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Abstract

It is shown that exact spherically symmetric solutions to Einstein’s Field Equations exist
such that, over an open region of the spacetime, they are singularity free, satisfy the dominant
energy condition, represent elastic matter with a well defined constitutive function, and are
such that elastic perturbations propagate causally.

Two toy-models are then built up in which a thick elastic, spherically symmetric shell
with the above properties, separates two Robertson-Walker regions corresponding to different
values of the curvature k in the first model and to the same value of k in the second model.
The junction conditions (continuity of the first and second fundamental forms) are shown to
be exactly satisfied across the corresponding matching spherical surfaces.

Keywords: general relativity; elastic waves; thick shells; speed of propagation; causality; spher-
ical symmetry; Robertson-Walker

1 Introduction

Spherically symmetric models with elastic matter in general relativity have been studied by a
number of authors: Magli and Kijowski [1] investigated the problem of elastomechanical equi-
librium for a non-rotating star, Park [2] proved existence theorems for spherically symmetric
elastic bodies, Magli [3] analysed the relativistic interior dynamics of a spherically symmetric
non-rotating star composed of an elastic material, Frauendiener and Kabobel [4] discussed spher-
ically symmetric solutions of the general relativistic elasticity equations with different stored
energy functions; and Karlovini and Samuelsson [5] showed how physically prestressed stellar
models, which serve as backgrounds in investigations of stellar perturbations, can be produced
numerically and investigated radial and axial perturbations of static spherically symmetric elas-
tic configurations [6], [7]; just to name a few.

On the other hand, the study of wave propagation in elastic solids has also been addressed by
other authors: Carter [8] derived a characteristic equation for sound wave fronts in elastic solids
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using the formalism for the theory of general relativistic elasticity developed in [9], and showed
that the characteristic equation can be expressed in terms of the relativistic Hadamard elasticity
tensor and can be used to determine the propagation speeds of sound waves in the direction
specified by the propagation direction vector and the corresponding polarization directions;
Karlovini and Samuelsson [5], who set up a theory of elastic matter sources within the framework
of general relativity, also based on the formalism of [9], obtained formulas for the speeds of elastic
wave propagation along eigendirections of the pressure tensor and studied these for stiff ultrarigid
equations of state [10]; Maugin [11] studied wave propagation in prestressed non-linear elastic
solids in general relativity; and Kranys [12] determined special relativistic propagation modes
for longitudinal and transverse waves of an elastic solid; again, just to name some relevant
contributions.

In this paper, after providing a short summary of some relevant issues concerning relativistic
elasticity (the reader is referred to [13], [14], [5], [1] for further details), the definitions of sound
wave front, propagation speed and characteristic equation are presented in Section 3. Based
on these definitions, an expression for the propagation speed of the wave front in spherically
symmetric spacetimes with elastic matter is derived in Section 4, which depends on the energy
density, the radial pressure and the elasticity tensor. In Section 5, we consider shear-free static
and non-static solutions obtained in [14], determine their radial propagation speeds and analyse
if they satisfy the causality condition (i.e.: propagation speed less than or equal to the speed of
light), showing that there are open regions where causality is preserved besides satisfying the
Dominant Energy Condition and being singularity free. Further in Section 6, we show that the
non-static solutions referred to above can be matched to Robertson-Walker spacetimes. We next
use two specific non-static solutions to build up two toy-models: one in which a k = 1 Robertson
Walker interior is matched to an elastic shell which in turn matched to a flat (k = 0) Robertson
Walker exterior; and the other one in which a non flat (k = −1) Robertson-Walker metric is set
as an interior solution and matched to a spherically symmetric thick shell of elastic material,
which in turn is matched to another non flat (k = −1) Robertson-Walker (exterior) metric.
Continuity of the first and second fundamental forms on the inner and outer surfaces of the
elastic shell are shown to be satisfied, as well as all the other physically reasonable conditions:
absence of singularities, Dominant Energy Condition and causal propagation of elastic waves
across the elastic material.

2 Elasticity in General Relativity. A brief summary

In order to describe elastic matter in general relativity, one considers a submersion ψ : M −→ X,
from the spacetime manifold M to the three-dimensional material space X, which specifies the
configuration of the material. The spacetime metric will be denoted by g, while γ will designate
the material metric defined on X, which can be thought of as measuring distances between
neighbouring particles in the relaxed state of the material. Coordinates in X and M will be
denoted by yA, A = 1, 2, 3, and by xa, a = 0, 1, 2, 3, respectively, that is: yA = ψA(xb).

The differential map ψ∗ : TpM −→ Tψ(p)X is then surjective and, in the above coordinates, may
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be represented, at every p ∈M by the rank three matrix

yAb (p) =

(
∂yA

∂xb

)
p

, A = 1, 2, 3; b = 0, 1, 2, 3, (1)

which is sometimes called relativistic deformation gradient. The vector field spanning the kernel
of ψ∗, u

a, is timelike and can be chosen scaled to unit and future oriented, that is

yAb u
b = 0, uaua = −1, u0 > 0, (2)

and represents the velocity field of the matter in the spacetime M .

Note that ψ maps every whole spacetime trajectory passing through a point p ∈ M to a single
point ψ(p) in the material space X (that is: the world line of a material particle is mapped onto
that particle). This fact implies, for instance, that any smooth scalar field φ defined on X assigns
(via the pull-back ψ∗) a real number to each integral line of ua in M , that is: Φ = ψ∗φ is a scalar
field on M such that L~uΦ = 0. Further, it defines a one-to-one correspondence between tensor
fields TA... defined on the material space X and tensor fields Ta... on M satisfying L~uTa... = 0 and
uaTa... = 0 for any index contraction; that is: all physical magnitudes defined on the material
space X, can be readily ‘translated’ into spacetime (see, for instance, [15] for a detailed proof of
this one-to-one correspondence, although in a different context totally unrelated to the present
one).

