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1. Introduction

L.A. Bunimovich and B.Z. Webb developed a theory for isospectral graph reduction
in finite dimensional graphs (see [2, 1, 3]). This procedure maintains the spectrum of
the graph’s adjacency matrix up to a set of eigenvalues known beforehand from its graph
structure. More precisely, the authors introduce a concept of transformation of a graph
(either by reduction or expansion) that can be used to simplify the structure of a graph
while preserving the eigenvalues of the graph’s adjacency matrix. In order to not contra-
dict the fundamental theorem of algebra, isospectral graph transformations preserve the
spectrum of the graph (in particular the number of eigenvalues) by permitting edges to
be weighted by functions of a spectral parameter λ (see [2, Theorem 3.5.]). Thus such
transformations allow one to modify the topology of a network (changing the interactions,
reducing or increasing the number of nodes), while maintaining properties related to the
network’s dynamics.

More recently, in [4], we have proven that isospectral graph reductions also preserve
the eigenvectors associated with the eigenvalues of the graph’s weighted adjacency matrix.
We explain how the isospectral reduction procedure can be used to efficiently update the
eigenvector of a large sparse matrix when only a small number of its entries is modified.
As an application we propose an updating algorithm for the maximal eigenvector of the
Markov matrix associated to a large sparse dynamical network.
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Because our spectral approach to isospectral graph reduction theory is based on eigen-
vectors, instead of eigenvalues, it was a natural question to ask about possible generaliza-
tions of this theory to infinite dimensions.

We believe there are many possible such extensions to infinite dimensional models. In
this work we develop a couple of abstract settings where such generalizations hold.

The theory applies to a class of bounded linear operators acting on spaces of L1-
integrable functions. The operators considered are written as a sum of a diagonal plus
a Markov operator. A key concept in Bunimovich-Webb’s isospectral theory is that of a
structural set. In this work we give three different concepts of structural sets (see Defi-
nitions 3.4, 3.5 and 3.6) and for each of them prove a corresponding isospectral theorem
(see Theorems 3.12, 3.8 and 3.18).

The theory developed can be used to handle a wide class of examples. An application of
Theorem 3.18 is given to weighted countably infinite graphs with a finite structural set (see
Theorem 4.2). We also propose a numerical algorithm to approximate the eigenfunctions
of such weighted graphs. We conclude the manuscript with a concrete application of the
theory to calculate the stationary measures of a family of infinite Markov chains.

The paper is organized as follows:
In Section 2 we describe the isospectral graph reduction theory and the reduction

statements for finite graphs.
In Section 3 we generalize the isospectral graph reduction theory to infinite dimensional

models.
In Section 4 we apply the infinite dimension isospectral reduction theory, developed in

Section 3, to countably infinite graphs with a finite structural set. We also propose a
numerical algorithm to approximate the eigenfunctions of such graphs.

In Section 5 we present an example where the theory is applied to give a closed formula
for the stationary probability measures of a family of infinite Markov chains.

2. Finite graphs

In this section we describe the isospectral graph reduction theory and the reduction
statements for finite graphs.

Definition 2.1. A finite weighted graph is a pair G = (V,w) where V is a finite set
and w : V × V → C is any function, called the weight function of G. We denote by
A = Aw : CV → CV the operator defined by the weighted adjacency matrix (w(i, j))i,j∈V .

A path γ = (i0, . . . , ip) in the graph G = (V,w) is an ordered sequence of vertices
i0, . . . , ip ∈ V such that w(i`, i`+1) 6= 0 for 0 ≤ ` ≤ p−1. The integer p is called the length
of γ. If the vertices i0, . . . , ip−1 are all distinct the path γ is called simple. If i0 = ip then
γ is called a closed path. A closed path of length 1 is called a loop. Finally, we call cycle
any simple closed path.
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If S ⊆ V we will write Sc = V \ S.

Definition 2.2 (Structural set). Let G = (V,w). A nonempty vertex set S ⊆ V is a
structural set for G if each cycle of G, that is not a loop, contains a vertex in S.

Given a structural set S, we call branch of (G,S) to any simple path β = (i0, i1, . . . , ip−1, ip)
such that i1, . . . , ip−1 ∈ Sc and i0, ip ∈ V . We denote by B = BG,S the set of all branches
of (G,S). Given vertices i, j ∈ V , we denote by Bij the set of all branches in B that start
in i and end in j. Define Σ := {w(i, i) : i ∈ Sc} and let λ ∈ C \ Σ. For each branch
β = (i0, i1, . . . , ip) we define the λ-weight of β as follows:

w(β, λ) := w(i0, i1)

p−1∏
`=1

w(i`, i`+1)

λ− w(i`, i`)
. (2.1)

Given i, j ∈ V set

RS,λ(i, j) :=
∑
β∈Bij

w(β, λ) . (2.2)

The reduced operator RS(λ) : CS → CS is the operator with matrix (RS,λ(i, j))i,j∈S.

In [2] the reduced operator RS is viewed as a matrix indexed in S × S with values in

the field W[λ] of all rational functions f(λ) = p(λ)
q(λ)

, where p(λ) and q(λ) are polynomials.

In their treatment Bunimovich and Webb consider, more generally, weighted adjacency
matrices A with values in the field W[λ] instead of C, so that the reduced matrix RS lives
in the same space of W[λ]-valued matrices. Given a matrix A(λ) ∈W[λ]V×V its spectrum
is defined in [2, Definition 3.1] by sp(A(λ)) = P \ Q where P = {λ ∈ C : p(λ) = 0},
Q = {λ ∈ C : q(λ) = 0} and det(A(λ)− λ I) = p(λ)/q(λ). In the context of the previous
definitions, starting with a complex valued matrix A ∈ CV×V , by [2, Corollary 3] the
spectrum of the reduced operator RS(λ) matches the following definition, which is more
suitable for our infinite dimensional isospectral reduction.

