

a review of Polynomials as spans by Street, Ross

著者(英)	Hirokazu NISHIMURA
journal or	zbMATH Open
publication title	
URL	http://hdl.handle.net/2241/00162407

Street, Ross

Polynomials as spans. (English. French summary) [Zbl 07238806] Cah. Topol. Géom. Différ. Catég. 61, No. 2, 113-153 (2020).

Polynomials in a locally cartesian closed category \mathcal{E} were shown to be the morphisms of a bicategory $[N. Gambino \text{ and } J. Kock, \text{Math. Proc. Camb. Philos. Soc. 154, No. 1, 153–192 (2013; Zbl 1278.18013)]}. Polynomials were defined in any category <math>\mathcal{C}$ with pullbacks and shown to form a bicategory [M. Weber, Theory Appl. Categ. 30, 533–598 (2015; Zbl 1330.18002)]. The author seeks to better understand the composition of polynomials.

The meaning of polynomial in a bicategory in this paper is different from that in §4 of Weber's [loc. cit.] which is about polynomials in 2-categories. Weber dealt with the 2-category as a **Cat**-enriched category, taking the polynomials to be diagrams of the same shape as in the case of ordinary categories, and accommodating the presence of 2-cells, so that, if a category is put down as a 2-category with only identity 2-cells, then his polynomials in the 2-category are just polynomials in the category.

The author introduces the term *calibration* for a class of morphisms, called *neat*, in a bicategory after [J. Benabou, C. R. Acad. Sci., Paris, Sér. A 281, 831–834 (1975; Zbl 0349.18005)]. A morphism in a bicategory is defined to be a *right lifter* when every morphism into its codomain has a right lifting through it. Polynomials in a calibrated bicategory \mathcal{M} are spans with one leg a right lifter and the other leg neat. The bicategory Poly \mathcal{M} is obtained by taking isomorphism classes of 2-morphisms. A polynomic category \mathcal{M} is one in which the neat morphisms are all the groupoid fibrations in \mathcal{M} . It is shown that the bicategory Spn \mathcal{C} of spans is polynomic for any finitely complete \mathcal{C} , in which the polynomials are the polynomials in \mathcal{C} in the sense of Weber's [loc. cit.].

The bicategory $\operatorname{Rel} \mathcal{E}$ of relations in a regular category \mathcal{E} is calibrated by morphisms which are isomorphic to graphs of monoorphisms in \mathcal{E} . The author gives, for \mathcal{E} a topos, a reinterpretation of the bicategory of polynomials in $\operatorname{Rel} \mathcal{E}$ as a Kleisli construction.

By providing a calibration for the bicategory Mod of two-sided modules between categories, the author gives a reinterpretation of the bicategory of polynomials in Mod as a Kleisli construction.

Reviewer: Hirokazu Nishimura (Tsukuba)

MSC:

- 18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
- 18C20 Eilenberg-Moore and Kleisli constructions for monads
- 18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)

Keywords:

span; partial map; powerful morphism; polynomial functor; exponentiable morphism; calibrated bicategory; right lifting

Full Text: Link