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Abstract 

Tephrochronology is a high-precision dating method that uses volcanic ash horizons as 

isochrons in correlating and dating geological records and archaeological sites. First 

developed in the volcanic regions of the world, tephrochronology has expanded to ever more 

distal areas with improved laboratory and analytical methods that have enabled the 

utilization of even the scarcest deposits of far-travelled cryptotephra i.e. small volcanic glass 

shards that are invisible to the naked eye.  

The objective of this dissertation is to assess the potential of cryptotephra studies and 

tephrochronology in Finland. No cryptotephra studies had been conducted in Finland 

previously, and the ultimate aim of the work presented here was to establish a first outline 

for a Finnish tephrochronology that could be used as a dating tool in environmental research 

in the region. Cryptotephra was searched from 30 peatland and lake sites from an area that 

covers the whole southern and central Finland from Åland archipelago in the west to the 

Russian border in the east. As a result, cryptotephra deposits from at least 17 Icelandic and 

two Alaskan volcanic eruptions were detected and geochemically characterized from the 

Finnish environmental archives. The oldest identified tephra in Finland is the 7 ka Hekla 5 

tephra and the youngest one is the Askja 1875 tephra. The Finnish tephrochronology 

therefore covers approximately 7000 years and the results of this study demonstrate that 

dispersal of tephra to Finland has been relatively frequent throughout this time.  

Within this project, the known dispersal areas of several Holocene tephras, such as Askja 

1875, Hekla 1845, Hekla 1510, Landnám (Torfajökull), White River Ash eastern lobe, Hekla 

Ö and Aniakchak tephra were extended significantly eastwards, and the Hekla Y tephra was 

identified for the first time outside of Iceland. These results indicate that Icelandic tephra 

can travel to Finland along complex northerly and southerly pathways in addition to a direct 

eastwards dispersal route. Additionally, datasets of proximal geochemistry of Hekla X, 

Hekla Y, Hekla Z and Hekla 1845 tephras were produced and published to be used as an aid 

in establishing more robust correlations between the distal and proximal tephra records. The 

main outcome of this study is a first outline for a Finnish Holocene tephra framework. The 

high number of cryptotephra horizons in the framework demonstrates that there is great 

potential for further cryptotephra studies and utilization of tephrochronology as a dating 

method in Finland.   

 

 

 

 

 

 



 

Útdráttur 

Gjóskulagatímatal er nákvæm aldursgreiningaraðferð þar sem gjóskulög eru notuð til að 

tengja saman og tímasetja jarðlög og fornleifar. Gjóskulagatímatal á rætur að rekja til 

eldvirkra svæða jarðarinnar, en þaðan hefur aðferðin dreifst til fjarlægra svæða. Þróun 

aðferðarfræðinni hefur leitt til nýtingar smásærra gjósku (cryptotephra eða leynigjóska) sem 

hefur borist langt frá eldvirkum svæðum og myndar örþunn ósýnileg lög í jarðlögum. 

Í þessu doktorsverkefni er leitast við að kanna möguleika á notkun smásærrar gjósku til 

aldursgreininga í Finnlandi. Þessi rannsókn er fyrsta sinnar tegundar á smásærri gjósku í 

Finnlandi. Meginmarkmiðið með rannsókninni er að byggja upp gjóskulagatímatal í 

Finnlandi sem myndi nýtast sem aldursgreiningartæki í umhverfisrannsóknum í 

Fennóskandíu. Í verkefninu voru 30 mýrar og stöðuvötn í Suður- og Mið-Finnlandi könnuð 

með tilliti til tilvistar leynigjósku, og nær rannsóknarsvæðið frá Álandseyjum í vestri til 

landamæra Finnlands og Rússlands í austri. Niðurstöður rannsóknarinnar leiddu í ljós tilvist 

leynigjóskulaga frá 19 eldgosum, þar af voru 17 frá íslenskum eldstöðvum og tvö frá 

eldfjöllum í Alaska. Elsta efnagreinda gjóskan sem borist hefur til Finnlands er 7000 ára 

gömul Heklugjóska (Hekla 5), en yngsta gjóskan myndaðist hins vegar í Öskjugosinu árið 

1875. Finnska gjóskulagatímatalið spannar því síðustu 7000 ár og niðurstöður verkefnisins 

sýna að gjóska hefur borist tiltölulega oft til Finnlands á þessu tímabili. 

Niðurstöður rannsóknarinnar sýna að mörg gjóskulög, eins og Askja 1875, Hekla 1845, 

Hekla 1510, Landnám (Torfajökull), White River Ash, Hekla Ö og Aniakchak hafa dreifst 

umtalsvert víðar enn áður hefur verið þekkt. Þar að auki er gjóskulaginu Hekla Y lýst í fyrsta 

sinn utan Íslands. 

Niðurstöður þessa verkefnis er mikilvægur grunnur að áframhaldandi rannsóknum á 

smásærri gjósku í Finnlandi, Fennóskandíu og vestur Evrópu. Sá fjöldi gjóskulaga sem 

fundist hefur í Finnlandi í þessari rannsókn gefur tilefni til og endurspeglar mikla möguleika 

á frekari gjóskurannsóknum og nýtingu gjóskulaga til að tímasetja jarðlög og 

umhverfisbreytingar í Finnlandi. 

 

 

 

 

 

  



 

 

Tiivistelmä 

Tefrokronologia on tarkka ajoitusmenetelmä, joka perustuu tefran eli tulivuoren tuhkan 

muodostamien kerrosten käyttöön arkeologisten ja geologisten ympäristöarkistojen 

ajoittamisessa ja korreloinnissa. Tefrokronologinen tutkimus on lähtöisin maapallon 

tuliperäisiltä seuduilta, joilta se on vähitellen levinnyt yhä kauemmaksi distaalialueille 

laboratorio- ja analyysimenetelmissä tapahtuneen kehityksen myötä. Nykyään 

ajoitushorisontteina on mahdollista käyttää jopa paljaalle silmälle näkymättömiä kerroksia, 

jotka muodostuvat kauimmaksi kantautuneista, mikroskooppisista vulkaanisen lasin 

partikkeleista eli kryptotefrasta.  

Tämän väitöskirjan päämääränä on arvioida tefrokronologian mahdollisuuksia Suomessa. 

Kryptotefran esiintymistä Suomessa ei ole aikaisemmin tutkittu, ja yksi työn tärkeimmistä 

tavoitteista oli luoda alueellinen tefrokronologinen kehys, jota voitaisiin käyttää 

ajoitustyökaluna suomalaisessa ympäristötutkimuksessa. Tutkimuskohteiksi valittiin 30 

suota ja järveä, joista kryptotefraa etsittiin. Tutkimusalue kattaa koko Etelä- ja Keski-

Suomen aina Ahvenanmaalta Venäjän rajalle saakka. Tutkimuskohteista löytyi kryptotefraa, 

joka on geokemiallisen koostumuksensa perusteella peräisin ainakin 17 islantilaisesta ja 

kahdesta alaskalaisesta tulivuorenpurkauksesta. Vanhin geokemiallisesti tunnistettu 

tuhkakerros on peräisin islantilaisen Hekla keskustulivuoren n. 7000 vuotta sitten 

tapahtuneesta purkauksesta, ja nuorin tuhkakerrostumista on kulkeutunut Suomeen 

islantilaisen Askja keskustulivuoren vuoden 1875 purkauksesta. Tämän tutkimuksen 

tuloksena rakennettu Suomen tefrokronologinen kehys kattaa siis noin 7000 vuotta, ja sen 

muodostavat tefrakerrostumat osoittavat, että tulivuoren tuhkaa on levinnyt Suomeen usein 

kyseisen ajanjakson aikana.  

Tulokset osoittavat myös, että useiden holoseenin tefrojen levinneisyysalueet ovat ulottuneet 

huomattavasti kauemmaksi itään kuin aiemmin on ollut tiedossa. Esimerkkejä tällaisista 

tefroista ovat Askja 1875, Hekla 1845, Hekla 1510, Landnám (Torfajökull), White River 

Ash, Hekla Ö sekä Aniakchak tefra. Lisäksi Hekla Y tefraa löytyi tämän tutkimuksen 

tuloksena ensimmäistä kertaa Islannin ulkopuolelta. Tulokset osoittavat, että tuhkapilvet 

kantautuvat Islannista Suomeen sekä suoraan lännestä että pitkin monimutkaisia pohjoisia 

ja eteläisiä kulkeutumisreittejä. Suomessa tehdyn kryptotefratutkimuksen lisäksi tässä 

väitöskirjatyössä tutkittiin Hekla X, Hekla Y, Hekla Z ja Hekla 1845 tefrojen geokemiallista 

koostumusta proksimaalialueiden geologisissa kerrostumissa. Uuden geokemiallisen datan 

avulla luotiin aiempaa luotettavampia yhteyksiä proksimaali- ja distaalialueiden 

tefrostratigrafioiden välille. Tämän väitöskirjan tärkein tulos on ensimmäisen suomalaisen 

tefrokronologisen kehyksen julkaisu. Kryptotefrahorisonttien suuri lukumäärä Suomessa 

osoittaa, että alueella on erinomaiset mahdollisuudet kryptotefroihin kohdistuvaan 

jatkotutkimukseen sekä tefrokronologian käyttämiseen ajoitusmenetelmänä. 
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1 Introduction 

1.1 Significance of tephrochronology as a dating 

method 

Environmental archives, such as peat or soil sections, lake and marine sediments, and glacier 

ice have recorded the natural history of the Earth in the form of various proxies that reflect 

the conditions that once prevailed. These biological, chemical, or physical traces of past 

environments can all be used for reconstructing the palaeoenvironments and the 

palaeoclimate. Reconstructions of the past conditions are, however, of little use without the 

element of time. Without age constraints we cannot answer questions of timing, duration, 

rate, or frequency of events. Only by introducing time into the equation, can we align the 

environmental archives of geographically separate locations temporally and gain 

understanding on how and why complex and interconnected systems such as the 

environment and climate have been changing in the past. Extensive networks of well-dated 

paleoenvironmental records are a prerequisite for inferring the mechanisms and spatial 

patterns of global change, and one of the most important methods for dating and correlating 

the Quaternary records has proven to be tephrochronology (e.g. Lowe, 2011; Davies, 2015).  

