
Real-time MTL with durations as SMT with
applications to schedulability analysis

André de Matos∗, Martin Leucker∗, David Pereira†, and Jorge Sousa Pinto‡
∗ ISP, University of Lübeck, Germany † CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal

‡ HASLab/INESC TEC & Universidade do Minho, Portugal

Abstract—This paper introduces a synthesis procedure for
the satisfiability problem of RMTL-

∫
formulas as SAT solving

modulo theories. RMTL-
∫

is a real-time version of metric
temporal logic (MTL) extended by a duration quantifier allowing
to measure time durations. For any given formula, a SAT instance
modulo the theory of arrays, uninterpreted functions with equal-
ity and non-linear real-arithmetic is synthesized and may then
be further investigated using appropriate SMT solvers. We show
the benefits of using RMTL-

∫
with the given SMT encoding

on a diversified set of examples that include in particular its
application in the area of schedulability analysis. Therefore, we
introduce a simple language for formalizing schedulability prob-
lems and show how to formulate timing constraints as RMTL-

∫
formulas. Our practical evaluation based on our synthesis and Z3
as back-end SMT solver also shows the feasibility of the overall
approach.

Keywords-metric temporal logic; schedulability analysis; con-
straint programming; satisfiability modulo theories;

I. INTRODUCTION AND MOTIVATION

Temporal logics are the standard tool for specifications and

have proven to be useful in many different application areas.

The best-known logic is Pnueli’s Linear-time Temporal Logic

(LTL) [28]. However, LTL has two major deficits limiting

its application for certain aspects: First, LTL comes with a

qualitative notion of time as it talks only about steps of the

system. As consequence, LTL is not adequate for real-time

specifications whenever the system’s runs have to be modeled

with timed interval sequences or as flows with the domain

in R≥0. Second, LTL is qualitative in the sense that it does

not allow counting of how often or for how long a property

was true within a trace. In this paper, we study restricted
metric temporal logic with durations (RMTL-

∫
) [9] which

is interpreted over real-time traces and allows measuring time

durations.

A widely known extension of LTL for potentially dealing

with real-time is metric temporal logic (MTL) in which the

modalities of LTL are augmented with timing constraints [1].

MTL formulas can be interpreted over a variety of temporal

models such as discrete (e.g., N, Z) [13], [2] and dense (e.g.,

R) [21], [6], [33], [18] time domains. Metric operators defined

over discrete time can be regarded as simple syntactic sugar,

since they are a succinct way of expressing metric constraints

that can be encoded using the LTL’s next modality.

Dense-time MTL operators are commonly classified in

terms of pointwise and continuous semantics. The pointwise

semantics is evaluated along possibly infinite sequences of

timed words, i.e., sequences of pairs (e0, t0)(e1, t1) . . . , where

ei are events/propositions belonging to a non-empty alphabet

Σ and ti ∈ R≥0 are the time instants of the events’ occurrence.

The continuous semantics is evaluated over possibly infinite

signals: Given a set of propositions P , a signal is a function

f : R≥0 → 2P mapping t ∈ R≥0 to the set f(t) of

propositions holding at time t. A restriction of the continuous

semantics for evaluating timed interval sequences is also

known as an interval-based semantics, or in other words, a

continuous semantics with finite variability. Timed interval

sequences are sequences of pairs (e0, l0)(e1, l1) . . . , where li
are contiguous, non-overlapping intervals with real or rational

bounds, forming a sequence of intervals in R≥0. In this paper,

we aim for interval-based semantics with finite variability.

Our logic RMTL-
∫

[9] is appropriate for reasoning about

hard real-time systems, since it extends the expressiveness of

MTL with a fragment of classical logic, the first order logic
of real numbers (FOLR)[23], which allows us to count time.

While [9] concentrated on the use of the logic in terms of

runtime verification, this paper studies its (practical) satisfiabil-

ity problem by means of SAT solving modulo theories (SMT)

using corresponding SMT solvers. Modern SMT solvers have

been the target of immense effort in the last years. Even

though the development of techniques and tools for nonlinear

reasoning have not received too much attention during this

period, a notable approach using Tarski queries has been

described by Jovanović and Moura [23], [11]. This approach

introduces a clear advantage over SMT solvers by including

support for the decidable theory of the real closed fields.

Other efforts for efficient reasoning about polynomials can be

found in Yices 2 [12] and Alt-Ergo [30]. From the computer

algebra standpoint, Mathematica and Maple have been the

tools of choice for symbolic reasoning in nonlinear arithmetic.

Although SMT solvers seem particularly suited to be used in

classic problems in the area of real-time systems, in practice

this has not yet happened a lot. This work will hopefully

contribute towards their adoption by this community.

More specifically, we present a translation schema that

allows to synthesize an SMT instance for a given RMTL-
∫

formula that is equi-satisfiable. For this, we use the theory

of arrays, uninterpreted functions with equality and non-linear

real-arithmetic. Any model found by the SMT solver can be

translated back into an interval trace satisfying the original

formula. We show the benefits of using RMTL-
∫

with the

given SMT encoding on a diversified set of examples that

include in particular its application in the area of schedulability
analysis.

49

2020 International Symposium on Theoretical Aspects of Software Engineering (TASE)

978-1-7281-4086-5/20/$31.00 ©2020 IEEE
DOI 10.1109/TASE49443.2020.00016

For almost forty years, a diversity of schedulability tests

for hard real-time systems have been proposed to address the

constraints imposed by the timing predictability required by

this class of systems to satisfy safety and dependability re-

quirements. These tests vary considerably in their complexity,

expressivity, and target scheduling policies (e.g., fixed priority,

earliest deadline first, round-robin, or even work stealing). The

literature [3], [17] on hard real-time schedulability analysis re-

veals that generally, schedulability testing works by assuming

a worst-case scenario and checking that each of the involved

tasks gets a sufficient allocation of shared resources so that

the corresponding job instances always complete before their

deadlines. Formal verification approaches for schedulability

analysis have been considered along these years, including

the use of temporal logics [36], [32]. Temporal logics have

been used as a formalism for specifying qualitative ordering

constraints on the observable traces.

