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Nest-type associated microclimatic conditions as potential drivers
of ectoparasite infestations in African penguin nests
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Abstract
Nest design and characteristics can influence the microclimatic conditions in the nest. Nest-dwelling ectoparasites are sensitive to
temperature and moisture and as such the conditions in the nest can influence parasite infestations. The endangered African
penguin (Spheniscus demersus) breeds in different nest types and as yet little is known with regard to the microclimate and
parasite infestation within these nests. This study characterized the microclimatic conditions in natural open, natural covered
(with vegetation) and artificial nests, and assessed the relationship between nest characteristics (type, age, distance from the coast,
orientation and entrance opening) and in-nest ectoparasite infestations and the health of African penguins in Stony Point, South
Africa. Penguins (50 adults and 192 chicks) and their nests (n = 308) were sampled in 2016 and 2017. Soil temperature was
higher in artificial than in natural nests, and soil and nest material moisture was lower in artificial and natural covered nests than
natural open. Ectoparasite infestations were higher under warmer and drier conditions, in artificial nests and nests near the
coastline. Penguin (adult and chick) body mass and chick body condition were lower in warmer nests and total plasma protein
(in adults and checks) was lower in drier nests. Given the potential adverse effects of ectoparasites on host species, it is
recommended that conservation agencies implement a monitoring programme to assess the ectoparasite infestation in artificial
nests across multiple colonies. This information will facilitate a more holistic penguin conservation management plan that may
prevent further detrimental effects on this endangered penguin species.
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Introduction

Nests are used by multitudes of species that belong to taxa
such as reptiles, birds, mammals and even fish. Nests form
important components of animal ecology as they are the phys-
ical structure where animals complete reproductive tasks, rest
and find protection from climatic conditions and predators
(Hansell 2005; Mainwaring et al. 2014). For example, the
eastern fence lizard (Sceloporus undulatus) oviposits in open
nests (Angilletta Jr et al. 2009), while the eastern grey squirrel
(Sciurus carolinensis) use tree cavities to bear and care for
their young and rest at night (Broughton 2020). In the case
of birds, nests are equally important and the nest type (i.e.
design), building material (e.g. soil or feathers) and location
(e.g. on the ground or in tree cavities) vary depending on the
bird species (Hansell 2000).

The level of protection that a nest provides against preda-
tors and external climatic conditions varies with nest type and
location (Hansell 2005). For example, open surface nests (i.e.
on the ground) located on flat areas with no vegetation are
more exposed to predators and climatic conditions (wind, so-
lar radiation and rain) than open nests that are covered with
vegetation or natural burrows (Hansell 2000; Mainwaring
et al. 2014). The internal nest microclimate also varies de-
pending on nest location, physical structure (Deeming and
Mainwaring 2015) and orientation of the nest opening
(Mainwaring et al. 2014; Michielsen et al. 2019). For exam-
ple, Vleck et al. (1983) found that ground nests of terns and
gulls were more humid than more ventilated tree nests of
herons, egrets and ibis. Furthermore, enclosed nests (nests
with walls and a roof) restrict ventilation and provide more
protection against heat loss compared with open nests (Martin
et al. 2017). Likewise, the thermal conductivity of building
materials and the thickness of the nest walls confer different
degrees of nest insularity (rate of heat moving across the nest
material) and water penetration (Heenan 2013).

Human population increases have resulted in loss of natural
habitat and resources, and a change in climate to the extent
that breeding population sizes of wildlife are significantly af-
fected (Barnosky et al. 2011). This is particularly relevant to
seabirds of which several species are threatened (Paleczny
et al. 2015). In an attempt to mitigate the threat of poor breed-
ing habitat, artificial nests (i.e. man-made nest that mimic
natural nests) are used as a conservation management tool to
create suitable nest sites and ultimately improve the breeding
success of threatened species (Bolton et al. 2004; Kemper
et al. 2007). For example, the improved breeding success re-
corded for yelkouan (Puffinus yelkouan) and Scopoli’s
(Calonectris diomedea) shearwaters has been facilitated by
the use of artificial burrows made from cement, plastic and
other materials (Bourgeois et al. 2015). Artificial nest boxes
and burrows have been constructed from plastic, wood, ce-
ment and fibreglass and also have several designs (e.g. square

boxes, A-frame and dome-shape) (Du Feu 2005). Although
the general aim is to provide suitable nesting and roosting
habitat, the design of these nests also increases protection
against predators and climatic conditions (Lambrechts et al.
2010; Sumasgutner et al. 2020). In particular, the physical
characteristics of artificial nests (e.g. materials, wall thickness
and entrance size) can influence the nest microclimate
(Lambrechts et al. 2010), to the extent that artificial nests are
warmer, drier and have a reduced air flow than natural nests
(Lei et al. 2014). A recent study on marsh tits (Poecile
palustris) found that wooden nest boxes were warmer and
drier than nests in tree cavities. However, the study also found
that nest boxes were poorly insulated against the ambient tem-
peratures and therefore cannot replicate the thermal buffering
effect of natural tree cavities (Maziarz et al. 2017). The high
temperatures reached in nest boxes have been attributed to
poor ventilation and therefore reduced heat loss by convection
(Ropert-Coudert et al. 2004). In addition, the use of artificial
nests over consecutive years, in addition to limited air flow in
the nest, can facilitate the accumulation of nest material,
which can create microhabitats for ectoparasitic fauna
(Tomás et al. 2007).

