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Abstract: We consider a comparison between the Kaplan-Meier and the semi-
parametric estimators for a censorship models. The observations are assumed
to be generated under a semi-parametric random censorship, this mean that a
random censorship model where de conditional expectation of censoring indica-
tor given the observations belongs to a parametric family. The semi-parametric
estimator of the survival function was defined in de Uña-Alvarez and Amorim
(2011). An asymptotic representation of a general empirical integral as a sum
of independent and identically distributed (i.i.d.) random variables under the
proposed model was obtained in Amorim (2012). The performance of the corre-
sponding asymptotic confidence intervals (a.c.i.) relative to that of a nonparamet-
ric method, de Uña-Alvarez and Meira-Machado (2008), is investigated through
simulations Dikta et al. (2005).
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1 Introduction

Let (T1, T2) be a pair of gap times of successive events, which are observed
subject to random right-censoring. Let C be the right-censoring variable,
assumed to be independent of (T1, T2), and let Y = T1 + T2 be the total

time. Due to censoring, rather than (T1, T2) we observe
(
T̃1, T̃2,∆1,∆2

)
,

where T̃1 = T1 ∧ C, ∆1 = I(T1 ≤ C) and T̃2 = T2 ∧ C2, ∆2 = I(T2 ≤ C2),
where C2 = (C − T1) I (T1 ≤ C) is the censoring variable for the second
gap time. When ∆2 = 1 then ∆1 = 1. Hence, ∆2 = ∆1∆2 = I (Y ≤ C) is

the censoring indicator pertaining to the total time. We put Ỹ = Y ∧ C.
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Let
(
T̃1i, T̃2i,∆1i,∆2i

)
, 1 ≤ i ≤ n, be iid data with the same distribu-

tion as
(
T̃1, T̃2,∆1,∆2

)
. The censoring time C is assumed to be inde-

pendent of the pair (T1, T2). The marginal distribution of the first gap
time T1 may be consistently estimated by the Kaplan-Meier estimator

based on the
(
T̃1i,∆1i

)
’s. Similarly, the distribution of the total time

may be consistently estimated by the Kaplan-Meier estimator based on

the
(
T̃1i + T̃2i,∆2i

)
’s. However, T2 and C2 will be in general dependent

(because the expected correlation between the gap times), and hence the
estimation of the marginal distribution of the second gap time is not such a
simple issue. Also, it is not clear in principle how the bivariate distribution
function F12(x, y) = P (T1 ≤ x, T2 ≤ y) can be efficiently estimated. This
issue was investigated, among others, by Lin et al. (1999), Schaubel and
Cai (2004), or de Uña-Alvarez and Meira-Machado (2008).

2 Estimation of bivariate distribution function

De Uña-Alvarez and Amorim (2011) proposed a semiparametric estimator
for the bivariate distribution function of the gap times, F12(x, y) by pres-
moothing the estimator of de Uña-Alvarez and Meira-Machado (2008). The
probability of censoring for T2 given the (possibly censored) gap times be-
longs to a parametric family of binary regression curves; m(x, y) = P (∆2 =

1|T̃1 = x, Ỹ = y), where m(x, y) follows some parametric model, m(·, ·;β),
and the parametric model for m is estimated from the observable data.
The censoring indicators ∆2i’s is replaced by the fitted values of m. Some
notations must be considered: Ỹi = T̃1i + T̃2i be the i−th recorded to-
tal time; the ordered Ỹ−statistics Ỹ1:n ≤ Ỹ2:n ≤ . . . ≤ Ỹn:n; and the
(T̃[1i:n], T̃[2i:n],∆[1i:n],∆[2i:n]) the i−th concomitant, i.e. the information

attached to Ỹi:n.
Let Wi be the Kaplan-Meier weight attached to Ỹi:n

Wi =
∆[2i:n]

n− i+ 1

i−1∏
j=1

[
1−

∆[2j:n]

n− j + 1

]
.

The estimator in de Uña-Alvarez and Meira-Machado (2008) is:

F̂12(x, y) =

n∑
i=1

WiI(T̃[1i:n] ≤ x, T̃[2i:n] ≤ y)

and the

lim
n→∞

F̂12(x, y) = P (T1 ≤ x, T2 ≤ y, T1 + T2 ≤ τH) ≡ F 0
12(x, y)
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where τH is the upper bound of the support of the distribution function H
of Ỹ .
Parametrical presmoothed Kaplan-Meier weights are defined as

Wi(βn) =
m(T̃[1i:n], Ỹi:n;βn)

n− i+ 1

i−1∏
j=1

[
1−

m(T̃[1j:n], Ỹj:n;βn)

n− j + 1

]
and

F̂ sp12 (x, y) =

n∑
i=1

Wi(βn)I(T̃[1i:n] ≤ x, T̃[2i:n] ≤ y)

where βn is the maximizer of the conditional likelihood

L1(β) =
∏

∆1i=1

m
(
T̃1i, Ỹi;β

)∆2i
[
1−m

(
T̃1i, Ỹi;β

)]1−∆2i

,

By noting S (ϕ) =
∫
ϕdF12, we introduce the following estimator of this

expectation:

Sn (ϕ) =

∫
ϕdF̂ sp12 =

n∑
i=1

Wi(βn)ϕ(T̃[1i:n], T̃[2i:n]).

The F̂ sp12 (x, y) is obtained when ϕ (u, v) = I (u ≤ x, v ≤ y).
The asymptotic representation of Sn(ϕ) as a sum of i.i.d. random variables
is in Amorim (2011). The result is similar to those obtained by Stute (1995)
for Kaplan-Meier integrals and Dikta (2005) for presmoothed Kaplan-Meier
integrals. From the i.i.d. representation and the Central Theorem Limit, the
asymptotic normality of Sn (ϕ) is obtained by adaptation of Dikta (2005)
to the bivariate setting.

