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Resumo 

 

Impacto do jejum na matéria gorda e teor microbiano presente no grilo 

doméstico (Acheta domesticus) utilizado para alimentação humana 

 

O consumo de insetos tem vindo a aumentar globalmente, particularmente em países 

industrializados. Ingredientes à base de insetos são considerados novos alimentos na Europa, 

o que suscita alguma preocupação em matéria de segurança dos alimentos destes 

ingredientes. O esvaziamento do trato gastrointestinal através de jejum antes do abate é visto 

como uma prática eficaz na redução do teor microbiano presente nos insetos, mas pode, no 

entanto, levar a perda de peso considerável e, consequentemente, à redução de lucro para 

os produtores. O objetivo deste estudo foi avaliar a perda de gordura no grilo doméstico 

(Acheta domesticus) quando submetido a períodos de jejum de 0h, 24h e 48h, e 

correspondentes teores microbianos (Aeróbios totais (AT) e Enterobacteriaceae). Foram 

ainda feitas colorações de Gram a partir das unidades formadoras de colónia (UFC) das 

placas de AT. O efeito do sexo na carga microbiana foi avaliado, não tendo sido encontradas 

diferenças significativas (p=0.72 e p=0.46 para AT e Enterobacteriaceae, respetivamente). A 

contagem de AT aumentou (p=0.002) em cerca de 1 log UFC/g no grupo de jejum de 48h. 

Apenas o grupo submetido a jejum por 24h mostrou um decréscimo significativo (p=0.004) 

nas contagens de Enterobacteriaceae na ordem de 1 log UFC/g. As colorações de Gram 

mostraram alteração da composição microbiana das amostras colhidas às 24 e às 48h, com 

predominância de cocos Gram-positivos às 24h e redução às 48h (de 68 para 48%). Foram 

detetados bacilos apenas no grupo 24h (8%). Não houve redução significativa do teor de 

gordura nem às 24h (p=0.13 em machos e p=0.13 em fêmeas) nem às 48h (p=0.57 e p=0.98 

em machos e em fêmeas, respetivamente). A aplicação de um período de jejum de 24h foi 

eficaz na redução da carga microbiana de grilos crus sem redução de gordura significativa. 

Um período de jejum mais prolongado promoveu um teor microbiano mais elevado, 

possivelmente devido à modulação da diversidade microbiana. 

 

Palavras-chave: Insetos edíveis, segurança dos alimentos, jejum, contagem de placas, teor 

em matéria gorda. 

 

 

 



 
 
 

 
 

 

Abstract 

 

Impact of starvation on fat and microbial load in the house cricket (Acheta 

domesticus) used for food 

 

Insect consumption has been increasing worldwide, particularly in industrialized 

countries. Insect-based ingredients are considered novel foods in Europe, which raises some 

concern regarding the food safety of these products. Gut emptying by starvation prior to killing 

is perceived as an effective practice in the reduction of the microbial load of insects but can 

lead to weight loss and consequently a profit reduction to the farmers. The purpose of this 

study was to evaluate the fat loss of crickets (Acheta domesticus) starved for 0h, 24h and 48h, 

and their corresponding microbial loads (total aerobic counts (TAC) and Enterobacteriaceae). 

Gram stains were also performed for the colony-forming units (CFU) from TAC. The effect of 

sex on the microbial numbers was assessed, having not been found significant differences 

(p=0.72 and p=0.46 for TAC and Enterobacteriaceae, respectively). TAC increased (p=0.002) 

by almost 1 log CFU/g in the 48h starvation group. Only the 24h starvation group showed a 

significant decrease (p=0.004) in Enterobacteriaceae counts of 1 log CFU/g. The Gram stains 

showed changes in the microbiological composition of samples collected at 24 and 48h. Gram-

positive cocci predominated at 24h but decreased at 48h (from 68 to 48%). Bacilli were only 

detected at 24h (8%). The fat content did not decrease significantly, neither at 24h (p=0.13 for 

males and p=0.13 for females) nor at 48h (p=0.57 and p=0.98 for males and females, 

respectively). Starvation for 24h was efficient in reducing the microbial load of raw crickets 

without significant fat loss. A longer starvation period promoted a higher microbial load, 

possibly due to modulation observed in the microbial diversity. 

 

 

Keywords: Insects as food, food safety, starvation, hygiene indicators, lipid content. 
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Internship report 
 

As part of the Integrated Master’s Degree in Veterinary Medicine from the Faculty of 

Veterinary Medicine, University of Lisbon, I completed an internship at the Faculty of Veterinary 

Medicine and Animal Sciences- Swedish University of Agricultural Sciences, SLU, at the 

department of Biomedical Sciences and Veterinary Public Health. 

The internship had the duration of six months, starting on the 1st of October 2019 and 

ending on the 17th of March 2020. 

My supervisor was Professor Ivar Vågsholm and my co-supervisor was Professor Maria João 

Fraqueza.  

Along with Ivar Vågsholm, Anna Jansson, Erica Roman, Merko Vaga and Sofia Boqvist, 

I completed a study within the scope of food safety of the house cricket (Acheta domesticus) 

as food. The goal was to learn about food safety and the welfare of edible insects, in particular 

the house cricket. In addition, I learned about crickets’ behavior and rearing conditions. 

The study included the rearing of crickets up until adulthood, as well as microbiological 

analyses which were performed by me in the microbiology laboratory, and fat analyses that 

were performed by a laboratory technician.  

 

During the length of the internship, I attended several seminars lectured by PhD student, 

namely: 

 

- ” Food safety hazards and risks in Cambodian meat value chain, with special emphasis 

on bacteria and AMR”- October 16th, 2019. 

- “Exploring benzimidazole resistance in Haemonchus contortus by next generation 

sequencing and droplet digital PCR”- October 17th, 2019. 

- “Improving sow welfare in group housing systems”- December 19th, 2019. 

- “Crossing the line- Tracking small ruminant diseases in trade and across international 

borders in Zambia and Tanzania”- January 9th, 2020. 

- “Models and scenarios for climate change”- January 15th, 2020. 

- “The use of a box with an adjustable ceiling to afford safe prevention of too premature 

rising attempts during the post-anesthetic period”, January 13th, 2020. 

Due to the outbreak of the current COVID-19 pandemic, the internship was terminated 

two weeks before scheduled, as the predicted ending date was the 31st of March.  
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Introduction 
 

For the past few decades, human population has been growing at an incredibly fast 

rate, and by 2050 it is estimated to come close to 10 billion (United Nations 2017). Facing this 

scenario, food security is thus becoming a challenge for humankind (Gahukar 2011) where 

undernourished people already constitute a high proportion of world population (FAO 2013). 

Earth resources are already being overly exploited (Halloran et al. 2018) and in order to provide 

food for an ever-growing population, food production will need to almost double (FAO 2013). 

The livestock sector is one of the most developed food industries and plays an important role 

in food security, accounting for 40 percent of agricultural gross domestic product. However, 

this sector is also responsible for a considerably negative environmental impact, being the 

biggest land user of all human activities (Steinfeld et al. 2006). Thus it has become imperative 

to find new innovative alternatives to production methods and novel food sources (van Huis 

2015), aiming to secure food availability while producing more efficiently and consequently 

reducing the environmental impact (Tripathi et al. 2019).  

Edible insects are perceived as an alternative source of protein for humans as well as 

for animals, and large-scale production has the potential to be  environmentally friendlier when 

compared to other animal protein sources (Halloran et al. 2018; Sogari et al. 2019). However, 

although the consumption of insects is an ancient practice, predominantly in developing 

countries (van Huis et al. 2013), it is a novelty in most Western societies and food neophobia 

represents a challenge to the industry (Rumpold and Langen 2019). Moreover, being 

considered novel foods in the European Union (EU; European Comission 2018), knowledge 

regarding food safety of insects is still lacking (Garofalo et al. 2019) and so the European Food 

Safety Authority (EFSA) has adopted a conservative approach towards their production and 

consumption (EFSA 2015). Despite the EU recommendations, some European countries such 

as Germany and the Netherlands have already started commercializing insects.  