Birds are parasitized by a diverse array of ectoparasite spe-
cies that include fleas, soft and hard ticks (Argasidae and
Ixodidae, respectively), mites and lice (Lehmann 1993). The
ectoparasites differ in host association that ranges from per-
manent (lice) to temporary parasites (fleas, ticks and mites)
(Marshall 1981; Lehmann 1993). The latter taxa are nidico-
lous, i.e. ectoparasites that live in or near to the host dwelling
in for example, cracks, under stones and among the nest ma-
terial (Sonenshine 1993; López-Rull and Macías Garcia
2015). Although all the life stages of fleas (egg, larva, pupa
and adult) occur in the nest, only the adults consume blood,
while most or all of the tick life stage (egg, larval, nymph and
adult), depending on the species, require a blood meal
(Sonenshine 1993; Bitam et al. 2010). Fleas and ticks, being
arthropods, are ectothermic and thus sensitive to the microcli-
matic conditions in the nest (López-Rull and Macías Garcia
2015). For example, the abundance of the soft tick
Ornithodoros capensis decreased with an increase in nest
moisture in African penguins (Spheniscus demersus) (Daturi
1986). Furthermore, the abundance of hen flea (Ceratophyllus
gallinae) larvae was positively correlated with the presence of
the host in the nest and the duration of the warm period, which
in turn influenced within-nest temperatures in nests of blue tits
(Cyanistes caeruleus) (Tripet and Richner 1999). As men-
tioned above, artificial nests are generally drier and warmer
compared with natural nests and it is possible that the micro-
climatic conditions associated with these nests can facilitate
parasite infestations (Wesołowski and Stańska 2001; Hebda
and Wesołowski 2012). For example, hen fleas were more
prevalent in drier conditions associated with artificial nest
boxes of great tits (Parus major) (Heeb et al. 2000). Other

3604 Parasitol Res (2020) 119:3603–3616



nest characteristics that can also influence microclimatic con-
ditions and thus parasite infestations include the nest age (in
relation to the accumulation of nest material), spatial location,
opening size and orientation (George 1959; Mazgajski 2007;
Moon et al. 2018).

Ectoparasites can directly affect their bird hosts through
their physical presence or feeding behaviour, causing damage
to the skin and feathers, stress, weakness and irritation
(Lehmann 1993). Blood-sucking arthropods can cause anae-
mia (i.e. reduce the number or proportion of red blood cells)
(Campbell and Ellis 2007), and the multiple injuries caused by
ectoparasites can increase metabolic expenditure to compen-
sate for the damage, thus altering host fitness which is
reflected in the loss of host body condition and body mass.
For example, Cassin’s auklet (Ptychoramphus aleuticus)
chicks with severe infestation of ticks (lxodes uriae) recorded
lower wing growth and reached peak body mass later than
chicks with fewer ticks (Morbey 1996). High ectoparasite in-
festations can induce adult birds to abandon eggs and chicks,
such as seen in Peruvian seabirds deserting their nests in col-
onies highly infested with ticks (Ornithodoros amblus) (Duffy
1983). Ectoparasites, and especially ticks, and fleas also act as
vectors for pathogens such as rickettsia, protozoa and viruses
(Sonenshine 1993; López-Rull and Macías Garcia 2015) that
can affect the health of the bird (Heylen et al. 2015). High
ectoparasite infestations in the nests can therefore affect the
population size and survival of endangered bird species
(Williams et al. 2013).

African penguins, one of the most threatened seabird spe-
cies in South Africa (BirdLife International 2018), generally
return to the same colony and nest site to breed (Randall et al.
1987; Whittington et al. 2005). Adult penguins regularly lay
two eggs that are incubated in the nest by both parents, and
chicks remain in the nests for ca. 80 days after hatching while
the parents rotate to feed at sea during the day and return to the
nest in the evening (Cooper 1980). The deliberate removal of
guano, the principal substrate used to excavate burrows in
their natural habitats, brought about a change in the species’
nesting behaviour to the extent that exposed open nests (on the
surface) are now commonly used (Frost et al. 1976). In addi-
tion, penguins actively use artificial nests (made from cement,
wood or fibreglass) that are introduced by colony managers in
an attempt to improve breeding success (Sherley et al. 2012).
However, in recent years, the conservation authority at Stony
Point, one of the largest colonies along the south-western
coast of South Africa, raised concerns about the incidence of
soft ticks and a suspected concomitant decrease in the condi-
tion of penguin chicks at this colony. At Stony Point, African
penguins actively use three nest types: natural open, natural
covered and artificial nests. The artificial nests (comprising of
fibreglass or cement) have been in use, in this colony, for more
than 3 years. Given the diverse nest types and the uncertainly
of which nests harboured higher ectoparasites infestations, it

was important to establish if ectoparasites were randomly dis-
tributed among the different nests in the colony and if not
random, to establish the nest-associated characteristics (type,
age, distance from the coast, orientation and entrance opening)
that influence ectoparasite infestations. The aims of the study
were therefore to (1) record the microclimatic conditions as-
sociated with different nest types (natural open, natural cov-
ered and artificial nests) in the Stony Point colony; (2) deter-
mine the relationship between various nest characteristics
(type, age, distance from the coast, orientation and entrance
opening) and the in-nest tick and flea abundance and preva-
lence; and (3) establish the relationship between nest charac-
teristics and incidence of tick-transmitted pathogens and the
general health of African penguins. It was predicted that the
microclimatic conditions will differ between the three nest
types, given that they differ in design and the level of protec-
tion against weather conditions. In addition, it was predicted
that warmer and drier nests will facilitate higher flea and tick
infestations.

Materials and methods

Study site and sample size

This study was carried out in the Stony Point African penguin
colony (34.3741° S, 18.8917° E), Betty’s Bay, South Africa
(Fig. 1). The colony lies along the south-west coast and re-
ceives winter rainfall with cold and wet conditions common
from May to September. Since its establishment in 1982
(Whittington et al. 1996), the colony progressively grew in
numbers to reach 2533 breeding pairs by 2015 (CapeNature
unpubl. data). Management interventions have included the
use of artificial nests and the addition of local vegetation to
natural nests in an attempt to improve breeding sites by mim-
icking natural burrow nests.