If at a given point p ∈ M, kab ≡ (ψ∗γ)ab = hab, where hab = gab + uaub, the material is in a
locally relaxed state at that point. Otherwise, the material is said to be strained. The strain
operator [3, 16]

Ka
b = kab − uaub (3)

can be used to measure the state of strain of the material, (note that if the material is locally
relaxed, Ka

b = δab, or else Kab = gab). Equivalently, the strain tensor is defined as (see, e.g.
[3, 16]): sab = 1

2(gab − Kab) = 1
2(hab − kab). The strain tensor determines the elastic energy

stored in an infinitesimal volume element of the material space (energy per particle). That energy
will then be a scalar function of Kab and is called constitutive equation of the material. The
constitutive equation will be represented by v = v(I1, I2, I3), where I1, I2, I3 are the following
invariants of Ka

b :

I1 =
1

2
(TrK − 4) , I2 =

1

4

[
TrK2 − (TrK)2

]
+ 3, I3 =

1

2
(detK − 1) . (4)

The energy density ρ is then

ρ = εv(I1, I2, I3) = ε0
√

detK v(I1, I2, I3), (5)

where ε0 is the particle number density as measured in the material space, or rather, with respect
to the volume form associated with kab = (ψ∗γ)ab, and ε is that with respect to hab; see [17] for
a proof of the above equation.

The energy-momentum tensor for elastic matter can be expressed as

Tab = ρuaub + pab = ρuaub + phab + πab, (6)
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where pab represents the pressure tensor, p the isotropic pressure, and πab the trace-free anisotropy
pressure tensor. The tensors pab and πab are symmetric and orthogonal to the flow, pabu

a =
πabu

a = 0, and πab satisfies also gabπab = 0 (trace-free condition).

The energy-momentum tensor can also be written in terms of the invariants of Ka
b as [3]

T ab = −ρ δab +
∂ρ

∂I3
detK hab −

(
TrK

∂ρ

∂I2
− ∂ρ

∂I1

)
kab +

∂ρ

∂I2
kac k

c
b. (7)

3 Speed of sound

3.1 Sound wave front and speed of propagation

Consider an elastic solid with energy-momentum tensor given by

T ab = ρuaub + pab. (8)

The conservation law T ab;b = 0 implies the following equations of motion

ρ,cu
c = −ρuc;c − pcduc;d (9)

pab;cu
c = 2u(apb)cu̇c + 2pc(aub);c − pabuc;c − Eabcduc;d, (10)

where u̇a is the acceleration vector, namely:

u̇a = ua;cu
c (11)

and Eabcd is the relativistic elasticity tensor, which will be defined ahead.

Following [8], the sound wave fronts are defined as the characteristic hypersurfaces across which
the acceleration vector u̇a can have a jump discontinuity. The map ψ and the metric tensor are
assumed to be C1 across these hypersurfaces. Continuity of the first-order derivatives of the
map ψ implies that tensors on M arising from the pull-back of tensors on X will be continuous.
The velocity ua is also continuous across the wave fronts.

The normal to the wave front lies in the direction of a vector λ. The vector λ can be decomposed
as

λa = νa − wua. (12)

where νa, the propagation direction vector, is a unit, spacelike, transverse vector; that is: νaνa =
1, νaua = 0. In fact, λ = ψ∗(n) where n represents the propagation direction 1-form of the wave
in the material space. The scalar w represents the speed of propagation of the wave front with
respect to the flow,

w = λaua, (13)

and it must satisfy the local causality condition

w2 ≤ 1, (14)
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implying that the characteristic hypersurface must be timelike or null (units are taken so that
the speed of light is c = 1); or else λaλ

a ≥ 0 (spacelike or null).

The acceleration discontinuity can be expressed as

[u̇a] = αιa, (15)

where α is the amplitude of the wave front and ιa is the polarization vector of the wave front,
satisfying ιaιa = 1 and ιaua = 0, since u̇aua = 0.

3.2 Characteristic equation

The relativistic elasticity tensor Eabcd is a bisymmetric tensor function of state [5] defined as

Eabcd = −2
∂pab

∂gcd
− pabhcd. (16)

It satisfies the symmetry conditions

Eabcd = E(ab)(cd) = Ecdab (17)

and is orthogonal to the velocity of the flow,

Eabcdud = 0. (18)

The elasticity tensor can be rewritten as

Eabcd = −2ε
∂

∂hcd

(
pab

ε

)
, (19)

or, equivalently,

Eabcd = 4ε
∂2v

∂habhcd
= 4ε

∂2v

∂gabgcd
, (20)

where, as defined previously, ε stands for the particle number density and v represents the
constitutive function.

The relativistic Hadamard elasticity tensor is defined in terms of the elasticity tensor by

Aabcd = Eabcd − hacpbd. (21)

This tensor has the symmetry
Aabcd = Acdab (22)

and is also orthogonal to the velocity of the flow

Aabcdud = Aabdcud = 0. (23)

From (9) and (10), Carter [8] derived the following characteristic equation

{w2(ρhac + pac)−Qac}ιc = 0, (24)
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which depends on the so called relativistic Fresnel tensor Qac, defined as

Qac = Aabcdvbvd, (25)

which is symmetric,
Qac = Q(ac) (26)

and flowline orthogonal
Qacuc = 0. (27)

4 Applications to spherically symmetric elastic spacetimes

4.1 Spacetime configuration and elasticity tensor

Consider a spherically symmetric spacetime (M, g), M being a 4-dimensional Hausdorff, simply
connected manifold of class C2, with metric g given by the following line-element

ds2 = −a2dt2 + b2dr2 + Y 2(dθ2 + sin2 θdφ2), (28)

where a, b and Y are functions of the coordinates t and r.