Tephrochronology is an event-based dating and correlation method that uses the horizons of 

volcanic particles, i.e. tephra, in environmental records as marker layers. According to the 

principles of tephrochronology, a tephra layer originating from an explosive volcanic 

eruption is deposited instantaneously in geological sense of time, and thus forms an isochron, 

a horizon that represents the same moment in time throughout its dispersal area 

(Thorarinsson, 1944). When a tephra layer has been geochemically characterized and 

identified as a marker layer with unique geochemical (and/or physical) properties, it can be 

traced from one geological sequence to another and used for correlating the sequences. If the 

age of the tephra-layer-forming eruption is known from historical records or determined with 

other dating methods, the eruption age can be applied to every location where the layer is 

present (e.g. Lowe, 2011). Several other dating methods exist that are relevant for the 

Quaternary timescale. Examples of these are radiocarbon (Libby 1961), luminescence 

(Huntley et al., 1985) and palaeomagnetic dating (Mackereth, 1971), as well as incremental 

methods that are based on growth/accumulation of annual layers on either living organisms 

(e.g. tree rings: Douglass, 1919) or geological archives (varved lake sediments, glacier ice, 

stalagmites). However, each dating method has its weaknesses and sources of error and most 

of them can be used only in a certain type of environment. For example, radiocarbon dating 

requires presence of organic material, and annual layers of glacier ice, lake sediment or tree 

growth are formed only in specific conditions that are present in restricted geographical 

areas. The strength of tephrochronology as a dating method lies in the correlation power of 

the geochemically unique tephras and in the fact that tephra horizons can be found in a wide 

range of environmental records. Tephrochronology has already proven to be an important 

tool for dating and correlating archaeological (e.g. Thorarinsson, 1944; Balascio et al., 

2011), environmental and climate records (Lane et al., 2011, 2013) in Northern Europe. For 
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example, the Last Glacial-Interglacial Transition (LGIT) is marked by several short climate 

fluctuations and rapid environmental change in Northern Europe (Dansgaard et al., 1993), 

and accurate and precise age control is needed for inferring the sequence of response to 

climatic forcing from various environmental archives for estimating synchronicity of change 

or leads and lags between regions. Unfortunately, radiocarbon dating of the LGIT 

environmental records is problematic due to perturbations in the atmospheric radiocarbon 

content and consequent plateaus in the radiocarbon curve that often occur simultaneously 

with shifts in climate (Guilderson et al., 2005; Lowe et al., 2001). Cryptotephra horizons 

have been successfully used as an alternative high-precision correlation and dating tool for 

aligning LGIT and early Holocene records temporally and inferring the order of 

environmental response to climatic forcing between regions (Lane et al., 2011, 2013). 

1.2 History of tephrochronology 

Tephra layers were first used as marker horizons in volcanic regions of the world, where 

they form visible deposits that can often be distinguished from each other and traced across 

the landscape on the basis of their physical properties (such as grain size, grain morphology 

and colour). First tephra correlations were undertaken already in the 1920s and 1930s in 

Tierra del Fuego, South America by the Finnish geologists Väinö Auer and Martti Salmi 

(Thorarinsson, 1944), but tephrochronology as a discipline was established with the research 

of Sigurður Thorarinsson in Iceland in the 1930s and 1940s. Thorarinsson was the first one 

to define the terminology used in tephrochronology today and to realize the potential of 

Icelandic tephra to be transported overseas and remain preserved as microscopically thin and 

scarce deposits in environmental archives of northern Europe (Thorarinsson, 1944). 

Observations of ash-fall originating from Icelandic volcanic eruptions had been recorded in 

Scandinavia already in the 17th century (Thorarinsson, 1981), and the first contemporary 

tephra fall-out maps from northern Europe are the ones depicting the dispersal areas of Askja 

1875 (Mohn 1877, in Thorarinsson, 1981) and Hekla 1947 (Salmi, 1948) tephras. However, 

it was not before the 1960s that the research of Christer Persson of the Stockholm University 

resulted in first cryptotephra findings from peat bogs in Scandinavia. At the time, 

geochemical analysis of the small volcanic glass particles was not feasible, and Persson used 

information such as occurrence depths of the cryptotephra layers, 14C-dates of the peat, and 

properties of the volcanic shards for establishing correlations between sites (Persson, 1966, 

1967). Later, as analytical techniques improved and geochemical fingerprinting of volcanic 

glass by electron microprobe analysis (EMPA) was enabled (Smith & Westgate, 1969; 

Larsen, 1981), more robust correlations of distal cryptotephra findings to source eruptions 

could be established (Dugmore, 1989; van den Bogaard et al., 1994). Since then, 

tephrochronology as a dating method has rapidly gained ground and the method has 

expanded from proximal to distal and even ultra-distal areas (Lowe, 2011; Davies, 2016; 

Plunkett & Pilcher, 2018).  

1.3 Northern European tephra framework 

Tephrochronology is best utilized when well-dated and geochemically well-characterized 

tephra layers form a tephra framework and identification and ages of tephra horizons at 

individual sites get support from stratigraphic relations to the other tephras in the framework. 
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Regional (crypto)tephra frameworks are well established in areas where tephra studies have 

been conducted already for many decades, such as Iceland (e.g. Thorarinsson, 1944, 1967; 

Larsen & Thorarinsson, 1977; Björck et al., 1992; Larsen et al., 1999; Larsen & Eiríksson, 

2008; Óladóttir et al., 2008, 2011; Guðmundsdóttir et al., 2011, 2016), the Faroe Islands 

(Persson, 1968; Wastegård, 2002; Wastegård et al., 2018), Sweden (Persson, 1966; 

Wastegård et al., 1998; Boygle, 1998, 2004; Bergman et al., 2004, Zillén  et al, 2002; 

Wastegård, 2005), Germany (van den Bogaard et al., 1994, 2002; van den Bogaard & 

Schmincke, 2002; Lane et al., 2012; Wulf et al., 2016; Jones et al., 2016), Ireland (Pilcher 

& Hall, 1992; Pilcher et al., 1996) and the UK (Dugmore, 1989; Dugmore et al., 1995, 1996; 

Pilcher & Hall, 1996; Jones et al., 2019). The number of cryptotephra studies in northern 

Europe has been rapidly increasing during the recent years with advances in laboratory and 

analytical methods as well as a growing realization of the benefits of the method. For 

example, improved EMPA protocols (Hayward, 2012) and introduction of techniques to 

concentrate volcanic glass grains by picking them individually with a micromanipulator and 

an attached gas chromatography syringe and needle (MacLeod et al., 2014; Lane et al., 

2014), have enabled geochemical characterization of smaller and scarcer glass shards than 

before. These developments contribute to extending tephra search into even more distal areas 

and allow for trace amounts of ultra-distal cryptotephra to be analysed. For example, the 

12.1 ka Vedde Ash was recently handpicked and analysed from lake sediment in the Ural 

Mountains in Russia, > 4000 km away from its Icelandic source volcano, Katla (Hafliðason 

et al., 2019). This new finding extends the known dispersal area of the Vedde Ash further 

east by 1700 km (Wastegård et al., 2000; Hafliðason et al., 2019). In Svalbard, cryptotephra 

shards from lacustrine sediment were concentrated with a micromanipulator and identified 

as ultra-distal occurrence of tephra from the KS2 eruption of the Kamchatkan Ksudach 

volcano, and the authors suggest that the tephra transport route may have been nearly 

circumarctic (van der Bilt et al., 2017). 

The increased research efforts in tephrochronology are reflected both in new cryptotephra 

frameworks emerging from previously understudied regions, like Poland (Tylmann et al., 

2016; Wulf et al., 2013, 2016; Watson et al., 2017a; Kinder et al., 2020) and southern UK 

(Watson et al., 2017b; Jones et al., 2019) as well as in new tephra findings and improved 

correlations that refine the (crypto)tephrochronologies of the well-investigated areas. For 

example, the wide-spread and well-established Glen Garry (e.g. Dugmore & Newton, 1992; 

Dugmore et al., 1995; Pilcher & Hall, 1996; van den Bogaard & Schmincke, 2002; Barber 

et al., 2008; Watson et al., 2016; Ratcliffe et al., 2018) and AD 860 B (e.g. Pilcher et al., 

1995; van den Bogaard & Schmincke, 2002; Hall & Pilcher, 2002) tephra marker horizons 

have both been only recently correlated to the Icelandic Askja ~2000 (10 CE) (Óladóttir et 

al., 2011; Guðmundsdóttir et al., 2016) and Alaskan Mt. Churchill (Jensen et al., 2014) 

eruptions, respectively. The northern European tephra framework is constantly developing, 

and even if its core has traditionally been formed by tephras from Icelandic volcanic 

eruptions, the role of cryptotephras originating from other volcanic regions can be expected 

to increase in the future (e.g. Plunkett & Pilcher, 2018; Jones et al., 2019).  
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1.4 Icelandic tephrochronology 

Iceland is the source region for most of the cryptotephra deposits identified thus far in 

northern Europe. Iceland is part of the North Atlantic Igneous Province and volcanically 

highly active due to its location on the Mid-Atlantic Ridge and above a mantle hot spot (e.g. 