Since the presence of a bird in the nest (nest occupancy)
can positively affect ectoparasite demography by providing
food in addition to heat and moisture to the nest microenvi-
ronment (Marshall 1981), nests occupied by a visually healthy
chick and/or adult penguin (active nests) were included in the
study. The nests and the penguins inside the nests were ran-
domly selected and sampled during three sampling seasons:
June/July (autumn/winter) 2016 (109 nests, 22 adults and 83
chicks), October/November (spring) 2016 (81 nests, 8 adults
and 24 chicks), and June/July (autumn/winter) 2017 (118
nests, 20 adults and 85 chicks). During each sampling period,
the nests comprised three different nest types: artificial
(fibreglass or cement-fibre nests (ca. 10% cement nests))
(Fig. 2a), natural covered (nests sheltered by vegetation, i.e.
Tetragonia fruticosa) (Fig. 2b) and natural open (open nests
with or without a few dry branches covering on top) (Fig. 2c).
A total of 84 penguins (adults and chicks) from artificial, 87
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penguins from natural covered and 71 penguins from natural
open nests were sampled across the seasons (Table 1).
Sampling took place from 9:00 to 16:00 h.

Assessment of nest microclimatic conditions

iButton data loggers (Thermochron®; temperature range − 40
+ 85 °C and resolution 0.5 °C) were inserted in the soil of the
sampled nests at 5-cm depth. This was done to measure the
temperature of the environment where nest ectoparasite live
(i.e. among the nest material and ground surface; López-Rull
and Macías Garcia 2015). Each iButton was set to record
temperature at 60-min intervals and placed in the nests for a
30-day period. iButtons were dipped in a rubber coating
(PLASTI DIP®) (three coats per device) for waterproofing
prior to deployment. iButtons were tested before and after
the coating to ensure that the temperature reading was not
affected by this procedure. This step was included in the

second (October/November 2016) and third field season
(June/July 2017) due to the failure (as a result of moisture)
of 16 iButtons during the first field season (June/July 2016).
Each iButton was subsequently placed in a small plastic pipe
(opened and with holes on one side for contact with the soil),
adhered to the tip of a wooden stick to facilitate recovery after
30 days (Fig. 2d, e). It is worth noting that at the time of
sample collection, some of the nests that were active when
iButtons were deployed 30 days before the sampling were
found deserted. The data from the iButtons were used to cal-
culate the mean and standard deviation (SD) of the soil tem-
perature. After the 30-day period of logging soil temperature,
soil samples were collected to calculate the moisture content
in the respective nests. At the same time, nests and penguins
were sampled for parasites and the health condition of pen-
guins recorded (methods in sections below). The soil moisture
content was calculated by obtaining a 100-ml nest material
sample (from the top layer) and 50-ml soil sample (beneath

Table 1 Sample size per bird age
(adult penguins and chicks) in
each of the nest types across
seasons in the Stony Point
penguin colony, South Africa

Nest type Autumn/winter 2016 Spring 2016 Autumn/winter 2017 Total

Artificial nests

Adults 10 1 9 20

Chicks 28 8 28 64

Natural covered

Adults 5 4 9 18

Chicks 29 12 28 69

Natural open

Adults 7 3 2 12

Chicks 26 4 29 59

Fig. 1 The Stony Point penguin
colony in Betty’s Bay, South
Africa. Black dots are African
penguin nests sampled during the
three sample periods (i.e. autumn/
winter 2016, spring 2016 and
autumn/winter 2017)
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the nest material, 2-cm depth) from each nest. Both samples
were individually placed in pre-weighed glass bottles and
sealed with a lid. The glass containers with fresh soil and nest
material were weighed (combined wet and jar weight) using
an electronic scale (PS 4500/C/2, Radwag Wagi
Elektroniczne, Radom, Poland). The weight of the empty jar
was subtracted from the combined weight to obtain the wet
weight of each sample. Thereafter, the samples were dried in
an oven for 24 h. Soil samples were dried at 105 °C, while nest
material was dried at 60 °C in order to avoid burning the nest
material content (e.g. leaves, feathers, seaweed and stones)
(Gardner 1965). The sample bottles were reweighed and the
empty jar was subtracted to obtain the dry weight of the soil
and nest material. The gravimetric (dry) nest material and soil
water concentration were then calculated for each nest mate-
rial and soil sample (International Standards Organization
1993):

Wd ¼ weight of moist soil gð Þ−weight of dry soil gð Þð Þ=weight of dry soil gð Þ

where Wd is the gravimetric (dry) soil water concentration.

Assessment of nest characteristics

Apart from the nest type data (artificial, natural covered and
natural open nests), the age of each nest was characterized
(based on colony records) as follows: “1”—new nests or
established within a year, “2”—nests established more than
one but less than 3 years, and “3”—nests established more
than 3 years. We recorded the distance of each nest to the
south-east coast and to the west coast of the colony due to

the fact that Stony Point predominantly receives wind from
two different directions during the year (north-west winds in
winter and south-east winds in spring). The geographic loca-
tion of each nest was referenced using a GPS and the coordi-
nates were used to calculate the distance (meters) by drawing a
straight line from each nest to the south-east and west coast
using the measure tool of Google Earth Pro (image date 30/12/
2017 ©2018 DigitalGlobe). In each case, the directions of the
lines were in the same direction and parallel to each other.
This gave an indication of the exposure to wind and moisture
from sea sprays for each nest (Monahan 1968). The orienta-
tion of the nest entrance was recorded from artificial and nat-
ural covered nests. Nests entrances were denoted as “wind-
ward” or “leeward” pending the predominant wind direction
(“windward” in winter north-east and spring south-east and
“leeward” the nests facing the remaining directions). The size
of the nest entrance was recorded horizontally from side-to-
side at the widest point of the entrance opening using a mea-
suring tape for artificial and natural covered nests.

Collection and processing of ectoparasites from nests
and penguins

For the extraction of ticks and fleas from the nests, a standard-
ized 200-ml sample was collected from the centre of the nest
using a spade. The sample, which consisted of nest material
(e.g. sticks, seaweed and stones) and soil, was immediately
transferred into a plastic jar and sealed with a lid. In the lab-
oratory, nest samples were placed in a modified Berlese funnel
for 24 h using naphthalene mothballs as repellent and subse-
quently inspected using a stereomicroscope to ensure the

Fig. 2 Nest types that were included in the study: a artificial, b natural covered and c natural open nests. d Front and e side view of plastic pipe used to
insert the iButtons in the nest soil. The colour version of the figure is only available online
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complete removal of ectoparasites from nest samples (details
of the ectoparasite extraction from penguin nests can be found
in Espinaze et al. 2019a).

