

Timing Architecture for ESS

Autor: Javier Cereijo García

2020

Directores: Daniel Piso Fernández

 Roberto Rodríguez Osorio

Tutor: Roberto Rodríguez Osorio

Programa de doctorado en Investigación en Tecnologías de la

Información

ii

Dr. Daniel Piso Fernández
Director Engineering
Architecture Technology Group
Arm Ltd.

Dr. Roberto Rodríguez Osorio
Profesor Titular de Universidad
Dpt. de Ingeniería de Computadores
Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Timing Architecture for ESS“ ha sido realizada por D. Javier Cereijo

García bajo nuestra dirección en el Programa de Doctorado Interuniversitario en Investigación

en Tecnologías de la Información, y concluye la Tesis Doctoral que presenta para optar al grado

de Doctor.

 En A Coruña, a 10 de Julio de 2020

Fdo.: Daniel Piso Fernández
Director de la Tesis Doctoral

Fdo.: Roberto Rodríguez Osorio
Director de la Tesis Doctoral

Fdo.: Javier Cereijo García

Autor de la Tesis Doctoral

iv

Acknowledgements

I would like to acknowledge and thank a lot of people without whom I would
not have been able to do this thesis.
In the first place I would like to thank my supervisors for all the support and
help while doing this thesis. Without them I would not have achieved it.
Daniel Piso Fernández who was my key and door to the European Spallation
Source, and Roberto Rodŕıguez Osorio who helped me at the university and
with the research for this thesis.
I would also like to thank Javier Dı́az Bruguera, who introduced and gave
me the opportunity to do this thesis at the European Spallation Source.

I would like thank all my colleagues at the European Spallation Source,
in the Integrated Control System division and specially those of them in the
Hardware and Integration group, including my line manager Karl Vestin and
work package manager Faye Chicken. In no particular order, I am grateful to
Joao Paulo Martins, Saeed Haghtalab, John Sparger and Nicklas Holmberg
for challenging me with new usecases for the timing system. This grateful-
ness also includes the people that are not part of the European Spallation
Source any more, like Nick Levchenko and David Brodrick for sharing their
integration experience, Ursa Rojec for introducing me to EPICS and Simone
Farina for his help with everything and specially hardware. Of course I would
like to thank Jerzy Jamroz and Felipe Torres González for their discussions
of different implementations of timing systems and Michael Davidsaver for
his help with mrfioc2, EPICS and everything related to timing in general.
I would also like to thank the stake holders of the timing system for their
feedback and suggestions. Also Jukka Pietarinen from Micro-Research Fin-
land.

I would specially like to thank the chief engineer Timo Korhonen for
being my supervisor at the European Spallation Source and for the help,
guidance and discussions about all the technologies that I have used when

v

vi ACKNOWLEDGEMENTS

working with the timing system. And finally I would like to thank the per-
son at the European Spallation Source who helped me the most when I was
not sure how to advance and who pushed me to continue and finish the job.
Thank you Jeong Han Lee.

There is more people that have helped me with this project, although I
have not mentioned. I would like to thank all of them.

Finally I would like to thank my friends, family and my girlfriend M-C
for their support and listening to me.

Resumo

O sistema de temporización é unha compoñente fundamental para o control
e sincronización de instalacións industriais e cient́ıficas, coma aceleradores
de part́ıculas. Nesta tese traballamos na especificación e desenvolvemento
do sistema de temporización para a European Spallation Source (ESS), a
maior fonte de neutróns actualmente en construción. Abordamos este tra-
ballo a dous niveis: a especificación do sistema de temporización, e a imple-
mentación f́ısica de sistemas de control empregando circúıtos reconfigurables.

Con respecto á especificación do sistema de temporización, deseñamos e
implementamos a configuración do protocolo de temporización para cumprir
cos requirimentos do ESS e ideamos un modo de operación e unha aplicación
para a configuración e control do sistema de temporización.

Tamén presentamos unha ferramenta e unha metodolox́ıa para imple-
mentar sistemas de control empregando FPGAs, coma os nodos do sistema
de temporización. ámbalas dúas están baseadas en statecharts, unha repre-
sentación gráfica de sistemas que expande o concepto de máquinas de estados
finitos, orientada a sistemas que necesitan ser reconfigurados rápidamente en
múltiples localizacións minimizando a posibilidade de erros. A ferramenta
crea automaticamente código VHDL sintetizable a partir do statechart do
sistema. A metodolox́ıa explica o procedemento para implementar o state-
chart como unha arquitectura microprogramada en FPGAs.

vii

viii RESUMO

Resumen

El sistema de temporización es un componente fundamental para el control y
sincronización de instalaciones industriales y cient́ıficas, como aceleradores
de part́ıculas. En esta tesis trabajamos en la especificación y desarrollo
del sistema de temporización para la European Spallation Source (ESS), la
mayor fuente de neutrones actualmente en construcción. Abordamos este
trabajo en dos niveles: la especificación del sistema de temporización, y la
implementación f́ısica de sistemas de control empleando circuitos reconfig-
urables.

Con respecto a la especificación del sistema de temporización, diseñamos
e implementamos la configuración del protocolo de temporización para cumplir
con los requisitos de ESS e ideamos un modo de operación y una aplicación
para la configuración y control del sistema de temporización.

También presentamos una herramienta y una metodoloǵıa para imple-
mentar sistemas de control empleando FPGAs, como los nodos del sistema
de temporización. Ambas están basadas en statecharts, una representación
gráfica de sistemas que expande el concepto de máquinas de estados fini-
tos, orientada a sistemas que necesitan ser reconfigurados rápidamente en
múltiples localizaciones minimizando la posibilidad de errores. La her-
ramienta crea automáticamente código VHDL sintetizable a partir del state-
chart del sistema. La metodoloǵıa explica el procedimiento para implemen-
tar el statechart como una arquitectura microprogramada en FPGAs.

ix

x RESUMEN

Abstract

The timing system is a key component for the control and synchronization
of industrial and scientific facilities, such as particle accelerators. In this
thesis we tackle the specification and development of the timing system for
the European Spallation Source (ESS), the largest neutron source currently
in construction. We approach this work at two levels: the specification of
the timing system and the physical implementation of control systems using
reconfigurable hardware.

Regarding the specification of the timing system, we designed and imple-
mented the configuration of the timing protocol to fulfil the requirements of
ESS and devised an operation mode and an application for the configuration
and control of the timing system.

We also present one tool and one methodology to implement control
systems using FPGAs, such as the nodes of the timing system. Both are
based on statecharts, a graphical representation of systems that expand the
concepts of Finite State Machines, targeted at systems that need to be re-
configured quickly in multiple locations minimizing the chance of errors.
The tool automatically creates synthesizable VHDL code from a statechart
of the system. The methodology explains the procedure to implement the
statechart as a microprogrammed architecture in FPGAs.

xi

xii ABSTRACT

Preface

Industrial and scientific facilities are getting more and more complex to deal
with new challenges and become more efficient. This affects the equipment
that makes up these centres but also, and maybe even more importantly, the
systems that integrate all of these devices so that they can work together
to fulfil the goal of the facility. One of these is the control system, which
is responsible for managing the rest of the systems so that they operate in
the correct way and in unison. Control systems are intricate networks that
comprise hardware, software and their respective configurations, and that
are integrated together to successfully run the machine or facility.

One of the integral parts of control systems is the timing system. The
timing system is in charge of synchronizing all of the devices together and to
the rest of the world outside the facility or centre. This last part is usually
done by connecting to an external source, such as the Global Positioning
System, from which the timing system derives its reference of time and that
it uses to orchestrate the facility. Timing systems usually have a master node
that defines the time for the centre disciplined by the external source and
dispatches it to the rest of the timing system, formed by slave nodes. The
master node is also the central point where the operation and configuration
are managed from, and it codes this configuration so that it can be sent and
used by the slave nodes. The slave nodes receive the time and information
sent by the master node and react accordingly. The typical reactions are
sending precise triggers and timestamping different signals and occurrences.

There are a number of challenges that the timing system needs to solve
for performing its duties correctly. The most important one is the synchro-
nization of the facility. For achieving synchronization it is mandatory to
define one common master clock and send it to the rest of the timing sys-
tem nodes. If this is not done, and it is decided for each of the nodes to
run its own clock, all of them with the same frequency, one issue quickly

xiii

xiv PREFACE

shows up: even if the clocks are off by just a fraction of a part per million,
given the frequency at which the timing system operates, usually around
100 MHz, in a matter of a few seconds the nodes will drift from each other
by more than one cycle of the clock. The only solution is then to define
and distribute a common master clock that is shared by all of the nodes.
On top of defining the common clock, it is needed to define a moment in
time that acts as the reference of time and distribute this moment to all
nodes without delay. Since this is not possible, specially because the nodes
that need to be synchronized are far away from each other, in some cases
hundreds of meters or kilometres away, an alternative solution is needed,
which entails calculating the delay of the transmission between the nodes,
so that the original moment in time can be calculated.

In this thesis we study, integrate and make some contributions to the
timing system of one scientific facility currently under design and construc-
tion, the European Spallation Source. The European Spallation Source is a
scientific facility for research with neutrons that will be the largest in the
world when it starts operating. It is formed by a linear accelerator that
shoots a beam of protons at a target wheel that produces neutrons by the
spallation process. The neutrons are then guided to a set of experiments,
where they are used to perform science in different fields. The European
Spallation Source is a collaboration among several European countries, that
design and build the different parts and systems all over Europe as an in-
kind project, and deliver the parts to Lund, in southern Sweden, where they
are assembled together. While the actual facility is located in Lund, the
data produced by the experiments will travel to Copenhagen in the neigh-
bour country of Denmark where it will be processed and stored.

The timing system at the European Spallation source is implemented
with a master node, called a event generator, that sends events and other
timing information to event receivers, which react to the events as they are
configured to, mainly to trigger the different devices in a synchronized way.
In the context of the timing system, an event is an enumerated pulsed signal.
Most of the nodes of the timing system at the European Spallation Source
are provided by Micro-Research Finland. This timing system is in charge
of creating and distributing the events that are used to trigger the different
devices, distributing synchronous clocks, defining and sharing a common
time reference used for timestamping signals and other occurrences and dis-
tributing some beam-related parameters throughout the facility.

xv

In this thesis we deal with the design, implementation and integration
of the timing system for the European Spallation Source. This includes
studying the European Spallation Source facility, the systems and devices
that form it and their requirements. Then we come up with a way of imple-
menting all of these in the protocol that is used by the timing system, and
we develop a strategy for implementing the control and configuration of the
event generator and the event receivers. This includes developing the lists
of events and data distributed by the timing system and the configuration
of the nodes according to these lists.

On top of this we present some contributions that we developed for the
timing system of the European Spallation Source. Among them is a new
mode of operation of the event receivers, so that they can work indepen-
dently from an event generator. This has been very useful at the European
Spallation Source due to the in-kind nature of the project. Another contri-
bution relates to a high-level application that will be used for commissioning
and ramp-up of the European Spallation Source after shutdown periods that
allows to pre-define a series of sequences of events and data that are sent
automatically and in a synchronized way. We also present a new board
devised and designed by the European Spallation Source and an in-kind
collaborator, and that will be used to deliver timing in locations of the facil-
ity where, for a number of reasons such as constrained space or just saving
costs, it is impossible or at least impractical to deploy one of the normal
event receivers. Finally we present a tool and a methodology to implement
control systems in reconfigurable hardware minimizing the chance of errors.
Both the tool and the methodology are based on statecharts, an expansion
of Finite State machines. The tool translates the system represented by an
statechart into VHDL ready to be synthesized and implemented in hard-
ware, while the methodology explains how to create a microprogrammed
architecture targeted at FPGAs that implements statecharts. Having tools
and processes that are error-free is very important in big facilities such as
the European Spallation Source, since the complexity of the machine in-
duces the appearance of issues that may prevent the facility from working
properly or even be destroyed or harm people.

xvi PREFACE

Contents

Acknowledgements v

Resumo vii

Resumen ix

Abstract xi

Preface xiii

List of abbreviations xxvii

1 Introduction 1

1.1 Neutrons for science . 2

1.1.1 The European Spallation Source ERIC 3

1.2 Controls and timing at ESS 4

1.3 About this thesis . 6

2 The ESS timing system 9

2.1 Synchronization . 9

2.1.1 Phase locked loops . 10

2.1.2 Transmission delays 12

2.2 Synchronization technologies 13

2.2.1 NTP . 13

2.2.2 PTP . 14

2.2.3 Other current technologies 14

2.3 Definitions . 15

2.3.1 Beam cycle . 15

2.3.2 Beam pulse . 15

2.3.3 Event . 16

xvii

xviii CONTENTS

2.3.4 Trigger . 16

2.3.5 Data items . 16

2.3.6 Event frequency . 16

2.3.7 Sequence . 17

2.3.8 Supercycle . 17

2.3.9 Timestamp . 17

2.3.10 Clock . 17

2.3.11 Real world time . 17

2.4 The ESS timing system . 18

2.4.1 Topology . 19

2.4.2 The data stream . 21

2.4.3 Timestamping . 26

2.4.4 Hardware . 28

2.4.5 The integration of timing in the ESS control system . 34

2.4.6 Timing system requirements 36

2.4.7 Timing system consuming systems 38

2.4.8 The ESS timing structure 40

3 Hardware/Software codesign of the ESS timing system in-
tegration 43

3.1 Standalone mode . 45

3.2 The miniIOC . 46

3.2.1 Embedded EVRs . 50

3.3 The supercycle . 51

3.4 The ESS data model specification 53

3.4.1 Differences between Event and Data 53

3.4.2 Operation event list 54

3.4.3 Data definition . 59

4 Automated synthesis of Statecharts 63

4.1 Statecharts . 64

4.2 Hardware synthesis of statecharts 69

4.2.1 Graphical representations of statecharts 71

4.2.2 Parsing and analysis of statecharts 72

4.2.3 Restrictions on the original statechart 74

4.3 Implementation strategy . 76

4.3.1 Orthogonality . 78

4.3.2 Depth . 79

4.3.3 History . 83

4.3.4 Distributed generation 84

CONTENTS xix

4.3.5 Actions and conditions 84
4.3.6 Implementations steps 85
4.3.7 Example . 91
4.3.8 Evaluation . 92
4.3.9 Extension of the application to other languages 93

4.4 Microprogrammed implementation 94
4.4.1 Microprogramming . 95
4.4.2 Mapping a statechart into a microprogram 96
4.4.3 Architecture . 103
4.4.4 Case example . 112
4.4.5 Evaluation . 115

5 Conclusions 119
5.1 Future work . 120
5.2 Publications derived from this thesis 122

A Beam modes 123

B Beam destinations 125

C Resumen en castellano de esta tesis 127

xx CONTENTS

List of Figures

1.1 (a) Buddha sculpture, (b) X-ray image, (c) neutron image.
Source [1]. 2

1.2 ESS linac layout. Source: ESS. 4

2.1 Phase locked loop. 11

2.2 Calculating the delay of the transmission between two nodes. 13

2.3 Topology example of the ESS timing system. 20

2.4 Frame structure of the data stream. 23

2.5 The mTCA-EVM-300 card. 30

2.6 The mTCA-EVR-300U card. 34

2.7 The PCIe-EVR-300DC card. 34

2.8 The beam pulse structure of ESS after several devices of the
accelerator. Source: ESS. 42

3.1 Example of the timeline of the events in the sequencer during
normal operation. 57

4.1 Example of a statechart in Yakindu SCT. 66

4.2 Statechart showing orthogonality. 69

4.3 Statechart showing a forbidden transition. 76

4.4 Statechart equivalent to the statechart shown in Figure 4.3
but without the forbidden transition. 77

4.5 Statechart showing clustering. 80

4.6 (a). super-state with history. (b). Proposed implementation
using wait states. 83

4.7 Distributed generation of a global signal. 85

4.8 Simple statechart with actions and conditions. 85

4.9 Recreation of Harel’s example of a statechart to control a
digital watch. 97

xxi

xxii LIST OF FIGURES

4.10 Main and ghost - main microprograms that implement the
displays super-state. The microinstructions in the ghost
microprogram replicate all the transitions taken by the main
one, but they only perform actions when ghost - main runs
the microinstructions that implement two specific AND-states:
beep-taste and run. All other microinstructions are idle mi-
croinstructions and are struck-through. 99

4.11 Proposed microinstruction format showing n + 1 conditions
and m + 1 actions. The length of most fields depends on
the number of allowed counters, inputs and outputs; or the
maximum number of microinstructions in an AND-super-state.101

4.12 Example of a six-condition evaluation implemented as four-
condition microinstructions in two steps. Auxiliary states
eval a and eval notc are included to implement a larger
number of transitions than those directly supported by the
format. 102

4.13 History register and its connection to the PC, which is up-
dated when leaving the current OR-state. History is initial-
ized at configuration time as shown in part (b) of the figure. . 105

4.14 Circuit that runs up to two AND-super-states. Dual port
memory is concurrently addressed by two PCs. Conditions
are evaluated and actions are taken independently for both
super-states. Transitions are refined using the history and
new values for the PC are produced every cycle. 105

4.15 Scheme of a counter. At configuration time an initial and ref-
erence values are loaded. The counter behaviour is controlled
by the active states. 106

4.16 Input comparison. At configuration time two reference values
are loaded. These values are used to calculate the current
value with the reference ones during normal operation. 107

4.17 Example of chaining eight conditions. Eventually, all the con-
ditions will activate only one output bit, which sets the tran-
sition that will take place. 108

4.18 Circuit for output selection. The selection value is retrieved
from the active microinstructions. 110

4.19 Load of a microprogram with four rows of four blocks per row.
A simple configuration counter is used to load each word in
the right position, row and memory block. 111

4.20 Dual port memory block. Two AND-states may be addressed
simultaneously using both ports. 111

LIST OF FIGURES xxiii

4.21 Example of microprogrammed organisation of states of the
statechart in Figure 4.9. The dashed lines separate the AND-
super-states. The leftmost one carries out most of the load,
while its neighbour is mainly formed by ghost super-states
with the exception of beep-test and stopwatch/run. The
other five AND-super-states are very simple but, hierarchi-
cally, are at the same level as the main ones. 113

4.22 Micro-code example for two selected super-states. The for-
mat supports up to six transitions and four actions. Some
transitions are highlighted with arrows for the sake of clar-
ity. Condition-chaining bits are not shown. Both super-states
support history. 114

xxiv LIST OF FIGURES

List of Tables

1 List of abbreviation used in this thesis. xxix

3.1 ESS data buffer item list. 61

4.1 Comparison of the resource utilisation for the statechart in
Figure 4.1. 93

4.2 Comparison of the resource utilisation for the statechart in
Figure 4.9. 93

4.3 FPGA resources utilisation by our implementation of the dig-
ital watch in Figure 4.9. 116

4.4 Comparison of the resource utilisation for the statechart in
Figure 4.1. 117

A.1 ESS beam modes. Source: [2]. 124

B.1 ESS beam destinations. 125

xxv

xxvi LIST OF TABLES

List of abbreviations

Abbreviation Definition

AC Alternating Current
AMC Advanced Mezzanine Card
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction Processor
BCM Beam Current Monitor
CA Channel Access
CERN European Organization for Nuclear Research
CPU Central Processing Unit
dBm Decibel-milliwatt
DIN Deutsches Institut für Normung (German organization for standardization)
DMSC Data Management and Software Centre
DOM Document Object Model
DTL Drift Tube Linac
EPICS Experimental Physics and Industrial Control System
ERIC European Research Infrastructure Consortium
ESS European Spallation Source
EVG EVent Generator
EVM EVent Master
EVR EVent Receiver
FC Faraday Cup
FEL Free Electron Laser
FIFO First-In-First-Out
FMC FPGA Mezzanine Card
F-O Fan-Out
FPGA Field-Programmable Gate Array
FRIB Facility for Rare Isotope Beams
FSM Finite State Machine

xxvii

xxviii LIST OF ABBREVIATIONS

Abbreviation Definition

FW FirmWare
Gbps Giga bit per second
GeV Giga electron-volt
GPS Global Positioning System
GSI GSI Helmholtz Centre for Heavy Ion Research
HDL Hardware Description Language
HEBT High Energy Beam Transport
Hz Hertz
IBM International Business Machines corporation
ICS Integrated Control System
ID IDentifier
IFB InterFace Board
ILL Institut Laue-Langevin
I/O Input/Output
IOC Input/Output Controller
IT Information Technology
J-PACR Japan Proton Accelerator Research Complex
JTAG Joint Test Action Group
KiB Kibi Byte
LCLS Linac Coherent Light Source
LEBT Low Energy Beam Transport
LED Light-Emitting Diode
LLRF low Level Radio Frequency
LPC FMC Low Pin Count FPGA Mezzanine Card
LPF Low Pass Filter
LPS Local Protection System
LUT Look-Up table
LVPECL Low-Voltage Positive Emitter-Coupled Logic
mA milli Ampere
MByte Mega Byte
MCH MicroTCA Carrier Hub
MEBT Medium Energy Beam Transport
MeV Mega electron-volt
MHz Mega Hertz
MPS Machine Protection System
MRF Micro-Research Finland
ms milli second
mTCA Micro Telecommunications Computing Architecture
microTCA Check mTCA

xxix

Abbreviation Definition

MW Mega Watt
ns nano second
NTP Network Time Protocol
PBI Proton Beam Instrumentation
PC Personal Computer or Program Counter
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect express
PD Phase Detector
PL Programmable Logic
PLA Programmable Logic Array
PLC Programmable Logic Controller
PLL Phase Locked Loop
PPS Pulse Per Second
PS Processing System
PTP Precision Time Protocol
PV Process Variable
RAM Random Access Memory
RF Radio Frequency
RFQ Radio Frequency Quadrupole
RMS Root Mean Square
RTM Rear Transition Module
SCSI Small Computer System Interface
SFP Small Form-factor Pluggable
SLS Swiss Light Source
SNS Spallation Neutron Source
SoC System-on-Chip
TTL Transistor-Transistor Logic
UK United Kingdom
UML Unified Modeling Language
USA United States of America
UTC Coordinated Universal Time
µTCA Check mTCA
VCO Voltage-Controlled Oscillator
VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
VME Versa Module Eurocard
XML Extensible Markup Language

Table 1: List of abbreviation used in this thesis.

xxx LIST OF ABBREVIATIONS

Chapter 1

Introduction

Making new science and developing better engineering practises is becoming
more and more complex each day, with better, bigger, more powerful and
more efficient experiments and machines being needed to reach new grounds,
as current ones are reaching their limits. One example is the biggest machine
in the world, the Large Hadron Collider at CERN, the European Organi-
zation for Nuclear Research located in Geneva, which intends to go beyond
our current understanding of Physics and for that it needs more energetic
collisions, and thus a larger diameter to minimize synchrotron radiation [3].
Other example is the fusion nuclear reactor ITER in France, which intends
to be the first fusion device to produce a ten-fold return on energy (Q=10) [4]
and thus be efficient enough for commercial use.

These industrial and scientific facilities require for their operation reli-
able, state-of-the-art control systems, which get more sophisticated as the
complexity of the systems or devices they manage increases. These control
systems are intricate networks that comprise hardware, software and their
respective configurations, and that are integrated together to successfully
run the machine or facility. It is of uttermost importance that all con-
figurations are implemented in a flexible and error-free manner, since the
increasing sophistication of the control systems brings out any issue or de-
fect with harmful consequences. For this reason it is becoming more and
more prevalent the use of tools that automatize and simplify the process
of designing, implementing and integrating control systems, providing safer,
more reliable and more flexible systems for better industrial and scientific
facilities.

1

2 CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: (a) Buddha sculpture, (b) X-ray image, (c) neutron image.
Source [1].

1.1 Neutrons for science

Neutrons are a very powerful and extensively used tool for researching and
understanding the internal structure of matter and the properties and com-
position of materials. Neutrons have some special characteristics, such as
the possibility of matching their energy and wavelength scale to atomic and
molecular processes, or using them as weakly coupled probes, as they can
penetrate deeply and harmlessly in the sample being studied. They are also
very sensitive to hydrogen, allowing the study of the structure and dynam-
ics of organic matter, such as polymers and biological matter [5]. Usually
a beam of neutrons is used to probe a small sample under study. The
sample scatters the neutron beam in a specific way that allows scientist
to obtain information, for example the scattering pattern can produce an
image of the atomic structure. Among the applications of neutron scat-
tering are clean energy and the environment, pharmaceuticals, healthcare,
nanotechnology, materials engineering, fundamental physics, IT, biochemi-
cal engineering, food science, drug synthesis and biophysics [6]. Figure 1.1
shows a Buddha sculpture studied under two different techniques: X-ray and
neutrons, where it is possible to notice the difference in the output between
the two methods.

There are two main kinds of neutron sources: continuous and pulsed
sources. The most common type of continuous sources are nuclear reac-
tors that produce a continuous flux of neutrons, such as the Institut Laue-

1.1. NEUTRONS FOR SCIENCE 3

Langevin (ILL) [7] in Grenoble, France. Pulsed sources, on the other hand,
trigger the emission of neutrons from a target at a certain repetition rate.
Spallation sources, which are pulsed sourced, use a high power proton beam,
exceeding 1 MW, to hit a metal target and destabilise its atoms, which then
emit neutrons. Examples of spallation sources are Spallation Neutron Source
(SNS) [8] in Oak Ridge National Laboratory (USA), Japan Proton Accel-
erator Research Complex (J-PARC) [9], or the European Spallation Source
(ESS) in Sweden.

1.1.1 The European Spallation Source ERIC

ESS is an European Research Infrastructure Consortium (ERIC) with 13
European members, including the host nations of Sweden (where the ESS
facility is being built) and Denmark (where the Data Management and Soft-
ware Centre (DMSC) will be located) [10]. The construction of ESS started
in 2014 in Lund, southern Sweden, and should be operational at full perfor-
mance in 2025 [11]. The production of neutrons happens thanks to two big
different parts:

• A proton linear accelerator, which will be the most powerful linear
proton accelerator ever built [10]. It will produce a 5 MW, 2.86 ms long
beam of protons at 2 GeV, which will hit the target with a repetition
rate of 14 Hz. The average pulse current is 62.5 mA [11]. It will
have a normal conducting section consisting of a Radio Frequency
Quadrupole (RFQ) and a Drift Tube Linac (DTL) that accelerates
the beam produced by the proton source, with a Low Energy Beam
Transport (LEBT) and Medium Energy Beam Transport (MEBT) in
between the different systems. The normal conducting section will
accelerate the beam up to 90 MeV, most of the acceleration will be
achieved in superconducting cavities: spoke cavities up to 200 MeV,
medium-β cavities up to 570 MeV and high-β up to the final 2 GeV.
The normal conducting linac and spoke cavities will be fed by a 352.21
MHz radio-frequency (RF), and the rest of the cavities by 704.42 MHz.
Finally a High Energy Beam Transport (HEBT) will drive the beam
to the target. Figure 1.2 shows a diagram of the accelerator.

• A five-tonne helium-cooled target wheel, where the spallation process
takes place, converts the proton beam into slow neutron beams. Due
to the low efficiency of the process, a great flux is needed for the
experiments, which drives the requirements for the accelerated proton

4 CHAPTER 1. INTRODUCTION

Figure 1.2: ESS linac layout. Source: ESS.

beam and its high power. Most of the 5 MW beam power will be
dissipated as heat in the target, which will be located inside a 6000
tons shielding monolith [11].

The neutrons produced by the spallation process need to be moderated
to extract the useful slow neutrons, which will be guided to 22 neutron in-
struments, each of them with a specific purpose and characteristics. The
data generated by the instruments will be sent across the Öresund strait to
the DMSC at the University of Copenhagen, in the Nørre campus.

ESS is a collaboration facility where the member states support the ESS
project mainly through in-kind projects by providing systems which are en-
gineered, designed and built in the members’ homeland, and that are later
shipped and installed locally at ESS. Meanwhile the host members of Swe-
den and Denmark provide most of the cash needed.

1.2 Controls and timing at ESS

The ESS Integrated Control System (ICS) is used in all parts of ESS: accel-
erator, target, instruments and conventional facilities. The software toolbox
that was decided to be used is the Experimental Physics and Industrial Con-
trol System (EPICS) [12]. EPICS is an open-source environment developed
by a collaborative community for developing and implementing real-time dis-
tributed control systems for big research centres and industry. It is widely
used in particle accelerators, large telescopes and other experiments. It was
developed to implement systems with a big number of computers linked
by network, and it provides monitoring, interactivity, data archiving and
control among other scientific applications. Communication is done follow-
ing a distributed client-server model, where all nodes can act as client or
server depending on the requirements. EPICS uses a special protocol called
Channel Access (CA), that all nodes in the system use; the nodes are called
Input/Output Controllers (IOCs). The new version 4 of EPICS extends its

1.2. CONTROLS AND TIMING AT ESS 5

functionality and adds better features and support.

ESS will use hardware based on its applications split in three layers
[11]: slow industrial automation based on Programmable Logic Controllers
(PLCs) for slow,reliable input/output (I/O); distributed I/O based on the
EtherCAT standard [13] with real-time capabilities for applications with
moderate data rates; and fast applications. The fast applications need
real-time processing in the megahertz level, with data rates of hundreds
of MBytes per second and early processing. For this applications the µTCA
or MicroTCA (MTCA.4) [14] standard was chosen. One of the systems
that are critical for the fast applications at ESS, and every accelerator or
research centre in general, is the timing system. Its main purpose is to
provide synchronization of several systems accross the facility the facility,
which includes triggering devices at the specific time needed for the correct
operation of the machine (usually with a configurable delay from a common
source), providing synchronized clocks for data sampling and distributing
other information reliably [15]. All of this must be achievable with tight
requirements on drift and jitters, usually in the range of few ns, or even sub-
ns for the clocks. Due to these requirements on stability and reliability the
timing signals are usually implemented in hardware, while being controlled,
managed and read from the control system.

The timing system is not only needed to synchronize the operation of
all the different systems but also to set a common time-reference for the
entire facility and guarantee that all acquired data and control signals can be
correlated with coherent timestamps. The most common way to achieve this
is by having a master that sends its local time and other related information
across the facility through a dedicated timing network to a series of timing
slaves or receivers that synchronize their internal time to the received one.
There are two main timing system paradigms [16]:

• Time-based timing systems: in a time-based timing system the master,
once the slaves have locked their internal time to that of the master,
broadcasts messages with instructions expected to be performed at
specific times. Then the slaves use their local time, derived from the
master’s, to know when to generate the requested triggers and signals.

• Event-based timing systems: in an event-based timing system the mas-
ter is the one that waits until the requested time to broadcast events to
the slaves, which react immediately as they are configured to. In this
paradigm, an event is just an enumerated pulse signal that triggers

6 CHAPTER 1. INTRODUCTION

actions in the slaves. ESS uses an event-based timing system whose
implementation will be discussed in this work.

Usually timing systems combine both paradigms, where each of them has
obvious advantages: an event-based system can very easily drive actuators,
especially when the timing system needs to react immediately or with low
latency to external conditions. On the other hand knowing or being able to
know the expected actions and times well in advance can help lowering the
network traffic when a lot of actions are expected in a short time. Having
a common time-reference for all the nodes in the system is needed in both
paradigms for timestamping acquired data. It is worth noting that time-
based systems with short deadlines between the broadcast of messages and
the requested time of reaction is for most effects indistinguishable from a
event-based system [16].

1.3 About this thesis

In this work we describe the technical implementation of the ESS timing
system, in order to guarantee a common time reference for the facility, use
coherent timestamps and synchronise the operation of all parts of the facil-
ity. This includes the explanation of the timing system from its fundamental
working pieces, the design of a structure which allows the timing system to
interface all the ESS subsystems that require synchronisation and the inte-
gration of the timing system in the ESS control system. It also includes a
discussion about the synchronisation of the ESS facility.

This thesis is divided as follows: the present Chapter 1 gives an intro-
duction about the ESS facility, the control system, a general presentation of
timing systems and the scope of the work. Chapter 2 is concerned about the
challenge of synchronising large facilities such as ESS, the ESS timing system
is introduced in detail and explains the strategy to deal with the synchro-
nisation challenge. Chapter 3 presents new developments in the technical
implementation of the timing system at ESS and its integration in the ESS
control system, both at low level and at EPICS level, and provides a de-
scription of the synchronisation strategy at ESS. Chapter 4 presents a new
tool to quickly deploy FPGA systems automatically built from a high level
graphical user interface description, and an alternative way to implement
the same high level graphical user interface description as microprograms in
FPGA-based systems. Finally, Chapter 5 presents the conclusions of this

1.3. ABOUT THIS THESIS 7

work and summarises the next steps in the project.