Definition 2.3. We define the spectrum of the family of operators RS(λ), denoted by
sp(RS), to be

sp(RS) := {λ ∈ C \ Σ: det(RS(λ)− λ I) = 0} .

A simplified1 version of Bunimovich-Webb isospectral reduction theorem (see [2, The-
orem 3.5.]) can be stated as follows:

Theorem 1 (Bunimovich-Webb). Given a structural set S for a graph G = (V,w),

sp(A) \ Σ = sp(RS).

1This statement corresponds to [2, Corollary 3] where the adjacency matrix has complex entries.
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We have stated our reduction results in [4, Theorem 1, Proposition 2.1] in terms of
restriction and extension of eigenvectors. The following theorem states that isospectral
graph reduction preserves the eigenvectors associated with the eigenvalues of the graph’s
weighted adjacency matrix.

Theorem 2 ([4, Theorem 1]). Given a graph G = (V,w), let λ0 ∈ C\Σ be an eigenvalue
of A = Aw : CV → CV and u ∈ CV be a corresponding eigenvector, Au = λ0u. Assume
that S is a structural set for G. Then λ0 is also an eigenvalue of RS(λ0) and RS(λ0)uS =
λ0uS, where uS is the restriction of u to S.

To explain how to reconstruct the eigenvectors of A from the eigenvectors of the reduced
matrix RS(λ0) we need the following concept of depth of a vertex i ∈ V .

Definition 2.4. The depth of a vertex i ∈ V is defined recursively as follows.

(1) A vertex i ∈ S has depth 0.
(2) A vertex i ∈ Sc has depth n iff i has no depth less than n, and w(i, j) 6= 0 implies

j has depth < n, for all j ∈ V .

We denote by Sn the set of all vertices of depth ≤ n. Because S is a structural set,
every vertex i has a finite depth.

If λ0 ∈ C\Σ is an eigenvalue of A, by Theorem 2 it is also an eigenvalue of the reduced
matrix RS(λ0). Knowing the eigenvector uS of this reduced matrix, we can recover the
corresponding eigenvector of A as follows:

Proposition 2.1 ([4, Proposition 2.1]). If λ0 ∈ C \ Σ is an eigenvalue of A and
uS = (uSi )i∈S is an eigenvector of the reduced matrix RS(λ0) then the following recur-
sive relations 

ui = uSi for i ∈ S0 = S

u` =
∑

j∈Sn−1

w(`, j)

λ0 − w(`, `)
uj for all ` ∈ Sn \ Sn−1

(2.3)

uniquely determine an eigenvector u of A associated with λ0.

Denote by ΠS : CV → CS the S-restriction projection, and let ΦS : C\Σ→ MatV×S(C)
be the function that to each λ ∈ C\Σ associates the reconstruction operator ΦS(λ) : CS →
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CV where u = ΦS(λ)v is recursively defined by
ui = vi for i ∈ S0 = S

u` =
∑

j∈Sn−1

w(`, j)

λ− w(`, `)
uj for all ` ∈ Sn \ Sn−1

. (2.4)

These maps are inverse of each other in the sense that ΠS ◦ΦS(λ) = idCS for all λ ∈ C\Σ.
Finally notice that the reconstruction operator ΦS(λ) is analytic in λ ∈ C \ Σ.

The aim of this paper is to extend the reduction statements in Theorem 1, Theorem 2
and Proposition 2.1 to infinite dimensional models.

3. Infinite dimensional models

In this section we generalize the isospectral graph reduction theory to a class of bounded
operators acting on L1-spaces, i.e., Banach spaces of integrable functions.

Our infinite dimensional models will be defined by data tuples (V,F, µ,K, d, S) where
(V,F, µ) is a measure space, with µ being a positive σ-finite measure on V , K is a
complex kernel on V , d : V → C is a bounded measurable function and S ⊆ V is a
subset satisfying appropriate assumptions, referred to in the sequel as a structural set.
A bounded operator A : L1(V, µ) → L1(V, µ) is defined by the data (V,F, µ,K, d) while
the structural set S ⊆ V determines a reduced operator RS : L1(S) → L1(S) which will
encapsulate the spectral behavior of A.

Let L1(V ) = L1(V, µ) denote the Banach space of complex µ-integrable functions with
the usual L1 norm

‖f‖1 :=

∫
V

|f | dµ.

Sometimes we will write ‖f‖L1(V ) instead of ‖f‖1 to emphasize the domain of f . Also,
let L∞(V ) denote the commutative Banach algebra of complex bounded F-measurable
functions with the usual sup norm

‖f‖∞ := sup
x∈V

∣∣f(x)
∣∣.

Finally, let L1,∞(V × V, µ) be the space of measurable functions f : V × V → C such
that

‖f‖1,∞ := sup
y∈V

∫
V

∣∣f(x, y)
∣∣µ(dx) < +∞.

The functional f 7→ ‖f‖1,∞ is a seminorm. With it, the quotient of L1,∞(V ×V, µ) by the
subspace of measurable functions f : V ×V → C such that f(x, y) = 0 for µ-almost every
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x ∈ V and for all y ∈ V becomes a Banach space. As usual we identify L1,∞(V × V, µ)
with this quotient space and consider ‖·‖1,∞ to be a norm.

Definition 3.1. A kernel on V is any function K : V × F → C such that

(1) the function B 7→ K(x,B), from F to C, is a complex measure for any x ∈ V ;
(2) the function x 7→ K(x,B), from V to C, is F-measurable for any B ∈ F.