We show that RMTL-
∫

is particularly suited as a building

block for schedulability analysis. We introduce a simple lan-

guage for formalizing schedulability problems and show how

to formulate timing constraints as RMTL-
∫

formulas. For the

latter, we developed a tool translating the specification into

an SMT problem for the SMT solver Z3 [10]. In this way, a

schedule for the original problem can be found, if it exists.

Our practical evaluation shows the feasibility of the overall

approach.

Contributions of the paper: In this paper, we introduce

a new sound synthesis mechanism that transforms RMTL-
∫

formulas into the input language of modern SMT solvers; we

propose a formalization of periodic resource models, which

allows us to provide a push button approach for checking, in

practice, schedulability of embedded real-time systems; and a

synthesis tool1.

Structure of the paper: The paper is organized as follows:

Section II recalls definitions of both the syntax and semantics

of RMTL-
∫

as well as the lambda calculus used to support

the translation. Sections III and IV describe, respectively, the

synthesis mechanism and the formalization of the schedula-

bility analysis of resource models (a widely used technique

to ensure time isolation). Section V presents the evaluation of

the synthesis mechanism, first for a chosen set of formulas,

and later for the schedulability analysis of resource models.

Finally, Section VI addresses related work and Section VII

draws some conclusions and discusses future work.

II. PRELIMINARIES

Before introducing the synthesis of RMTL-
∫

formulae,

we present an overview of the syntax and semantics of

this logic and also the translation language used during the

synthesis process. Our approach first translates RMTL-
∫

into

λ-expressions, which are then encoded into SMT solvers in

the form of SMT-LIBv2 specifications. The choice to take λ-

calculus as an intermediate language was due to its ability to

describe the interpreted functions and also to convert them into

uninterpreted ones using a simple translation pattern. In this

way, the λ-calculus can be seen as an elegant computation

1Available at https://github.com/anmaped/rmtld3synth

model to synthesize temporal logic for different purposes

such as runtime verification and/or shallow embedding in

(automated) theorem provers.

A. RMTL-
∫

specification language.

A well-known typical example used in the literature of

embedded hard real-time systems is the gas burner requirement

which states that “gas must never leak for more than 4 time

units in any period of at most 30 time units” [37]. In the

language of scheduling this reads as: “a task must never use

more than 4 time units of processing time in any period of

at most 30 time units”. Moreover, this is also the same as

saying that a periodic resource model [31] with a period of 30

time units can only spend a budget of at most 4 time units.

Here, a periodic resource model is a mechanism to ensure time

isolation between different components, including tasks.

These properties cannot be specified using MTL without

assuming that a bound over the input model exists. Although

it is possible to construct arbitrary formulas in MTL emulating

the counting of time for certain patterns (i.e., the ones we

identify as being bounded) this shows to be unnatural due

to the very large number of combinations required. RMTL-
∫

shows to be intuitive and natural to express counting time as a

first class citizen in the language and as a consequence is more

succinct than MTL. Formulas that can relate elapsed time for

two tasks such as “two tasks do not overload in a period of

30 time units if the (in-)equality a = b − 10 or a < b + 10
holds” can be expressed in RMTL-

∫
but not in MTL, since

a and b are variables that correspond to the execution time

of each task, which are unbounded by definition. Let us now

briefly review the syntax of the adopted specification language

RMTL-
∫

.

a) RMTL-
∫

formulae [9]: Let P be a set of propositions

and V a set of logical variables. The syntax of RMTL-
∫

terms

η and formulas ϕ is defined inductively as follows:

η ::= α | x | η1 ◦ η2 |
∫ η

ϕ

ϕ ::= true | p | η1 < η2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2

| ϕ1 S∼γ ϕ2 | ∃xϕ
where: α ∈ R, x ∈ V is a logical variable, the operators

◦ ∈ {+,×} are used for the sum and multiplication of terms,∫ η
ϕ is the duration of the formula ϕ in the interval [0, η];

p ∈ P is an atomic proposition, < is the relation less than on

terms, U and S are temporal operators, with ∼∈ {<,=,≤}
and γ ∈ Q≥0. RMTL-

∫
formulas are evaluated over state

sequences. A timed state sequence κ is an infinite sequence

with finite variability of the form

(p0, [i0, i
′
0[), (p1, [i1, i

′
1[) . . . ,

where pj ∈ P , i′j = ij+1 and ij , i
′
j ∈ R≥0 such that ij < i′j

and j ≥ 0. Let κ(t) be defined as {pj} if there exists a tuple

(pj , [ij , i
′
j [) such that t ∈ [ij , i

′
j [, and as ∅ otherwise. Note

that there exists at most one such tuple and there are an ε0 >
0 and arbitrarily large n, m such that |in − im|≥ ε0 holds

(divergence).

A logical environment is any function υ : V → R≥0. For

any x ∈ V , r ∈ R, and logical environment υ, we will denote

50

by υ[x �→ r] the logical environment that maps x to r and

every other variable y to υ(y).
b) RMTL-

∫
interval-based semantics: The truth value

of a formula ϕ will be defined relative to a model (κ, υ, t)
consisting of a timed state sequence κ, a logical environment

υ, and a time instant t ∈ R≥0. We will write (κ, υ, t) |= ϕ
when ϕ is interpreted as true in the model (κ, υ, t). Terms and

formulas will be interpreted in a mutually recursive way.
For each formula ϕ, timed state sequence κ and logical en-

vironment υ, the auxiliary indicator function 1ϕ(κ,υ) : R≥0 →
R≥0 is defined as follows, making use of the satisfaction

relation:

1ϕ(κ,υ)(t) =

{
1 if (κ, υ, t) |= ϕ,

0 otherwise.

The value T �η�(κ,υ) t of a term η relative to a model can then
be defined. A Riemann integral [19] of the function 1ϕ(κ,υ) is

used for the case of a duration
∫ η

ϕ.