A standardized method for parasite collection was used for
adult penguins and chicks. During an 8-min period, ectoparasites
were collected from the abdominal area by brushing the plumage
for 1 min with a soft brush and from around the eyes using
forceps, and stored in 70% ethanol until examination in the lab-
oratory within 1 week from sample collection. The body regions
were selected based on their association with ectoparasites from
previous studies (Dr Nola Parsons pers. comm. 2016).
Ectoparasites collected from nests and penguins were counted
and identified morphologically to species level using taxonomic
reference keys (Jordan 1942; Kohls et al. 1965).

Penguin health parameters and haemoparasite
presence

Body mass, chick body condition, haematocrit and total plasma
protein were recorded from African penguins. Penguin (adults
and chicks) body mass (kg) was recorded using a handheld elec-
tronic scale (25 kg/50 lb Sensation). The head length (mm) of
chicks was measured from the back of the head to the tip of the
beak using an electronic calliper (Grip 150 mmDigital Vernier).
The body mass and head length were used to calculate the body
condition of chicks (Lubbe et al. 2014). The method by Lubbe
et al. (2014) uses quantile regression equations of minimal and
maximal normal growth for successful fledglings to calculate the
body condition of a chick with an expected body mass for a
given head length. To obtain haematocrit and total plasma pro-
tein values, bloodwas collected from the dorsal aspect of the foot
of all penguins using a 23-gauge needle, and placed in 80-ul
heparinized microhematocrit capillary tubes. Capillary tubes
were centrifuged (on site and on the same day) using a portable
centrifuge (Hawksley & sons Ltd.) at 14000 rpm for 5 min
(Travis et al. 2006). Haematocrit (packed cell volume) was mea-
sured using a microhaematocrit reader (Hawksley & sons Ltd.)
and total plasma protein (TPP) was determined using a handheld
refractometer calibrated before use (Bellingham and Stanley Ltd.
and Schmidt + Haensch). To record the presence of
haemoparasites, a drop of bloodwas collected tomake thin blood
smears which were fixed with methanol on site and later stained
with eosin-methylene blue stain (RapiDiff kit). Presence of tick-
transmitted haemoparasites was recorded in 150 fields per slide
under a light microscope (Leica Microsystems, Wetzlar,
Germany) at × 100 magnification (Palinauskas et al. 2008).
Haemoparasites were identified to order level based on morpho-
logical characters (Campbell and Ellis 2007).

Statistical analysis

We ran three sets of analysis. Firstly, we fitted a generalized
linear model (GLM) with a Gaussian error distribution using

the glm() function in R to each nest microclimatic variable as
the response variable (including, respectively, mean soil tem-
perature (°C) over a 30-day period from each nest; SD of the
recorded soil temperature, soil moisture (Wd) and nest material
moisture (Wd)). For explanatory variables, we included nest
characteristics (nest type, age, distance from the coast, orien-
tation and opening), together with nest occupancy (active and
non-active) and sampling period (SP1: autumn/winter 2016;
SP2: spring 2016; and SP3: autumn/winter 2017).

Secondly, we fitted a zero-inflated GLM using the zeroinfl()
in “pscl” R package (Jackman 2017) for transformed abundance
data (log(N + 1)) to reduce skewness. The response variable,
parasite abundances, is the numbers of individual parasites in
nests regardless of whether the nest is infested (Bush et al.
1997). Nest characteristics, nest microclimatic conditions, nest
occupancy and sampling period were used as explanatory vari-
ables. Moreover, we fitted a binomial GLM for the presence and
absence of ectoparasites using the glm() function in R. Parasite
prevalence (i.e. presence) was considered for nests infested by
one or more individual parasites (Bush et al. 1997). Again, nest
characteristics, nest microclimatic conditions, nest occupancy
and sampling period were used as explanatory variables. For
the categorical explanatory variable nest type in these two sets
of regression models, we took each nest type as the intercept,
although we only presented tables with artificial nests as the
intercept for simplicity.

Lastly, we assessed the correlation between in-nest ecto-
parasites (fleas and ticks combined) and on-host ectoparasites
using a Spearman correlation test, after testing for data nor-
mality with a Shapiro test. Subsequently, we fitted a GLM
with a specific error distribution to each penguin health indi-
cator as the response variable (including, respectively, pen-
guin body mass with a negative binomial distribution, chick
body condition with a Gaussian error distribution, haematocrit
plasma protein with a Poisson distribution, and total plasma
protein with a Gaussian error distribution). The GLM included
nest characteristics and microclimatic conditions that were
significant in the previous analysis (i.e. nest type, distance
from the coast, mean soil temperature, soil moisture and nest
material moisture), penguin age (except for chick body con-
dition), on-host ectoparasites and sampling period as explan-
atory variables. We used the glm() function in R, while we ran
the GLMwith a negative binomial distribution using the func-
tion glm.nb() in the “MASS”R package (Venables and Ripley
2002). Although full models (all explanatory variables includ-
ed) were used for hypothesis testing, a backward model selec-
tion test was performed using the Akaike information criterion
(AIC) and a chi-squared test to compare the full models with
the best models from the AIC. Haemoparasite prevalence in
adult penguins and chicks between the different nest types
were compared using proportion tests. All statistical tests
and plot design were conducted in R 3·4·3 (R Core Team
2017).
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Results