Wolfe et al., 1997; Thordarson & Höskuldsson, 2008). Volcanic activity in Iceland is 

confined to the volcanic zones and belts (Jakobsson, 1979; Sæmundsson, 1979), and takes 

place within the volcanic systems (Figure 1.1) that consist of a basalt-producing fissure 

swarm located above a deep magma reservoir, and often of a central volcano, that may erupt 

also intermediate and silicic magmas from a crustal magma chamber (Figure 1.1, Jakobsson, 

1979; Sæmundsson 1979). The geochemical differences between the Icelandic volcanic 

systems (Figure 1.2) provide the basis for tracing eruption products back to their source 

volcanoes and correlating the tephra layers over large distances (Imsland, 1978; Jakobsson, 

1972, 1979). 

 

 

Figure 1.1 Location of the volcanic zones, belts and relevant volcanic systems. 

SVB=Snæfellsnes Volcanic Belt, RVB=Reykjanes Volcanic Belt, WVZ=West Volcanic Zone, 

EVZ=East Volcanic Zone, ÖVB=Öræfi Volcanic Belt, NVZ=North Volcanic Zone. Map 

modified from Jakobsson 1979 and Thordarson & Höskuldsson 2008. Colour coding of the 

volcanic systems as in Guðmundsdóttir et al., 2016. 

Volcanism in Iceland is dominated by mafic magmatism, and it has been calculated that 

volcanic eruptions have taken place at least once in every five years during the historical 

time (Thordarson & Larsen, 2007). Despite the predominantly mafic nature of the 

magmatism, nearly 80 % of the Icelandic volcanic eruptions are explosive, due to frequent 

phreatomagmatic eruptions from subglacial volcanic systems (e.g. Larsen, 2002; Óladóttir 

et al., 2011; Thordarson & Höskuldsson, 2008). The exact number of Holocene tephra layers 
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in Iceland is not known, but it has been estimated that potential tephra-producing Holocene 

eruptions could have been around 1900 (e.g. Thordarson & Höskuldsson, 2008), if the 

eruption frequency would have remained the same throughout the Holocene as during the 

historical period. However, changes in eruption frequency are known to have occurred 

during the Holocene (e.g. Larsen & Eiríksson, 2008; Óladóttir et al., 2011). Additionally, 

the preservation potential of many tephra layers is low due to dynamic proximal environment 

with poor vegetation cover and high erosion rates. The smallest eruptions may also have 

produced only local tephra fall-out. For example, some of the historical tephra layers 

originating from the subglacial volcanoes have been recorded only from the glacier ice and 

are difficult to trace further away from the volcano (Larsen, 2002; Óladóttir et al., 2011). 

There is no site in Iceland that would comprise a complete tephra stratigraphy of all the 

major marker layers, and the regional tephrochronologies are built by combining tephra 

records from various sites (e.g. Óladóttir et al., 2011; Guðmundsdóttir et al., 2016; Harning 

et al., 2018). Because the extent (of the dispersal area) of a tephra layer is determined both 

by the power of the eruption and the prevailing wind directions during the eruption, most of 

the marker layers are visible only within a certain sector extending away from the volcano 

(Larsen & Thorarinsson, 1977). Also, the tephra preservation potential may vary through 

time at any one site due to changing environmental conditions, which contributes to gaps in 

the tephra stratigraphy of a single site (Boygle, 1999; Janebo et al., 2016). 

 

 

Figure 1.2 Geochemical differences of Icelandic volcanic systems that have produced silicic 

tephra during the Holocene. Colour codes are as in Figure 1.1. Nomenclature of volcanic 

rocks from Le Bas et al. (1986). The Kuno line (drawn in black) separates the high and low 

alkali products (Kuno 1966). Geochemical composition of Icelandic volcanic systems is 

mainly from Larsen et al., 1999, and additionally from Sigvaldason, 1979; Prestvik, 1985; 

Steinthorsson et al., 1985; Larsen et al., 2001; Larsen et al., 2002; Eiríksson et al., 2004; 

Sverrisdóttir, 2007; Guðmundsdóttir et al., 2011b; Óladóttir et al., 2011; Publication I in 

this dissertation). 
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Majority of the tephra layers forming the Icelandic tephrostratigraphy are basaltic and they 

originate mainly from the Grímsvötn, Veiðivötn-Bárðarbunga, Kverkfjöll (Óladóttir et al., 

2011) and Katla (Óladóttir et al., 2005, 2008) volcanic systems. In contrast, most of the 

marker horizons that form the foundation of the Icelandic tephrochronology are intermediate 

to silicic (Larsen & Eiríksson, 2008). The basaltic tephras can be traced to their source 

volcanoes based on their major element geochemistry (e.g. Óladóttir et al., 2011; 

Guðmundsdóttir et al., 2016), but assigning them to a source eruption is generally difficult 

due to limited geochemical variation in the composition of volcanic glass from the same 

volcanic system between consequent eruptions (e.g. Óladóttir et al., 2008, 2011). Because 

of this, between-site correlations of the basaltic tephras and their status as isochrons are 

difficult to establish. Consequently, basaltic marker layers older than 1250 years are very 

rare in Iceland (Table 1.1), the most notable exception being the extensive Grímsvötn 10 ka 

series: (Óladóttir et al., 2020). On the other hand, basaltic tephra pairs or a series of basaltic 

layers can sometimes be used as marker sequences (e.g. Guðmundsdóttir et al., 2011). The 

Icelandic intermediate and silicic tephra layers are better suited as marker layers, because 

they originate from sub-Plinian to Plinian eruptions with higher eruption plumes, have larger 

dispersal areas and often harbour geochemical characteristics that distinguish them from 

other tephra layers. The silicic products of the Icelandic volcanoes can be traced to their 

source volcanoes based on their major element geochemistry (e.g. Imsland 1978; Larsen, 

1981) and it has been shown that even the products of separate eruptions of the same volcano 

can often be told apart by using bivariate plots of selected major element ratios (Larsen et 

al., 1999). Volcanic eruptions that produce intermediate and silicic tephras are also less 

frequent, which aids in tracing them across the landscape and separating them from other 

tephra layers on stratigraphic grounds. About half of the ca. 100 Holocene silicic tephra 

layers in Iceland originate from the Hekla central volcano (Larsen & Eiríksson, 2008) but 

also Katla, Askja, Öræfajökull, Torfajökull, Snæfellsjökull and Eyjafjallajökull have 

produced several important silicic tephra isochrons (Table 1.1).  

Table 1.1 Main marker layers of the Icelandic tephrochronology. Modified from Óladóttir 

et al., 2011; Guðmundsdóttir et al., 2012, 2016; Larsen et al., 2001, 2020; Hafliðason 2000, 

Thorarinsson 1981. Codes for geochemical composition: B=Basaltic, I=Intermediate, 

A=Andesitic, S=Silicic, D=Dacitic, R=Rhyolitic. 

Marker  
layer 

Source  
volcano 

Age (cal yr) Age (cal 
yr BP) 

Compo- 
sition 

Reference 

H-1947 Hekla 1947 CE 3 I (A-D) Larsen et al. 1999 

G-1922 Grímsvötn 1922 CE 28 B Thorarinsson 1974 

K-1918 Katla 1918 CE 32 B Thorarinsson 1958 

A-1875 Askja 1875 CE 75 S (R) Thorarinsson 1963 

H-1845 Hekla 1845 CE 105 I (A) Thorarinsson 1967 

Ey-1821 Eyjafjallajökull 1821 CE 129 S (R) Larsen et al. 1999 

H-1766 Hekla 1766 CE 184 I (A) Thorarinsson 1967 

K-1755 Katla 1755 CE 195 B Thorarinsson 1981 

Ö-1727 Öræfajökull 1727 CE 223 I (A) Thorarinsson 1958 

V-1717 Bárðarbunga 1717 CE 233 B Eiríksson et al. 2004 

H-1693 Hekla 1693 CE 257 I (A) Thorarinsson, 1967 

H-1636 Hekla 1636 CE 314 I (A) Larsen 1982 

K-1625 Katla 1625 CE 325 B Thorarinsson, 1981 

G-1619 Grímsvötn 1619 CE 331 B Thorarinsson, 1981 

H-1510 Hekla 1510 CE 440 I (A-D) Larsen et al. 1999 

K-1500 Katla 1500 CE 450 B Larsen 2010 

V-1477 Bárðarbunga 1477 CE 473 B Larsen et al. 2002 

V-1410 Bárðarbunga 1410 CE 544 B Larsen 1982 

Ö-1362 Öræfajökull 1362 CE 588 S (R) Thorarinsson 1958 
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G-1354 Grímsvötn 1354 CE 596 B Larsen, 1982 