8 CHAPTER 1. INTRODUCTION

Chapter 2

The ESS timing system

2.1 Synchronization

The main problem that the ESS timing system has to solve is how to trigger
and control systems and devices that need to act in a synchronized manner
when the distance between them is of hundreds of meters. The problem is
two-fold: first, one needs to guarantee that the signal sent by the master is
received at the slaves without alterations; second, one needs to guarantee
that all slaves receive the signal at the same time, which in practice means
with the same delay from the master, or with different but known delays
and are able to compensate accordingly.

The simplest and easiest way of synchronising all the nodes of the timing
system is by sharing a clock signal. In this context a clock signal is a
repetitive sine or square wave (depending on if the system is analog or
digital). Let us consider a simple sine wave signal1. One can write the
periodic signal as a function of time (t) as

y(t) = A sin(2πft+ ϕ(t)) = A sin(ωt+ ϕ(t)) (2.1)

where A is the amplitude of the signal2, f is the frequency, ω the angular
frequency and ϕ(t) the phase offset. Equation 2.1 can be rewritten as

y(t) = A sin(ω(t+
ϕ(t)

ω
)) (2.2)

1This analysis can be extended to square signals, since they can be reconstructed as a
sum of sine wave signals, even being a finite sum in systems with limited bandwidth.

2Although the amplitude may have a dependency with time, let us ignore this depen-
dency as it does not have any effect on synchronization.

9

10 CHAPTER 2. THE ESS TIMING SYSTEM

where the ϕ(t)
ω represents the deviation between a perfect and an imperfect

periodic signal. The phase offset ϕ(t) is a random noise signal whose RMS3

value can give one an idea of the quality of the clock [16].

The instantaneous phase φ(t) of the periodic signal can be expressed as

φ(t) = 2πft+ ϕ(t) (2.3)

Even for perfect periodic signals, where ϕ(t) = ϕ0 is just a constant initial
phase offset, two periodic signals with the same initial phase offset ϕ1 0 =
ϕ2 0 will have different phase relation over time:

∆φ(t) = φ1(t)− φ2(t) = (2πf1t+ ϕ0)− (2πf2t+ ϕ0) = 2πt(f1 − f2) (2.4)

This means that the only way to synchronise nodes is by sharing exactly
the same frequency, as even a small difference will make them drift away
from each other. For this reason the master of the timing system sends its
clock to all the slaves that receive and lock to it, since it is the only way of
guaranteeing that all nodes share the same frequency.
If at least two periodic signals have the same frequency it is said that they
are syntonized.

In the case of periodic signals, once the nodes are syntonized and assum-
ing that ϕ(t) is a noise signal centred around the initial phase offset ϕ0, and
that two signals have different initial phase offsets ϕ1 0 and ϕ2 0 then

∆φ(t) = φ1(t)− φ2(t) = (2πft+ ϕ1 0)− (2πft+ ϕ2 0) = ϕ1 0 − ϕ2 0 (2.5)

the only thing left that one has to guarantee to have the nodes synchronized
is that they have the same phase offset ϕ1 0 = ϕ2 0. In this case

∆φ(t) = φ1 − φ2 = 0 (2.6)

This will guarantee that for example the rising edge of triggers will happen
at exactly the same time across the facility.

2.1.1 Phase locked loops

Phase locked loops (PLLs) are used to guarantee that all nodes have ex-
actly the same frequency (they are syntonized). They also clean the jitter

3Root mean square.

2.1. SYNCHRONIZATION 11

of clocks [16], which is the deviation of a signal from being perfectly period-
ical, showing up as variations in the phase of the signal. PLLs are basically
control systems with negative feedback that generate an output frequency
with a phase that has a certain relation to that of an input or reference fre-
quency. They have four basic elements: a phase detector, a low-pass filter, a
voltage-controlled oscillator and a feedback path. The phase detector (PD)
compares the reference frequency with the output frequency, and creates a
signal whose voltage is proportional to the difference of the phase of the two
frequencies. The voltage signal is passed to the voltage-controlled oscillator
(VCO) through the low-pass filter. The VCO is adjusted using the voltage
signal to generate the output frequency. Finally the negative feedback is
used to send the signal back to the PD so that the PLL can match the
phases until it stabilizes. At that moment it is said that the PLL is locked.
If the output phase drifts, the PLL, thanks to the negative feedback loop,
will change the voltage signal in such way that the VCO drives it phase in
the opposite direction to the drift, reducing the difference in phase between
the reference frequency and the output. A diagram of a PLL is shown in
Figure 2.1.

v
i

PD LPF VCO v
o

Figure 2.1: Phase locked loop.

In most timing systems the master does not send a periodic clock, but
rather a data stream without an accompanying clock. Assuming that the
data stream has enough transitions (for example by using some specific kind
of encoding, such as 8b/10b, explained in Section 2.4.2) a PLL can use an
internal clock, for example from an internal fractional synthesizer, to gener-
ate a clock which is phase-locked to the transitions of the data stream. This

12 CHAPTER 2. THE ESS TIMING SYSTEM

process is called clock recovery.

2.1.2 Transmission delays

To achieve complete synchronisation one needs to guarantee that all the
slaves in the timing system use the same origin of time, i.e. a specific
instant in time that acts as a time reference has been defined and simul-
taneously distributed throughout the network, and is used by all slaves in
the system. Then all nodes can correlate any other instant in time, even in
different places, by counting cycles of the clock signal. Since it is usually not
physically possible to distribute this reference instant to all slaves exactly at
the same time, for example because of different link lengths, this is usually
achieved by defining this specific instant in the master, broadcast it to the
slaves, and somehow calculate or inform the slaves about the exact delay
that it has taken for the signal to travel from the master to each of the
slaves. Then the slaves can use this information to send triggers at precise
times and calculate timestamps.

In Figure 2.2 a possible way of calculating the delay is shown, using a two-
way scheme, and assuming both nodes are capable of sending information
to the other and that they can timestamp the messages. One of the nodes
sends a specific signal to the second node at a local time t0, and the second
node receives it at its local time (which may be different than the local time
of the first node) t′0. Then this second node replies with another signal at
t′1, which is received at t1 by the first node. If then they share with each
other these timestamps t0, t′0, t1 and t′1, they can calculate the delay in the
link:

∆t =
(t1 − t0)− (t′1 − t′0)

2
(2.7)

After knowing this delay it is usually the slaves that change their local time
to align with that of the master. In general this calculation should be done
independently for each slave, and depending on the topology of the network,
for example in a star topology where there are one or more levels of cascaded
fan-outs between the master and slaves, it should also be done for each level
of the network. Also this way of calculating the delay of the transmission is
only valid if the link is perfectly symmetric from the master to the slave as
from the slave to the master.

2.2. SYNCHRONIZATION TECHNOLOGIES 13

Time

node 1

node 2

t

t' t'

t0 1

0 1

Figure 2.2: Calculating the delay of the transmission between two nodes.

2.2 Synchronization technologies

There are a number of synchronization technologies in use currently in the
world, and most of them do not have accelerators or other research facilities
as their main user, but it is actually the telecommunication industry that
makes the most intensive use of them. In the following subsections some
of these technologies are explained and compared, paying attention to the
accuracy (which represents how close a slave can lock its frequency to that of
the master) and precision (the jitter of the slaves measured from the average
deviation that is defined by the accuracy) [16].

2.2.1 NTP

The Network Time Protocol (NTP) is used to synchronize the time of a sys-
tem to another reference time source, usually a server or satellite receiver,
over the network. Usually a series of servers is used to synchronize to a pri-
mary server that holds the Coordinated Universal Time (UTC) via a Global
Positioning System (GPS) receiver. Several servers and different network
paths are used at the same time to achieve better accuracy and reliabil-
ity [17]. The accuracy of NTP is in the range of milliseconds due mainly to
two facts: the first one is that the timestamping of the packets is performed
in the software layer, suffering from the scheduling latency of the operating
system. The second is that the propagation of the packets is performed
through a network with variable latency due to the different paths and the
non-deterministic latencies of routers and switches. This second factor can

14 CHAPTER 2. THE ESS TIMING SYSTEM

be partially mitigated by using certain algorithms to calculate and compare
the latency of different network paths, helping to achieve better accuracy
and reliability.

2.2.2 PTP

The Precision Time Protocol (PTP) [18] was developed with the goal of
providing better accuracies than those attainable with NTP while being
based on the same idea, synchronizing times throughout a computer net-
work. Although it may make use of software timestamping, to achieve the
best accuracies hardware timestamping is needed. This is implemented by
using dedicated PTP network cards for the grandmaster, switches (bound-
ary clocks) and slaves. The PTP grandmaster is the origin of the time in the
network, and is usually disciplined by GPS or similar. As the switches and
slaves drift from the grandmaster clock due to misalignments in the internal
clock frequencies, continuous compensation is needed in them. In this way
PTP can attain accuracies in the microseconds range.

2.2.3 Other current technologies

Current research facilities need synchronization even better than in the range
of microseconds, as usually the minimum expected accuracy is one beam
bunch or bucket of the RF used in them, which is typically around 500 MHz
for modern light sources and electron storage rings [19]. In this case the
main challenge that the timing systems need to address is the drift of the
slaves’ oscillators compared to the master’s. The main solution for this issue
is to recover the master’s clock signal from the data stream at the slaves.
In this implementation it is the master’s clock signal that is used as the
encoding signal of the bitstream. The slaves lock to the data stream (by
using a PLL) and extract both the messages and the encoding signal, which
they use internally for their local counters. In this case, and since the slaves
are using the same clock for the timestamps as the master, it is possible to
reach accuracies in the range of nanoseconds [16]. Except for thermal drifts,
which are slow and may be compensated by methods such as the one shown
in Figure 2.2, it is guaranteed that there is no frequency offset between the
master and the slaves.

Examples of this kind of timing systems are the MRF timing system,

2.3. DEFINITIONS 15

used at ESS and which will be later described in Section 2.4, and White
Rabbit [20]. White Rabbit is a collaborative project among several scientific
facilities, universities and companies, led by CERN and the GSI Helmholtz
Centre for Heavy Ion Research (GSI). Its goal is to develop a timing and
synchronization network, completely open (both hardware and software),
based on Ethernet, with thousands of nodes with distances of around 10 km
between them, and with sub-nanosecond accuracy. It is based on PTP to-
gether with hardware timestamping and Synchronous Ethernet (SyncE) [21]
to transfer the clock signals over the network.

2.3 Definitions

In this section a series of concepts with a very specific meaning in the con-
text of the ESS timing system and that will be used in the rest of this thesis
are defined.

2.3.1 Beam cycle

In the context of the timing system, a beam cycle is one period of the 14
Hz cycle of the accelerator operation. Each beam cycle is 71 ms long and
includes one 2.86 ms window where extraction and acceleration of protons
happens. The beginning and end of every cycle are defined in such way that
all events and timing transmissions needed for one specific beam pulse are
included in the same cycle.
Purpose: extraction and acceleration of the protons that trigger the spalla-
tion process in the target.

2.3.2 Beam pulse

The beam pulse is the actual group of protons that travel through the accel-
erator. In normal operation it can also refer to the 2.86 ms window where
protons are extracted and accelerated.
Purpose: trigger the spallation process in the target.

16 CHAPTER 2. THE ESS TIMING SYSTEM

2.3.3 Event

An event is an enumerated signal sent from the event generator (timing
master) to the event receivers (timing slaves). The event receivers receive
the event and act based on it, usually by triggering an output with config-
urable delay and width, although events can also set or reset outputs, cause
hardware interrupts or trigger some processing. Special events are used to
broadcast the timestamp (real world time), synchronize prescalers or per-
form special functions.
Purpose: broadcast of an enumerated signal throughout the ESS facility
with a deterministic latency. They can be used to generate triggers.

2.3.4 Trigger

Triggers are signals created by event receivers (timing slaves) to synchronize
external equipment or cause the start of processing. Usually they have an
interface with the equipment through cables or the µTCA backplane.
Purpose: trigger external equipment.

2.3.5 Data items

Each of the data items corresponds to one parameter of the proton beam,
such as beam length, beam mode and so on. All the data items are sent as
part of one big data buffer of 2 KiB, which is divided in segments.
Purpose: transmission of beam-related information.

2.3.6 Event frequency

The frequency at which the events are sent. In the case of ESS, it is 88.0525
MHz, divided from the frequency of the master radio-frequency oscillator
and thus phase-locked to it. The data buffer is sent at a rate of one 8-bit
byte every other tick of the event clock (which runs at the event frequency).
The clocks are sampled at half of the event frequency.
Purpose: sending events, data and clocks in a synchronous way.

2.3. DEFINITIONS 17

2.3.7 Sequence

The sequence is a list of up to 2047 event-timestamp pairs (in the context
of a sequence, the timestamp is the delay from the start of the sequence,
do not confuse with the regular timestamp). Once triggered, it sends the
events in the list at the time stated by the corresponding timestamp. The
sequence is used to define the relation between different events.
Purpose: sending a series of pre-defined events at pre-defined times.

2.3.8 Supercycle

The supercycle is a pre-defined series of sequences that run in automatic
mode. It is to be used for the commissioning of the accelerator, to slowly
increase parameters such as the beam pulse length pulse-by-pulse. The
supercycle is also an operating tool under development, with a set of appli-
cations to create and run a set of cycles.
Purpose: slowly change the beam parameters in a pre-defined and automatic
way.

2.3.9 Timestamp

In the context of the timing system, a timestamp is a record of the exact
moment when an action takes place in relation to a centralised ”real world”
time, to allow correlation of data from different parts of the facility. Do not
confuse with the sequence parameter also called timestamp.
Purpose: precise time correlation of actions.

2.3.10 Clock

In the context of the timing system, a clock is a periodic signal.
Purpose: synchronisation of systems with a periodic signal.

2.3.11 Real world time

The real world time is the normal time (year-month-day-hour-minute-second)
as presented by a NTP server or a GPS receiver.
Purpose: common reference for timestamps.

18 CHAPTER 2. THE ESS TIMING SYSTEM

2.4 The ESS timing system

ESS uses the timing system developed by Micro-Research Finland (MRF)
[22]. This is an event-based timing system that provides a complete tree-
network distribution of timing signals with just three components: an Event
Generator (EVG) which acts as timing master, Event Receivers (EVRs)
which act as timing slaves, and fan-out modules. It generates and distributes
synchronous clocks, sequences of events and trigger signals synchronous to
an external source, usually the master clock for the RF signal that also feeds
the accelerating and control devices in the accelerators, storage rings and
beamlines. This external RF signal is needed to guarantee that all clocks
and signals are phase-locked to the machine operation. The MRF timing
system can synchronize machines with sensitive systems and electronics to
the AC current mains (50 or 60 Hz) [15]. This timing system also provides
timestamping functionality for defining a common time reference and iden-
tifying in time the actions performed and the data acquired in the facility. It
was developed by a single company but in close relation with the experimen-
tal physics community, with its requirements driving the design. Part of the
design is open [23] and the protocol is well known. It has been used for many
years in several facilities such as the Linac Coherent Light Source (LCLS)
FEL [24] at SLAC in California, USA, the Swiss Light Source (SLS) [25]
at the Paul Scherrer Institut in Switzerland and Diamond Light Source [26]
in the UK, both of them synchrotron light sources, or the Facility for Rare
Isotope Beams (FRIB) [27] in Michigan, USA. In all of them it has shown
very good reliability, making it one of the reasons why it was chosen at
ESS. Another reason is that the supplier keeps developing and enhancing all
the timing system products, decreasing the risk of product obsolescence [11].

The EVG defines the time to which the EVRs lock to, and sends the
events, clocks and other signals that synchronize the facility. It is highly
configurable and self-contained, without needing external devices such as
counters, etc.

The EVRs lock to the link from the EVG, decode the data stream and
act based on it, basically by producing both hardware and software triggers
from the events and timestamping the actions. This makes the system very
flexible.

The ESS timing system has five main functions:

2.4. THE ESS TIMING SYSTEM 19

• Event distribution throughout the facility, which are mainly used to
create triggers.

• Generation and distribution of synchronous clock signals.

• Definition of a common time base and timestamping throughout the
facility.

• Transmission of fast and synchronous beam-related data.

• Delay compensation for stability against long term thermal drifts.

2.4.1 Topology

The most basic set-up of the timing system consists of an EVG connected,
through a fan-out layer, to a number of EVRs. The fan-out layer can have
any number of levels of cascaded fan-out modules and it is not necessary
for it to be balanced. It is possible to mix EVRs and fan-out modules in
any level of the topology. Devices are aware of their position in the tree
structure and get a unique identifier according to it. For synchronization
with the machine, mainly the RF devices, the EVG has an input for the
RF signal, which is used to derive the event clock from, as explained later.
Another EVG input is used to keep the timestamps synchronized to the
world via a GPS receiver which shares a 1 pulse-per-second (PPS) signal.
Figure 2.3 shows a simplified diagram of the timing topology.

Delay compensation

An active delay compensation mechanism measures the propagation delay
between every two nodes directly connected to each other in any level of
the topology, so that each node can calculate the total delay from the EVG.
This is done by adding the delay of its level to the total delay of the previous
levels, which is transmitted downstream. On the lowest level of each branch
each EVR knows the delay from the EVG down to its own level, and uses
that information to adjust the depth of an internal event FIFO4 buffer to
guarantee that the events reach the processing core of each EVR after a
programmed target delay. In general this target delay should be the same
for all the EVRs in the facility.

4First-In-First-Out.

20 CHAPTER 2. THE ESS TIMING SYSTEM

GPS

RF

EVG

F-O F-O

EVR EVR

EVR EVR EVREVR

EVR

1 PPS

88.0525 MHz

352.21 MHz

F-O F-O

Figure 2.3: Topology example of the ESS timing system.

The event clock

The timing system needs to be synchronized to the machine, basically to the
RF signal that feeds the accelerating devices. One option would be to use
two different clocks, one for the RF and another one for the timing system,
both with the same frequency, namely 352.21 MHz, used for the ESS accel-
erator. This frequency is fixed and cannot be changed due to some parts
of the accelerator being already built with a strong physical dependency to
this frequency. If the clocks are off by just 0.001 parts-per-million, in ap-
proximately 3 seconds both clocks would already drift from each other by
one cycle. This is obviously unacceptable, so the only choice is to have only
one master, the RF oscillator, and feed that frequency to the timing system,
for it to be used to derive the timing event clock from.

The timing devices, EVG and EVRs, need to create and react to events
at the frequency of the event clock, and some complex operations are needed
to be performed on some of those events. For this reason the timing system
provided by MRF has been developed to use event clocks from 50 MHz to
142.5 MHz, guaranteeing that it will perform as expected in that range of
frequencies. The EVG can accept external RF frequencies from 50 MHz
to 1600 MHz, and internal dividers will divide that input frequency by an
integer number configurable by the user (from 1 to 32) so that the event
frequency is in the supported range. As mentioned before ESS will use a

2.4. THE ESS TIMING SYSTEM 21

RF frequency of 352.21 MHz, which will be divided by 4 to obtain an event
frequency of 88.0525 MHz. Events will be sent from the EVG to the EVRs
at this event frequency, which are phase-locked to the RF frequency. The
EVG can sample the RF frequencies with four phases at 0°, 90°, 180° and
270° to synchronize the event clock to.

As it will be explained in the next sections, the events are sent through
the timing network coded in a digital signal, so that the original clock can
be re-constructed at the EVRs. On top of the two clocks already mentioned,
one with the RF frequency and the other with the event clock frequency, a
third clocks is also generated, the bit clock for the transceivers in the timing
network. The relation between this clock and the event clock is fixed at
a factor of 20, as will be explained in the following sections. The relation
between the three clocks is then as follows:

Fbit/20 = Fevent = FRF /Ndivider (2.8)

where Fbit is the frequency of the transceivers, and for the case of ESS, the
event frequency Fevent is 88.0525 MHz, the external RF frequency FRF is
352.21 MHz and the EVG divider Ndivider is 4.

2.4.2 The data stream

The data stream is distributed through the facility using an optical fibre net-
work, specific for timing. Since the delay compensation is based on the cal-
culation of the delay on the fibre between two adjacent nodes that exchange
messages assuming that the link is symmetric, according to Equation 2.7, it
is of uttermost importance that the delay upstream and downstream is the
same. Although there are available several different ways of dealing with
this, the easiest way is using duplex fibre and the same light frequency on
both strands of fibre. This ensures that the travel path of both ways is the
same within some tolerance, and the same wavelength and diffraction index
also ensures that the optical path is the same. In this way a symmetrical
link is guaranteed.

Each cycle of the event clock a frame consisting of two 8-bit words are
sent through the timing distribution network, from the EVG down to all
the EVRs. The first word represents an integer that symbolizes an event.
There are 256 different event codes, each of them with a different meaning

22 CHAPTER 2. THE ESS TIMING SYSTEM

set by the timing developer, although some events are already in use inter-
nally by the timing system to perform some actions, such as transmitting
the timestamps. Only one event may be transmitted on each cycle. Event
number zero is the null event, and is sent when no other event is scheduled.
The second word is shared by the data buffer and the distributed bus. The
data buffer is just a 2 KiB buffer of memory which is copied from the EVG
to the EVRs, byte by byte, and is explained in more detail in Section 2.4.2.
The distributed bus consists of eight independent clocks which are sampled
at a frequency derived from the event clock, and one sample of each clock is
combined to form a word of the distributed bus sent over the data stream.
More about the distributed bus is explained in Section 2.4.2.

There are two ways of configuring the data stream. In both of them
the first word is always an event clock, while the second word is different
depending on the configuration. In the first configuration the second word
is always part of the distributed bus, so the eight clocks are sampled at the
event clock frequency, 88.0525 MHz for ESS, so they can transmit frequen-
cies of up to approximately 44 MHz. In the second configuration the second
word of the data stream is shared between the distributed bus and the data
buffer, so that a word of each is sent in alternating event clock cycles. In
this case the distributed bus clocks can achieve a maximum frequency of ap-
proximately 22 MHz and the full data buffer is sent in approximately 46.5
microseconds.
ESS will always run with the second configuration, using the data buffer
and the distributed bus. The frame structure is shown in Figure 2.4.

The 8b/10b encoding protocol

The frames that form the data stream are sent continuously downstream
creating a synchronization clock which allows the local oscillator of each
EVR to recover the event clock sent from the EVG, which is highly related
with the RF signal as explained in Section 2.4.1. In order for the event clock
to be retrieved from the link frames, the data stream needs to meet some
requirements, mainly on the number and frequency of the transitions of the
digital signal. To achieve this the data frames are encoded using the 8b/10b
protocol [28], which on top of guaranteeing that the maximum run length is
five for clock recovery it also achieves DC-balance by ensuring that in any
long enough string the difference between 0’s and 1’s is no more than two.
In order to do this the protocol transforms the 8-bit words into specific 10-

2.4. THE ESS TIMING SYSTEM 23

DISTRIBUTED BUS

EVENT CODE DATA BUFFER

11.357 ns

Figure 2.4: Frame structure of the data stream.

bit words, which comply with the previously explained characteristics and
allow the decoding of the original words. Every now and then a null event
is replaced by a special 8b/10b synchronization character to synchronise the
boundaries of the data words in the serial data stream. Since each frame
consists of two 8-bit words and the event clock frequency at ESS is 88.0525
MHz, it can be calculated that the timing distribution network works at a
frequency of approximately 1.76 Gbps.

Timing events

Events are instantaneous pulses that are sent from the EVG to the EVRs, in-
tended to be used to generate physical triggers in the EVR outputs and start
software processes. Events can be considered independent digital pulses, but
only one can be sent each cycle of the event clock. Event 0 is the null event
that is sent when no other event is queued.

There are several sub-systems in the EVG capable of sending events:

• The event sequencer: it is a list of 2048 entries, each entry being formed
by an event and its related timestamp. In the event sequencer context,
the timestamp is the delay from the moment when the sequencer was
triggered, and is expressed as an integer number of cycles of the event

24 CHAPTER 2. THE ESS TIMING SYSTEM

clock. All the entries need to be sorted in ascending timestamping
order, since its working mechanism is as follows: when the sequencer
is triggered, the first entry in the list is fetched, and a counter counting
event cycles starts running. When the counter reaches the value of the
timestamp, the related event is sent, and the second entry in the list
is fetched. Again, when the counter reaches the value of this second
timestamp, the second event is sent, and the following entry is fetched,
and so on. The sequencer keeps running until the end of the list, which
is marked by the event 127 (0x7f), that is a special event and is not
sent. The sequencer is used to play back sequences of events in a
specific order and with well defined times between them. The list is
stored in RAMs5 of which the EVG has two able to run in parallel,
although the intended use is to write a new list in one of them while
the sequence in the other RAM is running.

• Multiplexed counters: they are independent 32-bit counters that gen-
erate clock signals with frequencies derived from the event clock. They
do not send events directly, but are used to trigger the sub-systems
that do send events. Each multiplexed counter is configured with an
integer value, and when that value is reached, the multiplexed counter
triggers and resets, starting counting again. The counters are updated
with the event frequency, so the range of frequencies that they gen-
erate go from half the event clock to eventclock

232−1
(in the case of ESS,

this means frequencies from approximately 44 MHz to approximately
0.02 Hz). Multiplexed counters can be used to send events, trigger
the sequencers or drive the clocks of the distributed bus. The EVG
has eight multiplexed counters with 50 % duty cycle (for even divisors,
odd divisors will be slightly off).

• Trigger events: they send a unique event every time time that they
are triggered. The event to be sent is configurable by the user. The
possible triggers are the EVG’s inputs and the multiplexed counters.
The EVG has eight completely independent trigger events. If the
trigger events are driven by the inputs, the signals are synchronized
to the event clock.

• Software events: they are used to send a unique event when that event
code is written to one of the EVG’s registers by the user or operator.
Because of the way that they are triggered, they are not deterministic

5Random Access Memory.

2.4. THE ESS TIMING SYSTEM 25

as the rest of event sources, and are meant to be used to perform tests
or trigger non-timing-sensitive actions.

On top of these sub-systems, the EVG can automatically send events
that drive the timestamping sub-system, as is explained in Section 2.4.3.
The EVG has a priority encoder to resolve which event to send when two
events are scheduled in the same cycle. The lowest priority event will be
sent in the next empty cycle.

The EVRs are also capable of sending events upstream from a number of
sources, mainly their inputs, in parallel to the normal downstream link. This
capability is supposed to be used as a fast communication mechanism to re-
act to some physical occurrence downstream in the accelerator by stopping
the EVG normal behaviour, and hopefully prevent damages to the machine
or people. The protocol used upstream is exactly the same as the one used
downstream: there are 256 different event codes, with only one event being
sent every cycle of the event clock. In this case the fan-out modules work as
concentrators with an obvious risk of acting as bottle-necks, so this feature
should be used cautiously. When the upstream events reach the EVG, the
EVG stops the transmission of regular events and the upstream events are
replicated broadcast downstream to all EVRs. The EVRs react to these
events by sending triggers to some devices that hold circular buffers that
keep the running state of the machine. The intention of these post mortem
system devices is to freeze the circular buffers when they receive the triggers
from the EVRs, saving the exact state of the machine in the moments prior
to the fault, so that it can be studied and fixed.

EVRs can also create local events from inputs, with the intention of
timestamping the signals connected to those inputs, and also triggering a
sequencer when running in standalone mode, as explained in Section 3.1.

Data buffer

The data buffer allows sending beam-related information from the EVG to
the EVRs in a fast and reliable manner. It is a block of 2 KiB of dual-
ported buffer memory that is written to the EVG, and, when triggered, is
copied to the EVRs. The EVRs raise a flag when the data buffer trans-
mission is running, and another one when the transmission has finished, by
using especial 8b/10b codes. The transmission is done byte by byte each

26 CHAPTER 2. THE ESS TIMING SYSTEM

other frame of the data stream, and is triggered by software, so although
the transmission itself is time-deterministic, its triggering is not, so the data
buffer should not be used for triggering, just for transmission of information.

The data buffer has no internal structure, so it is up to the users to orga-
nize it internally as they want, and also to make sure that the EVG and the
EVRs expect the same information and that it is expressed in the same way,
although the implemented protocol performs error detection with a simple
checksum. ESS has implemented a protocol for the data buffer explained in
Section 3.4.3. The last bytes of the data buffer are reserved by the timing
system to exchange information between nodes about the topology and the
delay compensation.

At ESS the data buffer will be sent during one beam cycle with the
beam related information concerning the following beam cycle. The inten-
tion of this is that the information is available to the consuming systems
with enough time to get ready and, if for some reason they cannot, inform
the timing system or MPS6 to abort the beam pulse. For this reason the
data buffer should be transmitted as soon as possible, ideally right after the
current beam pulse has finished. This would give the consuming around 60
ms to get ready for the following beam cycle.

Clocks (distributed bus)

The distributed bus consists of eight simultaneous clocks used to transmit
eight independent signals sampled at the event clock frequency or half of it,
depending on the data stream mode. The clocks can send frequencies sam-
pled from the EVG’s external inputs or the multiplexed counters. If more
than one source is selected, all of them are logically OR-ed. One of the clocks
can also be configured to reset the counter that updates the timestamps in
the EVRs. In the EVRs the clocks of the distributed bus can be routed to
the outputs.

2.4.3 Timestamping

Timestamping is the process of attaching a precisely time-tagged label to
each piece of data saved in the facility. In the ESS case this is performed

6Machine Protection System.

2.4. THE ESS TIMING SYSTEM 27

by the timing system, allowing the saved data to be synchronized and cor-
related to the actions happening in the facility, such as the timing events.
The timing system only timestamps the events, so everything that needs
to be timestamped should have a related event. The actions and processes
driving the facility are already triggered by events, so no further action is
needed. For other signals that need to be timestamped, they should be fed
to an EVR via its inputs. The EVR will synchronize the signal to the event
clock, use it to create an event (either edge-sensitive or level-sensitive) and
timestamp that event. In some cases the event may be sent upstream to the
EVG, as configured by the user.

Timestamps have two parts: a ”second” part and a counter (sometimes
called ”nanosecond”) part. The ”second” part is just a 32-bit integer count-
ing the number of seconds in the UNIX epoch (the number of seconds since
1st January 1970 UTC, ignoring leap seconds). The ”second” part is gener-
ated in the EVG and transmitted to the EVRs once per second. To generate
the first timestamp when the EVG starts running, at ESS the EPICS layer
that is used to configure the EVG uses the system clock of the device control-
ling the EVG, which should be synchronized to an external highly reliable
source such as an NTP server or GPS server. After that the EVG uses an
externally supplied 1 PPS signal, for example a rubidium clock disciplined
by GPS, to increment the ”second” part by one and send the new timestamp
to the EVRs triggered by the 1 PPS signal. This happens at the rising edge
of the input. The EVG also sends the 1 PPS signal to the EVRs using a
dedicated, reserved event, driven by one of the trigger events. The EVG
sends the new timestamp to the EVRs as a string of 0’s and 1’s using two
dedicated, reserved events. The timestamp sent represents the exact second
that applies in the real world the next time that the 1 PPS event is sent
to the EVRs. If desired the EVG can resynchronize to the system clock,
although this is not usually done.

The counter part of the timestamp is local to each EVR. It is imple-
mented as a free running 32-bit counter, updated with the event clock and
increased by one each cycle, that is reset with the 1 PPS signal sent from the
EVG. When the 1 PPS is received by the EVR, the new ”second” part of the
timestamp is used together with the recently reset counter part. When an
event reaches the EVR, from any event source, the EVR copies both parts
of the timestamp and assigns it to the event. On top of the ”seconds” part
already explained, the counter part is used to calculate the fractional part of
the timestamp. Since it counted the number of cycles of the event clock since

28 CHAPTER 2. THE ESS TIMING SYSTEM

the start of the current second, the fractional part of the timestamp can be
calculated by multiplying the value of the counter part by the period of the
event clock (since the counter part of the timestamp stores an integer with
a time value that depends on the event clock frequency, the ”nanosecond”
name that it sometimes receives is not really appropriate, although it does
represent a number in the range of nanoseconds). In the ESS case the period
of the event clock is approximately 11.357 ns, so this is the granularity of
the timestamps. The multiplication is done in the EPICS layer.

EVRs can timestamp external signals as explained by creating events
driven from the inputs. EVRs can also be used by the EPICS layer of the
device that is used to control the EVR as NTP servers, to synchronize their
system clocks to the timing system.