T �α�(κ,υ) t = α

T �x�(κ,υ) t = υ(x)

T �η1 ◦ η2�(κ,υ) t = T �η1�(κ,υ) t ◦ T �η2�(κ,υ) t
T

�∫ η

ϕ

�
(κ,υ) t =

{∫ t+t′
t

1ϕ(κ,υ)(t∗) dt∗ if t′ ≥ 0

0 otherwise

where t′ is replaced by the term T �η�(κ, υ)t. The satisfaction
relation is defined inductively as follows:

(κ, υ, t) |= p iff p ∈ κ(t)

(κ, υ, t) |= η1 < η2 iff T �η1�(κ,υ) t < T �η2�(κ,υ) t
(κ, υ, t) |= ϕ1 ∨ ϕ2 iff (κ, υ, t) |= ϕ1 or (κ, υ, t) |= ϕ2

(κ, υ, t) |= ¬ϕ iff (κ, υ, t) �|= ϕ

(κ, υ, t) |= ϕ1 U∼γ ϕ2 iff

there exists t′ s.t. t < t′ ∼ t+ γ and (κ, υ, t′) |= ϕ2, and

for all t′′s.t. t < t′′ < t′, (κ, υ, t′′) |= ϕ1

(κ, υ, t) |= ϕ1 S∼γ ϕ2 iff

there exists t′ s.t. t− γ ∼ t′ < t and (κ, υ, t′) |= ϕ2, and

for all t′′s.t. t′ < t′′ < t, (κ, υ, t′′) |= ϕ1

(κ, υ, t) |= ∃xϕ iff

there exists a value r ∈ R s.t. (κ, υ[x 	→ r], t) |= ϕ

We will write (κ, υ) |= ϕ as shorthand for (κ, υ, 0) |= ϕ.

Note that the semantics of the until operator is strict and non-

matching. This implies that, in order to satisfy ϕ1 U∼γ ϕ2, the

model is not required to satisfy ϕ1. We will use the following

abbreviations: ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), ϕ → ψ for ¬ϕ ∨ ψ,

�∼γ ϕ for true U∼γ ϕ, and �∼γ ϕ for ¬(true U∼γ ¬ϕ).
An important property of our restriction is that RMTL-

∫
satisfies by construction the Dirichlet condition implying the

Riemann property [26, p.7]:

Lemma 1. For any RMTL-
∫

formula ϕ, timed state sequence
κ, and logical environment υ, the indicator function 1ϕ(κ,υ)

is Riemann integrable.

This property ensures that many infinite discontinuities in

the composition of formulas or terms cannot be achieved

and validates the integrability of formulas over time. Infinite

discontinuities can only come from the sequence definition

that is somehow restricted to avoid such cases i.e. we say that

the sequences are divergent.

B. λ-calculus.

The λ-calculus can be seen as an elegant computation model

to synthesize temporal logic for different purposes such as

runtime verification and/or shallow embedding in (automated)

theorem provers. A λ-term is either a variable x ∈ Var , where

Var is a countably infinite set of variables; an application of a

function e0 applied to an argument e1, usually written e0 e1;

or a lambda abstraction, λx.e representing a function with

input parameter x and body e. Formally, lambda expressions

are inductively defined by

e ::= x |λx.e | e0 e1
where the metavariables e, e0, e1 represents a λ-calculus term.

An expression can be surrounded with parenthesis for clar-

ity, and we use the notation with “.”s to avoid the proliferation

of multiple lambdas, each one with one argument. For in-

stance, λx1, . . . xn.M is equivalent to (λx1(. . . (λxnM) . . .)),
where M is the body of the abstraction. We assume that

lambda abstractions associate to the right, and applications to

the left, i.e., MN1 . . . Nn is equivalent to (. . . (MN1) . . . Nn).
Note that λ acts as a variable binder in a similar way to

the quantifiers ∃ and ∀ in predicate calculus and
∫
. . . dx in

integral calculus.

We begin by describing the meaning of the β-reduction

(−→β)

(λx.M)N −→β M [N/x],

where M [N/x] can be read “replace free occurrences of x
in M by N”. When applying the β-reduction rule it is often

useful to also use the α-conversion rule, defined by:

λx.M = λy.M [y/x] and y is not a free variable of M .

This rule captures the fact that a bound variable can be

replaced by any other fresh variable. The reduction denoted

by −→∗
β is the transitive and reflexive clousure of −→β .

Substitution suffers from the problem of “variable capture”.

It can be solved using different approaches. A simple one is

to replace the bounded variables in certain circumstances as

in [27], [20]. For instance, to evaluate λy.(λx.yx)(x), we have

that (λx.yx)[y/x]. Here, using the modern approach, we need

to use the α-reduction to rename x and reduce (λw.yw)[y/x]
into λw.xw.

III. SYNTHESIS OF RMTL-
∫

FORMULAE

The synthesis algorithm for RMTL-
∫

presented here is

suitable to solve the satisfiability problem of our fragment

using a variant of cylindrical algebraic decomposition (CAD).

This means that our formalization is adjusted as an input model

for SMT solvers in SMT-LIBv2 specification language [4],

using a logic that supports non-quantified linear arithmetic,

uninterpreted functions with equality, and arrays.

SMT provers have been progressively adding smart tactics

for solving problems that until now could only be solved using

human creativity. Of course several issues such as inductive

proofs and quantified fragments are really difficult or even

impossible to check by such general approaches. Due to being

the target of several optimizations, such as conflict-driven

51

(a, d0) (a, d2)(b, d1) (c, d3)

κ

dn = ‖i′n − in‖, n ≥ 0 a[1] �→ (, d0)

a[2] �→ (, d1)

a[3] �→ (, d2)

a[4] �→ (, d3)
a|= aU<ε b

sat(evalU () () i i0)
with mt i = ε+ t and mt i0 = t

, v, t
)(

Figure 1. Timed sequence checking aU<ε b and equisatisfiable mapping

clause learning, and also due to their efficiency handling a mix

of non-quantified logic fragments, including non-interpreted

functions and decidable logic fragments for arithmetic, these

solvers are suited for several classic problems in the real-time

community. This fact has not been suitably explored until now;

we give here the initial steps in this direction.

Efficient synthesis algorithms can give modular advantages

for different problem formulations such as schedulability anal-

ysis. We will now describe a new algorithm for the synthesis

of RMTL-
∫

in which we encode the interval-based semantics

of RMTL-
∫

using lambda expressions, that will be converted

further to the SMT-LIBv2 language with small effort. The

set of constant arrays from propositions P to Boolean B is

denoted by A. For arrays, we use the select keyword that

given a mapping of a timed state sequence a ∈ A and an

index i ∈ N0 returns a proposition. Any proposition p is in

{tt,ff} ⊆ B and ite is the if-then-else construct.