It can be shown (see [14]) that the above coordinates and form of the metric can be chosen so that
the velocity flow is comoving with the time coordinate; thus: defining the tetrad {u, e1, e2, e3},
where

ua =
(
a−1, 0, 0, 0

)
is the velocity vector of the flow and

ea1 =
(
0, b−1, 0, 0

)
, ea2 = (0, 0, Y −1, 0), ea3 = (0, 0, 0, (Y sin θ)−1),

the metric can be written as gab = −uaub + e1ae1b + e2ae2b + e3ae3b.

In [14] the authors considered solutions for the case where the line element of the material metric
γ corresponding to (28) is

dσ2 = f2(r)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (29)

that is: the most general form for a 3-dimensional, spherically symmetric metric.

The pulled-back material metric, kab, is such that kab has two different eigenvalues:

s = f2(r)
r2

Y 2
, η =

f2(r)

b2
, (30)

s having algebraic multiplicity two. The invariants (4) can then be written in terms of those
eigenvalues as

I1 =
1

2
(η + 2s− 3) , I2 = −1

2

(
s2 + 2ηs+ η + 2s

)
− 3, I3 =

1

2

(
ηs2 − 1

)
, (31)
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and the rest frame energy per unit volume takes the form

ρ = εv = ε0 s
√
η v(s, η), (32)

v = v(s, η) being the constitutive equation. The energy-momentum tensor (7) has the following
non-zero components

T 0
0 = −εv,

T 1
1 = 2 ε η

∂v

∂η
,

T 2
2 = ε s

∂v

∂s
.

(33)

In this context, static and non-static shearfree spherically symmetric solutions were presented,
along with the corresponding field equationsGab = 8πT ab , and were shown to satisfy the Dominant
Energy Condition (DEC) in open regions of the spacetime. Recall that, for diagonal energy-
momentum tensors such as the one corresponding to elastic matter, DEC is satisfied
if and only if ρ ≥ |pk|, ρ and pk being, respectively, the energy density (or eigenvalue
associated with the timelike eigenvector), and pressures (eigenvalues associated to
the three spacelike eigenvectors).

We will consider these solutions in section 5 of the present paper, analysing whether or not the
propagation of elastic waves has a causal behaviour within those spacetime regions where the
DEC holds.

Before doing so, we shall introduce some auxiliary results which will be of use to that end.

First, we shall obtain a useful expression for the relativistic elasticity tensor Eabcd = 4ε
∂2v

∂gabgcd
.

Using
∂

∂gab
= −gacgbd ∂

∂gcd
, (34)

and also (see, e.g. [5]):
∂

∂gcd
=

1

2

(
kmc

∂

∂kdm
+ kmd

∂

∂kcm

)
, (35)

one obtains:

∂v

∂gab
= −1

2

[
gbdkam

∂v

∂kdm
+ gackbm

∂v

∂kcm

]
. (36)

Now, for the spherically symmetric case, we can write kab in terms of the tetrad vectors as

kab = ηea1e1b + sea2e2b + sea3e3b, (37)

whence the eigenvalues can be extracted as η = kab e1ae
1b and s = 1

2k
a
b (e2ae

b
2 + e3ae

b
3). Then one

calculates

∂v

∂kdm
=
∂v

∂η

∂η

∂kdm
+
∂v

∂s

∂s

∂kdm
=
∂v

∂η
e1de

m
1 +

1

2

∂v

∂s
(e2de

m
2 + e3de

m
3 ). (38)
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Substituting this expression into (36) gives

∂v

∂gab
= −η∂v

∂η
ea1e

b
1 −

1

2
s
∂v

∂s
(ea2e

b
2 + ea3e

b
3). (39)

Now, one only needs to calculate ∂
∂gcd

(
∂v
∂gab

)
, cf. (20). For that purpose, we derive the following

expressions using (35)

∂

∂gcd

(
∂v

∂η

)
= −η∂

2v

∂η2
ec1e

d
1 −

1

2
s
∂2v

∂η∂s
(ec2e

d
2 + ec3e

d
3), (40)

∂

∂gcd

(
∂v

∂s

)
= −η ∂

2v

∂s∂η
ec1e

d
1 −

1

2
s
∂2v

∂s2
(ec2e

d
2 + ec3e

d
3), (41)

∂η

∂gcd
= −ηec1ed1, (42)

∂s

∂gcd
= −1

2
s(ec2e

d
2 + ec3e

d
3). (43)

Taking into account the following result, presented in [5],

∂ecρ
∂gab

=
1

2
ecρeρaeρb +

∑
σ 6=ρ

n2
ρ

n2
ρ − n2

σ

ecσeρ(aeσb), (44)

where n2
σ and n2

ρ, σ, ρ = 1, 2, 3, are the eigenvalues of kab (in our case n2
1 = η, n2

2 = n2
3 = s),

together with (34), yields

∂

∂gcd

(
ea1e

b
1

)
= −ea1eb1ec1ed1 −

2η

η − s

(
e

(a
1 e

b)
2 e

(c
1 e

d)
2 + e

(a
1 e

b)
3 e

(c
1 e

d)
3

)
, (45)

∂

∂gcd

(
ea2e

b
2

)
= −ea2eb2ec2ed2 −

2s

s− η
e

(a
1 e

b)
2 e

(c
2 e

d)
1 , (46)

∂

∂gcd

(
ea3e

b
3

)
= −ea3eb3ec3ed3 −

2s

s− η
e

(a
1 e

b)
3 e

(c
3 e

d)
1 . (47)

Finally, from (39), and using (40)-(43) and (45)-(47), one finally obtains the following expression
for the elasticity tensor