In particular a kernel K determines a function K : V → M(V,C) that to each x ∈
V associates the measure Kx. The notation M(V,C) stands for the space of complex
measures on (V,F). We use the following notation for the integral of an F-measurable
function f : V → C w.r.t. Kx ∫

V

f dKx =

∫
V

f(y)K(x, dy).

We also define the positive kernel |K| : V × F → [0,+∞]

|K|(x,B) =
∣∣Kx

∣∣(B),

where
∣∣Kx

∣∣(B) stands for the total variation of Kx on B.

Definition 3.2. We say that a kernel K has no diagonal part on a set B ∈ F when for
all z ∈ B, K(z, {z}) = 0.

Definition 3.3. We say that a kernel K is (1,∞)-bounded when there exists a function
h ∈ L1,∞(V × V, µ) such that for all x ∈ V and B ∈ F,

K(x,B) =

∫
B

h(x, y)µ(dy).

The density function h : V × V → C of the kernel K will be denoted by dK/dµ. We
topologize the space of (1,∞)-bounded kernels on V with the distance associated with
the (1,∞)-norm of its density function

‖K‖ :=

∥∥∥∥dKdµ
∥∥∥∥

1,∞
. (3.1)

Given a (1,∞)-bounded kernel K and a measurable function d ∈ L∞(V ), consider the
operator A = Ad,K : L1(V )→ L1(V ),

(Af)(x) := d(x)f(x) +

∫
V

f(y)K(x, dy) . (3.2)
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When d ≡ 0, kernel K determines an operator Q = QK : L1(V )→ L1(V ),

(Qf)(x) :=

∫
V

f(y)K(x, dy) , (3.3)

that we will refer to as the Markov operator of K.

Given a Banach space (B, ‖.‖), we denote by L(B) the Banach algebra of bounded
linear operators on B. Given Q ∈ L(B), the operator norm of Q is defined by ‖Q‖ :=
sup‖f‖=1‖Qf‖. The following proposition is a simple observation.

Proposition 3.1. If K is (1,∞)-bounded and d ∈ L∞(V ) then Ad,K ∈ L(L1(V )). More-
over, Ad,K has operator norm

‖Ad,K‖ ≤ ‖d‖∞ + ‖K‖.
In particular also QK ∈ L(L1(V )).

Throughout the rest of this section we assume that

(A1) K is a (1,∞)-bounded kernel on V ;
(A2) d ∈ L∞(V ).

Given S ⊆ V we will write Σd = Σd(S) := d(V \ S) (where the overline means topolog-
ical closure in C). Consider on the σ-algebra FS := {S∩B : B ∈ F}, the induced measure
µS : FS → [0,+∞] defined by µS(B) := µ(B). We will write L1(S) = L1(S, µS).

Next we introduce the family of reduced operators on L1(S) at a formal level. Given
λ ∈ C \ Σd, we define RS(λ) = RS,d,K(λ) : L1(S)→ L1(S) by

(RS(λ) f)(x) := d(x)f(x) +

∫
S

f(y)RS,λ(x, dy) , (3.4)

where, for B ∈ FS,

RS,λ(x,B) :=
∞∑
n=1

K
(n)
S,λ(x,B) , (3.5)

with K
(1)
S,λ(x,B) := K(x,B) and for n ≥ 2,

K
(n)
S,λ(x,B) :=

∫
Sc

· · ·
∫
Sc

K(x, dz1)K(z1, dz2) · · · K(zn−1, B)∏n−1
p=1 (λ− d(zp))

.

The reduced operator RS(λ) may not be well defined if the series (3.5) fails to converge.
We will now define two concepts of structural set S ⊆ V for which the operators RS(λ)
become well defined.
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Let S ⊆ V . Given x ∈ V , B ∈ F and n ≥ 2 define the S-taboo measure

τS,n(x,B) = τS,n,K(x,B) :=

∫
Sc

· · ·
∫
Sc

K(x, dz1)K(z1, dz2) · · ·K(zn−1, B).

Let us say that a sequence tn > 0 converges to 0 super exponentially when

lim
n→∞

1

n
log tn = −∞.

Definition 3.4 (Structural set of type A). A nonempty set S ⊆ V is called a structural
set of type A for K if and only if there exist a sequence tn converging to 0 super
exponentially and a non-negative function M ∈ L1,∞(V × V, µ) such that∣∣τS,n(x,B)

∣∣ ≤ tn

∫
B

M(x, y)µ(dy)

for all x ∈ V , B ∈ F and n ≥ 2.

We call point-set map on V to any map F : V → P(V ), where P(V ) stands for the
power set of V . We write F : V ⇒ V to express that F is a point-set map on V . We
define recursively the iterates of a point-set map F setting F 0(x) := {x} and for all n ≥ 1
and x ∈ V ,

F n(x) = ∪{F (y) : y ∈ F n−1(x) }.

Definition 3.5 (Structural set of type B). A nonempty set S ⊆ V is called a structural
set of type B for K if and only if there exists a measurable function M : Sc → [0,+∞)
such that defining the point-set map ϕSc : Sc ⇒ Sc,

ϕSc(x) := Sc ∩ supp(Kx)

one has

(1) for all x ∈ Sc, there exists n ∈ N such that (ϕSc)n(x) = ∅,
(2) for all x ∈ Sc and B ∈ F, B ⊆ Sc,∣∣K(x,B)

∣∣ ≤M(x)µ(B) ,

(3) setting nS : Sc → N, nS(x) := min{ k ∈ N : (ϕSc)k(x) = ∅ } then∫
Sc

nS(x)M(x)µ(dx) < +∞ .