In what follows we define the combinators evalp, evalU,

eval∫ , that will evaluate respectively propositions, less-until

operators, and duration terms, based on the standard rewriting

semantics of λ-expressions (i.e., the β-reduction). The other

operators available in RMTL-
∫

are directly translated. These

include the traditional ¬ and ∨ operators and the arithmetic

operators + and ×. We introduce them for formulas as eval<,

eval∨, eval¬, and evaltrue, and for terms as eval+, eval×,

evalx, and evalα. Constants and logical variables are locally

substituted. The proposition formulation is encoded by the

lambda expression evalp
.
= λ a p i . ite (select a i =

p) tt ff, where the select keyword selects a given element of

an array a for some index i and returns a proposition. Arrays

seem to be an intuitive way to encode sequences and anyone

with experience in programming languages could follow the

encoding, but it has its own drawbacks when considering non-

linear polynomial arithmetic theory (Z3 handles it in isolation

without offering a decision procedure when polynomials are

combined with other theories).

We encode the timed state sequence as an array where each

index identifies a state defined by a symbol (proposition) and

a piece-wise constant interval (duration), meaning that time

is piece-wise continuous. For that, we consider the function

mt : N0 → R that given an index selects a cumulative

duration, and the function mtv : N0 → R that given an index

returns the current duration. The Fig. 1 illustrates such map-

ping. sat(evalU () () i i0) corresponds to the satisfaction

of the until operator’s translation for two propositions and two

indexes such that i0 < i, mt i = ε+ t and mt i0 = t.

Lemma 2 (Sequence Equivalence). Let κ be a timed state
sequence, p ∈ P a proposition, a ∈ A an arbitrary constant

array, and i an arbitrary index in N0. For all t and p, there
exists an a, i such that p ∈ κ(t) is logically equivalent to
select a i = p such that mt i = t.

Now, we continue with the translation of the formulas. The

evaluation of the duration term denoted by eval∫ is defined

by the set of lambda expressions, as follows:

ind
.
= λeval i . ite (eval i = tt) (mtv i) 0

evale′
.
= λf. λeval x i . (x ≥ 0)→ ite ((i ≥ 0) ∧ (x > i))

((f f) eval x i = ((f f) eval (x− 1) i) + (ind eval x))

((f f) eval x i = ind eval x)

evale
.
= evale′ evale′

eval∫ .
= λi i′ eval . evale eval (i− 1) i′

Given this definition, its inductive nature allows us to identify

a pattern very close to the Riemann sum [22, p. 292], from

which we derive the correction. The local variables i and i′

are indexes from which t and t′ are mapped such as mt i = t′

and mt i′ = t. The evaluation of the duration term
∫ ε

(resp.

eval∫ i i′) is complete if mt i = t + ε and mt i′ = t hold,

for a given t. Note that the missing formula in the term is

translated into an evaluation function and fed accordingly.

The evaluation of the less until evalU is defined by the set

of lambda expressions, as follows:

evali
.
= λ b1 b2 . ite (b2 �= ff) b2 (ite (b1 �= tt) b1 r)),

evalb
.
= λ eval1 eval2 t v . ite (v = r)

(evali (eval1 t) (eval2 t)) v,

evalf ′
.
= λf. λeval1 eval2 x i . (x ≥ 0)→ ite (i ≥ 0 ∧ x > i)

(evalb eval1 eval2 x ((f f) (x− 1) i) = (f f) x i)

(evalb eval1 eval2 x r = (f f) x i),

evalf
.
= evalf ′ evalf ′,

map2
.
= λx . ite ((x = ff4) ∨ (x = r)) ff tt,

evalc
.
= λeval1 eval2 i i′ . evalf eval1 eval2 (i− 1) i′, and

evalU
.
= λi i′ eval1 eval2 . map2 (evalc eval1 eval2 i i′).

Note that we need to remove the recurrence among the

lambda expressions by unfolding until they converge. The

following Example 1 illustrates this for a simple case of a

duration evaluation.

Example 1. The expression evale 2 1 will be evaluated as
follows:

evale eval 2 1 −→β

(λx i.(x ≥ 0)→ ite (i ≥ 0 ∧ x > i)

((evale′ evale′) eval x i = ((evale′ evale′) eval (x− 1) i) + (ind eval x))

((evale′evale′) eval x i = ind eval x)) 2 1 −→∗
β

(2 ≥ 0→ ite (1 ≥ 0 ∧ 2 > 1) (evale eval 2 1 = (1 ≥ 0→ ite (1 ≥ 0 ∧ 1 > 1)

(evale eval 1 1 = (evale eval 1 1 = ind eval 1) + (ind eval 1))

(evale eval 1 1 = ind eval 1)) + (ind eval 2))

(evale eval 2 1 = ind eval 2))

52

where after simplifying we get: evale eval 2 1 −→∗
β

(evale eval 1 1 = ind eval 1) + (ind eval 2). If we continue
evaluating the expression we will always get evale 1 1 =
ind eval 1 and then we should stop evaluating the expression
since we converge in (evale eval 1 1 = ind eval 1) =
ind eval 1.

This encoding has this form to be easily translated into

uninterpreted functions, since the evaluation always converges

and all the possible assignments are defined. Interestingly,

our definition can be adopted for monitoring (using functions

interpreted as lambdas) and also to check satisfaction in a

more general environment setting. For instance, given the

uninterpreted function evale : Z → Z → R, evale is defined

in AUFLIRA logic [4], as follows:

∀x i,
(
implies (x ≥ 0)

(
ite ((i ≥ 0) ∧ (x > i))

(evale x i = (evale (x− 1) i) + (ind′ x))

(evale x i = (ind′ x))
))

Note that eval and mt are inlined in ind′. mt encodes the

position at which the sequence shall be summed up by the

Riemann sum constructed over the sequence κ mapped to a.