Currently, there are more than 2,000 species known to be safe for human consumption 

(Jongema 2017), but not all can adapt to captivity, hence not all are suitable for mass rearing 

(Olzer et al. 2019). The house cricket (Acheta domesticus) is considered to be one of the 

species with the biggest potential for production in the world (EFSA 2015) due to its relatively 

short life cycle, easy manipulation, high reproductive rate and resistance to diseases (Patton 

1978). Furthermore, crickets are a great source of protein and unsaturated fats, as well as 

vitamins and minerals, whilst being considered a delicious food (Homann et al. 2017).  

Cricket-based food products can be presented in various formats such as whole 

crickets, powders, pastes and oils (Dossey et al. 2016). Processed cricket products are usually 

made from the whole insect, including the gastrointestinal tract, which increases their microbial 
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load and may affect food quality and shelf-life, by the action of spoilage microbes, as well as 

food safety if pathogens are present. Therefore, adequate processing and storing methods 

must be applied (Klunder et al. 2012) and the producers can also apply a starvation period 

before killing with the aim of emptying the gut and thus reducing crickets’ microbial load (FAO 

2013; EFSA 2015; Megido et al. 2017). 

Regarding food safety, crickets can present a health risk to consumers. Possible 

hazards are of chemical (heavy metals, mycotoxins, insects’ toxins, veterinary drugs and 

contaminants) and microbiological origin (bacteria, viruses, parasites, fungi and prions), as 

well as allergens and environmental contaminants, like pesticides (EFSA 2015).  

When facing stressful conditions such as starvation, crickets may respond with a series 

of behavioral and physiological adaptations, and the most common is entering diapause, a 

hormonally mediated process characterized by a decrease in metabolism (Zhang et al. 2019). 

Despite the attempt to maintain the body composition in the absence of food, crickets start 

using body reserves from the fat body, mostly glycogen and fat (Schooley et al. 2012). 

Starvation may induce significant weight loss and affect the crickets’ nutritional composition, 

resulting in a reduction of profit to the producers.  

This study aimed to evaluate the fat loss of starved crickets (Acheta domesticus) for 

different periods of time and their corresponding microbial loads. Total aerobic counts (TAC) 

at 30 ºC and Enterobacteriaceae were the microbial indicators that were analyzed. Fat loss 

was assessed by determination of the total fat content. 

 

I Literature review 
 

1. Food security 

1.1. Food security challenges in the world 
 

Every year, human population increases by 83 million. The current population is over 

7.6 billion and by 2050 it is expected to reach 9.8 billion (United Nations 2017). Even though 

approximately one third of the food produced for human consumption (1.3 billion tons per year) 

goes to waste (Varelas 2019), the Food and Agriculture Organization (FAO) (FAO 2019) 

estimates that almost 820 million people mainly in developed countries are chronically 

undernourished, meaning that the number of hungry people in the world remains unacceptably 

high.  

The World Food Summit (1996) on World Food Security defined food security as the 

status where “all people, at all times, have physical, social and economic access to sufficient, 

safe and nutritious food to meet their dietary needs and food preferences for an active and 
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healthy life”. In 2015 the World Health Organization (WHO) published a new set of 17 goals, 

the Sustainable Development Goals (SDG), to substitute the Millennium Development Goals 

(MDG). These goals seek to fight poverty and hunger on a global scale, while promoting 

sustainable agriculture and adequate nutrition, ensuring availability of clean water, land, 

energy and combating climate changes and its impacts (WHO 2015). 

With the increasing purchasing power, rapid economic growth and urbanization seen 

in developing countries, particularly in Asia, food preferences start to shift towards a more 

globalized diet. This often translates into a higher meat, fat and sugar consumption (Raheem 

et al. 2019). On the contrary, developed countries have been suffering a significant slowdown 

in meat consumption, as in the past decades high levels have already been reached (Wu et 

al. 2014). 

In response to the increased demand for higher quality food products, food operators 

have been, for the past several decades, investing in more industrialized mass-production 

systems (King et al. 2017). The food industry is responsible for a considerable environmental 

impact, and the livestock sector is to blame the most (van Huis 2015), as it is accountable for 

18% of total greenhouse gases (GHG) emissions (CO2 equivalent), a higher share than the 

transport sector (Steinfeld et al. 2006; FAO 2013), and uses 80% of all agricultural land (Weindl 

et al. 2017). Along with many other factors contributing to the negative environmental impact 

of livestock, such as excessive water use, both for livestock and for livestock feed, the 

decrease in soil quality and the adverse effect on biodiversity (Tullo et al. 2019), are putting a 

strain on earth´s resources. Thus, it is predicted that the production of animal-based foods will 

become insufficient to meet the demand worldwide (Wu et al. 2014). 

Furthermore, instability in food prices and subsequent concerns over food security 

(Durst et al. 2010), environmental sustainability, health concerns and animal welfare are 

receiving a great deal of attention which forces the food industry to consider alternative food 

sources, especially protein (Durst et al. 2010; Van Huis 2016). Novel foods, such as insects, 

may thus play an important role in achieving the United Nations SDG (WHO 2015), by 

representing an eco-friendlier protein source since insects have higher conversion feed rates 

than other livestock (Varelas 2019).  

 

1.2. EU legislation regarding novel foods and edible insects 
 

The  European Commission (EC) defines novel food as “food that had not been 

consumed to a significant degree by humans in the EU before 15 May 1997”, and includes 

new foods or food ingredients, food products obtained by new technological processes and 
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foods that are part of the traditional diet of human populations outside the EU (European 

Comission 2019). 

The new Regulation (EU) 2015/2283, applied from the 1st of January 2018, on novel 

foods came to replace Regulation (EC) No 258/97 and Regulation (EC) No 1852/2001 which 

ceased on the 31st of December 2017 (European Comission 2018). 

Presently, insects are considered as novel foods and  according to the new Regulation, 

in order for a new food, ingredient or production method to be approved by EC and be allowed 

to be sold in the EU, EFSA is requested to perform a risk assessment. This includes the 

evaluation of all hazards regarding human health and characterization of the food, based on 

the dossier delivered by the food business operator who requests authorization for their 

product. The characterization of the food product includes its origin, production methods, 

compositional analysis, including nutrients and their bioavailability and possible contaminants, 

known toxins and anti-nutrients. If the proposed novel food is known to be part of the traditional 

diet of human populations from countries outside the EU for at least 25 years, proving safe 

use, its authorization in EU markets should be facilitated. However, that does not automatically 

guarantee the approval of the product (European Comission 2015). 

Novel foods from animal origin are much less common than those from plants (Belluco 

et al. 2017). Besides insects, other examples of approved novel animal-derived products are 

phosphatidylserine from fish phospholipids and krill oil (European Comission 2017). 

The marketing of insects as food for humans in European countries is currently in 

debate and, since insects are not a traditional ingredient in Western diets, regulation on this 

matter is still unclear due to the lack of information available in terms of food safety (Raheem 

et al. 2019). Presently, since there are no specific regulations regarding the production of 

insects in Europe, the recommendations are an extrapolation of the general food production 

principles and thus Regulation (EC) No 178/2002 (the general food law principles and 

requirements) and Regulation (EC) No 852/2004 (food hygiene of foodstuffs) are applicable 

(van Huis 2019). Nonetheless, despite the recommendations of the EU, some member states 

such as the Netherlands, Belgium, United Kingdom, Finland and Denmark allow the production 

and selling of insects as food (Bugsolutely 2018). According to Regulation (EC) No 178/2002, 

food operators have the responsibility of ensuring that their products are safe for the 

consumers and so they must perform a risk analysis for each foodstuff or ingredient. Also, the 

label is required to include information about the common name of the insect and the species 

in Latin and information about the correct use or preparation of the insect, if necessary. 
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2. Insects as food  

2.1. Consumption patterns worldwide 
 

Insects have been included in human diets for thousands of years, whether as an 

emergency food, a habitual food or as a delicacy (Durst et al. 2010), and are consumed at all 

stages of development such as eggs, larvae, pupae and adults (Verkerk et al. 2007). 

Worldwide, eaten by approximately 2 billion people, mainly in Asia and Africa (Premalatha et 

al. 2011; van Huis et al. 2013), insects are an important source of protein, fat, minerals and 

vitamins (Durst et al. 2010). It is estimated that over 2000 species of insects are consumed by 

humans and in total, 2,111 species are considered edible (Jongema 2017). The most 

consumed species are from the orders Orthoptera (crickets, locusts and katydids),  

Hymenoptera (bees, wasps and ants), Coleoptera (weevils and longhorn beetles), Lepidoptera 

(butterflies and moths), Blattodea (termites) and Hemiptera (water bugs) (ANSES 2015). 

