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Abstract: SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal
winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020,
COVID-19 was present in 213 countries and territories, with over 12 million confirmed cases and
over half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that
the transmission of SARS-CoV-2 could be modulated by seasonally varying environmental factors
such as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are
appearing online, and some have been published in peer-reviewed journals. Initially, these studies
raised the hypothesis that climatic conditions would subdue the viral transmission rate in places
entering the boreal summer, and that southern hemisphere countries would experience enhanced
disease spread. For the latter, the COVID-19 peak would coincide with the peak of the influenza
season, increasing misdiagnosis and placing an additional burden on health systems. In this review,
we assess the evidence that environmental drivers are a significant factor in the trajectory of the
COVID-19 pandemic, globally and regionally. We critically assessed 42 peer-reviewed and 80 preprint
publications that met qualifying criteria. Since the disease has been prevalent for only half a year
in the northern, and one-quarter of a year in the southern hemisphere, datasets capturing a full
seasonal cycle in one locality are not yet available. Analyses based on space-for-time substitutions,
i.e., using data from climatically distinct locations as a surrogate for seasonal progression, have been
inconclusive. The reported studies present a strong northern bias. Socio-economic conditions peculiar
to the ‘Global South’ have been omitted as confounding variables, thereby weakening evidence of
environmental signals. We explore why research to date has failed to show convincing evidence for
environmental modulation of COVID-19, and discuss directions for future research. We conclude
that the evidence thus far suggests a weak modulation effect, currently overwhelmed by the scale
and rate of the spread of COVID-19. Seasonally modulated transmission, if it exists, will be more
evident in 2021 and subsequent years.
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1. Introduction

A novel coronavirus, thought to have made a zoonotic transition from bats, infected a human
host in Wuhan, Hubei Province, China [1]. By late January 2020, the virus, newly named SARS-CoV-2,
and the disease it causes, COVID-19, had spread to 18 other Chinese provinces, and to Japan,
South Korea, Taiwan, Thailand, and the USA. On the date of submission of this review (15 July 2020),
there were 13,331,879 confirmed cases, in virtually every country worldwide (213 countries and
territories, Figure 1). At the time, it was reported that 577,825 people infected with the virus had died;
both numbers have subsequently risen. The only comparable acute respiratory disease pandemic was
Spanish Influenza (H1N1), transmitted from birds to people in 1918, which lasted until 1919 and killed
an estimated 50 million people worldwide. In the current highly interconnected world, the impact of
the COVID-19 pandemic is likely to be felt for many years [2–4]. It is therefore crucial that all potential
determinants of the rate and location of the pandemic spread receive careful consideration in order to
make appropriate plans for its management.
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Figure 1. The number of confirmed COVID-19 cases as of 12 July 2020. Data are shown as the number
of cases per 100,000 individuals. COVID-19 case data are from Johns Hopkins University Center for
Systems Science and Engineering. The world population data are from the World Bank.

Epidemiological models have been used worldwide to guide the imposition (or not) of policy and
regulatory intervention [5,6]. These models can be modified to include aspects of social characteristics of
the infected populations; and they can also be adapted to reflect the modulating effect of environmental
influences on the processes that determine transmission.

Many related respiratory diseases show a connection between climate variables and the dynamics
of the disease. It is thus plausible that such a dependency could exist for SARS-CoV-2 (reviewed in
Section 4). Given that the COVID-19 outbreak began in mid-winter in the northern hemisphere,
where it was (at the time of writing) peaking toward the middle of the boreal summer, and that the
opposite scenario seems to be playing out in many southern hemisphere countries, it is tempting to
associate this pattern with climate seasonality, as many publications have suggested. However, it is also
plausible that the association is spurious, related simply to coincidental spatial connectivity between
countries. It is necessary to critically assess the evidence for environmental sensitivity, in both the virus
and the disease, before arriving at conclusions that may have significant implications.
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In terms of a response to the pandemic, we need to understand whether and how environmental
variables influence the infection rate. This knowledge provides clues for policy and practice to reduce
the spread of the virus and potential for treatment options. For example, if analyses show that absolute
humidity is strongly associated with reduced infection rates (e.g., influenza [7,8]), artificially raising
indoor absolute humidity during periods of low ambient humidity may be an effective intervention.

Second, if environmental variables do influence the trajectory of the pandemic, the seasonal
progression of the disease will lead to different implications across the globe, varying by hemisphere,
region, and climatic zone. In the extratropical northern hemisphere, there would be a real possibility of
a second wave appearing during the next winter [9]. Conversely, there is a danger that the initially
slow pace of the epidemic in the southern hemisphere could be misinterpreted to mean that proactive
management has supressed the disease spread. Given that in the south, where the peak of COVID-19
incidence is likely to coincide with the winter peak of other endemic respiratory illnesses, complicating
diagnosis and placing additional strain on the health systems, missing the environmental drivers of
COVID-19, if they exist, would be profoundly damaging. As we will argue, many southern hemisphere
countries are particularly vulnerable (they are in the developmental ‘Global South’ as well as the
geographical south). For these regions especially, clarifying the environmental sensitivity will assist
the prioritisation of resources.

Third, for longer-term management of the disease, we need to understand whether the seasonal
effect will manifest as it does in established or endemic respiratory viruses, in the absence of being able
to predict in what period of time (in years) the virus will be eliminated [10].

In this review, we consider all the pertinent studies relating to the effect of a range of specific
environmental and climatological variables on the biology of the virus and the epidemiology of
the disease.

In Section 2, we develop our reasoning for why southern hemisphere countries can benefit from
the lessons learnt in the north, if the application of that knowledge takes heed of particularly southern
hemisphere issues. In Section 3, we briefly present the main classes of epidemiological models,
since key parameters revealing environmental modulation are derived from such analyses. In Section 4,
we explore environmental sensitivity in extant respiratory viral diseases and past epidemics in order
to suggest why seasonally coupled environmental influences are also likely to exist for SARS-CoV-2.
Section 5 then critically reviews evidence for such signals in the literature that had accumulated to
15 July 2020. Section 6 summarises our findings, and offers suggestions for future analyses of the
seasonal modulation of COVID-19.

2. Why the Southern Hemisphere Is Different

The situation regarding COVID-19 in southern hemisphere is different from that in the north in
three ways. First, while the northern hemisphere is moving out of winter at the time of their peak
of infections, the southern hemisphere is moving into winter. Second, a much larger proportion of
countries in the southern hemisphere are developing countries, with significant resource limitations in
their healthcare systems. Third, many of the countries in the southern hemisphere, and on the African
continent in particular, have a much higher incidence of pulmonary diseases such as tuberculosis,
immunocompromising diseases such as HIV-AIDS, and a higher prevalence of diseases such as cholera
and malaria, which may not be recognised as comorbidity risks in COVID-19 but do place coinciding
stressors on the health system. To their advantage, the delayed arrival of COVID-19 in much of the
southern hemisphere has allowed these countries the time to observe the efficacy of containment and
treatment practices in the Global North, and to adapt their healthcare and policy response accordingly.

The initial outbreak of COVID-19 in China, early epidemics in Iran, Italy, and later much of
Europe and the United States took place during the coldest months of their year, and were distributed
within a narrow climatic band [11,12]. During the early period of the outbreak in January and February
2020, few known cases had been recorded in the southern hemisphere, which was experiencing peak
summer conditions. This could reflect a climate sensitivity, but could just as plausibly reflect dominant



Int. J. Environ. Res. Public Health 2020, 17, 5634 4 of 28

trade and human movement patterns [13]. Thus, the initial relatively low rates of spread and mortality
in southern Africa, Australia and some regions of South America may simply be a result of being at an
earlier stage in these epidemics. However, in both the northern and southern hemisphere, influenza
and other coronavirus diseases peak during their respective winter seasons [14]. Thus, if climate
factors do play a role in COVID-19 infection rates, the concurrence of transition of southern hemisphere
countries to their winter season with the mid-stages of the disease transmission trajectory is of concern,
especially with respect to containment policy and health system resource allocation.

