solution path 

must be found, using the path improvement algorithm described in Section 5.4. Figure 

5.22 shows an example of planning "best" paths between a start (S) and a goal (G). 

Figure 5.22 (A) shows the confidence values the E E A has in the free space quadrants 
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prior to path planning. Figure 5.22 (B) shows the transform associated with the "best" 

path planning behaviour using a safety weighting of a = 0.5. Figure 5.22 (B) also shows 

the fine solution path which was found using a safety criteria of Smin = 1-0 an^ * e zigzag 

rule (Section 4.4.1). 

B 

Figure 5.22 

Best path planning behaviour with quadtrees. 

-144-



The cost function B E S T which used to compute "best" paths for quadtrees can be used 

to compute the "best" paths for grids. The function confidence(q) is evaluated in a 

different manner. In the grid data structure grid cells are either known or unknown, 

therefore the confidence(q) is evaluated in the following manner 

confidence(q) = 0ifq is unknown 

confidence(q) = lifq is known 

Figure 5.23 shows an example of planning "best" paths for grids between a start (S) 

and a goal (G). In this figure cells that are occupied by obstacles are coloured black and 

free space cells are coloured white. Unknown cells are shown in two shades of grey. The 

light grey cells are unknown free space cells and the darker grey cells are unknown 

obstacle cells. This figure shows the transform associated with the "best" path planning 

behaviour using a safety weighting of a = 0.4, and it also shows the fine solution path to 

the goal. The results obtained with the "best" path planning behaviour for grids are 

similar to those obtained by [Thorpe 84]. Thorpe's approach, based on an A * type 

algorithm, was reviewed in Section 3.3.6. Thorpe searches for the nearest obstacle to the 

grid cell which is considered to be part of the solution path, while the "best" path 

approach computes the repulsion costs for all grid cells prior to path planning. 
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Figure 5.23 

Best path planning behaviour with grids. 

5.6 Experimental Results 

The preceding sections of this chapter described eight different path planning 

behaviours, these being: "optimum", "adventurous", "conservative", "learn all", "visit 

all", "forgetful", "safest" and "best" path planning behaviours. This section presents one 

result for each type of path planning behaviour, with the exception of the "optimum" path 

behaviour for which results were presented in Chapter 4. The seven experimental results 

are presented in separate subsections. Each experiment uses the sonar data which was 

collected in Chapter 2. Chapter 2 presented four experimental results of map making 

(namely Figures 2.17 - 2.20). These four results have been used as input to the extended 

EEA. The extensions to the navigation algorithm to include path planning behaviours 

were implemented on a Macintosh II microcomputer. 
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5.6.1 Conservative Path Planning Experiment 

Figure 5.24 shows the results of the E E A operating in "conservative" path planning 

mode on the environment map shown in Figure 2.17. This experiment shows the E E A 

favouring a path to the goal which lies in a region of the environment that has been 

mapped. The E E A avoids the unknown regions of the environment, through which a 

solution path to the goal passes if the "optimum" path planning behaviour was selected. 

The map shown in Figure 2.17 was converted into a quadtree model by the EEA. The 

quadtree model is displayed in Figure 5.24 (A) together with the confidence values of the 

free space quadrants which were extracted from the sonar map, and the start (S) and goal 

(G) positions. Figure 5.24 (B) displays the distance transform associated with 

"conservative" path planning and the solution path between the start and goal positions 

using F U L L path optimisation (Algorithm 4.7) and the zigzag rule (Section 4.4). 
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Figure 5.24 

Conservative path planning behaviour. 
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5.6.2 Adventurous Path Planning Experiment 

Figures 5.25 and 5.26 show the results of the E E A operating in "adventurous" path 

planning behaviour mode on the environment map shown in Figure 2.17. This 

experiment uses the same data the "conservative" path planning experiment used (Section 

5.6.1). This experiment shows how the E E A deliberately avoids mapped regions, and 

instead favours a path to a goal which passes through unknown regions. The quadtree 

model is displayed in Figure 5.25 (A) together with the confidence values of the free 

space quadrants which were extracted from the sonar map, and the start (S) and goal (G) 

locations. Figure 5.25 (B) displays the distance transform associated with "adventurous" 

path planning and the solution path between the start and goal. The solution path is 

computed using the using two (2) quadrant R E D U C E D look ahead path optimisation 

(Algorithm 4.8) and the zigzag rule. 

During the course of path execution to the goal the robot encounters an obstacle at the 

position R as shown in Figure 5.25 (B). At this point the E E A instructs the mobile robot 

to collect more sonar range readings and build a new map. From the new map data the 

quadtree is reconstructed with new confidence values as shown in Figure 5.26 (A). The 

"adventurous" distance transform is recomputed using the reconstructed quadtree, and a 

new path is planned from the position R to the goal G as shown in Figure 5.26 (B). The 

new path is computed using the using the two (2) quadrant R E D U C E D look ahead path 

optimisation function and the zigzag rule. 
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Figure 5.25 

Adventurous path planning behaviour. 
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Figure 5.26 

Continuation of the Adventurous path planning behaviour example started in Figure 5.25. 
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5.6.3 Learn All Path Planning Experiment 

Figures 5.27 - 5.30 show the results of the E E A operating in "learn all" path planning 

behaviour mode on the environment map shown in Figure 2.20. Diagram (A) of each 

figure shows the growing confidence values of quadrants in the quadtree as the 

environment is progressively learnt. Diagram (B) of each figure shows the "learn all" 

distance transform for the updated quadtree model. The quadtree model is displayed in 

Figure 5.27 (A) together with the confidence values of the free space quadrants which 

were extracted from the sonar map, and the start (S) and goal (G) locations. Figure 5.27 

(B) displays the distance transform and the "learn all" path between the start and goal 

positions. 

Once the goal specified in Figure 5.27 has been reached the EEA relocates the goal into 

the quadrant with the lowest confidence value, and a "learn all" path is generated from the 

current robot location to the new goal. Figure 5.28 shows the new goal position and the 

robot's "learn all" path to the new goal. During the course of the "learn all" behaviour the 

robot encounters an obstacle as it tries to reach the goal specified in Figure 5.29. At this 

point the E E A instructs the mobile robot to collect more sonar range readings, build a new 

map and reconstruct the quadtree with new confidence values, as shown in Figure 5.30 

(A). Since the goal was located in a position which was occupied by an obstacle, it is 

assumed that the goal has been reached, and the goal is relocated as shown in Figure 5.30 

(A). A new "learn all" path is planned and executed from the current robot location to the 

relocated goal. Once the robot has reached this goal, it has completely learnt the 

environment. At this point it proceeds directly to the first goal that was specified in Figure 

5.27. 
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Learn all path planning behaviour. 
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Figure 5.28 

This figure continues the experiment started in Figure 5.27. 
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Figure 5.29 

This figure continues the experiment started in Figure 5.27. 
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This figure continues the experiment started in Figure 5.27. 

-156-



5.6.4 Visit All Path Planning Experiment 

Figure 5.31 shows the results of the navigation system operating in "visit all" path 

planning behaviour mode on the environment map shown in Figure 2.20. Figure 5.31 

(A) shows the quadtree model of the environment together with distance transform 

associated with "visit all" path planning, and the start (S) and goal (G) locations. Figure 

5.31 (B) displays the "visit all" solution path between the start and goal positions. To 

ensure that the robot does not get caught in a comer and have to traverse quadrants which 

have already been completely swept, the robot moves to the quadrant with the highest 

distance transform value. A quadrant is only swept if there are no neighbouring quadrants 

with higher distance transform values. The paths the robot takes when it moves to 

quadrants with higher distance transform values are shown with broken lines in Figure 

5.31 (B). The arrow heads on the broken lines indicate the directions of robot motion. 

At the very end of the execution of the "visit all" path the robot encounters an obstacle 

at the goal position. At this point the E E A instructs the mobile robot to collect more sonar 

range readings, build a new map and reconstruct the quadtree, as shown in Figure 5.31 

(B). The new sonar data only changes the classification of one quadrant in the quadtree 

from free space to occupied by an obstacle. The structure of the quadtree has not changed 

and therefore it is not necessary to generate a fresh distance transform, and a new visit all 

path is not planned. 
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Figure 5.31 

Visit all path planning behaviour 
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5.6.5 Forgetful Path Planning Experiment 

Figures 5.32 - 5.34 show the results of the E E A operating in a combination of 

"optimum" path planning and "forgetful" behaviour modes on the environment map 

shown in Figure 2.17. The quadtree model of the environment is displayed in Figure 5.32 

(B) together with distance transform associated with "optimum" path planning, and the 

start (S) and goal (G) locations. Once the "optimum" path distance transform has been 

generated, a fine execution path is planned using the F U L L path optimisation function and 

the zigzag rule. While the robot is executing the "optimum" path, the "forgetful" 

behaviour is simultaneously decaying the knowledge of the environment by 2 0 % every 30 

clock ticks. 

Figure 5.32 (B) shows the solution path which has been executed between the start 

and goal locations, and the associated free space confidence values after 60 clock ticks. 

Figure 5.32 (A) displays the solution path which has been partially executed between the 

start and goal positions, and the associated free space confidence values after 120 clock 

ticks. Figure 5.32 (B) displays the executed path, and the associated free space 

confidence values after 180 clock ticks. Shortly after the 180 clock tick snap shot, the 

robot encounters an obstacle. At this point the E E A instructs the mobile robot to collect 

more sonar range readings and build a new map and reconstruct the quadtree. Figure 5.34 

(A) shows the quadtree model with the new confidence values. A new "optimum" path is 

planned and executed from the current robot position to the goal. This is shown in Figure 

5.34 (B). 
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Figure 5.32 

Optimum and Forgetful path planning behaviours. 

-160-



0 

18 

18 

II 

0 

0 

40 

0 

0 

0 

40 

0 fl 

1 . 

0 

0 

0 

20 

20 

20 

20 

20 

20 

0 

0 

3 

0̂ 
25 

20 

20 

• 

0 

20 

20 

0 

©0 

20 

20 

0 0 

0 

14 

20 

20 

0 

20 | 

20 

20 

0 

0 

1 ° 

jo 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A 

0 

0 

0 

1 6 

0 

20 

0 

20 

0 

0 

1 

0 

0 

-0 
^ 5 

© 

0 

u 

0 

B 

Figure 5.33 

This figure continues the experiment started in Figure 5.32. 
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Figure 5.34 

This figure continues the experiment started in Figure 5.32. 

-162-



5.6.6 Safest Path Planning Experiment 

Figures 5.35 and 5.36 show the results of the E E A operating in the "safest" path 

behaviour mode on the environment map shown in Figure 2.18. The quadtree model of 

the environment is displayed in Figure 5.35 (A) together with the start (S) and goal (G) 

locations. In Figure 5.35 (B) the "safest" path distance transform has been generated 

using a weighting of a = 0, which results in "optimum" path planning behaviour. The 

fine execution path has been planned using the F U L L path optimisation function and the 

zigzag rule together with a safety clearance of smin = 2.0. Since the fine path passes 

through quadrants of the smallest resolution which are in close proximity to obstacles, the 

safety clearance feature has no effect on the path. Figure 5.35 (B) shows the "safest" path 

distance transform has been generated using a weighting of a = 0.1. The fine execution 

path has been planned using the F U L L path optimisation function and the zigzag rule, 

together with a safety clearance of smin = 2.0. This fine path is safer than the path 

generated in Figure 5.35 (A). The safety clearance feature causes the fine path to be 

generated through the middle of the free space quadrants which lie in the solution path. 