Eabcd = 4ε
∂2v

∂gab∂gcd
= 4ε

[(
2η
∂v

∂η
+ η2 ∂

2v

∂η2

)
1

b4
δar δ

b
rδ
c
rδ
d
r

+

(
2η2

η − s
∂v

∂η
+

s2

s− η
∂v

∂s

)(
1

b2Y 2
δ(a
r δ

b)
θ δ

(c
r δ

d)
θ +

1

b2Y 2 sin2 θ
δ(a
r δ

b)
φ δ

(c
r δ

d)
φ

)
+

1

2
ηs

∂2v

∂η∂s

(
1

b2Y 2
(δar δ

b
rδ
c
θδ
d
θ + δcrδ

d
rδ
a
θ δ
b
θ) +

1

b2Y 2 sin2 θ
(δar δ

b
rδ
c
φδ
d
φ + δcrδ

d
rδ
a
φδ
b
φ)

)
+

(
3

4
s
∂v

∂s
+

1

4
s2∂

2v

∂s2

)(
1

Y 4
δaθ δ

b
θδ
c
θδ
d
θ +

1

Y 4 sin4 θ
δaφδ

b
φδ
c
φδ
d
φ

)
+

(
1

4
s
∂v

∂s
+

1

4
s2∂

2v

∂s2

)
1

Y 4 sin2 θ

(
δaθ δ

b
θδ
c
φδ
d
φ + δaφδ

b
φδ
c
θδ
d
θ

)]
. (48)
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4.2 Second-order and fourth-order tensors

Consider the set of all symmetric, second order tensors, that are spherically symmetric and
orthogonal to the flow vector ua. Let Sab be one such tensor field, then it satisfies:

1. Sab = Sba;

2. Sabu
b = 0;

3. L~ξASab = 0, where ~ξA, A = 1, 2, 3, are the usual Killing vectors implementing the spherical
symmetry; namely

~ξ1 = cosφ∂θ − sinφ cot θ ∂φ, ~ξ2 = − sinφ∂θ − cosφ cot θ ∂φ, ~ξ3 = ∂φ.

One can then write

Sabdx
adxb = α(t, r)dr2 + β(t, r)(dθ2 + sin2 θdφ2). (49)

It is immediate to see that the set of all tensor fields with the above properties, defines at each
spacetime point a 2 dimensional vector space, a basis for which is {hab, pab} at that point, with

habdx
adxb = b2dr2 + Y 2(dθ2 + sin2 θdφ2), pabdx

adxb = P1dr
2 + P2(dθ2 + sin2 θdφ2), (50)

where the case in which the pressure tensor pab is proportional to hab is explicitly ruled out, as
it would correspond to a perfect fluid.

Thus, a tensor field Sab with the above properties may be written as

Sab = Ahab +Bpab, (51)

where A = A(t, r) and B = B(t, r).

Consider now a fourth order tensor Eabcd having the following properties

1. Eabcd = Ecdab;

2. Eabcd = Ebacd = Eabdc;

3. Eabcdud = 0;

4. L~ξAE
abcd = 0, where, as before, ~ξA, A = 1, 2, 3, designate the Killing vectors implementing

spherical symmetry.

It is then easy to see that, with the conventions set up above, Eabcd can be written as

Eabcd = E1habhcd + E2(habpcd + pabhcd) + E3pabpcd, (52)

where E1, E2, E3 are functions of t and r.
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4.3 The speed of propagation

In spherical symmetry, since u̇a ∝ ∂r, it follows from (15) that νa = ιa.

Further, the propagation direction vector νa satisfies

νa ∝ ∂r and therefore νa =
(
0, b−1, 0, 0

)
. (53)

This follows from the requirement of spherical symmetry, which imposes L~ξAu
a = 0 and L~ξAλa =

0. Since νau
a = 0, one has that uaL~ξAνa = 0, and then also: L~ξAνa − uaL~ξAw = 0, contracting

this last equality with ua, one gets L~ξAw = 0, and then L~ξAνa = 0, which implies (53).

Since the relativistic Fresnel tensor has the following properties

Qab = Q(ab), Qabub = 0, L~ξAQ
ab = 0, (54)

one can write it in the form (see (51)):

Qab = αhab + βpab. (55)

Consequently, the characteristic equation (24) can be expressed as{
w2(ρhac + pac)− (αhac + βpac)

}
ιc = 0 (56)

and, using νc = ιc = bδrc , one obtains

w2(ρharb+ parb)− (αharb+ βparb) = 0, for a 6= r, (57)

w2
(ρ
b

+ bprr
)
−
(α
b

+ βbprr
)

= 0, for a = r. (58)

Equation (57) is trivially satisfied since both hab and pab are diagonal. From (58) one concludes

w2 =
bQrr

ρ
b + bprr

, (59)

which, using (21) and (25) can be written as

w2 =
b3Errrr − bprr

ρ
b + bprr

. (60)

From (48) one gets

Errrr =
4ε

b4

(
2η
∂v

∂η
+ η2 ∂

2v

∂η2

)
(61)

and

prr = T rr = 2εη
∂v

∂η

1

b2
, (62)

so that in the present case the speed of propagation of the wave front is

w2 =
6εη ∂v∂η + 4εη2 ∂2v

∂η2

εv + 2εη ∂v∂η
=

3T 1
1 + 4εη2 ∂2v

∂η2

−T 0
0 + T 1

1

. (63)

It is worth noting that (63) obtained above is in agreement with the expression given in [5] for
the propagation velocity of the elastic waves.
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5 Specific solutions

We will now explore whether the condition 0 ≤ w2 ≤ 1 is satisfied for the static and non-static
shearfree solutions presented in [14]. While we do not claim that the solutions presented here
have any particular relevance, we would like to point out to the fact that it is possible to find
exact solutions, with elastic material content, such that are singularity free, satisfy the DEC,
and behave causally when perturbed (i.e.: the speed of sound of the elastic waves is less than
the speed of light), as the following examples show.