The status of healthcare services in the Global South is of concern even without a climatic
component to COVID-19. While Australia and New Zealand have healthcare services as good as any
in the northern hemisphere [13], much of South America and sub-Saharan Africa struggle with access
to quality healthcare. This is associated with poverty and socio-economic inequalities and result in
poor health outcomes and financial risk to the state and individuals [15–18]. The healthcare sectors
are understaffed, underresourced, and understocked under normal conditions, which were working
at maximum capacity even before the COVID-19 pandemic [19], and will be severely challenged as
COVID-19 cases increase [20,21]. Early evidence from China shows a significant correlation between
mortality and the healthcare burden in COVID-19 cases [22]. Efforts to model the preparedness
of African countries have highlighted concerns relating to the staffing of testing centres, stock for
testing, and the ability to implement effective quarantining both inside and outside of healthcare
facilities [20]. The prevalence of pre-existing infectious diseases compounds this issue. In the period
2016–2018, 41 African countries have experienced at least one epidemic, while 21 have experienced at
least one epidemic per year [23]. South America is currently struggling with outbreaks of measles in
14 countries, and a tripling of the incidence of Dengue Fever in four countries [24]. Recent outbreaks
of diphtheria, Zika and Chikungunya have further stretched the healthcare systems [24]. The most
prevalent infectious diseases in sub-Saharan Africa include cholera, malaria, viral haemorrhagic fever,
measles and malaria [19].

Of particular concern in the Global South is the possibility of comorbidity with HIV-AIDS and
tuberculosis (TB). Many TB cases are pulmonary in nature [25], while patients with HIV are significantly
immunocompromised [26]. There is considerable TB-HIV comorbidity [27]. Corbett et al. [28] found a
38% incidence of HIV in TB-infected patients across Africa, and for the countries with the highest HIV
prevalence, up to 75% of TB patients also tested positive for HIV. Comorbidity has decreased from 33%
to 31.8% over the past decade, and over the period 1990–2017, TB incidence, TB mortality rate and
HIV-associated TB have declined in a number of southern African countries [26]. South America has
much lower cases of both HIV and TB, and a comorbidity of approximately 10% [29]. While results
from Spain suggest that HIV-positive patients currently on antiretroviral treatment have no higher risk
of severe SARS-COV-2-induced illness [30], the comorbidity of those with a longer HIV history and
TB comorbidity, with or without HIV, is unknown. There are further related concerns pertaining to
continued HIV [31] and TB [32] care during COVID-19, as social distancing requires people to stay
indoors and hospitals are overstretched.

Finally, the relatively delayed spread of COVID-19 to the southern hemisphere has allowed these
countries to ‘get ahead of the curve’ through evidence-based management derived in the north [33].
Recent experiences of two Ebola epidemics have meant that many countries in sub-Saharan Africa
implemented temperature screening at airports long before the first COVID-19 cases were reported [20],
and contact tracing and epidemic management plans are in place [19]. South Africa, Kenya, Uganda
and Zambia were reported as having all been particularly proactive in planning for their eventual
COVID-19 cases [19]. South America has arguably not been as prepared (Rodriguez-Morales et al.
2020). Studies on modelling risk for the African continent are largely related to importation risk [20],
which has been capped due to lockdown in many countries. This form of response is important in
delaying the peak and “flattening the curve”, but is unlikely to completely avoid extreme pressure on
already stressed healthcare systems [16,22].
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3. Monitoring and Modelling the Spread of COVID-19

3.1. Data Issues

When assembling datasets from many different locations to test the effects of environment on
COVID-19 progression, it is essential that the criteria for determining the infection and mortality
rates are consistent across sources. The data used to calibrate and validate epidemiological models
(e.g., the COVID-19 Data Repository, Center for Systems Science and Engineering (CSSE), Johns Hopkins
University) consist of time series of infections, which often include only those with symptoms sufficiently
severe that the patients sought medical assistance, and who subsequently tested positive using a
PCR-based test for the presence of the SARS-CoV-2 virus [34]. This is known as the ‘case rate’. As the
number of tests increases and includes community-based testing, as opposed to testing only those
displaying symptoms, the case rate will converge on a true infection rate. PCR testing is accurate
(though reporting is often delayed by days to weeks [35]), but if testing is mostly performed on those
presenting symptoms and their close contacts, estimates of the true infection rate inevitably include
large biases, especially given the high occurrence of asymptomatic or mild cases. Compensating for
this bias requires that the sample frame be weighted to be representative of the population as a whole.
As antibody-based tests become more widely used, datasets that indicate post facto what fraction of
the general population was exposed to the virus will emerge. Antibody tests have variable accuracy,
both in terms of false positives and false negatives [35]; nevertheless, their overall accuracy is much
better than the guesswork that otherwise goes into estimating the number infected from the medical
case rate alone. It is suspected that mildly infected people and even asymptomatic cases can spread
the disease [36], but perhaps less effectively than severely ill individuals. It is likely that recovery from
SARS-CoV-2 provides subsequent immunity, with initial indications that this may be persitent [37].

The models that predict mortality use a time series of recorded deaths. At a minimum, this includes
the deaths recorded in hospitals for people being treated for SARS-CoV-2 at the time of death.
More complete records are supplemented with data on people who died in the community or in
nursing homes, and were inferred from the symptoms they displayed to have died from COVID-19.
For severely-affected areas, it is possible to estimate the anomalies between the COVID-attributed death
rate relative to the seasonally adjusted expected population death rate, and infer that these additional
deaths (‘excess deaths’) were caused by the pandemic [38]. Where this has been carried out, it suggests
that the death rate is substantially higher than that initially reported; however, this approach conflates
deaths directly caused by SARS-CoV-2, and those that may have resulted from overburdening the
health system.

Making accurate estimates of transmission rates requires a sufficient number of cases. Often the
models are initiated only once 30 or 100 cases have occurred in a location [39] so that the effect of
importation of cases due to travelling may be minimised. Therefore, if the area selected for analysis
is too small, the number of cases may be inadequate to support the more data-intensive approaches.
In most countries, data are collected daily, but the daily data show a lot of noise, partly for stochastic
reasons; also, for spurious reasons such as the effect of weekends, laboratory delays, or recoding the
date of reporting rather than the date of testing or infection (Section 5.1). Smoothing the data over
periods of a week helps to solve irregular daily data patterns [40,41], but this also means that the
analyses are unresponsive to events at finer timescales.

The need to match the time period for which infections and deaths are recorded and the period
over which environmental drivers are integrated is widely accepted. Similar considerations also
apply to spatial resolution. COVID-19 outbreaks are apparently highly clustered, often in small areas.
Environmental drivers are also spatially heterogeneous, some much more so than others. The resolution
chosen for the environmental data needs to be appropriate for both the grain of the infection process
and the grain of the environmental variable.
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3.2. Epidemiological Models of COVID-19

Several analytical typologies have been applied to epidemiological models, mostly based on what
factors they take into account [42]. Table 1 is a pragmatic classification of the types thus far predominantly
used for COVID-19 projections, based on the logic of their construction. Most of these model types
can be implemented either deterministically or stochastically for age-structured or non-age-structured
populations; for a single, equally-exposed population or for a spatially disaggregated population with
transfers between groups; and using frequentist or Bayesian approaches.

Table 1. A summary of modelling approaches applied to COVID-19.