EVRs can not verify the timestamps without an external, trusted source,
although some sanity checks are performed in the EPICS layer. Every sec-
ond, the new ”seconds” part is expected to be an increment of one from
the previous second. If it is not the timestamp is declared as invalid, and
the EVR waits for five consecutive, sensible timestamps to arrive from the
EVG before setting the timestamp back to valid. It is also possible to detect
when the 1 PPS signal is malfunctioning by expecting the signal in some ”1
second + delta” time. If the signal does not arrive, the timing system raises
an alarm and invalidates the timestamping.

2.4.4 Hardware

ESS will use three of the products developed by MRF: the mTCA-EVM-300,
the mTCA-EVR-300(U) and the PCIe-EVR-300DC, which are described in
this section.

The event master

The event master (EVM) is the physical implementation of an EVG and
a fan-out module in the same card. ESS will use the same mTCA-EVM-
300 card from MRF, shown in Figure 2.5, as EVG and fan-outs. The core
of the EVM is a Kintex-7 model XC7K325T FPGA by Xilinx [29]. The
EVM, when used as an EVG, is in charge of creating an event clock de-
rived from an external RF source, and use that event clock to encode and

2.4. THE ESS TIMING SYSTEM 29

distribute events, a data buffer, a distributed bus and timestamping capa-
bilities. On top of those it includes event-generation capabilities with eight
trigger events, two event sequencers and eight multiplexed counters. It also
includes a timestamp generator and the delay compensation mechanism. It
includes a fractional synthesizer to create a number of frequencies to be
used as event clock when an external RF source is not available, which is
mainly used for testing purposes. A Micrel SY87739L Protocol Transparent
Fractional-N synthesizer is the on-board chip, and has a reference clock of
24 MHz. In the front panel the EVM has eight SFP module connectors and
two LEMO EPK.00.250.NTN connectors with an input impedance of 50 Ω.
The first one used for feeding the RF frequency from the master oscillator,
so that the timing system events are phase-locked to the RF and does not
drift from it. The RF input accepts a square or sine signal with a maximum
level of +10 dBm. The second LEMO connector, for general purpose and
TTL level, will be used at ESS to feed the 1 PPS signal. It can accept 5
or 3.3 V TTL logic signals. Through the Rear Transition Module (RTM)
connector the EVM includes more inputs, allowing the MPS to stop the gen-
eration of events that synchronize the facility when an important problem,
that may damage the machine, is detected. Through the µTCA backplane
more FPGA transceivers are routed to communicate with EVRs if installed
in the same crate.

Although not used at ESS, the EVM can also be synchronized to the al-
ternating current (AC) mains used for electrical power distribution. In other
facilities this is needed for synchronizing the distribution of events to the
frequency of the mains, since some devices will have different performance
if triggered at different phases of the mains frequency. This is mainly a
concern for the modulators that provide energy to the accelerating cavities,
since different phases of the mains will cause different power to be supplied
to the cavities.

When used as a fan-out the EVM will use the SFP port number eight
for the upstream and the rest as downstream ports. In this case the EVM
will decode the data stream from upstream and forward it downstream. The
fan-out uses an independent delay compensation sub-system, so that it can
correctly measure the delay for each port independently of the length of the
fibres connected. Although the EVM acting as a fan-out can create events
by itself, either from the inputs, triggers events, etc, and include them in
the data stream, there is no intention of using this capability at ESS.

30 CHAPTER 2. THE ESS TIMING SYSTEM

Figure 2.5: The mTCA-EVM-300 card.

The event receiver

The EVRs main uses are providing trigger signals to other devices from the
events it receives from the EVG and timestamping those events as well as
external signals. EVRs can be described as a series of sub-systems inter-
facing the data stream from the EVG to other external devices that need
synchronization. These sub-systems are:

• Mapping RAM: it is a list of all the event codes and how the EVRs
should react to each of those events. Each event can cause many in-
dependent actions, and also the same action can be caused by several
different events. There are two basic groups of actions: pulse generator
actions and special actions. The special actions are the ones related to
timestamping, saving events to a FIFO that can be read by the EPICS
layer, forwarding events upstream, acting as a timing heartbeat, log-
ging events, blinking a LED, logging and freezing a circular event log
buffer and resetting the prescalers. The pulse generator actions are
setting the pulse generators to high level, setting the pulse generators
to low level or triggering the pulse generators for a specific time after
a specific delay.

• Pulse generators: also called pulsers, the pulse generators are driven

2.4. THE ESS TIMING SYSTEM 31

or triggered by the mapping RAM. When triggered, the pulse gen-
erators will react with their associated width, delay and polarity to
drive a logical signal to high level (or low level, depending on the po-
larity) after the specified delay from the moment the pulse generator
is triggered and for the selected time (width). The width and delay
are specified as integer numbers, representing the number of cycles of
the event clock. Pulse generators also have prescalers that divide the
event clock by an integer number before being forwarded to the delay
and width counters. Different EVR form factors have a different num-
ber of pulse generators, with variable prescaler, width and delay sizes.
Some pulse generators do not have associated prescalers.

• Prescalers: they work in a similar way to the pulse generators prescalers
but for special signals. Each of them divide the event clock by an
integer number to drive a logical signal. All prescalers can be phase-
synchronized by sending an event which is configured in the mapping
RAM to reset the prescalers. If this event is local to the EVR only the
local prescalers will be reset, but the event can also be sent from the
EVG to act on the whole timing system. Each EVR can use differ-
ent resetting events by writing different configurations to the mapping
RAMs.

• Outputs: they connect each of the pulse generators, prescalers, dis-
tributed bus clocks to the physical outputs of the EVR. They can also
be set to high, low and high impedance level. Only one source can be
connected at a time to each output. There are four kinds of physical
outputs:

– Front panel outputs: these are the normal outputs located in the
front panel of the different form factors. They are simple 3.3
V TTL level LEMO EPK.00.250.NTN connectors with an input
impedance of 50 Ω.

– Universal outputs: they are used to install modules with different
kinds of output connectors to the EVRs. Each module has two
physical outputs. The options are the 3.3 V and 5 V TTL LEMO
EPK.00.250.NTN, LVPECL LEMO EPG.00.302.NLN, Avago HFBR-
1528 Versalink optical transmitter and Avago HFBR-1414 optical
transmitter.

– Backplane and RTM outputs: these outputs are directly con-
nected to the form factor’s specific bus lines.

32 CHAPTER 2. THE ESS TIMING SYSTEM

– High speed pattern outputs: some special outputs allow sending
high frequency signals derived from the event clock. EVRs use
the recovered link stream clock signal to generate a clock that
has the frequency of the event clock multiplied by 20. EVRs can
use this clock to create four arbitrary patterns that are triggered
with the ”state” of the source signal (the pulse generators, etc);
this ”state” is the rising edge of the signal, the high level, the
falling edge, and the low level.

• Inputs: used by the EVRs to create events that are timestamped,
sent upstream or trigger some action locally, in the same way as the
downstream events. They are realised by a LEMO EPK.00.250.NTN
connector in the front panel and as a universal module with two of
these same connectors. Events can be generated from the rising or
falling edges of the input signal, or periodically when it is in high or
low level.

• Timestamping mechanism: the EVRs decode the timestamping events
included in the link stream from the EVG and keep the time internally.
EVRs then use this time to timestamp events.

• Event FIFO buffer: all events marked in the mapping RAM to be
included in this FIFO buffer are saved so that the EPICS layer can
retrieve them. When the events arrive they are placed in the buffer
alongside their exact time of arrival according to the local timestamp
mechanism (both the second and the counter part). When the FIFO
is not empty it raises an interrupt from the EPICS layer to retrieve the
contents of the FIFO. If events are arriving at the EVR too quickly
the FIFO will overflow, raise a ”full FIFO” interrupt and loose further
event occurrences. In the EPICS layer the retrieved events may trigger
actions as well. If all of the actions triggered by one specific event
are not completed before a re-occurrence of the same event it is also
marked in the EPICS layer, although this is less serious than the full
FIFO situation since other events and all hardware actions in the EVR
are not affected.

• Data buffer: used by the EVRs to share with the system where they
are installed some beam-related parameters sent from the EVG. When
the EVRs receive the data buffer transmission complete signal they
copy the content into an EPICS array. The EPICS layer is aware of

2.4. THE ESS TIMING SYSTEM 33

the internal organisation of the data buffer, segments and names each
section, so that it is available to other processes in the system.

The EPICS layer can also use the internal time of the EVRs provided
by the timestamping mechanism as a time source for the NTP daemon in
Linux systems. This is achieved by writing the timestamp data to a shared
memory segment from the EPICS layer and using a driver that reads the
reference clock from a that memory segment. Since this method involves
the EPICS layer, which runs in software, the provided time has a precision
in the range of microseconds.

ESS will use EVRs in two form factors: the mTCA-EVR-300(U) and the
PCIe-EVR-300DC, both provided by MRF and based on a Kintex-7 model
XC7K70T FPGA by Xilinx. MRF also provides the configuration bitfiles
with the firmware for the FPGAs, although a tool developed during this the-
sis and presented in Chapter 4 could be used to developed custom firmwares.
The mTCA-EVR-300(U) comes in two flavours: the mTCA-EVR-300 and
the mTCA-EVR-300U. Both of them including a SFP module for connect-
ing to the timing distribution system, two TTL level inputs with LEMO
EPK.00.250.NTN connectors, four TTL level outputs with the same connec-
tor, 32 RTM outputs and ten backplane lines. Of the ten backplane lines,
eight of them are regular outputs and the other two are high speed pat-
tern outputs with low jitter used mainly to share the event clock and other
high frequency clocks. These backplane line outputs are the most used at
ESS since they provide reliable and installation with less cables, since all
the fast acquisition at ESS will be performed by other µTCA AMCs7 and
RTMs [30, 31]. On top of that the mTCA-EVR-300U has two slots for
universal outputs while the mTCA-EVR-300 replaces these two slots by a
micro-SCSI high density connector. The micro-SCSI connector is used to
interface the IFB-300 board which has eight slots for more universal module
outputs and inputs. Figure 2.6 shows a mTCA-EVR-300U. The PCIe-EVR-
300DC, due to its small form factor, only has in its front panel a SFP module
and the same micro-SCSI connector that the mTCA-EVR-300 uses for in-
terfacing the IFB-300 board. Figure 2.7 shows a PCIe-EVR-300DC.

7Advanced Mezzanine Cards.

34 CHAPTER 2. THE ESS TIMING SYSTEM

Figure 2.6: The mTCA-EVR-300U card.

Figure 2.7: The PCIe-EVR-300DC card.

2.4.5 The integration of timing in the ESS control system

The timing system needs to be integrated into the ESS control system to
allow its configuration and use. The first part of this integration is the

2.4. THE ESS TIMING SYSTEM 35

hardware layer. Most of the equipment used at ESS will be in the µTCA
form factor, and so are the EVRs, so that the µTCA characteristics can be
exploited. Each µTCA crate will have an AMC processor by Concurrent
Technologies [32] that will act as crate master, including the PCI bus, and
that will configure the EVRs. This is done by writing to and reading from
the appropriated registers of the EVR via the backplane PCI bus. The EVG
is also implemented in the µTCA form factor and will be controlled in ex-
actly the same way. The PCIe-EVR-300DC will be mounted directly to a
PCI slot of an Industrial PC.

EPICS

The software integration is implemented through EPICS, specifically with
the mrfioc2 [33] EPICS module. mrfioc2 was developed by the EPICS com-
munity specifically to integrate the different MRF products. ESS will be the
first large facility to make an extensive use of the mTCA-EVR-300(U) and
mTCA-EVM-300 boards, so during the development of this thesis several
contributions were made to the mrfioc2 source code, which will be present
in the next release. The most important of these contributions are presented
in Chapter 3.

mrfioc2 includes several parts needed for the timing integration:

• Kernel driver: it is the interface between the EPICS layer and the
hardware layer. It recognises the EVRs and EVMs through their PCI
ID and exposes them to EPICS and the software layer.

• Register map: it is a list with the registers of the EVRs or EVMs and
their internal structure. It is used by the rest of mrfioc2 to configure
the EVRs and EVMs as defined by the users and operators.

• Device support: it is used to implement the timing functionality into
mrfioc2 without changing the default records, and allowing them to
be used as required for timing. It is used basically to hide from the
records the specific characteristics of the timing hardware.

• Databases: they are collections of instances of records with their spe-
cific configuration to integrate the timing functionality. The way they
are built depends on the specific hardware targeted by each database.

36 CHAPTER 2. THE ESS TIMING SYSTEM

Explained in a nutshell, the users and operators of the timing system
will interface to the timing system by writing and reading EPICS process
variables (PVs). The PVs are each of the configuration units of the records
included in the databases. The device support reacts to the updated records
by writing to and reading from the EVRs and EVMs registers through the
PCI bus and kernel driver, by knowing the register map. The EVRs and
EVMs will work as the configuration in their registers tell them. To use the
mrfioc2 module with the timing, the module must be loaded to an IOC with
an (or several) EVR or EVM, alongside the related database. The EVR or
EVM will be accessible from that IOC.

2.4.6 Timing system requirements

The most demanding requirements for the ESS timing system come from
the data acquisition in some of the accelerating devices. Although not part
of the timing system, the hardest requirements are put on the distribution
of the RF signal along ESS, since all the accelerating devices need to be very
well phase locked to each other. The timing system sends triggers to the RF
systems, which react to those triggers on the following rising slope of the RF
signal. This reduces the jitter requirements on the timing system, but still
it should be good enough to guarantee triggering on a specific rising slope
of the RF signal. Namely the jitter requirement for the ESS timing system
is 1 ns, although the MRF timing system achieves much better jitter, in the
range of a few tens of picoseconds RMS [34,35].

There are a number of categories for the timing system requirements:

• Functional requirements

• Constraint requirements

• Interface requirements

• Graphical interface requirements

Some of this requirements are already fulfilled by the µTCA form factor,
while others are by the MRF architecture, design, protocol and hardware.
Following is a selection of the most important requirements for this thesis
[36]:

2.4. THE ESS TIMING SYSTEM 37

• The timing system shall distribute timing to synchronize client de-
vices in the accelerator, target, neutron instruments and conventional
facilities.

• The timing system shall provide trigger signals to client devices to
synchronise their operation. This includes pre-programmed sequences
of timed actions and triggers.

• The timing system shall provide functionality to timestamp data that
is collected from the client devices in such a way that the timestamps
are synchronised all over the facility.

• The timing system shall be able to provide clock signals to client de-
vices in µTCA form factor at the event frequency and integer sub-
harmonics thereof.

• The timing system shall be able to transmit pulse type data to client
devices, to enable client device configuration. The data delivery shall
be time-deterministic and not affected by other on-going operations or
network traffic.

• Actions on received timing events between two EVRs shall be syn-
chronous, with phase jitter smaller than 1 ns.

• Resolution of timestamps shall be one timing clock period (1/Fevent),
i.e. 11.35686 ns.

• The jitter of clock and triggers distributed by the timing system shall
not exceed 1 ns.

• EVRs shall be able to generate actions to received trigger events such
as:

– Physical pulses with configurable delay, width and polarity.

– Notification to software components about the event reception.

• EVRs shall be able to inform any other software components running
on the same I/O controller (computer) about the reception and the
content of the received pulse data through a software interface.

• The timing system shall be scalable to support hundreds of receivers
over the whole ESS facility, with (fibre) distances between components
ranging from tens of centimetres to over kilometres.

38 CHAPTER 2. THE ESS TIMING SYSTEM

• The timing system shall provide an EPICS interface as part of Control
System integration. It shall be possible to configure and monitor the
timing system behaviour over this interface.

• The timing system shall be phase locked to RF clock generated by
the ESS master oscillator. The timing clock will be 1/4 of the bunch
frequency, 88.0525MHz. The bunch clock signal shall be provided by
the RF master oscillator.

• It shall be possible to remotely update firmware of all timing system
hardware components. It shall be possible to verify the configured
version and actual version of the system.

• EVRs shall be able to output timing system clocks and actions to
timing events without an EVG (standalone operation mode only for
testing purposes).

2.4.7 Timing system consuming systems

The ESS timing system is in charge of synchronizing the different parts of
the ESS facility that require synchronization. Specifically the timing system
only cares about the systems that need synchronization to create the proton
beam with the desired characteristics, always within the design parameters,
and the systems that need to be synchronized to the beam, such as the tar-
get wheel or the neutron instruments. On top of that the timing system will
define the time reference for other systems and the conventional facilities,
so from all the timing system functionalities only the common ”real world”
time is of interest to all the ESS facility.

On top of that there are other deliverables related to timing and synchro-
nization but that are not in the scope of the timing system. The first one is
the RF signal distribution that we have already talked about. Another one
is the synchronization to the GPS signal, which in fact is an input to the
timing system. The infrastructure team at ESS will take care of synchro-
nizing to the GPS satellites with an antenna and providing NTP services
based on that (to which the EVG synchronizes when it starts its operation).
For the timing system and the ESS master oscillator also 1 PPS signals are
needed. There are a number of systems that do not get synchronization
by the timing system but from the NTP server, such as the PLCs, motion
control and other EtherCAT based systems. There will be no PTP services

2.4. THE ESS TIMING SYSTEM 39

at ESS.

Regarding the systems that do get synchronized by the timing system,
here is a list with the most important of them:

• Neutron detectors: they are the base of the experiments that will take
place at ESS, since they provide the raw data that is extracted from
ESS and that will be used by the researchers. They need timing syn-
chronization to trigger the instrumentation and to be able to correlate
the acquired data to the proton and neutron beams, since the delay of
the neutrons, their speed, etc, may be important to the experiments.

• Neutron choppers: they select the neutrons that are needed for each
instrument depending on their speed or energy. The neutrons that do
not fulfil the required energy specifications are chopped away from the
neutron beams. This is achieved by rotating discs with slots through
which the neutron beams pass. By using several discs rotating at
certain speeds at well defined spatial intervals it is possible chop away
other neutrons, leaving only the desired ones. Timing synchronization
is needed to synchronize all the rotating discs among themselves and
to the proton beam.

• Target: it creates the neutron beams via the spallation process. The
proton beam can only hit the target at very specific spots, and due to
the very high inertia of the target wheel the proton beam needs to be
triggered and accelerated to hit those spots. It needs synchronization
to the timing system to rotate at the correct speed to provide neutron
beams according to the parameters.

• Low Level RF (LLRF) and RF: the LLRF signal is used as a reference
by the accelerating devices to create the RF signal that accelerates
the proton beam. The RF signal is created by modulating the high
voltage pulses provided by the modulators in the klystrons (amplifiers),
using the LLRF as input signals. Timing synchronization is needed to
trigger the modulators and feed the LLRF signal to the klystrons at
the precise times.

• Ion source: it produces a low energy proton beam by ionizing a hy-
drogen gas and extracting the proton beam. It needs timing synchro-
nization to extract the beam at the specific time so that, after being
accelerated by the accelerator, it hits the target wheel exactly at the
centre of each section.

40 CHAPTER 2. THE ESS TIMING SYSTEM

• Beam choppers: due to the characteristics of the beam extracted from
the ion source, the proton beam needs to be created longer than the
final beam and specific parts of the beam need to the chopped away.
This is done by the beam choppers. The beam choppers can only chop
away a limited amount of the beam before being damaged. Timing
synchronization is needed to correctly shape the beam.

• RF Local Protection System (RF-LPS) and MPS: they make sure that
no damage is done to the machine, for example by stopping the beam
when it may damage some equipment inserted into the beam path.
The protection systems make sure that all the beam parameters are
compatible with each other and that during operation they are not
exceeded. For example, when running the beam in a specific mode
with a limited beam length range, it measures that the actual length
of the beam does not exceed what is accepted by the beam mode.
The protection systems need timing synchronization to be aware of
the beam parameters.

• Proton Beam Instrumentation (PBI) and beam diagnostics: they mea-
sure the beam along the accelerator to make sure that it has the ex-
pected characteristics. They work closely with the protection systems.
They need timing synchronization for triggering and knowing the ex-
pected beam.

2.4.8 The ESS timing structure

ESS was designed with some well defined specifications such as the neu-
tron flux, proton beam current or the proton beam power. Some of them
relate to timing and will be explained in this section. All of these timing
specifications are fulfilled by the timing system, which must take them into
consideration for the design of the event timeline. All of these specifications
will be derived from the RF signal of 352.21 MHz via the event clock of
88.0525 MHz. The event clock period, which is used as the granularity of
the timing system, is approximately 11.357 ns long.

The basic frequency of operation of ESS is the beam pulse repetition
rate of approximately 14 Hz that will create each of the beam cycles. This
is the frequency at which the proton beam pulses are generated, and also
has a strong dependency to the shape of neutron flux created at the tar-
get. Because of that the neutron instruments and experiments are also very
conditioned by this frequency. Almost all of the accelerator devices are

2.4. THE ESS TIMING SYSTEM 41

triggered at this frequency, such as the Ion Source, the modulators or the
choppers, although with different delays, to compensate for the beam time
of flight and the own device’s characteristics. This repetition rate will be
generated at the EVG by counting exactly 6289464 ticks of the event clock
with a multiplexed counter, so that the actual beam repetition rate will be
14.000000636 Hz, with a period of approximately 71.43 ms. The multiplexed
counter will trigger the event sequencers that include the events that will
trigger the accelerator devices.

Each beam cycle will include only one, well defined beam pulse, which is
the window of time where proton acceleration takes place. The name is also
used for the actual group of protons that are generated and accelerated dur-
ing that window of time. The length of the beam pulse is approximately 2.86
ms. Because of the characteristics of the beam created by the Ion Source,
the beam pulse is actually created longer than 2.86 ms, but chopped to this
size early in the accelerator by the beam choppers. Because of the strict tim-
ing defined by the target wheel and its large inertia, the beam pulse window
needs to always be at exactly the same point of the beam cycle. Nevertheless
it is possible to have a shorter proton pulse inside the beam pulse window,
and move that short proton pulse within the window, in practice moving
the shorter proton pulse inside the beam cycle, but with strong limitations.
This will be used intensively during the commissioning phase of the acceler-
ator and target, and during ramp-up after the facility’s shutdown periods.
The physical beam pulse will be defined using the MEBT choppers which
are triggered by two timing events exactly 251830 event clock cycles from
each other, so the actual beam pulse length will be 2.859998 ms. Figure 2.8
shows the structure of the beam pulse in different points of the accelerator.
These events will be defined in the event sequencer.

Another important timing structure is the bunch, although it is not
created by the timing system but by the RF signal inside the accelerating
devices. This structures happen naturally due to the oscillating nature of
the RF signal used to accelerate the protons. The protons ”surf” the RF
waves in such a way that the protons in a specific position of the wave get
certain acceleration, the protons ahead of the previous ones get less accel-
eration while those behind get more. The consequence of this is that the
protons cluster together forming the bunches. Bunches are separated in
time by one period of the RF signal, that is 2.84 ns. The spatial separation
related to those 2.84 ns depends on the energy of the beam in each point of
the accelerator.

42 CHAPTER 2. THE ESS TIMING SYSTEM

Figure 2.8: The beam pulse structure of ESS after several devices of the
accelerator. Source: ESS.

Chapter 3

Hardware/Software codesign
of the ESS timing system
integration

Although the MRF timing system has been extensively used in other facili-
ties, with very good performance, ESS needed a series of additional features
to be able to overcome all the challenges to fulfil the requirements in order
for ESS to become the world’s most powerful neutron source. Some of these
features were implemented by MRF in their products by ESS’ request, such
as the availability of EVMs and EVRs in µTCA form factor, of which ESS
will be first extensive consumer, or at least one of the first large users from
day zero, such as the delay compensation. Some other future developments,
not yet available, were also requested from ESS and will be implemented by
MRF in the near future, such as delayed gated signals triggered from events
and µTCA EVR backplane inputs.

Some other small contributions were carried out by us during the devel-
opment of this thesis [37], which among others include:

• Integration of the delay compensation mechanism into mrfioc2.

• Integration of the mTCA-EVR-300(U) board into mrfioc2, including
support for the new backplane clock lines.

• Integration of the mTCA-EVM-300 board into mrfioc2.

• Integration of the mrfioc2 module, including the kernel module, into
E3, the new ESS EPICS Environment.

43

44 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

• Preparation of start-up scripts for all timing system boards and all
their functionalities.

• Debugging of the timing system. One important debugging process
took place with the old VME-EVR-230RF, used before the mTCA-
EVR-300(U) was available. The integration of this board had impor-
tant interrupt issues that needed to be fixed. The problem was in the
PCI-to-VME bridge module used in the VME1 system used to deploy
the EVR.

• Implementation of a hardcoded-free naming structure in mrfioc2. The
mrfioc2 EPICS module included the FRIB naming convention, hard-
coded in some places, by default. This made it difficult to quickly
deploy mrfioc2 in a new facility with a different naming convention,
since a lot of changes were needed. We have changed the mrfioc2
source code so that the naming convention is only revealed in the sub-
stitution files that are inflated to create the EPICS databases. This
makes it really easy to deploy mrfioc2 at a new facility, since all of the
changes are encapsulated in the substitutions files. Also the substitu-
tions files with the ESS naming convention were developed.

• Deployment and maintenance of a central EVG and timing distribution
with basic 14 Hz events in the ESS controls lab.

• Support for ESS and in-kind partners’ engineers setting up and main-
taining their timing systems. Also helping them interfacing their
equipment to the timing system.

• Preparation of technical manuals, trainings, workshops and other doc-
umentation for ESS engineers.

• Study, implementation and deployment of the ESS timing distribution,
including the physical deployment of timing crates, fan-outs, fibres and
the EVG with its necessary inputs from the RF master oscillator and
GPS receiver.

• Configuration of the timing distribution crates. This includes the phys-
ical configuration of the crates and the AMCs and the functionality
configuration of the MCH2 and the Concurrent AMC processor, the
EPICS layer and IOC start-up scripts.

1Versa Module Eurocard bus.
2MicroTCA Carrier Hub. It manages the crate, from the power distribution to the

AMCs to routing the connections and monitoring the whole crate.

3.1. STANDALONE MODE 45

In this chapter we present some of the most important contributions
carried out for the ESS timing system during the development of this thesis.
In the second part of this chapter we present the data model specification
that was developed for the ESS timing system during this thesis. The data
model specification is the list of events and the list of items in the data buffer
that are needed to fulfil the ESS needs. This is basically done by broadcast-
ing all the necessary deterministic information and the events that allow all
different systems to be configured and triggered correctly to run ESS in a
successful manner. Creating the list of beam parameters and events, the
relations among them and how they are used by each system is an indis-
pensable milestone of the design of every accelerator-based research facility.

3.1 Standalone mode

One of the early requirements for the ESS timing system, basically due to
the in-kind nature of the ESS project, where in-kind partners all over Europe
develop and produce different ESS sub-systems, was that the EVRs should
be able to work in an autonomous way. This is needed to allow designing and
testing the different sub-systems with a timing interface and signals all over
Europe without deploying a full and very costly timing system (consisting at
least of one EVR and one EVG), even if it is with reduced expectations on
the requirements. In normal conditions EVRs can not work at all without
the data stream coming from the EVG, so a different approach was provided
to allow them having a timing interface and signals. In the newly imple-
mented standalone mode in the mTCA-EVR-300(U) and PCIe-EVR-300DC
EVRs firmware can use their TX port to send a data stream to the RX port
via a loopback optical cable. In this case the EVR is configured to use the
fractional synthesizer frequency, which usually is used as a reference for the
PLL, as the event clock. A sequencer, identical the ones found in the EVGs,
has being included in the EVR firmware to allow the generation of events.
The sequencer is usually triggered by a prescaler, but it can also be triggered
manually by software, by the pulse generators, or the distributed bus clocks.
The standalone mode is usually used by triggering the event sequencer at
14 Hz, mimicking the beam cycle, and sending different 14 Hz signals to the
physical outputs. Harmonics of the 14 Hz beam cycle frequency are usually
also implemented.

Another use of the EVR sequencer is triggering a local sequence of events

46 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

from one of the delay generators, which at the same time is being triggered
by an event from the EVG data stream. This allows the EVR to have a series
of local events with a tight synchronization to the events from the EVG. The
neutron choppers use this functionality extensively: in their case, several in-
teger multiples of the 14 Hz beam repetition is needed. Instead of using
several of the only eight available distributed clocks or a number of repeat-
ing events, and since they need to be perfectly locked to the 14 Hz master
repetition, these frequencies are generated locally with a sequence that is
triggered by the 14 Hz master event. Having the exact same sequence in dif-
ferent EVRs, and thanks to the deterministic and very precise computation
on the hardware level, it is even possible to guarantee that different EVRs
are locally generating the same events at the exact same time. This allows
the synchronization of neutron choppers, sometimes tens or even hundreds
of meters away from each other, in a safe way, with multiple synchronized
clocks, and using only a minimum of resources from the bottle-necked data
stream from the EVG.

During the work carried out for the development of this thesis the need
for the EVRs running independently from an EVG was identified, refined,
defined as a set of technical requirements and communicated to MRF. After
the firmware implementation was developed by MRF and sent to to ESS we
also implemented in mrfioc2 the new standalone mode, tested and debugged
it, and prepared documentation and examples for the in-kind partners and
other engineers at ESS. We also supported all of them setting up the stan-
dalone EVRs in their projects.

3.2 The miniIOC

The ESS neutron beamlines have a specific instrumentation for monitor-
ing and shaping the neutron beams according to the needs of each specific
experiment, such as neutron detectors and neutron choppers. The neutron
beamlines are special environments that have tight requirements on the tim-
ing system, mainly on the hardware form factor. For this reason the EVR
hardware shown in Section 2.4.4 is not the most suitable for this applica-
tion. ESS has decided to sign an in-kind agreement with the University
of Tallinn in Estonia, which will provide ESS, in the form of an in-kind
project, an embedded controller that will fit the beamlines applications.
This embedded controller or miniIOC should be light and compact, in DIN-

3.2. THE MINIIOC 47

rail mountable form factor, and be based on the Zynq System-on-Chip [38]
(Soc), which includes on a same silicon die a FPGA3 and an ARM [39]
CPU4. The FPGA is needed for a better control on the time domain of
the events and signals, and a very high processing speed possible by the
hardware computations. FPGAs can also synchronize their internal work-
ing frequency with an externally-supplied high precision frequency, which
for the miniIOC operation will be the event frequency of ESS. The CPU
will be used to run embedded Linux, including the EPICS layer used for
interfacing the control system. The miniIOC should offer high reliability
and be remote manageable, with low power consumption, passively cooled
only and include no moving parts such as cooling fans.

The main interface of the miniIOC to the neutron beamlines will be a
LPC FMC (low pin count FPGA mezzanine card) to allow for great flexi-
bility in the actual interfaces, driven by the fact that the hardware of the
beamlines is not standardized, and thus the connections are not either. The
FMC connector allows the miniIOC to be compatible with whatever con-
nectors the beamlines need in a very easy way, just by swapping the FMC
board, which is basically an input/output mezzanine module. The FMC is
connected directly to the FPGA, achieving low delays and very good quality
signals. This provides the miniIOC with re-configurable input and output
capabilities.

One of the uses of the miniIOC is to include an embedded EVR. As ex-
plained in Chapter 2, one of the characteristics of timing systems, of which
the EVRs are part of, is that they are able to provide very tight synchro-
nization with low jitter and high temporal accuracy, while maintaining a
great degree of determinism. Processors and software, even with real-time
kernels, are not good candidates for the timing and synchronization use-
case, for that reason, the timing modules are implemented in FPGAs, and
also in the miniIOC the EVR functionality will be implemented in the PL
(programmable logic) section of the Zynq board. The PL is basically an
integrated series-7 Xilinx FPGA, which is the same family as the FPGA
used for the µTCA and PCIe EVRs (Kintex 7).

Most EVRs only use a reduced amount of the available resources: even
though, for example, the mTCA-EVR-300(U) has eight 32-bit prescalers and

3Field-Programmable Gate Array.
4Central Processing Unit.

48 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

sixteen pulse generators (with different prescaler, delay and width ranges),
most EVRs only use a subset of them, basically because most triggers are
shared through the eight backplane trigger lines. The reason for having
so many available resources is that the EVRs only have the responsibili-
ties related to timing, as explained in Section 2.4: event distribution, gen-
eration and distribution of synchronous clock signals, definition of a com-
mon time base and timestamping functionality, and transmission of fast and
synchronous beam-related data. No more functionality is needed from the
EVRs, and a big amount of resources is included for flexibility (making use
of the RTM outputs, etc).