Nest characteristics and microclimate

Mean values and proportions obtained from nest microcli-
matic conditions and characteristics recorded per nest type
and sampling season are presented in Table 2. Nest mi-
croclimatic conditions explained by nest characteristics
are presented in Supplementary Table S1. None of the full
models used in the analysis differed significantly from the
best models estimated with the AIC (Supplementary
Table S2). Mean soil temperature was significantly higher
in artificial nests (17.78 ± 0.24 °C) than in natural covered
(16.81 ± 0.22 °C, t-statistic p < 0.001) and natural open
(16.96 ± 0.27 °C, t-statistic p = 0.003) nests. The same
pattern was recorded for soil temperature SD (t-statistic
p = 0.003 and t-statistic p = 0.047, respectively). Soil
moisture and nest material moisture in artificial nests were
not significantly different from natural covered nests (t-

statistic p = 0.135 and t-statistic p = 0.217). However, ar-
tificial and natural covered nests were significantly drier
than natural open nests (soil moisture t-statistic p < 0.001
and t-statistic p < 0.001, respectively, and nest material
moisture t-statistic p < 0.001 and t-statistic p = 0.009, re-
spectively). Mean soil temperature (t-statistic p = 0.002)
and nest material moisture (t-statistic p = 0.010) were
higher in active (17.12 ± 0.18 °C and 0.42 ± 0.02 Wd) than
in non-active nests (17.33 ± 0.23 °C and 0.29 ± 0.02 Wd).
Soil moisture was higher in older nests (t-statistic p =
0.026) and in nests further away from the south-east coast
line (t-statistic p = 0.003). Mean soil temperature (t-statis-
tic p = 0.031) and temperature SD (t-statistic p = 0.014)
were significantly lower in nests with wider openings.
When comparing between seasons and years, soil temper-
ature was lower (t-statistic p < 0.001) and nest material
wetter (t-statistic p < 0.001) in autumn/winter 2016
(15.51 ± 0.19 °C and 0.41 ± 0.02 Wd) than in spring in
2016 (19.13 ± 0.16 °C and 0.23 ± 0.02 Wd), while soil

Table 2 Nest
characteristics assessed
for African penguins in
the Stony Point colony,
South Africa. The mean
value (± SE) of and
proportion (%) per nest
type and sampling
season are presented.
Sampling seasons:
autumn/winter 2016
(SP1), spring 2016
(SP2), and autumn/
winter 2017 (SP3)

Nest type Sampling season

Nest characteristics Artificial Natural
covered

Natural
open

SP1 SP2 SP3

Microclimate (mean ± SE)

Soil mean temperature
(°C)

17.78
(± 0.24)

16.81
(± 0.22)

16.96
(± 0.27)

15.51
(± 0.19)

19.13
(± 0.16)

16.65
(± 0.18)

Soil temperature SD 1.91
(± 0.11)

1.47
(± 0.09)

1.62
(± 0.08)

1.76
(± 0.11)

1.62
(± 0.09)

1.65
(± 0.09)

Soil moisture (Wd)a 0.31
(± 0.02)

0.35
(± 0.03)

0.56
(± 0.04)

0.41
(± 0.03)

0.42
(± 0.04)

0.39
(± 0.03)

Nest material moisture
(Wd)a

0.32
(± 0.02)

0.36
(± 0.02)

0.44
(± 0.02)

0.41
(± 0.02)

0.23
(± 0.02)

0.49
(± 0.03)

Occupancy (%)

Active 74.51 74.76 70.87 82.57 46.91 83.05

Non-active 25.49 25.24 29.13 17.43 53.09 16.95

Age (%)

1 (< 1 year) 7.84 16.50 16.50 17.43 9.88 12.71

2 (1–3 years) 12.75 43.69 37.86 36.70 30.86 27.12

3 (> 3 years) 79.41 39.81 45.63 45.87 59.26 60.17

Nest opening orientation (%)

Windward 31.37 43.69 NAb 25 59.26 34.67

Leeward 68.63 56.31 NAb 75 40.74 65.33

Opening diameter (cm)
(mean ± SE)

29.88
(± 0.37)

48.75
(± 1.43)

NAb 41.27
(± 1.58)

38.41
(± 1.99)

38.03
(± 1.65)

Distance to the south-east
coast (m) (mean ± SE)

169.93
(± 10.64)

169.08
(± 10.06)

165.87
(± 10.19)

157.17
(± 10.09)

169.05
(± 11.27)

178.03
(± 9.61)

Distance to the west coast
(m) (mean ± SE)

344.41
(± 11)

353.54
(± 10.21)

332.18
(± 10.97)

346.57
(± 9.76)

341.75
(± 11.86)

341.54
(± 10.74)

aWd gravimetric dry soil
bNA not applicable
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temperature (t-statistic p < 0.001) was lower and nest ma-
terial was drier (t-statistic p = 0.020) in autumn/winter
2016 than in autumn/winter 2017 (16.65 ± 0.18 °C and
0.49 ± 0.03 Wd).

Ectoparasite abundance and prevalence

The flea Parapsyllus humboldti and soft tick O. capensis
sensu stricto were recorded in nests and on penguins.
Parasite infestations (mean abundance and prevalence) in
nests were 13.36 ± 1.68 and 64% for fleas and 11.38 ± 3.84
and 74% for ticks. Parasite infestations (mean abundance and
prevalence) on penguins (adults and chicks) were 5.20 ± 0.34
and 81% for fleas and 0.57 ± 0.11 and 21% for ticks.
Haemoparasites were recorded in 56% of the penguins (adults
and chicks). There was a significant positive correlation be-
tween ectoparasite infestation in nests and on penguins
(rSpearman = 0.31, p < 0.001).