Theoretical Basis Advantages Disadvantages Examples

(a) Simple extrapolation
of recent trends—linear
or exponential

Few assumptions, nearly
theory-free, easily

updated as new data
come in

Sensitive to data quality;
unrealistic for projections

more than a few
timesteps into the future

Systrom and Vladeck
[43]

(b) Phenomenological or
parameterised
models—fit a curve of
predetermined form to
cumulative case data

Few assumptions, good
for explaining large-scale,

multi-month patterns
like ‘flattening the curve’

Inflexible and
unresponsive to changes
in circumstances, such as
social distancing policy

Della Morte et al. [44],
Roosa et al. [45]

(c) Compartment models
(e.g., SIR, SEIR)

Classical epidemiological
approach,

semi-mechanistic

Relatively many
parameters that are

highly uncertain initially;
needs lots of good data

Anastassopoulou et al.
[46]

(d) Machine learning
Few assumptions other
than data homogeneity

and stationarity

Requires very large case
datasets to be effective;
no explicit mechanism

Ardabili et al. [47],
Pinter et al. [48]

(e) Agent-based
models—every person in
a population is modelled

Allows a rich set of
interpersonal

interactions despite
simple rules

Data and
computationally

intensive
Cuevas [49]

Simple extrapolation and phenomenological models are suitable for projections of less than one
month into the future, whereas the somewhat mechanistic epidemiology models are more robust for
projections months or years into the future. The various classes of models can in principle run at any
spatial scale and over any time period, but in practice there are data-imposed constraints.

3.3. Incorporating Environmental Drivers into Epidemiological Models

Environmental influences can be introduced into the basic model structures at a variety of points
(Figure 2). Where they are introduced and what the models are able to say about the relationship
between the environmental influences and infection or mortality rates depend on the theoretical
basis of the model (Table 1). Models that best capture the functional relationship of confirmed daily
cases across time are best suited for revealing environmental drivers. The phenomenological and
compartmental models are the strongest contenders here. The raw time series of confirmed infections
and deaths can be time aggregated, and time lagged with respect to the environmental factors, to find
the best fits, as long as this is performed consistently, and considers the time lags already built into the
model structure.

One approach is to establish correlations, either over time or across space, between the infection
rate at a given time and simultaneous metrics of environmental factors such as temperature, humidity
and UV (see Section 5.4). In SEIR and similar models, two metrics are available for this infection rate:
R0, the Basic Reproductive Number, and Rt, the Effective Reproductive Number. R0 is defined as the
expected number of secondary infectious cases generated by any single average infectious case in an
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entirely susceptible population. R0 should be largely free from signals attributed to imposed factors
that affect human behaviour. It is typically derived from the initial portion of the growth curve when
the disease spreads in a population where everyone is susceptible, before control measures have been
put in place (i.e., completely ‘natural conditions’ sensu Shi et al. [50]) or herd immunity had been
attained. Neher et al. [51] note that “R0 is not a biological constant for a pathogen” (p. 1) but it is
affected by factors such as the infectiousness of the virus, susceptibility of the hosts (e.g., due to age
or an assortment of comorbidities), duration of the infectious period, density of susceptible people
(also population density and the proportion of the population that is urbanised) or the contact rate
with them (including aspects of mobility), and environmental influences (as shown in Figure 2).
These aspects are subject to localised idiosyncrasies across the globe and must be accounted for in
regional or global analyses when calculating or comparing R0.Int. J. Environ. Res. Public Health 2020, 17, x  7 of 29 
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Figure 2. Environmental factors that have been suggested to influence a COVID-19-like disease, overlain on
the structure of a generic SEIR-type compartment model to show the potential mechanisms of action.

Rt is a measure of observed disease transmissibility, defined as the average number of people
a case infects at any time (t) once the epidemic is underway. Rt incorporates changes in a society’s
behaviour (self-regulated responses and non-pharmaceutical interventions or NPIs [52]) as the disease
becomes widespread, and varies day to day. These effects are typically stronger than the environmental
influences, and can easily mask them or generate spurious associations. It is not advised to base
assessments of environmental effects on Rt due to the ‘noise’ that the signal will contain, unless there is
sufficient information that permits inclusion of the interventions as continuous, time-varying factors.

For the compartment models, it is possible to derive the values of the key model parameters
by model inversion, in near-real time, and from these, calculate R0. This needs at least one more
observation than there are free parameters to be estimated. In practice, accurate estimates of confidence
limits require many more data points than parameters. The multiple observations can come from
a single-population time series, but this would limit the degree to which changes over time can be
resolved within the parameters themselves. If there are multiple time series from different populations,
both temporal and spatial variation of the parameters can be obtained.

Phenomenological approaches typically use a variety of parametric regression models
(see Section 5.4). It is sometimes necessary to fit a piecewise model to accommodate the breakpoint
that develops when country-specific NPIs are introduced. It is generally only possible to compare
the parameters of the curves across locations (rather than within locations, over time) to determine
whether there is a systematic pattern that relates to any environmental predictors. This is because fitting
multi-parameter non-linear curves using data from only a part of the curve (in epidemics, usually just
the initial part) is notoriously difficult and uncertain. If the effect of the environmental factors on the
model parameters was known, they could be used to alter the curve parameters dynamically, and thus
the projected outcomes; but the parameters typically have no intrinsic biological meaning.
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4. Implications for COVID-19 of Environmental Sensitivity in Other Viral Respiratory Diseases

Seasonality of prevalence is a common feature in most persistent and established or endemic
respiratory infectious disease [53–60], as well as many other infectious diseases [61,62], in diseases
(or endemic tolerated infections) of both humans and other animals. Peaks incidence periods occur
during the shoulder seasons or the winter, oscillating globally with the opposing boreal and austral
climate. Seasonally varying prevalence has a general latitudinal gradient and is accentuated in highly
seasonal temperate and subtropical climates (with some rare exceptions) but is also observed in tropical
regions [63]. Seasonality is found in a wide range of viral respiratory diseases (VRDs)—including
influenza viruses, para-influenza virus (PIV), human syncytial virus (RSV), rhinoviruses and human
coronavirus strains (HCoV) [55,60]. For endemic viruses causing VRDs in humans, seasonal peaks
are usually quite predictable, but interannual variability in onset and duration of any season, and the
virulence of respective seasonal strains, vary. It follows, therefore, that if VRD prevalence follows this
climatological pattern, a mechanism(s) that connects and modulates the viral disease progression with
seasonally varying climatological variables in individuals or populations must exist. This sensitivity
must occur in at least one location of the SEIR model (Figure 2).

In the case of novel viruses, the role of seasonality is more contentious, mainly because they
have not existed for enough time for seasonality to be unambiguously established. The seasonal
prevalence of pandemic strains of virus is often conflated with the so-called second wave, which may
be coincidentally associated with the following winter season, suggesting that there is a climate-based
modulating effect on its incidence [10,64]. In the case of SARS and MERS, the attribution of resurgence
to climatological drivers, as opposed to secondary circulation dynamics, remains unresolved [65,66].
Novel viruses are much less predictable than established viruses with respect to their persistence,
re-emergence in the following years or seasons, and virulence in later outbreaks [64,67]. Until a novel
virus becomes endemic and recycles (in its existing form or as mutated strains), its seasonal prevalence
is difficult to assess [68]. The magnitude of the current SARS-CoV-2 pandemic is likely to result in
an extended period of persistence [69], and thus if seasonal prevalence exists, it should eventually be
unambiguously apparent.

In the generalised SEIR model shown in Figure 2, environmental modulation can primarily take
place at two stages, namely Susceptibility and Exposure. Environmental sensitivity insights can come
from two basic sources. The first is observational data and laboratory studies and analyses of the
environmental modulation on the SARS-CoV-2 virus biology and the incidence of the disease it causes
(as in this review). Second, we can examine data and information from published studies on respiratory
viruses and VRDs and related endemic and novel coronaviruses specifically (see [53,55,57,59,60,67,70]
for general treatment of this topic).

In this section, we examine three sets of hypothetical mechanisms which explain environmental
modulation and seasonality of VRDs other than COVID-19: (i) physical environmental variable modulation,
(iii) biological and host behavioural modulation, and (iii) viral molecular and biochemical modulation.