The correctness result is built on top of the correspondence

between the Riemann integrable property of the RMTL-
∫

described in Lemma 1 and the Riemann sum. If we have

logical variables, they are encoded as variables in the SMT

solver with the domain in R, and logical constants as constants

in Q. The translation of the operators U=γ , U≤γ and S∼γ

are omitted here for simplicity since they are defined using

the same pattern as the case of U<γ resp. evalU i i′ such

that mt i = t+ γ and mt i′ = t hold, for a given t ∈ R≥0.
Let us denote by Φ the set of RMTL-

∫
formulas, by T the

set of RMTL-
∫

terms, and by Φsmt the set of AUFLIRA logic

formulas [4]. To replace the inductive nature of the formulas,

we have to define the function rmtld synth : Φ → (A →
N0 → Φsmt) that applies the substitution of all the eval sym-

bols (resp. eval, eval1 and eval2) according to the inductive

structure of the formula. In the same way, we consider the

function rmtld synth term : T → (A → N0 → Φsmt)
that performs similar replacement for terms. Both functions

are mutually recursive. The definition of such functions is

simple because they align with the corresponding pattern

throughout the formula structure. Due to the verbose nature

of the functions rmtld synth and rmtld synth term, we

decided to omit them entirely here.
For the sake of showing a sound and complete synthesis

procedure, we will formulate the notion of correctness.

Lemma 3 (Correctness). Let κ be a timed state sequence, a
an array that translates κ, and t a time instant. For any φ in
RMTL-

∫
, (κ, υ, t) |= φ iff (rmtld synth φ) a t is satisfiable.

Note that the decision procedure for RMTL-
∫

logic using

linear arithmetic is incomplete. Our evaluation shows that in

practice several problems could be solved in such a way and

when necessary encoding in non-linear arithmetic theory is

the only option. The encoding for this case is less intuitive for

someone with functional programming background and is not

addressed here.

IV. FORMALIZATION OF PERIODIC RESOURCE MODELS

Scheduling is the act of doing a timetable showing the

times or dates where the resources are assigned according to

some scheduling policy. In real-time systems literature, the

scheduling is frequently characterized by a scheduling model

that consists of three elements: a resource model, a scheduling

algorithm (e.g. fixed priorities; earliest deadline first), and a

workload model (e.g. task set).

We will assume task sets Γ = {τ1, τ2, ..., τn}, such that

n ∈ N+ is the number of tasks τi = (pi, ei) where pi and

ei are, respectively, the period and the worst-case execution
time (WCET) of τi. Each task τi ∈ T is implicitly periodic

and has implicit deadline. A periodic resource model ω is

a tuple (T , π, θ, rm), where T ⊆ Γ , π is the replenishment
period (i.e the budget reset period), θ is the server budget, and

rm is the rate monotonic scheduling algorithm [3]. The set of

periodic resource models is denoted by Ω = {ω1, ω2, . . . , ωm}
for an arbitrary m ∈ N+. We denote the index i of a task by

τi and the index j of a resource by ωj , where 0 < i ≤ n
and 0 < j ≤ m holds, respectively. The outputs of a resource

model ω are sequences of events.

Let us now consider the alphabet of events E . Each element

can be of one of the following types: a task release event RE;

a task start event ST; a task sleep event SL; a task resume
event RS; a task stop event SO; a resource budget release
event RN; or a general purpose event identifier tuple EV.

We also consider that general purpose events are special since

they include a certain event identifier.

The set of tasks with higher-priority than (and including) τi
for ωj is denoted by γτiωj

. We also use h as the hyper period,

the least common multiple of the periods of all the periodic

tasks. For events, we adopt the following notations: EV(ωj , ·)
denotes the set of events that can be generated by the resource

model ωj ; EV(ωj , τi) denotes the set of events that can be

generated by the task τi in the resource model ωj ; evs+(ωj , τi)
is defined by evs(ωj , τi) ∨ SO(ωj ,τi) ∨ EV(ωj , τi) ∨ RE(ωj ,τi),
with evs(ωj , τi) defined by ST(ωj ,τi) ∨ RS(ωj ,τi) ∨ RN(ωj),
which specifies all events that a task τi in the resource model

ωj can trigger; evs−(ωj , τi) denotes the formula resulting

from the removal of the RE(ωj ,τi) and SO(ωj ,τi) events from

evs+(ωj , τi); finally, evs∗(ωj , τi) denotes the formula result-

ing from the removal of the ST(ωj ,τi) and SO(ωj ,τi) events

from evs+(ωj , τi). The binary operator ϕ1 � ϕ2, meaning

next implies, is a shorthand for ϕ1 → (ϕ1U<b ϕ2), where b
is a rational value that means the maximum duration of each

event. These shorthands allow us to reduce the verbosity of

the next definitions.

A resource model ωj captures the semantic nature of a peri-

odic resource model with a specification containing properties

such as the resource model budget supply, the schedulability

policy, the task set durations and period, and other intrinsic set-

tings for complete specification of the resource. The resource

model budget supply is specified by the formula

�≤h RN(ωj) �
(
�=π RN(ωj)

)
∧
∫ π ∨

τi∈T evs
+(ωj , τi) ≤ θ,

(1)

where ωj is one resource model, π and θ are their renewal

period and budget, and RN(ωj) is the budget renewal event.

53

This formula states that for each occurrence of the event

RN(ωj) in the resource model ωj , the duration of the other

events until π time units does not surpass the budget θ per

period π.

For the partial order of the task releases, as defined by the

scheduler policy rm, we introduce the RMTL-
∫

formula

�≤h

∧
τi∈T

(
RE(ωj ,τi) �

(
ev(ωj , τi) U≤pi

SO(ωj ,τi)

))
,

(2)

where

ev(ωj , τi) �
(∨

τk∈γ
(τi−1)
ωj

evs+(ωj , τk)
)
∨ evs−(ωj , τi)

and γ
(τi−1)
ωj denotes the set of higher-priority tasks, excluding

events triggered by the task τi. This formula means that for

every event RE(ωj ,τi) there is always an event SO(ωj ,τi), and

that the events occuring before SO(ωj ,τi) should be any event

from τi’s higher-priority tasks.

The duration of tasks allocated to one resource model is

specified by the formula

�≤h

∧
τi∈T RE(ωj ,τi) �

∫ pi
∨

τk∈γ(τi)
ωj

evs+(ωj , τk) ≤ ei.

(3)

Notice that the ≤ operator should be changed to ≥ in order

to specify the absolute WCET of the task set only in case of

interest.