Nest characteristics and ectoparasite abundance and
prevalence in nests

Mean abundance and prevalence of ectoparasites per nest type
are presented in Table 3. In-nest ectoparasite (combined flea
and tick) and flea and tick abundance and prevalence ex-
plained by nes t character is t ics are presented in
Supplementary Table S3. The majority of the full models used
in the analysis did not differ significantly from the best models
estimated with the AIC (Supplementary Table S4). Artificial
nests harboured a significantly higher abundance and preva-
lence of ectoparasites (z-statistic p < 0.001 and z-statistic p =
0.003, respectively) (Fig. 3a), fleas (z-statistic p < 0.001 and z-
statistic p < 0.001, respectively) and ticks (z-statistic p < 0.001
and z-statistic p = 0.009, respectively) than natural open nests.
Artificial nests also harboured a higher abundance of ticks (z-
statistic p = 0.017) than natural covered nests, while natural
covered nests harboured a higher abundance of ectoparasites
(z-statistic p < 0.001) and a higher abundance and prevalence
of fleas (z-statistic p = 0.007 and z-statistic p < 0.001, respec-
tively) than natural open nests. Furthermore, active nests
harboured a higher abundance of fleas (z-statistic p < 0.001)
than non-active nests (Fig. 3b). Ectoparasite abundance was
higher in nests closer to the south-east coast (z-statistic p =
0.048) (Fig. 3c) and flea prevalence was higher in nests closer
to the west coast (z-statistic p = 0.021). Mean soil temperature
was positively correlated with nest ectoparasite abundance (z-
statistic p = 0.014) (Fig. 3d) and flea prevalence (z-statistic
p = 0.016). In addition, nest soil moisture was negatively cor-
related with total ectoparasite abundance (z-statistic p < 0.001)
(Fig. 3e) and flea abundance and prevalence (z-statistic
p < 0.001 and z-statistic p < 0.001, respectively). A similar
pattern was recorded for nest material moisture, which was
negatively correlated with ectoparasite abundance (z-statistic

p = 0.007) (Fig. 3f) and flea prevalence (z-statistic p = 0.011).
Nest microclimatic conditions were not significantly correlat-
ed with tick abundance and prevalence.

Nest type, health parameters and haemoparasite
infestations

Clinical parameters of penguins explained by nest character-
istics are presented in Supplementary Table S5. All the full
models used in the analysis did not differ significantly from
the best models estimated with the AIC (Supplementary
Table S6). Nest type was significantly correlated with body
mass of adults and chicks, where all penguins in natural open
nests recorded a lower body mass than penguins in artificial
(z-statistic p = 0.012) and natural covered nests (z-statistic p =
0.015). Nest soil temperature was negatively correlated with
adult and chick body mass and chick body condition (z-statis-
tic p < 0.001 and t-statistic p = 0.009, respectively). Nest ma-
terial moisture was positively correlated with body mass (z-
statistic p = 0.009) and total plasma protein (t-statistic p =
0.030) of adults and chicks. In addition, body mass and total
plasma protein of adults and chicks were lower in spring 2016
than in autumn/winter 2016 (z-statistic p = 0.015 and t-statistic
p < 0.001, respectively), and lower in autumn/winter 2017
than in autumn/winter 2016 (z-statistic p < 0.001 and t-statistic
p < 0.001, respectively).

There was no significant difference in the prevalence of
haemoparasites (Piroplasmorida/Haemospororida and
Spirochaetales combined) in adults and chicks between the
nest types (Fig. 4).

Discussion

Artificial nests were significantly warmer than natural nests
(covered and open) in the present study. The artificial nests

Table 3 Mean abundance (± SE) and prevalence (%) of all in-nest
ectoparasites, fleas and ticks per nest type in the Stony Point penguin
colony during autumn/winter and spring 2016 and autumn/winter 2017

Parasites in nests Nest type

Artificial Natural
covered

Natural open

Abundance (mean ± SE)

All ectoparasites 45.19 ± 11.97 18.71 ± 3.32 10.51 ± 2.38

Fleas 18.03 ± 2.98 14.78 ± 3.27 7.31 ± 2.35

Ticks 27.16 ± 11.45 3.93 ± 0.58 3.2 ± 0.57

Prevalence (%)

Total ectoparasites 93.14 86.41 81.55

Fleas 78.43 66.99 45.63

Ticks 81.37 71.84 68.93
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were made of fibreglass or cement-fibre that is less porous
than soil and vegetation used to cover natural nests. This in-
creases the insularity by preventing heat loss in the artificial
nests (Deeming and Mainwaring 2015). The higher nest soil
temperature is further enhanced by the narrow entrance open-
ing of artificial nests whereas natural surface nests are
completely open. The size of the opening can influence air-
flow in the nest and nests with narrow opening will have
poorer ventilation (Martin et al. 2017). A study that recorded
the ambient temperature in different nest types of African
penguins also recorded consistently higher temperatures (>
30 °C, when Spheniscus penguins start being heat-stressed)
in fibreglass nests than in natural burrows and natural open
nests (Lei et al. 2014). This pattern is not unique to the artifi-
cial nests used in African penguin colonies. Ambient temper-
ature in artificial nest boxes (made of plywood), and especial-
ly in unshaded artificial nest boxes (which reached > 35 °C),
was also found to be higher than natural burrows of Cassin’s
auklets (Kelsey et al. 2016). Furthermore, a study on long-
tailed skinks (Eutropis longicaudata) found that the ambient
temperature in nests made in artificial habitats (e.g. inside
concrete walls) was three times higher than in natural habitats
(1.5 and 0.5 °C, respectively) (Huang and Pike 2011). In the
present study, artificial nests also experienced higher soil tem-
perature ranges (SD) than natural nests (covered and open).
This is in agreement with Kelsey et al. (2016) who found a

Fig. 3 Relationship between nest characteristics and ectoparasite
abundance in African penguin nests. a Nest type: A, artificial; NC,
natural covered; NO, natural open. b Nest occupancy: “no” non-active

nests and “yes” active nests. c Distance to the south-east coast. d Mean
soil temperature in nest. e Moisture of soil in nest. f Moisture of nest
material

Fig. 4 Prevalence (%) of haemoparasites (order Piroplasmids/
Haemospororida and Spirochaetales) in adult African penguins and
chicks per nest type (A, artificial; NC, natural covered; NO, natural open)
at the Stony Point colony in 2016 and 2017. Sample sizes: A = 20 adults
and 63 chicks, NC = 17 adults and 66 chicks and NO= 11 adults and 58
chicks
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higher variation of ambient temperature in unshaded artificial
nests compared with natural burrows of Cassin’s auklets.