Figure 5.36 (A) shows the "safest" path distance transform has been generated using a 

weighting of a = 0.3. The fine execution path has also been planned using the F U L L 

path optimisation function, the zigzag rule, and a safety clearance otsmin = 2.0. This fine 

path is safer than the paths shown in Figure 5.35 (A) and (B). Even though some of the 

quadrants in the solution path are further than 2 units from the nearest obstacle, the safety 

clearance feature causes the fine path to be generated through the middle of these free 

space quadrants. This is due to the close proximity of the outside boundary of the 

quadtree. Figure 5.36 (B) shows the "safest" path distance transform has been generated 

using a weighting of a = 0.5. The fine execution path has also been planned using the 

F U L L path optimisation function, the zigzag rale, and a safety clearance of smin = 2.0. 

This fine path is safer than all other attempts at generating safe paths. Due to the large 

safety clearance from obstacles, the fine path can be pulled taut through the free space 

quadrants which form the coarse solution path. 
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Figure 5.35 

Safest path behaviour. 
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Figure 5.36 

This figure continues the experiment started in Figure 5.35. 
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5.6.7 Best Path Planning Experiment 

Figure 5.37 shows the results of the E E A operating in the "best" path behaviour mode 

on the environment map shown in Figure 2.17. This experiment shows the E E A 

operating in the same environment shown in Figure 5.24. Figure 5.24 showed the E E A 

operating in "conservative" path planning mode. The "conservative" planning behaviour 

kept the solution path in known regions of the environment. However, the path skirted 

the edges of obstacles. Avoiding the edges of obstacles while favouring known regions of 

the environment can be achieved by the "best" path planning behaviour. Figure 5.37 

shows the robot executing a safe path with greater clearance from obstacles compared to 

the path shown in Figure 5.24. Figure 5.37 (A) shows the quadtree model of the 

environment, the confidence values of the free space quadrants which were extracted from 

the sonar map (Figure 2.17), and the start (S) and goal (G) locations. Figure 5.37 (B) 

shows the distance transform for the "best" path which was generated using a weighting 

of a = 0.4, together with a fine solution path that uses a safety clearance of s„an - 2-0. 

Note: The distance transform values marked with (*) in Figure 5.37 (B) were too large to 

display in the available space. 
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Figure 5.37 

Best path planning behaviour. 
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5.7 Conclusions 

This chapter has shown how the Environment Exploration Algorithm (EEA) can be 

extended to exhibit different types of path planning behaviours, other than the "optimum" 

path behaviour. It was shown how the "conservative", "adventurous" and "visit all" path 

planning behaviours which were formulated by [Jarvis et. al. 86, 88] for grid based 

distance transforms could be incorporated to operate within the E E A . This chapter 

presented four new path planning behaviours, namely: the "learn all", "forgetful", "safe" 

and "best" path planning behaviours. 

Operating the extended EEA in the "learn all" path planning behaviour proved to be an 

efficient and effective mechanism for systematically mapping all the unknown regions of 

an environment It was also shown that the "forgetful" behaviour was a useful behaviour 

that could coexist with other path planning behaviours in a meaningful way. 

This chapter developed a new transform called the "path transform" which is superior 

to the distance transform since the path transform can simultaneously consider the safety 

of the robot while finding the shortest path to the goal. The path transform has the 

desirable properties of potential field path planners without suffering the penalty of local 

minima. It was shown how the path transform can be applied to the grid and quadtree data 

structures to produce "safe" path planning behaviour. A new path improvement 

mechanism for "safe" paths in quadtrees was derived and presented. It was also shown 

how the path transform could be used with the grid data structure to produce a new "visit 

all" path. It was shown that the "visit all" path that is generated using path transforms is 

superior to the "visit all" path that is generated using distance transforms. 

A new path planning behaviour called "best" path was derived from fusing the "safe" 

and "conservative" behaviours. The "best" path planning behaviour was implemented for 

the grid and quadtree data structures. The grid implementation of "best" path resulted in 
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similar results to those obtained by [Thorpe 84]. Thorpe did not use distance or path 

transforms to obtain his results. 

In this chapter it was shown that the extended EEA can operate with a real mobile robot 

using live sonar data to navigate autonomously in an unknown environment. Experiments 

were successfully performed which required the robot to navigate to goals while under the 

control of a specific path planning behaviour. 

Finally, the approach to path planning behaviours described in this chapter is in 

keeping with the human path planning strategies which were discussed in Section 3.2. 
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Chapter 6 

Comparison of Distance 
Transform based Path Planners 

6.1 Introduction 

This chapter presents a comparison of path planners that use distance transforms. 

This study analyses the performances of the Environment Exploration Algorithm (EEA) 

which was presented in Chapters 4 and 5, and the [Jarvis et. al. 86] grid based algorithm 

which was reviewed in Chapter 3. It is inappropriate to compare the E E A with other types 

of path planning algorithms, since distance transforms generate paths from every position 

in the environment to the nearest goal, while most other path planners plan only a single 

path from one location to a goal. It therefore follows that distance transforms may be 

computationally more expensive than other path planners. However distance transforms 

compensate for their computational burden by supporting multiple robots, multiple goals 

and different types of path planning behaviours, rather than just the shortest path to the 

goal. The most suitable comparison to make with the E E A algorithm is the [Jarvis et. al. 

86] grid based algorithm. 

It is intuitively obvious that the E E A algorithm which uses quadtrees will outperform 

the Jarvis grid algorithm if the environment is free of obstacles. The converse is obvious 

if the environment is maze like. Environments which are totally free of obstacles, or are 

heavily cluttered in maze like patterns, occur rarely in practice. It is not obvious which 

distance transform algorithm is superior in a typical indoor environment i.e. which one 

has the best average case performance. Figure 6.1 shows three different types of 

environments in which path planning can take place to navigate a robot from a start (S) to 

a goal (G). Figure 6.1 (A) shows an environment which is clear of obstacles. Figure 6.1 

(B) shows a maze like environment. Figure 6.1 (C) shows a typical indoor environment 

The purpose of this research is to determine which distance transform algorithm is best 
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suited to a specific environment given the size of the environment and the degree of clutter 

caused by obstacles in the environment. 

I 

A B C 

Figure 6.1 

Three types of path planning environments. 

[Samet 84] presents a theorem which states that the number of quadrants in a quadtree 

is proportional to the the perimeter of the regions contained in an environment map. Samet 

also states that increasing the map resolution leads to a linear growth in the number of 

quadrants in the quadtree. Therefore the cost of computing the distance transform in 

quadtrees will increase linearly as the resolution of the map grows. In grids, the cost of 

computing the distance transform does not increase linearly, due to the quadrupling of the 

number of cells in the grid every time the map resolution is doubled. This research will 

use Samet's findings to find which distance transform algorithm is best suited to a 

specific environment given the size of the environment and the degree of clutter caused by 

obstacles in the environment. 

The time to compute the distance transform for quadtrees is heavily dependent on how 

quickly the neighbours of a free space quadrant can be found. In the grid data structure 

finding the neighbouring grid cell is a trivial exercise. Finding the neighbours in a 

quadtree is not a straightforward matter. [Samet 82] proposed an algorithm for neighbour 

finding in a quadtree. The basic idea is to ascend the quadtree until a common ancestor is 

located and then descend back down the quadtree in search of the neighbouring quadrant 

A n alternate approach to searching for neighbours is to a build a list of neighbours for 

•171-



each quadrant leaf. This list is built after the quadtree has been constructed. The overhead 

for keeping a list of neighbours for each quadrant leaf is the extra memory required to 

store the list and the processing time required to create the list. 

To evaluate the cost of this additional storage this study also compares the generation 

of distance transforms for quadtrees using neighbour lists and not using neighbour lists. 

The purpose of the comparison is to see whether the memory overhead for storing 

neighbour lists results in a significant improvement in the computation time of the 

distance transform. Another overhead which should be considered is the computational 

cost of building a quadtree. It is assumed that the environment in which the mobile robot 

will operate is modelled as a 2 dimensional array. Therefore there is no work to be done 

to obtain a grid representation of the environment. However this array representation 

must be converted into a quadtree, which is done using the [Samet 81] quadtree 

construction algorithm. The quadtree is constructed only once if a robot is operating in a 

completely known environment. In partially known environments the quadtree 

continually grows as the robot acquires fresh sensor data. In such situations it is difficult 

to estimate h o w much the quadtree will grow each time sensor data is included in the 

environment model. The time to build a complete quadtree can be regarded as the worst 

case. However, in practice, the worst case scenario will not arise since a quadtree can be 

extended in a manner that prevents complete reconstruction using Algorithm 4.10 (Model 

Update). 

In the first stage of path planning for both grid and quadtree data structures, the 

distance transform is propagated through the regions of free space. The second stage is to 

find a "fine" path from the start location to the goal location. Finding a "fine" path with 

grids is a straight forward exercise. However with quadtrees finding a "fine" path 

requires the construction of a visibility graph. There is obviously less computational 

effort associated with finding a "fine" path with grids, compared to quadtrees. To 

compute the "fine" paths for both data structures is an insignificant effort, when 
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compared to the work needed to compute the distance transforms. This fact is highlighted 

in the experimental results presented in Table 6.1. 

M a p Size 

8x8 

16x16 

32x32 

64x64 

128 x 128 

256x256 

512x512 

% Grid Fine Path 

— 

— 

— 

0.353 

0.186 

0.099 

0.049 

% Quadtree Fine 
Path 

— 

— 

1.980 

1.838 

1.376 

1.212 

0.818 

Table 6.1 

Fine Path Planning statistics. 

This table shows the average percentages that the computation of the "fine" path is of 

the whole process of path planning, for grids and quadtrees of various map sizes. The 

statistics in this table were derived from averaging the results of four (4) different 

environments. The diagrams which describe each environment and the associated path 

planning statistics are presented in Appendix A. In Table 6.1 the minus (-) signs mean 

that no statistics could be calculated because the time to compute the "fine" path was too 

small to measure. Even though the computation of the "fine" path for quadtrees is 

considerably slower than for grids, this time is not a significant component of the overall 

path planning computational effort. The real effort in path planning resides in the 

computation of the distance transform. This study concentrates on the analysis of what 
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configurations and concentrations of obstacles in an environment affect the computation 

of the distance transform. 

This Chapter has been organised in the following manner. Section 6.2 presents the 

results of using random data to compare the performance of the quadtree based distance 

transform with the grid based distance transform. Section 6.3 presents the results of 

comparing the performance of the two distance transform based path planners using spiral 

and maze data. Section 6.4 presents the results of using various obstacle shapes in five 

(5) different proportions to compare the performance of the two path planners. Section 

6.5 presents the results of comparing the performance of the two path planners using 

three (3) different indoor environments. 

Finally in Section 6.6 the conclusions that were reached and the insights that were 

gained from comparing the two distance transform based path planners are presented. 

All the experimental work reported in this chapter was done using a Macintosh II 

microcomputer. All timings reported in this chapter are in clock ticks. A clock tick 

represents one sixtieth (1/60) of one second. 

6.2 Random Data 

This section reports on the experimental results which were obtained using random 

data with different percentage concentrations of blocked cells on various environment 

map sizes. The aim of these experiments was to observe what effect different 

concentrations of random data had on the speed of computation of the distance transform, 

and the memory requirements for the grid and quadtree data structures. 

Experiments were conducted for eight (8) different concentrations of random data. The 

concentration of random data is defined to be the ratio of obstacle cells to total number of 

cells in the environment. For example a 3 0 % concentration of random data means that 

3 0 % of the cells in the environment map are obstacles i.e. not free space. The 

concentrations of random data used in this research were 0%, 5%, 10%, 2 0 % , 3 0 % , 
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4 0 % , 5 0 % and 6 0 % . The random data experiments were conducted for seven (7) 

different sized maps. The map sizes which were used were 8x8, 16x16, 32x32, 64x64, 

128x128, 256x256 and 512x512. The figures which describe the experimental 

environments and the associated path planning statistics are presented in Appendix B. 

Figures 6.2 and 6.3 summarise the results of this experiment Figure 6.2 shows eight 

(8) graphs which correspond to the computation time for each different concentration of 

random data. Figure 6.3 shows eight (8) graphs which correspond to the memory 

requirements for each different concentration of random data. Higher resolution versions 

of the graphs shown in both figures are presented in Appendix B. 