We also specify other properties such as the precedence of

the event SO(ωj ,τi) (i.e., each event ST(ωj ,τi) may be followed

by an event SO(ωj ,τi), but the event SO(ωj ,τi) occurs since

ST(ωj ,τi) occurs). The precedence of the event SO(ωj ,τi) is

specified by the formula

�≤h

∧
τi∈T SO(ωj ,τi) �

(
es(ωj , τi) S≤pi ST(ωj ,τi)

)
, (4)

where

es(ωj , τi) �
(∨

τk∈γ
(τi−1)
ωj

evs+(ωj , τk)

)
∨ evs∗(ωj , τi).

The complete encoding of the component is given by the

conjunction of the formulas 1, 2, 3 and 4. For the remaining

part of the paper, we define it by PRM(ωj), where ωj is

indexed according to certain workload parameters, allowing

us to unroll the sub-formulas in the correct way. This partially

concludes the formalization of the periodic resource model’s

behavior using RMTL-
∫

.

Nevertheless, for the sake of having a decision procedure

for schedulability checking, we have to introduce the following

proposition.

Proposition 1 (Schedulability). Let ω1 be a resource model.
The resource model ω1 is schedulable if and only if there exists
a timed sequence such that PRM(ω1) is satisfiable.

Compared to classic scheduling analysis, it is clear that our

approach is more flexible to extend different time constraints

and scheduling policies. In fact, this is a constructive approach

that avoids reformulating every step of the analysis from the

beginning. Most of the available scheduling analyses do not

have this feature, since they do not use constraint programming

approaches such as the one presented in this paper. In addition,

the notion of scheduler synthesis is not addressed either. Here,

we have a schedulability test and a mechanism to generate

schedulers.

V. EVALUATION

Currently, in strict terms, it is not possible to devise a fair

evaluation comparison for our approach since there are no

available tools that consider duration terms in the way we

consider in this work. In order to provide some insight about

the feasibility of our technique, we have measured the times

taken by the Z3 SMT solver to prove satisfiability of a set

of specifications, as shown in Table I. We have considered

different structures for the presented formulae. The goal is to

show indicators of the feasibility of the approach on sets of

formulae with heterogeneous structural schemes, as we would

expect to occur in real-life, hard real-time applications. Note

that b and b′ are sampled in increments of 5 units starting at

5 up to 45, and black cells mean timeout (more than 150s).

More complex examples can be seen in the tool’s repository.

To demonstrate in practice the schedulability analysis of re-

source models, a synthetic workload is described. Consider as

example the workload composed by one component (60, 50),
meaning that it executes at each hyper period of the three

tasks with parameter pairs (20, 9), (15, 8) and (10, 3), and sets

50/60 time units available for executing. The first element of

the tuple is the period and the second the WCET. In order to

describe it succinctly, let us assume micro expressions defined

by

tk ::= tsk
(p,e)
id | tk0 � tk1 | tk0 �� tk1

exp ::= id [tk](ω,π) | exp1 ‖ exp2.
Remember that p, e are the period and the WCET, and ω, π
are the budget and the period of the resource model. The

expression describing the example is

server0

[(
tsk

(20,9)
ts1 � tsk

(15,8)
ts2

)
�� tsk

(10,3)
ts3

]
(60,50)

, (5)

where it specifies that ts1 executes with higher priority than

ts2, and ts3 runs arbitrarily with ts1 and ts2. To be able to

show a compact table describing the translation, we will only

adopt three events per task: RE (task job release), RU (task job

running; start + resume) and SO (task job end; sleep + stop);

and the event RN for resource budget release. The Equation 5

is translated into a set of RMTL-
∫

formulas as described in

Table II.

To better understand the micro expressions, we have the

Examples 2 and 3. Note that the way micro expressions are

exemplified follows the presentation of the Section IV where

periodic resource models have first been introduced.

Example 2. Take as an example the expression tsk(20,9)ts1 . We
define the meaning of the expression tsk(20,9)ts1 , making use of
the always operator, by the formula

RE(τ1) ∧ �<h RE(τ1) →
(
�=p RE(τ1)

)
�(

ST(τ1) ∨ RS(τ1) ∨ SL(τ1) U<p SO(τ1)

)
∧∫ p

ST(τ1) ∨ RS(τ1) ∨ SL(τ1) ∨ SO(τ1) < e,

where h is the upper bound or hyper period, equal to 60,
and p = 20, e = 9 is the task period and WCET. The whole
expression means the starting point of the execution of a task
ts1 that was represented by τ1.

Example 3. Consider now the priority expression tsk(20,9)ts1 �
tsk

(15,8)
ts2 , and the shorthands τ1 for task ts1 and τ2 for ts2.

54

ID Formula Sat? 5 10 Performance 45

(a) p ∧ �<b p → �=2 p �

(b) (p ∨ q) U<b r �

(c)
∫ b p < 3 �

(d) (p U<b q) ∧ ∫ 9 q < 2 �

(e) (p U<b q) ∧ 10 <
∫ 9 q unsat

(f) �<b p ∧ �<b′¬p unsat

(g) �<b′ (a ∨ b) U<b r �

Table I
HEAT MAPS FOR PERFORMANCE COMPARISON USING THE RMTLD3SYNTH

TOOL FOR SYNTHESIZATION AND THE Z3 SOLVER FOR CHECKING

SATISFIABILITY (< 1S, = 100S, AND > 150S)

We get Φ′′ equal to(
RE(τ2) �

(
ST(τ2) ∨ RS(τ2) ∨ SL(τ2) ∨ Fl(φ′′′) U<15 SO(τ2)

))
∧(

RE(τ2) �
∫ 15

ST(τ2) ∨ SL(τ2) ∨ RS(τ2) ∨ SO(τ2) = 8
)

∧ Φ′′′,

where Φ′′′ is equal to(
RE(τ1) �

(
ST(τ1) ∨ RS(τ1) ∨ SL(τ1) U<20 SO(τ1)

))
∧(

RE(τ1) �
∫ 20

ST(τ1) ∨ SL(τ1) ∨ RS(τ1) ∨ SO(τ1) = 9
)

∧ Φ,

and the filter function Fl(Φ′′′) returns the formula
RE(τ1)∨ST(τ1)∨RS(τ1)∨SL(τ1)∨SO(τ1).