H-1300 Hekla 1300 CE 650 I (D-A) Larsen et al. 2002 

K-1262 Katla 1262 CE 688 B Larsen 2010 

H-1206 Hekla 1206 CE 744 A Thorarinsson 1967 

H-1158 Hekla 1158 CE 792 S (D) Larsen 1982 

H-1104 Hekla 1104 CE 846 S (R) Thorarinsson 1967 

Eldgjá Katla 934 CE 1016 B Hammer et al. 1980 

V-871 Bárðarbunga 871 CE 1079 B Grönvold et al. 1995 

T-871 Torfajökull 871 CE 1079 S (R) Larsen et al. 1999 

Hrafnkatla Katla 760 CE 1195 B Óladóttir et al. 2011 

SILK-YN Katla 380 CE 1570 I(D) Larsen et al. 2020 

Sn-1 Snæfellsjökull 130 CE 1820 S (D) Larsen et al., 2002 

Grákolla  Torfajökull 10 CE 1940 S (R) Óladóttir et al., 2011 

Askja ~ 2000 Askja 10 CE 1940 S (R-D) Guðmundsdóttir et al., 2016 

H-X Hekla 260 BCE 2210 I (A) Larsen et al., 2020 

H-A Hekla   I (A-D) Larsen et al., 2020 

H-Y Hekla 680 BCE 2630 I (A-D) Larsen et al., 2020 

H-Z Hekla 760 BCE 2710 I (A) Larsen et al., 2020 

H-B Hekla 800 BCE 2750 I (A-D) Larsen et al., 2020 

SILK-UN Katla 830 BCE 2780 I (D) Larsen et al., 2020 

H-C Hekla 840 BCE 2790 I (A-D) Larsen et al. 2020 

H-M Hekla 890 BCE 2840 I (A-D) Larsen et al. 2020 

H-N Hekla 920 BCE 2870 I (A-D) Larsen et al. 2020 

H-D Hekla 940 BCE 2890 I (A) Larsen et al. 2020 

H-O Hekla 1000 BCE 2950 I (A) Larsen et al. 2020 

H-3 Hekla 1050 BCE 3000 R-D-A Dugmore et al., 1995 

SILK-MN Katla 1194 BCE 3144 I (D) Larsen et al. 2001 

SILK-LN Katla 1430 BCE 3380 I (D) Larsen et al. 2001 

H-S Hekla 1855 BCE 3805 R-D-A Larsen et al. 2001 

SILK-N4 Katla 1940 BCE 3890 I (D) Larsen et al. 2001 

H-4 Hekla 2250 BCE 4200 R-D-A Dugmore et al. 1995 

Sn-2 Snæfellsjökull 2450 BCE 4400 - Jóhannesson 1981 

SILK-N2 Katla 2780 BCE 4730 I (D) Larsen et al. 2001 

SILK-N1 Katla  3200 BCE 5150 I (D) Larsen et al. 2001 

SILK-A1 Katla 3750 BCE 5700 I (D) Larsen et al. 2001 

H-Ö Hekla 4110 BCE 6060 R-D-A Guðmundsdóttir et al. 2011 

H-DH Hekla 4700 BCE 6650 I (A) Guðmundsdóttir et al. 2011 

SILK-A7 Katla 5100 BCE 7050 I (D) Larsen et al. 2001 

H-5 Hekla 5120 BCE 7070 S (R) Thorarinsson 1971 

SILK-A8 Katla 5350 BCE 7300 I (D) Larsen et al. 2001 

SILK-A9 Katla 5540 BCE 7490 I (D) Larsen et al. 2001 

Suðuroy Katla 6050 BCE 8000 S (R) Wastegård 2002 

LL1755 Bárðarbunga 8040 BCE 9990 B Guðmundsdóttir et al. 2016 

Fosen/ 
Reitsvík 

Unknown 8250 BCE 10200 S (R) Lind et al. 2013,  
Guðmundsdóttir et al. 2016 

G10ka series Grímsvötn 8350 BCE 10 300  B Óladóttir et al. 2020 

Askja-S Askja 8450 BCE 10 800 S (R) Guðmundsdóttir et al. 2016 

Vedde Ash Katla 10150 BCE 12 100 S (R), B Norðdahl & Hafliðason 1992 

1.5 Objectives of this study 

The aim of this study is to assess the potential of cryptotephra studies in Finland by testing 

the commonly used cryptotephra research methods. No cryptotephra studies have been 

conducted in Finland thus far, despite the benefits of tephrochronology as a dating method 

and the favourable location of Finland regarding the prevailing westerly winds that are 

known to transport Icelandic tephra towards Fennoscandia (e.g. Wastegård, 2005). 

Possibilities for using tephrochronology in environmental research in the region are 

investigated by searching for cryptotephra from the most important environmental archives 

in Finland: peat sequences, homogenic lake sediments and varved lacustrine sediments. 

Special attention is given to the Hekla 1947 tephra, that was reported to have formed a visible 
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fall-out on snowpack surface in southern and central Finland (Salmi, 1948), and a possible 

effect of precipitation on tephra fall-out and shard concentration is investigated. Also, a 

sample collection of Hekla 1947 tephra that was collected from Finland immediately after 

the eruption (Salmi, 1948) is revisited for obtaining geochemical data with modern methods. 

Ultimately, the objective of this study is to fill a gap in knowledge on the dispersal patterns 

of Icelandic tephras in northern Europe and to produce a first outline of a Holocene 

cryptotephra framework for Finland by dating and geochemical fingerprinting of 

cryptotephra deposits from geological records. An important aspect of this project is also to 

enhance dialogue between distal and proximal tephra studies by combining research from 

Iceland and Finland. This is done by geochemically characterizing selected Icelandic tephras 

from proximal records with the aim to improve the proximal geochemistry datasets and 

establish more robust tephra correlations between Iceland and distal areas. 



9 

2 Materials and methods 

2.1 Field work 

The main research area in this study covers the southern and central Finland, from the Åland 

archipelago in the west until the Russian border in the east (Figure 2.1). Additionally, one 

lake site in the northernmost part of Finland was included in the study. Altogether, 30 

research sites, 24 peatlands and six lakes in Finland, were selected for investigation (Table 

2.1). Field work at the peatland sites was carried out during the summer field seasons of 

2014, 2015 and 2018, when a Russian peat corer was used for collecting the full peat 

stratigraphy of each site and at least one additional peat monolith was cut from the surface 

peat at every site. Surface sediment cores from the lake sites were collected with a Limnos 

sediment sampler either from aboard a rubber boat during summer field season or through a 

hole in the lake ice cover during winter. Long lacustrine sediment cores were collected using 

a piston corer during spring season, when lake ice could be used as a coring platform. A list 

of the collected cores and co-ordinates of all the research sites are given in Table 2.1. 

Proximal samples of Icelandic tephra were collected from soil sections near Hekla central 

volcano in the autumn 2018. The tephra layers of interest (Hekla 1845, Hekla X, Hekla Y 

and Hekla Z) were identified based both on their physical properties (colour, grain size, layer 

thickness) as well as their stratigraphic position in relation to known marker layers in the 

area. Each layer was sampled throughout its thickness and in the case of the two-coloured 

Hekla layers X, Y and Z, the dark and the light-coloured parts of the layers were sampled 

into separate plastic bags.  
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Figure 2.1 Research sites in this study. The observed fall-out zone and inferred transport 

pathway of Hekla 1947 tephra are given for reference. 

 

Table 2.1 Investigated peatland and lake sites in Finland. 

Research site Material type Investigated core 
length/ Total core 
length (cm) 

Lat. 
(N) 

Long. 
(E) 

Stormossen  Carex peat 90/90 60.12 19.75 
Kolkansuo  Sphagnum peat 500/500 60.82 22.11 
Kaukosuo Sphagnum and Carex peat 90/650 60.83 22.23 
Rehtsuo  Sphagnum peat 455/455 60.60 22.25 
Kurjenrahka Sphagnum peat 36/36 60.72 22.40 
Kontolanrahka Sphagnum peat 410/410 60.77 22.78 
Suovanalanen  Sphagnum and Carex peat 569/569 61.92 23.50 
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Torronsuo Sphagnum peat 50/900 60.72 23.61 
Ahvenuslammi Homogeneous gyttja 30/30 61.06 23.98 
Purinsuo Sphagnum peat 50/425 60.71 24.03 
Kalattomanlammit Homogeneous gyttja 30/30 60.76 24.08 
Kivihypönneva Carex and Sphagnum peat 247/247 63.50 24.12 
Pakosuo Carex peat 50/267 63.27 24.69 
Pervarvikonneva Sphagnum and Carex peat 275/275 63.26 24.87 
Isosuo Sphagnum and Carex peat 50/540 60.66 25.23 
Korttajärvi Varved clastic-organic 

lacustrine sediment 
Only selected varve 
intervals were 
investigated 

62.32 25.67 

Haapasuo  Carex and Sphagnum peat 319/319  61.91 26.05 
Kananiemensuo Sphagnum and Carex peat 545/545 60.57 26.71 
Hangassuo Sphagnum and Carex peat 50/320 60.79 26.91 
Kallio-Kourujärvi Varved organic lacustrine 

sediment 
266.5/266.5 62.55 27.00 

Tarilampi  Carex and Sphagnum peat 238/238 61.74 27.22 
Hallinsuo Sphagnum and Carex peat 50/340 60.58 27.64 
Vuotsinsuo Sphagnum and Carex peat 50/500 62.10 27.88 
Kuninkaisenlampi Varved clastic-organic 

lacustrine sediment 
Only selected varve 
intervals were 
investigated 

62.97 28.23 

Hämmäauteensuo Carex and Sphagnum peat 50/185 61.01 28.29 
Punkaharju  Carex peat 660/660 61.79 29.31 
Parkusuo  Carex and Sphagnum peat 415/415 62.42 30.99 
Koivusuo Sphagnum and Carex peat 50/513 62.99 31.35 
Hanhisuo  Sphagnum and Carex peat 312/312 62.89 31.51 
Sirrajärvi  Homogeneous gyttja 206/206 68.53 22.24 

2.2 Hekla 1947 tephra samples (Salmi 1948) 

In 1947, tephra fall-out was observed in southern and central Finland during three days 

following the March 29th Hekla eruption (Figure 2.1). Finnish citizens collected tephra from 

snow cover and various other surfaces shortly after the fall-out on request of Salmi (1948). 