Furthermore, the commercialization of insects, both harvested from nature and large-

scale rearing, acts as an important source of income for farmers, especially for local 

communities in developing countries (Durst et al. 2010). 

Currently, one obstacle presented to the development of insect industries in developed 

countries is the low rate of acceptance by Western consumers (Belluco et al. 2017). Mostly for 

environmental reasons and with increased media coverage, this preconception is being 

revolutionized (Kauppi et al. 2019). 

 

2.2. Consumers perceptions and acceptance 
 

In Western countries insects have often been recognized as non-edible, percieved as 

unclean, repugnant and unsafe for consumption (Looy et al. 2014). However, with the 

approaching global food crisis, new food options have been brought to the table, and insects 

are now beginning to enter the food markets in these societies (La Barbera et al. 2018). 

The biggest challenge presented to the insect industry in developed countries is the 

low acceptance by the consumer (Orsi et al. 2019). Many studies (Schösler et al. 2012; 

Vanhonacker et al. 2013; Hartmann et al. 2015; La Barbera et al. 2018; Onwezen et al. 2019; 

Van Thielen et al. 2019) have investigated the acceptance of insects as food. In general,  it is 

expected that Western consumers will be more easily drawn to eating foods made from 

processed insects, in which their repulsive characteristics are not so apparent. Mass media 

counts as another factor infuencing consumers acceptance, since media coverage have 

always established a negative association to insects by creating or reinforcing fears and 
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phobias (Hartmann et al. 2015). This scenario is changing and social media are starting to 

engage in the promotion of entomophagy (Van Thielen et al. 2019). 

The acceptance of a novel food is influenced by a combination of factors: the intrinsic 

traits of the food, the consumer´s cultural and geographical environment and the consumer’s 

beliefs and personality traits (Hartmann and Siegrist 2016). In the especific case of insects, 

acceptance relyies predominantely on emotional and cultural aspects, being disgust and 

neophobia the main resposible factors for rejection (Orsi et al. 2019). Food safety, on the other 

hand, is often taken for granted by Western consumers (Poortvliet et al. 2019) and it does not 

seem to be a decising factor (Hartmann et al. 2018).  

Consumers that are concerned about health and environmental issues are found to be 

the most likely to accept the consumption of processed insect-based foods. Young men 

represent the group that best accept insects, and men in general are two times more willing to 

try it than women (Verbeke 2015; Orsi et al. 2019; Palmieri et al. 2019). In a study comparing 

Northern and Central Europe consumer’s acceptance, the results show that consumers from 

Northern European countries are more accepting of entomophagy (Piha et al. 2018).  

 

2.3. Environmental impact of mass-production 
 

According to Regulation (EC) No 1069/2009, insects are considered as ‘farmed 

animals’, and compared to other conventional livestock production systems, their large scale 

production is considered to be a more sustainable alternative (Oonincx et al. 2010). Moreover, 

these production systems, when optimized, require low-tech and low-capital investment (FAO 

2013). Insects consume considerably less water  (Miglietta et al. 2015) and feed (Collavo and 

Paoletti 2005), require less space but similar amounts of energy (EFSA 2015), create less 

waste (van Huis 2013), have higher fertility rates (Durst et al. 2010), emit less GHGs and 

produce lower levels of pollutants like ammonia than other types of livestock (Oonincx et al. 

2010).  

Although insects are perceived as efficient recyclers of organic waste into nutritionally 

valuable proteins (DeFoliart 1975), Regulation (EC) No 767/2009 prohibites the use of certain 

substrates as feed which include urban, domestic or catering waste, manure and separated 

digestive tract of other animals. This may restrain the full potencial of insects as a more 

sustainable option (Lundy and Parrella 2015; Belluco et al. 2017). 

Nonetheless, comparing the feed conversion ratio (FCR) of different animal proteins, 

insects have considerably lower FCR (1.7kg) compared to beef (10kg), pork (5kg) and chicken 

(2.5kg) (Collavo and Paoletti 2005). The carcass yield for chicken and pork is 55% and for beef 

is 40%. In contrast, as crickets can be eaten as whole, their edible fraction can go up to 80% 
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(Amy Zhong 2017). The fact that insects are poikilothermic is a large contributor to their low 

FCR, since they do not require expendure of energy on body temperature regulation (van Huis 

et al. 2013). 

With the rising global population and the shift in diet patterns, by 2050 it is expected an 

increase of 80% in global agricultural GHG emissions from the food sector (Tilman and Clark 

2014). Insects are of great interest when it comes to environmental sustainability due to their 

lower GHG and NH3 emissions (Oonincx et al. 2010; Testa et al. 2017). 

It is however note-worthy to state that the claimed environmental advantages of rearing 

insects, including crickets, is largely dependent on the feed offered and the conditions of 

production applied (Lundy and Parrella 2015). 

 

3. The house cricket (Acheta domesticus) 

3.1. Life cycle and rearing conditions 
 

The house cricket is a convenient species to rear, especially due to their short life cycle, 

easy manipulation, high reproductive rate and immunity from diseases and parasites (Patton 

1978).  

A crickets’ life cycle is comprised of three life cycle stages: egg, nymph and adult 

(Figure 1). The eggs incubate for 10 to 14 days after which crickets hatch as nymphs and suffer 

between 6 and 12 molts in a period of 6 to 8 weeks, after which they become adults. Adults 

can live for approximately 2 months. Males and females can start mating at 2 to 3 days old 

and oviposition starts at around day 9 of adult stage. In the beginning of adulthood, females 

lay on average 95 eggs per day, gradually decreasing the oviposition rate until death. During 

their lifetime, females can lay up to 3,000 eggs  (Clifford and Woodring 1990; Hanboonsong 

and Durst 2014; Miech 2018).  

Environmental factors like temperature, relative humidity (RH) and light and dark (LD) 

cycle can greatly influence crickets’ development and growth. According to previous studies, 

the optimal rearing temperature is 26-32 °C but survival and development is possible between  

25 °C and 35 ºC (Busvine 1955; Clifford and Woodring 1990). RH can range from 40 and 70% 

(Weber et al. 1987; Booth and Kiddell 2007; Miech 2018) and various LD cycles have been 

applied such as 12:12h, 8:16h, 16:8h and 24:0h (Patton 1967; Patton 1978; Weber et al. 1987; 

Kaufman et al. 1989; Booth and Kiddell 2007). Overcrowding is also a preponderant factor 

since it can lead to higher mortality rates. Patton (1978) suggested a minimum area of 2.5 cm2 

per cricket.  

Protein requirements for this species range from 20 to 30% (McFarlane 1964; Patton 1967; 

Sorjonen et al. 2019), carbohydrates from 32% to 47% and fat from 3.2% to 5.2% (Patton 
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1967). Vitamins and minerals are also crucial dietary components for crickets which require 

most of the B-group vitamins (Ritchot and McFarlane 1961), sodium, potassium, calcium 

(Mcfarlane 1991), among others.  

 

 

 

 

 

 

3.2. Nutritional composition and organoleptic features  
 

Insects are known to have a very complete nutrient profile while being a delicious food 

source (XiaoMing et al. 2010), most frequently recognized as a protein-rich and fat-rich 

ingredient (van Huis 2018).  

Individuals from order Orthoptera have approximately 60% protein (in percentage of 

dry matter (DM)) (Churchward-Venne et al. 2017; von Hackewitz 2018) and the house cricket, 

in particular, has a protein content between 44 to 70% DM.  

The body composition of house crickets, varies with sex and developmental stages 

(Finke 2002). Kulma et al. (2019) observed that males contained higher protein (66.3–69.6 vs 

61.2–64.9%) and lower fat contents (12.9–16.1 vs 18.3–21.7%) than females. Table 1 shows 

the nutritional composition of the house cricket. Significant differences in the protein and fat 

contents, as well as in the mineral and vitamin composition (Table 2), can be atributed to the 

use of different extraction methods and to different feeds provided. The total protein content is 

usually extrapolated from the determination of nitrogenous compounds (Adámek et al. 2019) 

and chitin, a nitrogen-containing polysaccharide that constitutes the exosqueleton (Parajulee 

et al. 1993), is included in this fraction. This polysacharide is not digestible (Poelaert et al. 