Remark 3.1. The concepts of structural sets of type A and B are logically independent.
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Remark 3.2. If (V,K) admits a structural set of type A or B then K has no diagonal
part on Sc. Indeed, for structural sets of type A, notice that if p := |K(z, {z})| > 0 with
z ∈ Sc then |τS,n(z, {z})| ≥ pn for all n ∈ N. More generally, if for some m ≥ 1 one has
p := |Km(z, {z})| > 0 with z ∈ Sc then |τS,nm(z, {z})| ≥ pn for all n ∈ N. This means the
kernel K has no cycles in Sc. For structural sets of type B, it follows from Definition 3.5
(1) that K has no diagonal part on Sc and also no cycles in Sc.

Remark 3.3. If V is finite and S is a structural set of type A or B for K then S is a
structural set in the sense of Definition 2.2.

Definition 3.6 (Structural set of type A quasi-B). A nonempty set S ⊆ V is called a
structural set of type A quasi-B for K if and only if there exists a sequence of (1,∞)-
bounded kernels Kn, n ∈ N, such that

(1) S is a structural set of type A for K;
(2) lim

n→+∞
‖K −Kn‖ = 0;

(3) S is a structural set of type B for Kn, for all n ∈ N.

Proposition 3.2. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A quasi-B for K. Then limn→+∞Ad,Kn = Ad,K in L(L1(V )).

Proof. Let K(x, dy) = h(x, y)µ(dy) and Kn(x, dy) = hn(x, y)µ(dy). Given f ∈ L1(V ) we
have that

‖Ad,Kf −Ad,Knf‖1 =

∫
V

|(Ad,Kf −Ad,Knf)(x)| µ(dx)

=

∫
V

∣∣∣∣∫
V

(K(x, dy)−Kn(x, dy))f(y)

∣∣∣∣ µ(dx)

=

∫
V

∣∣∣∣∫
V

(h(x, y)− hn(x, y)) f(y)µ(dy)

∣∣∣∣ µ(dx)

≤
∫
V

∫
V

|h(x, y)− hn(x, y)| |f(y)| µ(dx)µ(dy)

≤ ‖h− hn‖1,∞ ‖f‖1 = ‖K −Kn‖ ‖f‖1.

By Definition 3.6(2) (of type A quasi-B structural set) we have that ‖K − Kn‖ → 0.
Thus, limn→+∞Ad,Kn = Ad,K in L(L1(V )). �
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3.1. Reduced operator. We shall now prove that for structural sets of type A or type
B, the reduced operators RS(λ) defined by (3.4) are well defined, bounded and, moreover,
that the function RS : C \ Σd → L(L1(S)) is analytic.

Lemma 3.3. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural set

of type A. Given λ ∈ C \ Σd, the kernel series
∑∞

n=1K
(n)
S,λ(x,B) converges absolutely and

uniformly on S × FS. Moreover, the operators RS(λ) defined by (3.4) are bounded.

Proof. For each r > 0, define the open set Ωr := {λ ∈ C : dist(λ,Σd) > r}, so that
C \ Σd = ∪r>0Ωr. Given λ ∈ Ωr and a list of points z̄ = (z1, . . . , zn−1) ∈ (Sc)n−1, the
analytic function

fz̄(λ) :=
1∏n−1

p=1 (λ− d(zp))

is bounded by r−(n−1). Therefore, given x ∈ S and B ∈ FS∣∣K(n)
S,λ(x,B)

∣∣ ≤ ∣∣τS,n(x,B)
∣∣

rn−1
≤ tn
rn−1

∫
B

M(x, y)µ(dy) .

But since the sequence tn ↘ 0 super exponentially, applying d’Alembert’s criterion (ratio
test) we can conclude that

Cr :=
∞∑
n=1

tn
rn−1

< +∞.

From the previous bound on
∣∣K(n)

S,λ(x,B)
∣∣ we infer that for all f ∈ L1(S)∫ ∣∣∫ f(y)K

(n)
S,λ(x, dy)

∣∣µ(dx) ≤ tn
rn−1

‖f‖L1(S) ‖M‖1,∞.

Hence the Markov operator defined by K
(n)
S,λ is in L(L1(S)) with norm bounded by

tn
rn−1 ‖M‖1,∞. A straightforward calculation shows that the reduced operator RS(λ) has
norm ‖RS(λ)‖ ≤ ‖d‖∞ + Cr ‖M‖1,∞, for λ ∈ Ωr. �

Proposition 3.4. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A. Then the function RS : C \ Σd → L(L1(S)) is analytic.

Proof. Consider the open sets Ωr, r > 0, and the analytic function fz̄(λ), z̄ ∈ (Sc)n−1,
introduced in the proof of Lemma 3.3. Differentiating fz̄(λ) in λ we get

f ′z̄(λ) = −
(
n−1∏
p=1

1

λ− d(zp)

)
n−1∑
p=1

1

λ− d(zp)
,

with |f ′z̄(λ)| ≤ n r−n, for all λ ∈ Ωr.
For each n ∈ N consider the operator Kn(λ) : L1(S)→ L1(S) defined by
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(Kn(λ)h)(x) :=

∫
S

h(y)K
(n)
S,λ(x, dy)

=

∫
S

∫
Sc

· · ·
∫
Sc

h(y) fz1,...,zn−1(λ)K(x, dz1)K(z1, dz2) · · · K(zn−1, dy).