Physical environmental variable modulation hypotheses focus on the meteorological correlates of
seasonality in the diseases [54,58] and comprise the bulk of such studies. These all follow the basic tenet
that selected environmental variables (such as temperature or humidity) vary in space and time with the
progressing seasons, and if a mechanism that links them with a VRD can be demonstrated, this makes
them a suitable candidate for explaining VRD seasonality. There is a lack of clarity in the literature
regarding which definition of humidity is best applied as environmental moderator of respiratory viral
epidemiology. Studies employ relative humidity (RH), absolute humidity (AH), specific humidity (SH),
vapour pressure or dew point (more in Section 5 below). This renders comparisons and conclusions
difficult to reach [7]. RH and SH have strong dependence on temperature, which further complicates
studies that include both temperature and humidity as predictors.

The postulated mechanisms are usually tested in laboratory studies which monitor the persistence
of viable viruses in aerosol droplets and on surfaces [71], perform experimental transmission studies
in animal models [72], or study the relationship between observed ambient or indoor environmental
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variability and infection rate, morbidity and mortality, with the assumption of causality (Section 5).
Notably, results from temperate and tropical climate zones (or with ranging latitude) are often
contradictory. This has led to a suggestion that different seasonality mechanisms are at play in
different climate zones: humidity (aerosol droplet transmission) as the key driver in temperate regions,
and precipitation driving behaviorally mediated contact transfections in the tropics [73–75].

The environmental determinants of virus transmission in aerosol liquid droplets have received
substantial consideration. The premise is that, in winter, characterised by relatively lower humidity,
pathogen-bearing aerosol droplets (PBADs) are more persistent. PBADs expelled by infected individuals
often contain viruses or bacteria, in a mixture of mucus, saliva and dissolved salts, and can travel
up 8 m from a simple sneeze [76]. Upon leaving the airway with moisture saturation close to 100%,
PBADs are exposed to much drier air which results in evaporation. They can quickly lose up to
90% of their water mass and reduce in size. At an RH of 40–60%, the water loss greatly increases
the salt concentration to levels that inactivate viruses. In contrast, for RH < 40%, the dissolved salts
precipitate, resulting in a PBAD with low salt concentration and a high number of infectious viruses [77].
PBADs range in diameters 5–20 µm when the ambient RH is 30–60%, whereas below 30%, a PBAD may
immediately reduce its size below 0.5 µm, and become a droplet nucleus [78,79]. Thus, conditions of
lower ambient RH result in the production of smaller, lighter (longer floating periods), and potentially
more penetrative PBADs, thereby elevating the exposure component of the SEIR model [80,81].

The role of temperature in influencing the prevalence of VRDs is more contested and complex.
This is partly because temperature and AH together determine RH, which affects the rate of
evaporation and thus PBAD dynamics, as argued above [72,82]; and temperature could also have
direct effects. Several studies associate temperature with respiratory disease incidence, some by direct
association [83,84] and some focussed on the temperature changes (i.e., lowering temperatures rather
than lower temperatures [85]). Temperature may also play a mediating role in other ways. The first
set of hypotheses consider the direct effect of temperature on respiratory virus survival. There are
very few such studies but they show that viruses in general are surprisingly tenacious, with survival
periods of days at room temperature for SARS-CoV-1. Effective inactivation occurs at temperatures of
above 56 ◦C [86,87].

Another temperature-mediated mechanism with substantial literature involves the fomite viability
of viruses [88,89], particularly in public spaces and hospitals, involving endemic coronaviruses and
SARS-CoV-2 [90,91]. Some studies explore the role of temperature alone on specific surface types [88],
while others look at the combined role of temperature and humidity [90,92]. Respiratory viruses,
including human coronaviruses, can remain viable as fomites on a range of surface types, indoors and
in sheltered external environments, at room temperature and higher, for periods of hours to days and
from days to weeks on refrigerated surfaces at 4 ◦C. Persistence depends on both the surface type
and the temperature and humidity range (see Table 1 [91] for a recent summary). Thus, the risk of
infection from fomites (the exposure element of the SEIR model) increases as temperature decreases.
The combination of temperature and humidity has been found important for fomite viability in the
endemic human coronavirus HCoV 229E (Table 2). Most studies aim to test sterilisation techniques
and the efficacy of personal protective gear [91,93–96]. One hypothesis posits a predominance of
surface contact transmission in the tropical climates, versus transmission through PBADs in temperate
climates [97].

A range of other physical environmental variables have been cited as moderators of respiratory
viral epidemiology. They often co-vary with other causal variables. Wind and wind speed are relatively
neglected as physical environmental factors in infectious disease epidemiology. Given that windy
seasons occur in many climates zones, wind should not be discarded as a contributing variable [98].
For influenza, wind has been cited in some instances as a factor in transmission of infectious particles
from remote locations, as promoting the extended local transmission of PBADs [99,100], with a
convincing account in one case of equine influenza [100]. Barometric pressure has also been considered,
for example in the case of respiratory syncytial virus, where it was found to have no statistically



Int. J. Environ. Res. Public Health 2020, 17, 5634 10 of 28

significant influence [101]. In other studies, it does have an influence, along with temperature [102].
Guo et al. [103] found air pressure to be a predictor of the risk of influenza infection in children in
Guangzhou, China, with a differential effect by age.

Table 2. Viability of the human coronavirus, HCoV 229E, as a function of time, temperature and
humidity [93].

Relative Humidity 20 ◦C 6 ◦C

15 min 24 h 72 h 6 days 15 min 24 h
30% 87% 65% >50% n.d. 91% 65%
50% 90.9% 75% >50% 20% 96.5% 80%
80% 55% 3% 0% n.d. 104.8% 86%

n.d. = not detectable.

Rainfall seasonality and disease incidence in general are well described [104], but literature on
the relationship between rainfall patterns and VRD epidemiology is restricted to tropical climates.
Most studies have considered rainfall either at a very local scale, or as part of a set of meteorological
variables being tested. Pica and Bouvier [105] comprehensively review the literature on this rainfall
and VRDs, and conclude that for a range of respiratory viruses (primarily influenza and RSV), there are
as many studies finding some association as there are studies finding no link. With attenuated
intraseasonal temperature variation in the tropics, rainfall provides a key differentiator between
seasons, possibly explaining the strong associations between rainfall and respiratory illness prevalence
there. The mechanism of association is less clear. There is a suggestion that the tropical rainy season
causes crowding, and thus increased exposure [106], another suggesting that reduced sunlight is
associated with pneumonia incidence [107], and yet another citing diurnal temperature changes [108].
The improvement in air quality and reduction in allergen production following rainfall may be another
mechanism [109].

Solar ultraviolet radiation (solar UV) varies greatly with season everywhere and is thus an
attractive candidate to explain seasonality of VRDs. UV radiation in laboratory settings is a very
effective means of deactivating viruses, and there are a plethora of studies of this effect on all kinds
of pathogens (including coronaviruses SARS-CoV-1 and MERS-CoV), mainly targeting hygiene and
outbreak management in public spaces and hospitals [110–112]. Studies that consider the environmental
effect of solar UV (a component of sunlight) without confounding effects of other variables are rare.
Sagripanti and Lytle [113] state that, for influenza, “the correlation between low and high solar virucidal
radiation and high and low disease prevalence, respectively, suggest that inactivation of viruses in the
environment by solar UV radiation plays a role in the seasonal occurrence of influenza pandemics”
but concede that there are a range of additional factors that need to be considered. Despite UV being
regarded by several authors as the “primary germicide in the environment”, its independent effect as a
seasonal driver of VRDs remains uncertain (on this point, for influenza, see [114]).

A second set of hypotheses for explaining the seasonality of VRDs consider behavioural
and physiological responses to changing environmental variables such as temperature [54,55,60],
related mostly to the exposure but also the susceptibility component of the model in Figure 2.
These include considering the consequences of confining people in sheltered and enclosed spaces during
colder weather, with recirculating air and closer proximity to infected co-inhabitants, thus increasing the
likelihood of exposure. They also include the idea that exposure to colder and drier air at the cellular level
in the respiratory tract results in impaired physical or immune-system defences to infection, and hence
increased susceptibility [60,115]. Large (<30 µm) and medium (<10 µm) inhaled PBADs are normally
captured in the upper nasal mucosa and upper respiratory tract, respectively, and are transported
towards the mouth (and expelled) through a synchronised circular movement of cilia. The combination
of the mucosal layer and cilia can effectively clear the particles [79]. However, low ambient RH has
been demonstrated to reduce the effectiveness of both mucosal production and cilia action [60,72].
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A corroborating study demonstrates that dry air (low RH) impairs host defence against influenza
infection in genetically engineered mice with human-like lung tissue, as well as slowing recovery [116].