2016), therefore when determining the nitrogen content, the real protein value is overestimated 

(Churchward-Venne et al. 2017). Protein digestibility is also influenced by processing 

technologies, especially thermal treatments, and  Adámek et al. (2019) found that after roasting 

the digestibility of mealworms (Tenebrio molitor) was higher compared to not applying any 

thermal treatment. Poelaert et al. (2016) obtained similar results and observed that mealworms 

had higher digestibility compared to house crickets. 

Figure 1. Life cycle of Acheta domesticus. Egg (1), nymph (2) and adult (3). Adapted from 
cricketcare.org (2020). 
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Crickets are also a good source of minerals (Table 2) such as calcium, phosphurum, 

mangnesium, iron and zinc (Michaelsen et al. 2009; Finke 2015), and vitamins (Barker et al. 

1998).  

 

        

 
 
 

 
 
 

 
 
 

NUTRIENT COMPOSITION (%) 

 DM Fresh Weight  

Stage 
Protein 

(%) 
Fat 
(%) 

Protein 
(%) 

Fat 
(%) 

Reference 

Adults  

47.1 25.8 14.9 4.1 (Ayieko and Orinda 2020) 

64.1 24.0   
(Ramos-Elorduy Blásquez 

et al. 2012) 

63.3 17.3   (Makkar et al. 2014) 

  18.6 6.0 (Yhoung-aree 2010) 

  20.5 6.8 (Finke 2002) 

  20.1 5.06 (Payne et al. 2016a) 

  15.6 4.56 (Payne et al. 2016b) 

Cricket 
Powder 

44.2 25.5   (Montowska et al. 2019) 

70.6 17.7   (Bosch et al. 2014) 

Table 1. Fat and protein concentration (% DM and % fresh weight) of the house cricket in 
different stages of production according to various references. 
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MINERAL AND VITAMIN COMPOSITION (µg/g) 

Stage Na Fe Zn Ca Mg P Vit A Vit C Vit D Vit E B12 Reference 

Adults 
(DM) 

8502.3 51.8 21.79 3147.7  331.3 0.35   331.3  
(Ayieko and 

Orinda 2020) 

 112.3 186.4 2100 800 7800 0.24 97.4  54.27  
(Barker et al. 

1998) 

          0.174 
(Finke and 

Oonincx 2017) 

Adults 
(Fresh 
weight)  

 19.3 67.1 410 300 3000      
(Finke et al. 

2020) 

1520 54.6  1040   65.3 30    
(Payne et al. 

2016a) 

1630 61.1 110 996 551 4960 0.144 30 6.4 22.6 0.0537 
(Payne et al. 

2016b) 

1340 19.3 67.1 407 337 2950 <0.3 30  3.2 0.0537 (Finke 2002) 

Cricket 
powder 

2860 47 160 1733 1130       
(Montowska et 

al. 2019) 

Table 2. Mineral and vitamin composition (µg/g) of the house cricket in various stages of development according to various references. 
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3.3. Fat body, fat and carbohydrates mobilization 
 

In insects, energy reserves are stored in the trophocytes, the main cells of the fat body. 

These cells are analogous to adipocytes in vertebrates but instead of only storing fat, the main 

forms of energy reserves in trophocytes are glycogen and fat, mostly triglycerides (Schooley 

et al. 2012). The fat body is a tissue situated in the hemocoel surrounding the organs and is of 

great importance in the insect´s life. Besides fat and carbohydrates storage and metabolism, 

it also has other metabolic functions - it is responsible for protein synthesis and amino acid 

and nitrogen metabolism (Oliveira and Cruz-Landim 2006). For its functions, the fat body is 

considered as equivalent to both adipose tissue and liver in vertebrates (Canavoso et al. 2001). 

In order for the fat body to be involved in these metabolic pathways, it must be able to 

receive signaling from other organs, which is mostly achieved via hormonal regulation. The 

adipokinetic hormones (AKH) are synthesized and released from the corpus cardiacum and 

are responsible for the mobilization of energy from the fat body in occasions of higher energy 

demands such as reproduction, starvation and stress (Arrese and Soulages 2010; Mochanová 

et al. 2018).  

The AKH responses to these factors can vary with the insect species (Arrese and 

Soulages 2010). In turn, octopamine, the invertebrate analogue of dopamine, acts as a 

neurotransmitter, modulating the  release of AKH (Meyer-Fernandes et al. 2000). For Acheta 

domesticus, Woodring et al. (1989) reported that the hyperlipidemic effect in response of 

handling was negligible, but starvation for 48h lowered the blood lipid level (from 21.2 ± 1.6 

mg/ml in fed crickets to 17.1 ± 1.2 mg/ml). 

Besides glycogen, trehalose, a disaccharide consisting of two monomers of glucose, is 

also present in the hemolymph as the main sugar in insects. Alternative sources of trehalose 

are glycogen breakdown from the fat body and gluconeogenesis. Hemolymph sugars are used 

as energy sources during starvation (Becker et al. 1996; Thompson 2003).  

 

3.3.1. Stress response to starvation 
 

Food availability is a dynamic factor of most habitats (Johnson and White 2009). 

Starvation stress leads to a series of adaptations, including behavioral and physiological 

changes. When starvation occurs in nature, crickets can alter their behavior by entering 

diapause (a decrease in the metabolic rate), enduring cannibalism and even migrating. In 

captivity however, migration is not possible, thus leaving diapause and cannibalism to be the 

most relevant adaptations (Zhang et al. 2019).  
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During diapause, insects rely mostly on their fat reserves, but also on other stored 

energy sources, to maintain homeostasis (Hahn and Denlinger 2007). Trehalose is readily 

accessible in the hemolymph, being the first source of energy used by the starved insect. 

Glycogen stored in the fat body is then converted into trehalose and released into the 

hemolymph, under the control of AKH. Fat reserves are the most important energy resource 

in long term starvation (Mariano et al. 2009; Zhang et al. 2017; Yamada et al. 2018; Jiang et 

al. 2019; Zhang et al. 2019).  

Starvation induces an initial increase in physical activity as a strategy to search for food. 

Longer periods of starvation lead to decreased levels of activity, including the reduction or 

pausing of reproduction. This adaptative behavior is intended to conserve energy and enable 

survival. In addition, starvation can augment the tendency for cannibalism, described as 

intraspecific predation, but food shortage is not an obligatory condition for this behavior. Other 

factors contributing to the occurrence of cannibalism are overcrowding and size differences 

between predator and prey  (Fox 1975; Scharf 2016). 

 

4. Food safety aspects of Acheta domesticus 
 

Despite the well-recognized benefits of entomophagy, mass-reared house crickets can 

also pose a health risk to the consumers. Like for other farmed species, the control of 

microbiological (bacteria, viruses, parasites, fungi, prions), and chemical hazards (heavy 

metals, toxins, veterinary drugs, hormones) is dependent on the implementation of good 

hygiene practices (GHP), good manufacturing practices (GMP) and good farming practices 

(GFP) (Fernandez-Cassi et al. 2019). Hazards can be introduced during all stages of 

production including rearing, growth, harvesting and processing as well as in the feed, which 

can also be a source of environmental contaminants (EFSA 2015).  

 

4.1. Microbiological hazards  
 

Insects are phylogenetically very different from mammals, thus pathogenic agents in 

insects are usually not pathogenic to animals and humans. Insects’ microbiota comprises 

commensal intestinal microbiota and those on their surface, the latter acquired during primary 

production, processing and storage (ANSES 2015).  