By the previous bound, arguing as in Lemma 3.3, these operators are analytic with

‖ d
dλ

Kn(λ)‖ ≤ n
tn
rn
‖M‖1,∞ ,

for all λ ∈ Ωr. Thus, by d’Alembert’s criterion, the series of analytic functions λ 7→∑∞
n=1

d
dλ
Kn(λ) ∈ L (L1(S)) converges uniformely on Ωr. This proves that λ 7→ RS(λ) is

analytic on C \ Σd. �

Lemma 3.5. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural set

of type B. Given λ ∈ C \ Σd, the kernel series
∑∞

n=1K
(n)
S,λ(x,B) converges absolutely and

uniformly on S × FS. Moreover, the operators RS(λ) defined by (3.4) are bounded.

Proof. Define Dn = { z ∈ Sc : nS(z) ≥ n }, where nS(z) is the function introduced in
Definition 3.5(3). Given B ∈ FS and x ∈ S one has

K
(n)
S,λ(x,B) =

∫
D1

· · ·
∫
Dn−1

K(x, dz1)K(z1, dz2) · · · K(zn−1, B)∏n−1
p=1 (λ− d(zp))

.

Consider the open sets Ωr, r > 0, introduced in the proof of Lemma 3.3. From (A1),
arguing as in the proof of Lemma 3.3, for all λ ∈ Ωr we have that∫ ∣∣K(n)

S,λ(x,B)
∣∣µ(dx) ≤ ‖K‖

2

rn−1

(∫
D1

M(z1)µ(dz1)

)
· · ·
(∫

Dn−2

M(zn−2)µ(dzn−2)

)
µ(B)

=
‖K‖2

rn−1
‖M‖L1(D1) · · · ‖M‖L1(Dn−2) µ(B) . (3.6)

But since
∞∑
n=1

∫
Dn

M dµ =

∫
Sc

nS(x)M(x)µ(dx) < +∞,

applying d’Alembert’s criterion (ratio test) we conclude that

Cr :=
∞∑
n=1

‖K‖2

rn−1

(∫
D1

M dµ

)
· · ·
(∫

Dn−2

M dµ

)
< +∞.

A straightforward calculation shows that the operator RS(λ) : L1(S) → L1(S) has norm
‖RS(λ)‖ ≤ ‖d‖∞ + Cr, for λ ∈ Ωr.

�
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Proposition 3.6. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type B. Then the function RS : C \ Σd → L(L1(S)) is analytic.

Proof. This proof is very similar to the one of Proposition 3.4. Consider the open sets Ωr,
r > 0, introduced in the proof of Lemma 3.3 and the operators Kn(λ), n ∈ N, introduced
in the proof of Proposition 3.4. By the previous bound in (3.6), arguing as in the proof
of Proposition 3.4, these operators are analytic with

‖ d
dλ

Kn(λ)‖ ≤ n
‖K‖2

rn−1
‖M‖L1(D1) · · · ‖M‖L1(Dn−2),

for all λ ∈ Ωr. Thus, by d’Alembert’s criterion, the series of analytic functions λ 7→∑∞
n=1

d
dλ
Kn(λ) ∈ L (L1(S)) converges uniformely on Ωr. This proves that λ 7→ RS(λ) is

analytic on C \ Σd. �

3.2. Type B isospectral reduction. In this subsection we prove a isospectral reduction
theorem for structural sets of type B.

For such structural sets the following key definition captures the idea of depth of a
point in V (see Definition 2.4).

Definition 3.7. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type B. We define, recursively in n ∈ N, a measurable subset Sn ⊆ V which can be
regarded as the set of states x ∈ V of depth ≤ n.

(1) S0 := S,
(2) Sn := {x ∈ V : |K|(x, V \ Sn−1) = 0} ∪ Sn−1.

Proposition 3.7. The sets Sn cover V , i.e., V = ∪n≥0Sn.

Proof. Given x ∈ V , let n = nS(x) be as in Definition 3.5(3). We will prove by induction
that ϕn−iSc (x) ⊆ Si for all i = 1, . . . , n. Then, taking i = n, this shows that {x} = ϕ0

Sc(x) ⊆
Sn.

Let y ∈ ϕn−1
Sc (x). Then ϕSc(y) = supp(Ky) ∩ Sc = ∅, which implies |K|(y, Sc) = 0, and

hence |K|(y, V \ S0) = |K|(y, Sc) = 0. Thus y ∈ S1, which proves the claim for i = 1.
Assume, by induction hypothesis, that ϕn−i+1

Sc (x) ⊆ Si−1, and let y ∈ ϕn−iSc (x), which
implies that ϕSc(y) ⊆ ϕn−i+1

Sc (x) ⊆ Si−1.
We consider two cases:
First assume that µ(ϕSc(y)) = 0. In this case, because Ky is absolutely continuous w.r.t.

µ, we have that |K|(y, Sc) = 0. Thus |K|(y, V \ S0) = |K|(y, Sc) = 0, and consequently
y ∈ S1 ⊆ Si.

Assume now that µ(ϕSc(y)) > 0. Since |K(y, z)| > 0 for µ-a.e. z ∈ supp(Ky), and
ϕSc(y) ⊆ Si−1, we have that supp(Ky) ⊆ Si−1 and so |K|(y, V \ Si−1) = 0. Therefore
y ∈ Si.

This proves that ϕn−iSc (x) ⊆ Si, and concludes the inductive argument. �
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Given u ∈ L1(V ), we define the functions uS and uSc in L1(V ),

uS(x) :=

{
u(x) if x ∈ S

0 if x ∈ Sc uSc(x) :=

{
u(x) if x ∈ Sc

0 if x ∈ S .

From now on, whenever appropriate we will identify uS with a function in L1(S).

Definition 3.8. The spectrum of the family of operators RS(λ), denoted by sp(RS), is
the set of λ ∈ C \ Σd such that RS(λ)− λ I is a non invertible operator on L1(S).