5.1 Shear-free static solution

Consider the static shear-free solution obtained in [14], which is a subcase of (28) with a2 = 1
Y 2 ,

b2 = Y 2, where Y = e−
5
2
r2
. In this case, the energy density ρ, the radial pressure p1 and the

tangential pressure p2 are, respectively,

ρ = −T 0
0 = εv =

1

8π
e5r2

(11− 25r2), (64)

p1 = T 1
1 = 2εη

∂v

∂η
= − 1

8π
e5r2

(25r2 + 1), (65)

p2 = T 2
2 = εs

∂v

∂s
=

1

8π
25r2e5r2

. (66)

This solution satisfies the dominant energy condition for r ∈
[
0, 1√

5

)
and is non-singular at the

origin, see [14].

Calculating w2 from (63), using (30) with f(r) = e−
5
2 r2

(75r2+1)
1
3

and (32), and the expression for ∂2v
∂2η

obtained from (65)we get:

∂2v

∂2η
=
e5r2

(75r2 + 1)
7
3

800πε0r4

(
9375r6 + 3625r4 + 55r2 − 1

)
, (67)

that gives

w2 =
9375r6 + 1750r4 − 20r2 − 1

−1250r4 + 250r2
. (68)

The condition 0 ≤ w2 ≤ 1 is satisfied for r ∈ (a, b) ⊂
(

0, 1√
5

)
, where a ≈ 0.167 and b ≈ 0.276

(see Figure 1).
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w

r

Figure 1: Graph of w2 for r ∈ (0.167, 0.276).

We note that in [14] it was shown that this solution can be used to build up a static two-layer star
model consisting of an elastic core, surrounded by a perfect fluid corresponding to the interior
Schwarzschild solution matched to the vacuum Schwarzschild solution.

5.2 Non-static, shear-free solutions

In order to analyse the condition 0 ≤ w2 ≤ 1 for the non-static shearfree solutions presented in
[14], whose spacetime metrics are of the form

ds2 = −dt2 + t2B2(r)
(
dr2 + dθ2 + sin2 θdφ2

)
, (69)

we will first derive an expression for w2 in terms of the coordinates t, r and the functions B and its
first and second derivatives with respect to r (noted as B′ and B′′ respectively). Notice that this
metric can be obtained from (28) replacing the metric functions by a2 = 1 and b2 = Y 2 = t2B2.

In this case, the energy density and the radial and tangential pressures take the form

ρ = −T 0
0 =

1

8π t2

(
−2B′′

B3
+
B′2

B4
+

1

B2
+ 3

)
, (70)

p1 = T 1
1 =

1

8π t2

(
B′2

B4
− 1

B2
− 1

)
, (71)

p2 = T 2
2 =

1

8π t2

(
B′′

B3
− B′2

B4
− 1

)
. (72)

The term 4εη2(∂2v/∂η2) in (63) can be calculated using (32) and (30), with f(r) satisfying (see
[14])

f ′

f
=
B′

B2
− 2

3rB
,

12



and applying the inverse function theorem, which yields:

∂t

∂η
= − t3

2f2

(
B2 − 2

3
B + rB′ − rB′B

)
, (73)

∂r

∂η
= −rt

2B2

2f2
, (74)

the result being then

4εη2 ∂
2v

∂η2
=

1

4πt2B2

[(
1

2
+

2

3B

)(
−B

′2

B2
+B2 + 1

)
+
rB′

B2

(
−B′′ + B′2

B2
+
B′2

B
+B3 −B2 − 1

)]
. (75)

Substituting (70), (71) and (75) in (63) yields

w2 =

(
2
3 −B

) (
−B′2

B +B3 +B
)

+ rB′
(
−B′′ + B′2

B2 + B′2

B +B3 −B2 − 1
)

−BB′′ +B′2 +B4
. (76)

We next present two specific examples.

Example 1

Consider the solution obtained by substituting

B(r) =

√
3

9c

[
−1 + 3 cosh2

(
r − r0

c

)] 3
2

(77)

into (69), c 6= 0 and r0 being real constants. The DEC is satisfied for certain ranges of the
radial coordinate r ∈ [0, R), see [14]. Specifying c and r0, one can find an interval for r, where
0 ≤ w2 ≤ 1 is valid. The example presented in Figure 2 illustrates this fact.

Figure 2: Graph of w2 for c = 2.7, r0 = 2, where 0 ≤ w2 ≤ 1 for r ∈ (4.805, 5.012).
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The DEC was analysed in [14] and it was shown that it is satisfied if and only if the following
inequalities hold:

d1 = −3BB′′+2B′2 +B2 +4B4 ≥ 0, d2 = −4BB′′+B′2 +B4 ≥ 0, d3 = −BB′′+B2 +2B4 ≥ 0.
(78)

One can see in Figure 3, that these conditions are satisfied for r ∈ (4.805, 5.012), the range in
which 0 ≤ w2 ≤ 1.

Figure 3: Graphs of d1, d2, d3 for c = 2.7, r0 = 2 and r ∈ (4.5, 5.3).

Example 2

In this example, the solution is given by the metric (28) with

B(r) =

√
3

9

(
2 + 3(r − r0)2

) 3
2 , (79)

where r0 6= 0 is a real constant. The DEC is satisfied for certain ranges of the radial coordinate
r ∈ [0, R), see [14]. Choosing a value for r0, one can find intervals for r, where 0 ≤ w2 ≤ 1 is
satisfied (see Figure 4).
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Figure 4: Graph of w2 for r0 = 0.01, where 0 ≤ w2 ≤ 1 for r ∈ (1.099, 1.334).

Again, the DEC was analysed in [14] and, as in the previous case, it turns out that it is satisfied
whenever the inequalities given by (78) hold.

Figure 5 shows that these conditions are satisfied for r ∈ (1.099, 1.334).

Figure 5: Graphs of d1, d2, d3 for r0 = 0.01 and r ∈ (1, 1.5).