The volcanic origin of all the collected samples was verified by microscope inspection, and 

composition of one of the tephra samples was analysed (Salmi, 1948). In this study, six 

samples (A–F in Figure 2.1) from the collection were reinvestigated for defining the physical 

properties of the Hekla 1947 tephra in Finland and for obtaining new geochemical data on 

the tephra composition by electron microprobe, a technique that had been unavailable for 

Salmi in 1947. 

2.3 Laboratory work 

The most suitable laboratory and analytical methods for finding and defining cryptotephra 

layers in Finnish geological records were tested and determined. Cryptotephra detection and 

extraction from environmental archives is based on differences in physical and chemical 

properties of tephra shards and their host matrix, and the nature of the host matrix guides the 

selection of laboratory methods at each instance. Commonly used laboratory methods of 

cryptotephra detection and extraction in the distal area include ashing (Pilcher & Hall, 1992) 

or acid digestion (Dugmore, 1989) of organic matter, sieving, heavy liquid density separation 

of volcanic glass from minerogenic matrix (Turney, 1998), as well as XRF core scanning 

(Kylander et al., 2011).  
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Collected peat and lake sediment cores in this study were first subsampled in 5–10 cm-long 

increments and dried overnight at 105°C. Next, they were combusted at 550°C for 4 h for 

burning away organic matter and treated with 10 % HCl for removing carbonates and 

breaking aggregates. All the lake sediment samples and the peat samples that contained 

plenty of minerogenic grains and/or diatoms were then sieved with 80 µm and either 25 or 

10 µm meshes. The fraction retained on the finer sieve was subjected to heavy liquid 

separation for concentrating the volcanic glass. Commonly, heavy liquid densities of 2.3 and 

2.5 g/cm3 are used for floating off the light (< 2.3 g/cm3) organic remains and separating the 

vesicular volcanic glass from the denser (> 2.5 g/cm3) minerogenic matrix. The separation 

technique has been observed to work well for rhyolitic volcanic glass that often has a density 

in the range of 2.3–2.5 g/cm3 (Turney, 1998). However, basaltic glass is heavier and has a 

density > 2.5 g/cm3 and separates poorly from the minerogenic matrix. In this study the 

Hekla andesite-dacite was observed to most commonly have a density of 2.5–2.6 g/cm3 

(Publication II), and therefore heavy liquid densities 2.3 and 2.6 g/cm3 were used. After 

density separation, the samples were mounted on microscope slides with Canada Balsam for 

inspection under a polarizing microscope. Volcanic glass was identified based on its distinct 

morphological features, such as vesicularity and fluted surfaces (Fig. 2.2 A–C), and optical 

isotropy (e.g. Lowe, 2011). Where volcanic glass was identified, new high-resolution 1–2-

cm-thick subsamples of known volume (1–10 cm3, depending on the sample) were prepared 

and investigated under a microscope. This time, cryptotephra shards were counted, 

measured, described, and photographed for documentation and for determining the average 

grain size and depth of peak shard concentrations. 

Cryptotephra samples for electron microprobe analysis were prepared by using acid 

digestion method instead of ashing to avoid geochemical alteration of volcanic glass in high 

temperatures (e.g. Pilcher & Hall, 1992, Dugmore et al., 1995). The volcanic glass in the 

residue was concentrated by sieving, heavy liquid separation, and hand-picking the shards 

by using a micromanipulator with a micro-syringe and a needle where necessary. The glass 

shards were fixed on microscope slides with epoxy and the samples were sanded and 

polished down to a thickness of around 15 µm for bringing the shards to the sample surface. 

Because identification of volcanic glass is often difficult during EMPA work when no 

polarizer is available, measures were taken to ensure that the shards would be easy to find 

during microprobe sessions. Each polished sample was inspected under a petrographic 

microscope before carbon coating and drawings of the shapes and locations of the 

cryptotephra shards in the samples were made. That way EMPA time could be used 

efficiently, and only volcanic glass was analysed instead of accidental analysis of e.g. quartz 

or biogenic silica. 

Tephra samples from proximal sites in Iceland were processed using the routine laboratory 

methods of the tephrochronology group at IES: organic matter was removed from the 

samples with tweezers and by wet sieving through a stack of standard mesh sizes (1mm, 0.5 

mm, 250 µm, 125 µm and 63 µm). Afterwards, the separate size fractions were inspected 

under a stereo microscope and described. In this study, both the 63–125 µm and 125–250 

µm fractions were prepared for EMPA at the thin section laboratory of IES, where they were 

mounted in epoxy stubs, sanded, polished and carbon coated. 
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Figure 2.2 Cryptotephra shards from Finnish peatlands. A: Askja 1875 from 

Kananiemensuo, B: SN-1 from Kivihypönneva, C: Hekla 5 from Kivihypönneva. 

2.4 Electron microprobe analysis 

The volcanic glass was analysed with either the JEOL JXA-8230 SuperProbe at the Institute 

of Earth Science (IES), University of Iceland or the Cameca SX100 microprobe at the Tephra 

Analysis Unit (TAU) of the University of Edinburgh. On both instruments, standard 

wavelength dispersive technique was used for obtaining point analyses of ten major elements 

(Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K and P) on as many individual glass shards within each 

sample as available. At TAU, beam size of 3–5 µm, accelerating voltage 15 kV and beam 

current range from 0.5 to 80 nA was used. Lipari obsidian and BCR2g secondary glass 

standards were analysed together with the samples. More information on the analysis order 

of the elements and microprobe configuration at TAU is available in Hayward (2012). At 

IES, accelerating voltage 15 kV, beam current 10 nA and a beam diameter of 5-10 µm was 

used. Secondary standards Lipari obsidian and ATHO rhyolitic glass were analysed in the 

beginning and end of each batch of 50 point analysis. In this study, the JEOL JXA-8230 

SuperProbe at IES was used for the first time in analysing cryptotephra particles, and 

therefore part of the samples were analysed both at TAU and IES to confirm that the 

instruments produce comparable results. 

2.5 Radiocarbon dating 

Radiocarbon dating was used for obtaining an independent age estimation for selected 

cryptotephra deposits at the Finnish sites. 14C dating of peat produces more reliable dates if 

identified macrofossils are dated instead of the bulk peat that may contain remnants of roots 

that are much younger than the peat surrounding them. Therefore, Sphagnum sp stems and 

leaves were picked under a stereomicroscope from the depth of the cryptotephra layer if core 

material was left. If no material was left, the peat either immediately above or below the 

cryptotephra horizon was targeted. Majority (5) of the samples for 14C dating were taken 

from the Kivihypönneva peat core, that contains the highest number or cryptotephra 

horizons. Additionally, one cryptotephra deposit from Parkusuo was dated. The samples 

were analysed at the Aarhus AMS Centre and an online version of OxCal 4.3 (Bronk 

Ramsey, 2009) with the IntCal-13 calibration curve (Reimer et al., 2013) was used for 

calibrating the obtained radiocarbon ages. 
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3 Results 

3.1 Improved geochemical datasets for 

proximal tephras 

This study resulted in an improved dataset of the geochemical compositions of the Hekla 

1845, Hekla X, Hekla Y and Hekla Z tephra layers from proximal records in Iceland. EMPA 

results from 15 volcanic glass grains of the Hekla 1845 tephra, 41 grains of Hekla X, 35 

grains of Hekla Y and 36 grains of Hekla Z are presented here (Publications II and III). The 

geochemical composition of the Hekla 1845 tephra from proximal sites has not been 

published before, and previous correlations of distal deposits of the Hekla 1845 cryptotephra 

in Faroe Islands and Ireland had been established mainly on stratigraphic grounds 

(Wastegård, 2002; Watson et al., 2015). The new EMPA results enable future correlations 

of the Hekla 1845 tephra to be made based on geochemical composition. EMPA dataset of 

the glass geochemical composition of the Hekla alphabet layers (Hekla A, B, C, M, N, X, Y 

and Z) has been recently published (Meara et al., 2020). Additionally, results of XRF 

analysis of bulk geochemistry of the same layers were published at the same time (Larsen et 

al., 2020). Interestingly, the EMPA results were reported to reveal no differences between 

the geochemical signature of these layers, whereas the XRF data indicate slight differences 

in geochemical composition (Larsen et al., 2020). The new EMPA results presented in this 

study support the findings of the XRF study for the Hekla X, Y and Z tephras and indicate 

that slight geochemical differences between the compositions of these tephras do exist and 

may help in separating them from each other (Publication III). 