Examining the results presented in Figures 6.2 and 6.3 led to the following 

conclusions. A s expected, the distance transform applied to quadtrees in a random 

concentration of 0 % out performed the distance transform applied to grids both in 

computation time and memory requirements as shown in Figures 6.2 (A) and 6.3 (A). 

The computation time varied by a single order of magnitude. The time to compute the 

distance transform in a grid data structure is dependent on the number of cells in the grid, 

and thus the computation time quadruples as the resolution of the map doubles. The time 

to compute the distance transform in a quadtree includes the time required to build the 

quadtree. The time required to construct the quadtree is dependent upon the number of 

cells in the map. Hence the computation time of the distance transform for quadtrees 

follows a similar trend to computation time in grids. The memory advantages of the 

quadtree over the grid are significant for 0 % concentration. The memory requirements for 

the quadtree remain static for all sizes of the environment map, while the memory 

requirements of the grid quadruple as the size resolution of the map doubles. 

Examining the results also shows that the computation time for grids and quadtrees 

increases until the random concentration reaches 3 0 % , for higher concentrations of 

random data the computation time decreases. This is due to the fact that as the number of 

obstacle cells increases the number and length of free space solution paths in the 
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environment decreases. The amount of memory required for building a quadtree 

ch'ininishes as the random data concentration increases. This is due to the fact that a 

quadtree is less fragmented because of the increased likelihood that more random obstacle 

cells will be neighbours to other obstacle cells, and hence can be consolidated into larger 

obstacles. 

For all concentrations of random data other than 0% the grid out performs the quadtree 

in both computation time and memory requirements. Obstacle cells which are randomly 

distributed cause severe fragmentation of the quadtree. Even low concentrations of 

obstacle cells cause undesirable fragmentation of the quadtree. The computation time and 

memory requirements of the distance transform for quadtrees without neighbour lists is 

an order of magnitude greater than the corresponding measures for grids. Computing the 

distance transform for quadtrees with neighbour lists, results in computational savings of 

approximately 3 0 % at the expense of a two fold increase in memory requirements. 

It can be concluded that quadtrees are completely unsuitable in environments where the 

obstacles are randomly distributed as single blocked cells. 
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6.3 Spiral and Maze Data 

This section reports on the experimental results which were obtained using spiral and 

maze configurations on various environment map sizes. The aim of these experiments 

was to observe what effect such configurations of the environment had upon the speed of 

computation of the distance transform, and the memory requirements for the grid and 

quadtree data structures. 

Experiments were conducted for the two environment configurations shown in Figure 

6.4. Figure 6.4 (A) shows a spiral map configuration with a goal at the centre of the 

spiral. Figure 6.4 (B) shows a maze map configuration with a goal at the centre of the 

maze. The spiral and maze were selected to be circular in shape. Circular shapes are the 

worst case type of obstacle to represent with a quadtree; this shape ensures that the 

quadtree that represents this shape is not neady aligned to the boundaries of the obstacle. 

Every time the resolution of the map is increased the quadrants along the perimeter of the 

circular obstacle will divide into smaller quadrants.The experiments were conducted for 

seven (7) different sized maps. The map sizes which were used were 8x8,16x16, 32x32, 

64x64,128x128, 256x256 and 512x512. The path planning statistics for this experiment 

are presented in Appendix C. 

Figure 6.4 

Spiral and Maze Path Planning Environments. 
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Figures 6.5 and 6.6 each show two (2) graphs which summarise the results of this 

experiment. In both figures graph (A) shows the computation time results and graph (B) 

shows the memory requirements results. For this experiment the computation time should 

only be analysed for map sizes greater than 32x32 cells, since no solution path can be 

found for smaller map sizes. Path planning was performed on the smaller maps to 

determine the memory requirements. 

Examining the results for the spiral experiment presented in Figure 6.5 led to the 

following conclusions. As expected the distance transform applied to grids in a spiral 

environment outperformed the distance transform applied to quadtrees both in 

computation time and memory requirements. The results are in line with Samet's theorem 

due to the long perimeter of the spiral. 

The computation time for quadtrees and grids varied significantly, for a map size of 

64x64 cells. However as the resolution of the map doubled, the computation time for 

quadtrees doubled while with grids the computation time quadrupled. For a 512x512 

sized map the computation time for the quadtrees was a factor of three (3) times greater 

than the computation time for grids. For quadtrees with neighbour lists the computation 

time was only a factor of two (2) times greater than the computation time for grids. If this 

trend continued then for larger sized maps quadtrees would outperform grids. However 

this hypothesis could not be proved due to the memory constraints of the experimental 

test bed. 

A similar trend to the pattern of computation times in the spiral map is evident in the 

memory requirements of the spiral map. For a 512x512 sized map the memory 

requirements for quadtrees are of the same order as the memory requirements for grids. If 

this trend continued for larger sized maps, quadtrees would significantly outperform 

grids. However this hypothesis could not be verified. 
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Computing the distance transform for quadtrees with neighbour lists, resulted in 

similar figures to those obtained using random data. Neighbour lists yield average 

computational savings of approximately 3 5 % at the expense of a two fold increase in 

memory requirements. 

It can be concluded that quadtrees are not as good as grids for solving path planning 

problems in spiral map environments for all sized maps up to and including 512x512 

sized maps. Quadtrees could be better than grids for solving path planning problems in 

spiral map environments for maps which are greater than 512x512 cells in size. 

Examining the results for the maze experiment presented in Figure 6.6 led to the 

following conclusions. The distance transform applied to grids in a maze environment out 

performed the distance transform applied to quadtrees both in computation time and 

memory requirements for all sized environment maps up to and including 256x256 sized 

maps. Quadtrees out performed grids for 512x512 sized maps in all respects with the 

exception of the memory requirements for quadtrees with neighbour lists. The results is 

also in line with Samet's theorem, due to the reduced length of the perimeter of the maze 

compared to the perimeter of the spiral. 

Computing the distance transform for quadtrees with neighbour lists, resulted in 

similar results to those obtained for the spiral and random maps i.e. neighbour lists have 

average computational savings of approximately 3 2 % at the expense of a two fold 

increase in memory requirements. 

It can be concluded that quadtrees are better than grids for solving path planning 

problems in maze map environments for environment maps which are greater than 

256x256 cells in size. 
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Computation Time and Memory Requirements for Path Planning in a Spiral environment. 
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Computation Time and Memory Requirements for Path Planning in a Maze environment. 
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6.4 Obstacle Data 

In Sections 6.2 and 6.3 experiments were performed on the worst case situations that 

can arise using distance transform path planners. Environment set ups of this kind are not 

likely to occur in practice. It is far more likely that a smaller set of reasonably sized 

obstacles which are uniformly distributed will occur. This section reports on the 

experimental results which were obtained using various configurations of obstacles with 

different environment map sizes. The aim of these experiments was to observe what 

effect such configurations of the environment had upon the speed of computation of the 

distance transform, and the memory requirements for the grid and quadtree data 

structures. 

Experiments were conducted for five (5) obstacle configurations. The first obstacle 

configuration which was tested is shown in Figure 6.7. This figure shows a circular 

obstacle at the centre of the map. Placing a circular obstacle at the centre of a map causes 

the greatest fragmentation of the quadtree. The other four (4) obstacle configurations had 

two, three, four and five obstacles respectively. The figures which describe these four (4) 

obstacle configurations are presented in Appendix D. These obstacle configurations also 

included objects with straight line edges. However these obstacles were orientated to 

ensure that the edges of the obstacles did not align with any quadrant boundaries in the 

quadtree. The experiments were conducted for seven (7) different sized maps. The map 

sizes which were used were 8x8, 16x16, 32x32, 64x64, 128x128, 256x256 and 

512x512. The path planning statistics for this experiment are presented in Appendix D. 

Figures 6.8 - 6.10 summarise the results of this experiment Figure 6.8 contains three 

graphs which show the computation time results, the memory requirements, and the 

relationship between perimeters of obstacles and computation time for the path planning 

experiment depicted in Figure 6.7. Figures 6.9 and 6.10 each show six (6) graphs which 

correspond to the path planning statistics for the other four obstacle configurations (there 
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are 3 graphs for each obstacle configuration). Higher resolution versions of the graphs 

shown in Figures 6.9 and 6.10 are presented in Appendix D. 

G 

S 

Figure 6.7 

Path Planning in a One Obstacle environment. 

Examining the results presented in Figure 6.8 led to the following conclusions. The 

distance transform applied to quadtrees out performed the distance transform applied to 

grids both in computation time and memory requirements for environment maps which 

are greater than or equal to 32x32 cells in size. The results confirm Samet's theorem and 

show that there is a linear relationship between the perimeter length of the obstacle and 

time of computation of the distance transform in a quadtree, as shown by the Perimeter 

Data graph in Figure 6.9. The distance transform in quadtrees is dependent only on the 

perimeter of obstacles in the environment, while the grid distance transform in contrast is 

dependent on the number of cells in the grid. 

Computing the distance transform for quadtrees with neighbour lists, resulted in 

similar results to those obtained in Sections 6.2 and 6.3. Using quadtrees with neighbour 

lists has average computational savings of approximately 1 8 % at the expense of a two 

fold increase in memory requirements. 

Examining the results presented in Figures 6.9 and 6.10 led to the following 

conclusions. A s the degree of clutter from obstacles in the environment increased the 
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performance of the grid based distance transform improved. For the two obstacle 

environment the distance transform applied to quadtrees outperformed the distance 

transform applied to grids both in computation time and memory requirements for 

environment maps which are greater than or equal to 64x64 cells in size. Similarly for 

three obstacle environments the distance transform applied to quadtrees out performed the 

distance transform applied to grids for environment maps which are greater than or equal 

to 128x128 cells in size. The degradation of performance of quadtree distance transform 

is shown in the Perimeter Data graphs by the increased slope of the line which represents 

the perimeter length versus the computation time. The slope of this line depends on both 

the total perimeter length of all the obstacles in the environment, and the complexity of the 

environment i.e. the number of obstacles in the environment To perform accurate path 

planning the shapes of the obstacles shown in the experimental environments must be 

modelled with reasonable accuracy. This requires a map resolution of at least 128x128 

cells. The quadtree distance transform performs well at this level at resolution for all the 

experiment maps with the exception of the highly cluttered 5 obstacle environment. 

It can be concluded that quadtrees are better than grids for solving path planning 

problems in uncluttered obstacle environments. The map resolution of the environment is 

dependent on the number of obstacles. If only one obstacle needs to be represented the 

resolution can be as low as 32x32 cells. Higher map resolutions are needed as the number 

of obstacles increases. Generally for environments with four or less obstacles a resolution 

of at least 128x128 is needed. Quadtrees are better than grids for cluttered environments if 

it is a requirement that the obstacles in the environment be accurately modelled. At high 

map resolutions in cluttered environments quadtrees offer substantial memory savings in 

addition to the computational savings. 

Computing the distance transform for quadtrees with neighbour lists for the four (4) 

obstacle environments resulted in average computational savings of approximately 2 5 % 

for the two obstacle environment, 1 6 % for the three and four obstacle environments, and 
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1 8 % for the five obstacle environment. For all four obstacle environments the 

computational savings were offset by a two fold increase in memory requirements. 