The third set of hypotheses consider the biochemistry and molecular adaptation of the viral
pathogens [55]. These take into account the temperature sensitivities of the various stages of the virus
infection cycle, from binding to the host cell, replication of nucleic acids, the stability of secondary
structures of viral proteins, and eventual ejection of the virus from the host cell [55]. Given that
there is a gradient of temperature within the respiratory tract, and that breathed air can greatly alter
conditions in the upper respiratory tract, susceptibility can increase under cold conditions, especially
to viruses which are adapted to be most efficiently infectious at temperatures slightly below normal
body temperature [55,115].

Falling somewhere between the physical, physiological and biochemical hypotheses in explaining
seasonality of respiratory viruses is the change in susceptibility with varying serological levels of
vitamin D. Vitamin D synthesis occurs when the skin is exposed to sunshine, which varies seasonally
(confounded with UV, temperature and other variables). Vitamin D has been suggested as an important
form of defence against microbes, influenza and pneumonia in particular [117–120]. Shaman et al. [121]
attempted to model this effect on influenza prevalence in the USA and concluded that seasonal
variability in other factors such as humidity and even the school calendar were better at explaining
their results.

These considerations are incomplete, with a final abiotic aspect that must be included. Air pollution
refers to a wide range of harmful, primarily geogenic (naturally occurring) and anthropogenic
particulate matter, chemicals or gasses that cause negative or dangerous physiological responses
and effects in humans and biota. It is well known that poor air quality can have direct and indirect
impacts on human health, and in particular on the susceptibility of humans to respiratory viral
infections as well and a measurable effect on the severity and mortality rates [122]. Gases such as
nitrogen dioxide, ozone and especially particulates classified by size (PM10, PM2.5, and PM0.1) have
different pathological mechanisms and effects but are all known to be associated with the increases in
viral respiratory disease incidence, hospitalisation or attributed deaths, famously during the London
fog of 1952 [123] and the 1918 Spanish Influenza Pandemic [124]. Clifford et al. [125], for example,
showed that PM10 inhalation exacerbates the response to influenza, and Ye et al. [126] showed that
‘haze’ (a combination of air pollutants) was associated with the spread of respiratory syncytial virus in
children. Air pollution is also known to have a strong seasonality, driven by both seasonal economic
production activity and also by ranging seasonal metrological conditions which can either concentrate
and trap pollutants in surface air or conversely disperse pollutants and improve air quality [127–129].
Therefore, it is a further consideration that seasonal variation in air quality and pollution is an additional
factor for consideration as a contributor to the seasonality of respiratory viral infections that have
been reported.

It is most likely that each of these hypothesised mechanisms has some role, either in unison,
or independently or that one mechanism dominates in particular conditions [60]. While the precise
mechanism that explains the relationship between environmental factors and disease prevalence is
important, particularly because it may reveal optimal management interventions (of transmission and
for treatment), statistical attribution of a strong correlate may suffice for effective management [8].

5. Critical Assessment of Studies of COVID-19 Climate Susceptibility

Evidence from the many studies on viruses not dissimilar from SARS-CoV-2 suggests that a
seasonal and environmentally-mediated signal should be seen in the novel COVID-19 epidemic.
What do studies to date tell us?

We comprehensively reviewed the preprint and peer-reviewed literature on the topic of environmental
influences of SARS-CoV-2 transmission. We used the Boolean search capability of Google Scholar to
locate articles with the following keywords in the article title: “(COVID-19 OR SARS-CoV-2) AND
(pollution OR humidity OR temperature OR UV OR climate OR weather OR season OR seasonality)”.
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This returned 287 articles on 8 July 2020. On the same day, additional searches for these search terms were
conducted in the title fields on PubMed and the title, abstract and subject fields on the WHO COVID-19
literature database (https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/),
returning 469 and 170 publications, respectively. All searches were constrained to the year 2020.
We selected only those studies on infection rates or similar metrics, excluding studies based solely
on mortality rates. The combined set, which contained many duplicates and triplicates due to the
intersection of three sets of search results, was screened manually and papers suitable for inclusion
in our review were retained. Five reviews in preprint were excluded from our assessment, but we
did verify that we included in our analysis all relevant papers cited in these reviews. Since we a
priori expected many preprint manuscripts, we did not embark on the review with the intention to be
PRISMA compliant (as would be necessary for a meta-analysis and systematic reviews), and hence we
did not count the number of duplicates and triplicates, the ineligible studies discarded, or the reasons
why they were discarded.

The result of our searches yielded 42 peer-reviewed publications and 80 preprint manuscripts
(Supplementary Tables S1 and S2). The peer-reviewed publications were subject to normal review
scrutiny, and form the main body of this section. We did not assess the outcomes of the preprint papers
(i.e., they are not discussed in detail as part of Section 5.5) in order to avoid erroneous conclusions based
on unassessed data, results or interpretations; nor did we attempt to apply our own peer-review process.

The peer-reviewed research conducted on the role of climatic variables in COVID-19 transmission
has been highly interdisciplinary, with authors spanning 25 broad academic backgrounds. The largest
number of authors (27) currently work in disciplines of geography, earth and environmental sciences,
which incorporate climate science. This is closely followed by the 26 authors working in public health,
and 25 authors in disciplines of epidemiology, virology and disease control. A total of 40% of the
authors are in fields directly relating to COVID-19 and climate. There is, however, a notable spread of
authors in more distal academic and medical fields. Notably, the authorship of 18 papers included
nobody with an explicitly medical background. Of the multi-authored papers, only three were by
researchers who all come from the same disciplinary background, and for two of these, the backgrounds
were epidemiology and medical laboratories.

Collectively, the peer-reviewed studies provide only weak evidence that SARS-CoV-2 is more
infectious under lower temperatures and lower levels of absolute humidity. Similarly ambiguous
relationships for air pollution, UV and wind are reported, with a smaller focus on these variables in
the literature. There are considerable differences in the ways in which the relationships have been
established, resulting from which co-varying variables were included or not; use of different metrics of
viral transmission, and which statistical methods were applied. In many cases, insufficient information
is provided on the methods and data used, making it impossible to replicate the analyses.

5.1. Geographical Coverage of Studies

This section is relevant because of the high dependence on spatial variance to provide information
at this early stage of the pandemic. The geographical coverage of the literature on the environmental
influences on SARS-CoV-2 is heavily weighted to the northern hemisphere. Data from Bolivia, Ecuador,
Brazil and Australia were included in only five studies, i.e., one-tenth of the total. Most of the southern
hemisphere studies are included in studies claiming to be near global in their sampling. Only eight
studies focus specifically on a country in the southern hemisphere, Brazil [130–137], and none of them
consider any African country.

5.2. Influential Variables

Environmental variables considered in preprint and peer-reviewed publications as modulators
of SARS-CoV-2 transmission rates include mean, minimum and/or maximum daily temperature,
and diurnal temperature range; an undefined ‘humidity’ variable, relative humidity, specific humidity
and absolute humidity; dew point temperature; rainfall; wind speed or wind power; air pressure;

https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/
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some metric of solar or UV radiation; and ‘air quality’ (Supplementary Tables S1 and S2). These choices
are apparently strongly influenced by the literature on other viral respiratory diseases.