6 Matching of non-static elastic and Robertson-Walker space-
times

We next show that the non-static shearfree elastic solutions (69) can be matched to certain
Robertson-Walker (RW) spacetimes.
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The Robertson-Walker line element in its isotropic form is given by (see for instance [18],[19])

ds2 = −dT 2 +
a2(T )

b2(R)

(
dR2 +R2dΩ2

)
, (80)

where b(R) = 1 + k
4R

2 with k = 0,±1, and the mass function and Friedmann equations are

m(T,R) =
ρ

6

(
Ra

b

)3

, (81)

ρ =
3(ȧ2 + k)

a2
, ρ̇+ 3(ρ+ p)

ȧ

a
= 0, (82)

where a dot indicates derivative with respect to the time T .

6.1 Case: RW with k = 0 and a(T ) = αT, α > 0

Let us now consider the junction across a spherically symmetric surface Σ of the elastic, non-
static solution

ds2
− = −dt2 + t2B2(r)(dr2 + dΩ2), (83)

with the Robertson-Walker metric

ds2
+ = −dT 2 + α2T 2

(
dR2 +R2dΩ2

)
, (84)

which is considered in [18].

The signs − and + are used to denote, respectively, interior and exterior quantities. At this
point, it should be emphasised though, that the labels ‘interior’ and ‘exterior’ are quite arbitrary,
nevertheless, we shall use them just as a convenient way of referring to the spacetimes considered.

For the metric (84) one has

ρ =
3

T 2
, p = − 1

T 2
(85)

and

m(T,R) =
α3TR3

2
. (86)

Notice that this is a particular case of a flat Robertson-Walker metric with linear equation of
state p = γρ, where γ = −1

3 , which satisfies the Dominant Energy Condition (see [18]).

The boundary Σ− can be parametrized by {t = λ, r = rΣ}, where rΣ is a constant. The tangent
space to Σ− at any of its points, is spanned by the following orthogonal tangent vector fields at
that point

TΣ− = 〈e−1 = ∂t, e
−
2 = ∂θ, e

−
3 = ∂φ〉. (87)

The outgoing, unit, normal vector field to Σ− is given by

na− = t−1B−1∂r. (88)
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Consider next the boundary Σ+; it can be parametrized by {T = λ,R = RΣ}, where RΣ is a
constant.The tangent space to Σ+ can be generated by the following orthogonal tangent vectors

TΣ+ = 〈e+
1 = ∂T , e

+
2 = ∂θ, e

+
3 = ∂φ〉, (89)

and the unit normal vector field to Σ+ is

na+ =
1

αT
∂R. (90)

Now, the two spacetimes can be matched across Σ if and only the first and second fundamental
forms of their respective metrics are continuous across it (see for instance [18]).

The first fundamental forms on Σ are given by

q±αβ = e±aα e±bβ g±ab, α, β = 1, 2, 3,

and a trivial calculation yields for their corresponding line elements

dσ2
− = −dλ2 + t2B2(rΣ)dΩ2, (91)

dσ2
+ = −dλ2 + α2λ2R2

ΣdΩ2, (92)

where all quantities must be evaluated on Σ.

The continuity of the first fundamental form (first matching condition) q−αβ = q+
αβ, implies then

λ2B2 Σ
= α2λ2R2

Σ, (93)

where
Σ
= means that the equality holds only at points on the surface Σ, (recall that, on Σ, one

has t = T = λ).

The independent components of the second fundamental forms,

H±αβ = −n±a e±bα ∇±b e
±a
β ,

at points on Σ are (cf. [20])

H−11 = 0, H−22 = λB′, (94)

H+
11 = 0, H+

22 = αλRΣ, (95)

where again, all quantities are evaluated on Σ. Continuity of the second fundamental forms
(second matching condition), H+

αβ = H−αβ, implies

B′
Σ
= αRΣ. (96)

Thus, from (93) and (96), it follows that the elastic spacetime (83) can be matched to a flat
Robertson-Walker spacetime of the form (84) if and only if

B
Σ
= αRΣ, B′

Σ
= αRΣ. (97)
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Notice that, if these conditions are satisfied, it readily follows from (71) (using units such that
8πG = c = 1) that

p−1 = − 1

t2
and then p−1

Σ
= − 1

λ2
, (98)

and one then has (cf. (85))

p−1
Σ
= p+

1 , (99)

which is a well-known necessary (but not sufficient) condition for the matching of two spacetimes,
namely, pressure orthogonal to the matching surface must be continuous across it (which follows
from the so-called Israel matching conditions). Furthermore, considering the mass function of
the elastic spacetime

m(t, r) =
t

2

(
B3 +B − B′2

B

)
, (100)

equation (97) implies

m−
Σ
=
α3R3

Σλ

2
, (101)

thus (cf. (86))

m−
Σ
= m+, (102)

which is also a necessary (but not sufficient) condition in the case of spherical symmetry, as it
was first shown in [18].

6.2 Case: RW with k = 1 and a(T ) = αT, α > 0

Consider as before the junction across a spherically symmetric surface Σ of an elastic non-static
spacetime with metric (83), that is:

ds2
− = −dt2 + t2B2(r)(dr2 + dΩ2),

with the Robertson-Walker spacetime

ds2
+ = −dT 2 +

α2T 2(
1 + 1

4R
2
)2 (dR2 +R2dΩ2

)
, (103)

corresponding to (80) with a(T ) = αT and k = 1. The above remarks regarding the meaning
and arbitrariness of the signs − and + also apply here.

For the line element (103) one has

ρ = 3
1 + α2

α2T 2
, p = −1 + α2

α2T 2
(104)

and

m(T,R) =
32αTR3(1 + α2)

(4 +R2)3
. (105)

Notice that the Dominant Energy Condition is satisfied, and the mass is positive for α > 0.
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We proceed next as in the previous case; that is, we choose suitable parametrisations for Σ in
both spacetimes, calculate the corresponding first and second fundamental forms, and demand
them to be continuous across the surface Σ.