High counts of total viable bacteria and Enterobacteriaceae have been reported on 

fresh crickets (Klunder et al. 2012) but after processing, such as freezing, freeze-drying or 

boiling the microbial load is substantially reduced (Fernandez-Cassi et al. 2019). Important 

food pathogens like Salmonella spp. and Escherichia coli have been identified but not Listeria 
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monocytogenes (Van Der Fels-Klerx et al. 2018). Other documented species include Yersinia 

spp., Citrobacter spp., Fusobacterium spp., Campylobacter spp. and Bacteroides spp. In a 

study evaluating the microbiota of ready-to-eat crickets, Milanovic et al. (2019) detected by 

DNA extraction and sequencing, Clostridium spp. and Staphylococcus spp.. Clostridium spp. 

is a family of spore-forming bacteria with pathogenic potential due to their resistance to thermal 

treatments and ability to produce toxins. Important species of this genus include C. botulinum, 

C. difficile and C. perfringens. Bacillus cereus, another sporulating bacteria, was also identified 

in the house cricket (Fasolato et al. 2018).   

Viral infections in crickets can mean considerable production losses for the farmers due 

to high mortality rates. The most important pathogenic viruses in crickets are cricket paralysis 

virus (Dicistroviridae) and cricket densovirus (Parvoviridae). Although these viruses’ families 

include pathogens to humans, there is evidence that they cannot replicate in human cells. 

Arboviruses (viruses that replicate in invertebrates and are capable of infecting vertebrates), 

as well as food-borne viruses such as norovirus, hepatitis A and E viruses, have not been 

reported in crickets. Crickets can, however, act as mechanical vectors for human viruses when 

contaminated during production or processing and GHP constitute the most effective 

preventive measure (EFSA 2015; Fernandez‐Cassi et al. 2018; Fernandez-Cassi et al. 2019). 

Fungal species can affect crickets in both primary production and in the final product. 

During their life cycle, crickets can be infected by fungi, yeasts and molds, leading to higher 

mortality rates. Edible crickets can also be contaminated by mycotoxin-producing fungi 

Aspergillus spp., Penincilium spp. and Fusarium spp., which pose a risk to human health. 

Mycotoxins are exceedingly difficult to eliminate from foods and feeds and are resistant to heat 

treatments. Moreover, high counts for yeast and molds in insect-based foods can compromise 

food quality by promoting fast deterioration (Fernandez‐Cassi et al. 2018; Fernandez-Cassi et 

al. 2019).  

Parasites pathogenic to humans have not been reported in crickets (Fernandez‐Cassi 

et al. 2018). There is however evidence suggesting that crickets can act as intermediate hosts 

for Abbreviata antartica, a nematode pathogenic to lizards. This parasite could infect humans, 

although further research is needed to assess the pathogenicity to humans (King et al. 2013). 

Nevertheless, potential parasites in crickets can easily be destroyed by thermal treatment, 

either heating or freezing, making parasites a low risk hazard in this species (Fernandez-Cassi 

et al. 2019).  

Another concerning hazard category in foods of animal origin is prions. Insects do not 

encode prion proteins but can act as mechanical vectors due to the high stability of prions in 

the environment, which can remain infective after ingestion by insects (Finke et al. 2015). 

Hence, the feed provided to mass-reared crickets must comply with Annex III of Regulation 



 
 
 

15 
 

(EC) No 767/2009 listing prohibited feed materials and Regulation (EU) No 1148/2014 laying 

down rules for the prevention, control and eradication of certain transmissible spongiform 

encephalopathies.  

 

4.1.1. Total Aerobic Counts and Enterobacteriaceae  
 

Currently, there are no specific hygiene criteria concerning food safety of edible insects 

in the EU (Megido et al. 2017; Fernandez-Cassi et al. 2019). Thus, it has been suggested the 

use of the same hygiene indicators for other foodstuffs containing animal protein (Grabowski 

and Klein 2017; Vandeweyer et al. 2017), such as TAC and Enterobacteriaceae counts 

(European Comission 2005). Enterobacteriaceae are usually an indicator of fecal 

contamination but in crickets they are originated from the gastrointestinal tract and, even 

though some measures like fasting for 24 to 48 hours before killing can be applied (Kooh et al. 

2000; Fernandez-Cassi et al. 2019), reducing the microbial load to acceptable values is a 

challenge (Grabowski and Klein 2017). Although the presence of non-pathogenic 

microorganisms in edible insects is acceptable, high log CFU/g values accelerate deterioration, 

therefore reducing the shelf-life of the product (Klunder et al. 2012). 

In this study, these hygiene indicators were analyzed with the intent of evaluating the 

efficacy of starvation on reducing the microbial load of frozen house crickets without any other 

processing step.   

 

4.2. Allergens, chemical and physical hazards   

 
Allergic reactions to crickets are considered rare and mild when compared to other 

allergies (Pener 2016). Arginine kinase, an ATP phosphotransferase found in invertebrates 

(Downs et al. 2016) acts as the most relevant allergen in crickets. Other allergens include 

hexamerin B1, a storage and transport protein (Goodman and Cusson 2012) and 

glyceraldehyde 3-phosphate dehydrogenase (EFSA 2015). Crickets’ allergens can also 

present cross reactivity with allergens from other species like shrimps (Srinroch et al. 2015) 

and locusts. Allergies to crickets are usually induced by inhalation or contact but can also be 

due to  ingestion and may cause asthma and rhino-conjunctivitis, dermatitis and angioedema 

(EFSA 2015; Pener 2016). 

Since crickets do not produce natural toxins nor do they have reported antinutritive 

compounds, chemical hazards in this species derive from the environment and feed. 

Bioaccumulation of pesticides (organophosphorus pirimiphos-methyl), organic pollutants 

(dioxins, organochloride compounds, flame retardants and polycyclic aromatic hydrocarbons) 



 
 
 

16 
 

and heavy metals (cadmium, mercury and arsenic) can occur (Fernandez‐Cassi et al. 2018; 

Fernandez-Cassi et al. 2019). Hence, in mass-production farms, the feed and housing material 

must be carefully selected and monitored. Likewise, veterinary drugs ought to be used with 

prudence (ANSES 2015).  

Regarding physical hazards, some parts of the cricket’s body like the wings and legs, 

may cause intestinal constipation (FAO 2013). During production and processing, the product 

can also become contaminated by foreign bodies (ANSES 2015). Physical hazards, however, 

are ranked as low risk since adequate measures during processing and commercialization 

(appropriate product labelling) can be applied in order to reduce the risk (Fernandez‐Cassi et 

al. 2018). 

 

5. Good production practices to ensure a safe product 
 

The insect production sector can grossly be divided into two stages: primary production 

and processing. The primary production generally includes (1) feeding of insects with selected 

substrates, (2) growth phase, (3) harvesting and (4) pre-treatment. Feeding of insects must be 

in accordance with Regulation (EC) No 183/2005 on feed hygiene, and GMP are advisable to 

reduce the risk of feed contamination. During the growth phase, four factors are of high 

importance to avoid contamination by microorganisms and chemicals which are greatly 

dependent on the species reared: temperature, humidity, ventilation, and adequate enclosure 

facilities. During harvesting, workers must guarantee the complete separation of insects from 

the substrate and feces, as these can act as a source of spoilage microbiota, as well as dead 

animals or foreign bodies. Pre-treatment refers to the step prior to killing and processing. 

Chilling is the commonly preferred method as a way of immobilizing the animals and therefore 

facilitate storing and transport (van Huis 2019).   

Killing is accomplished by applying a thermal treatment, either very high or very low 

temperatures. When blanching is applied, which refers to the dipping of the insects in hot water, 

the water used is a possible source of contamination by spore-forming bacteria, hence the 

importance of monitoring and properly treating the water (van Huis 2019). After killing, various 

processing technologies, further described in section 6, may be employed with different 

purposes (van Huis 2019).  

 

5.1. Hazard Analysis and Critical Control Point system   
 

The Hazard Analysis and Critical Control Points (HACCP) system was developed to 

identify hazards (biological, chemical, and physical) during the production of foods and 
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implement control measures to guarantee their safety. Prior to the implementation of HACCP, 

a series of pre-requirements must be assured, such as GHP, GMP, GFP, facility design and 

pest control (WHO and FAO 2009; FAO 2014). This system is intended to prevent defects and 

irregularities based on evidenced health risks for each foodstuff, through the monitorization of 

various parameters, including critical control points (CCP) along the production chain. 

Corrective measures are applied whenever a deviation from the critical limits defined for a CCP 

is detected (Blaauboer et al. 2016; Jo and Lee 2016; Marshall et al. 2016). 