3 Simulation Study

We consider the simple bootstrap as the method to approximate the distri-
bution of the F̂ sp12 and F̂12 in finite samples. In our simulations below, 95%
confidence intervals are calculated by the mean and the standard devia-
tion of values obtained in simulations for both estimators. The simulated
scenario is the same as that described in Lin et al. (1999) and de Uña-
Alvarez and Meira-Machado (2008). To be precise, the gap times (T1, T2)
were generated according to the bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

where the marginal distribution functions F1 and F2 are exponential with
rate parameter 1. The single parameter θ controls the amount of depen-
dency between the gap times. θ = 0 for simulating independent gap times;
θ = 1 corresponding to 0.25 correlation between T1 and T2. An independent
uniform censoring time C was generated, according to models:
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• Unif[0, 4] (about 24% and 47% of censoring on T1 and of censoring
on T2);

• Unif[0, 3] (about 32% and 57% of censoring on T1 and of censoring
on T2);

Sample sizes of n=50, n=100 and n=200 were considered. The number
of bootstrap resamples was taken to be B=100. We performed M=1,000
trials for each situations. Results of coverage and 95% confidence intervals
are displayed in Table 1 and Table 2. Four different points, of pairs (x, y)
corresponding to the four different combinations of the percentiles 20%
and 80% of the marginal distributions of the gap times are considered. We
calculate both estimators F̂ sp12 (x, y) and F̂ km12 (x, y) along the 1,000 trials.
For x < y

m(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y) =
1

1 + η(x, y)
,

where

η(x, y) =
λG(y)

λ2|1(y − x|x)
,

where λG(.) and λ2|1(.|x) stand for the hazard rate functions of C and T2

given T1 = x, respectively.
λG(y) = 1/(τG − y) when C ∼ U [0, τG] and that λ2|1(.|x) is given by

λ2|1(y − x|x) =
2 + 4 exp(−y)− 2 exp(−x)− 2 exp(−y + x)

2 + 2 exp(−y)− 2 exp(−x)− exp(−y + x)
if θ = 1,

being 1 when θ = 0. We obtained a correctly specified model through a
preliminary transformation η(T1, Y ) of the data (with β = 1),

m(x, y) =
1

1 + exp{β ln η(x, y)}
.

4 Conclusion

A semiparametric estimator F̂ sp12 (x, y) of the bivariate distribution function
of gap times which are observed under censoring has been revisited. The
semiparametric estimator is based on a parametric specification (e.g. lo-
gistic) of the conditional probability of censoring for the second gap time
T2, given the available information. The performance of the semiparamet-
ric estimator is evaluated in a simulation plan with different proportions of
censoring. It can be seen that the coverages provided by the semiparametric
estimator as well for its competitor estimator are above the nominal 95%,
although this problem is somehow mitigated with an increasing sample size.
In general, the coverages of the semiparametric estimator outperforms its
competitor and the magnitude of the average intervals based on the semi-
parametric are smaller. As expected, in both estimators, the magnitude of
the average intervals deceases as the sample size increase.



Amorim and Moreira 5

TABLE 1. Simulation study of 95% a.c.i. for F12(x, y) along 1,000 simulated samples,

case θ = 0. From top to bottom: (x, y) =
(
F−1

1 (0.2), F−1
2 (0.2)

)
,
(
F−1

1 (0.8), F−1
2 (0.2)

)
,(

F−1
1 (0.2), F−1

2 (0.8)
)

, and
(
F−1

1 (0.8), F−1
2 (0.8)

)
.

C U [0, 3]

n 50 50 100 100 200 200

Average Length Coverage Average Length Coverage Average Length Coverage

m(.; β) 0.09395 0.882 0.05684 0.920 0.04920 0.926
KM 0.09925 0.845 0.06325 0.910 0.05500 0.919
m(.; β) 0.21635 0.925 0.12251 0.940 0.10484 0.934
KM 0.23448 0.922 0.13750 0.926 0.11822 0.930
m(.; β) 0.21301 0.900 0.12284 0.934 0.10570 0.932
KM 0.23163 0.892 0.13774 0.930 0.11894 0.931
m(.; β) 0.38512 0.936 0.22337 0.950 0.19179 0.948
KM 0.41482 0.927 0.25460 0.942 0.21988 0.939

C U [0, 4]

n 50 50 100 100 200 200

Average Length Coverage Average Length Coverage Average Length Coverage

m(.; β) 0.09328 0.883 0.07015 0.900 0.05010 0.931
KM 0.09835 0.850 0.07692 0.899 0.05513 0.929
m(.; β) 0.20783 0.920 0.14565 0.930 0.10315 0.944
KM 0.22327 0.926 0.15862 0.934 0.11314 0.946
m(.; β) 0.20616 0.903 0.14561 0.924 0.10304 0.947
KM 0.22093 0.903 0.15870 0.919 0.11295 0.948
m(.; β) 0.33135 0.941 0.23198 0.944 0.16251 0.950
KM 0.35410 0.938 0.25030 0.943 0.17647 0.934
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case θ = 1. From top to bottom: (x, y) =
(
F−1
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2 (0.2)

)
,
(
F−1

1 (0.8), F−1
2 (0.2)

)
,(

F−1
1 (0.2), F−1

2 (0.8)
)

, and
(
F−1

1 (0.8), F−1
2 (0.8)

)
.
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