The parameters on Σ−, and the vector fields spanning its tangent space, as well as the outgoing
unit normal vector field, are the same as above, and the first and second fundamental forms are
those given by (91) and (94) respectively.

As for the boundary Σ+, the parameters and vector fields spanning its tangent space at each
point, can be chosen as in the case above (see (89)), whereas the normal vector field is now given
by

na+ =
1 + 1

4R
2

αT
∂R. (106)

The first and second fundamental forms for the Robertson-Walker spacetime (103) are now:

dσ2
+ = −dλ2 +

α2λ2(
1 + 1

4R
2
Σ

)2R2
ΣdΩ2, (107)

and

H+
11 = 0, H+

22 = −
4αλRΣ(R2

Σ − 4)

(4 +R2
Σ)2

. (108)

Continuity of the first and second fundamental forms implies now

B
Σ
=

4αRΣ

4 +R2
Σ

, B′
Σ
=

4αRΣ(4−R2
Σ)

(4 +R2
Σ)2

. (109)

where, as before,
Σ
= means that the equalities hold only on the surface Σ.

Again, as a consequence of the matching, using (109), it follows from (71),(104) and (105) that

p−1
Σ
= p+

1 . (110)

and
m−

Σ
= m+, (111)

as it should be expected. In this case, the above magnitudes are:

p−1
Σ
= −1 + α2

α2λ2
, (112)

and

m−
Σ
=

32αλR3(1 + α2)

(4 +R2
Σ)3

. (113)
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6.3 Case: RW with k = −1 and a(T ) = αT, where (α < −1 and R > 2) or
(α > 1 and 0 < R < 2)

Finally, consider the junction of the non-static elastic solution (83) with the Robertson-Walker
metric

ds2
+ = −dT 2 +

α2T 2(
1− 1

4R
2
)2 (dR2 +R2dΩ2

)
, (114)

where a(T ) = αT and k = −1 in (80), across a spherically symmetric surface Σ.

For the above metric (114) one has

ρ = 3
α2 − 1

α2T 2
, p =

1− α2

α2T 2
(115)

and

m(T,R) =
32αTR3(α2 − 1)

(4−R2)3
. (116)

In this case the dominant energy condition is satisfied and the mass is positive whenever:

(α < −1 and R > 2) or (α > 1 and 0 < R < 2). (117)

The parametrisations on Σ− and Σ+ and the orthogonal vector fields spanning their respective
tangent spaces at each point are chosen to be the same as in the previous two cases, and so is
na−, the normal to Σ−, whereas the normal vector field to Σ+ is given by

na+ =
1− 1

4R
2

αT
∂R. (118)

The first and second fundamental forms for (114) are

dσ2
+ = −dλ2 +

α2λ2(
1− 1

4R
2
Σ

)2R2
ΣdΩ2, (119)

and

H+
11 = 0, H+

22 =
4αλRΣ(R2

Σ + 4)

(4−R2
Σ)2

. (120)

Continuity across Σ of the first and second fundamental forms implies then

B
Σ
=

4αRΣ

4−R2
Σ

, B′
Σ
=

4αRΣ(4 +R2
Σ)

(4−R2
Σ)2

. (121)

As in the previous two cases, the above equation (121), implies that both the radial pressures
and mass functions are continuous across Σ, as expected.
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7 Elastic thick shells in Robertson-Walker universes

Next, we will show that the elastic spacetime metrics (77) and (79) from Example 1 and Example
2, respectively, can be matched to Robertson-Walker spacetimes at the interior and the exte-
rior, leading to models with a well behaved elastic intermediate spacetime, where perturbations
propagate in a causal way.

The resulting spacetimes can then be seen as elastic, spherically symmetric thick shells, sepa-
rating an interior Robertson-Walker ‘bubble’ from an exterior Robertson-Walker universe.

In the examples presented, the spatial curvature k of the exterior Robertson-Walker
region is in one case different from that in the inner bubble, and in the other case,
equal to it.

7.1 Positive k RW-elastic-flat RW spacetime

Consider the metric (77) with c = 2.7 and r0 = 2. It follows quite straightforwardly that it can
be matched, as an interior solution, to the flat (k = 0) Robertson-Walker metric (84) considered

as exterior. To see this, take into account the matching conditions (97), which imply B′
Σ
= B; it

therefore follows that the matching radius must be: r+ ≈ 4.856.

Consider next the elastic metric as an exterior solution; it is also easy to show that it can be
matched to the k = 1 Robertson-Walker metric (103) considered as an interior.

To see this, notice that a coordinate change R = R(r) must exist in a neighbourhood of Σ such
that the matching conditions (109) hold at points on Σ, thus

B′ =
dB

dr
=
dB

dR

dR

dr
=
dB

dR
R′

and from the expression for B and B′ on Σ given by (109), one readily gets from the above
equation that R′ = R, that is:

RΣ = βerΣ , (122)

for some constant β > 0. Substituting this into (109) we get

√
3

24.3

[
−1 + 3 cosh2

(
rΣ − 2

2.7

)]3/2

=
4αβerΣ

4 + β2e2rΣ
, (123)

√
3

7.29
sinh

(
rΣ − 2

2.7

)
cosh

(
rΣ − 2

2.7

)[
−1 + 3 cosh2

(
rΣ − 2

2.7

)]1/2

=
4αβerΣ(4− β2e2rΣ)

(4 + β2e2rΣ)2
, (124)

which must hold simultaneously, thus producing a system of equations for the parameters rΣ,
β and α. Numerical calculations show that values of α and β exist such that, for instance
rΣ = 4.81 is a solution to the above system, corresponding to β ≈ 0.001 and α ≈ 9.897.