3.2 Hekla 1947 tephra in Finland 

In this project, new data on the Hekla 1947 tephra in Finland was produced. Reinvestigation 

of the Hekla 1947 tephra sample collection revealed that the physical properties of the shards 

differ from what had been reported earlier (Salmi, 1948). The average grain size of the tephra 

in Finland is ~ 80 µm instead of the previously reported 3–15 µm (Publication II). Density 

measurements of the tephra show that majority of the shards fall in the density range 2.5–

2.6 g/cm3, which appears to be a common density for Hekla andesite-dacite. Electron 

microprobe analysis of the Hekla 1947 tephra resulted in a dataset of 115 point analysis of 

single shards. Since these samples represent pristine tephra that has been stored in sealed 

glass vials since the eruption and has thus not been subjected to geochemical alteration in 

the natural environment or during laboratory processing, the EMPA data can be used as a 

reference point when assessing the degree of alteration in future findings of Hekla 1947 

tephra (Publication II).  
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3.3 Cryptotephra framework for Finland 

This study resulted in detection of 16 geochemically unique cryptotephras in Finnish 

peatlands and lake sediments (Publication III). In addition to geochemical characterization 

of the cryptotephra deposits and correlations to the proximal tephra records, selected 

cryptotephra horizons were radiocarbon dated to confirm their ages. A schematic tephra 

framework, where all the identified cryptotephra deposits from the investigated sites are 

brought together, is presented in Figure 3.1. Robust correlations to proximal tephra records 

have been established for most cryptotephra layers in this framework. However, only 

tentative correlations are suggested for the ca. 2.1 ka Askja (Stömyren) tephra, Aniakchak, 

Hekla-S and ca. 3.5 ka Öræfajökull tephra (Publication III). The Askja Stömyren tephra in 

Sweden (Wastegård, 2005) has not yet been correlated to any proximal deposits in Iceland, 

and the Aniakchak, Hekla-S and Öræfajökull 3.5 ka tephra have not yet been radiocarbon 

dated in Finland.lass vials since the eruption and has thus not been subjected to geochemical 

alteration in the natural environment or during laboratory processing, the EMPA data can be 

used as a reference point when assessing the degree of alteration in future findings of Hekla 

1947 tephra (Publication II).  
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Figure 3.1 A schematic tephrochronological framework for Finland, colour codes are as in 

Figure 1.1. 
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3.4 Review of the original publications I–III 

3.4.1 Publication I 

This publication presents the first cryptotephra study in Finland. Cryptotephra research 

methods were tested and cryptotephra was searched from five lakes and ten peatland sites to 

assess the potential for using tephrochronology in Finland. Study sites were selected to 

represent a range of geological records commonly used in Finnish environmental research: 

peat archives, homogeneous organic lake sediment, varved organic lake sediment and varved 

clastic-organic lake sediment. One cryptotephra horizon was detected at eight of the fifteen 

sites. Geochemical characterization of the volcanic glass revealed that the deposits consist 

predominantly of rhyolite from the Icelandic Askja central volcano. Additionally, a dacitic 

minor component was analysed alongside the rhyolitic glass. This dacitic tephra population 

is not well known from the proximal tephra records in Iceland. However, careful 

comparisons of the new results with petrographic studies of proximal Askja 1875 products 

and previously published cryptotephra analysis from Swedish sites show that both 

components originate from the Askja 1875 eruption. These first cryptotephra findings from 

Finland refine and extend the known dispersal area of the Askja 1875 tephra further east. 

Additionally, the common presence of the Askja 1875 cryptotephra in Finnish environmental 

records indicates that it has great potential to become an important marker layer in the region. 

The main conclusion of this paper is that Icelandic tephra can be transported to Finland and 

deposited in the geological records in detectable amounts, which confirms that there is 

potential for further cryptotephrochronological research in Finland. 

3.4.2 Publication II 

In this publication, a detailed investigation of the occurrence of the Hekla 1947 tephra in 

Finland is disseminated. Cryptotephra was searched from 25 peatlands, of which 18 are 

located within the previously inferred fall-out zone of the Hekla 1947 tephra in southern and 

central Finland. Precipitation maps for the days following the Hekla 1947 eruption were 

produced from Finnish Meteorological Office weather data to test for a possible correlation 

between precipitation, cryptotephra occurrence and tephra shard concentration. Six tephra 

samples that were collected from Finland after the tephra fall-out and investigated by Salmi 

in 1947, were reinvestigated in this study with modern methods for a better understanding 

of the properties of the Hekla 1947 tephra in Finland. Altogether, 47 surface peat cores and 

monoliths from the research sites were investigated using both routine and modified 

laboratory methods. Despite rigorous laboratory work, no deposits of Hekla 1947 tephra 

were detected at the Finnish sites. Instead, cryptotephra from three other historical Icelandic 

volcanic eruptions, Hekla 1845, Hekla 1510, and Hekla 1158, was identified for the first 

time in Finland. These findings represent the first reported occurrence of Hekla 1845 and 

Hekla 1510 cryptotephras outside of Ireland, Faroe Islands and the UK and extend the known 

dispersal area of each tephra significantly further east. All the Hekla cryptotephras detected 

in Finland in this study originate from moderate-sized eruptions with Volcanic Explosivity 

Index ≤ 4 and erupted tephra volumes ≤ 0.6 km3. This result highlights that Icelandic smaller 

scale eruptions produce tephra isochrones with much wider dispersal areas than previously 

realized. One of the most important findings of this study is that Icelandic moderate eruptions 

can form interregional tephra marker layers in the distal field and the geochronological value 

of smaller scale tephras is higher than hitherto known. Identification of four historical 
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Icelandic tephras in Finland confirms that volcanic ash from Iceland is transported to Finland 

frequently and it may travel along complex southerly and northerly transport routes in 

addition to a direct eastward dispersal. 

3.4.3 Publication III 

This manuscript presents a study of the Holocene tephrochronology of Finland. The full peat 

stratigraphy of 12 peatland sites and the sediments of one lake site were investigated for 

occurrence of cryptotephra. The peatland sites cover southern and central Finland and the 

lake site is located in the northernmost part of Finland. Additionally, three Hekla layers 

(Hekla X, Hekla Y and Hekla Z) from a proximal site in Iceland were geochemically 

characterized for improving the geochemical dataset. Laboratory and EMPA work resulted 

in identification of 14 cryptotephras from Icelandic volcanic eruptions and two cryptotephras 

that originate from volcanic eruptions in Alaska. Several cryptotephra deposits could not be 

correlated to source eruptions because of difficulties in obtaining robust EMPA results from 

very small and vesicular shards. The geochemical compositions of the cryptotephra deposits 

in the Finnish sites were compared with datasets of proximal tephra geochemistry for 

establishing correlations. Additionally, selected tephra deposits were 14C dated for an 

independent age determination. The most important outcome of this study is an outline for a 

Finnish Holocene tephra framework that can be used as a basis for future cryptotephra work 

in the region. The oldest geochemically identified cryptotephra horizon in Finland is the 7 

ka Hekla 5 tephra. However, at least two older cryptotephra deposits that bear a geochemical 

signature of non-Icelandic volcanism are present at one of the sites. The results of this study 

reveal an excellent potential for future cryptotephra studies in Finland and a complete list of 

the properties of the detected cryptotephra deposits together with several photographs is 

published as part of this manuscript to be used as an aid in further investigations in Finland. 
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4 Discussion 

4.1 Potential of tephrochronology in Finland 

The results of this study reveal that silicic tephra has been dispersed to Finland from at least 

14 Icelandic and two Alaskan volcanic eruptions during the Holocene (Figure 3.1). Oldest 

cryptotephra identified at the Finnish sites is the ca. 7 ka Hekla 5 tephra, whereas the 

youngest one is the Askja 1875 tephra (Publications I, II, III). At one of the research sites 

also basaltic tephra from Grímsvötn, Veiðivötn and Kverkfjöll volcanic systems is present 

(Publication III). In addition to these cryptotephra findings, volcanic ash from three Icelandic 

eruptions – Hekla 1947 (Salmi, 1948), Eyjafjallajökull 2010 (Davies et al., 2010) and 

Grímsvötn 2011 (Kerminen et al., 2011) – has been reported in the Finnish airspace during 

the past 100 years but no cryptotephra deposits from these eruptions have been found from 

the environmental archives in the region. These results indicate that dispersal of tephra to 

Finland has been a relatively frequent event during the Holocene and there is an excellent 

potential for using tephrochronology as a dating method in environmental studies in Finland. 