1 Obstacle Time Data 

0) 10 

S 

to' 

10"= 

an 
•3 io5 

E 
9) 
* 104 

to* 

10" 

30000 

20000 -

E 

10000 

300 400 
Bap Size 

1 Obstacle Memory Data 

•a- GRID MEMORY 
•+• QT MEMORY 
• QTNBR MEMORY 

100 200 300 400 
Dap Size 

1 Obstacle Perimeter Data 

— i > 1 

500 600 

200 

Perimeter 

Figure 6.8 

Path Planning Statistics for a One Obstacle environment. 
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Path Planning Statistics for a Two and Three Obstacle environments. 
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Path Planning Statistics for Four and Five Obstacle environments. 
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6.5 Indoor Environment Data 

In Section 6.4 path planning experiments were performed in environments which were 

cluttered with obstacles. All the obstacles in that experiment were made up of shapes that 

caused the greatest possible fragmentation of the quadtree. In practice, environments of 

this kind are extremely rare. It is far more likely that an environment will contain a variety 

of obstacle shapes. These shapes will range from shapes that cause minimal 

fragmentation of the quadtree e.g. walls in an indoor environment to complex polygonal 

shapes which cause high fragmentation of the quadtree. This section reports on the 

experimental results which were obtained for indoor environments with different 

environment map sizes. The aim of these experiments was to observe what effect such 

configurations of the environment had upon the speed of computation of the distance 

transform, and the memory requirements for the grid and quadtree data structures. 

Experiments were conducted for three (3) indoor environments. The environments 

which were tested are shown in Figure 6.11. Figure 6.11 (A) shows a map of a computer 

laboratory. The laboratory contains a mixture of shapes ranging from straight line walls 

to circular tables. Figure 6.11 (B) shows the maze like map of a horse stable. Figure 6.11 

(C) shows the the map of two rooms in a house.The experiments were conducted for 

seven (7) different sized maps. The map sizes which were used were 8x8, 16x16, 

32x32, 64x64, 128x128, 256x256 and 512x512. The path planning statistics for this 

experiment are presented in Appendix E. 

Figures 6.12 - 6.14 summarise the results of this experiment. Each of these figures 

contains two graphs which show the computation time and the memory requirement 

results for the path planning environments shown in Figure 6.11. 
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Path Planning in three indoor environments. 
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Path Planning statistics for the Computer Laboratory. 
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Path Planning statistics for the Horse Stables. 
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Path Planning statistics for the House with 2 Rooms. 
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Examining the results presented in Figures 6.12 - 6.14 led to the following 

conclusions. The memory requirements for all three environments begins to level out and 

grows at a small rate for environments greater than 64x64 cells in size. This is because the 

number of complex obstacles in all three environments is relatively small. The simple 

obstacles, such as walls, align to low resolution quadrants and therefore do not require 

any additional memory at higher map resolutions. Since the distance transform applied to 

quadtrees is dependent on the number of quadrants in the quadtree, the computation 

performance of the quadtree distance transform is significantly superior to the grid 

distance transform as the map resolution increases. The quadtree distance transform 

outperformed the distance transform applied to grids both in computation time and 

memory requirements for environment maps which are greater than or equal to 128x128 

cells in size, with the exception of the room environment where the grid was superior in 

map sizes smaller than 256x256. If the path planning environments need to be precisely 

modelled then quadtrees offer significant savings both in memory and computational 

requirements for maps which are greater than 128x128 cells in size. 

Computing the distance transform for quadtrees with neighbour lists for the three (3) 

indoor environments resulted in average computational savings of approximately 1 6 % for 

the computer laboratory, 1 8 % for the horse stables, and 2 6 % for the room environment For 

all three environments the computational savings were offset by a two fold increase in 

memory requirements. 

6.6 Conclusions 

This chapter compared the performances of the quadtree and grid distance transform 

path planners. Experiments were performed using a wide ranging variety of test 

environments on different map resolution sizes. From these experiments the following 

insights were gained. 
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Apart from the trivial case where an environment contains no obstacles quadtrees 

should not be considered unless the map resolution size is at least 32x32 cells. Grids are 

the most appropriate data structure for smaller map sizes i.e 8x8 and 16x16. If the 

required m a p resolution is suitable for quadtrees then the shape and distribution of the 

obstacles in the environment must be considered to decide whether or not the quadtree is 

the best data structure to model the environment. 

It was shown that if the environment is made up of small pixel sized obstacles 

randomly distributed, the quadtree is an unsuitable data structure to model the 

environment. Similarly, if path planning is to be done in an environment containing a 

circular spiral quadtrees are also unsuitable. Grids should be used instead. Quadtrees are 

unsuitable in a maze environment unless the map resolution is at least 512x512 cells. 

Clearly the above obstacle configurations are worst case situations and are not likely to 

occur in practice. If an environment contains a small number of obstacles the quadtree is 

the most efficient data structure. One obstacle environments can be represented in a 

quadtree with a m a p resolution as low as 32x32 cells. A s the number of obstacles 

increases the required m a p resolution for the quadtree increases. It was shown that in 

environments containing up to three obstacles the quadtree was the most efficient data 

structure for map resolutions of 128x128 and higher. In environments which have more 

than three obstacles quadtrees are the preferred data structure if the m a p resolution is 

256x256 and higher. The obstacle shapes in these experiments caused heavy 

fragmentation to the quadtree. 

Further investigations were carried out using indoor environments with a mixture of 

obstacle shapes. Some obstacles caused minimal fragmentation of the quadtree while 

others caused heavier fragmentation. The results showed that quadtrees were the 

preferable data structure in map resolution sizes of 128x128 and higher in the majority of 

test cases. Quadtrees were the best suited data structure for all the test cases for map 

resolution sizes greater than 128x128 cells. 
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Quadtrees are a highly suitable data structure if it is a requirement that the obstacles in 

the environment be accurately modelled e.g for object recognition. At high map 

resolutions in cluttered environments quadtrees offer substantial memory savings in 

addition to the computational savings. 

If path planning is to take place in a completely known environment, then the extra 

computational overhead of building neighbour lists can be justified. It was found in all the 

experiments that computing the distance transform with neighbour lists produced an 

average saving in computation time of at least 16%. As the environments become more 

complex the savings in time increased. Throughout all the experiments it was found that 

the penalty for the use of neighbour lists was a two fold increase in memory 

requirements. 

The experiments that were performed in this chapter assumed that the environment was 

known and that the cost of constructing the quadtree was included in the path planning 

statistics. The Environment Exploration Algorithm (EEA) described in Chapter 4 operates 

in unknown environments. This algorithm progressively builds the quadtree while the 

environment is being explored and therefore the costs of constructing the quadtree are 

small. Also since the E E A assumes that unknown areas are free space, the cost of path 

planning will initially be low. A s the knowledge of the environment increases the cost of 

path planning will steadily become greater. Path planning with grids will be expensive 

from the outset. It can therefore by safely assumed that the E E A will perform 

satisfactorily in learning environments of the type that were experimented with in this 

chapter. 
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Chapter 7 

Path Planning for Mobile Robots 
with 3 DOF 

7.1 Introduction 

As reported in Chapter 3 much of the research effort into mobile robot path planning 

has concentrated on the problem of finding paths from a start position to a goal position 

by translation of the robot's body only. The problem of finding paths which require the 

rotation of the robot's body have been largely ignored. This chapter will present a new 

path planning algorithm for mobile robots which have 3 degrees of freedom (DOF) of 

movement, operating in cluttered environments. This algorithm (referred to as "3DOFA" 

for short) has the desirable property of potential field path planners, that of taking 

information about clearance from obstacles into account when planning paths. However 

this method does not have the potential field drawback of suffering from local minima 

problems. In addition the 3 D O F A does not have the computational burden which is 

normally associated with 3 D O F path planners [Brooks et. al. 85, Lozano-Perez 83, 

Schwartz et. al. 83]. The 3 D O F A is guaranteed to find a solution path if one exists. The 

3 D O F A is based on an extension to the path planning methodology of distance 

transforms. The remainder of this section will discuss what features are necessary and 

desirable for a 3 D O F mobile robot path planning algorithm. Section 7.2 presents the 

detail workings of the 3DOFA. Path planning results of the new algorithm are presented 

in Section 7.3. Finally in Section 7.4 a summary of conclusions about the new algorithm 

are presented. 

Section 3.3.5 reviewed 3 D O F path planning. From this review a number of 

observations were made about the shortcomings of past approaches to this problem. The 

global approach [Brooks et. al. 85, Lozano-Perez 83, Schwartz et. al. 83] of building 3 

dimensional graphs is extremely expensive in computational effort. Another drawback of 

the global approach is that it suffers from the "too close" problem since it assumes that 
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that the shortest path is the best path. The alternative to a global approach is a local 

approach [Donald 87] which uses heuristics to guide the search. A heuristic guided search 

greatly improves the execution time of path planning. However, heuristic search is prone 

to failure and the resulting solution path may be neither the shortest nor the safest It is 

simply a negotiable path from the start configuration to the goal configuration. 

The [Ilari et. al. 90] approach to 3 DOF path planning seeks to find the shortest global 

path between the start and goal locations which passes through the middle of the free 

space between obstacles. This path is then searched for a fine path of legal robot 

orientations using heuristics. A major drawback of the [Ilari et. al. 90] approach is that it 

suffers from the "too far" problem. 

A similar idea to the [Ilari et. al. 90] approach has been presented by [Noborio et. al. 

89] which is based on quadtrees. This method finds a coarse solution path of free space 

quadrants between the start and goal locations, such that the minimum width of the robot 

can pass through the solution path quadrants. The co^Fse path is refined using heuristics, course 

Since this method does not take clearance from obstacles information into account, and 

searches for the shortest negotiable path, this method can at times suffer the "too close" 

problem. 

Both the [Ilari et. al. 90] and the [Noborio et. al. 89] approaches are susceptible to 

failure since they are based on heuristic searches. However the probability of this 

occurring is lower than for other heuristic methods, since the heuristics are being used to 

refine a global path which is likely to yield a solution. 

In Section 5.3 an extension to the distance transform called the "path transform" was 

presented. Instead of propagating a distance from the goal wave front through free space, 

a new wave front is propagated which is a weighted sum of the distance from the goal 

together with a measure of discomfort from moving too close to obstacles. This has the 

effect of producing a distance transform which has the desirable properties of potential 
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field path planners i.e. it avoids the "too close" and "too far" clearance from obstacle 

problems, without suffering from local minima problems. 

The path transform offers an elegant and straight forward approach to finding a global 

path between a start and a goal compared to the [Ilari et. al. 90] search for a global path. 

The [Ilari et. al. 90] approach to finding a global path is based upon constructing a 

Voronoi diagram for all the free space regions in the environment and then processing the 

Voronoi diagram to remove branches in the diagram which are not relevant to path 

planning. Figure 7.1 (A) shows an example of the Illari method of building a Voronoi 

diagram. Figure 7.1 (B) shows the path planning version of the Voronoi diagram after it 

has been processed to remove the irrelevant branches in the diagram. This example 

highlights a deficiency of Voronoi diagrams. Voronoi diagrams are sensitive to noise on 

the boundaries of obstacles. The small triangular obtrusion on the boundary causes an 

unnecessary deviation in the global path. There seems to be no mechanism available to 

limit the effect of distant small obstacles. 

A B 

Figure 7.1 

Ilari et. al. Global Path Planning. 

The next step is to add the start and the goal locations to the global path network. Ilari 

joins the start and goal locations to the global path by computing the shortest straight line 

to the global path network which does not intersect with an obstacle. This practice has the 
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nasty side affect of possibly creating non-optimal paths between the start and goal 

locations. Illari then searches the global path network using the A * search for a path 

which maximises clearance from obstacles while minimising the length of the path to the 

goal. 

The Ilari approach to constructing the global path network is cumbersome and the 

resulting path network has serious limitations. The path transform can achieve the same 

objectives sought by Ilari without the drawbacks of Dari's approach. The path transform 

is based upon combining the "obstacle transform" described in Section 5.4 with the 

distance transform. The obstacle transform represents the distance from each free space 

cell to the nearest obstacle. Joining the highest values in the obstacle transform with line 

segements will yield a Voronoi diagram. Instead of generating a Voronoi diagram a cost 

function is applied to the obstacle transform which varies inversely with the distance to 

the nearest obstacle. The cost function exerts its influence over a limited distance. Once 

the path transform has been generated, a solution path to the goal is known for each grid 

cell. This solution path minimises the distance to the goal while keeping a safe distance 

from obstacles. 