In addition to being warmer, the present study also record-
ed drier conditions (soil and nest material) in artificial nests
and natural covered nests than in natural open nests. Both the
former artificial material and natural vegetation and soil pro-
vided protection against rain, while natural open nests are
prone to being flooded during the rainfall season (Seddon
and van Heezik 1991; Kemper et al. 2007). The drier condi-
tions associated with artificial nests is confirmed in a recent
study where nest boxes of peregrine falcons (Falco
peregrinus) provide greater protection against wet conditions
experienced during rainy seasons compared with open nests
on buildings, natural cliffs and quarries (Sumasgutner et al.
2020). It is clear that the microclimatic conditions vary be-
tween different nest types and it is possible that these differ-
ences can affect nest-dwelling ectoparasites.

In the present study, flea and tick infestations inside the
nests correlated significantly with nest type. In particular, ar-
tificial nests harboured more fleas and ticks than natural open
nests and more ticks than natural covered nests. Furthermore,
natural covered nests harboured more ectoparasites (ticks and
fleas combined) and more fleas than natural open nests. A
similar pattern was recorded in passerine birds, with a higher
proportion of artificial nest boxes infested with fleas
(Ceratophyllus spp. and Ctenophthalmus agyrtes) than natural
nests made in tree cavities (Hebda and Wesołowski 2012). In
addition, a similar response was recorded for blowflies
(Apaulina sp.) in artificial nest boxes occupied by eastern
bluebirds (Sialia sialis) (Pinkowski 1977). The cover provid-
ed by natural material also seems to benefit opportunistic par-
asites as is seen in the present study and a study on royal
penguins (Eudyptes schlegeli) (Murray and Vestjens 1967).
In the latter, tick (I. uriae) infestations were higher on rock
stacks covered with vegetation (tussocks) and dry mud within
the colony, and in vegetation around the colony, than in the
open floor of the colony (Murray and Vestjens 1967). The
higher parasite infestations in artificial nests are most probably
the result of more favourable microclimatic conditions. Fleas
and soft ticks are nidicolous ectoparasites that spend most of
their life cycle in the nest of their host (Jordan 1942;
Sonenshine 1993). As mentioned before, fleas and ticks are
ectothermic and as a result their development and survival is
influenced by temperature and humidity in the nest. The de-
velopment rate of several invertebrate taxa is positively corre-
lated with temperature (López-Rull and Macías Garcia 2015),
which results in a shorter generation time (Marshall 1981;
Vial 2009), thereby increasing the abundance of fleas in the
nest. In particular, fleas can increase their frequency of blood
intake and digestion of blood meals when ambient tempera-
ture increases (Krasnov 2008), while a rise in temperature (>
24 °C) can trigger the emergence of imagos from cocoons
(Humphries 1968). Furthermore, higher temperatures can

facilitate the survival of flea larvae such as the larvae of the
stick tight flea (Echidnophaga gallinacea) which dies when
the temperature is below 10 °C (Marshall 1981), while an
increase in temperature stimulates mating of some flea species
(e.g. northern rat flea Nosopsyllus fasciatus) (Iqbal and
Humphries 1970). Soft ticks have a similar response to higher
nest temperatures, and in particular pre-oviposition and ovi-
position periods shorten with an increase in temperature
(Diehl et al. 1982), which will result in higher tick abundance
in these nests. Soft ticks are also morphologically adapted to
resist higher temperatures since components of their epicuticle
(cuticulin, polyphenol, wax and cement layers) provide an
effective barrier against water loss (Lees 1947).

Drier conditions in the nest can also facilitate ectoparasite
infestations. Studies on rockhopper (E. chrysocome) and royal
penguins indicated that fleas (P. maguellanicus heardi) and the
nidicolous tick (I. uriae) require a relatively dry habitat to breed
and often avoid wet or flooded places (Murray and Vestjens
1967). Although the environmental water content is a crucial
factor for flea development (Rothschild and Clay 1952;
Marshall 1981), not all flea species benefit from high humidity.
For example, the abundance of adult and larval stages of hen
fleas infesting great tits was negatively affected by nest moisture
(Eeva et al. 1994) and they often colonized nests with lower
humidity (Heeb et al. 2000). These findings, which are consis-
tent with the negative correlation between nest moisture and flea
infestations in the present study,might indicate the existence of a
moisture threshold above which flea populations start to de-
crease. Soft ticks, included in the total ectoparasite abundance,
also recorded a negative correlation with nest moisture in the
present study. In general, nidicolous ticks prefer xeric habitats
and/or dry microhabitats (Gray et al. 2013). More specifically,
the larvae of the soft tick Ornithodoros turicata, which inhabits
nests of rodents, birds, reptiles and domestic livestock, are more
effective at absorbing water from air when the relative humidity
is lower (75%) than when it is higher (93%). Therefore, it is able
to better resist desiccation in dry environmental conditions
(Yoder and Dutton 1998). Based on these studies and the pres-
ent, it is clear that the microclimatic conditions associated with
artificial nests, and natural covered nests to some extent, facili-
tates flea and tick infestations in the nest. This can have direct
consequences for the penguins as higher parasite infestations in
the nest can relate to higher parasite infestations on penguins. In
fact, this relationship was recorded in the present study. Fleas
and ticks are obligate haematophagous and high host infesta-
tions can affect the condition and health of the host (Lehmann
1993). Although ticks and fleas are known vectors of some
haemoparasites (Sonenshine 1993; Bitam et al. 2010), we did
not observe a higher incidence of haemoparasites in the pen-
guins that occupied artificial nests. However, it is recommended
that this result be confirmed using molecular techniques as it is
possible that the microscopic method that we used is not sensi-
tive enough (Campbell and Ellis 2007).