Theorem 3.8. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural set
of type B. Then

(1) sp(A) \ Σd ⊆ sp(RS).
(2) Given λ0 ∈ C \ Σd, λ0 is an eigenvalue of A iff λ0 is an eigenvalue of RS(λ0).
(3) If λ0 ∈ C\Σd is an eigenvalue of A and u ∈ L1(V ) is an associated eigenfunction,

Au = λ0 u, then RS(λ0)uS = λ0 uS, i.e., uS is the corresponding eigenfunction
for RS(λ0).

(4) If λ0 ∈ C \ Σd is an eigenvalue of RS(λ0) and v is an associated eigenfunction,
RS(λ0) v = λ0 v, then the following recursive relations

u(x) = v(x) for x ∈ S0 = S

u(z) =

∫
Sn−1

K(z, dy)

λ0 − d(z)
u(y) for all z ∈ Sn \ Sn−1

(3.7)

uniquely determine an eigenfunction u ∈ L1(V ) such that Au = λ0 u.

Remark 3.4. Under the assumptions of Theorem 3.8, if S is finite then the equality holds
in item (1), i.e., sp(A) \ Σd = sp(RS). Indeed, in this case, the reduced operator is finite
dimensional and, consequently, the equality follows from item (2).

To prove Theorem 3.8 we need the following lemma.

Lemma 3.9. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural set
of type B. Given λ0 ∈ C \ Σd, f ∈ L1(V ) and v ∈ L1(S), defining recursively a function
u : V → C by

u(x) = v(x) for x ∈ S0 = S

u(z) = − f(z)

λ0 − d(z)
+

∫
Sn−1

K(z, dy)

λ0 − d(z)
u(y) for all z ∈ Sn \ Sn−1

(3.8)
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then u ∈ L1(V ). Furthermore, ‖u‖L1(V ) ≤ C(‖f‖L1(V ) + ‖v‖L1(S)), for some constant
C = C(λ0) > 0.

Given B ∈ F, let us denote by 1B the indicator function of B.
Given a function v : S → C we denote by v̄ the extension v̄ : V → C,

v̄(x) =

{
v(x) if x ∈ S
0 if x /∈ S .

Given λ ∈ C \ Σd, we introduce the operator D(λ) : L1(V )→ L1(V ) defined by

(D(λ)h)(z) := 1Sc(z)
h(z)

λ− d(z)
, (3.9)

which clearly is a bounded operator.
To simplify notations we will write Q instead of QK , and D instead of D(λ) whenever

λ is fixed.

Proof of Lemma 3.9. Take v ∈ L1(S), f ∈ L1(V ), λ0 ∈ C \ Σd and assume that λ0 ∈ Ωr

where the set Ωr was introduced in the proof of Lemma 3.3.
Notice that by Definition 3.7, of the sets Sn, we can replace Sn−1 by V in (3.8).
Thus equation (3.8) implies that on V one has

u = (v̄ −Df) + DQu. (3.10)

We claim that I −DQ is an invertible operator.
A simple calculation shows that for z ∈ Sc

((DQ)nh)(z) =

∫
V

∫
Sc

· · ·
∫
Sc

K(z, dz1)K(z1, dz2) · · · K(zn−1, dzn)h(zn)

(λ0 − d(z))
∏n−1

p=1 (λ0 − d(zp))
(3.11)

with ((DQ)nh)(z) = 0 whenever z ∈ S.
As before let Dn = { z ∈ Sc : nS(z) ≥ n }, where nS(z) is the function introduced in

Definition 3.5(3), and set D0 = S.
Notice that for z ∈ Dm when integrating a function over (z, z1, . . . , zn) ∈ V × (Sc)n

against the kernel K(z, dz1)K(z1, dz2) · · · K(zn−1, dzn) its integral vanishes outside the
domain Dm ×Dm−1 × . . .×Dm−n.

Hence, for nS(z) < n we have ((DQ)nh)(z) = 0. Similarly, if nS(z) = n+ j then

((DQ)nh)(z) =

∫
Dj

∫
Dj+1

· · ·
∫
Dn+j−1

K(z, dz1)K(z1, dz2) · · · K(zn−1, dzn)h(zn)

(λ0 − d(z))
∏n−1

p=1 (λ0 − d(zp))
.

Arguing as in the proof of Lemma 3.5 we obtain

‖(DQ)nh‖L1(V ) ≤
1

rn−1
‖M‖L1(D1) · · · ‖M‖L1(Dn−1) ‖M‖L1(Sc) ‖h‖L1(V ).
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From the convergence of the series
∑∞

n=1
1

rn−1 ‖M‖L1(D1) · · · ‖M‖L1(Dn−1) (see the proof
of Lemma 3.5) the claim follows.

Therefore, from (3.11) we get u = (I −DQ)−1(v̄ −Df), which implies that

‖u‖1 ≤ max{1, ‖D‖}
(
∞∑
n=0

‖(DQ)n‖
)

(‖v̄‖1 + ‖f‖1).

�

Lemma 3.10. Let V , K and d : V → C satisfy (A1)-(A2) and S be a structural set of
type B. Then given λ0 ∈ C \ Σd, f ∈ L1(V ) and v ∈ L1(S) the following two statements
are equivalent:

(1) u = (v̄ −D(λ0) f) + D(λ0)Qu,
(2) u = v on S and (A− λ0 I)u = f on Sc.

Proof. For z ∈ S we have u(z) = v(z) whenever u satisfies either (1) or (2).
For z ∈ Sc, equation

u(z) = (v̄ −D(λ0) f)(z) + (D(λ0)Qu)(z)

is equivalent to

u(z) = − f(z)

λ0 − d(z)
+

∫
V

K(z, dy)

λ0 − d(z)
u(y)

which in turn is equivalent to

((A− λ0 I)u)(z) = f(z).

