University of Wollongong Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2005

Physical and adhesive properties of some materials made by 'Click' chemistry

Nicolas Le Baut University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Le Baut, Nicolas, Physical and adhesive properties of some materials made by 'Click' chemistry, M.Eng. thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollogong, 2005. http://ro.uow.edu.au/theses/470

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Physical and Adhesive Properties of Some Materials Made by "Click" Chemistry

A thesis submitted in fulfillment of the requirements for the award of the degree

Honours Master of Engineering by Research

From

UNIVERSITY OF WOLLONGONG

By

Nicolas Le Baut, BEng (Mat)

Materials Engineering Discipline

2005

Certification

I, Nicolas Le Baut, declare that this thesis, submitted in fulfillment of the requirements for the award of Honours Master of Engineering by Research, in the Materials Engineering Discipline, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Nicolas Le Baut

May 2005.

Acknowledgements

I would firstly like to extend my thanks to my supervisor, Professor Hugh Brown, for his guidance, knowledge and assistance during the course of this study. I am also indebted to the assistance and insight of Professor Geoffrey Spinks while Hugh was away. In addition I would like to express my gratitude to Professor M.G. Finn and Dr David Díaz Díaz from the Scripps Institute, La Jolla, USA, for their invaluable knowledge and effort in our collaboration. Thanks also to Dr Philip Whitten and Peter Innis for their assistance while using the Raman spectrometer.

Finally thanks to all my friends, both in Australia and on the other side of the world, and family for all their support throughout my studies.

Abstract

The aim of this work is to examine the physical and adhesive properties of a number of crosslinked polymers made by "click" chemistry, a technique, that has been explored thus far only in the context of drug discovery. The polymers were synthesised between copper and brass plates. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to measure the glass transition temperature (Tg) of these materials. The polymers were found to have unusually high Tg values, sometimes up to 60°C higher than the curing temperature, depending on the cure time. The adhesives properties of these materials on brass substrates have also been examined using a fracture mechanics test, the double cantilever beam test (DCB). The adhesion was found to be very similar (sometimes higher) than that of some commercial epoxy systems. Finally, the copper-polymer interface was characterized using the surface enhanced Raman scattering (SERS) technique. SERS showed the presence of a triazole-based compound adsorbed on copper. The adhesion strength of these "click" polymers on copper substrates is believed to be function of the formation of the triazole-copper complex.

Abbreviations

DSC	Differential scanning calorimetry		
DMA	Dynamic mechanical analysis		
Tg	Glass transition temperature		
DCB	Double cantilever beam test		
SERS	Surface enhanced Raman scattering		
Cu	Copper		
Cu(I)	Copper ion (primary)		
Cu(0)	Copper metal		
Cu(II)	Copper ion (secondary)		
C0 ₂	Carbon dioxide		
Kcalmol ⁻¹	Kilocalory per mol		
H ₂ O	Water		
O ₂	Dioxide		
CPMV	Cowpea mosaic virus		
Fuc-T	Fucosyltransferases		
Cul	Copper iodide		
η	Viscosity		
G _e	Equilibrium modulus		
T _{cure}	Curing temperature		
Tg_{∞}	Glass transition temperature for a fully cure system		
ТТТ	Time-temperature-transformation		
Tg ₀	Glass transition temperature of the prepolymer		
_{gel} Tg	Temperature at which gelation and vitrification coincide		
THF	Tetrahydrofuran		
DMAP	4-Dimethylaminopyridine		
TLC	Thin layer chromatography		
Et ₃ N	Triethylammoniac		
Et ₃ N·HCI	Drochloride		
EtOAc	Ethyl Acetate		
Na ₂ SO ₄	Sodium Sulphate		

MLMillilitreNaN3Sodium azideGGramEtOHEthanol°CDegree celcius	
G Gram EtOH Ethanol	
EtOH Ethanol	
°C Degree celcius	
NMR Nuclear magnetic resonnance	
¹ H-NMR Nuclear magnetic resonance of Hydrogen	
¹³ C-NMR Nuclear magnetic resonance of carbon 13	
CDCl ₃ Deuterated Chloroform	
<i>R</i> _f Resolution factor for chromatography	
Mp Melting point	
δ Chemical shift (in "Monomers synthesis" section, Chap	ter
3 and 5)	
s Single peak	
d Doublet peak	
t Triplet peak	
H Hydrogen	
J Coupling constant	
Hz Hertz	
IR Infrared	
MS Mass spectroscopy	
<i>m</i> / <i>z</i> Relative intensity	
M Molecular ion peak	
Na Sodium	
HRMS High resolution mass spectroscopy	
Calcd Calculated	

Table of contents

Chapter 1: Introduction	1
1. INTRODUCTION	1
2. AIM AND OBJECTIVES	2
3. RESEARCH PLAN	3
Chapter 2: Background	4
1. CARBONYL CHEMISTRY	4
2. "CLICK" CHEMISTRY	5
3. THE COPPER(I)-CATALYZED AZIDE-ALKYNE CYCLOADDITION	6
4. APPLICATION OF "CLICK" CHEMISTRY	7
4.1. Investigations of biomolecular interactions	7
4.2. Organic synthesis	8
4.3. Drug discovery	9
4.4. Functionalization of surfaces	9
4.5. Materials synthesis	10
5. CONCLUSION	10
CHAPTER 3: Thermal properties of "click" polymers	11
1. INTRODUCTION AND OBJECTIVES	11
2. LITERATURE REVIEW	12
2.1. "Click" chemistry reaction	12
2.2. Thermosets	15
3. MATERIALS AND METHODS	25
3.1. Synthesis of the monomers	25
3.2. Polytriazole adhesives: Bulk polymerization	27
3.3. Polytriazole adhesives: solution phase polymerization	28
3.4. Analytical Methods	29

С	HAPTER 4: Adhesion properties of "click" polymers	47
	6. CONCLUSION	46
	5. DISCUSSION	42
	4.2. Thermal properties of mixture 5+6	.40
	4.1. Thermal properties of mixture 1+4	35
	4. Results	35

	3.2. Fracture mechanics test	.58
4	. Results	.64
	4.1. Adhesion properties of polymer 1+4	.64
	4.2. Adhesion properties of polymer 5+6	.70
	4.3. Adhesion properties of commercial epoxy systems	.73

5. DISCUSSION	76
6. CONCLUSION	79

Chapter 5: Adhesion properties and interface characterization

of '	"click"	polymers	made from	bisphenol	A structure	80
------	---------	----------	-----------	-----------	-------------	----

1. INTRODUCTION AND OBJECTIVES	80
2. LITERATURE REVIEW	81
2.1. Surface Enhancement Raman Spectroscopy: theory	81

	2.2. Surface Enhanced Raman Spectroscopy of triazoles on copper: a	
	short review	.84
3	MATERIALS AND METHODS	87
	3.1. Monomer synthesis	.87

Chapter 6: Conclusions and further remarks	110
6. CONCLUSION	109
5.3. Interface copper-polymer 7+8	107
5.2. Gas present in the polymer	104
5.1. Fracture energy values	103
5. DISCUSSION	103
4.2. Properties of the interface copper - polymer 7+8	97
<i>4.1. Adhesion properties of polymer</i> 7+8	93
4. Results	93
3.4. Surface enhancement Raman scattering experiment	91
3.3. Fracture mechanics test	90
3.2. Polytriazole adhesives: bulk polymerization	89

Bibliography	113
Relevant publications	120
List of figures	
List of tables	