The miniIOC, on the other hand, may include other functionality in the
FPGA, such as data acquisition, compression, processing or transmission,
all of them activities which usually are performed by the FPGA logic [30].
In that case it will be desirable to implement in the FPGA logic only the
timing resources required by that specific miniIOC implementation, leaving
free for other activities as many resources as possible.

The other part of the Zynq board is the processing system (PS), the CPU
of the system, where the configuration and integration into the rest of the
control system of the embedded EVR is implemented. These are activities
that usually are performed in the software layer, and that for this reason
are better suited to a CPU. The PS is capable of running embedded Linux
and input/output interfaces.

This makes the Zynq SoC a very good candidate for the core unit of the
miniIOC, since it combines the high reliability, high determinism and high
configurability characteristic of the FPGA with the high flexibility of the
CPU.

The in-kind project includes the development of the hardware board,
which will be delivered to ESS as a number of finished physical boards, in-
cluding the hardware schematics, but not the software or firmware (FW)
image or bitfile with the embedded EVR functionality, which is needed for
the intended use of the miniIOC board. The software kernel will be em-
bedded Linux, with a root file system that includes the EPICS environment
and other appliances to integrate into the ESS timing system.

On top of the FMC connector, the miniIOC should include a SFP cage
for interfacing the timing system and receive the timing bitstream from the

3.2. THE MINIIOC 49

EVG and an Ethernet interface to integrate the miniIOC into the ESS con-
trol system, remotely manage it and boot from network, since it will include
no permanent local storage for the Uboot, Linux image, FPGA image, etc;
all of these should be loaded from an external server.

The firmware should be developed in-house at ESS, complying with the
requirements put on the miniIOC, mainly the high configurability that is
expected from the form factor. The existence of the FMC also means that
the input/output should be highly configurable. Even more than that, the
FMC can be used to acquire some data in real time, which may be processed
by the FPGA before being sent somewhere through EPICS, for example for
archiving. This means that the EVR footprint in the FPGA should be as
small as possible while at the same time fulfilling all the requirements. The
best way of providing this is then using customized embedded EVRs for
each application, that only include the functionality needed for that specific
application, omitting all other non-needed timing modules. This imposes
new desired characteristics on the bitfile source code: it should be easily
configurable, at least in the number of instances of prescalers, pulse gener-
ators, etc, according to the miniIOC implementation.

The miniIOC should be able to not only be configured with a new bitfile
easily, but also it is expected that the bitfiles will need to be changed and
synthesised easily, quickly and as effortlessly as possible. Since most engi-
neers (even firmware engineers) do not have much experience with timing
systems, it would also be desirable that the implementation and synthesis
workflow is as easy and high-level as possible.

All of this means that the miniIOC FPGA configuration, which is done
through a bitfile, and by the extension the VHDL source code that is synthe-
sized and compiled to obtain the bitfile, needs to be generated in an easier,
faster, and less error-prone way than by a FPGA engineer writing, vali-
dating and testing each of the possible configurations that may be needed
in each of the miniIOCs deployed in the ESS facility. We have developed a
method to automatically synthesize statecharts, an extension of Finite State
Machines, that represent an EVR, into synthesizable VHDL code from only
a graphical description of an EVR represented as a statechart (a description
of statecharts is presented in Section 4.1). Although this is the triggering
use-case, the method can be used to generate code to any application, not
just EVRs, as long as they can be represented as statecharts. This applica-
tion is presented in Chapter 4. This automated methodology also keeps the

50 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

chance of errors as low as possible.

A proof of concept of the miniIOC was developed by the author of this
PhD thesis as a Master thesis. That proof of concept included the study
of the MRF timing system and its specification, the compilation of the re-
quirements for the miniIOC and the search for a hardware architecture that
covered all the requirements. Then the implementation of the software layer,
from the operating system installation to EPICS and kernel driver compi-
lation was performed. For the proof of concept the FPGA resources and
specifications were checked, but no actual HDL5 programming was imple-
mented.

3.2.1 Embedded EVRs

Although we have presented our application as the chosen way to configure
the miniIOC, it may have other uses. One of them is to configure embedded
EVRs. Embedded EVRs are independent blocks of code, with a clear inter-
face, that implement the functionality of a EVR. They will be synthesized
and compiled for any other FPGA that does not have timing as its main
application, but that in any case needs some timing information (assuming
that the board containing the target FPGA also has a SFP module that can
connect to the timing network). The traditional way of providing timing
to these boards is by sending the signals through the front panel or back-
plane (such as in a µTCA system) from an EVR that receives and decodes
the timing bitstream from the EVG, but assuming there are enough free
resources on the FPGA, and that the hardware supports the timing link, it
is possible to decode the timing information and react to it in any FPGA.
In this case it is even more important to have an embedded EVR that has
the smallest footprint possible, since most resources should be kept for the
main application of the FPGA. Because of that, being able to customize to
the maximum extent the embedded EVR, using only the minimum needed
resources, is very important. This also means that each application will
have a customized embedded EVR, so in this case being able to configure,
change, implement and compile the embedded EVR code as easily, quickly
and effortlessly as possible, while minimizing the chance of errors and bugs
in a very large VHDL file, is even more important.

5Hardware Description Language.

3.3. THE SUPERCYCLE 51

The application presented in Section 4.1 can also be used to generate
embedded EVRs, although this usecase has not been implemented yet.

3.3 The supercycle

For commissioning purposes, a high level application is needed that allows
changing the configuration of the timing system rapidly but in a safe way,
and thus the operation of the ESS machine. This application is currently
under development and will allow the operators to pre-configure a series of
sequences that will run automatically when triggered. For this reason this
high level application is called supercycle.

The supercycle application is how the operators control the ESS machine
when it is not running in a steady state. It is the main way of changing the
configuration of the EVG, which at the same time controls the operation of
all ESS parts and synchronises them.

The supercycle application is in charge of defining the events and items
in the data buffer that are needed for the correct operation of ESS (the syn-
chronous clocks and the broadcast of the common sense of time or times-
tamping need to be correctly configured but they do not need an active
configuration from the operator during operation, but rather are configured
once at start-up and then they work on their own without intervention). The
supercycle application must, on the one hand, write the correct sequence to
the sequencer. This includes making sure that all the needed events are
included in the sequencer and that have a correct timestamp and that they
are ordered in ascending order according to their timestamp. On the other
hand it must know what information is needed in the data buffer, where to
get this information from, and make sure that the information is correct.
It also needs to trigger the broadcast of the data buffer at the correct mo-
ment. Since both the event list and the data buffer are going to be different
pulse-by-pulse at the operation frequency of 14 Hz, which is obviously a
frequency too high for a operator to manually change the configuration in
real time, the supercycle application should be able to store in memory a
big enough number of the configurations to satisfy the commissioning works
when the different beam configurations are run in automatic way. The su-
percycle application is then triggered either manually for a single run or can
be run in loop mode. The supercycle application needs to be able to work

52 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

in a synchronous way with the operation frequency of 14 Hz, making sure
that the new configuration for the next cycle is loaded in the EVG after
the previous sequence has finished but before the new sequence is triggered,
and also the data buffer should be written and triggered at the precise time
inside the beam cycle. Finally the supercycle application is also expected
to cross-check the information that it gets from all sources and make sure
that all this information, and the parameters that is writing to the event
sequencer and the data buffer, is consistent.

The supercycle application will consist of four parts:

• An operator interface with graphical user interface: this is how the
supercycle application gets its configuration parameters. It should
not be a simple graphical interface for the EPICS layer, but rather it
should have a basic set of parameters that easily but uniquely describe
the beam, and that is a natural way of representing the beam for a
human operator.

• A translation engine: translates the parameters introduced by the
operator to a correct sequence and data buffer, according to the im-
plementation of the timing system. This is basically a set of EPICS
waveform records, two to represent the event sequence (one with the
events and a second one with their timestamps, both ordered in as-
cending timestamp order) and one for the data buffer.

• A memory to store the configurations.

• A synchronous sequencer and data buffer writing mechanism: it should
make sure that both the sequence configuration and data buffer con-
figuration are written to the EVG at the correct time and that they
are triggered synchronously to the beam.

The supercycle application is not only used for commissioning, but can
be also used as a ramp-up application. Although the actual implementation
of the supercycle application was not developed during this thesis, and sim-
ilarly to the standalone mode, the need for it was identified and the list of
requirements was compiled by us. We also designed the interface between
the supercycle and the timing system and helped designing the translation
engine and the integration of the synchronous sequencer and data buffer.

3.4. THE ESS DATA MODEL SPECIFICATION 53

3.4 The ESS data model specification

One of the things needed to run the ESS facility successfully is triggering all
the devices exactly when it is needed so that they working in a synchronised
way, and the timing system is the responsible for the triggering. The ESS
timing system uses events to generate the triggers that are necessary along
the facility, and the events need to happen with very specific, timed delays
among them. Developing the list of events that can successfully trigger all
the systems of the machine is not an easy task that needs to be done from
scratch at every facility, since the characteristics of each machine are unique.
These characteristics include the specific systems that make up the facility
(for our concern these are the consuming systems of timing), their configu-
ration, their interfaces and also their physical location, as the triggers need
to take into account the time of flight of the beam [40].

In parallel to the list of events, and for similar reasons, it is necessary to
have a list of the beam parameters data that are needed by all the systems,
so that this information can be included into the timing data stream. The
study and development of both of these lists, as well as the rationale to put
events or data item in one or the other, has been performed as part of this
thesis.

This information has been compiled in an internal ESS document Data
Model Specification for the ESS Timing System [41].

3.4.1 Differences between Event and Data

The timing system provides information to the ESS facility by using two
different means: events and the data buffer. Different kinds of information
are usually better suited for one of the two means. The characteristics of
events and data in relation to the information that they provide are:

• Events are propagated from the EVG to the EVRs in an accurate and
deterministic way and can directly trigger hardware actions. There is
no restriction on the repetition rate, etc, other than only one event
can be sent every tick of the event clock. There is a limited amount
of events (256, some of them reserved) and the purpose of any of
them has to be pre-defined so that they can be used in the timing
system. A number of sources can trigger event generation: sequencers,
multiplexed counters, hardware inputs and writing to a register are the

54 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

most common; all of the sources can be active at the same time, with
a priority encoder for resolving simultaneous generation of events.

• Data is transmitted to the EVRs by a sequence of first preparing a
data buffer in the EVG and then requesting a transmission. Data is
transmitted byte by byte to the EVRs and once the full buffer has
been received, the EVR notifies the system CPU by sending an inter-
rupt. The transmission is typically done once per pulse. It is available
as an EPICS waveform record, so all processes related to it happen
in the software layer, and thus are only deterministic to the level pro-
vided by the software; in this context typically to tens of microseconds.
The data transmission is up to two KiB in size and completely con-
figurable, even pulse-by-pulse. It is possible to use the data buffer to
send complex information.

With these characteristics, a policy for distributing the information sent
by the two means has been defined:

• Information that requires strict determinism on a sub-nanosecond level
or is delivered as digital signal or a sequence of digital signals is sent
as events.

• Information that describes a beam pulse parameter, represents a phys-
ical magnitude or is better described as a float or integer value is in-
cluded in the data buffer.

Data is sent for configuration and/or confirmation purposes and shall
not be used as triggers.

3.4.2 Operation event list

In this section the events that are used in the ESS sequencer are listed and
explained. This list was implemented as part of thesis:

• Start of cycle: it is used as the master event, running at 14 Hz, that
sets the start of a new cycle. It is always present, even when there
is no beam, to allow keeping a periodic reference. Is is also needed
for systems that cannot loose synchronization at any time or that,
due to several factors, are slow and cannot resynchronize quickly to
an intermittent beam cycle frequency, such as the target wheel. It
needs to be sent as soon as the sequencer is triggered at beginning of

3.4. THE ESS DATA MODEL SPECIFICATION 55

the sequence. All of the ESS systems need to be aware of the master
frequency defined by this event. Event number: 14 (0x0E).

• Ion source start: it triggers the magnetron of the ion source, so that
the extraction of protons starts. It is always sent, even when running
at slower frequencies than 14 Hz, to keep the stability of the beam, and
only stop if a larger break of the beam pulses is expected. It should be
sent at least 3 ms before the actual 2.86 ms beam pulse is expected,
due to the characteristics of the extracted protons. It is used by the
ion source to trigger the magnetron. Event number: 10 (0x0A).

• Beam pulse coming: this is a pre-trigger for several systems that need
to prepare before the beam arrives. It is present in the sequence when-
ever LLRF needs to be triggered, this is, when the accelerator needs
to be triggered because it is in running mode, even if the current beam
cycle is empty, for the thermal stability of klystrons, moderators and
other devices. If there is no beam pulse in this cycle (if it is empty)
this is marked by an item in the data buffer for the systems that need
to know if they should expect beam, such as the Beam Current Mon-
itors (BCMs). It should be sent at least 300 µs before the actual 2.86
ms beam pulse is expected. It is used by the LLRF systems to start
filling the RF cavities before the beam pulse arrives (ramp-up) and by
the BCMs to start the monitoring process. Event number: 15 (0x0F).

• Beam pulse start: it marks the start of the beam pulse and triggers the
choppers that will shape the beam pulse. LEBT and MEBT choppers
both use this event with different local delays. It is triggered under
the same conditions than the ”Beam pulse coming” event. The time
relation between this event and the ”Beam pulse coming” event has to
be respected (300 µs). This event is used by the RF systems to com-
pensate for the loss in the energy filling of the cavities when the beam
pulse arrives, by the LEBT and MEBT choppers to shape the beam,
and by the BCMs to know how is the expected beam and compare it
to the measured one. Event number: 12 (0x0C).

• Beam pulse end: it marks the end of the beam pulse and triggers the
choppers that will shape the beam pulse. As with the ”Beam pulse
start” event, LEBT and MEBT choppers use different local delays. It
is triggered under the same conditions than the ”Beam pulse coming”
event. This event is used to stop the RF systems, by the LEBT and
MEBT choppers to shape the beam, and by the BCMs to know the

56 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

expected end of the beam and compare it to the measured one. Event
number: 13 (0x0D).

• Ion source end: it deactivates the magnetron of the ion source to stop
the extraction of protons. It is sent whenever the ”Ion source start”
event has also been sent. Event number: 11 (0x0B).

• Send data buffer: it is used to trigger the transmission of the data
buffer so that it is synchronized to the beam cycle and the devices
can be ready before the next beam pulse. It has to be always present,
since the data buffer includes important information such as if beam
is expected in the next cycle. It is used by the supercycle application
to send the data buffer from the EVG to the EVRs. Event number:
16 (0x10).

• Post mortem event: it tells participating systems that they need to
save and deliver data around the time (before, during and after) of a
beam stop, to be able to examine and learn from the situation where
a beam stop took place. It is not sent from the sequencer, but raised
when requested by MPS or PBI, that will also be the consumers of the
event in the rest of the facility. Event number: 40 (0x28).

• Data on demand: it triggers data acquisition in multiple subsystems si-
multaneously, for collecting coherent, synchronized data sets. It works
like a trigger signal for a distributed oscilloscope. This event can be
activated with a user request or by a client system by sending a sig-
nal to an EVR in the subsystem (from that EVR the signal will be
propagated upstream to the main EVG and from there back to all
downstream EVRs). Event number: 41 (0x29).

• BCM calibration: it triggers the calibration of the BCMs by marking
a time slot where only the background will be measured. It is sent
from the EVG at periodic intervals in the range of several minutes.
Event number: 42 (0x2A).

Event timeline

Figure 3.1 shows how the events triggered with the sequencer will look like
when ESS is running in steady operation. This sequence of events and their
delays from the start of the sequence was written by us in the form accepted
by the timing system and mrfioc2 and is being used by some test systems

3.4. THE ESS DATA MODEL SPECIFICATION 57

already.

Start of cycle

Ion

source

start

Beam

pulse

coming

Beam

pulse

start

Beam

pulse

end

Ion

source

end

Send

data

buffer

Start of next cycle

Data buffer

Time

(not to scale)

71.4 ms

5 us - 2.86 ms300 us

~ 3 ms

Figure 3.1: Example of the timeline of the events in the sequencer during
normal operation.

Reserved events

There are a number of events reserved for internal use of the timing system,
which are listed here [42]:

• Event 0 (0x0): null/idle event.

• Event 112 (0x70): timestamping related event, shift in ’0’ to less-
significant-bit of Seconds Shift Register.

• Event 113 (0x71): timestamping related event, shift in ’1’ to less-
significant-bit of Seconds Shift Register.

• Event 121 (0x79): stop event log event, stop writing events to event
log.

• Event 122 (0x7A): heartbeat event, reset Heartbeat Monitor.

• Event 123 (0x7B): synchronise prescalers event, reset all EVR dividers.

• Event 124 (0x7C): increment timestamp counter event.

58 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

• Event 125 (0x7D): reset timestamp counter event.

• Event 126 (0x7E): beacon event, delay compensation signal.

• Event 127 (0x7F): end of sequence event.

Event number allocation

The event codes are distributed depending on what they are used for. There
are events used for triggering devices according to the event sequencer, spe-
cial asynchronous events, local EVR input events (mostly used to timestamp
signals) and local EVR sequencer events (used to create local frequencies at
the EVRs synchronized among them or to the master 14 Hz frequency).
This is how event numbers are distributed depending on their use:

• 1-39 (0x01-0x27): repetitive events for beam operation, in the master
sequencer.

• 40-49 (0x28-0x31): special non-repetitive events (post-mortem event,
data-on-demand, etc).

• 50-59 (0x32-0x3B): other master events (multiplexed counters, soft-
ware events, etc).

• 60-111 (0x3C-0x6F): not allocated.

• 112-113 (0x70-0x71): pre-defined special events reserved for system
use.

• 114-120 (0x72-0x78): not allocated.

• 121-127 (0x79-0x7F): pre-defined special events reserved for system
use.

• 128-149 (0x80-0x95): local EVR input events.

• 150-199 (0x96-0xC7): local EVR sequencer events.

• 200-255 (0xC8-0xFF): not allocated.

3.4. THE ESS DATA MODEL SPECIFICATION 59

3.4.3 Data definition

In this section the items that are included in the ESS data buffer are listed
and explained. This list was implemented as part of thesis:

• Protocol (number and version): the protocol refers to the data items
and their organization inside the data transmission buffer; this allows
for different information contained in the data transmission and to
be able to know its exact structure for each transmission. It has a
length of 2 bytes; the first byte represents the protocol number and
the second byte represents the version of that protocol. At the present
time only one protocol is planned, with as many versions as needed.
The protocol number and version are issued by the timing system and
consumed by all systems.

• Beam pulse ID: it is used to identify with a unique, integer number
each beam pulse against the recorded timestamps. It is expressed as an
8-byte unsigned integer to allow unique IDs during the whole lifetime
of ESS incrementing at 14 Hz. The ID increments monotonically by
one for each new beam cycle. Empty beam cycles will also have an
ID. It is issued by the supercycle application and used by all systems.

• Beam present: it marks if beam is expected in the next cycle, so that
different systems can react to the beam or raise flags and signals if the
beam happens in a different way to what is expected. It is expressed
as a boolean (0 no beam, 1 beam present) although transmitted as
one 8-bit byte to maintain byte alignment in the buffer. It is issued
by the supercycle application and used by the BCMs to know if the
cycle contains protons in order to react appropriately (monitor beam
parameters) and by LLRF to react to the beam.

• Beam destination: it is the planned destination (last point in the path)
of the proton beam, where it hits. In normal operation it will be the
target wheel, although during commissioning phase and ramp-up of the
accelerator other destinations are possible. The destination is encoded
in a 8-bit enumerated integer, with the possible destinations and their
code defined in Appendix B. All other values are to be treated as an
error. The beam destination is issued by the accelerator group and
used by all beam PBI systems.

• Beam mode: it is the planned beam mode as defined in Appendix A.
Different beam modes are used to specify some constraints to the ac-
cepted beam pulse. For commissioning and ramping up the accelerator

60 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

some special, very sensitive devices are inserted into the beam path
to measure it with higher. These are called insertable devices and can
only accept beam pulses with certain constraints, which are defined
by the beam modes. Beam modes are also used to ramp up the ac-
celerator in a slow, controlled way so that it does not suffer damages.
The beam mode in encoded in a 8-bit enumerated integer. All other
values than those shown in Appendix A are to be treated as an error.
The beam mode is issued by MPS and used by all the PBI and beam
diagnostics devices, both for checking that the expected beam is safe
for the state of the accelerator and for raising protection signals if it
is not.

• Intended pulse length: it is the planned length of the beam pulse ex-
pressed in milliseconds with a 4-byte float. Possible values are between
5 µs and 2.86 ms. It is used by PBI and beam diagnostics devices to
check that the beam pulse has the desired characteristics. It is issued
by the supercycle application.

• Intended proton energy: it is an estimation of the planned proton en-
ergy at the beam destination expressed in Mega-electron-Volts (MeV).
It is a 4-byte float and is used by the target to estimate the thermal
effects on the target wheel. It is issued by the control room operators.

• Intended beam current: it is an estimation of the planned beam current
at beam destination expressed in mA with a 4-byte float. Similarly
to the intended proton energy it is used by the target to estimate the
thermal effects on the target wheel. It is issued by the control room
operators.

• Raster pattern: it is an index to select one of pre-defined patterns. The
raster patterns are the method used to distribute the proton beam over
the whole surface of each of the sectors of the target wheel. To achieve
this at the end of the accelerator there are raster magnets that bend
the proton beam in specific patterns, the raster patterns. The different
patterns are enumerated using a one byte integer. It is issued by the
operators and used by the raster magnets.

• Target segment: it is the planned target segment for the next beam
pulse. This allows the target to request to stop the beam if the sector
is too warm. The planned target segment is represented by a one
byte integer number where only numbers different than 0 are allowed
when the beam destination is the target. If the beam destination is

3.4. THE ESS DATA MODEL SPECIFICATION 61

the target, segment 0 means that the segment synchronisation has not
been achieved and the beam should be prevented. Otherwise each
sector has an associated number in the range from 1 to 36, and other
values are invalid.

Data buffer item list

Table 3.1 shows a list of the organisation of the beam parameter items in-
side the data buffer. It includes the order of the items in the data buffer,
how long they are and what is their offset from the beginning of the data
buffer. Also an EPICS database that reads the data buffer in the EVRs
and partitions it into meaningful pieces ready to be used by other devices
integrated into the EPICS control system has been written as a part of this
thesis.

Table 3.1: ESS data buffer item list.

Byte offset Byte length Item

0 2 Protocol Version
4 8 Beam Pulse ID
12 1 Beam Present
13 1 Beam Destination
14 1 Beam Mode
16 4 Intended Pulse Length
20 4 Intended Proton Energy
24 4 Intended Beam Current
28 1 Raster Pattern
29 1 Target Segment

62 CHAPTER 3. ESS TIMING SYSTEM INTEGRATION

Chapter 4

Automated synthesis of
Statecharts

Some of the ESS components based on FPGAs, such as the miniIOC pre-
sented in Section 3.2, require an easy and error-free way of implementing
their logical behaviour, which is done by loading a bitfile which has all the
information necessary to configure the FPGA resources in the correct way
to perform the desired tasks. The file is generated by compiling a source
code file in a hardware description language such as VHDL. The usual pro-
cedure for generating the bitfile include a firmware engineer writing the
VHDL source code, writing and running a battery of tests and simulations,
and synthesizing, implementing and compiling the bitfile. All of this may
be a very slow and error-prone process, and there is a lack of tools that
help in this regard. For this reason, a tool that can automate this process
while keeping it as simple and fast as possible is very desirable and has been
developed in this work [43]. This tool would be even more useful when the
system needs to be re-configured often with a different number of resources
or instances of sub-systems or when the input/output can change, such as
the miniIOC with its FMC connector.

The tool should not impose any extra requirements or limits on the ap-
plication that will be implemented. To represent the target system we have
chosen the statecharts, an expansion of Finite State Machines (FSMs) in-
troduced by Harel [44] in 1987 which solves some of the problems of FSMs,
mainly the exponential growth of states and transitions when the machine
adds more and more parameters or conditions. Despite they are gaining
traction, a reduced number of tools support statecharts. In the context of

63

64 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

systems control, an automated way to produce HDL code from a statechart
is required in order to deploy a new timing system configuration in a short
time without incurring in implementation errors.

Our tool takes this graphical, behavioural implementation of the system
as a statechart and without any more interaction from the user it provides a
synthesizable VHDL code file, sparing the user from implementing the HDL
code by itself. The generated firmware configuration is ready to be deployed
quickly in varying environments while keeping the chance of errors low.

Some parts of the EVR functionality do not fit well when expressed as
statecharts, such as the timestamping mechanism, since due to their charac-
teristics they would implement all their functionality in a single state. These
parts would need to be coded by hand by a firmware engineer. Then the
code produced by our tool and the hand-written one should be merged to-
gether. This will not be a problem for our target application since the parts
that need to be written by hand will not need to change in new versions, so
they can be developed once and used for the foreseeable future.

In this chapter we will present the statecharts in detail, look at the pre-
vious work done in the area of statechart hardware implementation, how we
can translate the statechart graphical implementation in a conceptual way,
how each of the statechart features can be implemented and how our tool
works. Finally we study the possibility of updating the statechart imple-
mentation without requiring logical synthesis. This possibility is addressed
later in Section 4.4 based on microprogramming [45, 46], where a method
for implementing generic microprogrammed architectures is proposed [47].
Microprogramming would allow us to conduct upgrades of statecharts on
the field just by loading a new control update that modifies the behaviour
of the old firmware, without actually changing or synthesizing it again. The
advantages and disadvantages of this approach are also evaluated.

4.1 Statecharts

Statecharts are a visual formalism for describing states and transitions, and
they became part of the Unified Modeling Language (UML) [48]. As stated
in Harel’s paper, statechart diagrams were introduced with the intention of
expanding the capabilities of FSMs. FSMs are state-based models where

4.1. STATECHARTS 65

only one state is active at any given time, which can be changed by external
inputs or internal conditions. The change between states is called transition.

In Figure 4.1, a statechart is shown. At the top level, there is one en-
try node pointing to the state that gets active when the statechart starts,
and two OR-super-states. Super-states are special kind of states that group
other states together and the relations between them, which may even form
complete FSMs inside the super-states. active and wait are super-states,
specifically OR-super-states, because either active OR wait may be run-
ning at a given time, and they both have an inner structure that includes
other states and transitions. It is possible to switch between active and
wait using the sleep and wake events, which trigger the transitions. The
active super-state is made up of two super-states or components, send and
receive. This illustrates the concept of hierarchy, as one super-state may
contain several other ones. In this case, both super-states are also run-
ning in parallel, allowing to describe concurrent processing. This is called
an AND-super-state (denoted by the divider line). AND-super-states are
called regions in the UML description, since they are slightly different from
regular states: they do not have direct transitions, instead they are enabled
or disabled only when the state including them is as well activated or not;
also they are not affected by conditionals or actions, both explained later.
Both the send and receive states include more states, and transitions be-
tween them. Some of these transitions are just triggered by normal events,
such as send or resume, while others include special modifiers, such as the
send once condition or the transmission = false action. Transitions may
also have delays or timeouts, such as the always modifier that sets a 0 delay
(another example is the every 10 s in the nested background state inside
the wait super-state). Some states may also trigger events, such as the ACK

state, that triggers the acknowledge event when entering the state. In this
case the acknowledge event does not cause any action in the statechart and
is expected to be used as an output and consumed externally, but it could
also trigger something to happen in a different part of the statechart. A
black dot and an arrow point at the initial node for each super-state. In this
example there are two objects, one state and one event, both called send,
but they should not be mixed since they have different purposes and appear
in different situations. The representation shown in this example is different
from the one presented in [44], but the concepts are the same.

Contrarily, when the wait state is active, either idle or background are
running, but not both at the same time. A black dot and an arrow point at

66 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

F
igu

re
4.1:

E
x
am

p
le

of
a

statech
art

in
Y

ak
in

d
u

S
C

T
.

4.1. STATECHARTS 67

the initial node for each super-state. Inside this wait super-state, two other
super-states are denoted to have history (an H within the dot). Therefore
when processing returns to wait after it has been left, it remembers whether
it was running in idle or background and, in the latter case, in which of
the three nodes. In the example shown, at that precise time the active

super-state is enabled while the wait super-state is disabled, as well as all
their nested states. Inside the active state both send and receive states
are active, and inside each of them one level down in the hierarchy, also one
state is active: the wait state in send and the read state in receive.

The aspect that limits the usability of FSMs is that they can greatly
grow in complexity when adding more states in bigger state machines. Stat-
echarts were introduced as a way to specify complex systems in which there
may be several sub-systems working in parallel (which are implemented in
statecharts as states active at the same time in different super-states) or a
large number of events and transitions to evaluate, such as the timing sys-
tem in a big research facility. Statecharts introduce hierarchy by allowing
grouping basic states into super-states, which may at the same include com-
plete state machines nested one into each other, without a limit on the levels
in the hierarchy, and specifying conditions and transitions at a super-state
level, reducing the complexity of the specification and improving the read-
ability. When a super-state is left (there is a transition from that super-state
to another one) all the states included in the super-state are disabled, and
when the super-state is active again the state machines inside are enabled
again. The nested state machines may either revert to a default start-up
state or may continue in the state they were in when the super-state was
left, which is called history. This behaviour is defined on the specification
of the statechart. Some super-states may be active concurrently running
in parallel, each of them and their nested state machines independent of
each other, making them suitable to describe complex real-world systems,
and the conditions to enable or disable them can be specified in an unam-
biguous manner. To support these features, statecharts also implement a
better communication among the states than FSMs. Therefore, statecharts
largely improve traditional state machines, allowing for more compact, ex-
pressive and modular diagrams, that can describe more complex behaviour
than FSMs.

As well as FSMs, statecharts are very easy to understand, even for non-
experts, as they are just diagrams to describe the behaviour of systems, sep-
arating the behavioural description from the component description. This

68 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

characteristic allows to test and modify the behaviour independently from
the rest of the system. Statecharts and FSMs also make it easier to debug
and find no-exit cases when compared to the source code implementation.
Compared to FSMs, statecharts scale very well as they include concurrency
and hierarchy. All of this makes them a very useful and complete represen-
tation of systems.

Therefore statecharts maintain all of the characteristics of FSMs, such
as conditions, outputs, etc, with some important contributions that can be
summarized as:

• Orthogonality: as opposed to classical FSMs, where only one state
can active at a time, statecharts can have more than one state active
concurrently. These are called AND-states, while the traditional ap-
proach are called OR-states. Orthogonality is very useful for describing
subsystems.

• Depth: there is a hierarchy in the state structure, allowing for states
or even complete FSMs or sub-statecharts to live inside other states,
with transitions at every level, even in the states containing other
states. In the nested structure the state containing other states is
called super-state. Depth allows for great modularity, clustering, and
ease of movement between levels of abstraction by zooming in or out.
It is also possible to define entry and default states, and have history
in the states, as explained in Section 4.3.3, that get active when there
is a transition to the super-state containing them.

• Broadcast mechanism for communication between concurrent compo-
nents, global triggers, conditions and actions.

One of the consequences of orthogonality is that, although each region
should run almost independently of the concurrent ones, they can affect each
other, for example if one event is raised by one of the regions, and that same
event has an effect on a different region. An example of this is shown in
Figure 4.2, where the state counting in the region pedestrians will trigger
event p when left. At the same time this event will trigger the transition
from green to yellow in region cars. It is also possible that an event trig-
gers transitions in two different regions, such as if in the same figure the
states pedestrians and red were active and event c3 happened. In this
case the event would trigger simultaneously a transition from pedestrians

to wait in region pedestrians and from red to green in the region cars. In

4.2. HARDWARE SYNTHESIS OF STATECHARTS 69

this case the transitions occur simultaneously, which shows another feature
of the orthogonality of statecharts: there is synchronization. If in a similar
the state red is not active but pedestrians is, the same event c3 will only
trigger a transition in the region pedestrians but not in the region cars.
This is called independence, and is another feature of orthogonality.

TrafficLight

disabled

enabled

d

d

pedestrians cars

wait

pedestrians

green

red

yellowcounting

exit / raise p

b

c1

c3

p

c2

c3

Figure 4.2: Statechart showing orthogonality.