Which definition of ‘humidity,’ is selected is significant challenge for interpreting and comparing
studies. Humidity broadly refers to the amount of water vapour held by air (which effects on the
viability of pathogens in exhaled aerosol droplets—see Section 4). Studies must account for the fact that
atmospheric pressure and temperature modulate the amount of water that a volume of air is able to hold
in a gaseous state. A relatively small amount of water vapour is able to saturate cold air, whereas more
water vapour is required to bring warm air to saturation. The studies we reviewed that seek to establish
whether humidity is a potential driver of COVID-19 use absolute humidity, relative humidity or specific
humidity. Two studies use ‘humidity’ [138,139] without qualifying whether it is relative, specific or
absolute humidity. This ambiguous use of the term does not permit reproducibility or meta-analysis.
Absolute humidity is defined as the total amount of water vapour held by air, in units of g·m−3.
A temperature change will not necessarily change the moisture content; it simply changes the capacity
of the volume of air to hold water. Only if temperature drops to saturation point, will condensation
occur and water vapour content (but not relative humidity) will drop. If temperature increases,
water vapour content will only increase if a moisture source is available from where evaporation can
take place, or if a moist air mass moves in to replace the drier one. Relative humidity is the fraction
of water vapour, expressed as a %, contained by air relative to the amount of water vapour required
to result in saturation of air at a given temperature and pressure. Specific humidity is the amount of
water vapour per unit mass of dry air (g·g−1). The distinction between relative and absolute humidity
matters less in situations when the seasonal thermal range is constrained to a narrow band, such as at
some mid-latitude coastal locations and near the tropics. However, in space-for-time studies—such as
are required for global syntheses of seasonality effects—the reliance on absolute humidity should allow
the investigator to arrive at plausible conclusions about atmospheric water vapour’s effect on viral
transmissibility [140–142].

Environmental data were obtained from various sources such as ERA interim [143] or local
meteorological organisations, and maybe provided as daily data or aggregates on temporal scales from
10 days to months. Some use ‘seasonal climatologies’, i.e., averaged long-term data. Since symptoms
first manifest 3 to 14 days after infection, analyses sometimes apply lags between the independent and
dependent variables of up to 14 [40] or 21 days [41]. Lags have been accommodated in the reviewed
literature by applying moving average filters to the daily time series of environmental variables with
a width of 7, 14 or 21 days [41]. Another approach is to base the analysis on 10 day aggregates of
environmental data [140]. It is uncertain how such discretised intervals can be aligned with case data
that is typically daily, but yet contains various delays. Some studies take the mean of the variable
over the analytic time period; for example, Jahangiri et al. [144] who ambiguously use either the mean
temperature over the study period or over the year, or Liu et al. [141] and Sajadi et al. [12] who use the
mean of the environmental variables over the period for which case incidence data were obtained.
Most studies, do not account for lag effects [138], or if they do, fail to adequately explain how lags
were accommodated [40].

5.3. Dependent Variables

Which metric of SARS-CoV-2 transmission to use as dependent variable is critical in addressing
the central question, “do environmental variables modulate the transmission of the virus?” We argue
in Section 3.3 that the Basic Reproductive Number, R0, is the best parameter for this purpose since it
excludes the effects spontaneous or imposed non-pharmacological control measures implemented to
slow the spread of the disease, but which still incorporates the environmental influence of a particular
place. The failure to adequately account for non-entrée influences is the Achilles’ heel of many of the
studies reviewed. Of the literature we assessed (Supplementary Tables S1 and S2), only six studies base
their assessment of the presence or magnitude of environmental influences on R0 as the dependent
variable [39,145–149].
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Jebril [150], Luo et al. [151], Poirier et al. [142], and Wang et al. [152] used Rt (see Section 3.3)
as the response variable. Because Rt is very context specific and sensitive to social factors and
interventions, using this parameter to assess the presence and size of environmental influences will in
most instances have a low signal: noise ratio. The usefulness of Rt is that it demonstrates how effective
NPI measures are in controlling an epidemic, and provides information on how regulators must adapt
these interventions over time, based on health and economic goals. The non-environmental ‘noise’ can
be filtered out, but this requires a great deal of data regarding the nature of the specific interventions
applied, movement patterns, precise knowledge about testing and reporting (which is not necessarily
constant), and so forth. None of the Rt based studies to date meet these preconditions, and are therefore
not able to remove the non-climatic (social) influences from the rapidly fluctuating Rt values.

Another approach that holds merit is to use the growth rate or doubling time estimated from
the exponential increase in cases as dependent variable [148,153–160]. Merow and Urban [156] argue
that these kinds of metric are robust even if the details of testing and reporting vary from place to
place, as long as the detection probabilities at a place remain constant over the estimation period.
This argument is equally valid for estimates of R0.

Another variation to this theme of estimating growth rate-related parameters as an indication
of transmissibility is to take rates as time required to progress from the first reported case to
200 cases [161], or to use the cumulative number of cases reached 28 days after the first reported
case [162]. However, these approaches effectively fit a linear model to case vs. time data, which does
not account for the accelerating rate of increase in number of cases. Lolli et al. [163] use the daily ICU
case anomaly, but this of course entirely excludes all but the most severely ill patients and cannot be
seen as being representative of disease transmissibility.

Other data-related considerations, particularly in relation to studies that use parameter estimates
of the exponential relationship that daily new infections has with time, are that care must be taken
to omit both (i) cases that result from the importation of infected individuals from the time series
(i.e., new cases must be local transmissions only), and (ii) the case data obtained after the intervention
period begins. Requirement (i) can be affected by including only the portion of the time series after a
certain minimum number of cases are present, as has been performed by Caspi et al. [154], Merow and
Urban [156], and Notari [157]. Requirement (ii) is met by Ficetola and Rubolini [155], Merow and
Urban [156], Notari [157], and possibly for Oliveiros et al. [158], although it is uncertain how strictly
this was implemented due to their statement that Oliveiros et al. [158] “considered mainly the initial
days of the time series” (p. 4). We will comment on the reproducibility of methods in Section 6.
Requirement (ii) is implicit in the definition of R0, but the two requirements constrain the usable data
to between ‘not too early’ and ‘not too late’.

The bulk of the studies in Supplementary Tables S1 and S2 used daily new or cumulative
confirmed cases as response variables. This practice is not advised for largely the same reasons
given for Rt. Such daily data are likely to carry too many other non-climatic signals to be generally
used—unless, of course, analyses included a specific set of controls that would be difficult to extend to
the global context.

5.4. Modelling Approaches

The studies in Supplementary Tables S1 and S2 employed the following statistical methods to
evaluate relationships between environmental variables and the transmission rate of SARS-CoV-2:
various linear, logistic, or exponential parametric models [39,41,50,130,134,142,146,148,151,158,164–167],
sometimes with the inclusion of non-Gaussian error structures as permitted by Generalised Linear
Models (GLMs) [141,157,162,164,168–171]; Generalised Additive Models (GAMs) [41,134,167,172,173];
distributed lag panel regression models [153]; machine learning such as support vector machines and
decision trees [147]; local panel projection estimator within a country-level dynamic framework [174];
Loess smoothers/curves [142]; Bayesian methods [157]; and Pearson’s, Spearman’s, and Kendall’s
correlations [40,138–140,154,175–177].
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Regression approaches allow functional relationships to be established between the driver (any of
the environmental influences) and response variable (a metric of infection rate), allowing the magnitude
of the environmental effect can be determined. Robust implementation of a regression approach
would include place as a random effect (i.e., as mixed models, also known as panel regressions;
for example, [11,153,155,178,179]). This allows the fact that the effect of the environment on viral
transmission varies from place to place, for social and historical reasons. Multiple regression allows
the simultaneous evaluation of several predictor variables in terms of the influence they collectively or
individually have on the outcome [39,180,181]. It is possible to establish which of the drivers, if any, has the
greatest contribution to an effect seen in the outcome variable. For example, Mollalo et al. [180] used
multiple regression to evaluate the simultaneous contributions of environmental and socio-economic
influences on USA county case counts. If parameterised properly, multiple regression can be used to
rule out contributions of potentially confounding and multi-collinear variables.

Loess smoothers and correlation approaches, although useful for a qualitative assessment for the
presence of environmental influences, cannot inform us about the relative importance of environmental
modulators versus other location-specific or social influences. Similar non-quantitative approaches
that only hint at the presence of relationships include the simple visual mapping of the number of
infections in relation to climate zones or latitudes [12,150,182–184]. These methods can at best raise an
hypothesis that requires further testing.