The second stage of Ilari's path planner refines the global path to produce a 3 DOF 

path by using heuristics. Ilari notes the drawback of using a heuristic which is based 

solely on minimising the distance to the goal. Ilari proposes two types of heuristics to 

refine the global path. The first class of heuristic tries to select points in free space that 

keep the robot close to the goal while not straying from the global path. This heuristic is 

computed along the whole length of the global path prior to the search for a 3 D O F path. 

The path transform provides the same facility as this heuristic without the need for 

preprocessing. The path transform can be regarded as a heuristic which pushes a robot 

away from obstacles in the direction of the goal. In contrast the Ilari path planner pushes 

the robot toward the goal by the need to keep the robot on the global path, rather than the 

need to keep away from obstacles. 
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The second class of heuristic designed by Ilari has the purpose of keeping the body of 

the mobile robot aligned closely to the global path. This heuristic requires that every point 

in free space must be assigned a most suitable orientation value prior to path planning. A 

suitable orientation is an orientation which has the most chance of overcoming, with the 

fewest reorientations, future bottlenecks along the proposed path. The path transform 

does not provide an equivalent to this class of heuristic. 

Section 7.2 presents a straight forward extension to the path transform which allows it 

to perform in an equivalent manner to the Ilari orientation heuristic. The extended path 

transform can then be used as the basis for a new algorithm (3DOFA) for planning paths 

for mobile robots with 3 D O F . The new algorithm does not have the computational 

burden which is normally associated with 3 D O F path planners and is guaranteed to find a 

solution path if one exists. 

Section 7.3 presents the experimental results of implementing the 3DOFA. Finally in 

Section 7.4 the conclusions that were reached and the insights that were gained from 

investigating the problem of 3 D O F path planning are presented. 

7.2 A New 3 DOF Path Planning Algorithm 

The objective in path planning is for the robot to move from a start configuration to a 

goal configuration. The path transform can only guide a point robot to a point goal 

configuration. The single point path transform specifies a robot with two degrees of 

freedom (translation only along the x and y axis). Selecting one control point on the 

rectangular robot does not provide the path transform with enough information to 

determine whether or not the robot has reached the goal configuration. If w e consider the 

robot to have two control points, one at each end, w e have enough information to 

determine whether the goal configuration has been reached. The problem remains of how 

to extend the path transform to consider the movement of more than one control point on 

the robot. 
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A path transform is computed for each control point on the robot. The path transform 

will describe a solution path from the start configuration to the goal configuration for each 

control point. Figure 7.2 shows a robot with two control points and the path transforms 

which correspond with each control point Figure 7.2 (A) shows a rectangular robot start 

and goal configurations (the heavy dot discriminates between the two ends of the robot). 

The two control points which have been selected on the robot correspond to the mid 

points of the two ends of the robot. Figures 7.2 (B) and (C) show the path transforms for 

each control point. The movement of the individual control points is not independent. 

Only movements of the control points that do not violate the geometry of the robot are 

allowed. Consequently situations will arise where all the path transforms drive the robot 

into "conflict" situations, where all the control points are working against each other. A 

conflict resolution function is needed to handle this problem. This function selects a single 

control point, and the path transform values of this control point are used to guide the 

robot to the next grid cell. The conflict resolution function selects the control point with 

the largest path transform value, because this is the control point which is furthest from its 

goal configuration. The chosen control point is then moved closer to the goal. This is 

done by moving down the steepest descent gradient of the path transform (i.e. the 

neighbouring cell with the smallest path transform value). This algorithm uses a 4 

connected grid i.e. diagonal neighbours are not considered, since diagonal paths tend to 

clip obstacles. The remaining control point is moved to a grid cell which does not violate 

the geometry of the robot, and does not cause a collision with obstacles in the 

environment. In Figure 7.2 the conflict resolution function selects the control point in 

Figure 7.2 (A). The robot moves towards the goal as shown in Figure 7.2 (D). Once a 

move has been successfully completed, the conflict resolution function selects the next 

control point to guide the next movement of the robot. This procedure is repeated until all 

the control points on the robot reach their respective goal configurations. 
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Figure 7.2 

3 DOF Path Planning with Path Transforms. 

Checking if a proposed move produces an illegal geometric configuration of the robot 

can be done in a straightforward manner. The control points must always be separated 

from each other by the same fixed distance. After each proposed move the distances 

between all the control points are calculated, and compared to the distances between the 

control points of the initial robot configuration. 
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A collision check must be made every time the robot is moved, because the obstacles 

in the environment were not expanded by the radius of the cylinder approximating the 

robot This is not a trivial task and may seem to be an expensive computation. However a 

hierarchical collision testing procedure is used to implement collision testing based on the 

idea of distance space bubbles [Verwer 90]. Under the Verwer approach the robot is 

inside a space bubble which is of sufficient radius to encapsulate the entire robot The 

distance to the closest obstacle is measured from the centre of the bubble. If this distance 

is greater than the radius of the bubble then no collision has occurred. If on the other hand 

this distance is less than the radius of the bubble, then a collision is possible and further 

testing is necessary. The bubble encapsulating the robot is burst and the robot is then 

enclosed with two smaller bubbles, and the test for collision is repeated once more. This 

process continues until it can be confirmed that no collision has occurred, or the bubbles 

reach a resolution, beyond which no further testing is done. In this case the conclusion is 

made that a collision has occurred. Refer to Figure 7.3 for an example of collision 

detection using the bubbles hierarchy. This figure shows from left to right the series of 

tests for collision between a rectangular robot and an obstacle. The first figure shows that 

a collision has occurred with the enclosing bubble. The robot is split along its longest 

side, giving two smaller rectangles. These rectangles are enclosed by bubbles, and these 

bubbles tested for collision. 

Figure 7.3 

Distance Space Bubble Hierarchy. 

This hierarchical collision checking procedure suits this path planning method for the 

following reasons. During the computation process of the path transform, the obstacle 
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transform is calculated. The obstacle transform gives for each free space cell the distance 

to the closest obstacle. Thus the information necessary for checking the distance of a 

space bubble from its nearest obstacle is already available. Secondly this path planner 

deliberately steers the robot away from obstacles, and it only approaches obstacles if it is 

absolutely necessary. Thus the bubble hierarchy is very suitable to this path planning 

method, since checking for collisions will be done primarily at the highest levels. This 

will give a cheap and efficient collision detection mechanism. The bubble hierarchy is 

computed prior to path planning and is stored as a binary tree. The bubble hierarchy can 

generate superfluous bubbles i.e. bubbles which only cover interior parts of the robot It 

is only necessary to store the distance space bubbles which enclose the outside surfaces of 

the robot W h e n the bubble hierarchy is being computed the superfluous bubbles are 

omitted and not stored in the binary tree. 

Following the steepest descent path for control points with the largest path transform 

values will not necessarily guarantee that the robot will reach its desired goal 

configuration. A "deadlock" situation can arise where the robot is caught in the situation 

where one control point moves the robot in one direction, and on the very next move 

another control point pushes the robot back in the opposite direction. This produces an 

undesirable oscillating behaviour. Figure 7.4 shows an example of this behaviour. Figure 

7.4 (A) shows a rectangular robot parked in a garage. The path planning task is to repark 

the robot in the garage to face in the opposite direction. T w o control points are selected on 

the robot; these correspond to the mid points of the two ends of the robot Figures 7.4 (A) 

and (B) show the path transforms for each control point. The 3 D O F A selects to move the 

control point in Figure 7.4 (A). The resulting motion is shown in Figure 7.4 (C). The 3 

D O F A then selects to move the control point in Figure 7.4 (B). This results in the motion 

shown in Figure 7.4 (D). 
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Deadlock situations during path planning. 

The solution to this problem is to keep a record of all the moves made by the robot 

This information is kept in an "open" list; each entry in the list records the grid cells that 

all the control points are located in. Before a robot move is attempted this list is checked 

for the proposed robot configuration. If the proposed move has already been performed 

earlier, then this move is abandoned and another move is selected. The next move that is 

selected for a control point is the one with the smallest path transform value, other than 

the grid cell which has been rejected. This mechanism solves the deadlock situation. At 

the end of path planning the open list shows all the intermediate moves of the control 

points between the start and goal configurations. 

The 3 D O F A is a similar to the A * [Hart et. al. 68] algorithm because it uses an open 

list and backtracking to select other grid cells as candidates for the next move. The A * 

algorithm uses the straight line distance to the goal, as the heuristic to guide the robot to 

the goal. The 3 D O F A uses the path transform values as the heuristic to guide the robot to 

the goal. The path transform values are a much more powerful heuristic than the straight 
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line distance to the goal, and therefore will guide the search through configuration space 

much more efficiently. The path transform produces a potential field valley between 

obstacles, through which the robot moves. By choosing suitable control points on the 

robot, the robot will naturally orientate itself with the potential contours of the path 

transform. Thus using the path transform with two control points creates an orientation 

heuristic similar to the [Ilari et. al. 90] orientation heuristic but without the extra work. 

Since the path transform acts as a heuristic to guide the robot to the goal, the robot can 

be guided into situations where no solution path exists. For example consider the case of 

moving a long rectangular robot down a narrow corridor, and around a sharp bend (as 

shown in Figure 7.5). If the robot is too long, there is no solution path, even though the 

path transform indicates there is a path to the goal for a point robot The robot is trapped. 

Figure 7.5 

Move a long rectangular robot around a corner in a narrow corridor. 

The only option is to backtrack along the open list, and m o v e the invalid 

configurations from the open list to a "closed" list. The elements contained in the closed 

list are configurations of the robot which have been tried and are known not to belong to 

the solution path. This idea is similar to the way the A * search escapes dead end 

situations. Figure 7.6 shows an example of the A * algorithm backtracking. Figures 7.6 

(A) - (D) show the A * search algorithm backtracking out of a dead end. Once the robot 

has backed out the the dead end and then moves along the correct path to the goal, the 

open list will contain only the moves from the start to the goal which bypass the dead end. 

The closed list will contain all the moves which were tried to escape the dead end. 
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The A* search algorithm escaping from a dead end. 

If a solution path for the mobile robot to move between the start and goal 

configurations does not exist, for example if the robot is surrounded by impassable 

narrow corridors, it should be understood that this path planning algorithm will search the 

entire solution space. Although this is a drawback, a path planner is usually invoked only 

when it is known that a solution path between the start and goal configurations exists. 

Due to the exhaustive search properties of this algorithm it should be clear that the 

algorithm will find the solution to a path planning problem if it exists. 

The situation can arise that a solution path can be unnecessarily long. The open list is 

checked for any configuration of the robot earlier on in the solution path which could 

directly reach the current robot configuration. If the solution path can be shortened, the 

robot configurations which have been by-passed are deleted from the open list and are 

added to the closed list Figure 7.7 shows an example of a solution path being shortened. 

Figure 7.7 (A) shows the 3 D O F A rotating the robot about one control point After the 

robot rotated to the location shown with the broken line in Figure 7.7 (A), the 3 D O F A 
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deduced that this location could also be reached with less effort by rotating in the opposite 

direction. This is shown in Figure 7.7 (B). 

/ 

Rotate Rotate 

A B 

Figure 7.7 

Shortening the solution path. 

The detailed algorithms for this 3 D O F path planning method are as follows. The 

pseudo code algorithm for the 3 D O F A is presented in the function P A T H _ P L A N N I N G 

which is shown in Algorithm 7.1. The function P A T H J P L A N N I N G takes as input the 

environment grid map and the start and goal configurations of two control points. This 

function returns a list of moves which contains the solution path between the start and 

goal configurations. 

The P A T H _ P L A N N I N G function contains two calls to the function 

P A T H _ T R A N S F O R M . The P A T H J T R A N S F O R M function computes the path transform 

that guides a control point to its goal configuration. The path transform is computed for 

both control points. The pseudo code details of the P A T H _ T R A N S F O R M function are 

not provided since these details were presented in Section 5.4. 