Thus, the elastic shell spacetime is defined for r ∈ (r−, r+) = (4.81, 4.856) and, as follows from
our previous discussions, in this region elastic waves propagate causally (i.e.: w2 ≤ 1, see Figure
2), the metric is regular, and the Dominant Energy Condition is satisfied (see Figure 3).
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7.2 Negative k RW-elastic-negative k RW spacetime

We next show that the metric (79) with r0 = 0.01 can be matched at the exterior to the
Robertson-Walker metric (114) with k = −1 (see subsection 6.3 for details).

We proceed in a similar way as in the example above, thus, considerations on the existence of a
coordinate change R = R(r) in a neighbourhood of Σ, together with (121), imply

R = βer, β > 0, (125)

on that neighbourhood, which upon substitution into the matching conditions (121) yields

√
3

9

[
2 + 3(rΣ − 0.01)2

]3/2
=

4αβerΣ

4− β2e2rΣ
, (126)

√
3(rΣ − 0.01)

[
2 + 3(rΣ − 0.01)2

]1/2
=

4αβerΣ(4 + β2e2rΣ)

(4− β2e2rΣ)2
. (127)

Again, the above algebraic equations must hold simultaneously for certain values of the parame-
ters involved: rΣ, β and α; thus, for example, rΣ = 1.33 is obtained for β ≈ 0.261 and α ≈ 2.866
hence, the elastic spacetime can be matched to the exterior Robertson-Walker spacetime at
r+ = 1.33. Note that α > 1 and RΣ = 0.987 < 2, as required (see (117)).

At the interior, the elastic spacetime can be matched to another Robertson-Walker metric (114)
with k = −1. Now, for example, rΣ = 1.1 is obtained for β ≈ 0.35 and α ≈ 1.738 hence, the
elastic spacetime can be matched to the interior Robertson-Walker spacetime at r− = 1.1. Note
that α > 1 and RΣ = 1.051 < 2, again, as required (see (117)).

In this case, the intermediate elastic spacetime is defined for r ∈ (r−, r+) = (1.1, 1.33), and
in this domain elastic waves propagate causally (that is: w2 ≤ 1, see Figure 4), the metric is
regular, and the Dominant Energy Condition is satisfied (see Figure 5).

8 Conclusions

In this paper, we have reviewed some fundamental results on relativistic elastic waves, and
have considered in detail the spherically symmetric case, providing an explicit expression for
the elasticity tensor Eabcd (see(48)), from where all other relevant tensors (Hadamard elasticity
tensor, relativistic Fresnel tensor) can be derived. Further, we have provided an expression for
the speed of propagation of the elastic waves w, (63), in terms of the constitutive function v and
its derivatives (alternatively, in terms of the components of the energy-momentum tensor).

The results thus obtained have been specialized to various cases of spherically symmetric exact
solutions previously found by the authors in [14]. It is shown that, in all cases but one, there
exists an open spacetime region where the solutions

• Are singularity free.

• Represent elastic matter with a well defined constitutive function v.
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• Satisfy the Dominant Energy Condition.

• Are such that the elastic perturbations propagate causally: that is w2 ≤ 1.

We also showed that the two non-static elastic solutions discussed can be matched to Robertson-
Walker spacetimes, providing two examples of such a matching. These results are then used to
build up two spherically symmetric toy-models in which two different Robertson-Walker domains
(one flat and one non-flat, and two non-flat) are separated by a thick elastic shell (or layer) well-
behaved in the above sense, which is well-joined to both Robertson Walker metrics in the sense
that the first and second fundamental forms are continuous across the inner and outer surfaces
of that shell.
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[12] Kranys, M.: Relativistic elasticity of dissipative media and its wave propagation modes. J.
Phys. A: Math. Gen. 10, 1847 (1977).

[13] Beig, R., Schmidt, B.G.: Relativistic elasticity. Class. Quant. Grav. 20, 889 (2003).

[14] Brito, I., Carot, J. and Vaz, E.G.L.R.: General spherically symmetric elastic stars in rela-
tivity. Gen. Rel. Grav. 42, 2357 (2010); and: Erratum to: General spherically symmetric
elastic stars in relativity. Gen. Rel. Grav. 44, 287 (2012).

[15] Geroch, R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12,
918 (1971).

[16] Magli, G.: Axially Symmetric, Uniformly Rotating Neutron Stars in General Relativity: a
Non-perturbative Approach. Gen. Rel. Grav. 25, 1277(1993).

[17] Kijowski, J. and Magli, G.: Relativistic elastomechanics as a lagrangian field theory. J.
Geom. Phys. 9, 207 (1992).

[18] Fayos, F., Senovilla, J., Torres, R.: General matching of spherically symmetric spacetimes.
Phys. Rev. D 54, 4862 (1996).

[19] Fayos, F., Jaen, X., Llanta, E., Senovilla, J.: Matching of the Vaidya and Robertson-Walker
metric. Class. Quant. Grav. 8, 2057 (1991).

[20] Carot, J. and Tupper, B.O.J.: Spherically symmetric magnetohydrodynamics in general
relativity. Phys. Rev. D 59, 124017 (1999).

24


	Introduction
	Elasticity in General Relativity. A brief summary
	Speed of sound
	Sound wave front and speed of propagation
	Characteristic equation

	Applications to spherically symmetric elastic spacetimes
	Spacetime configuration and elasticity tensor
	Second-order and fourth-order tensors
	The speed of propagation

	Specific solutions
	Shear-free static solution
	Non-static, shear-free solutions

	Matching of non-static elastic and Robertson-Walker spacetimes
	Case: RW with k=0 and a(T)=T, >0
	Case: RW with k=1 and a(T)=T, >0
	Case: RW with k=-1 and a(T)=T, where (<-1  and  R>2) or (>1  and  0<R<2)

	Elastic thick shells in Robertson-Walker universes
	Positive k RW-elastic-flat RW spacetime
	Negative k RW-elastic-negative k RW spacetime

	Conclusions