4.2 Hardware synthesis of statecharts

Although the main use-case for our application is the implementation of an
embedded EVR in the miniIOC from only a graphical description of an EVR
represented as a statechart, our application is capable of creating synthesiz-
able VHDL code for any system that can be described as a statechart, using
this statechart as starting point. This automated methodology also keeps
the chance of errors as low as possible.

The description of systems as statecharts and their automatic hardware
synthesis has a number of advantages over the classical method of manually
implementing those same systems by hand:

• The specification is done at a high-level, with little required training,
thanks to the visual character of statecharts.

• Once the statechart has been implemented, future changes to that
statechart are very easy, fast and do not require much extra effort
from the engineer; this applies even to more complex changes such as

70 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

adding instances of sub-systems or porting functionality from other
projects.

• Our application is hardware-independent, there is no need of taking
the hardware characteristics into consideration when implementing a
statechart, since it only describes the behaviour of the system.

Some tools for hardware synthesis were developed soon after the intro-
duction of statecharts, although they were based in obsolete technology or
has a limited scope. In 1989, Drusinsky and Harel [49] studied the implemen-
tation of depth, focusing on the activation and deactivation of super-states,
the history and its challenges. That work focused on the implementation on
PLAs1, and was later analysed by Drusinksy and Yoresh [50], who stated
its limitations. They also focused on PLAs and came to the conclusion that
flattening the statechart into an equivalent FSM is inefficient, and proposed
reducing the complexity of the transitions between super-states and coding
the states in a more efficient way. [51] described some use cases of automated
synthesis with a tool called I-Logix Express VHDL, the earliest automated
tool mentioned in the bibliography. The tool has a reduced scope, since
it does not support most of the statechart features, such as history. The
same tool is used in [52] but focuses mainly on validation overlooking the
details of the implementation, such as history. A latter product by I-Logix
(Statemate) supported hardware synthesis but with some limitations. This
software evolved later to become Rhapsody (now owned by IBM), but in
the process it lost support for synthesis.

A number of works have been also published comparing VHDL versus
statecharts synthesis. In [53] SPeeDCHART is used, and the authors point
up that this tool is not complete and that a strong VHDL knowledge is
still required. Another paper by the same authors [54] includes a compar-
ison based on fuzzy control systems. However, the provided examples are
actually implemented as FSMs, as they lack of the sophistication of real
statecharts. A different work [55] proposes the mapping of statecharts using
an ASIP2, but the architecture of the ASIP is the main focus of the paper.
The analysis of statecharts and VHDL implementation are done with a tool
called ROOM, and are incomplete and barely discussed, lacking features
such as history. This is not solved in another work by the same authors [56].
Nevertheless they mention some limitations of Statemate, stating that two

1Programmable Logic Array.
2Application Specific Instruction Processor.

4.2. HARDWARE SYNTHESIS OF STATECHARTS 71

AND-type super-states with n and m states each, are better implemented
as a FSM with n × m states, essentially flattening the statechart in some
degree. The implementation of FSMs with datapath is studied in [57], using
again the SPeeDCHART tool also used in [53] and [54]. The authors notice
that the tool can not implement concurrency successfully, since it flattens
super-states into a single super-state with a large number of states and tran-
sitions. As in most of the works, history is not discussed.

More recently, a number of papers [58,59] have been published analysing
the theoretical basis of automatic implementation of statecharts into Verilog
HDL. They also introduce a statechart editor and a hardware mapping tool
in [60] that also includes some examples. Nevertheless this implementation
is not complete since it does not support history nor transitions between
states at different levels.

A methodology is presented in [61] that converts a statechart specifi-
cation into SystemC and VHDL, although the paper is mostly focused on
SystemC and there are little details about the generation of VHDL code.
The paper also focuses mainly on how to guarantee consistency between
the SystemC and VHDL code behaviour when triggering events during the
simulations. Also, as in many other works, history is not supported.

Finally, Mathworks has released an HDL coder for their commercial tool
Stateflow [62] that would extend statechart processing by including an HDL
generation back-end. On top of being a proprietary and commercial tool,
we did not have the opportunity to test it, and we could not find any re-
view that addresses how much of the statecharts functionality is actually
supported.

In summary, a number of tools were proposed for statechart-based hard-
ware implementation. However, they covered only a partial set of features
and they are now discontinued. Meanwhile, software synthesis is present in
many modern tools. In the remaining of this work we will describe one of
them and how to extend it to produce synthesizable hardware.

4.2.1 Graphical representations of statecharts

Following Harel’s formalism first publication, a number of graphical repre-
sentation tools have been developed [63, 64], such as the previously men-

72 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

tioned Statemate. The earliest ones are just used to create graphical repre-
sentations of statecharts, without any added value. Soon after that the tools
improved and also represented the graphical representation as mathemati-
cal realisations, mainly using the UML notation [65], which allow not only
the modelling but also the development, specification and verification in an
automated way. Some of these can also translate the statecharts described
in the UML [48] and do an implementation in some other programming lan-
guage, such as C or Java. One of those tools is Yakindu Statechart Tools
(Yakindu SCT) [66] based on Eclipse [67], which provides a graphical di-
agram editor where the user can design the statecharts. It also includes
a statechart behavioural simulator and validator for the verification of the
statechart, and code generators that can automatically translate the math-
ematical realisation of the statechart into Java, C and C++ source code,
without needing any external library, and with a well-defined interface for
an easy integration into any other code. Yakindu also has a custom code
generator for exporting the statechart into other programming languages,
although in that case the user needs to build the translator by himself or
herself, with only a translator template being provided by Yakindu. Fig-
ure 4.1 was generated using Yakindu.

Custom code generators for Yakindu for VHDL code

There have been some efforts into generating VHDL code from the Yakindu
representation of statecharts, being the main one [68]. These implementa-
tions are only partial since they lack important features, such as support
for history, impose important limitations on the hierarchy or transitions be-
tween states, or they do not produce synthesizable code, generating only
code snippets that still need to be integrated in a bigger project, and most
of them are not published anywhere3. Our implementation does generate a
synthesizable VHDL source code file ready to be used as a stand-alone in a
real-world application.

4.2.2 Parsing and analysis of statecharts

Yakindu saves the mathematical realisation of the statechart in Extensible
Markup Language (XML) that is both human- and machine- readable. The

3This assessment is based on the pieces of software found on-line. If a more complete
implementation exists, neither the code or the description have been made public.

4.2. HARDWARE SYNTHESIS OF STATECHARTS 73

XML file has two parts: the first part describes the mathematical represen-
tation of the statechart in terms of its states, transitions, regions, conditions,
etc, and the second part describes the graphical representation of the state-
chart diagram as it was drawn in Yakindu (basically size and location of the
elements, but also colours, shapes, borders, etc). This graphical description
of the statechart, as it was drawn, is of no interest for the automated syn-
thesis tool, so we will ignore it for the rest of this work.

The statechart part of the XML is organized in a hierarchical way, start-
ing with the highest object (the main region) which includes (is parent of)
one or more states or entry points, called vertices in a generic way. At the
same time each state can contain more regions and outgoing transitions;
vertices can also have nested children, without any limitation on the num-
ber of nested levels or number or elements per level. Each element in the
statechart is also given a set of attributes: always a unique ID, and, depend-
ing on the nature of the element, also a type, a name (which only needs to
be unique in the local region or state), a specification (which includes the
conditions, events and actions), a target (only for outgoing transitions, is
the ID of the target state), incoming transitions (which are the IDs of out-
going transitions), and a kind. In this way, every transition is represented
by two objects: the outgoing transition is an element on its own, a child of
the source state, on the other end an incoming transition as an attribute of
the end state.

The application that we have implemented is based on Xerces-C++ [69],
a validating XML parser written in C++. Xerces-C++ includes a shared
library that provides the functionality to parse, generate, manipulate and
validate the XML documents with different APIs4. For the implementation
of our application we have used the DOM5 [70] API.

Our application parses the XML file one node at a time, aware of its
exact place in the hierarchy in each step. For each node it keeps track of the
list of parent, sibling and children nodes, while reading the list of attributes.
With this information the tool creates the appropriate VHDL output code
for the current node before moving to the next node in the structure. To
complete the generation of the VHDL file our application parses the original
file several times, once for each section of the VHDL file.

4Application Programming Interface.
5Document Object Model.

74 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

The output of our application is a synthesizable VHDL file that imple-
ments in a FPGA the same algorithm that was described in the original stat-
echart modelled in Yakindu. Our application only expects one input, which
is the XML file describing the statechart, as it is produced by Yakindu, to
generate the output VHDL file. In the process our application can automat-
ically detect the inputs and outputs of the statechart, creates the adequate
signals, defines all the needed processes, and detects the transitions.

Although Yakindu includes a custom language code generator, the tool
that we have developed does not make use of it, and instead it only uses
Yakindu as the front-end to interface with the user and create the mathe-
matical representation in XML code of the statechart designed by the user.
Our application is actually the back-end that, after the XML file is created
and without making use of the Yakindu custom language code generator,
generates the VHDL code. This means that our application can be used
with representations of any source, not just Yakindu-generated XML files,
although it expects that the structure of the file, as well as the naming and
separators, is exactly the same, so statecharts that have a source other than
Yakindu should follow Yakindu’s XML convention.

In its current configuration, the tool is developed for generating only
VHDL code. It would be possible to extend it to generate code in other lan-
guages, but with an obvious focus on hardware description languages since
those are the goal of the application; this is explained in Section 4.3.9.

4.2.3 Restrictions on the original statechart

In our current implementation some restrictions are assumed in order to
ease the design of the application:

• The names of the elements do not include spaces and are not reserved
keywords in VHDL, such as begin, component, process, wait, etc.

• Only events and internal conditions are accepted as transition triggers:
external events, counters or integer variables having a specific value
are accepted, but more general, ”smart” conditions, such as ”after one
second”, valid in the Yakindu model, are not accepted. It is possible
though to create a counter that triggers after an integer number of cy-
cles of a clock, which would replicate the ”after one second” condition.

4.2. HARDWARE SYNTHESIS OF STATECHARTS 75

This should be done when designing the statechart in Yakindu, and
there is no need of knowing the internal structure or way of working
of our application.

• With the exception of regions, most of the new features included in
the UML implementation of statecharts but not in the original Harel’s
paper are not supported. This includes exit points, choices, forks,
joins, etc.

• Only shallow history is supported: shallow history is defined as a
pseudo-state that remembers the last active state inside the region
that includes it. Deep history, which remembers all the latest states
of a hierarchy of multiple nested states, is not supported. Instead
of using a deep history node, a shallow history node can be included
in all levels of the hierarchy to achieve the same behaviour, so this
forces a different specification of the statechart but does not limit the
functionality that can be implemented.

• All the transitions occur between states in the same region and level
of the hierarchy.

Most of these restrictions are in place to rule out cases that are improb-
able or even impossible in our goal implementation. Others, such as the
two last points in the previous list, does not inhibit the implementation of
any system, although it forces to re-design the statechart. The very last
point forces some non-trivial changes to the statechart, including some ex-
tra transitions, conditions and states in the statechart, which is not optimal,
as simplicity and compact format are key features of statecharts, so we will
explain how to do it:
Let us take a look at the statechart shown in Figure 4.3. The transition trig-
gered by event T does not fulfil the last condition in the previous list. This
transition can be replaced for another transition between the two states in
the region of the statechart that, somewhere down in the hierarchy, include
both the source and target states of the transition triggered by the event
T, so the new transition goes from state A to state D. The new transition
can be seen in the equivalent statechart in Figure 4.4 and has a condition,
which is that it only takes place when the original source state C is active.
Some additions to the new target state D are also needed: an extra state is
needed, called guard in the example, and the entry point should point to
this new state. In this example the new target state is the parent of the
original target state, but if there were to be more levels in the hierarchy

76 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

between them, then all of them need an extra state, with the same features.
This new state guard has two transitions: one transition to the original tar-
get state with the condition that the original source state was active; and
a second transition to the default state pointed to originally by the entry
point. If the entry point had history, it should be replaced with a simple
entry point without history, and a variable that takes different values based
on the state that the history needs to go back to. This variable is used in
the transitions from the new state to the other states. The new state should
be added in all levels of the hierarchy mentioned earlier.

MainRegion

A
D

pedestrians DA

B E

FC

event1

event2

event3

T

event4

Figure 4.3: Statechart showing a forbidden transition.

The one problem that this method entails is that the transition that is
replaced now takes one more clock cycle per level of the hierarchy between
the original target state and the new target state, since there is one more
intermediate state in each level of the hierarchy between the states.

4.3 Implementation strategy

The synthesis of FSMs is well understood [71,72], and a number of tools exist
which are able to convert graphical representations into HDL code. How-
ever, statecharts introduce new features, such as super-states and history,

4.3. IMPLEMENTATION STRATEGY 77

MainRegion

A D

T

pedestrians DA

B E

FC

event1

event2

event3

event4

entry / Cactive = 0

guard

[Cactive == 0]

[Cactive == 1]
entry / Cactive = 1

Figure 4.4: Statechart equivalent to the statechart shown in Figure 4.3 but
without the forbidden transition.

that require new synthesis techniques. So far, synthesis has been addressed
from a software point of view [73].

By analysing the XML description of the statecharts provided by Yakindu,
a basic implementation of a super-state can be obtained using the same pro-
cedure as for FSMs, which consist of defining: (a) state encoding, (b) a state
transition function, and (c) an output generation function. However, some
characteristics of super-states may be more challenging to implement, such
as:

• Orthogonality (or concurrency).

• Depth (or hierarchy).

• History.

• Distributed generation (super-states generating the same output or
event).

• Entry, exit and event-driven actions inside a state, conditions, and
actions on transitions.

78 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

4.3.1 Orthogonality

While traditional FSMs can only have one state active at a time, state-
charts can have two or more states active concurrently. This can happen
when the two states are in different levels of the hierarchy, as explained in
Section 4.3.2, or in the same level (orthogonality). In the latter case, they
are called AND-states. The key point about orthogonality is that, and fol-
lowing the UML implementations of statecharts, when the AND-super-state
including the parallel or concurrent regions is active, the statechart is in all
of those regions at the same time, and one state in each of the regions is al-
ways active. It is also said that the statechart is in the orthogonal product of
those active states. In fact, each region implements a FSM or even complete
sub-statechart, and all of them are active at the same time. For example,
let us consider the statechart shown in Figure 4.1. Inside the active super-
state there are two parallel regions, named send and receive, and each
of them has an active state: the send region is in the wait state and the
receive region is in the read state. The result of this is that the active

super-state, and the statechart itself, is in the orthogonal product of wait

and read. Orthogonality also means that, when there is a transition to the
active state, the transition is also to the combination of the idle and read

states, as indicated by the entry nodes. When the event sleep triggers, and
the active super-state is disabled, so are whatever state was active in the
send and receive regions.

Our application implements each region as a different VHDL process that
runs concurrently with the rest of the regions (processes). These processes
implement the transitions between states with case...when... structures.
This fulfils the orthogonality feature:

• VHDL processes are inherently concurrent, and thus they run in par-
allel without forced interaction between them, as is expected from
different regions inside an AND-super-state. Interaction between dif-
ferent regions can still be achieved using events and variables.

• Processes can have the same signals in their activation lists, resulting in
synchronization of the processes, assuming also that all the transitions
are triggered with the same clock in the synchronization process, that
is explained later in Section 4.3.6.

• The case...when... structures implement the independence feature:
transitions only take place the correct state is activated.

4.3. IMPLEMENTATION STRATEGY 79

Listing 4.1 shows an extract of the XML file of the model that describes
the two parallel regions, and Listing 4.2 shows an extract of the VHDL code
generated by our application that implements these two regions as processes.

<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=” . . . ” name=” a c t i v e ”
incomingTrans i t ions=” . . . ”>

<outgo ingTrans i t i on s xmi : id=” . . . ” s p e c i f i c a t i o n=” s l e e p ” t a r g e t=” . . . ”
/>

<r e g i o n s xmi : id=” . . . ” name=” send ”>
[. . .]

</ r e g i o n s>
<r e g i o n s xmi : id=” . . . ” name=” r e c e i v e ”>

[. . .]
</ r e g i o n s>

</ v e r t i c e s>

Listing 4.1: Extract of the XML file from Figure 4.1 that describes the two
parallel regions (edited for clarity).

sendFSM : process (s l e ep , wake , send , resume , background ,
sendCurrentState)

begin
case sendCurrentState i s
[. . .]
end case ;

end process ;

receiveFSM : process (s l e ep , wake , send , resume , background ,
r e c e i v eCur r en tS ta t e)

begin
case r e c e i v eCur r en tS ta t e i s
[. . .]
end case ;

end process ;

Listing 4.2: Extract of the output VHDL file implementing the two regions
described in Listing 4.1 (edited for clarity).

4.3.2 Depth

As opposed to FSMs, statecharts can have different levels of hierarchy with
states (or even complete FSMs) living inside other states, giving the state-
chart a sense of depth. In this case, when a super-state is left, all the states
underneath it should be disabled, and when the super-state is entered again,
the FSM inside it starts or continues its operation. This is one of the key
characteristics of statecharts when compared to FSMs: there is a cluster-
ing of states into super-states, achieving a reduced number of transitions.
One example is shown in Figure 4.5, where the two regions implement the

80 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

same functionality, but while the left one has three transitions, excluding
the entry transitions, the region on the right only has two transitions. In
this example we have created a new super-state D that clusters states A and
B, and replaced the two transitions triggered by the event event1 for only
one transition triggered by the same event. While this is a simple example,
in more complex statecharts this allows keeping the number of states and
transitions low, which is one of they goals of statecharts.

Non-clustered Clustered

A D

B

C C

event1

event1

event2
event1

D

A

B

event2

Figure 4.5: Statechart showing clustering.

Another characteristic that comes with depth, is that it is mandatory
to specify default states or entry nodes for each level in the hierarchy. The
entry nodes point to the state in each region that will get active when there
is a transition to the parent super-state. There are two kinds of entry nodes:
entry nodes pointing to default states and entry nodes with history, which
are discussed in Section 4.3.3.

Depth can be implemented in two ways:

• Each region is automatically disabled when the super-state contain-
ing it is disabled, and it is also re-established automatically when the
parent super-state is enabled. This means that each region in the
hierarchy needs to be constantly monitoring if the parent state is ac-
tive or not and disabled its own states accordingly, and then it will
be cascaded down: the children regions will also be monitoring the
containing state and get disabled when the parent state is, and so on.

• Each region does not monitor if the parent states are active or not,

4.3. IMPLEMENTATION STRATEGY 81

but instead it is aware of the transitions to and from the parents and
acts based directly on those. In this case the implementation of the
state does not need to add new functionality, but instead it just adds
new events to the list of events that it was already monitoring, and the
action (already implemented) of getting disabled/enabled triggered by
these new events.

Although in some cases the first option could be more suitable, it is
obvious that the second option is easier to implement, since the function-
ality already exists. There is one more reason that also makes the second
option a better choice: the tool may be improved by removing the require-
ment of transitions occurring between states in the same region and level
of the hierarchy, allowing for a transition from one super-state to a state
inside another OR-super-state. In this case it would be the sub-state being
enabled that also forces the super-state to enable, and not the other way
around. There are two ways of doing this: by monitoring the transitions to
and from all the states in the hierarchy, or by monitoring when all states
get enabled or disabled, and cascading that both up and down in the hi-
erarchy. While monitoring transitions is already implemented, monitoring
all the states changes and cascading is not implemented and would be more
resource expensive. Also in the same case when we remove the same offend-
ing condition, it would be needed to override the history, since the active
state should be the one pointed to by the transition. This means that it is
not enough with monitoring the change of the states, since knowing what
transition triggered the change is also important.

Listing 4.3 shows the output of our application for the wait region in
Listing 4.4.

backgroundFSM : process (s l e ep , wake , send , resume , background ,
backgroundCurrentState)

waitFSM : process (s l e ep , wake , send , resume , background ,
waitCurrentState)

begin
case waitCurrentState i s
when i d l e =>

i f wake = ’1 ’ then
waitHistReg <= 0 ;
waitNextState <= waitEntry ;

else
i f background = ’1 ’ then

waitNextState <= background ;
end i f ;

end i f ;

82 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

when background =>
i f wake = ’1 ’ then

waitHistReg <= 1 ;
waitNextState <= waitEntry ;

else
i f background = ’1 ’ then

waitNextState <= i d l e ;
end i f ;

end i f ;
when waitEntry =>

i f s l e e p = ’1 ’ then
case waitHistReg i s
when 0 =>

waitNextState <= i d l e ;
when 1 =>

waitNextState <= background ;
end case ;

end i f ;
end case ;

end process ;

Listing 4.3: Extract of the output VHDL file implementing the wait region
(edited for clarity).

<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=” . . . ” name=” wait ”
incomingTrans i t ions=” ”>

<outgo ingTrans i t i on s xmi : id=” . . . ” s p e c i f i c a t i o n=”wake” t a r g e t=” . . . ”/
>

<r e g i o n s xmi : id=” . . . ” name=” wait ”>
<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=” . . . ” name=” i d l e ”

incomingTrans i t ions=” ”>
<outgo ingTrans i t i on s xmi : id=” . . . ” s p e c i f i c a t i o n=”background”

t a r g e t=” . . . / >
</v e r t i c e s>
<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=” . . . ” name=”background”

incomingTrans i t ions=” . . . ”>
[. . .]

</v e r t i c e s>
<v e r t i c e s x s i : t y p e=” sgraph:Entry ” xmi : id=” . . . ” kind=”

SHALLOW HISTORY”>
<outgo ingTrans i t i on s xmi : id=” . . . ” s p e c i f i c a t i o n=”” t a r g e t=” . . . ”

/>
</v e r t i c e s>

</reg ions>
</v e r t i c e s>
end proce s s ;

Listing 4.4: Extract of the Statechart file implementing the wait region
(edited for clarity).

The hierarchy can have any number of levels, so a sub-state in a super-
state can at the same time be a super-state. Our application uses recursive
functions to go through all the levels of the hierarchy to complete the stat-

4.3. IMPLEMENTATION STRATEGY 83

echart model, as is explained later in this same chapter.

4.3.3 History

A super-state has history if it can remember its present state and return
to it later after being disabled for a while. A super-state without history,
however, will always resume its activity starting at its initial default state.
Implementing this behaviour can basically be achieved in two manners, com-
pared in Figure 4.6:

• In the first way, a wait state is added, and an enumerated variable of
the current state is kept on a register that is connected to that wait
state. A disabled super-state will be running in its wait state until a
resume event is triggered, which can be directly targeted to the super-
state or to the super-states higher in the hierarchy, as explained in
Section 4.3.2. At that moment the wait state will trigger a transition
to the state the region was in before the super-state was left, according
to the value stored in the register.

• Alternatively, it may be simpler to add a wait state attached to each
normal state and transit to it when the super-state is disabled. When
the super-state gets active again, the wait state that was active tran-
sitions to its attached state, which was the active state before the first
transition was triggered.

errok

A B C
!err

!err

work

H

(a)

B' C'

err

err

errok

ok

ok

A B C
!err

!err

work

H

(b)

Figure 4.6: (a). super-state with history. (b). Proposed implementation
using wait states.

The convenience of each solution should be assessed for each particu-
lar case but, in our current application, only the former is implemented,

84 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

which can be seen in Listing 4.3. In this example the wait state is named
waitEntry and it stores the state in the waitHistReg register. The wait
state is also used as the entry node, but its initialization is not shown in the
listing.

There is another reason for choosing the first solution instead of the sec-
ond, and it is that in that case it would be possible to clear the history,
something that is introduced by Harel but that apparently is not possible
in Yakindu. Clearing the history is a special action that resets the history
entry point so that it points back again to the default state, instead of to
the previous active state.

4.3.4 Distributed generation

Ideally, each super-state generates a sub-set of outputs and signals differ-
ent to other super-states. However, this is not always true, either because
the statechart is not neatly designed or because using different super-states
actually helps to organize the statechart. Hence, the implementation of
each super-state may conflict with others. A preliminary parsing of the
statechart description finds which outputs and signals are produced by
different super-states, and asserts that only one of them is active at the
same time. Next, output and signals are renamed by appending a suf-
fix that relates each signal to the super-state in which is produced. Fi-
nally, the global signals are obtained by reduction as: globalSignal =
(signal ss1 and active ss1) or (signal ss2 and active ss2) or.... This is
depicted in Figure 4.7.

4.3.5 Actions and conditions

Entry and exit actions are not unique to statecharts, since FSMs can also
model them as part of their inputs and outputs. But, in statecharts, they
are expanded by allowing actions to happen when some conditions are met
at any moment during the active phase of a state. For example, a state may
increase a counter when an event is raised anywhere in the statechart, but
the counter would not increase if the specific state is not active. In this case
the statechart models the counter-increase action as being performed by the
active state. Conditions can also apply to any transition, action, event, etc.
Figure 4.8 shows a simple statechart implementing some of this cases.

4.3. IMPLEMENTATION STRATEGY 85

orSS

ss1 ss2 ss3

active_ss1

signal_ss1

active_ss2

signal_ss2

active_ss3

signal_ss3

globalSignal

Figure 4.7: Distributed generation of a global signal.

Counter main region

Countdown

trigger / counter +=1

[counter == 3] always

Restart

entry / counter = 0

interface:
var counter : integer
internal:
event trigger

Figure 4.8: Simple statechart with actions and conditions.

4.3.6 Implementations steps

The application that we have developed requires two arguments: an input
XML file describing the statechart and a name for the output VHDL file.
Then the tool applies a number of steps to generate the output VHDL file.
The application is built as a main function that only gets the name of the
input file, the output file and calls the driving function, which does most of
the work, as explained in the following subsections.

86 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

Initialization of the parser

The input file is tested to see that it can be opened correctly. In that case
and if it includes a valid XML architecture, the parser is set, it starts the
parsing of the file by creating a DOM document and creates an element
for the statechart. A DOM node is also created, which is first set to the
first child of the statechart element, which is a node pointing to the main
statechart. At the same time the VHDL file is created and the used library
is defined.

Entity declaration

The first step is the declaration in the VHDL of the entity with the name
of the statechart. An input clock is included by default, and the specifi-
cation of the statechart node is parsed to look for the variables and events
in the interface list that complete the list of inputs and outputs of the entity.

Type and signal definition

Then the first three parsings of the XML file take place. The goal of these
firsts parsings is defining the list of VHDL types and signals. These are
basically a list of the regions in the statechart, states and history nodes:

• A VHDL type is defined for each region, which can have the values of
the states included in that region.
The GetStates recursive function parses the XML file node by node
starting at the top statechart node. For each node it checks if the
first child is a region. In that case it creates a new type for the region,
LocalRegion, and looks for grandchildren vertices. The grandchildren
vertices, which are children of the region, are states and entry nodes,
and are listed as the possible values of the region/type. Then the
recursive function is called again from within each of the found states,
until the deepest point in the hierarchy has been reached. At that
moment the current node pointer is set to the next sibling of the
current node, and the recursive function is called again. When the last
sibling has been parsed, the pointer moves up one level in the hierarchy
and the same process takes place again for the next sibling. This
continues until all the statechart has been parsed and the complete
list of types has been defined. All the previous is done while keeping
track of the current point in the hierarchy.

4.3. IMPLEMENTATION STRATEGY 87

• Two signals are defined for each region: a LocalRegionCurrentState

and a LocalRegionNextState, which are of the type corresponding to
the region under consideration.
A very similar approach to the GetStates recursive function is used
with the PrintStatesSignals recursive function to define the two
LocalRegionCurrentState and LocalRegionNextState signals for
each region. The application will use this signals for the transitions
from one state to another. The default state is also define here, ac-
cording to the entry node.

• One signal, of type integer and called LocalRegionHistoryRegister,
is defined for each history node in the statechart.
When a region containing a history node is left, this signal will save
the active state so that it is possible to come back. This is done with
the GetHistoryRegisters recursive function, which works in a similar
way to GetStates and PrintStatesSignals.

Since regions may have the same name as other regions in other states
but the types need to have a unique name, the name of each type is defined
by concatenating the name of all the nodes from the top level down to the
region that the type represents.

In these parsings also the list of outputs with several sources and their
parent states is created. Also the partial output signals and their related
state-active signals explained in Section 4.3.4 are defined.

Structural description

Before tackling the transitions, the XML file is parsed once to get a struc-
tural description of the statechart. Since Yakindu identifies each element
(including states, transitions, etc) with an ID instead of the name, the
CreateStateIDList function is needed to create a list of pairs state name

- ID, which also includes the entry nodes. This list will be mainly used for
identifying the correct target state name in each transition, since the state is
identified in the transition specification by its ID instead of its name. This
list is used in some other cases too. The application could still work using
the IDs instead of the actual state names, since IDs are unique and define
perfectly the states. The reason for creating this list is that the IDs loose
any meaning, since they are almost arbitrary strings of characters, such as
Yakindu defines them. We have decided to work with the names using the

88 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

state name - ID list instead.
The CreateStateIDList is also recursive, and parses the statechart file from
beginning at the top level to the end, going node by node, first checking the
current node, then visiting the first children node and repeating the process.
When all the children nodes and nested nodes are checked the parser moves
to the parent node and the process runs again for the siblings, if any, until
all the statechart has been parsed.

Another function, CreateOutTransIDList, does exactly the same but
for a list of outgoing transitions.

Transitions

Next the transition logic begins. This is the most complex step, where the
transitions are coded, the states are activated and deactivated and actions
take place, and where all of the considerations explained before about or-
thogonality, depth, history and so on express themselves. Most of the next
remarks can be seen applied in Listing 4.3. As mentioned in Section 4.3.1,
basically each region is implemented as a different VHDL process that runs
concurrently with the rest of the regions (processes). These processes imple-
ment the transitions between different states with case... when... structures.
In these structures, the case is the LocalRegionCurrentState, which can
have the values defined in the function GetStates, this is the names of the
states and entry nodes in that LocalRegion type, as explained before. The
names of the states are the when... values.

In each of the states, or when cases, a series of if... then... else if...
then... structures define the transitions between states: for each event that
can cause a transition from that state to another one, an if statement checks
if the event is true, and then it sets the LocalRegionNextState signal to
the state pointed by that transition. Also in these processes is where all
the actions take place. Actions can be divided into two groups: the first
group includes actions that are attached to the transitions themselves or
are part of the entry to the target state or exit from the source state. In
this case the action is instantaneous (for example, raise an event) and is
implemented inside the if... then... else if... then... structures. The second
group are actions that take place or need to be evaluated during all the time
that the state is active, like in a Moore machine. In this case the action is
implemented inside each of the when... states but outside of the transition

4.3. IMPLEMENTATION STRATEGY 89

if... then... else if... then... structures. As explained in the Section 4.2.3,
the UML implementation of statecharts is inherently asynchronous, but the
implementation in FPGAs makes them synchronous to some signal, usually
a clock, so some limitations are imposed in the possible actions. It is impor-
tant to note that our tool defines a clock for synchronizing the transitions,
and this master clock can not be used in the conditions; if a clock is needed
for some periodic effect of the actions, a different clock than the master syn-
chronization clock needs to be defined. This should be done in the interface
list in Yakindu, there is no need to do it manually in the VHDL code.
One specific type of actions is output generation. When those actions are im-
plemented, they are compared with the list of outputs with several sources,
and if they are in the list the action is implemented to the partial signal,
not the global one. Also the state-active signals are driven accordingly when
setting the LocalRegionNextState signals.

The history pseudo-states are a little bit different since they only have
one goal: keep the return-to enumerator and perform the transition when
it is needed. For this reason the history pseudo-state when... case has as
many if... statements as transitions can occur back to the region containing
the history node, and each of these if... has only one case...when... struc-
ture, where the case... is the LocalRegionHistoryRegister and each of
the when... are the enumerated integers, that trigger a transition of the
LocalRegionNextState signal to the state saved in the history register, as
marked by the enumerated value.

The main function that prints the processes as explained before and that
implements all the transitions is PrintFSMProcess. Before analysing it, we
need to mention some other functions that are called by this function, are
important and get called several times:

• The GetNameFromID function returns the name of a node from its ID,
thanks to the list created by the CreateStateIDList function. This
is important since, as explained before, we use the names of the states
to identify them, while Yakindu uses the ID. This function is used for
example to identify the target of outgoing transitions.

• The GetSpecificationFromID function returns the specification of,
for example, an outgoing transition. The specification is where tran-
sitions define the events that trigger them. They can also include
actions.

90 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

• The PrintActions function reads the specification of states and tran-
sitions and prints the action using the VHDL syntax.