�

Lemma 3.11. Let V , K and d : V → C satisfy (A1)-(A2) and S be a structural set of type
B. Then given λ0 ∈ C \ Σd, f ∈ L1(V ) and u ∈ L1(V ) such that ((A− λ0I)u)(z) = f(z)
for all z ∈ Sc the following two statements are equivalent:

(1) (R(λ0)− λ0 I)uS = fS,
(2) (A− λ0I)u = f on V .

Proof. We claim that if for all z ∈ Sc, ((A− λ0I)u)(z) = 0, and x ∈ S then∫
Sc

uSc(z)K(x, dz) =
∞∑
p=2

∫
S

uS(y)K
(p)
S,λ0

(x, dy). (3.12)

Let us prove this claim. Since Au = λ0 u on Sc, we have for all z ∈ Sc

d(z)uSc(z) +

∫
V

u(w)K(z, dw) = λ0 uSc(z)

which is equivalent to

d(z)uSc(z) +

∫
S

uS(y)K(z, dy) +

∫
Sc

uSc(z′)K(z, dz′) = λ0 uSc(z).
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This in turn is equivalent to

uSc(z) =
1

λ0 − d(z)

∫
S

uS(y)K(z, dy) +
1

λ0 − d(z)

∫
Sc

uSc(z′)K(z, dz′). (3.13)

Substituting uSc(z′) by (3.13) in this relation we get

uSc(z) =
1

λ0 − d(z)

∫
S

uS(y)K(z, dy) +

∫
S

∫
Sc

uS(y)
K(z, dz′)K(z′, dy)

(λ0 − d(z)) (λ0 − d(z′))

+

∫
Sc

∫
Sc

uSc(z′′)
K(z, dz′)K(z′, dz′′)

(λ0 − d(z)) (λ0 − d(z′))
.

Given x ∈ S, integrating in z ∈ Sc w.r.t. K(x, dz) we obtain∫
Sc

uSc(z)K(x, dz) =

∫
S

uS(y)K
(2)
S,λ0

(x, dy) +

∫
S

uS(y)K
(3)
S,λ0

(x, dy)

+

∫
Sc

∫
Sc

∫
Sc

uSc(z′′)
K(x, dz)K(z, dz′)K(z′, dz′′)

(λ0 − d(z)) (λ0 − d(z′))
.

Proceeding inductively, we obtain for all n ≥ 1 and x ∈ S,∫
Sc

uSc(z)K(x, dz) =
n∑
p=2

∫
S

uS(y)K
(p)
S,λ0

(x, dy)

+

∫
Sc

· · ·
∫
Sc

uSc(zn)
K(x, dz1)K(z1, dz2) · · · K(zn−1, dzn)∏n−1

p=1 (λ0 − d(zp))
. (3.14)

For n ≥ nS(x) the remainder in (3.14) vanishes which proves the claim.

Let us prove (1)⇒(2). Assuming RS(λ0)uS = λ0 uS + fS we have

f(x) + (λ0 − d(x))uS(x) =
∞∑
p=1

∫
S

uS(y)K
(p)
S,λ0

(x, dy)

=

∫
S

uS(y)K(x, dy) +
∞∑
p=2

∫
S

uS(y)K
(p)
S,λ0

(x, dy)

=

∫
S

uS(y)K(x, dy) +

∫
Sc

uSc(y)K(x, dy) = (Qu)(x),

where in the last step we use claim (3.12). This proves that (A− λ0I)u = f on S. Since
we are also assuming that (A− λ0I)u = f on Sc, item (2) follows.
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Let us now prove (2)⇒(1). Assuming (Au− λ0I)u = f and using the claim (3.12), we
have for all x ∈ S,

f(x) + (λ0 − d(x))u(x) =

∫
S

uS(y)K(x, dy) +

∫
Sc

uSc(y)K(x, dy)

=

∫
S

uS(y)K(x, dy) +
∞∑
p=2

∫
S

uS(y)K
(p)
S,λ0

(x, dy)

=

∫
S

uS(y)RS,λ0(x, dy).

This proves that (R(λ0)− λ0I)uS = fS. �

We are now ready for the proof of Theorem 3.8.

Proof of theorem 3.8. Item (3) and the direct implication in (2) are consequences of
Lemma 3.11 with f = 0.

Next we prove (4) and the converse implication in (2).
Let λ0 ∈ C\Σd be an eigenvalue of RS(λ0) and v ∈ L1(S) be an associated eigenfunction,

RS(λ0) v = λ0 v. Applying Lemma 3.9 with f = 0 there exists a function u ∈ L1(V )
defined recursively by (3.8). Observe that (3.7) is the same as (3.8) when f = 0. As
noticed in the proof of Lemma 3.9, (3.8) is equivalent to (3.10), which in this case takes
the form u = v̄+DQu. In turn, by Lemma 3.10, this equation implies that (A−λ0I)u = 0
on Sc. Now, since RS(λ0) v = λ0 v and (A−λ0I)u = 0 on Sc, by Lemma 3.11, with f = 0,
we obtain that (A− λ0I)u = 0 on V .

Finally we prove (1).
Given λ0 /∈ Σd, assume that λ0 /∈ sp(RS). Then, given f ∈ L1(V ), there exists

v ∈ L1(S) such that (RS(λ0) − λ0 I) v = fS, where fS ∈ L1(S) stands for the restriction
of f to S.