In the next phase of planning the P A T H _ P L A N N I N G function must decide which 

control point to move. The job of deciding which control point to move is done by the 

function M A X _ M I N . The pseudo code details of this function are shown in Algorithm 

7.2. 
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function PATH_PLANNING( map, bubbles, startpi, startP2, goalpi, goalp2 ) 
open = NIL 
closed = NIL 
dtpi = PATHJTRANSFORM ( map, startpi, goalpl ) 
dtp2 = PATHJTRANSFORM( map, startp2, goalp2 ) 
RECORD( startpi, startp2, open ) 
while ( dtpi [startpi] * 0 and dtp2 [startp2] * 0 ) do 

MAX_MIN( dtpi, startpi, dtp2, startp2, min, max ) 
valid = FALSE 
neighboursmax = FIND_NEIGHBOTJRS ( dtmax, max ) 
while ( neighboursmax * NIL and not ( VALID ) ) do 

movemax = NEXT( neighboursmax ) 
neighboursmin = FIND_NEIGHBOURS ( dtmin/ min ) 
while (neighboursmin * NIL and not ( VALID ) ) do 

movemin ™ NEXT( neighboursmin ) 
if ( VALID_M0VE( movemax, movemin, map, bubbles, open, closed 

RECORD ( movemax, moverain, open ) 
SHORTEN( open, closed) 
valid - TRUE 

end if 
end do 

end do 
if not ( valid ) then 

RECORD( startpi, startp2, closed ) 
BACKTRACK ( open, startpi, startp2 ) 

else 
SET( movemax, movemin, startpi, startp2 ) 

end do 
return ( open ) 

end function 
Algorithm 7.1 

3D0F Path Planning Algorithm. 

procedure MAX_MIN( dtpi, startpl, dtp2, startp2, min, max ) 

if ( dtpi [startpj > dtp2[startp2] ) then 
max = startpi 
min = startp2 

else 
max = startp2 
min = startpi 

end if 
end procedure 

Algorithm 7.2 

Select the Control Point that needs to be moved. 

The next step of path planning is to decide where to move the selected control point 

The FIND_NEIGHBOURS function which is described in Algorithm 7.3, finds all the 

possible moves for a control point, and then ranks these moves in descending path 

transform value order. 
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function FIND_NEIGHBOURS( dt, start ) 
neighbours = NIL 
neighbours = ADD( neighbours, start ) 
for ( i-l to 4 ) 

neighbours = ADD ( neighbours, GET_NEIGHBOUR( i, start ) ) 
neighbours = SORT( neighbours ) 
return { neighbours ) 

end function 

Algorithm 7.3 

Find all the Possible Moves for a Control Point and Rank them. 

The next stage of planning performed by the PATH_PLANNING is to step through 

the list of desirable moves returned by the FTND_NEIGHBOURS function. The NEXT 

function is responsible for selecting the next best move which should be attempted. The 

PATH_PLANNING function attempts to move both the control points to the position 

selected by the NEXT function. The implementation particulars of the NEXT function are 

straightforward and are therefore not presented. Once the next move has been selected the 

VALID_MOVE function which is described in Algorithm 7.4 tests if the proposed move 

is legal. The VALID_MOVE function evaluates four conditions to test whether or not a 

proposed move is valid. The function tests that the proposed move does not violate the 

geometry of the robot, the move does not cause a collision with any obstacle and the 

move is absent from the open and closed lists. 

function VALID_M0VE( movemax, movemin, map, bubbles, open, closed ) 
if ( VALID_GEOMETRY ( movemax, movemin ) ) and 

( NO_COLLISION( movemax, movemin, map, bubbles ) ) and 
( ABSENT ( movemax, movemin, closed ) ) and 
( ABSENT ( movemax, moverain, open ) ) then 

valid = TRUE 
else 

valid = FALSE 
end if 
return ( valid ) 

end function 

Algorithm 7.4 

Check if a proposed move is valid. 

The VALID_MOVE function checks that the proposed move does not violate the 

geometry of the robot by insuring that after the move the control points are still separated 

by a fixed distance. This check is performed by the function VALID_GEOMETRY, 
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which is described in Algorithm 7.5. This function calculates the distance between the 

new locations of the control points and compares this against a precomputed constant 

called CONTROL_POINT_DISTANCE. This constant represents the distance between 

the two control points on the robot 

function VALID_GEOMETRY ( movemax, movemin ) 
d = DISTANCE ( movemax, movemin ) 
if ( d = CONTROL_POINT_D I STANCE ) then 

valid = TRUE 
else 

valid = FALSE 
end if 
return ( valid ) 

end function 

Algorithm 7.5 

Check if the separation of control points is valid. 

The next check done by VALID_MOVE is to verify that the proposed move does not 

cause a collision with any obstacles in the environment. This check is done by the 

function NO_COLLISION which is described in Algorithm 7.6 This function uses 

distance space bubbles to check for collisions. The distance space bubbles are 

precomputed prior to path planning and are stored in a binary tree. The function performs 

operations on the distance space bubble which is stored at the root of the binary tree. The 

first operation performed on the distance space bubble is to locate the bubble's centre to a 

grid cell on the obstacle transform map. The next operation checks if the proposed robot 

move is collision free. This is done by checking that the radius of the distance space 

bubble is less than the obstacle transform value stored in the grid cell to which the centre 

of the bubble was located. If the radius of the distance space bubble is greater than the 

obstacle transform value stored in the grid cell then further collision checking is 

necessary. Further collision checking is done by splitting the current distance space 

bubble into two smaller bubbles, and then recursively calling the NO_COLLISIONS 

function to check the two smaller distance space bubbles. Splitting a distance space bubble 

is straightforward and is done by finding the two descendant children of the current 

distance space bubble in the precomputed binary tree. 
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function N0_C0LLISI0NS ( movemax, movemin, map, bubbles ) 
if ( EXIST( bubbles ) ) then 

pos = FIND (bubbles, movemax, movemin ) 
if ( bubbles.radius < map[pos]. ot ) then 

valid = TRUE 
else 

pos = SPLIT(bubbles, bubblel, bubble2 ) 
valid = NO_C0LLISI0NS ( movemax, movemin, map, bubblel ) 
if ( valid ) then 

valid = N0_C0LLISI0NS ( movemax, movemin, map, bubble2 ) 
end if 

end if 
else 

valid = FALSE 
end if 
return ( valid ) 

end function 
Algorithm 7.6 

Check for collisions using distance space bubbles. 

The last two checks in the V A L I D _ M O V E function ensure that the proposed move has 

not been tried previously. The first check ensures that the proposed move is not present 

on the closed list of moves. The closed list contains moves which are known not to 

belong to the solution path. The final check ensures that the proposed move is not present 

on the open list of moves. The open list contains moves which are known to belong to the 

solution path. The checking of the open and closed lists is done by the A B S E N T function. 

The implementation particulars of the A B S E N T function are straight forward and are 

therefore not presented. 

If the function V A L I D _ M O V E determines that the proposed move is legal the 

P A T H J P L A N N I N G function uses the procedure R E C O R D to add the new move to the 

open list. The S H O R T E N function checks if the solution path described by the open list 

can be shortened. This function checks if the last robot position recorded on the open list 

can be reached from previous moves on the open list If the solution path can be shortened 

the S H O R T E N function transfers the moves that are to be bypassed to the closed list The 

implementation particulars of the R E C O R D and S H O R T E N functions is straight forward 

and are therefore not presented. 
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If all the possible moves which are available to the robot at a particular location in the 

environment are invalid, the P A T H . P L A N N I N G function adds the current location of the 

robot onto the closed list using the R E C O R D function. This indicates that no solution path 

exists using this configuration of control points. The P A T H _ P L A N N T N G function must 

now back track along the open list using the B A C K T R A C K function to enable the robot 

to escape the dead end. Once a move has been successfully performed the S E T procedure 

marks the current location of the control points as the start locations for the next iteration 

of the search for the next move. The P A T H . P L A N N I N G function keeps generating 

moves, attempting moves, and recording valid moves until both the control points reach 

their goal configurations. The implementation particulars of the B A C K T R A C K and SET 

functions is straightforward and are therefore not presented. 

7.3 The Results 

The 3DOFA was implemented in C programming language on a SUN 4/260 computer 

operating under the U N I X operating system. The implementation did not provide a 

graphics animation of the robot moving from the start configuration to the goal 

configuration. The aim of this research was to prove that the new 3 D O F A worked, so a 

user interface was not considered to be essential. The 3 D O F computer program provided 

the list of robot moves that needed to be made to solve the path planning problem. 

Results are provided for solving the path planning problem which was posed in Figure 

7.4, where a rectangular robot had to be reparked in the same location but facing in the 

opposite direction. T w o control points have been selected on the mid points of the ends of 

the robot. The path transforms for each control point are given in Figures 7.8 (A) and (B). 

The computer program provided a list of moves that were attempted to solve the problem, 

in addition to the final solution path. The solution path was computed in less than 4 

seconds of elapsed running time. The output from the computer program was converted 

by hand into a graphical representation. The graphical details of the search for a solution 

path are shown in Figure 7.9. Figures 7.9 (A) - (P) show the stages of search for a 
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solution path from the start to the goal configurations for the rectangular robot The dot on 

the robot marks the control point which is guiding the path planner. The search can take 

the path planner into dead end situations as shown in Figure 7.9 (H). However when the 

search reaches the stage shown in Figure 7.9 (J), the planner deduces the that the current 

configuration can be reached from the configuration shown in Figure 7.9 (G). The 

solution path is amended not to include the configurations shown in Figures 7.9 (H) and 

(I). Once the robot reaches the goal, the complete solution path can be determined. The 

complete solution path is shown in Figures 7.9 (A) - (G) and (J) - (P). 

B 

Figure 7.8 

The path transforms for each control point to repark the robot in the opposite direction. 
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Figure 7.9 

Diagrams A - P show the stages of search for a solution path from the start to the goal configurations 

for a rectangular robot. The complete solution path is shown in Diagrams A - G and J - P. 
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Another path planning experiment was performed using the same rectangular robot in 

the same environment as the one shown in Figure 7.8. The experiment involved moving 

the robot from a different start configuration to the same goal configuration shown in 

Figure 7.8. The path transforms computed in Figure 7.8 were applicable to this 

experiment Figure 7.10 displays the final solution path between the start and goal 

configurations. The solution path for this experiment was computed in just over 7 seconds 

of elapsed running time. In this experiment the path transform values initially caused the 

path planner to move the robot into the narrow impassable corridor in the bottom right 

hand comer of the environment. W h e n the path planner realised that it could not negotiate 

the bend, the path planner back tracked out of the narrow corridor. The planner then 

investigated an alternative solution path for the robot The path transform values kept the 

solution path in the middle of the available free space areas in the environment Using the 

path planning strategy that favours moving the control point which is furthest from its 

goal produces satisfactory solution paths. This feature is shown in this experiment by the 

neat move the robot performs as it swings around to the correct orientation before parking 

in the garage. 

Figure 7.10 

3DOF Path Planning Experiment. 
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7.4 The Conclusions 

This chapter presented a new path planning algorithm for robots with 3 degrees of 

freedom. This algorithm is based upon selecting two control points on the robot and then 

constructing a path transform of the robot work space for each control point The path 

transform functions as a heuristic to guide the search through the work place for a solution 

path. The path transform is an effective guide since it steers the search into areas of the 

work space where solutions are more likely. The path transform has the additional benefit 

of functioning as an orientation heuristic. The control points are naturally driven into the 

valleys of the path transform, thus minimising potential collisions. Collision detection is 

implemented using a hierarchy of space bubbles. Space bubbles allow for the quick 

testing of collisions between robot and obstacles in the environment Experimentation 

showed that the new algorithm yields solutions to non-trivial path planning problems that 

can be computed quickly. 