The implementation of HACCP is not obligatory in primary production of foodstuffs, 

including insect production, but according to Regulation (EC) No 852/2004, it is of the 

producers’ interest to establish an HACCP plan, since this is a systematic and science based 

system designed to reach higher standards of food safety (WHO and FAO 2009). Consumer 

confidence is increasingly dependent on food safety, especially in the case of insects, since 

they belong to a new group of animal products.  Hence HACCP is key to ensure edible insects 

are produced under high safety standards (van Huis 2019).  

Despite the vast amount of literature regarding food safety of edible insects, concrete 

information concerning specific hazards is still lacking. This constitutes a limitation to the 

execution of a hazard analysis by the HACCP team (Fraqueza and Patarata 2017). 

 

6. Processing technologies  
 

Processing is critical in some food industries, since it destroys potential hazards like 

pathogenic agents, as well as spoilage organisms, therefore extending the products´ shelf life. 

It can also improve the palatability and visual presentation, making it more appealing to the 

consumer (Dossey et al. 2016). Killing is the first processing step of edible insects. The most 

common methods are freeze-drying, sun-drying and boiling (Baiano 2020). After killing, 

conservation and storage of insect-based foods can be achieved by the maintenance of low 

temperatures (freezing) and low water percentage (drying by lyophilization or roasting), the 

addition of chemical preservatives or by the use of modified atmosphere packaging (Dossey 

et al. 2016; Marshall et al. 2016).  

Insects are commonly eaten whole and popular cooking methods include steaming, 

boiling, roasting, toasting, frying, smoking, drying and stewing (Marshall et al. 2016; Nyangena 

et al. 2020). Other forms of presentation are powders and pastes, as well as extracts like 

protein, fat or chitin, which can be incorporated as ingredients in other processed foods 

(Klunder et al. 2012; Melgar-Lalanne et al. 2019).   

Despite their nutritional value, insects offered whole are often rejected by the westerner 

consumer. To solve this problematic the industry is betting farther on foods that incorporate 
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ingredients originated from insects. Some examples include biscuits, breads, protein powders 

and bars, fermented foods and burgers (Kewuyemi et al. 2020; Mishyna et al. 2020). 

 

II Objectives  
 

The main purpose of this study was to evaluate the effect of starvation on the 

microbial load and fat content of the house cricket.  

  



 
 
 

19 
 

III Materials and methods 

1. Sample preparation 
 

In September 2017, wild crickets (Acheta domesticus) were caught in their natural 

habitat near Uppsala and reared in a laboratory at the Swedish University of Agricultural 

Sciences under climate-controlled conditions. Controlled breeding was applied to promote 

genetic variability, where males and females from different groups were coupled for every new 

generation.  

For this study, breeding was achieved by mixing selected adult crickets (males and 

females) in plastic boxes (16.5W x 14D x 14H cm) with small cups filled with humid sand for 

oviposition. Mating occurred for a period of 3 days, after which the sand cups were removed 

and incubated at 32 ºC in darkness. After 10 to 12 days of incubation, the sand cups with newly 

hatched crickets were transferred to new plastic boxes, where they were reared for the 

experiment. The breeding stage took place between the 4th and the 27th of October. In total, 

22 females and 13 males were used for breeding and the resultant colony was composed of 

about 500 to 600 individuals.    

During the growth phase, the crickets were housed in plastic boxes (16.5W x 14D x 

14H cm and 28W x 20D x 28H cm) adapted to fit a thin steel net in one of the sides to enable 

ventilation, which were enriched with hiding units made of black water piping tubes (L6 x Ø 2.5 

cm) (Vaga et al. 2018) and straws (L5 x Ø 0.53 cm and L5 x Ø 0.8 cm). The room was kept at 

controlled temperature of 30 ± 1 ºC and relative humidity of 45-55% with a 12h lighting regime. 

Feed was provided ad libitum and consisted of a pelleted feed mixture with the composition 

shown in Table 3. Water was given in plastic tubes (L10 x Ø 1.2 cm) that were refilled every 5 

to 10 days. The nymphalid stage lasted about 8 weeks.   

 

FEED INGREDIENTS (G/KG DM) 

Oat bran                                             296 

Wheat bran                                        308 

Wheat meal (kernels)                         224 

Premix vaga1                                           4 

Rapeseed meal2                                 150 

Limestone                                             18 

 
Table 3. Ingredient list of the feed. 1 Vitamin mixture. 2 ExPro-00SF from AKA Ltd. (Malmö, Sweden). 
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2. Sample collection  
 

In this experiment, three groups of crickets were compared: a control group fed ad 

libitum that was euthanized by freezing at -20 °C at the start of the experiment, and a second 

and third group initially fed the same diet but starved for 24h and 48h. Crickets from the two 

study groups were euthanized immediately after completion of the experiment as described 

above. In order to monitor mortality and cannibalism during starvation, crickets were separated 

in small plastic boxes (11W x 7.5D x 4H cm and 12.5W x 12.5D x 5H cm), one male and one 

female in each, without food. Only water and shelter tubes were provided.  

Starvation was executed at two different times, that is, the first group was starved for 

24h and two weeks later the second group was starved for 48h. This allowed the remaining 

crickets to become adults. The separation of crickets was always done at the same time, from 

7 to 8 am and euthanasia by freezing at 8 am. Each group was composed of 100 crickets, 50 

females and 50 males, which were separated in 50 small boxes for starvation. The control 

group was not separated, having been immediately euthanized by freezing at -20 ºC.  

Simultaneously, a behavioral study was conducted with crickets from the same family. 

The purpose of this study was to quantify glycogen of starved crickets. The same separation 

method was applied for two other groups of crickets (24h and 48h starvation), and a control 

group (no starvation) was also included. Each group was composed of 48 crickets, separated 

in 24 small plastic boxes (11W x 7.5D x 4H cm and 12.5W x 12.5D x 5H cm). In each group, 

8 boxes (12.5W x 12.5D x 5H cm) were filmed separately for 8 minutes. Euthanasia was done 

by freezing at -80 ºC. Both studies were conducted at the same time. 

After 24h in the freezer, the samples were separated in plastic bags, according to their 

intent: microbiological analysis, fat and glycogen quantification. For microbiological analysis 

there were 8 replicates per group, each sample containing between 7 and 9 crickets, both 

females and males. For fat quantification, 3 replicates with 6 crickets each were made for each 

sex. The analysis and results of glycogen quantification and behavior observation are outside 

the scope of this thesis.  

 

2.1. Evaluation of sex on microbial load  
 

To assess whether there is a significant effect of sex on the microbial load of starved 

crickets, a pilot study was conducted. Crickets were starved for 24h and euthanized by freezing 

at -20 ºC. 3 replicates of each sex (a pool of 10 crickets each) were analyzed for Total Aerobic 

Counts (TAC) and Enterobacteriaceae. The weight of the samples varied between 2.46 g and 

5.07 g. For each sample, whole adult crickets without prior processing/treatment were crushed 
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with a mortar and homogenized with buffered peptone water (BPW) (1:9) in a Stomacher 

(easyMIX Lab Blender, AESChemunex, Weber Scientific, Hamilton, NJ) for 2 min. Serial 

dilutions were performed according to Nordic Committee on Food Analysis (NMKL) method nr. 

86, 5th edition 2013 for TAC (equivalent to ISO 4833-1:2013) and NMKL method nr. 144, 3rd 

edition 2005 for Enterobacteriaceae (equivalent to ISO 21528-2:2017).  

The data were analysed on Microsoft Office Excel for Windows where an independent 

t-test was done to calculate the statistical significance of sex on the microbial load (p=0.05), 

using the log CFU/g values of TAC and Enterobacteriaceae counts.  

 

3. Microbiological analyses  
 

The samples were taken out of the freezer 30 min before starting the analyses, to 

defrost. They were further transferred to a Stomacher bag and crushed with a mortar. After 

weighing (weights were between 1.96 g and 3.58 g), the crushed material was suspended in 

sterile buffered peptone water (1:9) and homogenized in a Stomacher for 2 min. Tenfold 

dilution series were prepared using a Dilicup (Dilushaker III Digital 6 rows LED 21). 