3612 Parasitol Res (2020) 119:3603–3616



Nest age and nest occupancy also correlated with microcli-
matic conditions and/or ectoparasite infestations. The higher
moisture content in older than newer nests is possibly due to
the accumulation of substrate (e.g. guano and nesting materi-
al) from previous breeding events that might prevent dissipa-
tion of water vapour (Rahn et al. 1983; Podofillini et al. 2018).
However, there was no significant relationship between nest
age and ectoparasite infestation. The higher soil temperature
and moisture in active nests than non-active nests may be
attributed to the heat and moisture radiation from the host’s
body and faeces (Rothschild and Clay 1952; Marshall 1981).
Active nests also harboured higher flea infestations, which is
consistent with the intimate relationship between fleas and
hosts (Bitam et al. 2010; Espinaze et al. 2019b). Flea larvae
indirectly benefit from nest occupancy as their diet includes
host organic refuse (Rothschild and Clay 1952). Nest occu-
pancy was not significantly correlated with tick infestations,
which agrees with Daturi (1986) who also found no relation-
ship between soft tick (O. capensis) abundance and occupan-
cy in African penguin nests. Soft ticks can survive without a
blood meal for extended periods (months to years) and is thus
able to remain in the nest without the presence of a host
(Sonenshine 1993; Espinaze et al. 2019b).

Another, potentially colony-specific nest characteristic was
also observed. In particular, microclimatic conditions and ec-
toparasite infestations in the nests also varied spatially.
Although the surface of the colony mainly comprise of bare
rock and soil, natural vegetation (predominantly shrubs and
trees) is found more inland and further away from the south-
east shore. Nests that occurred under the vegetation canopy
were wetter than the nests closer to the shore. It is possible that
the vegetation prevents water vapour convection, caused by
coastal wind, in these nests. A similar relationship was record-
ed by Abdallah and Chaieb (2012) that found higher soil
moisture levels under Acacia tree canopy than in open ex-
posed areas. The drier conditions recorded in shore nests (re-
gardless of the nest type) is a possible explanation for the
higher ectoparasite infestations in these nests than nests fur-
ther inland. Another potential factor may be the seasonal pres-
ence of a large population of Cape cormorant (Phalacrocorax
capensis) nesting on rocky areas in close proximity (< 15 m)
to the shore nests. This can increase the seabird host density in
the area and facilitate interspecies transmission of both the tick
and flea (Duffy 1983; Daturi 1986).

Contrary to our expectation, there was no direct relation-
ship between artificial nests and any of the health parameters
that we recorded for penguins in the present study. However,
we did record an indirect relationship. In particular, penguin
(adult and chick) body mass was lower in warmer and drier
nests, and total plasma protein of penguins (adults and chicks)
was lower in drier nests. In addition, chick body condition was
poorer in warmer nests. It is possible that these patterns are
related to the high ectoparasite (and specifically flea)

abundance and prevalence in warmer and drier nests. High
ectoparasite infestations develop stress and irritation in their
bird hosts, which reduces food consumption and may lead to a
decrease in body mass, body condition and total plasma pro-
tein (Ots et al. 1998; Norte et al. 2013). In addition, ectopar-
asite infestations induce blood loss and tissue damage, which
increases resource consumption in metabolic processes and
results in reduced body mass and condition (Norte et al.
2013). Fitness costs in birds associated with ectoparasite in-
festations have also been found in great tit nestlings, which
showed lower body mass and condition in nests with high
abundance of hen fleas (Dufva and Allander 1996). In turn,
the body mass of adults and chicks was lower in natural open
nests than natural covered and artificial nests. It is likely that
this pattern is the result of physiological responses to direct
exposure to the prevailing climatic conditions (variation in
temperature, solar radiation, rain and wind), which can lead
to heat stress or heat loss (Frost et al. 1976) and loss in body
mass (Catry et al. 2011). Additionally, natural open nests are
more exposed to predators (e.g. small grey mongoose
Galerella pulverulenta and water mongoose Atilax
paludinosus; Whittington et al. 1996). This particular stress
factor can result in the mobilization of energy reserves and
negatively affect body mass (Schoech et al. 1997). An alter-
native explanation may be that open nests are suboptimal and
that lighter and/or younger birds breed in open nests. African
penguins exhibit high nest and mate fidelity (Crawford et al.
1995; Ancel et al. 2013) and it is possible that young animals
that return to the colony for their first breeding attempt end up
using open nests.

Artificial nests are widely used in bird conservation initia-
tives to counter the current reduction of natural breeding sites
and to facilitate improved breeding success (Newton 1994;
Sherley et al. 2012). For example, the introduction of artificial
nests reduced intra- and inter-specific competition for natural
breeding sites (burrows and crevices) in Madeiran storm pe-
trels (Oceanodroma castro), which resulted in increased
breeding success over three successive seasons (Bolton et al.
2004). In addition, improved breeding success was reported
for little penguins (Eudyptula minor) that used artificial nests
in Australia and New Zealand (Perriman and Steen 2000;
Sutherland et al. 2014). In general, artificial nests have also
facilitated improved breeding success in African penguin col-
onies in Namibia (Kemper et al. 2007) and in South Africa
(Sherley et al. 2012). However, there have also been reports
that the frequency of reuse (after deployment) by penguins
decreased over time (Kemper et al. 2007). It is possible that
this may be attributable to their colonization by nest parasites
over time (Loye and Carroll 1998). In Stony Point, most of the
sampled nests have been in the colony for many years and
cement nests in particular have been used for more than
3 years. This is supported by studies on passerine birds, where
the cost of reusing nest boxes from previous seasons in cavity-
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nesting birds has resulted in the increase of flea (C. gallinae),
blow fly (Protocalliphora azurea) and mite (Dermanyssus
gallinoides) populations with a negative impact on bird’s
health and breeding success (Tomás et al. 2007). This disad-
vantage needs to be weighed against the benefits reported for
artificial nests in different bird species.

This study highlights the importance of nest characteristics
in shaping the microclimatic conditions within penguin nests.
In particular, the microclimatic conditions associated with ar-
tificial nests made from fibreglass and cement-fibre promote
higher infestations of nest parasites that can affect the overall
health and survival of the endangered African penguin. In
light of our findings, it is recommended that a monitoring
programme should be introduced in all colonies to record
the ectoparasite populations in artificial and natural nests.
The value of fibreglass and cement-fibre nests should also
be re-evaluated by comparing the breeding success data per
nest type over consecutive years. Finally, the design of new
artificial nests must consider the use of more porous material
and/or better ventilation, which may assist creating less ideal
microclimatic conditions for ectoparasites.
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