Thus, the final expression is(
RE(τ1)U<2 RE(τ2)

)
∧

�<h

(
RE(τ1) →

(
�=20 RE(τ1)

))
∧
(
RE(τ2) →

(
�=15 RE(τ2)

))
∧ Φ′′,

and Φ is assumed initially as true. Note that the filter
symbol Fl just filter propositions according to the occurrence
in certain tasks. The remaining operators can be seen in
Table II.

As a final remark, we are making a counter-intuitive as-

signment on tasks ts1 and ts2, since the priority under rate

monotonic is governed by the lower period tasks which have

the highest priority. And so our approach does not just focus

on the rate monotonic but also on any possible assignment of

tasks. For the whole experiments, the utilized setup has been

an Intel Core i5-8365U CPU @ 1.60GHz with 16 GB of RAM

memory, and running Fedora 31 X86’64.

VI. RELATED WORK

Although this work has, to our knowledge, been the first

one to use modern SMT solvers for schedulability analysis of

periodic resource models, it is far from being the first work

combining formal specifications with schedulability analysis.

In comparison with [8], a preliminary analysis, this paper

describes all the details, intuition and ideas that were not

described in the short version along with a use case.

a) Schedulability analysis based on deductive reasoning:
Using temporal logics we have the works [36], [35], [32].

However, some of the works involving temporal logics make

use of very creative steps using pen-and-paper proofs as the

case of [36]. These attempts for formalizing real-time theory

are error-prone and so they clearly point out that succinct

and elegant formalisms for schedulability analysis of real-time

systems are required. A formalization in Coq [5] proof assis-

tant of an interval temporal logic known as duration calculus

has been proposed by [35]. Along the lines of the previous

ideas, Prosa [7] gives initial steps towards the construction

of a modular theory to reason about schedulability analysis in

Coq. Other works proposed by Wilding [34] have successfully

replicated the informal optimality proofs for earliest-deadline-

first scheduling policy.
b) Schedulability analysis based on automata reachabil-

ity analysis: An earlier work for schedulability analysis of pre-

emptive and non-preemptive scheduling using model checking

has been proposed by Ferman and colleagues [16]. They have

encoded the schedulability analysis problem as reachability

analysis over a decidable class of timed automata including

subtraction. The reachability problem for task automata, which

are an extended timed automata with asynchronous processes,

is undecidable as shown by Krčál and Yi [25]. The undecid-

ability results were reached by considering that the execution

time of the tasks are intervals (i.e., nonconstant execution time)

and the completion time of a task influences the new task

releases (e.g., as in dependent task models [29]). Some years

later Fersman and colleagues [15], [14] have concluded that

the schedulability problem can be solved more efficiently over

the assumption that tasks are periodic and execute over a fixed

priority policy. Regarding the multi-core scheduling, Krčál and

colleagues [24] describe that the schedulability checking for

multi-core systems with preemption is in general undecidable

using task automata. In general, although undecidable, there is

a wide class of real-time systems that can be specified using

the decidable fragment.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have described a synthesis procedure

translating the satisfiability problem for RMTL-
∫

into the

SAT instance modulo the theory of arrays, uninterpreted

functions with equality and non-linear real-arithmetic. Using

appropriate SMT solvers, the latter can then be used to

check the satisfiability of the underlying formula. Recall that

RMTL-
∫

is a dense real-time version of MTL extended by a

duration operator allowing to obtain quantitative measure for

the satisfiability of formulas.

Other optimization techniques for synthesis of RMTL-
∫

into modern SMT problems may be worth exploring. An

example is the extension of the synthesis algorithm for

continuous-based semantics without assuming intervals, and

the consequent repetition of unbounded symbols.

Moreover, we have described an alternative approach to

schedulability analysis following a formal specification of the

components of the scheduling hierarchy using micro expres-

sions. Using a translation to RMTL-
∫

and its transformation

into the SMTLIBv2 language for which we have used the

Z3 solver, we obtained valid schedules. Our plan in terms of

future work is to improve on the developments done so far

and on the kind of system we target, in order to understand

how the proposal scales for systems with characteristics even

closer to those that are used in industry. The theory of strings

(word equations) could also be adopted to solve the multi-

core scheduling problem, instead of the array theory. However,

it remains to be seen whether this can be better to explore

interleaving of symbols. Finally, in the context of classic

schedulability analysis, hybrid approaches can be adopted to

treat global scheduling for multi-core systems.

55

propfm � RU(c0,τ1)∨SO(c0,τ1)∨RU(c0,τ2)∨SO(c0,τ2)∨RU(c0,τ3)∨SO(c0,τ3)

init � RN(c0) U<2 (RE(c0,τ1) U<2 (RE(c0,τ2) U<2 RE(c0,τ3)))

�<60 RN(c0)→
(

�=60 RN(ω)

)
∧∫ 60 propfm<50

�<60 RE(c0,τ1)→
(

�=20 RE(c0,τ1)

)
∧
(
RE(c0,τ1) U<2

(
RU(c0,τ1)∨RU(c0,τ3)∨SO(c0,τ3) U≤20 SO(c0,τ1)

))

�<60 RE(c0,τ2)→
(

�=15 RE(c0,τ2)

)
∧
(
RE(c0,τ2) U<2

(
RU(c0,τ2)∨RU(c0,τ1)∨SO(c0,τ1)∨RU(c0,τ3)∨SO(c0,τ3) U≤15 SO(c0,τ2)

))

�<60 RE(c0,τ3)→
(

�=10 RE(c0,τ3)

)
∧
(
RE(c0,τ3) U<2

(
RU(c0,τ3)∨RU(c0,τ2)∨RU(c0,τ1)∨SO(c0,τ1)∨SO(c0,τ2) U≤10 SO(c0,τ3)

))

�<60 RE(c0,τ1)→∫ 20 RU(c0,τ1)∨SO(c0,τ1)=9

�<60 RE(c0,τ2)→∫ 15 RU(c0,τ2)∨SO(c0,τ2)=8 ∧ �<60 RE(c0,τ3)→∫ 10 RU(c0,τ3)∨SO(c0,τ3)=3 ∧ init

Table II
COMPLETE EXPANSION OF THE EQUATION 5 WHERE c0 MEANS server0

ACKNOWLEDGMENT

This work was partially supported by BMVI project

IHATEC / SecurePort; by National Funds through FCT/M-

CTES (Portuguese Foundation for Science and Technology),

within the CISTER Research Unit (UID/CEC/04234) and the

INESC TEC (UIDB/50014/2020); also by the Norte Portugal

Regional Operational Programme (NORTE 2020) under the

Portugal 2020 Partnership Agreement, through the European

Regional Development Fund (ERDF) and also by national

funds through the FCT, within project NORTE-01-0145-

FEDER-028550 (REASSURE).