The PrintFSMProcess recursive function prints iteratively a VHDL pro-
cess for each pseudo-state-machine in the statechart, and thus is the function
that takes most of the load of the application. It parses the XML one more
time to print all of the VHDL processes, one for each region. We have
explained before how the VHDL implementation of the regions looks like,
so now we will focus on how the PrintFSMProcess function works to get
to the expected output. It starts by, for each region, printing the process
name and activation list, which includes the events that may cause a tran-
sition and also the LocalRegionCurrentState signal. Then it parses the
children of the region one by one, which are the states and entry points.
For the history nodes it raises a flag that will be used later. If there is no
history, the function prints the appropriate when... statement for the state
or entry node. If the children under consideration is a state, it checks if
it has a specification, and in that case it prints the specified actions. The
function also looks for outgoing transitions from the state or entry, and
prints the LocalRegionNextState for the transitions, as well as the spec-
ifications. If the history flag has been raised, then the function works in
a slightly different way, since it also needs to save the current state to the
LocalRegionHistoryRegister when there is an outgoing transition from
the parent state, and also print the when... case of the wait pseudo-state,
which returns to the correct state when the region is activated again. The
function also parses upwards in the hierarchy, looking for transitions out of
the higher levels.

Synchronization process

The VHDL code is finished with a synchronization process defined by the
PrintSyncProcess recursive function that, synchronously to the main clock
and starting at the top of the statechart and for each region, updates the
LocalRegionCurrentState to be the LocalRegionNextState defined by
the transitions in PrintFSMProcess. This process basically triggers the
transitions themselves that have been defined by the PrintFSMProcess. As
explained in Section 4.3.1, this is necessary for achieving synchronization.

4.3. IMPLEMENTATION STRATEGY 91

4.3.7 Example

As an example of the code generated by our tool we will use the statechart
shown in Figure 4.8. Listing 4.5 shows the XML model that Yakindu pro-
duces for that statechart, and Listing 4.6 shows the VHDL code generated
by our application from the XML description.

<s g raph :S ta t e cha r t xmi : id=” nCEd8JlXEeepsse2VK4HgQ” s p e c i f i c a t i o n=”
i n t e r f a c e :
 var counter : i n t e g e r
 i n t e r n a l :
 event
t r i g g e r ” name=”Counter”>
<r e g i o n s xmi : id=” nCHhQplXEeepsse2VK4HgQ” name=”main reg i on ”>
<v e r t i c e s x s i : t y p e=” sgraph:Entry ” xmi : id=”

nCR5UZlXEeepsse2VK4HgQ”>
<outgo ingTrans i t i on s xmi : id=” nCWx0ZlXEeepsse2VK4HgQ” t a r g e t=”

nCTugplXEeepsse2VK4HgQ”/>
</ v e r t i c e s>
<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=”

nCTugplXEeepsse2VK4HgQ” s p e c i f i c a t i o n=” t r i g g e r / counter +=
1” name=”Countdown” incomingTrans i t i ons=”
nCWx0ZlXEeepsse2VK4HgQ AaEoAJlYEeepsse2VK4HgQ”>

<outgo ingTrans i t i on s xmi : id=” 8bZzAJlXEeepsse2VK4HgQ”
s p e c i f i c a t i o n=” [counter == 3] ” t a r g e t=”
wHHW4JlXEeepsse2VK4HgQ”/>

</ v e r t i c e s>
<v e r t i c e s x s i : t y p e=” sg raph :S ta t e ” xmi : id=”

wHHW4JlXEeepsse2VK4HgQ” s p e c i f i c a t i o n=” entry / counter = 0”
name=” Restart ” incomingTrans i t i ons=” 8bZzAJlXEeepsse2VK4HgQ

”>
<outgo ingTrans i t i on s xmi : id=” AaEoAJlYEeepsse2VK4HgQ”

s p e c i f i c a t i o n=” always ” t a r g e t=” nCTugplXEeepsse2VK4HgQ”/>
</ v e r t i c e s>

</ r e g i o n s>
</ sg raph :S ta t e cha r t>

Listing 4.5: Simple example of a statechart.

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;

use IEEE . STD LOGIC ARITH .ALL;
use IEEE .STD LOGIC UNSIGNED.ALL;

entity Counter i s
Port (c l k : in STD LOGIC;

t r i g g e r : in STD LOGIC) ;
end Counter ;

architecture r t l of Counter i s

type CounterStates i s (CounterEntry , Countdown , Restart) ;
signal CounterCurrentState , CounterNextState : CounterStates :=

CounterEntry ;
signal counter : i n t e g e r := 0 ;

92 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

begin

CounterFSM : process (t r i g g e r , CounterCurrentState)
begin

case CounterCurrentState i s
when CounterEntry =>

CounterNextState <= Countdown ;
when Countdown =>

i f t r i g g e r = ’1 ’ then
counter <= counter + 1 ;

end i f ;
i f counter = 3 then

CounterNextState <= Restart ;
end i f ;

when Restart =>
counter <= 0 ;
CounterNextState <= Countdown ;

end case ;
end process ;

sync : process (c l k)
begin

i f r i s i n g e d g e (c l k) then
CounterCurrentState <= CounterNextState ;

end i f ;
end process ;

end r t l ;

Listing 4.6: VHDL code output of applying our application to the Statechart
shown in Listing 4.5.

4.3.8 Evaluation

The code generated by our application is, in general, more verbose than
the equivalent VHDL code written by hand by a firmware engineer, having
about twice the number of lines. Regarding the FPGA resource utilisation
there is, however, little difference between the implemented and synthesized
code from our application and the handwritten one. Table 4.1 shows the re-
source utilisation by both codes for the statechart shown in Figure 4.1, while
Table 4.2 shows the data for Harel’s digital watch shown in Figure 4.9. In
all cases the code is implemented and synthesized for Xilinx Kintex-7 FP-
GAs [29] using Xilinx Vivado.

In general the number of lines of the code and the amount of resources
used is proportional to the complexity of the statechart (both for the imple-
mentation using our tool and the handwritten code), while the delay does

4.3. IMPLEMENTATION STRATEGY 93

Hand-coded Automatic tool

Lines of code 148 232
Logic blocks 24 26
Flip-flops 43 43
Delay (ns) 1.29 1.33

Table 4.1: Comparison of the resource utilisation for the statechart in Fig-
ure 4.1.

Hand-coded Automatic tool

Lines of code 569 1483
Logic blocks 131 169
Flip-flops 140 156
Delay (ns) 1.59 1.61

Table 4.2: Comparison of the resource utilisation for the statechart in Fig-
ure 4.9.

not increase in the same way, since it is only affected by the most com-
plex super-state. This means that aggregating more AND-super-states to a
given statechart increases the number of lines and resources used but does
not increase the delay, so even large statecharts can be implemented into
fast circuits.

4.3.9 Extension of the application to other languages

The application that we have developed could be extended to generate code
in other hardware description languages, not just VHDL, reusing most of the
recursive functions that have been already developed. Two main changes are
necessary, which would need to be applied for each new language supported:

• The first and obvious step would be to set the application to print
to the output file the code lines using the selected language syntax
and semantics. At the moment this process would be quite slow and
tedious since the lines that write to the output file are hard-coded
inside the body of the functions of the application, although a future
enhancement of the tool would be to extract the hard-coded printed
lines to a configuration file where the actual output of each function
can be easily adapted to different languages.

94 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

• The second step would be to configure the driving function to call
the other functions in the correct order to generate a synthesizable
output in the selected language. This basically defines how the output
file is structured in terms of definitions, processes, etc, which are very
language-dependant.

4.4 Microprogrammed implementation

In the previous sections, a tool that implements statecharts as VHDL code
ready to be synthesized and deployed was presented. This was done with
the intention of easing and reducing the work needed to implement and
deploy a new control configuration in FPGAs while keeping the chance of
human-induced errors as low as possible. It would be possible to go one step
further by taking the logical synthesis out of the process. This is be possible
by using microprogrammed architectures [45,46] that implement statecharts
with a high degree of upgradability.

These architectures would add an important overhead to the implemen-
tation process but would provide some relevant improvements, applying to
both ASICs6 and FPGAs, such as:

• The changes would not need to be re-synthesized, allowing for a quickly
deployment.

• Maintenance of the control system would be easier, since firmware
updates are not dependant on the version of the synthesis software.
Common problems such as expiring licenses, devices that reach their
end-of-support cycle and software that is being constantly evolving
without final versions are not so critical any more for a facility that
will run for decades.

• In mission critical applications, is quite common that only a few de-
vices are certified, due to the huge cost of certifying more modern
architectures. As an example, Intel’s 80286 processors are still in use
in many commercial aircrafts. Therefore, being able to update the con-
figuration of an ageing device without depending on the manufacturer
updating the synthesis software may be of great interest.

6Application-Specific Integrated Circuit.

4.4. MICROPROGRAMMED IMPLEMENTATION 95

4.4.1 Microprogramming

Microprogramming was widely used some decades ago for microprocessor
design when computer aided design was not as developed and efficient as
it is today. Design errors were quite common and often hidden in corner
cases that would not be detected until the microprocessor was already being
produced and available in the market. Microprograms make it possible to
correct those mistakes by loading new control configurations to an already
commissioned system to update it, even in-field. For our work-case, state-
charts may be implemented as a microprogram by mapping super-states as
concurrent processes. This is the main advantage of microprogramming, as
it allows for even greater flexibility than the previous approaches to control.

Originally microprogramming was developed for FSMs, although it can
be applied to statecharts as well. The main idea behind microprogramming
is replacing the default selection mechanism of the next state in a FSM with
a programmable memory, called the control store, that is used to select the
next state based on a series of conditions. Some of these conditions are
embedded in the microinstructions in the control store, that also hold in-
formation about what actions to perform in the current state, while other
conditions are dependant on the variables of the FSM or statechart, and
the value of the next-state mechanism itself. When the microinstruction is
processed, it evaluates all of the conditions and gets a new microinstruction,
which may represent a transition in the statechart or FSM. Super-states in
statecharts may be mapped as concurrent processes in the microprogram.

Microprograms have some important advantages:

• Hierarchy can be easily implemented in microprograms. Transitions
leaving a parent super-state can be implemented as conditions that
are re-used in all of the children of that state, in all the lower levels of
the hierarchy.

• Microprograms also deal very well with history, since the current value
of the control store can be saved in a separate register while running
a different part of the statechart and later go back to the same point.

• More importantly, and as we have mentioned before, microprograms
are very flexible and easy to update, since after the microprogram
machine has been designed, synthesized and loaded, simply updating
the control store memory is enough to load a new microprogram and

96 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

all of its new microinstructions. This means that statechart imple-
mented by the microprogram can be very easily updated, as it is only
implemented in the list of microinstructions in the control store.

4.4.2 Mapping a statechart into a microprogram

In Section 4.2 we have mentioned a number of papers that have been pub-
lished on statechart synthesis. However it looks like microprogrammed im-
plementations of statecharts have never been proposed. In this section we
present a number of challenges that need to be taken into account when
implementing statecharts with microprograms.

Orthogonality and depth

One of the main challenges of statecharts is how to support concurrency,
implemented as AND-states that communicate among them. The micro-
programmed architecture addresses this as a number of processing elements
running in parallel. Each element is implemented as an independent micro-
program that runs one AND-state. The implementation of the micropro-
grams in micromemories is addressed in detail in Section 4.4.3.

In the original paper by Harel, a digital watch is proposed as exam-
ple, which we recreate in Figure 4.9. It will be used in the remaining of
this chapter as it is complex enough to illustrate all the implementation as-
pects. In it, the main super-state is managed concurrently with the alarm 1

- status, alarm 2 - status, chime - status, light and power super-
states, forming an AND-super-state. At the same time this AND-super-state
is an OR-state to the dead state, since they can only run alternatively. The
hierarchy in the AND-super-state is quite deep, including mainly OR-super-
states, but new AND-states are used in the pairs regular and beep-test

inside displays and display and run inside stopwatch. History is also
used in several super-states, some of them within other super-states that
also use history themselves.

The implementation of OR-states is simple, since the transition from
one state to another is similar to jumping to another process in a sequential
piece of software. Transitioning to an AND-super-state, on the other hand,
involves creating more processes, since the AND-state will have a number of
processes active concurrently inside it. The solution to this is to reserve some

4.4. MICROPROGRAMMED IMPLEMENTATION 97

M
u

lt
i-
a

la
rm

 c
lo

c
k

*
H

re
g

z
e
ro

la
p

o
n

o
ff

ru
n

*

d
is

p
la

y

s
to

p
w

a
tc

h

d
(i
n
 o

n
)

d
(i
n
 o

ff
) d

b

b
b

H
a

a

o
ff

o
n

c
h
im

e

o
u
t d

dH

o
ff

o
n

a
la

rm
 2

d
d

H

h
r

1 m
in

1
0

m
in

u
p
d
a
te

 2 c
c c b

c

d

H
o
ff

o
n

a
la

rm
 1

d
d

H

h
r

1 m
in

1
0

m
in

u
p
d
a
te

 1 c
c c b

c

d

H

a

a

0
0

d
a
te

ti
m

e

w
a
it

c

2
 m

in
 i
n
 u

p
d
a
te

b

c

u
p
d
a
te

m
o
n

d
a
te

d
a
y

h
r

1
0

m
in

y
e
a
r

s
e
c

1 m
in

m
o

d
e

H d

c

cc
c

c

c

c

b
e

e
p

0
1

1
0

b
e
e
p
-t

e
s
t

re
g
u
la

r
2
 s

e
c

in
 w

a
it

2
 m

in
 i
n
 d

a
te

d

d
 (

b
 u

p
)

d

db

b

a

b
d b

d

c

2
 m

in
 i
n

 o
u

t
(n

o
 c

h
a

n
g

e
s
)

d
is

p
la

y
s

m
a

in

a
la

rm
 1

b
e
e
p
s

a
la

rm
 2

b
e
e
p
s

b
o
o
th

b
e
e
p

a
la

rm
s
-b

e
e
p

T
h

it
s

T
1

 (
P

1
)

a
n

y
 b

u
tt

o
n

 p
re

s
s
e

d

3
0

 s
e

c
 i
n

 a
la

rm
s
-b

e
e

p

T
h

it
s

T
2

 (
P

2
)

T
h

it
s

T
1

 (
P

)

d
is

a
b
le

d

a
la

rm
 2

 -
 s

ta
tu

s

d
d

(i
n
 a

la
rm

 2
.o

ff
)

(i
n
 a

la
rm

 2
.o

n
)

e
n
a
b
le

d

d
is

a
b
le

d

q
u
ie

t

O
K

o
ff

c
h
im

e
 -

 s
ta

tu
s

e
n
a
b
le

d

p
o
w

e
r

lig
h
t

d
(i
n
 c

h
im

e
 .
o
n
)

d (i
n
 c

h
im

e
 .
o

ff
)

T
is

w
h
o
le

 h
o
u
r

2
 s

e
c
 i
n

b
e
e
p

b
a

tt
e

ry
w

e
a

k
e

n
s

b

b
e
e
p

b
lin

k

o
n

d
is

a
b
le

d

a
la

rm
 1

 -
 s

ta
tu

s

d
d

(i
n
 a

la
rm

 1
.o

ff
)

(i
n
 a

la
rm

 1
.o

n
)

e
n
a
b
le

d

b

b
a
tt
e
ry

in
s
e
rt

e
d

d
e
a
d

b
a
tt
e
ry

re
m

o
v
e
d

w
e
a
k
 b

a
tt
e
ry

d
ie

s

F
ig

u
re

4.
9:

R
ec

re
at

io
n

of
H

ar
el

’s
ex

am
p

le
of

a
st

at
ec

h
ar

t
to

co
n
tr

ol
a

d
ig

it
a
l

w
a
tc

h
.

98 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

computing resources that are idle while they wait until the AND-super-state
is activated. When activated the reserved resources are used to implement
the children states.

The easy way of doing this is by implementing microinstructions that
are able to send a message to another micromemory, on top of the ability
to transition to a different microinstruction in a different super-state. This
message would trigger the activation of the micromemory, which would load
a specific microinstruction starting the local sub-statechart. The downside
of this approach is that it makes the microinstructions very verbose, so a
different implementation was chosen. In this alternative implementation in-
ner AND-super-states are implemented as a number of ghost microprograms
that are run idle microinstructions until a transition occurs that activates
the AND-super-state. When the AND-super-state is activated it runs reg-
ular, meaningful microinstructions instead of the idle ones. Although this
implementation looks very inefficient, usually ghost microprograms include
significant parts of useful code.

Let us look at the left side of Figure 4.9, specifically the displays super-
state, in main. It is possible to implement the displays super-state as two
microprograms, as shown in Figure 4.10, that we named main and ghost -

main. When the statechart starts the main microprogram does it in time and
ghost - main in beep-test. When button a is pressed the state time tran-
sitions to a sub-state inside the out super-state, with the consequence that
the beep-test super-state is disabled. In our microprograms this translates
to main running fully functional microinstructions, while ghost - main only
runs state transitions that do not update variables or produce outputs.

When the active state is zero inside stopwatch, both the main and
ghost - main microprograms will be running the zero microinstruction,
although in the case of the ghost microprogram the microinstruction will
be idle. If button b is pressed in this moment, the main microprogram will
transition to the super-state display, while the ghost microprogram will
transition to the super-state run, both of them running in parallel and both
of them active and functional. If button a is then pressed, the main mi-
croprogram will transition to the super-state regular, specifically to time,
while the ghost microprogram will transition to the super-state beep-test,
which is also the original or default situation.

4.4. MICROPROGRAMMED IMPLEMENTATION 99

main ghost - main

display display

!me beep-test …

date

wait

update …

out out

alarm 1 … alarm 1 …

update 1 … update 1 …

alarm2 … alarm2 …

update 2 … update 2 …

chime … chime …

stopwatch stopwatch

zero zero

display … run …

alarms-beep ... alarms-beep ...

Figure 4.10: Main and ghost - main microprograms that implement the
displays super-state. The microinstructions in the ghost microprogram
replicate all the transitions taken by the main one, but they only perform
actions when ghost - main runs the microinstructions that implement two
specific AND-states: beep-taste and run. All other microinstructions are
idle microinstructions and are struck-through.

100 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

History

History is one of the main challenges when implementing automatic syn-
thesis of statecharts, as can be deduced from the fact that most papers,
such as [52,56,61], do not consider implementing it. It is also observed that
some restrictions apply in all the cases that we have checked. The main
challenge is actually implementing history inside nested states in a correct
way. Looking at Harel’s example, let us consider again the displays super-
state, which has history when returning from the alarms-beep super-state,
as is declared by the H within the circle. In this case, the last state within
displays that was active when the transition to alarms-beep happened
must resume its operation.

In our implementation, however, history is only kept at the lowest level
super-state for simplicity. This means that only shallow history is supported,
and it is implemented at the lowest super-state level. Each super-state has
a default re-entry state, but if the super-state implements history it will
change the default re-entry state to point to the latest running state, while
super-states that do not implement history will always use the default state.
Applying this to Figure 4.9 means that if it is running in any of the specific
super-states inside displays, and it transitions to alarms-beep and from
there to displays again, it will always return to a pre-defined state. Let us
say the pre-defined states are time and beep-test for example, although
chime could have been the active state. However, if the active state was
1 min in update2, whenever the statechart goes back to update2, it will
also go back to 1 min and not hr, because history works at that level. Al-
though this imposes restrictions on the implemented statechart, history is
still usable in a lot of cases, with possible workarounds in most situations
that engineers should identify.

Microinstruction format

Orthogonality, depth and history are the main challenges to solve when
mapping a statechart into a microprogram. So far we have addressed how
to implement them in a microprogram, and now we will propose a format
for the microinstructions that implements them and study the restrictions
that it forces to the microprogram.

The microinstructions that we propose have two parts, which are shown

4.4. MICROPROGRAMMED IMPLEMENTATION 101

idx 0 cond

condi!ons for transi!ons to a new -instruc!onm

0 D0 target0 idx 1 cond1 D1 target1 … idx n condn Dn targetn idx 0 act 0 … idxm actm

ac!ons for this -instruc!onm

Figure 4.11: Proposed microinstruction format showing n+1 conditions and
m+ 1 actions. The length of most fields depends on the number of allowed
counters, inputs and outputs; or the maximum number of microinstructions
in an AND-super-state.

in Figure 4.11. The first one is a condition evaluation part to decide the
next microinstruction to run. The conditions are evaluated one by one in
the order that they are included in the microinstruction, and when one con-
dition is fulfilled, the remaining ones are ignored. Conditions use inputs
and internal variables as parameters, and are implemented as counters, as
explained in Section 4.4.3. Each condition has a chaining bit (Di) used to
apply the logical expressions and and or to multiple conditions at the same
time. And-ing is applied to a condition by setting its chaining bit to on, so
that it is only valid if the next one is also valid. This can also be applied to
several consecutive conditions, chaining them. Conditions may be or-ed by
setting both (or all) conditions to the same target. Thus, (a+b) ·c→ target
is actually deconstructed into its two basic conditions: a · c → target and
b · c → target. By the way the conditions are evaluated, when one of these
basic conditions is met, the or-ed condition is also satisfied in the micropro-
gram.

The maximum number of conditions that can be evaluated in each mi-
croinstruction is a parameter specified during the design of the microinstruc-
tions. It must be set so that the microinstructions can implement enough
conditions to deal with any changes to the original design, while at the same
time not overloading the condition evaluation unit in highly demanding ap-
plications.

In most cases the number of slots is defined during the design phase to
allow for evaluating any condition. In some specific applications, however,
this might not be the case, and it may be necessary to consider if evalu-
ating conditions in two or even more cycles is acceptable. In this case the
microinstructions will first evaluate a reduced number of conditions, and,
if necessary, change the microinstruction sequence to include more microin-
structions to complete the evaluation of all conditions. Figure 4.12 shows
an example where the evaluation of six conditions with multiple variables

102 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

a
c!

o
n

s…

th
e

_
sta

te
:

if a
e

v
a

l_
a

if b
sta

te
_

n
o

ta
_

b
if c

sta
te

_
 c

e
lse

e
v
a

l_
n

o
tc

…

e
v
a

l_
a

:
if b

sta
te

_
a

b
e

lse
sta

te
_

a
_

n
o

tb
-

-
-

-
-

e
v
a

l_
n

o
tc:

if d
sta

te
_

n
o

tc_
d

e
lse

sta
te

_
o

th
e

rs
-

-
-

-
-

sta
te

_
a

b
:

…
-

-
-

-
…

…

o
th

e
rs

th
e

_
sta

te

cd

a
b

a
b

a
b

c

F
ig

u
re

4
.1

2
:

E
x
a
m

p
le

o
f

a
six

-con
d

ition
evalu

ation
im

p
lem

en
ted

as
fou

r-con
d

ition
m

icroin
stru

ction
s

in
tw

o
step

s.
A

u
x
ilia

ry
sta

tes
e
v
a
l
a

a
n

d
e
v
a
l
n
o
t
c

are
in

clu
d

ed
to

im
p

lem
en

t
a

larger
n
u

m
b

er
of

tran
sition

s
th

an
th

ose
d

irectly
su

p
p

o
rted

b
y

th
e

fo
rm

a
t.

4.4. MICROPROGRAMMED IMPLEMENTATION 103

in a single microinstruction is replaced by up to two microinstructions that
split the conditions between them. In this case the conditions only have
one variable, and not more than four need to be evaluated in each microin-
struction. More specifically, two direct transitions may be taken in the first
microinstruction, which may also divert to two other microinstructions that
evaluate two more conditions each. In most cases splitting conditions like
this is possible, unless the timing requirements are very tight.

The second part of the proposed format determines what actions are ex-
ecuted by each microinstruction. The actions consist of driving outputs and
updating variables, and are associated to the microinstructions themselves
instead of the transitions, making the microprogram behave like a Moore
machine. There are two types of actions: outputs and updates of internal
variables. Each microinstruction has the number of outputs set in the archi-
tecture, and they are managed by selecting the index of the specific output
and the desired coded value to be written. Each output has a predefined
value set by default at start-up. In Section 4.4.3 the outputs are described
in more detail. Internal variables are implemented as counters, explained in
Section 4.4.3, which may updated in several ways. In a similar fashion to
the outputs, counters are implemented in the microinstruction as an index
to each counter and the desired action to apply to it. Each specific value
or action is coded to reduce its footprint in the microinstruction format,
and the indexes for both outputs and counters are included consecutive in
a common list, so it is possible to mix both in the action list.

One of the downsides of this implementation of conditions and actions
in the microprogram is that the length of the microinstructions will grow
more and more when adding conditions and actions. While it is possible to
limit the number of conditions and actions included in each microinstruc-
tion, modern FPGAs have enough resources to allow using tens of memory
blocks without problems. In Section 4.4.5 the decoding of microinstructions
and its resource cost is studied. This opens up the possibility of designing
long microprograms with wide microinstructions for most applications with-
out needing to worry about the resource utilization.

4.4.3 Architecture

In this Section we describe a generic architecture in terms of storing and
accessing the microprogram, evaluating and updating counters, inputs and

104 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

conditions, generating outputs and loading the configuration.

Storage

Microprograms are stored in a number of RAM blocks, usually laid out
horizontally forming a row. The number of blocks in the rows determine
the length of the microinstruction format, so it is possible to increase the
number of conditions and actions just by adding more RAM blocks to the
microinstruction format. There are two ports in each row of RAM blocks,
which allows fetching two microinstructions per cycle. With this implemen-
tation it is possible to host two AND-super-states concurrently in a single
row. If more AND-super-states are needed, more rows can be instantiated
to implement them.

In this way the microprogram is stored in a number of rows of RAM
blocks that are as long as needed by the desired microinstruction length,
hosting up to two AND-super-states per row. AND-super-states include
one or more states or super-states, but even if an AND-super-state includes
a large number of sub-states it should fit in a row, given that RAM blocks
are hundreds or even thousands of data words long and are concatenated
forming rows.

Access to each AND-super-state is granted using one program counter
(PC) register that addresses the memory directly. In case of implementing
history, the PC must be updated in such a way that it keeps record of the
history when switching from one OR-super-state to another. Hence, each
row has a set of history registers that store the entry addresses of OR-states
inside an AND-super-state. Specific values of the PC are substituted by
those stored in the history registers when the jump happens. History is
updated when leaving the current OR-state. This is done using the circuit
in Figure 4.13, that also shows how history is initialized. Usually AND-
super-states do not include a large number of OR-states so in the circuit
eight history registers are implemented, although it would be possible to
implement more for specific applications. Each of these history registers
stores the target address for one OR-state. The circuit in Figure 4.14 uses
the history registers and two PCs to run concurrently two AND-super-states
with history in a single row of RAM blocks.

Whenever the microprogram processes a microinstruction a new value

4.4. MICROPROGRAMMED IMPLEMENTATION 105

History

registers

F Hist 0

...

F Hist 7

3 lsb

PC ANDi

current OR

<8

!=

hist Flag configure

load

1
 0

configure

Configura"on input

Configura"on propaga"on

(a) (b)

hist.state

0 1

0 1

incoming

input Conf.

Figure 4.13: History register and its connection to the PC, which is updated
when leaving the current OR-state. History is initialized at configuration
time as shown in part (b) of the figure.

Micro-program

PC AND 0

PC AND 1

History

registers

History

registers condi!on

management

condi!on

management

ac!ons

Figure 4.14: Circuit that runs up to two AND-super-states. Dual port
memory is concurrently addressed by two PCs. Conditions are evaluated
and actions are taken independently for both super-states. Transitions are
refined using the history and new values for the PC are produced every
cycle.

106 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

jth-counter

ref j-0

ref j-1

comp

comp

>
=
<

>
=
<

configuration
input

configuration
propagation

Update
zero
inc
dec
ref 0
ref 1

+ ref 0
+ ref 1

PC + ref 0

P
C

co
m

m
an

d

Figure 4.15: Scheme of a counter. At configuration time an initial and
reference values are loaded. The counter behaviour is controlled by the
active states.

for the PC (newPC) that will be used in the next cycle is generated. If the
value of newPC is lower than eight, it means that there is a transition to a
different OR-state. In this case the history register of the current OR-state
is updated, and the target address for the new OR-state is fetched from
the history register. The multiplexers and de-multiplexers in Figure 4.13
are used to select the correct register during each operation. Obviously the
super-states that are not designed to have history do not update their his-
tory register, so the default entry state is always used. This implementation
of history is quite soft on its resource utilisation, needing only eight lines in
the micromemory.

Counter operation

Counters are implemented as 32-bit registers connected to a 32-bit adder,
as shown in Figure 4.15. Counters are initially loaded with their initial
value and two reference values. The contents of the counter are updated
in a number of ways by selecting the inputs of the multiplexer, which at
the same time are driven by the active states. The possible ways are re-
set, increment, decrement, set to ref0 or ref1, add ref0 or ref1, and set
to ref0+PC, which is useful in special cases as we will show in Section 4.4.4.

The execution of the microprogram will be controlled by the result of

4.4. MICROPROGRAMMED IMPLEMENTATION 107

ith-input

ref - 0

ref - 1

comp

comp

>
=
<

>
=
<

configuration input

configuration propagation

Figure 4.16: Input comparison. At configuration time two reference values
are loaded. These values are used to calculate the current value with the
reference ones during normal operation.

comparing the value of the counters with their two reference values. These
reference values are not only used for the comparison of the counters but
also for setting new values to the variables, although usually each counter
will only use them in one of those two ways.

Input evaluation

Inputs are implemented in a similar fashion to counters but with a simpler
circuit, since their value can not be changed by the statechart itself. This
circuit is shown in Figure 4.16, and as counters, it includes two comparators
and the needed registers to load and keep the configuration, but without the
multiplexer.

Condition chaining

As explained before, the conditions encoded in the microinstructions dictate
the transitions between states and the operation of the microprogram. These
conditions are included in the microinstruction organized by their priority,
so that when they are evaluated in order and one conditions is evaluated true
the rest are ignored. Each condition has four fields: the first one is the index
of the input or counter that is evaluated by that condition, so its length is set
by the total amount of inputs and counters in the microprogram. The sec-
ond field determines the operation performed by the condition; the options
are checking if the value is equal to, different than, lesser, lesser or equal,
greater and greater or equal that the first or second reference value. The
third field is a single bit (Di) that indicates if the current condition must

108 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

D0

b1

D1

D1

b2

D2

D2

b3

D3

D4

b5

D5

D5

b6

D6

D3

b4

D4

D6

b7

D7

D0

b1

D1

b2

D2

b3

D3

b4

D4

b5

D5

b6

D6

b7

b0

Take address0
D0

Take address1

Take address2

Take address3

Take address4

Take address5

Take address6

Take address7

Figure 4.17: Example of chaining eight conditions. Eventually, all the con-
ditions will activate only one output bit, which sets the transition that will
take place.

4.4. MICROPROGRAMMED IMPLEMENTATION 109

be and-ed to the following one (or ones, concatenating conditions with this
field set). The last field identifies the address of the next microinstruction
if the condition is evaluated true.

Conditions can be chained by the circuit shown in Figure 4.17. In this
implementation up to eight conditions can be chained, but the circuit can be
fitted to a different number of conditions. In the Figure, the result of each
individual evaluation is bi and the Di bit indicates if consecutive conditions
should be and-ed. At the end only one output at maximum will be active,
which sets the address of the microinstruction to be used next cycle. This
can happen in two ways: if an individual, non-and-ed condition is true, OR
alternatively if all of the previous, and-ed conditions are true. This imple-
mentation is equivalent to a multiplexer with a decoded selection signal. If
all conditions are evaluated false, then the same microinstruction will be
repeated next cycle.

Output selection

Outputs work in a similar fashion to counters, with two reference values
loaded at configuration time. The microprogram will select the value to be
written to an output from a list of the reference values and the content of
several counters, controlled by a multiplexer. This is shown in Figure 4.18.
The microprograms implement a number of outputs, although not all of
them may be used by the system. Even more, among the used ones, only
some of them may be activated at the same time, while the other ones
should hold their state until their value changes. This is implemented with
a register and a multiplexer. The outputs may or not be registered, in a
similar fashion to what happens in FPGA’s logic blocks. A flag that drives
the multiplexer is loaded during configuration, since it is expected that this
behaviour does not change during the operations.