A disadvantage of this path planner is only suitable for 2-dimensional path planning 

problems. This is because the number of discrete configurations of the robot is 

exponential with the number of DOF's. A robot operating in 3-dimensional space has 

typically 6 D O F . Despite this disadvantage the 3 D O F A algorithm is superior to the 3 D O F 

path planner reported by [Brooks et. al. 85] in terms of time complexity and quality of the 

solution path. The savings in time are due to the search of a reduced solution space. 

Quality of solution path means that the algorithm takes into account the discomfort of 

approaching obstacles too closely, in addition to minimising the distance to the goal. 

The 3DOF path planner reported by [Noborio et. al. 89] was shown to be an order of 

magnitude faster than the the planner reported by [Brooks et. al. 85]. Given the different 

hardware platforms used by [Noborio et. al. 89] and the work reported in this research it 

is difficult to conclude which path planner is fastest. However given the increasing 

expense of calculating the grid distance transform as the resolution of the map increases, it 

unlikely that the 3 D O F A would out perform the [Noborio et. al. 89] path planner. 
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It was shown by [Ilari et. al. 90] that their path planner is in the order of 100 to 200 

times faster in search than path planners which only use distance to the goal as the search 

heuristic. Since the algorithm reported in this research uses similar heuristics to those used 

by Ilari et. al., the 3 D O F A algorithm should perform with a comparable efficency. 

However the 3 D O F A has a number of advantages over the Ilari et. al. algorithm. The 

3 D O F A does not require the two stage search used by Ilari et. al. to find a solution path. 

By using a single stage search the 3 D O F A is able to elegantly backtrack if the planner 

chooses to explore a path to the goal which has no solution. Backtracking with the Hari et. 

al. algorithm is awkward since this planner keeps the robot on the global path, and the 

planner cannot explore alternatives. The Ilari et. al. approach to backtracking requires 

checking whether the robot is trapped. If the robot is trapped then the current global path 

is removed from the path network and a search for a new global path is performed. 

However the most important advantage the 3 D O F A has over the Ilari et. al. algorithm is 

the quality of the solution path. The 3 D O F A does not suffer from the "too far" problem 

and the final solution path does not require a path smoothing process. Hari et. al. smooth 

the final solution path to remedy the deficiencies of the planning process. 
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Chapter 8 

Conclusions and Further Work 

8.1 Conclusions 

In Chapter 1 it was stated that the goals of the research reported in this thesis were to 

further the development of data structures and algorithms in four areas of mobile robotics. 

Namely: 

* Environment Mapping with sonar range data. 

* Path Planning for mobile robots. 

* Path Planning behaviours for mobile robots. 

* Path Planning for mobile robots with 3 degrees of freedom. 

A n environment mapping method using sonar range data was presented in Chapter 2 of 

this thesis. This method allowed a mobile robot to map an unknown indoor environment. It 

was demonstrated how high resolution maps of indoor environments could be produced 

using the low resolution Polaroid Corp. Ultrasonic Rangefinder. The noise and uncertainty of 

sonar data was handled by applying the sonar mapping test The sonar mapping test is a new 

approach to environment mapping, and it was shown to discriminate effectively against false 

reflections of sonar sound waves, thus allowing the mobile robot to produce accurate maps of 

the environment The map was sufficiently rich in detail that it could be used by higher level 

mobile robot navigation functions such as path planning, object recognition etc. The 

mapping technique described in this research yields an inexpensive and reasonably fast 

method for mapping indoor environments. 

In all the research work reported in this thesis it was assumed that an accurate measure of 

the robot's true location within the environment was known at all times. The reported work 
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used dead reckoning to track the robot's position. All the reported experiments were 

conducted in a small area. The drift in the information about the robot was small and 

therefore conveniently ignored. To apply the work reported in this thesis to mobile robots 

operating in large indoor environments an accurate position estimation system such as 

external beacons is essential. 

The second goal of this research was to make a contribution to path planning for mobile 

robots. A new Environment Exploration Algorithm (EEA) was presented in Chapter 4. The 

new algorithm is based upon using quadtrees and distance transforms in a novel way. It was 

shown that quadtrees and distance transforms provide an effective mechanism for exploring 

and learning the structure of an environment with a mobile robot The environment can be 

efficiently modelled with quadtrees, and distance transforms can be applied to explore paths 

in known and unknown portions of the environment. The problem of expensive computation 

of the distance transform was addressed by limiting the recomputation of the distance 

transform to a partial update. A new mechanism was provided for the efficient extraction of 

"fine" solution paths from the "coarse" chain of free space quadrants between the start and 

goal locations. The new mechanism allows the solution path between the start and goal 

locations to be fully or partially optimised. This is useful because fully optimising a path in an 

unknown environment could be computationally wasteful, since unexpected obstacles will 

necessitate replanning. 

The third goal of this research was to investigate how a mobile robot path planner could 

be endowed with the ability to exhibit different types of path planning behaviours, other than 

the "optimum" path planning behaviour which only finds the shortest path to a goal. In 

Chapter 5 of this thesis it was shown how the E E A algorithm could be extended to exhibit 

different path planning behaviours. This was achieved by varying the manner in which the 

distance transform was generated. It was shown how the "conservative", "adventurous" and 

"visit all" path planning behaviours which were formulated by [Jarvis et. al. 86, 88] for grid 
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based distance transforms could be incorporated to operate with the EEA. In Chapter 5 four 

(4) new path planning behaviours were presented, namely: the "learn all", "forgetful", "safe" 

and "best" path planning behaviours. 

Chapter 5 showed how the EEA when operating in the "learn all" path planning behaviour 

was an efficient and effective mechanism for systematically mapping all the unknown regions 

of an environment. It was demonstrated that a "forgetful" behaviour is a useful behaviour that 

could coexist with other path planning behaviours in a meaningful way. Chapter 5 presented 

a new transform called the "path transform" which is more suitable for path planning than the 

distance transform. The path transform has the desirable properties of potential field path 

planners without suffering the penalty of local minima. It was shown how the path transform 

can be applied to the grid and quadtree data structures to produce the "safe" and "best" path 

planning behaviours, and how it can be used with the grid data structure to produce a new 

"visit all" path. The new "visit all" path is superior to the "visit all" path generated using 

ordinary distance transforms. 

Chapter 6 of this research reported on a study which compared the performance of grid and 

quadtree distance transform algorithms. This study showed that the quadtree distance 

transform was a suitable mechanism for mobile robot path planning. The quadtree distance 

transform out performed the grid distance transform in several typical path planning 

situations. The grid was superior in random and spiral environments and in environments of 

low resolution map sizes. However such environments are less likely to occur in practice. It 

is more likely that a robot will need to operate in an environment with a map size of at least 

128x128 cells, which contains a collection of reasonably sized obstacles. The fewer obstacles 

there are in an environment, the greater the superiority in performance the quadtree distance 

transform has over the grid distance transform. In can be stated that in general the quadtree 

distance transform has an inferior worst case performance compared to the grid distance 
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transform. However the quadtree distance transform has a superior average case performance 

compared to the grid distance transform. 

The fourth and final goal of this research was to develop a path planning algorithm for 

mobile robots with 3 degrees of freedom. In Chapter 7 of this thesis a new algorithm to 

achieve this goal was presented. This algorithm was based upon selecting two control points 

on the mobile robot and then constructing a path transform of the robot work space for each 

control point. The path transform acted as a heuristic to guide the search through the work 

place for a solution path in addition to controlling the orientation of the robot It was shown 

that this new algorithm is computationally fast and that the algorithm takes into account the 

discomfort of approaching obstacles too closely, while minimising the distance to the goal. 

Overall, this research has shown how effective the distance transform is for path planning 

in mobile robotics. A mobile robot path planner must do more than just plan the shortest path 

to a single goal. It has been shown that distance transforms readily support not only planning 

the shortest path to a goal but also a variety of other path planning options, such as path 

planning behaviours, multiple goals, multiple robots and robots with 3 degrees of freedom. 

8.2 Further Work 

A drawback of the Environment Exploration Algorithm (EEA) is that the lowest size 

resolution of the quadtree is considered to be the same size as the robot. This can exclude 

possible paths if a quadrant leaf is only partially occupied. Further investigation is warranted. 

Possible ways forward would be to further apply the quadtree division of space, but to have 

exceptions to the rule that a robot can only travel within a quadtree leaf. Another possibility is 

to "relax" the quadtree and move the quadrant leaf a sufficient amount until it is free space, 

and then attempt a path through the overlapping quadrants. 
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Using quadtrees to represent polygonal shaped obstacles yields a quadtree with minimum 

sized leaf quadrants along the edges of the polygon. The quadtree is large and the number of 

leaves in the tree is proportional to the polygon's perimeter. Solutions put forward by [Samet 

et. al. 85] using P M quadtrees and by [Ayala et. al. 85] using extended quadtrees offer 

substantial reductions in the memory requirements to represent polygonal obstacles. However 

the P M variants of the quadtree are not directly suitable for use with the path planning 

techniques presented in this thesis, since these representations only store the vertex points of 

a polygonal shape, thus making it difficult for the path planner to find a path through a 

quadrant containing a polygonal edge. Given the substantial memory savings using P M and 

extended quadtrees the question of whether or not these variants of quadtrees can be used in 

path planning deserves further investigation. 

In this thesis the E E A has been developed and presented for 2 dimensional problems. 

Further work can be done to extend the E E A to handle 3 dimensional path planning 

problems. Adding the third dimension to the E E A could be achieved by using octrees. 

An issue that deserves further investigation is the speeding up of the computation of the 

distance transform in both the grid and quadtree data structures, since the distance transform 

in both data structures essentially generates all possible paths from the goal. Concurrent 

processing could offer a solution to speeding up the computation of the distance transform. 

One approach to implementing the computation of the distance transform concurrently is to 

allocate a processing node to each grid or quadrant cell. Each node communicates with its 

neighbouring cells. The distance transform radiates out from the processing node containing 

the goal. A n alternate approach to this problem is to use a hierarchical arrangement of 

processors. The processing work for computation of the distance transform is farmed out to a 

set of slave processors. Given the considerable computational burden of the distance 
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transform the issue of speeding up the computation using concurrent processing deserves 

further attention. 

The choice of grid size for the 3 DOF path planning algorithm is an important 

consideration. A decision must be made on the magnitude of robot motion at each step of the 

path planning. One strategy could be to plan a path using a coarse grid. If no solution path is 

found then attempt the problem on a finer grid. This is repeated until the finest grid is reached 

or a solution is found. Such an approach could prove to be expensive, especially when no 

solution path exists. Currently the grid size is chosen by selecting the smallest dimension of 

the rectangle which bounds the robot, and adding a small safety factor. This has proven to be 

satisfactory. However the issue requires further investigation. 

The 3 D O F path planning algorithm is based upon cooniinating the motion of two control 

points with a number of physical constraints. This algorithm can be regarded as a special case 

of coordinating two robots. There is no reason why this algorithm cannot be extended to 

coordinate the motion of multiple robots with 3DOF. A n issue of coordinating multiple robots 

that requires further investigation is that of allowing the robots to operate at varying velocities 

so that collisions can be avoided. 
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Appendix A 

Fine Path Planning 

This appendix presents the experimental results for determining the amount of 

computational effort that is required to plan "fine" execution paths in quadtrees and grids. 

Results are presented which show the proportion of "fine" path planning in the total path 

planning task. 

Four experimental results are presented in Tables A.1 - A.4. The layouts of the 

environments which were used for the experiments are shown in Figure A.1. For each 

environment layout data was collected from seven (7) different resolution size maps 

ranging from 8 x 8 to 512 x 512 pixels. Each table contains the following information: 

* time to compute the distance transform for grids which is shown as GRID DT. 

* time to compute the distance transform for quadtrees which is shown as Q U A D T R E E 

DT. 

