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Abstract 

First addressed by Beale (1960), the use of curvature measures of nonlinearity 

in nonlinear regression has been elucidated most comprehensively by Bates and 

Watts (1980). They used differential geometric results that exploit features of the 

Euclidean space imposed by the Normality assumption. The partitioning of these 

measures into intrinsic effects (due to the model) and parameter effects (due to 

the form or parameterization of the model) allows a proper assessment of model 

departures from linearity. Indeed, the term 'linear' has become synonymous with 

a lack of both of these effects, since the commonly designated 'linear model' with 

Normal disturbance does not contain either effect. These curvature measures are 

used to unravel the effects of model reformulation on convergence of fitting proce­

dures, and on the appropriateness of confidence regions based on the linearization 

assumption. For model criticism using residual analysis, the presence of intrin­

sic curvature in a nonlinear regression model can distort the visual assessment 

procedures borrowed from linear modelling, since the fundamental basis of these 

procedures can be undermined when the model is nonlinear. 

W h e n the disturbances are non-Normal, the consequent geometry is no longer 

Euclidean, necessitating a different approach, as outlined by Amari (1982a). The 

required approach generalizes the Euclidean inner product to a metric, and the 

ordinary derivative to an a-connection. The concept of these a-connections is 

fundamental to a proper understanding of the role of differential geometry to the 

investigation of estimator behaviour in the case of non-Normal errors. These con­

nections provide the general method for comparing nearby points in the parameter 

x 
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space, for general classes of error distributions. In these cases, such a comparison 

is complicated by the difficulty of the existence of different bases for the neigh­

bouring tangent spaces derived from the likelihood. The exception or special case 

is the linear model with Normal errors, where no such difficulty arises. 

Casting the generalization as being from Normal to non-Normal errors, the 

extension can be considered to cause an 'unbundling' of the statistical properties 

of estimators, which in the case of Normal errors can be enjoyed simultaneously by 

the same estimator. In the general non-Normal case, such behaviour can no longer 

be guaranteed, implying that all properties may need to be considered separately, 

since, in the general case, specific properties of the estimator are associated with 

particular values of a. 

This thesis outlines the fundamentals of the generalization of curvature mea­

sures to models of exponential type, in particular curved exponential families for 

which generalized linear models are an important subclass. This approach is used 

to generate insights into the properties of generalized linear models, with particu­

lar reference to the canonical link function as the non-Normal generalization of a 

linear model with Normal errors. 

Indeed, the underlying 'theme' of this study is the investigation of the gener­

alization of 'linearity' for the Normal error linear model to the non-Normal error 

nonlinear model. The potential simultaneity of estimator properties for the Nor­

mal distribution does not carry over to the generalization from the Normal to the 

non-Normal, since now each property has to be investigated separately, for each 

particular value of a. 

As shown in Chapter 2, this individual treatment involves the statistical inter­

pretation of each a-connection to demonstrate how key values of a are associated 

with estimator properties such as unbiasedness, stability of variance, lack of skew­

ness, 'normal' likelihood and sufficiency. In terms of data analysis, all of these 

investigations need to be performed on the regression coefficients rather than on 

the fitted value (expectation parameter) scale. This requires the use of curved 

exponential families involving an imbedding of the regression coefficients in the 
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original expectation space. 

One of the properties of Normal error linear models is estimator sufficiency, 

which for generalized linear models implies a canonical link function. The associ­

ated a-connection is the exponential or Efron connection. This connection could 

be considered as the springboard for the generalization of Normal error linear mod­

els to non-Normal error nonlinear models, since for generalized linear models it 

mimics the special case of Normal errors, by the conditions under which it vanishes. 

The investigation of this connection and its special relationship with generalized 

linear models has generated in Chapter 2 a test of adequacy for canonical link 

functions, based on the skewness of the regression coefficients. 

The generalization of curvature follows a similar path to the a-connections, 

being a function of them in terms of the expectation parameters. In line with the 

decomposition demonstrated by Bates and Watts (1980) for Normal errors, gener­

alized a-curvature decomposes into intrinsic and parameter-effects curvature;now, 

each particular cn-curvature is associated with individual properties of the model, 

depending on the value of a. The other main change from the curvature measures 

of Bates and Watts is that, in the general case, a contribution to curvature is made 

from the error distribution as well as from the model and its parameterization. A 

major new result in Chapter 3 has been the proof of the invariance of intrinsic 

a-curvature in the general case, using a coordinate based system. A consequence 

of examining the generalization has been to define in Chapter 3 a class of mod­

els, generalized nonlinear models, having a non-Normal error distribution and a 

general nonlinear response function. The relationship of this class with classes 

of known models such as generalized linear models again raises the question of 

what is meant by 'nonlinearity' in general. Several related derivations such as the 

invariance of parameter-effects curvature in generalized linear models, and results 

involving exponential curvature, generalized linear models and generalized nonlin­

ear models verify expected behaviour and highlight the generalizations that are 

possible. 

The generalized curvature measures are shown in Chapter 4 to be related to 
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quantities of statistical interest such as the bias and covariance of estimators for 

curved exponential families, mirroring the known situation for nonlinear regression. 

For generalized linear models, alternative link functions to the canonical can be 

chosen on the basis of properties such as variance stabilization, 'normal' likelihood 

and lack of skewness. As expected, these links have been shown in Chapter 4 

to be associated with specific a-connections. A table is presented of those link 

functions that produce the required properties on the expected value scale for each 

error distribution in a generalized linear model. 

The special relationship between curvature measures, nonlinear regression and 

generalized linear models is further demonstrated in Chapter 5 by the use of a new 

method for nonlinear regression based on a second order approximant to the non­

linear function by means of a special generalized linear model. As expected, such 

an approximation follows the true function more closely than linearization;this is 

demonstrated empirically from calculations of leverage, parameter estimates and 

corresponding interval estimation. All these effects are predicted from considera­

tions based on curvature measures, both intrinsic and parameter-effects. 

The effect of replication on curvature is known empirically and theoretically in 

the case of nonlinear regression. In Chapter 5 it is shown that replication has two 

implications for the effects of curvature in a generalized nonlinear model. Firstly, 

the central limit theorem produces convergence to the Normal distribution, so 

that the error contribution to general a-curvature becomes zero asymptotically. 

The effect of replication on the model contribution is less clear, since the general 

limiting case is nonlinear regression if only the error component of a-curvature is 

considered. Locally, the generalized nonlinear model will be well approximated by 

a linear model. Secondly, under some conditions, a generalized nonlinear model 

will converge locally to a generalized linear model with canonical link. However, 

when the error component and the model component are considered, the overall 

effect of intense replication will be to produce locally a linear model with Normal 

errors. 
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