Loading configuration

The configuration is loaded word by word using the data network and prop-
agated through the hardware in a serial fashion, in the same way that FP-
GAs are configured using JTAG. For this to be possible all the memories
and registers need to be chained in the propagation of the configuration.
This includes the microprogram, the initial content of the history registers,

110 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

val i-0

val i-1

selec!on value

zero

counter m

counter l

counter k

counter j

counter i

0

1

2

3

4

5

6

7

output reg 0

 1

new output

configuration
input

configuration
propagation

Hold

Figure 4.18: Circuit for output selection. The selection value is retrieved
from the active microinstructions.

the initial and reference values of the counters and the reference values of
the outputs.

Figure 4.19 shows how a microprogram is loaded. There is a configura-
tion counter that is in charge of enabling the write operation to the specified
RAM blocks. In the case of the microprogram in the Figure, there are four
rows with four blocks each. Each block has a width of 32 bits and a depth
of 512 words. Since the input words are 8-bit long, four of them need to be
gathered and concatenated before they can be written to the memory blocks.
This layout can be changed according to the requirements of each specific
microprogram. Figure 4.20 shows a dual port memory block, where each
port is used for one AND-super-state. The most significant bit is hardwired
(’0’ for port A, and ’1’ for port B) to set apart the address space of each
AND-super-state. Port A is the only used during configuration to write all
configuration words.

The configuration of the history registers can be explained using Fig-
ure 4.13. An 8-bit register holds the address of each of the eight potential
target states, and a flag indicates if the super-state is supposed to implement
history or not. The state registers are chained together and the eight flags
are implemented together as an extra register chained to the state registers.

4.4. MICROPROGRAMMED IMPLEMENTATION 111

32-bit

x 512

32-bit

x 512

32-bit

x 512

32-bit

x 512

write port A

PC A

PC B

32-bit

x 512

32-bit

x 512

32-bit

x 512

32-bit

x 512

write port A

32-bit

x 512

32-bit

x 512

32-bit

x 512

32-bit

x 512

write port A

32-bit

x 512

32-bit

x 512

32-bit

x 512

32-bit

x 512

write port A

32

8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address 9

conf. counter

PC A

PC B

PC A

PC B

PC A

PC B

32-bit

shi!

register

Figure 4.19: Load of a microprogram with four rows of four blocks per
row. A simple configuration counter is used to load each word in the right
position, row and memory block.

32-bit

x 512

DinA (only configura$on)

weA (only configura$on)

AddrA

DoutA

AddrB (‘1’ & PC B)

DoutB

conf. counter

‘0’ & PC A

Figure 4.20: Dual port memory block. Two AND-states may be addressed
simultaneously using both ports.

112 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

The load of the reference values to counters and outputs uses the same
chaining method. One 32-bit long initial value and two 32-bit long reference
values are loaded for each of the counters and outputs. The micromemory
is located at the end of the configuration chain to ensure that when the
microprogram is fully loaded, all the other configuration words are loaded
as well.

4.4.4 Case example

Let us go back to the statechart in Figure 4.9 to adapt it as an implementa-
tion example, and show how it would be adapted as a microprogram using
the methodology explained so far. Although the statechart is precisely de-
scribed the architecture that we will design is open for upgrades.

The statechart that implements the digital watch has several inputs: the
four buttons of the digital watch a, b, c and d; and five status inputs la-
belled chimeOnOff, oclock, batteryStatus, testT1 and testT2. The but-
tons have three different possible values, which are 0 (no action), 1 (pressed)
or 2 (released). There are eight counters called Timer1 and Timer2 (with
configurable reference values, that are set to adjust the behaviour of the
watch); displayUpdate; alarmUpdate1 and alarmUpdate2; chimeOnOff;
countStopWatch; and countAlarm. There are four outputs: light, beep,
display (which is actually a complex output that implements all the infor-
mation shown on the display) and change.

Looking at Figure 4.9 seven AND-states have been identified, and rounded
up to eight for the implementation and allow for upgrades. This means that
four rows of dual-ported memory blocks are needed. The super-states are
organised as it is shown in Figure 4.21. The implementation of two of those
states, alarm1 and update1 in main/displays/out, is shown in Figure 4.22.
Transitions can take place by pressing the different buttons or by letting the
Timer2 counter roll up for 120 seconds. Regarding the actions, the current
microinstruction is tracked with the alarmUpdate1 counter. Its value is
sent to the display output to allow the control of the settings of the digi-
tal watch. The reference value ref0 of the alarmUpdate1 counter is set to
X − PC(alarm1), where PC(alarm1) is the value of the program counter
for alarm1, so that the alarmUpdate1 counter sends codes X, X+1, X+2,
etc, to the display. The change output is activated (ref1 = 1) when some

4.4. MICROPROGRAMMED IMPLEMENTATION 113

chime

-

status

alarm1

-

status

poweralarm2

-

status

light

alarms-beep

regular beep-test

out

stopwatch / display

idle(out)

stopwatch / run

idle(alarms-beep)

chime
update2 update1

alarm2 alarm1

time

date

00
0110

11
wait

alarm1
alarm2both

update

Figure 4.21: Example of microprogrammed organisation of states of the
statechart in Figure 4.9. The dashed lines separate the AND-super-states.
The leftmost one carries out most of the load, while its neighbour is
mainly formed by ghost super-states with the exception of beep-test and
stopwatch/run. The other five AND-super-states are very simple but, hi-
erarchically, are at the same level as the main ones.

114 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

n
e

m
o

n
ic

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

co
n

d
i!

o
n

ta
rg

e
t

cn
d

tg
t

cn
d

tg
t

a
c!

o
n

 ta
rg

e
t

a
c!

o
n

 v
a

lu
e

a
c!

o
n

 ta
rg

e
t

a
c!

o
n

 v
a

lu
e

a
T

a
V

a
T

a
V

a
la

rm
1

o
ff

T
im

e
r2

=
=

re
f0

!
m

e
d

=
=

re
f0

o
n

c=
=

re
f0

u
p

d
a

te
1

a
=

=
re

f0
a

la
rm

2
a

la
rm

U
p

d
a

te
1

P
C

+
re

f0
d

isp
la

y
a

la
rm

U
p

d
a

te
1

T
im

e
r2

in
c

o
n

T
im

e
r2

=
=

re
f0

!
m

e
d

=
=

re
f0

o
ff

c=
=

re
f0

u
p

d
a

te
1

a
=

=
re

f0
a

la
rm

2
a

la
rm

U
p

d
a

te
1

P
C

+
re

f0
d

isp
la

y
a

la
rm

U
p

d
a

te
1

T
im

e
r2

in
c

u
p

d
a

te
1

H
r

T
im

e
r2

=
=

re
f0

!
m

e
c=

=
re

f0
1

0
m

in
b

=
=

re
f0

a
la

rm
1

d
=

=
re

f0
in

cH
r

a
la

rm
U

p
d

a
te

1
P

C
+

re
f0

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
in

c

1
0

m
in

T
im

e
r2

=
=

re
f0

!
m

e
c=

=
re

f0
M

in
b

=
=

re
f0

a
la

rm
1

d
=

=
re

f0
in

c1
0

m
in

a
la

rm
U

p
d

a
te

1
P

C
+

re
f0

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
in

c

M
in

T
im

e
r2

=
=

re
f0

!
m

e
c=

=
re

f0
a

la
rm

1
b

=
=

re
f0

a
la

rm
1

d
=

=
re

f0
in

cM
in

a
la

rm
U

p
d

a
te

1
P

C
+

re
f0

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
in

c

in
cH

r
T

im
e

r2
=

=
re

f0
!

m
e

T
im

e
r2

<
>

re
f0

H
r

C
H

A
N

G
E

re
f1

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
=

 0

in
c1

0
m

in
T

im
e

r2
=

=
re

f0
!

m
e

T
im

e
r2

<
>

re
f0

1
0

m
in

C
H

A
N

G
E

re
f1

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
=

 0

in
cM

in
T

im
e

r2
=

=
re

f0
!

m
e

T
im

e
r2

<
>

re
f0

M
in

C
H

A
N

G
E

re
f1

d
isp

la
y

a
la

rm
U

p
d

a
te

1
T

im
e

r2
=

 0

F
ig

u
re

4
.2

2
:

M
icro

-co
d

e
ex

a
m

p
le

for
tw

o
selected

su
p

er-states.
T

h
e

form
at

su
p

p
orts

u
p

to
six

tran
sition

s
an

d
fo

u
r

a
ctio

n
s.

S
o
m

e
tra

n
sitio

n
s

are
h

igh
ligh

ted
w

ith
arrow

s
for

th
e

sak
e

of
clarity.

C
on

d
ition

-ch
ain

in
g

b
its

are
n

ot
sh

ow
n

.
B

o
th

su
p

er-sta
tes

su
p

p
ort

h
istory.

4.4. MICROPROGRAMMED IMPLEMENTATION 115

value is updated.

In the whole statechart there are nine inputs and eight counters, which
are rounded up to sixteen of each and encoded using five bits for the condi-
tion evaluations (index). In the digital watch statechart there are no more
than four possible transitions from each state, although two more are added
to each microinstruction for possible future upgrades. Each transition has
five bits for the input/counter index, two bits for the comparisons (equal,
greater and lesser), one bit for the reference values (refj0 and refj1), one
bit to invert the comparison, one bit for chaining conditions and eight bits
with the target address. This means that the condition evaluation section
of the microinstructions has a length of 108 bits (eighteen bits times six
conditions).

On top of the conditions there are up to three possible actions for each
state of the statechart, which we increased to four to allow upgrades. The
actions can apply to the sixteen counters previously implemented and the
four outputs, that we increased again to sixteen, so that five bits are also
needed to encode the action targets. We proposed eight operations on each
counter or output, which can be encoded with three bits. This adds up to
eight bits per action, totalling 32 bits for the four actions. Added to 108 bits
of the conditions, the total length of the microinstructions is 140 bits. Us-
ing 32-bit words on each memory block yields that the memory rows should
have a width of five blocks. This means that the actual implementation of
the digital watch statechart is quite similar to the one shown in Figure 4.19
but with a more complex counter. The complex counter is needed because
of the five memory blocks, which is not a power of two.

To sum up, our proposed implementation of Harel’s digital watch using
microprograms uses four rows of five memory blocks each; sixteen inputs,
sixteen counters and sixteen outputs. Of those, seven inputs, eight counters
and twelve outputs are not used and are only intended for future upgrades.
One additional AND-super-state could also be implemented in the upgrade,
as well as adding several microinstructions to any of the super-states.

4.4.5 Evaluation

The actual amount of resources that a specific microprogram needs to run
on an FPGA depends on the number of inputs, counters, outputs and mem-

116 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

Component Logic blocks Flip-flops RAM memories

AND-super-states 872 83 20
Counters 247 96
Inputs 56 64
Outputs 225 97

Total 16203 4776 20

Hardwired 131 140 -

Table 4.3: FPGA resources utilisation by our implementation of the digital
watch in Figure 4.9.

ory blocks that store the microprogram. Given the numbers obtained in the
previous sections, Table 4.3 shows the resources for our implementation, and
a comparison to the same statechart implemented in VHDL by hand. One
must keep in mind that these numbers are for our presented implementation,
and that different implementations will achieve different results. Our mi-
croprogrammed implementation also left plenty of room for future upgrades
(about half the resources), which are not taken into account on the hard-
wired implementation. This is noticeable in the large number of resources
taken up by big multiplexers that deal with the inputs, counters and outputs.
As it can be seen from the comparison to the hardwired implementation,
a significant overhead exists for the microprogrammed implementation, but
one must take into account that resources are quite inexpensive with current
technology, and that the advantages and flexibility of updating the config-
uration without resynthesizing the design are critical for some applications,
such as the miniIOCs at ESS.

Logic blocks or look-up tables (LUTs), which are the pure logic of the
hardware, are as expected the most used resource, as a consequence of the
large multiplexers needed by the inputs, counters and outputs. The imple-
mentation of this design is not a problem in modern hardware, as it can fit
in all Xilinx Artix-7 devices except the two smallest ones (12T and 15T),
and at least four times in any Xilinx Kintex-7 FPGA [29]. We must also
take into account that Harel’s statechart is deliberately complex in order to
showcase all the functionalities of statecharts. This design had 753 lines of
code, compared to the 569 of the handwritten implementation.

We have evaluated the clock speed of this implementation running on
the Xilinx xC7A25T and xC7K70T devices using average speed grades. The

4.4. MICROPROGRAMMED IMPLEMENTATION 117

Hand-coded Microprogrammed

Lines of code 148 689
Logic blocks 24 8416
Flip-flops 43 1872
RAM memories 8
Delay (ns) 1.29 8.56

Table 4.4: Comparison of the resource utilisation for the statechart in Fig-
ure 4.1.

minimum speed was 115 MHz, which is enough for most applications. The
delay was 8.70 ns, much slower than the handwritten implementation, due
to the use of memory blocks and large multiplexers.

The data for the statechart in Figure 4.1 is shown in Table 4.4. It is
worth pointing out that, even if this statechart is much simpler than Harel’s
watch, the number of lines of code is similar in both cases, since many of
the components are the same, although different amounts are instantiated
in the designs. The number of logic blocks and flip-flops is half compared
to Harel’s watch while the delay is similar, another example of the overhead
that the microprogrammed architecture introduces. In particular the de-
lay is a consequence of the access to the RAM memories and propagating
the signals through large multiplexers, whose delay increases logarithmically
with the number of inputs.

118 CHAPTER 4. AUTOMATED SYNTHESIS OF STATECHARTS

Chapter 5

Conclusions

In this thesis we have presented the ESS timing system and some contribu-
tions that we have made for it. One of them is the standalone mode for the
EVRs, very important because of the in-kind, disperse nature of the ESS
project. The standalone mode has permitted the test of the ESS systems
and devices all over Europe without deploying a complete timing system in
each location, which would have multiplied the price of the deployments.
It has also allowed to test different subsystems concurrently and indepen-
dently of each other even in the same location, since it has been possible to
keep one subsystem running while another is down, without depending on
a single node that affects all the different subsystems.
A proof of concept of the miniIOC was developed by the same author of
this thesis but before it started. Later during this thesis the description and
specification of the miniIOC was developed and refined from the proof of
concept, and its requirements gathered. An in-kind partner is developing
the miniIOC according to the specifications provided. The miniIOC is ex-
pected to be a low-cost solution for providing synchronization in constrained
or difficult to access spaces.
The supercycle application, whose specification and requirements where de-
fined during this thesis, will be a crucial tool for commissioning of the ac-
celerator and target. It will allow for ramping up the proton beam steadily
in an automated way.

The events and data items are the fundamental pieces of the ESS timing
system. During this thesis the timing requirements for each of the ESS sys-
tems were gathered and an implementation strategy was developed. Later
the event and data items lists were created fulfilling the requirements and

119

120 CHAPTER 5. CONCLUSIONS

strategy. Also the EPICS databases that organize the data items in the
data buffer for easy access and availability were written, and some basic
event sequences with their respective delays were generated. These lists are
already being used by some subsystems.

A tool for automatically implementing statecharts as VHDL code was
written. It will allow for reducing the manpower needed to deploy and up-
date miniIOCs with timing capabilities when they are available, although it
can be used for any other system that can be described as a statechart. The
tool has proven to be able to generate synthesizable code that is free of errors,
although somewhat more verbose than the equivalent hand-written VHDL
code. Regarding the resource utilisation, however, there is little difference
between the code generated by the tool and the hand-written one. This tool
will be used for creating the firmware for the miniIOC and embedded EVRs.

An alternative methodology to the previous tool has also been developed,
based on microprogramming. This methodology would allow upgrading the
functionality of FPGA-based devices or even ASICs without re-synthesising
any code, just the upgraded microcode would need to be loaded in the device.
This would allow keeping the system up-to-date even if the target devices
or design tools are not supported any more. The amount of resources of
this implementation compared to the hand-written would be, however, one
to two orders of magnitude higher. This should not be an issue with the
amount of resources present in modern devices.

5.1 Future work

There is still room for some improvements in the ESS timing system. One of
them is the EPICS layer support for delayed gated signals in the EVRs and
for backplane lines inputs in the mTCA-EVR-300(U), which are available
in the latest version of the firmware.

Regarding the tool for generating HDL code from a statechart descrip-
tion, a number of improvements are planned:

• New versions of Yakindu can include priority in the transitions, so if
several events (or conditions) that trigger different transitions from a
unique state are raised, the statechart can determine exactly which
transition should take place. In previous versions of Yakindu it was

5.1. FUTURE WORK 121

the designer’s responsibility to ensure that no such situations would
happen, or the statechart would behave in an undefined way. This
priority specification gets reflected in the XML file that describes the
statechart and that is used as the input for our tool. When we started
designing our tool priority was still not supported in Yakindu, so our
tool does not support it either. In future versions of our tool priority
can be implemented.

• Support for different HDL languages, such as Verilog (at the moment
our tool can only create VHDL code). This would be done by extract-
ing the lines that write to the output file to a centralised place and
replacing them with macros or string-type variables that can then be
easily configured in only one place.

• Remove the requirement that only allows statecharts without tran-
sitions between different regions. This new version for the tool has
already been planned. The upgrade would require that each VHDL
process monitors all of the transitions in the statechart, and not only
those transitions in the regions of the hierarchy tree branch where the
current region is.

• Support for deep history. In the current version our tool only imple-
ments shallow history, which means that a history node needs to be
added to each region in all levels of the hierarchy that require to re-
sume the latest running state when the region is re-activated. With
deep history support only one history node would be needed, that
would remember the running state in all levels of the hierarchy within
the region where the history node is. Although the lack of deep his-
tory does not limit in any way the functionality of statecharts, since an
equivalent statechart can always be created using only shallow history,
deep history allows creating simpler statecharts.

Regarding the microprogrammed based methodology, we intend to de-
velop a protocol with which it would be possible to update the microcode
using the data connection. This methodology could also be included in our
tool, so that the tool could create the firmware for the microprogrammed
deployment.

122 CHAPTER 5. CONCLUSIONS

5.2 Publications derived from this thesis

Here we present a list of publications derived from this thesis:

• J. Cereijo Garćıa, T. Korhonen, J. H. Lee, R. R. Osorio, and D. Piso
Fernández, ”Timing system at ESS”, in 8th Int. Particle Accelerator
Conf. (IPAC17), 2017.

• J. Jamroz, J. Cereijo Garćıa, T. Korhonen, and J. H. Lee, ”Timing sys-
tem integration with MTCA at ESS”, in 17th Biennial International
Conference on Accelerator and Large Experimental Physics Control
Systems, 2019.

• J. Cereijo Garćıa and R. R. Osorio, ”Hardware implementation of
statecharts for FPGA-based control in scientific facilities”, in XXXIV
Conference on Design of Circuits and Integrated Systems, DCIS, pp.
1-6, 2019.

• J. Cereijo Garćıa and R. R. Osorio, ”A microprogrammed approach
for implementing statecharts”, in Euromicro Conference on Digital
System Design, 2019, pp. 27-34, 2019.

• J. Cereijo Garćıa and R. R. Osorio, ”Comparison of hardwired and
microprogrammed statechart implementations”, in MDPI Electronics,
2020.

Appendix A

Beam modes

Table A.1 shows a list of the ESS beam modes and their characteristics.

123

124 APPENDIX A. BEAM MODES

Table A.1: ESS beam modes. Source: [2].

Name Beam envelope Description Average
power at
2 GeV

0 None No beam No beam
1 Probe

beam
0 to 5 µs, 0 to
1 Hz, 6 mA

First beam through a particular section; non-
damaging even in the case of total beam loss
(even repeated); used to verify that machine
configuration is not grossly incorrect

60 W

2 Fast
Tuning

0 to 5 µs, 0 to
14 Hz, 0 to 62.5
mA

Limited beam loading; used for fast scans to
rapidly determine/verify RF setpoints and mea-
sure beam profiles with wire scanners

8.5 KW

3 Slow
Tuning

0 to 50 µs, 0 to
1 Hz, 0 to 62.5
mA

Longest pulses that allow operation of invasive
proton beam instrumentation devices like wire
scanners; long enough beam pulses to diagnose
and monitor RF feedback and the onset of beam
loading; used to perform more precise single-
pulse measurements

6 KW

4 Fat
Probe

0 to 5 µs, 0 to
1 Hz, 0 to 62.5
mA

Very short pulse to be used during Warm Linac
commissioning. It would allow installation of
the rest of the Linac in parallel to Beam Com-
missioning. It would not be used after commis-
sioning

600 W

5 Slow
Studies

0 to 50 µs, 0
to 0.1 Hz, 0 to
62.5 mA

Short pulse to be used during Warm Linac com-
missioning. It would allow installation of the
rest of the Linac in parallel to Beam Commis-
sioning

600 W

6 Long
Pulse
Verifica-
tion

0 to 2.86 ms, 0
to 1/30 Hz, 0 to
62.5 mA

Only used when machine reasonably tuned to
the tuning dump or the target; slowly-increasing
pulse lengths are used to tune RF feedforward,
verify beam loading and Lorentz force detun-
ing compensation, and tune for low beam losses.
If possible, intermediate short pulses at 1Hz
should be supplied to monitor stability between
long pulses

15 KW

7 Shielding
Verifica-
tion

Low power
(∼30 kW),
nominal en-
ergy and peak
current

To be defined better once the exact require-
ments for the shielding verification (power, pulse
length) are known

∼30 kW

8 Production 2.86 ms, [1-14]
Hz

Production 5 MW

Appendix B

Beam destinations

Table B.1 shows a list of the possible destinations of the proton beam at ESS.

Table B.1: ESS beam destinations.

Number Beam destination

0 No destination (initial state)
1 LEBT Faraday Cup (FC)
2 MEBT FC
3 DTL 2 FC
4 DTL 4 FC
5 Spokes FC
6 MBL Beam Stop
7 Tuning Dump
8 Target

125

126 APPENDIX B. BEAM DESTINATIONS

Appendix C

Resumen en castellano de
esta tesis

Las instalaciones industriales y cient́ıficas se están volviendo cada vez más
complejas para resolver nuevos desaf́ıos y volverse más eficientes. Esto afecta
al equipamiento que forma parte de estos centros, pero también, y quizás
aún más importante, los sistemas que integran todos estos dispositivos para
que puedan trabajar conjuntamente para cumplir con el objetivo de la in-
stalación. Uno de estos sistemas es el de control, que es responsable de
administrar el resto de sistemas para que funcionen de la manera correcta y
al uńısono. Los sistemas de control son redes complejas formadas por hard-
ware, software y sus respectivas configuraciones, y que se integran entre śı
para controlar con éxito la máquina o instalación. Estos sistemas de control
aumentan su complejidad según también se incrementa la de los dispositivos
que controlan, y lo hace de forma exponencial cuando el número de equipos
y sistemas aumenta, ya que todos ellos deben de ser administrados y con-
figurados de forma compatible y conjunta. También es muy importante que
los sistemas de control sean implementados sin errores, ya que la alta com-
plejidad de estos sistemas hace que la probabilidad de errores aumente, que
sean más dif́ıciles de solucionar y que tengan consecuencias más graves, que
pueden incluso evitar el funcionamiento de la instalación, dañarla o incluso
herir a personas. Por esta razón está aumentando el uso de herramientas que
automatizan y simplifican el diseño, desarrollo, instalación y puesta a punto
de los sistemas de control, para conseguir centros mejores, más seguros y
más fiables.

Un tipo de centros que necesitan avanzados sistemas de control son las

127

128 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

fuentes de neutrones. Estas instalaciones producen neutrones que son muy
útiles para la investigación en diversas disciplinas como la ingenieŕıa de ma-
teriales, f́ısica fundamental, productos farmacéuticos, etc. Esto es debido
a que los neutrones tienen ciertas caracteŕısticas especiales como que su
enerǵıa y escala de longitud se pueden ajustar para procesos atómicos y
moleculares, que se pueden usar como sondas débilmente acopladas, y que
pueden penetrar de forma profunda y sin causar daños en las muestras bajo
estudio, que dispersa los neutrones en haces que crean patrones espećıficos.

La European Spallation Source (Fuente Europea de Espalación) es una
instalación cient́ıfica para la investigación con neutrones que está actual-
mente en fase de diseño y construcción en Lund, en el sur de Suecia. Una
parte de la European Spallation Source, el Data Management and Software
Centre (Centro de Gestión de Datos y Software) está situada en Copenhague,
en Dinamarca, donde los datos producidos por los experimentos se enviarán
y serán procesados y almacenados. Cuando esté terminada y entre en fun-
cionamiento, la European Spallation Source será la fuente de neutrones más
grande del mundo. Está formada por un acelerador lineal que dispara un
haz de protones a un blanco que produce neutrones por el proceso de es-
palación. Los neutrones son luego guiados a un conjunto de experimentos
que se utilizan para realizar investigación en diferentes disciplinas. La Eu-
ropean Spallation Source es una colaboración entre varios páıses europeos,
que diseñan y construyen las diferentes partes y sistemas por toda Europa
como un proyecto en especie, y que env́ıan las distintas partes y sistemas a
Lund, donde se ensamblan juntas.

El entorno software que se usa en la European Spallation Source es
EPICS, el Experimental Physics and Industrial Control System (Sistema de
Control Industrial y de F́ısica Experimental). EPICS es de código abierto y
desarrollado por la misma comunidad de instalaciones cient́ıficas e industri-
ales. En cuanto al hardware utilizado en la European Spallation Source, la
mayor parte está en el factor de forma µTCA, especialmente aquellas apli-
caciones que requieren un procesado rápido, de hasta cientos de MBytes por
segundo. Uno de estos sistemas es el sistema de temporización. El sistema de
temporización se encarga de sincronizar todos los dispositivos entre śı y con
el mundo exterior a la instalación o centro. Esta sincronización con el mundo
exterior generalmente se realiza conectándose a una fuente externa, como el
GPS (Global Positioning System o Sistema de Posicionamiento Global), del
cual el sistema de temporización deriva su referencia de tiempo y que utiliza
para sincronizar la instalación. Los sistemas de temporización generalmente

129

tienen un nodo maestro que define la referencia temporal absoluta para el
centro, disciplinada por la fuente externa, y la env́ıa al resto del sistema de
temporización, formado por nodos esclavos. El nodo maestro también es el
punto central desde donde se gestionan la operación y la configuración del
sistema de temporización, y que codifica esta configuración para enviarla a
los nodos esclavos y que éstos la puedan utilizar. Los nodos esclavos reciben
la referencia temporal y la información enviados por el nodo maestro y reac-
cionan según estén configurados para ello. Las reacciones t́ıpicas son el env́ıo
de señales de activación precisas y registro temporal de diferentes señales y
acontecimientos.

Hay una serie de desaf́ıos que el sistema de temporización necesita su-
perar para cumplir sus objetivos correctamente. La más importante es la
sincronización de la instalación. Para lograr la sincronización, es necesario
definir un reloj maestro común y enviarlo al resto de los nodos del sistema
de temporización. Si esto no se hace, y se decide que cada uno de los nodos
mantenga su propio reloj, cada uno de ellos con la misma frecuencia, aparece
un problema enseguida: incluso si los relojes están desfasados en sólo una
fracción de una parte por millón, dada la frecuencia con la que funciona el
sistema de temporización, generalmente alrededor de 100 MHz, en cuestión
de unos pocos segundos los nodos se desfasarán entre śı en más de un ciclo
de reloj. La única solución para evitar esto es definir y distribuir un único
reloj maestro común que sea compartido por todos los nodos. Además de
definir el reloj común, es también necesario definir un momento en el tiempo
que actúe como referencia temporal y distribuir ese momento sin retardo a
todos los nodos del sistema. Como esto no es posible, especialmente dado
que los nodos que necesitan sincronización están muy lejos unos de otros,
en algunos casos a cientos de metros o incluso a kilómetros de distancia,
se necesita una solución alternativa, que implica calcular el retardo de la
transmisión entre los nodos para poder calcular luego la referencia temporal
original en todos los nodos. De esta forma forma se consigue que los nodos
compartan la misma frecuencia, ya el reloj que todos ellos usan es el mismo,
y la misma fase, después de calcular y corregir el retardo, todo ello dentro
de unos rangos de desviación aceptables.

Para compartir el reloj entre todos los nodos del sistema de tempo-
rización, en concreto el reloj que define el nodo maestro, se usan lazos de
seguimiento de fase, o PLLs por sus siglas en inglés (Phase-Locked Loops).
Estos dispositivos reciben como entrada la señal del nodo maestro y medi-
ante un lazo de realimentación vaŕıan su salida hasta que ésta coincide con

130 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

la entrada. En este momento el lazo de seguimiento de fase está sincronizado
con la entrada, y su señal se utiliza internamente en los nodos esclavos del
sistema de sincronización. Esto también permite la recuperación del reloj
de entrada.

Existen una serie de tecnoloǵıas disponibles actualmente para la sin-
cronización de sistemas. Las más importantes son el Network Time Protocol
(NTP) que consigue sincronización hasta el nivel de milisegundos, el Preci-
sion Time Protocol (PTP) hasta microsegundos y, ya en el rango de nanose-
gundos, White Rabbit y el sistema de temporización de Micro-Research
Finland (MRF). En concreto el hardware del sistema de Micro-Research
Finland es el que se emplea en la European Spallation Source.

El sistema de temporización de la European Spallation Source está for-
mado por un nodo maestro, llamado generador de eventos, que env́ıa even-
tos y otra información de sincronización y temporización a los receptores de
eventos, que reaccionan a estos eventos de la forma en la que están configura-
dos para ello, principalmente enviando señales de activación perfectamente
sincronizadas a los diferentes dispositivos que forman parte de la European
Spallation Source. En el contexto del sistema de temporización, un evento
es una señal momentánea y enumerada. Además de distribuir eventos y
enviar las señales de activación a los diferentes dispositivos, el sistema de
temporización también distribuye una serie de relojes obtenidos a partir del
reloj maestro común mediante división entre números enteros positivos y
un buffer con información relacionada con el haz de protones y que se ac-
tualiza en cada ciclo del haz. También proporciona toda la funcionalidad
necesaria para asignar etiquetas de registro temporal a todos los eventos y
sucesos importantes que ocurren en la European Spallation Source, de forma
que todas las etiquetas están referidas a un sistema de referencia temporal
común, para poder después comparar toda la información y sucesos entre
ellos. Micro-Research Finland proporciona la mayoŕıa de los nodos del sis-
tema de temporización de la European Spallation Source. Este hardware se
ha empleado en múltiples otras instalaciones con muy buen rendimiento.

El reloj maestro común que utiliza el sistema de temporización, de
88.0525 MHz, se obtiene a partir de dividir la señal de radio frecuencia
que alimenta el equipamiento de aceleración del haz de protones entre cua-
tro, de forma que las señales enviadas por el sistema de temporización están
sincronizadas con la señal de radio frecuencia. Además en cada ciclo de este
reloj maestro se env́ıa un único evento de ocho bits (por lo que hay 256

131

diferentes eventos posibles) y bien un byte de ocho bits del buffer con la
información relacionada con el haz de protones y que se copia del generador
de eventos a todos los receptores de eventos o bien una muestra de cada
uno de los ochos relojes derivados del reloj maestro. El buffer de datos y
los relojes derivados se env́ıan en ciclos alternativos, de forma que en un
ciclo se env́ıa un evento y un byte del buffer y en siguiente ciclo otro evento
y una muestra de los relojes, y aśı consecutivamente. A esta transmisión
se le aplica además el protocolo 8b/10b, de forma que la frecuencia real
de la transmisión entre el generador de eventos y los receptores de eventos
del sistema de temporización es veinte veces la frecuencia del reloj maestro.
Además el sistema de temporización se encarga de crear la estructura del
haz de protones, que tiene una longitud máxima de 2.86 milisegundos y una
frecuencia de repetición de 14 Hz. Todas estas frecuencias y tiempos los crea
el sistema de temporización a partir del reloj maestro común.

Los eventos que env́ıa el sistema de temporización pueden tener varios
oŕıgenes: una lista con una secuencia de eventos y el retardo entre todos
ellos presente en todos los nodos del sistema (aunque por lo general sólo
la secuencia del generador de eventos se env́ıa a toda la red, las secuencias
de los receptores de eventos son normalmente sólo locales), unos contadores
multiplexados presentes sólo en el generador de eventos, canales de entradas
presentes en todos los nodos, y por último también es posible forzar la ac-
tivación de un evento por software. Además se env́ıan también de forma
automática los eventos que emplea el mecanismo de etiquetado temporal de
datos. Estas etiquetas tienen dos partes: un número que es el tiempo UNIX,
enviado una vez por segundo desde el generador de eventos a los receptores
de eventos estando sincronizado a un receptor GPS, y una segunda parte
local a cada receptor de eventos y que es un simple contador que cuenta
ciclos del reloj maestro. De esta forma la granularidad de las etiquetas de
referencia temporal es de aproximadamente 11.357 nanosegundos.