Other approaches worth mentioning include the application of wavelet transforms [185],
multivariate analyses [130], and ecological niche models [186,187]. Wavelet analysis, which requires
a long time series, provides only a qualitative view of disease dynamics as modulated by weather
or climate variables. Ecological niche models are not suited for studies on COVID-19 because
disease dynamics are entirely different mechanistically from the principles that govern organisms and
ecological systems (as reviewed by Carlson et al. [188]). Multivariate methods are useful for examining
environmental variable modulation of COVID-19, since they provide many, if not all, of the benefits of
multiple regressions, plus they have other features that confer flexibility and the ability to accommodate
a range of data types. They are ideally suited for situations where there are many factors that might
contribute simultaneously to the variation of one or many outcome variables. The application of a
multivariate approach by Auler et al. [130] uses data on the daily new confirmed cases (see critique
above), and for this reason we do not consider the findings of this study further in our review.

Dynamic or mechanistic models (predominantly the compartment models of the SEIR family) are
useful tools to explore how seasonality may impact on the evolution of the disease, and provide a way to
discern the signature of seasonality in near real-time observational data. Such an investigation recently
reported on by Baker et al. [189] concluded that under the high infection rates of COVID-19, within the
context of almost the entire population being susceptible at the onset of the disease, seasonality
effects on the disease evolution will be limited initially. However it cannot be discounted at later
stages, if for instance, the immunity gained by recovered patients is temporary, so that they become
susceptible again in subsequent years or if herd immunity is not attained before managed abatement
of the epidemic (as we are seeing in some countries experiencing resurgences). A similar study by
Neher et al. [51] came to similar conclusions.

5.5. Findings

We will now discuss only the findings of those studies that have undergone peer review,
have selected appropriate environmental data as influential variables, relied on suitable response
variables (such as R0 or parametric estimates) to estimate the local viral transmission rates in the
absence of policy control measures, accounted for potential confounding influences, and applied
appropriate statistical models.

The only peer-reviewed paper that fulfils all of these criteria is that by Yao et al. [39],
which undertakes an assessment of the effects that temperature, relative humidity, and UV radiation
have on the R0. This study has a relatively narrow geographical focus: it includes 227 Chinese cities.
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R0 was calculated from data over the period 10 February to 9 March 2020. The authors assert that these
data are for the “expected number of secondary cases generated by an initial infectious individual, in a
completely susceptible population” [39] (p. 1). All daily environmental data were spatially matched as
closely as possible to the cities they represent. Given the large number of cities, each with its unique
climate, this kind of study lends itself to a regression-type analysis if each of the daily observations
per environmental variable are averaged over the study period duration before relating them to each
locality’s R0. This study did not find an influence due to any of the environmental variables studied
on the rate of SARS-CoV-2 transmission. A weakness of the study was the failure to account in their
multiple regression model for any of a large number of city-level confounding influences.

A single published study does not provide robust support for the presence or absence of a climatic
influence on SARS-CoV-2 transmission rates. The preprint studies [11,147,152,153,155,156,162,174,190]
offer mixed statistical support (none, weak, or strong relationships) for the influence of environmental
drivers. Carlton et al. [153] show that that UV radiation affects COVID-19 growth rates, but not
temperature or humidity. Merow and Urban [156] offer comparable support for a UV radiation effect.
According to Ficetola and Rubolini [155] and Wan et al. [190], COVID-19 transmission is greatest at a
temperature of 5 and 6.3 ◦C, respectively; the former authors further show that transmission peaks
at a specific humidity, ~4–6 g·m−3 (peaking implying optimum conditions above and below which
transmission rates drop off). Similarly, Leung et al. [162] suggest support for the hypothesis that
lower temperature and humidity enhance COVID-19 transmission. Similar responses are seen by
Lin et al. [165] and Wilson [174] with regards to temperature, but they also suggest an interaction
between temperature and relative humidity [165] and temperature and mobility [174] in terms of
modulating infection rates. In contrast, Gupta and Gharehgozli [147] show that higher temperatures
enhance the spread of the disease; they also show that viral transmission is enhanced under higher
concentrations of PM2.5.

6. Discussion

This pandemic has rapidly mobilised scientists from diverse disciplines in a possibly unprecedented
way. Scientists have helpfully offered insights and analytical methods based on their own disciplines
They did so efficiently and swiftly, particularly in those countries most heavily affected by the pandemic
early on. The rush to contribute knowledge about the future spread of COVID-19 resulted in a flood
of papers appearing on preprint servers [191], which will in due course be peer reviewed and some
will be published. The pressure to speed up the peer-review process, in order to address the urgent
challenge, may result in a compromise in the quality of both the review process and the science that is
thereby published. In our screening process in Section 5, we scrutinised 29 peer-reviewed publications
and 23 preprint articles. Of these, we found one published and potentially four preprint studies that
offer credible insight into the climate-related SARS-CoV-2 and COVID-19 dynamics and epidemiology
with a reasonable degree of confidence and rigour.

The general prevalence of climatologically-coupled seasonal signals and environmental variable
modulation seen in the majority of other viral respiratory diseases creates the expectation for a similar
effect on SARS-CoV-2 and in COVID-19 epidemiology. However, this virus and disease have only been
spreading for 8 months. Observational evidence available to date has not yet been analysed sufficiently
thoroughly to show that climate-related modulation is indeed a significant factor. The studies reviewed
in Section 5 have aimed to find signs for such a signal, but a variety of methodological problems render
a definitive conclusion premature.

The currently available time series do not capture a full annual cycle at any one location, or globally.
The first studies appeared in late January on preprint servers (the majority of these are yet to be
formally published as of mid-July 2020). As such, the initial reports looked for spatial variation in
infectivity within a region and attempt to explain it in terms of associated variability in temperature,
humidity or other environmental factors among these locations. Later studies could have benefitted
from the larger datasets and a wider range of variation in the environmental drivers, resulting from
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the global spread, but became increasingly confounded by co-varying differences among the countries’
socio-economic conditions and pandemic responses. To date, the ‘global’ messages coming from the
current body of COVID-19 research in general, and in respect to the environmental drivers of the
disease in particular, do not equitably address the specific dynamics and considerations pertaining to
the ‘Global South’. This is in part likely due to the slightly later arrival of the disease in the southern
hemisphere. Thus, fewer southern hemisphere countries have suffered outbreaks of the same scale and
severity (at the stage of assembling this manuscript) as the epidemics in the Far East, Europe and the
United States. At the time of writing, the situation in some South American countries (such as Brazil
and Peru) was deteriorating quickly. There is also a technical challenge in countries with relatively
lower medical health research capacity, such as those in Africa [192]. The upshot is a circumstantially
driven bias in the current literature which needs to be corrected, for several reasons. Neglecting the
hemispheric disparities in knowledge regarding the role of environmental variables on SARS-CoV-2
and the modulation of the COVID-19 epidemic influences the discussion on the attribution of the
reductions in cases. Northern countries are likely to move past peak daily infections coincidentally
with the height of summer. It also neglects the urgent consideration of countries which are moving
into winter. Importantly, many of the countries in the global south have already-stressed healthcare
systems, and accurate modelling is critical in determining policy interventions for control measures to
protect the lives of some of the world’s most vulnerable people. The collective global experience can
provide a shortcut to knowledge and information regarding the role of environmental variables on
SARS-CoV-2 biology and modulation of COVID-19 epidemiology and seasonality, applicable anywhere,
by exploiting the latitudinal phasing of seasons to conduct research in all climates zones simultaneously.
This leads us to call for global collaboration on this topic.

Much of the work we reviewed failed to carefully consider the implications of the choice of
available metrics for viral transmission. We deem R0 to be best suited for the purpose of finding
environmental sensitivity and seasonal climatic signals; some parametric estimates from regression
models can also work, provided that care is taken to constrain the cases to those that result from
local transmissions up to the time when NPIs come into play. R0 is closely aligned with the SIR-SEIR
model family, and can be derived from the inversion of time series of case rate data using these models
(see below).