Altogether, volcanic ash has been transported to Finland at least 22 times during the past 

7000 years which gives a return time of ~320 years for volcanic ash events in the Finnish 

airspace. However, the events are not temporally evenly spaced; 11 of them have occurred 

within the past two millennia, whereas for example only two cryptotephra deposits from the 

period 5000–3000 BCE were detected (Publication III). The higher frequency of volcanic 

ash events during the past 2000 years partly reflects availability of tephra observation 

records, but that alone does not fully explain the differences in frequency. It is possible, that 

older cryptotephra deposits in the Finnish peatland sites are poorly preserved and more 

difficult to detect, which would place constraints on using tephrochronology as a dating 

method for the early Holocene. Alteration and even total dissolution of volcanic glass has 

been suggested to take place in acidic environments such as ombrotrophic peat bogs over 

longer timescales (e.g. Pollard et al., 2003; Cooper et al., 2019a). Cryptotephra deposits in 

the Finnish peatland sites often consist of very small and thin glass grains and some of the 

shards show signs of leaching, such as pitted surfaces (Figure 2.2 B). However, the alteration 

of volcanic glass in Finnish peatlands does not seem to increase with age of the deposits, but 

is perhaps more dependent on the geochemical composition of the tephra, as has been 

suggested in earlier studies on geochemical stability of different tephras (Pollard et al., 

2003). For example, based on the appearance of the glass shards, the trachydacitic Sn-1 

tephra (ca. 170 CE) shows higher degree of leaching than the 5000 years older rhyolitic 

Hekla 5 (ca. 5120 BCE) at the same peatland site in central Finland (Fig 2.2 B and C). 

Since majority of the cryptotephra layers (9 out of 16 tephras) in the Finnish 

tephrochronology originates from the Hekla central volcano (Figure 3.1), it is likely that the 

differences in number of cryptotephra horizons through time reflect the changes in the 

eruption history of Hekla itself rather than varying preservation potential. Three separate 

stages in the eruption history of Hekla have been recognized based on eruption style and 

composition of the eruptives (Larsen & Thorarinsson, 1977). During the first eruption stage 

(> 7.0 ka) the Hekla volcanic system produced basaltic lavas from fissure eruptions and no 
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silicic tephras of this age are known from Iceland (Larsen & Thorarinsson, 1977). The five 

silicic major Hekla layers (Hekla 5, Hekla Ö, Hekla 4, Hekla S and Hekla 3) all represent 

the second eruption stage (from ca. 7.0 ka to 3.0 ka) that is characterized by a few large (> 

1 km3) Plinian eruptions and a long repose time between eruptions (Larsen & Thorarinsson, 

1977). On the contrary, the historical Hekla eruptions belong to the third eruption stage (ca. 

3.0 ka and onwards), that comprises frequent, moderate-sized subplinian to Plinian eruptions 

with tephra volumes < 1 km3 (Larsen & Thorarinsson, 1977; Larsen et al., 2020). The tephra 

plume heights (12–36 km) of all the historical Hekla eruptions are sufficient for tephra 

dispersal to Northern Europe (Thorarinsson, 1967; Janebo et al., 2016), and therefore the 

environmental archives of the region are likely to contain several Hekla cryptotephra 

deposits of third eruption stage. 

Askja 1875 tephra is the most common cryptotephra horizon detected in Finland. It forms 

deposits with high shard concentration (up to 559 shards/ cm2) and the average grain-size of 

the volcanic glass is > 75 µm, higher than for any other cryptotephra identified in Finland 

(Publication III). The distinct physical properties of the Askja 1875 tephra together with its 

unique geochemical signature, make its identification relatively straightforward in Finland. 

The Askja 1875 tephra is widely dispersed in Scandinavia (Carey et al., 2010; Wastegård, 

2005) and it has great potential to become an important marker horizon in the region. The 

geochronological value of the Askja 1875 tephra in Finland is increased by its deposition 

time at the onset of extensive forest clearance and drainage of peatlands in areas that had 

previously been relatively unaffected by anthropogenic activities (Publication III). 

Environmental research focusing on this large-scale land use change and its ecological 

impact could thus greatly benefit from using the Askja 1875 tephra as a dating horizon. 

The Finnish tephrochronology differs significantly from the well-established Swedish tephra 

framework (e.g. Wastegård, 2005; Watson et al., 2016). The most important Holocene tephra 

marker layers in Sweden are the Hekla 4, Hekla 3, Hekla S and Askja 1875 tephras 

(Wastegård, 2005). Of these, only Askja 1875 tephra forms a significant isochron in Finland. 

Hekla 4 has been found from two sites, and a tentative correlation to Hekla-S has been 

suggested at one site, whereas Hekla 3 has not yet been identified with certainty from Finnish 

environmental records (Publication III). In Sweden, these mid-Holocene Hekla marker 

layers have been reported mainly from southern and central parts of the country (Wastegård, 

2005), from an area southwest from Finland. Thus far they have been identified at just one 

site closer to Finland, on the east coast of northern Sweden (Watson et al., 2016). The shard 

concentrations for Hekla 3, Hekla S and Hekla 4 tephras at that site are fairly low (≤ 50 

shards/cm2: Watson et al., 2016), which indicates that they may all be close to detection limit 

further east in central Finland. However, many cryptotephra deposits in the peatland sites in 

southern Finland remain unanalysed (Publication III) and based on their occurrence depths, 

it is likely that some of them represent the mid-Holocene Hekla tephras. The results of this 

study therefore suggest that future research may improve the knowledge on dispersal of these 

tephras within Finland and further increase their geochronological value in the region. 

Half of the 16 tephras identified in this study have not been found from Sweden thus far, 

which points at either complex tephra dispersal routes instead of a direct eastward transport, 

patchy fall-out controlled by local weather conditions, or both. For example, the historical 

Hekla 1845 and Hekla 1510 tephras that were identified in southern and central Finland 

(Publication II) had previously been found only from Ireland (Pilcher et al., 1996; Watson 

et al., 2015), the UK (Dugmore et al., 1995, 1996: Watson et al., 2017) and Faroe Islands 

(Wastegård, 2002). They therefore most likely travelled to Finland along similar transport 
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pathways as the Hekla 1947 tephra that formed a visible fall-out in Finland (Salmi, 1948) 

and has been found as a cryptotephra horizon in Ireland (Rea et al., 2012; Watson et al., 

2015). Other tephras, such as the Hekla 1158 and Hekla Y tephra, are present only at some 

of the northernmost investigated peatland sites in Finland and have not yet been identified 

in southern Finland. Hekla 1158 tephra has been reported from northern Sweden (Watson et 

al., 2016; Cooper et al., 2019b) and Norway (Pilcher et al., 2005; Balascio et al., 2011), 

whereas correlations to Hekla Y eruption have not been established for cryptotephra deposits 

in northern Scandinavia. However, based on comparisons of geochemical composition of 

cryptotephras in this study (Publication III), Hekla Y is likely present in Lake Svartkälsjärn 

on the east coast of northern Sweden (SV-L2 tephra in Watson et al., 2016). Hekla 1158 and 

Hekla Y seem to have reached Finland via a northerly transport route. The differences 

between the Swedish and Finnish tephrochronologies may partly be due to different 

laboratory techniques. At the Finnish sites, the recently developed technique of 

concentrating scarce glass shards with a micromanipulator (MacLeod et al., 2014; Lane et 

al., 2014) was applied and great effort was made to analyse even the cryptotephra deposits 

with very low shard concentrations. In Sweden, the earlier research focused on the most 

prominent cryptotephra layers, and some of the deposits with lower shard concentrations are 

possibly still unidentified.  

In addition to Icelandic tephra, two Alaskan cryptotephras were identified in this study, the 

WRAe (White River Ash eastern lobe: Jensen et al., 2014) and Aniakchak tephra (Kaufman 

et al., 2012). The detection of these tephras in Finland extends their known dispersal further 

east and provides opportunities for precise correlations between environmental records in 

Northern America and Northern Europe. In addition, two rhyolitic cryptotephra deposits (> 

7.0 ka) that bear geochemical signature of non-Icelandic volcanism were detected at one site 

(Figure 5). However, no robust correlations could be established for these deposits based on 

only a couple of point analysis by electron microprobe. These results indicate that further 

cryptotephra research in Finland would be worthwhile and is likely to greatly improve the 

first outline for Finnish tephra framework presented in this study. 

4.2 Challenges of distal tephra studies 

Analytical advances of the recent years have enabled geochemical fingerprinting of smaller 

and scarcer volcanic glass shards than before (Hayward et al., 2012). The shard 

concentrations in the cryptotephra deposits in the Finnish sites are often low (Figure 4.1) and 

the average length of the longest axis of the shards is mostly 30–60 µm (Publication III). 

Concentrating the volcanic glass by hand-picking the shards using a micromanipulator with 

an attached syringe and a needle is necessary for majority of the cryptotephra deposits in 

Finland. Due to the fine grain-size of the shards, several cryptotephra deposits at the Finnish 

sites remain still unanalysed, despite multiple attempts at preparing EMPA samples 

(Publication II and III). Even if great care is taken during the EMPA sample preparation, and 

location of the volcanic glass in the samples is monitored by microscope inspection 

throughout the sanding and polishing process, specially the smallest shards with platy 

morphologies are in a high risk of getting sanded or polished away when attempts are made 

at bringing them to the sample surface. 

The EMPA of small shards poses its own challenges. If the average grain size of vesicular 

volcanic glass is < 40 µm, fitting the electron beam on the shard surface is difficult, 
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especially if a possible alteration rim on the shard is to be avoided. Additionally, analysing 

the Hekla andesite can be challenging due to the common occurrence of micron-sized 

microlites (Hunt & Hill, 2001). These problems in EMPA may result in low totals or a large 

range of values for some elements. When the number of successful analyses per cryptotephra 

deposit is low, it may become impossible to assess which of the point analyses represent the 

true geochemical composition of the tephra and which show signs of alteration or microlite 

contamination. 