El hardware del sistema de temporización producido por Micro-Research
Finland empleado en la European Spallation Source son el mTCA-EVM-300,
que combina en una misma tarjeta un generador de eventos y un módulo de
distribución múltiple y el mTCA-EVR-300(U) y el PCIe-EVR-300DC, estos
dos últimos receptores de eventos. Los receptores de eventos cuentan con
una memoria de acceso aleatorio (RAM por las siglas en inglés de Random
Access Memory) que indica cómo reaccionar a cada evento, generadores de
pulsos que crean señales de activación configurables a partir de los eventos,
divisores que crean relojes derivados del reloj maestro, diferentes canales

132 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

de entrada y salida, el mecanismo de etiquetado de referencias temporales,
un buffer de eventos y el buffer de parámetros relacionados con el haz de
protones.

La integración del sistema de temporización en el sistema de control
basado en EPICS está hecha con el módulo de EPICS mrfioc2. Este módulo
cuenta con los módulos del kernel, mapas de registros, soporte de dispos-
itivos y las tablas de datos necesarios para controlar todos los nodos del
sistema de temporización.

El sistema de temporización tiene una serie de requisitos que vienen
dados por los sistemas que necesitan temporización y sincronización en la
European Spallation Source. Básicamente estos requisitos tienen que ver
con la sincronización de los distintos dispositivos y las interfaces del sistema
de temporización. Los principales sistemas que utilizan la información dis-
tribuida por el sistema de temporización son los detectores de neutrones,
los choppers que dan forma a los haces de neutrones, el blanco rotatorio
que libera neutrones, los sistemas de aceleración de protones, la fuente de
protones, los choppers de protones, los sistemas de protección y la instru-
mentación del haz de protones.

Además del estudio, implementación e integración del sistema de tempo-
rización para la European Spallation Source, en esta tesis se han hecho una
serie de contribuciones para este sistema de temporización. Entre las más
importantes destaca un nuevo modo de funcionamiento de los receptores
de eventos, de forma que éstos puedan trabajar independientemente de un
generador de eventos, pero aun aśı generando eventos y etiquetando tem-
poralmente los datos. Éste ha sido un modo de funcionamiento muy usado
en el diseño de la European Spallation Source debido a su naturaleza como
proyecto en especie, ya que ha permitido instalar sistemas de temporización
locales sólo formados por un receptor de eventos, lo que ha abaratado los
costes de diseño de forma distribuida de la European Spallation Source por
toda Europa. En concreto durante el desarrollo de esta tesis en esta insta-
lación se ha detectado la necesidad de este modo, del que se han escrito
los requisitos que se han enviado a Micro-Research Finland, que los ha im-
plementado en el firmware de los receptores de eventos. De vuelta en la
European Spallation Source este método se ha integrado en mrfioc2, se ha
testeado y se ha escrito documentación y ejemplos de uso.

Otra contribución hecha durante esta tesis para el sistema de tempo-

133

rización es el desarrollo, entre la European Spallation Source y un centro
colaborador, de una tarjeta con un receptor de eventos empotrado que se
empleará para ofrecer los servicios del sistema de temporización en local-
izaciones remotas o de dif́ıcil acceso, de forma que no sea necesario instalar
un receptor de eventos de Micro-Research Finland y todo su equipamiento
acompañante en estas localizaciones. Esta tarjeta está basada en una Zynq
de Xilinx, que incluye en un mismo sustrato una FPGA y un procesador.
La FPGA es necesaria para recibir y procesar en tiempo real, y aun más
importante, de forma determinista, las señales del sistema de sincronización
y actuar en consecuencia, creando señales y sincronización y etiquetando
temporalmente distintos datos y señales. El procesador es necesario para
integrar esta tarjeta en el sistema de control de la European Spallation
Source. Además de esto la tarjeta cuenta con un conector FMC (FPGA
Mezzanine Card) para ofrecer flexibilidad en las interfaces, pudiendo insta-
lar en este conector módulos con la interfaz deseada.

También se ha ideado una aplicación de alto nivel que se utilizará durante
los procesos de puesta a punto de la instalación de la European Spallation
Source y durante los procesos de encendido, que permite definir una serie de
secuencias de eventos y de parámetros relacionados con el haz de protones
que se ejecutan automáticamente y de forma sincronizada una después de
otra, permitiendo controlar al detalle cómo funciona la instalación para ir
progresando poco a poco comprobando constantemente que todos está suce-
diendo como se espera. El diseño en śı no forma parte de esta tesis, pero śı
forma parte la recogida de los requisitos para esta aplicación de alto nivel,
el diseño de la interfaz entre la herramienta y el sistema de temporización y
la colaboración para el diseño del motor que traduce las caracteŕısticas de
los haces de protones deseados por los operadores a eventos y parámetros
incluidos y distribuidos por el sistema de temporización.

También durante el desarrollo de esta tesis se han estudiado los requisi-
tos de todos los sistemas de la European Spallation Source y se han diseñado
la estrategia y las listas de eventos y de parámetros relacionados con el haz
de protones, de forma que estas listas sean compatibles con el sistema de
temporización. Se han implementado estas listas en el protocolo que utiliza
el sistema de temporización, y se ha desarrollado una estrategia para imple-
mentar el control y la configuración del generador de eventos y los receptores
de eventos, de forma que todos éstos entiendan y reaccionen correctamente
a estas listas.

134 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

Lo que no se incluye en el diseño de la tarjeta con el receptor de eventos
empotrado antes mencionada es el diseño del firmware que implemente la
funcionalidad del receptor de eventos. Teniendo en cuanta las caracteŕısticas
de la propia tarjeta y el uso que se va a hacer de ella, hay una serie de cosas
que hay que tener en cuenta a la hora de diseñar este firmware. En primer
lugar el propio conector FMC hace que se necesite mucha flexibilidad en el
firmware, o al menos que cambiarlo y actualizarlo sea muy sencillo. Otra es
que el firmware debe de usar la menor cantidad de recursos posible. Mien-
tras que los receptores de eventos normales trabajan conjuntamente con
otros dispositivos, de forma que cada dispositivo está especializado en una
sola tarea, en el caso de la tarjeta con el receptor de eventos empotrado este
dispositivo debe de realizar por śı mismo un gran número de tareas muy
diferentes entre śı. Alguna de estas tareas puede que necesite recursos de
la FPGA, por lo que es necesario que la ocupación de los recursos de la
FPGA por parte del sistema de temporización debe ser lo menor posible,
llegando incluso a tener implementaciones espećıficas para cada función de
la tarjeta. Todo esto hace que sea necesario implementar e instalar difer-
entes firmwares de forma rápida y sencilla, y con el menor número posible
de errores. Esta última parte es muy importante, ya que al reimplemen-
tando y actualizando el firmware constantemente, la probabilidad de errores
crece. Por esta razón, y como parte de esta tesis, se han desarrollado una
herramienta y una metodoloǵıa para implementar sistemas de control, tal y
como el sistema de temporización, en FPGAs de forma rápida y reduciendo
al máximo el número de errores.

Tanto la herramienta como la metodoloǵıa están basadas en statecharts,
una ampliación de máquinas de estados finitos que permiten describir sis-
temas de forma gráfica en base a estados y transiciones, desarrollada por
Harel. Al contrario que las máquinas de estados finitos, donde sólo un es-
tado puede estar activo en cualquier momento, las statecharts pueden tener
varios estados activos a la vez. Esto es posible gracias a una serie de car-
acteŕısticas de las statecharts, entre las que destacan la ortogonalidad o
concurrencia, la profundidad o jerarqúıa y la historia. Estas caracteŕısticas
son las que solucionan el principal inconveniente de las máquinas de estados
finitos, que es que su complejidad crece enormemente cuando se añaden más
y más estados y transiciones. La ortogonalidad o concurrencia de las stat-
echarts permite definir varios estados que están activos a la vez de forma
paralela, y que funcionan de forma casi independiente. La profundidad o
jerarqúıa permite agrupar estados o incluso máquinas de estados completas
dentro de otro estado, de forma que actuando sobre el estado padre (ac-

135

tivándolo o desactivándolo, es decir, realizando transiciones que lleven a él
o salgan de él) se actúa a la vez sobre toda la parte de la statechart incluida
en él, todo esto de forma sencilla. Los estados que incluyen otros estados
dentro de ellos se llaman super-estados. Por último la historia permite un
mejor control del funcionamiento del sistema, permitiendo que se retomen
acciones o situaciones tal y como estaban ocurriendo antes de que se de-
sactivaran. También, y gracias a que las statecharts son representaciones
gráficas, son muy sencillas de comprender.

En esta tesis también se analiza el estado del arte en cuanto a la imple-
mentación en hardware de statecharts de forma automática. Aunque hay
numerosos estudios y aplicaciones que han intentado realizar esta imple-
mentación automática, todos ellos sufren de diferentes problemas, principal-
mente en lo que se refiere a la historia, que nunca se llega a implementar
satisfactoriamente, o a que la implementación es parcial y aun se necesita un
alto dominio de lenguajes de descripción hardware para completar la imple-
mentación. Comparada con estos estudios previos, nuestra herramienta es
capaz de crear un archivo VHDL listo para ser sintetizado e implementado
a partir simplemente de la representación del sistema con formato de stat-
echart, e incluyendo todas las caracteŕısticas de las statecharts, incluso la
historia. El objetivo de esta herramienta es crear el firmware para la tarjeta
con el receptor de eventos empotrado, siendo muy fácil su actualización ya
que sólo incluye modificar la statechart del sistema. Después de eso la her-
ramienta crea el fichero VHDL actualizado. Aunque nuestra herramienta
nació con esta tarjeta como objetivo principal, es capaz de crear código
VHDL para cualquier sistema que sea representado como una statechart.

La herramienta usa como entrada un fichero XML que se puede crear
con Yakindu, una herramienta para diseñar statecharts gráficamente. La
herramienta está basada en el parseador Xerces-C++ para interpretar el
código XML y producir el código VHDL. Nuestra herramienta condiciona
un poco la statechart a implementar, principalmente por el hecho que no se
permiten transiciones entre estados en distintos niveles de la jerarqúıa. Esta
restricción no es demasiado estricta ya que la statechart se puede modificar
para que tenga la misma funcionalidad con una representación un poco dis-
tinta, y además desaparecerá en futuras versiones de la herramienta que ya
están en desarrollo. También se limita a las caracteŕısticas de las statecharts
originales definidas por Harel, ignorando nuevas caracteŕısticas incluidas en
Yakindu.

136 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

La estrategia que emplea la herramienta se basa en definir un proceso de
VHDL por cada región, tal y como las define Yakindu, de la statechart. De
esta forma se implementa la ortogonalidad, ya que los procesos de VHDL
son concurrentes. La profundidad o jerarqúıa se implementa con todos los
procesos de VHDL incluyendo en su lista de activación todos los eventos
que pueden provocar transiciones, y para cada región reaccionando no sólo
a los eventos dentro de esa región, si no a todos los eventos que actúan sobre
los niveles superiores de la jerarqúıa. De esta forma las regiones reaccionan
correctamente. La historia se implementa usando un pseudo-estado al que
transicionan las regiones cuando se sale de esa región o se desactiva. Si
una región tiene historia, además se guarda en un registro el valor de un
enumerador que define en qué estado se estaba ejecutando la región cuando
se salió de ella. Este pseudo-estado es el nodo de entrada de cada región, y
que por defecto transita a un estado concreto, que es el estado de entrada;
en el caso de que la región implemente historia, el estado dictado por el
enumerador sustituye al estado por defecto. Esto significa que los procesos
VHDL siempre están activos en todo momento, aunque cuando la región
está desactivada lo hagan en el pseudo-estado. Además de implementa una
generación distribuida de salidas y acciones y condiciones tanto relacionadas
a las transiciones como a los estados.

La herramienta necesita parsear el fichero XML que describe la state-
chart varias veces para crear todas las partes del fichero VHDL de salida,
de forma que éste sea correcto y sintetizable. Esto comienza con la inicial-
ización del parseador, la declaración de la entidad VHDL y la definición
de los tipos VHDL y las señales. Se crea un tipo para cada región, cuyos
valores posibles son los estados en esa región, y dos señales, que represen-
tarán el estado actual y próximo en esa región. También una tercera señal
para el registro de historia si es necesario. Después se realiza creación de los
procesos VHDL como se ha explicado antes, que es el paso más complejo
que realiza la herramienta. El estado actual en cada región se define con
estructuras case... when..., mientras que las transiciones en cada estado se
definen con estructuras if... then... else.... También las acciones y la historia
se definen en este paso. Finalmente se define un proceso de sincronización
que actualiza el estado actual con el valor del próximo estado, tal y como lo
define la señal asociada.

Los archivos VHDL creados por nuestra herramienta son más prolijos
que el código VHDL equivalente para la misma statechart escrito a mano,
teniendo alrededor del doble de ĺıneas. Sin embargo en cuanto a los recursos

137

usados por ambos códigos cuando se implementan sobre una FPGA, hay
muy poca diferencia entre ambos.

Aunque actualmente la herramienta sólo produce código VHDL, es posi-
ble modificarla que produzca código en otros lenguajes de descripción hard-
ware.

La metodoloǵıa que hemos ideado, en lugar de producir nuevo código que
necesita ser sintetizado e implementado tras cada actualización o cambio de
la statechart, se basa en crear una implementación microprogramada de la
statechart con espacio para ampliaciones, de forma que con esta metodoloǵıa
sólo se necesita escribir el código VHDL, a mano, una vez, y después las ac-
tualizaciones se realizaŕıan simplemente cargando las nuevas microinstruc-
ciones sobre el firmware que ya estaba instalado.

La estrategia que sigue esta metodoloǵıa se basa en implementar los
super-estados concurrentes como microprogramas independientes, de forma
que se implementa un número de microprogramas que coincide con el máximo
número de estados que pueden estar activos a la vez. Cuando la statechart
está en una situación con un número de estados activos menor que este
máximo, ciertos microprogramas están ejecutando microinstrucciones fan-
tasma. Estas microinstrucciones fantasma siguen las transiciones normales,
siguiendo o copiando a otras microinstrucciones que śı están activas, pero
sin tomar acciones o escribir en contadores o salidas. Cuando la statechart,
en su comportamiento normal, transiciona a una situación en la que más
estados deben estar activos, las microinstrucciones fantasma transicionan a
microinstrucciones normales, en las que śı se ejecutan acciones. En cuanto
a las transiciones simples como las que se dan en las máquinas de estados
finitos, en la arquitectura microprogramada se corresponden con cargas de
nuevas microinstrucciones que implementan los nuevos estados. En cuanto
a la historia, sólo se mantiene al nivel más bajo.

El formato de las microinstrucciones está formado por dos partes: la
primera es la evaluación de condiciones y la segunda es la ejecución de ac-
ciones. En cuanto a las condiciones, se evalúan una a una hasta que haya una
que sea cierta, y el resto se ignoran. Se pueden concatenar condiciones con
un bit de concatenación. El número máximo de condiciones se fija al diseñar
el formato de las microinstrucciones, aunque se pueden dividir condiciones
entre dos o más microinstrucciones. Las acciones se evalúan sobre entradas
y contadores, expresadas de forma indexada en el formato de las microin-

138 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

strucciones, que también cuentan con un campo con la microinstrucción de
destino. La segunda parte, la ejecución de acciones, cuenta igual con un
campo para el ı́ndice de contadores y salidas y otro para la acción a ejecutar
sobre ellos. Igualmente el número máximo se fija al diseñar la microin-
strucción.

Las microinstrucciones se guardan en las memorias de acceso aleatorio
de las FPGAs, organizadas horizontalmente formando filas tan largas como
sea necesario por el formato de las microinstrucciones. Gracias a que los
bloques de memoria actuales suelen contar con dos puertos es posible cargar
dos microinstrucciones de cada bloque. Si la statechart puede llegar a tener
más de dos super-estados activos en paralelo se pueden cargar más filas de
bloques de memoria. Cada uno de estos super-estados cuenta con su propio
contador de programa, que debe de tener soporte para la historia.

Los contadores se implementan como registros conectados a sumadores,
tienen cada uno dos valores de referencia configurables y pueden ejecutar
diferentes acciones. Las salidas y entradas están implementadas de forma
similar a los contadores, pero las entradas son aún más sencillas, ya que
no pueden ser modificadas por la statechart. La configuración se carga de
forma serial, similar a como las FPGAs se configuran usando JTAG.

En cuanto a los recursos usados por esta implementación microprogra-
mada de statecharts, es mucho mayor que la implementación en FPGAs
escrita a mano, ya que puede ser uno o incluso dos órdenes de magnitud
superior a ésta. Hay que mencionar sin embargo que esto incluye una canti-
dad de recursos que normalmente se reservan para actualizaciones futuras,
y que mientras tanto se mantienen sin utilizar. Esto no suele ser un prob-
lema gracias al gran número de recursos que incluyen las FPGAs modernas.
Además se observa que la implementación microprogramada tiene un alto
coste fijo incluso para statecharts sencillas, y que la complejidad de los mi-
croprogramas crece más despacio que la complejidad de las statecharts.

Tener herramientas y procesos libres de errores es muy importante en
grandes instalaciones como la European Spallation Source, ya que la comple-
jidad del centro induce a la aparición de problemas que pueden impedir que
la instalación funcione correctamente. Estos errores se pueden reducir uti-
lizando herramientas y estrategias como las que presentamos en esta tesis.
Además también hemos presentado contribuciones que hemos hecho para
el sistema de temporización de la European Spallation Source, entre los

139

que se encuentran un nuevo modo de operación de los receptores de even-
tos, una nueva tarjeta para implementar receptores de eventos embebidos
y una nueva herramienta para controlar la operación de la European Spal-
lation Source. También se ha implementado la configuración del protocolo
del sistema de temporización espećıficamente para el caso de la European
Spallation Source. Los siguientes pasos en estos desarrollos son mejorar la
herramienta que crea código VHDL a partir de statecharts e incluir en ella
la metodoloǵıa microprogramda que hemos propuesto.

140 APPENDIX C. RESUMEN EN CASTELLANO DE ESTA TESIS

Bibliography

[1] E. H. Lehmann, S. Hartmann, and M. O. Speidel, “Investigation of
the content of ancient Tibetan metallic Buddha statues by means of
neutron imaging methods,” Archaeometry, vol. 52, no. 3, pp. 416–428,
2010.

[2] M. Munoz, “Description of modes for ESS accelerator operation.”
CHESS number: ESS-0038258.

[3] “Synchrotron radiation.” https://en.wikipedia.org/wiki/

Synchrotron_radiation. Accessed: 2019-08-15.

[4] ITER, “What is ITER?.” https://www.iter.org/proj/inafewlines.
Accessed: 2019-08-15.

[5] R. L. Cappelletti, C. J. Glinka, S. Krueger, R. A. Lindstrom, J. W.
Lynn, H. J. Prask, E. Prince, J. J. Rush, J. M. Rowe, S. K. Satija, B. H.
Toby, A. Tsai, and T. J. Udovic, “Materials research with neutrons at
NIST,” Journal of Research of NIST, vol. 106, pp. 187–230, jan-feb
2001.

[6] T. Panesor, “Neutron scattering,” tech. rep., Institute of Physics Publi-
cations, 2011. https://www.iop.org/publications/iop/2011/page_
47521.html.

[7] ILL, “What is the ILL.” https://www.ill.eu/about-ill/

what-is-the-ill/. Last accessed 2019-04-12.

[8] SNS, “Spallation Neutron Source.” https://neutrons.ornl.gov/sns.
Last accessed 2019-04-12.

[9] J-PARC, “What is J-PARC?.” http://j-parc.jp/public/en/about/

about/index.html. Last accessed 2019-04-12.

141

142 BIBLIOGRAPHY

[10] ESS, “The European Spallation Source.” https://

europeanspallationsource.se/about. Last accessed 2019-04-12.

[11] R. Garoby, A. Vergara, H. Danared, I. Alonso, E. Bargallo, B. Cheymol,
C. Darve, M. Eshraqi, H. Hassanzadegan, A. Jansson, I. Kittelmann,
Y. Levinsen, M. Lindroos, C. Martins, Ø. Midttun, R. Miyamoto,
S. Molloy, D. Phan, A. Ponton, E. Sargsyan, T. Shea, A. Sunesson,
L. Tchelidze, C. Thomas, M. Jensen, W. Hees, P. Arnold, M. Juni-
Ferreira, F. Jensen, A. Lundmark, D. McGinnis, N. Gazis, J. W. II,
M. Anthony, E. Pitcher, L. Coney, M. Gohran, J. Haines, R. Linander,
D. Lyngh, U. Oden, H. Carling, R. Andersson, S. Birch, J. Cereijo,
T. Friedrich, T. Korhonen, E. Laface, M. Mansouri-Sharifabad,
A. Monera-Martinez, A. Nordt, D. Paulic, D. Piso, S. Regnell,
M. Zaera-Sanz, M. Aberg, K. Breimer, K. Batkov, Y. Lee, L. Zanini,
M. Kickulies, Y. Bessler, J. Ringnér, J. Jurns, A. Sadeghzadeh, P. Nils-
son, M. Olsson, J.-E. Presteng, H. Carlsson, A. Polato, J. Harborn,
K. Sjgreen, G. Muhrer, and F. Sordo, “The European Spallation Source
design,” Physica Scripta, vol. 93, p. 014001, dec 2017.

[12] EPICS, “Experimental Physics and Industrial Control System.” https:

//epics-controls.org/. Last accessed 2019-04-12.

[13] EtherCAT, “EtherCAT technology.” https://www.ethercat.org/en/

technology.html. Last accessed 2019-04-12.

[14] MTCA.4, “PICMG specification MTCA.4 revision 1.0.” https://www.

picmg.org/openstandards/microtca/. Last accessed 2019-04-12.

[15] A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, Handbook of
Accelerator Physics and Engineering. World Scientific, 2nd ed., 2013.

[16] J. Serrano, P. Alvarez, M. Lipinski, and T. Wlostowski, “Accelerator
timing system overview,” in Proceedings of 2011 Particle Accelerator
Conference, New York, NY, USA, pp. 1376–1380, 2011.

[17] The NTP Project, “The Network Time Protocol (NTP) distribution.”
http://doc.ntp.org/3-5.93e/. Accessed: 2019-09-04.

[18] IEEE Instrumentation and Measurement Society, IEEE-1588 Standard
for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems. IEEE, 2002. Sponsored by the Technical
Committee on Sensor Technology (TC-9).

BIBLIOGRAPHY 143

[19] T. Korhonen, “Review of accelerator timing systems,” in Proceedings
of International Conference on Accelerator and Large Experimental
Physics Control Systems, 1999, Trieste, Italy, pp. 167–170, 1999.

[20] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G. Gaderer,
“White Rabbit: Sub-nanosecond timing distribution over ethernet,” in
2009 International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 1–5, Oct 2009.

[21] ITU-T Study Group 15, Timing and synchronization aspects in packet
networks (Rec. ITU-T G.8261/Y.1361). International Telecommunica-
tions Union, 2008.

[22] MRF, “Micro-Research Finland Oy.” http://mrf.fi/. Last accessed
2019-04-12.

[23] MRF, “MRF Open EVR.” https://github.com/jpietari/

mrf-openevr. Last accessed 2019-04-12.

[24] SLAC, “Linac Coherent Light Source.” https://lcls.slac.

stanford.edu/. Accessed: 2019-08-16.

[25] PSI, “Swiss Light Source - SLS.” https://www.psi.ch/en/sls. Ac-
cessed: 2019-08-16.

[26] Diamond Light Source, “About us [Diamond Light Source].” https:

//www.diamond.ac.uk/Home/About.html. Accessed: 2019-08-16.

[27] Facility for Rare Isotope Beams, “About FRIB.” https://frib.msu.

edu/about/index.html. Accessed: 2019-08-16.

[28] A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block,
8b/10b transmission code,” IBM Journal of Research and Development,
vol. 27, pp. 440–451, Sep. 1983.

[29] Xilinx, “Kintex-7.” https://www.xilinx.com/products/

silicon-devices/fpga/kintex-7.html, 2010. Accessed: 2019-
06-17.

[30] J. Martins, S. Farina, J. Lee, and D. Piso, “MicroTCA.4 Integration at
ESS: From the Front-End Electronics to the EPICS OPI,” in Proc. of
International Conference on Accelerator and Large Experimental Con-
trol Systems (ICALEPCS’17), Barcelona, Spain, 8-13 October 2017,

144 BIBLIOGRAPHY

no. 16 in International Conference on Accelerator and Large Exper-
imental Control Systems, (Geneva, Switzerland), pp. 1692–1694, JA-
CoW, Jan. 2018. https://doi.org/10.18429/JACoW-ICALEPCS2017-
THPHA133.

[31] S. Farina, J. Lee, J. Martins, and D. Piso, “MicroTCA Generic
Data Acquisition Systems at ESS,” in Proc. of International Con-
ference on Accelerator and Large Experimental Control Systems
(ICALEPCS’17), Barcelona, Spain, 8-13 October 2017, no. 16 in In-
ternational Conference on Accelerator and Large Experimental Con-
trol Systems, (Geneva, Switzerland), pp. 118–124, JACoW, Jan. 2018.
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUAPL01.

[32] Concurrent Techonologies, “Concurrent Techonologies.” https://www.

gocct.com/. Accessed: 2019-08-20.

[33] M. Davidsaver and EPICS community, “mrfioc2.” http://epics.

sourceforge.net/mrfioc2/. Last accessed 2019-04-12.

[34] J. Pietarinen, “MRF timing system.” Timing Workshop at CERN Feb.
2008.

[35] G. Fatkin, Y. Macheret, A. Selivanov, A. Senchenko, and M. Vasi-
lyev, “Modern Digital Synchronization Systems for Large Particle Ac-
celerators,” in Proceedings, 26th Russian Particle Accelerator Con-
ference (RuPAC 2018): IHEP, Protvino, Russia, October 1-5, 2018,
p. THCEMH02, 2018.

[36] T. Korhonen, “System requirement specification for the ESS timing
system.” CHESS number: ESS-0313920.

[37] J. Cereijo Garćıa, T. Korhonen, J. H. Lee, R. R. Osorio, and D. Piso
Fernández, “Timing system at ESS,” in 8th Int. Particle Accelerator
Conf. (IPAC’17), 2017.

[38] Xilinx, “The Zynq-7000 SoC.” https://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html. Last accessed 2019-04-12.

[39] Arm, “Arm processors.” https://www.arm.com/products/

silicon-ip-cpu. Last accessed 2019-04-12.

[40] J. Jamroz, J. Cereijo Garćıa, T. Korhonen, and J. H. Lee, “Timing
system integration with MTCA at ESS,” in 17th Biennial International

BIBLIOGRAPHY 145

Conference on Accelerator and Large Experimental Physics Control Sys-
tems, 2019, New York, USA, 2019.

[41] J. Cereijo Garćıa, “Data model specification for the ESS timing sys-
tem.” CHESS number: ESS-0225673.

[42] J. Pietarinen, Event System with Delay Compensation Technical Refer-
ence. MRF.

[43] J. Cereijo Garćıa and R. R. Osorio, “Hardware implementation of stat-
echarts for FPGA-based control in scientific facilities,” in XXXIV Con-
ference on Design of Circuits and Integrated Systems, DCIS, 2019.

[44] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, 1987.

[45] M. Milkes, “The genesis of microprogramming,” IEEE Annals of the
History of Computing, vol. 8, pp. 116–126, 1986.

[46] W. G. Spruth, The Design of a Microprocessor. Springer-Verlag, 1989.

[47] J. Cereijo Garćıa and R. R. Osorio, “A microprogrammed approach for
implementing statecharts,” in Euromicro Conference on Digital System
Design, 2019, pp. 27–34, 2019.

[48] G. Booch, I. Jacobson, and J. Rumbaugh, “Unified Modeling Lan-
guage.” http://www.uml.org/, 1995. Accessed: 2019-06-017.

[49] D. Drusinsky and D. Harel, “Using statecharts for hardware descrip-
tion and synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 8, no. 7, pp. 798–807, 1989.

[50] D. Drusinsky-Yoresh, “A state assignment procedure for single-block
implementation of state charts,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 10, no. 12,
pp. 1569–1576, 1991.

[51] P. Clemente, P. Rundstadler, L. Specter, and K. Walsh, “From stat-
echarts to hardware FPGA and ASIC synthesis,” in Using VHDL in
System Design, Test, and Manufacturing: Proceedings of the Spring
1992 VHDL International Users’ Forum, 1992.

[52] R. Kol, R. Ginosar, and G. Samuel, “Statechart methodology for the
design, validation, and synthesis of large scale asynchronous systems,”

146 BIBLIOGRAPHY

in Second International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 164–174, 1996.

[53] V. Salapura, G. Waleczek, and M. Gschwind, “A comparison of VHDL
and statecharts-based modeling approaches,” in Proceeding of ITI,
1994.

[54] V. Salapura and V. Hamann, “Implementing fuzzy control systems us-
ing VHDL and statecharts,” in EURO-DAC’96, European Design Au-
tomation Conference, pp. 53–58, 10 1996.

[55] C. Veith, K. Buchenrieder, and A. Pyttel, “Mapping statechart models
onto an FPGA-based ASIP architecture,” in EURO-DAC’96, European
Design Automation Conference, pp. 184–189, 1996.

[56] K. Buchenrieder and C. Veith, “A prototyping environment for
control-oriented HW/SW systems using state-charts, activity-charts
and FPGA’s,” in EURO-DAC’94, European Design Automation Con-
ference, pp. 60–65, 1994.

[57] T. Muller-Wipperfurth and R. Hagelauer, “Graphical entry of FSMDs
revisited: putting graphical models on a solid base,” in Proceedings
Design, Automation and Test in Europe, pp. 931–932, 1998.

[58] S. Qin and W.-N. Chin, “Mapping statecharts to Verilog for hardware/-
software co-specification,” in FME 2003: Formal Methods, pp. 282–300,
2003.

[59] S. Qin, W.-N. Chin, J. He, and Z. Qiu, “From statecharts to Verilog:
a formal approach to hardware/software co-specification,” Innovations
in Systems and Software Engineering, vol. 2, pp. 17–38, Mar 2006.

[60] V.-A. V. Tran, S. Qin, and W. N. Chin, “An automatic mapping from
statecharts to Verilog,” in Theoretical Aspects of Computing - ICTAC
2004, pp. 187–203, 2005.

[61] R. Findenig, T. Leitner, V. Esen, and W. Ecker, “Consistent SystemC
and VHDL code generation from state charts for virtual prototyping
and RTL synthesis,” in Proceedings of DVCon, 2011.

[62] Mathworks, “Stateflow HDL coder.” https://www.mathworks.com/

products/hdl-coder.html, 2018. Accessed: 2019-06-17.

BIBLIOGRAPHY 147

[63] D.Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtul-Trauring, and M. Trakhtenbrot, “STATEMATE: a working
environment for the development of complex reactive systems,” IEEE
Transactions on Software Engineering, vol. 16, pp. 403–414, apr 1990.

[64] D. Harel and H. Kugler, The Rhapsody Semantics of Statecharts (or,
On the Executable Core of the UML), vol. 3147, pp. 325–354. Springer,
09 2004.

[65] D. Drusinsky, Modeling and Verification Using UML Statecharts.
Newnes, 2006.

[66] Itemis, “Yakindu Statechart Tools.” https://www.itemis.com/en/

yakindu/state-machine/. Accessed: 2019-06-17.

[67] “Eclipse IDE.” https://www.eclipse.org/. Accessed: 2017-09-05.

[68] H. Eeckhaut, “VHDL generation from Yakindu state charts with
Xtend.” https://www.w3.org/WebPlatform/WG/. Accessed: 2019-05-
10.

[69] Apache Software Foundation, “Apache Xerces Project.” https://

xerces.apache.org/. Accessed: 2019-06-17.

[70] World Wide Web Consortium, “DOM, Document Object Model.”
https://www.w3.org/TR/dom/, 2015. Accessed: 2019-06-17.

[71] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Syn-
thesis of Finite State Machines: Functional Optimization. Springer,
1997.

[72] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli, Synthe-
sis of Finite State Machines: Logic Optimization. Springer, 1997.

[73] T. Ziadi, L. Helouet, and J. M. Jezequel, “Revisiting statechart syn-
thesis with an algebraic approach,” in Proceedings. 26th International
Conference on Software Engineering, pp. 242–251, 2004.