 

3.1. Total aerobic counts at 30 ºC 
 

From the previous serial dilutions, 1ml aliquots of dilutions 10-5 to 10-9 were pour-plated 

into standard plate count agar (Oxoid, Basingstoke, UK) and homogenized. A thin overlayer of 

the same medium was added after solidification. The plates were incubated at 30 ± 1 ºC for 

72±6h. After the incubation period, the plates with 25 to 250 colonies were counted using a 

colony counter (BZG 30, Gerber Instruments, Switzerland). The results were expressed in log 

CFU/g. The methodology used was according to the NMKL method nr. 86, 5th edition 2013, 

equivalent to ISO 4833-1:2013. 

 

3.1.1. Gram staining 

 
With the intend of characterizing the bacterial communities present in the cricket 

samples, Gram stains were completed for isolates from the groups 24h and 48h. For practical 

reasons, no Gram stains were done for the control group. From 5 out of the 8 samples 

inoculated for TAC, 5 colonies were sub-cultured on blood-agar plates (SVA, National 

Veterinary Institute), a non-selective enrichment medium, and incubated at 30 ºC for 20h ± 2h. 

In total, 25 colonies were analyzed for each group. After the incubation period, a Gram stain 
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was done. Observation of the Gram-stained slides was made with a light microscope on the 

100x objective lens (Leitz).   
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3.2. Enterobacteriaceae counts 
 

The enumeration of Enterobacteriaceae was executed according to the NMKL method 

nr. 144, 3rd edition 2005, equivalent to ISO 21528-2:2017. From the serial dilutions, 1 ml 

aliquots of dilutions 10-4  to 10-7 were cultured by pour-plating in Violet Red Bile Glucose 

(VRBG) medium (Becton, Dickson and Company, Sparks Glencoe, USA) and homogenized. 

A thin overlayer of the same medium was added after solidification. The plates were incubated 

at 37 ºC for 24h ± 3h. The colonies were then enumerated in the plates that had between 15 

and 150 colonies.  

For biochemical confirmation, 5 colonies from each plate were sub-cultured on blood-

agar medium and subjected to oxidase reaction test (Becton, Dickinson and Company, Sparks, 

USA), after incubation at 37 ± 1 ºC for 24 ± 3h.  

The data were statistically evaluated on Microsoft Office Excel for Windows using a 

Wilcoxon Signed Rank test with a significance level of 5%.  

 

4. Fat quantification 

4.1. Sample preparation 
 

To quantify the fat content of the crickets being studied, the samples were freeze-dried 

after the individuals having been cut transversally in 3 or 4 pieces and weighed in an analytical 

4 decimal place balance. The samples were then frozen at -80 ºC and later grinded with a 

mortar. To keep the samples frozen, the mortar was used inside a thermal box with dry ice 

during grinding. Between samples, the mortar was cleaned with ethanol to remove fat residues 

of the previous sample. 

Initially, it was planned that each group were to have 6 replicates of 3 individuals for 

each sex. However, after freeze-drying, the mean sample weight was 0.3988g. Hence, in order 

to reduce the error associated with an insufficient sample weight, the samples were paired two 

by two, being tested in total 3 replicates of 6 individuals.  
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4.2. Determination of total fat by Soxhlet extraction 
 

The determination of the total fat was executed by Soxhlet extraction using 

Soxtec/HydrotecTM 8000 Total Fat Solution (FOSS, Denmark), consisting of a hydrolysis unit 

“Hydrotec 8000” (Figure 2A), an extraction unit “Soxtec 8000” (Figure 2B) and patented filters 

“Hydrocaps” (Figure 3). The hydrolysis unit allows the hydrolysis of 12 samples at a time while 

the extraction unit only allows 6.  

 

 

 

Before performing the analyses, samples were left at room temperature. One hour prior 

to hydrolysis, 6 extraction cups were dried for 1h at 103 ºC which were then cooled in a 

desiccator. The samples were weighed in an analytical 4 decimal place balance into the 

hydrocaps. These were put in the beaker of the hydrolysis unit which was automatically filled 

with hydrochloric acid 3 M (HCl) and boiled for 2h. The hydrolysis step was intended to 

separate fat from other components of the sample. After hydrolysis was completed, the 

hydrocaps were removed from the beaker. The hydrolyzed samples were covered with a layer 

of cotton to remove any residue of acid and put in an oven at 60 ºC overnight.  

For the extraction step, the hydrocaps, as well as the extraction cups were attached to 

the extraction unit and the cups were filled with solvent (petroleum ether) using an external 

Figure 2. A- Hydrolysis unit “Hydrotec 8000”; B- Extraction unit “Soxtec 8000” (FOSS 2014). 

Figure 3. Filters “Hydrocap” (Fisher Scienfitic 2020). 
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solvent dispenser attached to the system. Extraction was performed at 90 ºC and consisted of 

three steps: boiling (20 min), rinsing (40 min) and solvent recovery (8 min). Finalized this stage, 

the extraction cups were dried at 103 ºC for 30 min and then put in a desiccator for cooling 

until room temperature. Finally, the ups were weighted.  

The results were obtained using the following equation: 

Fat (g/kg DM) = 100 x (V2 – V1) / sample weight (g) 

V1 = Weight of empty cup (g) 

V2 = Weight of empty cup + extracted fat (g)  

 

For total fat content, the statistical analysis was performed in R using a factorial analysis 

of variance (ANOVA) and Tukey’s post-hoc analyses with a significance level of 5%.  

IV Results 

1. Evaluation of sex on the microbial load  

 

For the pilot study, Table 4 shows the log CFU/g values of Enterobacteriaceae and 

TAC at 30 ºC in male and female individuals of Acheta domesticus starved for 24 hours. The 

mean values for Enterobacteriaceae in female crickets was 6.5 log CFU/g and in males was 

6.8 log CFU/g. The mean TAC values in females and males were 7.8 log CFU/g and 7.6 log 

CFU/g for females and males, respectively. The results show that there was no significant 

difference on the microbial load of female and male crickets. For this reason, the samples used 

for microbiological analyses in the experiment comprised both females and males.  

 

TOTAL AEROBIC COUNTS AT 30 ºC 
(log CFU/g) 

 
ENTEROBACTERIACEAE 

(log CFU/g)  

Sample (n = 10) Female Male Sample (n = 10) Female Male 

1 8.4 7.8 1 6.7 6.2 

2 7.7 7.8 2 6.3 7.5 

3 7.2 7.3 3 6.4 6.7 

MEAN (±SD) 6.5±0.2 6.8±0.7 MEAN (±SD) 7.8±0.6 7.6±0.3 

 
Table 4. Results of the pilot study on the microbial load of crickets (Acheta domesticus) starved for 24 
hours. 
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2. Effect of starvation on the microbial load and total fat content   
 

Based on the results of the pilot study, the samples used for the determination of TAC 

at 30 ºC as well as Enterobacteriaceae were composed of both male and female individuals, 

each sample being a pool of 7 to 8 crickets (Table 5). As presented in Table 5 and illustrated 

in Figure 4, the starvation groups had crescent mean TAC values over time: 7.3 log CFU/g at 

0h (T0), 7.8 log CFU/g at 24h (T24) and at 48 (T48) 8.2 log CFU/g.  

 

TOTAL AEROBIC COUNTS AT 30 ºC 
 (LOG CFU/G) 

Sample 
n 

T0 
T0 

n 
T24 

T24 
n 

T48 
T48 

1 8 7.5 8 7.5 7 7.9 

2 8 7.4 8 8.9 7 8 

3 8 7.1 8 7.4 7 8 

4 8 7 8 7.8 7 7.8 

5 8 7.6 8 7.8 7 7.7 

6 8 7.2 8 6.8 7 8.3 

7 8 7.8 8 7.7 7 8.8 

8 9 6.8 8 8.2 7 8.7 

MEAN±SD  7.3±0.3  7.8±0.6  8.2±0.4 

 
Table 5. Results of the total aerobic counts at 30 ºC (log CFU/g) of crickets (Acheta domesticus) after 
different periods of starvation. 
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Figure 4. Mean values and SD of TAC at 30 ºC (log CFU/g) of crickets after different periods 
of starvation. 
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In Table 6 is presented the colony composition of the TAC plates in the 24h and 48h 

starvation groups, in percentage (%) of each cell type. There was a variation between the 24h 

and the 48h groups, having been registered a decrease in Gram-positive cocci (from 68 to 

48%) and an increase in Gram-negative cocci (from 24 to 48%). Bacilliform colonies were not 

detected in the 48h groups but were present in small numbers (8%) in the 24h group. 