* time to compute the fine path for grids which is shown as GRID FINE PATH. 

* time to compute the fine path for quadtrees which is shown as QUADTREE FINE 

PATH. 

* time to construct the quadtree which is shown as QUADTREE BUILD. 

* total time for path planning using grids which is GRID D T + GRID FINE PATH and 

is shown as TOTAL GRID. 

* total time for path planning using quadtrees which is Q U A D T R E E BUILD + 

Q U A D T R E E D T + Q U A D T R E E FINE PATH and is shown as TOTAL 

QUADTREE. 

* percentage proportion of planning fine paths in grids in the total path planning task 

which is shown as % G R I D FP. 

* percentage proportion of planning fine paths in quadtrees in the total path planning 

task which is shown as % Q U A D T R E E FP. 
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From the results shown in Tables A. 1 - A.4 it can be concluded that fine path planning 

is an insignificant percentage of the overall path planning task. The proportion of time 

spent computing the fine path decreases as the map resolution size grows. The cost of 

computing fine paths for grids is an order of magnitude less than the cost of computing 

fine paths for quadtrees. 

Figure A.1 

The four path planning environments used for experimentation. 
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Appendix B 
Random Data 

This appendix presents the experimental results for determining the amount of 

computational effort and computer memory that is required to produce the distance 

transform in grids and quadtrees in environments which have been generated randomly. 

The distance transform is computed for quadtrees with and without neighbour lists. 

The Tables B.l - B.7 presented in this appendix show the times that are required to 

compute the following tasks for the seven (7) concentrations of random data: 

* distance transform for grids, which is shown as GRID DT. 

* build the quadtree, which is shown as BUILD QT. 

* distance transform for quadtrees, which is shown as Q T DT. 

* total distance transform for quadtrees , which is BUILD Q T + Q T D T and is shown 

as Q T D T TOTAL. 

* build the quadtree neighbour list, which is shown as BUILD Q T NBR. 

* distance transform for quadtrees with neighbour lists, which is shown as 

QTNBRDT. 

* total distance transform for quadtrees with neighbour lists, which is BUILD Q T + 

BUILD Q T N B R + Q T N B R D T and is shown as Q T D T N B R TOTAL. 

Tables B.l - B.7 also show the memory requirements in bytes to support the 

computation of the distance transform for the following data structures: 

* memory for grids, which is shown as GRID MEMORY. 

* memory for quadtrees, which is shown as Q T M E M O R Y . 

* memory for quadtrees with neighbour lists, which is shown as Q T N B R M E M O R Y . 

This experiment was conducted with five (5) different sets of random data for each 

map size with a particular concentration of blocked cells. This is to ensure that map 
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configurations which produce unreachable goals do not distort the statistics. Tables B.l -

B.7 show the maximum, minimum and average computation times and memory 

requirements for the five (5) random data sets. Figures B.l - 2 show an example of a 

typical random data set for an 8x8 map. Figures B.l (A) - (B) show random 

environments with 0 % and 5 % concentrations. Figures B.2(A) - (F) show random 

environments with 10%, 20%, 30%, 40%, 5 0 % and 6 0 % concentrations. Figures B.3 -

B.6 show in graphical form the average computation times for the experimental data 

presented in Tables B.l - B.7. Figures B.7 - B.10 show in graphical form the average 

memory requirements for the experimental data presented in Tables B.l - B.7. 
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Figure B.1 

Random Environments 0% and 5% 
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Random environments 10%, 20%, 30%, 40%, 50% and 60%. 
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7 Random Data Concentration = OX Time 
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Figure B.3 

Computation Times for path planning in 0% and 5% random environments. 
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7 Random Data Concentration = 1 0 % Time 
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7 Random Data Concentration = 20% Time 
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Figure B.4 

Computation Times for path planning in 10% and 20% random environments. 
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Bap Size 

Random Data Concentration = 40% Time 
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Figure B.5 

Computation Times for path planning in 3 0 % and 4 0 % random environments. 
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7 Random Data Concentration = 50% Time 
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Figure B.6 

Computation Times for path planning in 50% and 60% random environments. 
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7 Random Data Concentration = 0% flemory 

200 300 400 
Hap Size 

600 
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Figure B.7 

Memory Requirements for path planning in 0% and 5% random environments. 
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8 Random Data Concentration = 10% flemory 
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Figure B.8 

Memory Requirements for path planning in 10% and 20% random environments. 
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Figure B.9 

Memory Requirements for path planning in 30% and 40% random environments. 
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P Random Data Concentration = 50% flemory 
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Figure B.10 

Memory Requirements for path planning in 50% and 60% random environments. 
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Appendix C 
Spiral and Maze 

This appendix presents the experimental results for determining the amount of 

computational effort and computer memory that is required to produce the distance 

transform in grids and quadtrees in spiral and maze environments. The distance transform 

is computed for quadtrees with and without neighbour lists. 

The Tables C.l - C.2 presented in this appendix show the computation times and 

memory requirements that are needed to compute the distance transforms for the spiral 

and maze environments. The legend key to Tables C.l - C.2 is the same as the key to 

tables presented in Appendix B. 
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Appendix D 

Obstacles 

This appendix presents the experimental results for determining the amount of 

computational effort and computer memory that is required to produce the distance 

transform in grids and quadtrees in environments with various configurations of 

obstacles. The distance transform is computed for quadtrees with and without neighbour 

lists. 

The Tables D.l - D.5 presented in this appendix show the computation times and 

memory requirements that are needed to compute the distance transforms for the five (5) 

configurations of obstacle data. The legend key to Tables D.l - D.5 is the same as the key 

to tables presented in Appendix B, with the exception that Tables D.l - D.5 also show the 

total perimeter length of all the obstacles in environment map. The perimeter is measured 

in quadrant cells, and is shown in the tables as PERIMETER. 

Figures D.l shows four of the five obstacle configurations that were used for this 

experiment. Figures D.l (A) - (D) show the test environments with two, three, four and 

five obstacles. Figures D.2 - D.5 show in graphical form the computation times and the 

memory requirements for the experimental data presented in Tables D.l - D.5. 
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B 

Figure D.1 

Path Planning Environments of Two, Three, Four and Five Obstacles. 
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Figure D.2 

Path Planning Statistics for a Two Obstacle environment. 
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Figure D.3 

Path Planning Statistics for a Three Obstacle environment. 
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Figure D.4 

Path Planning Statistics for a Four Obstacle environment. 
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Figure D.5 

Path Planning Statistics for a Five Obstacle environment. 
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Appendix E 

Indoor Environment 

This appendix presents the experimental results for determining the amount of 

computational effort and computer memory that is required to produce the distance 

transform in grids and quadtrees in three (3) indoor environments. The distance transform 

is computed for quadtrees with and without neighbour lists. 

The Tables E.l - E.3 presented in this appendix show the computation times and 

memory requirements that are needed to compute the distance transforms for the indoor 

environments. The legend key to Tables E.l - E.3 is the same as the key to tables 

presented in Appendix B. 
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Ĵ 

OO 

O 
Ui 

NO 
to 
to 

4*-
to 
ON 
Ul 
ON 

Ui 
I — ' 
y-» 

Ul 
vO 

ON 
OO 
•o 

^4 
vO 
Ul 
to 

o 

2 
X 

4* 

o 
OJ 

I-P* 

ON 
OJ 
00 
4^ 

OJ 
Ui 

4* 

5 
NO 

OJ 
ON 
1—* 

to 
00 

4*. 

o 
OJ 

Ul 

o 

4s. 
00 
00 

ON 
ON 
OJ 
00 
4* 

OJ 

to 
X 
OJ 

to 

-J 
•o 

4* 

8 
ON 

p-^ 

4*. 

00 

4*. 
to 
VO 

to 
VO 

o 
oo 
oo 

to 
Ul 
00 

4* 
to 

OJ 

y-* 

Ul 
to 
NO 
ON 

o 

ON 
X 
p — * 

ON 

OO 

p — » 

o 
to 
4s. 

OJ 

to 

OJ 

O 

vO 
p — • 

to 

o 

it 

00 

to 
Ul 

p — ' 

-J 
00 
4*. 

oo 
X 
oo 

O 

to 
Ul 
ON 

~ 

-

to 

4* 
p — . 

Ov 

y-' 

o 

to 

Ov 
Ul 
ON 

Map 
Size 

2 0 
2 C5 
3 2. 
OO. 

eo 

a. 

© 

© 
H 
O 
H 

H 
o 
yy-

s 
o ^ 

5 
O 
HZ 

03 
50 

s 
&03 

50 

© 
O 
yfZ 
-03 

50 

3 ^ 
© z 
"* 03 

CS 
o 
CA 

re 

CA 

tf 

CA 

C 
CA 

-276-



-a 
3 
•v 
yi 

3 
3 

5' 
<a 
yQ 

5T 
y~y> 

yi 

o" 
co QJ 

(D 

| m » 
CD 

3 

33 

o 
o 
3 
en 

m 
3 
< 

3 
3 

3 
CD 
3 

Ui 

to 
X 
Ui 
p—pfc 

to 

to 
-o 
to 
-o 
© 

© 
4*. 
OO 
Ul 
>̂ 4 
Ov 

-J 
OJ 
Ul 

4*. 
OJ 

i — » 

-o 
*o 
oo 
ON 

p — » 

to 
Ul 
1 — f c 
p — 1 

to 

to 
-o 
1-^ 

to 
© 

4^ 

-J 

to 
Ul 
to 
*o 
v© 
00 

to 
Ul 
ON 

X 
to 
Ul 
Ov 

ON 

oo 
oo 

to 
Ov 
to 
1—1 

4s. 
OJ 
Ul 

OJ 
.Cs. 

io 

OJ 

oo 
Ul 
o 

N> 
© 
NO 

oo 
4*. 

to 

to 
> — 1 

4*. 
1—1 

-o 
oo 

to 
-j 
OJ 
4*. 

to 
4*. 

to 
00 

X 
to 
oo 

•o 
© 
ON 

ON 
Ul 
Ul 
OJ 
ON 

OJ 
Ul 

to 
«o 
© 
NO 

to 
00 
4s-

1—1 

Ul 
OJ 
OV 

o 

1—1 

-o 
OJ 
4*. 

Ul 

© 

to 
© 
to 
to 

to 
p — 1 

to 
Ov 
00 
00 

• 2 
X 

OJ 
NO 
00 

1—1 

ON 
OJ 

oo 
4s. 

OJ 
4s. 

Ov 
© 
4*. 

ON 
OJ 

oo 

OJ 
4*. 
4*. 

OJ 

oo 
Ui 

4* 
OV 

4^ 
ON 
Ul 

ON 
OJ 

to 
00 

o 

OJ 

to 
X 
OJ 
iSJ 

v© 
to 

4*. 
© 
NO 
Ov 

p — i 

4s. 

to 
Ui 

o 

to 

p — 1 

-J 

oo 
to 
4*. 

Ul 
v© 

to 
to 

VO 
Ui 

OJ 

to 
OJ 

to 

ON 

X 

ON 

£ 

© 
NJ 
4s. 

OJ 

ON 

oo 

•o 
1—1 

Ul 
NO 

to 

o 

4s. 
© 

^J 

Ui 

© 

© 
to 
00 

oo 

00 

X 
0O 

OJ 

to 
Ui 
ON 

~ 

oo 

VO 

Ui 
ON 

oo 

Ui 

-

<o 

to 
ON 

o 
oo 

M
a
p
 

Size 

2_ 
2 O 
3 2. 
© Q . 

03 

a 
© 
H 
© 
H 
a 
H 
© 
H 
H 
9 

3 
o H 

© 
a 

03 
50 

e 
a 0 3 
50 

© 
O 

STZ 
-03 

50 

2^ 
ft 
3 •> 

o Z 
i 03 
^ 5 0 

© 

o 

tf 

ft 
CA 

c 
CA 

-277-