Additionally, when only a few good analyses are obtained from a cryptotephra deposit, the 

full geochemical range present at that site is unlikely to be captured. Sometimes the full 

compositional range of a tephra is an important diagnostic feature that may aid in its 

identification. The mid-Holocene Hekla marker layers typically have a wide range of 

geochemical compositions (Larsen & Thorarinsson, 1977; Sverrisdóttir, 2007). For example, 

the Hekla 5 can often be separated from the otherwise similar Hekla-Ö based on the absence 

of volcanic glass < 70 % wt SiO2 in Hekla 5 deposits (Eiríksson et al., 2004), whereas Hekla 

Ö has a SiO2 range of 60–77 % wt (Óladóttir, 2009; Guðmundsdóttir et al., 2011). In Finland, 

the Hekla 5 and the Hekla Ö cryptotephra deposits do not contain any glass with SiO2 < 70 

% wt. These tephras at the Finnish site can, however, be separated from each other based on 

stratigraphic position, 14C dating and presence of a geochemically distinct cryptotephra 

population in the Finnish Hekla Ö deposit, that is known to be present in Iceland only in the 

Hekla Ö tephra layer east-northeast of Hekla (Publication III). 

Correlating the distal cryptotephras to the proximal tephra record presents another set of 

challenges in distal tephrochronology. Even if the Icelandic tephrochronology is relatively 

well studied and consists of geochemically well-characterized tephra layers, many tephras 

may still be missing from it. For example, the geochemistry and eruption histories of 

Snæfellsjökull, Öræfajökull and Torfajökull (and Þórðarhyrna) volcanic systems have not 

yet been investigated sufficiently well (e.g. Hafliðason et al., 2000). Tephra from 

Snæfellsjökull, Öræfajökull and Þórðarhyrna may also have a low preservation potential in 

the Icelandic terrestrial records, due to the location of these subglacial volcanoes near the 

seashore. A further complication in establishing correlations between the distal cryptotephra 

findings and the proximal tephrochronology are the syn-eruptive changes in the geochemical 

composition of the eruption products, which take place for example at Hekla central volcano. 

Hekla is known to erupt tephra with a wide range of geochemical compositions (Larsen and 

Thorarinsson, 1977; Sverrisdóttir 2007), from a zoned magma chamber (Sigmarsson et al., 

1992). Tephra with highest silica content is erupted during the opening phase and the less 

evolved eruptives are released as the eruption proceeds. Shifting wind direction during an 

eruption from the zoned magma chamber of Hekla may manifest itself as presence of several 

tephra sectors extending away from the volcano, each with a slightly different tephra 

composition (Larsen and Thorarinsson, 1977; Jónsson et al., 2020). In Iceland, correlations 

between different tephra sectors are supported by the stratigraphic position of the tephra 

between other tephra layers as well as comparisons with the more complete proximal tephra 

stack that represents several eruption phases (Jónsson et al., 2020). However, in the distal 

area the difficulties in correlating deposits that represent different phases of the same 

eruption become accentuated. The full range of erupted products is less likely to be present 

or analysed from a scarce cryptotephra deposit, and complex tephra dispersal patterns may 

deposit cryptotephra from different eruption phases in unexpected directions from the source 

volcano and the wind direction data from Iceland may thus be of little help.  
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The precision of tephrochronology as a dating method relies on accurate determination of 

isochron position in the environmental records. Most of the cryptotephra deposits in the 

Finnish sites form clear horizons that are confined to 1–3 cm of peat (Figure 4.1), whereas 

other deposits are diffuse. Post-depositional movement of tephra shards due to taphonomic 

processed in the peat has been verified experimentally (Payne & Gehrels, 2010). However, 

the diffuse deposits at the Finnish sites do not appear to represent just vertical post-

depositional movement of tephra, but rather presence of cryptotephra from several 

temporally closely spaced volcanic eruptions. This may create difficulties in defining the 

exact isochron position for each tephra by simple shard counts, since it is generally not 

possible to determine which glass shards belong to each layer without EMPA. In some cases, 

determining the isochron position might be possible only by analysing the volcanic glass in 

each centimetre of the diffuse deposit and counting the ratios of separate tephra populations 

in each sample. 

 

 

Figure 4.1 An example of tephra shard concentration profile from Kivihypönneva, west-

central Finland. 
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4.3 Dialogue between proximal and distal 

tephra studies 

Tephrochronological research in Iceland and cryptotephra studies in Northern Europe have 

advanced mostly along separate paths during the past decades. Important developments in 

the recent past include constructing new, regional tephrochronologies in Iceland (e.g. 

Óladóttir et al., 2011; Guðmundsdóttir et al., 2016, 2018; Harning et al., 2018) and extending 

the cryptotephra research in Northern Europe to previously understudied areas (Watson et 

al., 2016, 2017b; Cooper et al., 2019b; Kinder et al., 2020; Vakhrameeva et al., 2020). In 

this project, first steps for strengthening the dialogue between tephra research in Iceland and 

cryptotephra research in Northern Europe were taken with the aim of improving the Icelandic 

proximal geochemistry dataset and the Northern European cryptotephra framework 

simultaneously (Publication II and III). As a result, new proximal geochemistry datasets for 

Hekla 1845, Hekla X, Hekla Y and Hekla Z tephras were published and used for establishing 

robust correlations between cryptotephra findings in Finland and the proximal tephra records 

in Iceland. 

Cryptotephra deposits in Northern Europe point at many silicic layers missing from both the 

LGIT and the Holocene tephra stratigraphy of Iceland (e.g. Lind et al., 2013; Jones et al., 

2019). On the other hand, the chronological significance of sporadic distal cryptotephra 

findings remains low without a robust correlation to a proximal, well-constrained 

tephrochronology. An example of such cryptotephra deposit is the ca. 2.1 ka Askja tephra 

that was identified at one Finnish site (Publication III) and possibly correlated to Askja 

Stömyren tephra that has been geochemically characterized at one Swedish site (Wastegård, 

2005). No correlation to proximal tephrochronology has been established for this tephra yet. 

One of the greatest challenges in constructing the Icelandic tephrochronology is the low 

preservation potential of tephra in the dynamic proximal environment (e.g. Boygle, 1999; 

Janebo et al., 2016). Lack of vegetation and high erosion rates work against stabilization of 

tephra deposits at some sites, whereas accumulation of remobilized tephra at others may 

result in secondary tephra deposits that could be mistaken for primary fall-out without 

careful assessment of the layer and tephra grain properties and methodical analysis of tephra 

geochemistry (e.g. Guðmundsdóttir et al., 2011b). Additionally, the sheer number of 

Holocene volcanic eruptions makes establishing the geochemical composition of every 

eruption a slow task. Consequently, published geochemical data may be lacking even for 

some of the well-known eruptions. One way to address these shortcomings and to facilitate 

better correlations between the distal and proximal tephrochronologies is to use the Northern 

European tephrochronological framework as an instrument to target specific sections of the 

proximal tephrostratigraphy for locating and geochemically characterizing the tephra layers 

that are known only from distal records overseas. In Iceland, the distal areas that are located 

well away from the active volcanic zones are likely to have more stable environmental 

conditions with continuous and calmer sedimentation and thus provide an opportunity to test 

also high-resolution cryptotephra research methods within Iceland. First cryptotephra studies 

in the distal areas in Iceland indicate that the methods can be modified for Icelandic 

conditions and used for refining the tephrochronology of single sites (Kalliokoski et al., in 

preparation). Therefore, further cryptotephra work at Icelandic sites is recommended for 

enhancing the dialogue between proximal and distal tephra studies and for improving both 

the Icelandic and Northern European tephra framework simultaneously. 
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5 Summary/Conclusions 

 

In this dissertation Finnish environmental records were investigated for presence of 

cryptotephra. The commonly used cryptotephra research methods were tested for the first 

time in Finland with good results. The main outcome of this study is an outline for a Finnish 

Holocene tephrochronology that consists of 16 geochemically characterized cryptotephras. 

Cryptotephras identified in Finland originate both from Icelandic and Alaskan volcanic 

eruptions and offer opportunities for precise dating and intercontinental correlations of 

environmental archives. Robust correlations to proximal tephra records and source eruptions 

have not yet been established for all the deposits that were detected in the investigated sites. 

Geochemical fingerprinting of the small and scarce cyptotephra shards in Finnish 

environmental records is a challenging task in itself, and gaps in knowledge on the eruption 

history and lack of proximal geochemistry data from some of the Icelandic volcanoes further 

complicates tracing the cryptotephras back to their source eruptions. To overcome these 

difficulties, geochemical data for four tephras from Icelandic proximal records were 

produced in this study. Simultaneous investigation of several sites in central and southern 

Finland allowed comparisons to be made between the tephrostratigraphies of individual sites 

and enabled establishing a first outline for a Finnish tephrochronology, which serves as an 

initial framework that can be expanded and refined by future cryptotephra research in 

Finland and nearby regions. This study has revealed a great potential for using 

tephrochronology as a dating method in Finland and demonstrates the benefits of enhancing 

the dialogue between proximal and distal tephra work with the aim of improving tephra 

frameworks of both areas simultaneously.
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