 

 

 

 

 

 

 

In Table 7 are listed the samples included in each group (T0- 0h; T24- 24h; T48- 48h), 

with the corresponding Enterobacteriaceae values, mean and standard deviation (SD). As it 

can be observed in Figure 5, the Enterobacteriaceae counts did not suffer a linear decline over 

time with starvation, having been observed a decrease between 0h and 24h of starvation (from 

6.2 to 5.2 log CFU/g) but similar values for the 0 and 48h groups (6.2 to 6.1 log CFU/g).  

 

ENTEROBACTERIACEAE COUNTS (LOG CFU/G) 

Sample 
n 

T0 
T0 

n 
T24 

T24 
n 

T48 
T48 

1 8 6.2 8 5.2 7 6.3 

2 8 5.5 8 4.7 7 5.9 

3 8 6.3 8 5.7 7 4 

4 8 6.6 8 5.5 7 5.6 

5 8 5.8 8 5.8 7 5.5 

6 8 6.3 8 5.9 7 5 

7 8 6.5 8 4.2 7 8.5 

8 9 6.1 8 4.7 7 7.9 

MEAN±SD  6.2±0.3  5.2±0.6  6.1±1.4 

 
Table 7. Results of the Enterobacteriaceae counts (log CFU/g) of crickets (Acheta domesticus) 
after starvation. 

 

GRAM STAIN 

Gram reaction and 
cell morphology 

24h (%) 48h (%) 

Gram-positive bacilli 4 0 

Gram-negative bacilli 4 0 

Gram-positive cocci 68 48 

Gram-negative cocci 24 48 

Fungi 0 4 

Table 6. Results of the Gram stains from the TAC plates of the 24 and 48h starvation groups. In 
total, 25 isolates were tested for each group. 
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As shown in Table 8, there was a total of 3 samples for each group of crickets (T0- 0h; 

T24- 24h; T48- 48h) used to evaluate the fat content, and for each sex, with the corresponding 

fat contents (g/kg DM), means and SD. Figure 6 and Figure 7 illustrate the mean values and 

SD of the fat contents obtained for females and males, respectively. The results show a similar 

pattern for both sexes. When submitted to a starvation period of 24h, crickets had a reduced 

fat content, from 384.2 to 322.6 g/kg DM in males, and from 329.3 to 280.9 g/kg DM in females. 

With a starvation period of 48h, the fat content was reduced in males (384.2 to 355.9 g/kg DM) 

but slightly increased in females (329.3 to 333.3 g/kg DM). 

  

 

 

 

 

FAT CONTENT (G/KG DM) 

Males Females 

Sample 
(n=6) 

T0 T24 T48 
Sample 
(n=6) 

T0 T24 T48 

1 422.3 342.6 364.3 1 302.3 292.9 333.3 

2 395.1 288.7 369.9 2 355.7 284 366.9 

3 335.2 336.5 333.3 3 329.8 265.6 299.7 

MEAN±
SD 

384.2±
36.4 

322.6±
24.1 

355.9±
16.1 

MEAN±
SD 

329.3±
21.8 

280.9±
11.4 

333.3±
27.4 

Table 8. Fat content (g/Kg DM) of male and female crickets starved for 0h, 24h and 48 h. 
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Figure 5. Mean values and SD of Enterobacteriaceae counts (log CFU/g) of crickets after different periods 
of starvation. 
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       Figure 6. Fat content (g/kg DM) of female crickets after different periods of starvation. 

    Figure 7. Fat content (g/kg DM) of male crickets after different periods of starvation. 
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V Discussion 
 

In this study, no sex related differences were found for either TAC (p=0.72) nor 

Enterobacteriaceae (p=0.46). The results show a significant increase in TAC after 48h of 

starvation (p=0.002), not like after 24h (p=0.08). Enterobacteriaceae counts decreased after 

24h of starvation (p=0.004) but not after 48h (p=0.5). Similarly to the findings of Wynants et al. 

(2017) in Tenebrio molitor, TAC in the house cricket were not significantly reduced with 

starvation after 24 and 48 hours. Likewise, Dillon and Charnley (2002) found a “larger 

population of bacteria” after starvation in locusts (order Orthoptera).  

Evaluation of the Gram stains suggests an alteration of the microbial communities 

between 24 and 48h of starvation. For practical reasons, no Gram stains were analyzed at 0 

hours. There is a predominance of Gram-positive cocci at 24h (68%) and at 48h, Gram-positive 

cocci values equal Gram-negative cocci (48%). Bacilli were observed in crickets starved for 

24h (4% Gram-positive and 4% Gram-negative) but not for 48h.  

Another study where the same rearing conditions of the present were used (including 

the feed composition), showed that the predominant phyla of crickets were Proteobacteria, 

Bacteroidetes (Gram negative) and Firmicutes (Gram positive) However, no fasting period was 

applied to the crickets (Fernandez-Cassi et al. 2020).  

Starvation did not significantly reduce the total fat content of both males (p= 0.13 for 

24h and p= 0.57 for 48h) and females (p= 0.13 for 24h and p= 0.98 for 48h). However, 

significant sex differences were observed overall, regarding the fat content of crickets (p=0.01), 

showing a higher fat content in males.  These results are conflicting with the ones of Kulma et 

al. (2019), where females were found to have higher total fat content. The sex dependent 

variation of the fat content could eventually be explained by the variation in body composition 

that occurs with age, showed by Lipsitz and McFarlane (1971), since the exact age of the 

crickets used in this study was not thoroughly monitored. However, crickets were collected for 

analysis within 2-7 days after the last molt at adult stage but presented with different ages 

since the nymphalid stage differed between groups. Moreover, the small number of samples 

allowed a greater variation of the results, thus failing to detect smaller differences. Additionally, 

grinding after freeze-drying acted as a source of error since the weights of the samples were 

relatively small and some fat was lost during this step (Prost and Wrebiakowsi 1972).  
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 VI Conclusion  
 

This research aimed to find a correlation between starvation, microbial load, and fat 

content of edible crickets. The conclusions of the study are: 

- Enterobacteriaceae counts were reduced significantly with a starvation period of 24h, 

while starvation for 24h or 48h did not reduce TAC nor fat. 

- The microbial load of crickets did not vary with sex. 

Hence, starving edible crickets for 24h prior to slaughter will reduce the 

Enterobacteriaceae counts without significant fat loss, although longer starvation periods do 

not appear to be beneficial. 

For future research, the age of the animals used should be more homogeneous, as in 

this study crickets with different ages were used in the trials. Considering these new findings, 

insect farmers should consider whether or not to apply a starvation period, seeing as the 

outcome is limited. Ultimately, further research on the impact of facility materials, rearing 

methods, hygiene practices and feed on the microbiome of insects is needed in order to 

produce safe foods in the insect industry.   
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VIII Annexes  

Annex I- Sample collection  

 

Sample collection for microbiological analysis and fat 

quantification for T0 

Sample collection for microbiological analysis for T24 

Sample collection for fat quantification for T24 
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Sample separation for microbiological analysis for T48 

  

 

 

 

Sample separation for fat quantification for T48 
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Annex II- Materials used 
 

 

 

 

 

 

 

 

 

Figure 1. Plastic boxes where crickets were reared (16.5W x 14D x 14H cm).  

 

 

 

 

 

 

 

 

 

Figure 2. Plastic boxes where crickets were reared (28W x 20D x 28H cm) 

 
  A                                           B 

 

 

 

  

 

Figure 3. Empty (A) and complete (B) yellow lid box (12.5W x 12.5D x 5H cm)                 
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A                                                                       B 

 

 

 

 

 

Figure 4. Empty (A) and complete (B) transparent lid boxes (11W x 7.5D x 4H cm)  

 

 

 

 

 

 

Figure 5. Glued black water piping tubes (L6 x Ø 2.5 cm) 

 

 

 

 

 

Figure 6. Water tube (L10 cm)                 Figure 7. Feed provided to the crickets 

 

 

 

 

 

  

 Figure 8. Sand cups for oviposition                           Figure 9. Material used to catch crickets                                                                                     
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