Due to the effects of the incubation period, it may be important to use daily data (rather than data
averaged over a several days) and a suitable lag period for both environmental and test-result data
incorporated in the analysis. In the case of a highly infectious disease such as COVID-19, manifesting in
a densely populated location, the effect of daily weather variations on transmission mechanisms is likely
to be overwhelmed by the sheer magnitude of exposure. It may be that environmental modulation is
still an important factor in these circumstances, but may reflect in indoor environments rather than
outdoor ambient conditions [193]. Once the disease spread begins to approach an equilibrium (Rt~1),
the environmental effect may become more apparent.

To date, studies that attempted to discern the effects of climate by comparing infection rates across
regions with different climates have been compromised by the heterogeneities that exist across locations
and times in terms of control measures applied [194], and social, economic and cultural conditions that
affect the practise of social distancing. Most studies have omitted variables such as poverty, population
size and demographics (particularly age frequencies of the populace), the density of the population and
how much high-resolution clustering is present (such as in the informal settlements in many countries
of the South), the degree of urbanisation, access to healthcare, mobility and migration, various types
of comorbidities (e.g., TB, HIV, malnourishment), the effect of the Bacillus Calmette-Guérin(BCG)
vaccine [195], and a plethora of additional influences which are still not well understood with regards
to how they influence the unfolding of COVID-19 across the globe. Simple graphing of case numbers
across time in relation to some of the potentially influential drivers (as for example permitted by the
Our World in Data Coronavirus Pandemic Data Explorer) will help reveal which of the additional
variables to admit into the analysis.
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An important obstacle to finding the seasonal signal in the global COVID-19 data is to find a
way to deal with the hemispheric disparity (gradient away from the equator) in out-of-phase climatic
signals. Comparing the evolution of COVID-19 for northern hemisphere countries moving from winter
to summer to its evolution in southern hemisphere countries moving from summer to winter provides
a valuable opportunity to discern the signature of seasonality. However, such a comparison will remain
compromised by short time series and can only fully fulfil its potential once both hemispheres have
experienced a full annual seasonal cycle.

We have concluded that due to high values of R0 exhibited by SARS-CoV-2, seasonal climate
modulation should not be relied on to significantly dampen the infection rate even in the midst of the
northern hemisphere approaching summer. Should the disease persist several years into the future,
however, under the condition of an increasing fraction of the population of a given region having
immunity, it is likely that the COVID-19 will exhibit an increasingly clear seasonal cycle as evident in
similar endemic human coronaviruses. Such insights will only be apparent after the main pandemic
surge in 2020.

We suggest some avenues for progress in addressing the environmental sensitivity of the disease.
In addition to regression and correlative empirical approaches (Section 5.4), non-linear methods can also
be applied. These may include the use of extended Kalman filters and the inversion of compartment
models. Extended Kalman filters are commonly used in data assimilation to infer parameters from
high-dimensional input data sets. Recently, Pei et al. [196] applied an ensemble-adjusted Kalman
filter to infer the differential spatial distribution of COVID-19 infection rates from empirical data
collected across different counties in the USA, followed by their application in a SEIR model. It may be
feasible to apply this technique to estimate the relative roles of non-pharmaceutical control measures
and seasonality in determining the infection rate. Inverse modelling, particularly using SEIR-type
models, can infer infection rates from case and testing data, as demonstrated for the Hubai Province in
China [46]. Making use of large ensembles that ingest data from many locations and systematically
explore various combinations of the forcings can potentially explore the relative sensitivities of infection
rates to NPI control measures and seasonality.

We recommend the use of regression-type statistical analyses than can be adapted to accommodate
many simultaneous driving variables, including both environmental and non-environmental factors,
thereby removing confounding influences. These models also readily accept non-Gaussian error
terms and can account for autocorrelation in time series. Lags between exposure and when an
individual is confirmed as infected can be accommodated by distributed lag non-linear models [197,198].
These techniques rely on Generalised Additive Models (GAMs) for the flexible estimation of smooth
responses and parametric terms. The recognition that disease dynamics may differ between locations for
a multitude of reasons requires that ‘location’ be specified as random effect (notable examples involving
COVID-19 include Carlton et al. [153] and Wilson [174]). Such approaches can be accommodated by
longitudinal models (called panel regressions by economists) (sensu Gardiner et al. [199]), which regress
the dependant variable (plus covariates and constraints) as a function of time. Care should be given to
estimations of uncertainties around model predictions —such estimates of uncertainties are permitted
by Markov Chain Monte Carlo (MCMC) approaches [42]. Knowing the uncertainties is necessary
in assessing projections from competing models in the public policy space. Finally, multivariate
approaches, such as Redundancy Analysis (RDA) or Constrained Correspondence Analysis (CCA),
will also accept a creative assignment of a host of response and influential variables simultaneously,
and can be employed when research is faced with many potentially contributing factors, each of which
might explain a portion of the overall variability.

We noted a lamentable deficiency in the application of reproducible research practices in many of the
publications we reviewed. Clear, precise reporting of data sources and quality, data screening practices,
listings of the ancillary data sources used, a detailed account of the data processing and statistical
procedures and software used, and the exact reporting of all relevant diagnostic and supporting
statistics, tables and figures is essential, particularly in this global emergency, where published data
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and information are used operationally, and where robust guidance is most likely to emerge from
meta-analyses of many studies. Lives, livelihoods, economies, and the public trust in science depend
on rigour and reproducibility. It is thus incumbent upon global research organisations and agencies
such as the World Health Organisation (WHO) and the World Meteorological Organisation (WMO)
to provide leadership and guidance and to define best-practice protocols for the analysis of data and
production of information. To this end, the WHO has produced a document entitled “A Coordinated
Global Research Roadmap: 2019 Novel Coronavirus” [200]. Its scope is broad, and thus does not
specifically address some of the issues raised in our review. The authors are aware [201] that at the
time of writing, the WMO has agreed to set up a Task Team which will focus on the environmental
aspects of the COVID-19 pandemic.

7. Conclusions

Datasets capturing even the first full seasonal cycle of COVID-19 incidence in one locality, region
or globally are not yet available and it is not possible at this stage to conclude that a definitive
and unequivocal signal of environmental modulation is apparent from the reviewed literature.
However, there is some evidence that environmental drivers played a role in transmission in some
regions and at some (early) stages of the pandemic. Under other circumstances, longer and denser
datasets would be a minimum requirement to support a thorough statistical treatment to explore
evidence of environmental modulation of the COVID-19 pandemic and epidemiological dynamics.
Pressure for rapid answers and information has prompted impulsive and dubious forays into
signal-finding missions, such as those that dominate the current body of literature that had accumulated
to date (15 July 2020). Analyses based on space-for-time substitutions have been inconclusive,
primarily due to lack of care taken to account for the effects of strong confounding variables, such as
socio-economic influences and effects of NPIs, which exist between jurisdictions. In terms of the
outcomes of the published work, most studies are insensitive to the idiosyncratic conditions unique
to many Southern Hemisphere countries, rendering it challenging to transfer findings from north to
south. Rigorous hypotheses, interrogation of assumptions, and careful selection and development
of analytical approaches and statistical models are required to examine environmental signals in
complex COVID-19 incidence datasets, especially prior to longer and denser time series data being
available. In the interim, there is merit in comparisons of signals among contrasting locations at
different scales, and with due consideration paid to the implementation of NPIs and other sources of
‘noise’. This outcome does not discount the role of environmental drivers in modulating the incidence
or seasonality of person-to-person transfection mechanisms, or of the morbidity, severity and mortality
associated with COVID-19 infections. However, these may become unequivocally discernable only
at later stages of the pandemic in 2020 or 2021, and globally coordinated efforts to test this robustly
are essential.
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transmission of the virus is enhanced under colder, dryer conditions.
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