REFERENCES

[1] R. Alur and T. A. Henzinger. Back to the future: towards a theory of
timed regular languages. SFCS ’92, pages 177–186, Washington, DC,
USA, 1992. IEEE Computer Society.

[2] R. Alur and T.A. Henzinger. Real-time logics. Inf. Comput., 104(1):35–
77, May 1993.

[3] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings.
Fixed priority pre-emptive scheduling: an historical perspective. Real-
Time Syst., 8(2-3):173–198, March 1995.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version
2.5. Technical report, 2015. Available at www.SMT-LIB.org.

[5] Y. Bertot and P. Castran. Interactive Theorem Proving and Program De-
velopment: Coq’Art The Calculus of Inductive Constructions. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[6] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of tptl
and mtl. Inf. Comput., 208(2):97–116, 2010.

[7] F. Cerqueira, F. Stutz, and B. B. Brandenburg. PROSA: A case for
readable mechanized schedulability analysis. In ECRTS 2016, Toulouse,
France, pages 273–284, 2016.

[8] A. De Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto. Smt-
based schedulability analysis using rmtl-

∫
. SIGBED Review, 14(3):40–

42, 2017.
[9] A. De Matos Pedro, J. S. Pinto, D. Pereira, and L. M. Pinho. Runtime

verification of autopilot systems using a fragment of MTL-
∫

. Int. J.
Softw. Tools Technol. Transf., Aug 2018.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS’08/ETAPS’08, pages 337–340, 2008.

[11] L. De Moura and N. Bjørner. Satisfiability modulo theories: Introduction
and applications. Commun. ACM, 54(9):69–77, September 2011.

[12] B. Dutertre. Yices2.2. In CAV’14, pages 737–744, New York, NY, USA,
2014. Springer-Verlag New York, Inc.

[13] E. Allen Emerson. Handbook of theoretical computer science (vol.
b). chapter Temporal and Modal Logic, pages 995–1072. MIT Press,
Cambridge, MA, USA, 1990.

[14] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedu-
lability, decidability and undecidability. Information and Computation,
205(8):1149–1172, August 2007.

[15] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability
analysis of fixed-priority systems using timed automata. Theor. Comput.
Sci., 354(2):301–317, March 2006.

[16] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asyn-
chronous processes: Schedulability and decidability. In TACAS ’02,
pages 67–82, London, UK, 2002. Springer-Verlag.

[17] C. J. Fidge. Real-time schedulability tests for preemptive multitasking.
Real-Time Syst., 14(1):61–93, January 1998.

[18] C.A. Furia and M. Rossi. On the expressiveness of MTL variants over
dense time. FORMATS’07, pages 163–178, Berlin, Heidelberg, 2007.
Springer-Verlag.

[19] R.A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock.
Graduate studies in mathematics. American Mathematical Soc., 1994.

[20] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and
Combinators: An Introduction. Cambridge University Press, New York,
NY, USA, 2 edition, 2008.

[21] Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and
complexity. Fundam. Inf., 62(1):1–28, January 2004.

[22] D. Hughes-Hallett. Calculus: Single Variable, 7e. Wiley, 2017.
[23] D. Jovanović and L. de Moura. Solving non-linear arithmetic. In

IJCAR’12, pages 339–354, Berlin, Heidelberg, 2012. Springer-Verlag.
[24] P. Krcal, M. Stigge, and W. Yi. Multi-processor schedulability analysis

of preemptive real-time tasks with variable execution times. In FOR-
MATS’07, pages 274–289, Berlin, Heidelberg, 2007. Springer-Verlag.

[25] P. Krčál and W. Yi. Decidable and undecidable problems in schedula-
bility analysis using timed automata. In TACAS’04, Barcelona, Spain.,
pages 236–250. Springer-Verlag, 2004.

[26] Y. Lakhneche and J. Hooman. Metric temporal logic with durations.
Theor. Comput. Sci., 138(1):169–199, February 1995.

[27] Christopher League. Lambda calculi: A guide for computer scientists
by chris hankin. SIGACT News, 31(1):8–13, March 2000.

[28] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77,
pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[29] W. Puffitsch, E. Noulard, and C. Pagetti. Off-line mapping of multi-rate
dependent task sets to many-core platforms. Real-Time Syst., 51(5):526–
565, September 2015.

[30] P. Roux, M. Iguernlala, and S. Conchon. A non-linear arithmetic
procedure for control-command software verification. In TACAS’18,
pages 132–151. Springer International Publishing, 2018.

[31] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. RTSS ’03, pages 2–, Washington, DC, USA, 2003. IEEE
Computer Society.

[32] D. Shuzhen, X. Qiwen, and Z. Naijun. A formal proof of the rate
monotonic scheduler. RTCSA ’99, pages 500–, Washington, DC, USA,
1999. IEEE Computer Society.

[33] D. Souza and P. Prabhakar. On the expressiveness of mtl in the pointwise
and continuous semantics. Int. J. Softw. Tools Technol. Transf., 9(1):1–4,
February 2007.

[34] M. Wilding. A machine-checked proof of the optimality of a real-time
scheduling policy, pages 369–378. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998.

[35] Q. Xu and N. Zhan. Formalising scheduling theories in duration
calculus. Nordic J. of Computing, 14(3):173–201, September 2008.

[36] N. Zhang, Z. Duan, C. Tian, and D. Du. A formal proof of the
deadline driven scheduler in PPTL axiomatic system. Theor. Comput.
Sci., 554(C):229–253, October 2014.

[37] C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to
Real-Time Systems. Springer Publishing Company, 2010.

56