Consider by Lemma 3.9 the function u ∈ L1(V ) defined recursively by (3.8). As noticed
above, (3.8) is equivalent to (3.10), which once more, by Lemma 3.10, is equivalent to
(A− λ0I)u = f on Sc. Now, since (RS(λ0)− λ0 I) v = fS and (A− λ0I)u = f on Sc, by
Lemma 3.11 we obtain that (A− λ0I)u = f on V .

On the other hand, by (2) this operator must be injective. Therefore λ0 /∈ sp(A)\Σd. �

Given a structural set S of type B consider the map

ΨS = ΨS,d,K : C \ Σd → L
(
L1(V )× L1(S), L1(V )

)
that to each λ ∈ C \ Σd, f ∈ L1(V ) and v ∈ L1(S) associates the unique function
u = ΨS(λ)(f, v) defined recursively by (3.8). Lemma 3.9 proves that this function is well
defined.
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Remark 3.5. Given λ0 ∈ C\Σd, f ∈ L1(V ) and v ∈ L1(S) such that (R(λ0)−λ0 I) v = fS
then the function u = ΨS(λ0)(f, v) satisfies (A− λ0 I)u = f .

Proof. By definition u = ΨS(λ0)(f, v) satisfies (3.8), which as noticed in the proof of
Lemma 3.9 is equivalent to (3.10). Hence, by Lemma 3.10 one has (A − λ0I)u = f on
Sc. Therefore, by Lemma 3.11 we have that (A− λ0I)u = f on V . �

Remark 3.6. Under the assumptions of Theorem 3.8, the function ΨS : C\Σd → L(L1(V )×
L1(S), L1(V )) is analytic.

We introduce now the family of reconstruction operators ΦS = ΦS,d,K : C \ Σd →
L(L1(S), L1(V )) defined by

ΦS(λ)(v) := ΨS(λ)(0, v).

Remark 3.7. If λ ∈ sp(RS) is an eigenvalue of RS(λ) with eigenfunction u ∈ L1(S)
then v = ΦS(λ)(u) is an eigenfunction of A associated with the same eigenvalue, i.e.,
Av = λ v. This explains the ‘reconstruction’ terminology.

3.3. Type A isospectral reduction. In this subsection we prove a isospectral reduction
theorem for structural sets of type A.

Theorem 3.12. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A. Let λ0 ∈ C \ Σd be an eigenvalue of A and u ∈ L1(V ) be an associated
eigenfunction, Au = λ0u. Then λ0 is also an eigenvalue of RS(λ0) and RS(λ0)uS = λ0 uS,
i.e., uS is the corresponding eigenfunction for RS(λ0).

Proof. The proof follows the steps of the statement (2)⇒(1) in Lemma 3.11 with f = 0.
For each r > 0, consider the open set Ωr := {λ ∈ C : dist(λ,Σd) > r}, so that C \ Σd =
∪r>0Ωr. Let λ0 ∈ Ωr. We just need to observe that, because S is a structural set of type
A, the reminder integral in equality (3.14) converges to 0 as n → +∞. Actually, the
equality (3.12) holds regardless of the structural set type. Indeed, the integral∫

S

∣∣∣∣∣
∫
Sc

· · ·
∫
Sc

uSc(zn)
K(x, dz1)K(z1, dz2) · · · K(zn−1, dzn)∏n−1

p=1 (λ0 − d(zp))

∣∣∣∣∣ µ(dx)

is bounded by tn
rn−1

∫
S

∫
Sc |uSc(zn)| M(x, zn)µ(dzn)µ(dx) ≤ tn

rn−1 ‖M‖1,∞ ‖u‖1, and hence
converges to 0 as n→ +∞. �
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3.4. Type A quasi-B isospectral reduction. In this subsection we prove a isospectral
reduction theorem for structural sets of type A quasi-B.

Let (E, ‖.‖) be a a Banach space and let P ∈ L(E). Let B1 be the closed unit ball in
E. The operator P is called weakly compact if the weak closure of PB1 is compact in the
weak topology (see [5]). The set of weakly compact operators is closed in the uniform
operator topology of L(E) ([5, §VI. 4., Corollary 4]).

Lemma 3.13. Let A : E → E be a weakly compact linear operator on a Banach space E,
and An : E → E a sequence of linear operators converging to A. Let un ∈ E be a unit
eigenvector of An with Anun = λn un and assume λ0 = limn→∞ λn is non zero. Then

(1) λ0 is an eigenvalue of A.
(2) The sequence {un}n is relatively compact.
(3) Any sublimit u of {un}n is an eigenvector of A with Au = λ0 u.

Proof. By spectrum continuity, λ0 ∈ sp(A). Since λ0 6= 0 and A is weakly compact, λ0 is
an isolated eigenvalue with finite muliplicity. Hence sp(A) = {λ0} ∪ Σ for some compact
set Σ ⊂ C with λ0 /∈ Σ. Let E = F ⊕H be the corresponding A-invariant decomposition
where F is the generalized eigenspace associated with λ0. Consider a simple closed,
positively oriented curve Γ which isolates λ0 from Σ and denote by R(A, z) := (zI−A)−1

the resolvent of A. Then the projection P : E → E onto F parallel to H is given by

P =
1

2πi

∫
Γ

R(A, z) dz.

Of course for large n the operators An admit a similar decomposition of the spectrum

sp(An) = Λn ∪ Σn,

where λn ∈ Λn, and Λn, Σn are closed sets separated by Γ. Hence the operator

Pn =
1

2πi

∫
Γ

R(An, z) dz

is the projection onto an An-invariant finite dimensional suspace Fn (with same dimension
as F ). By definition it is clear that Pn ◦An = An ◦Pn, which implies that Hn := Ker(Pn)
is also An-invariant. It also follows that Pn converges to P .

Now, since λn ∈ Λn, we have un = Pnun ∈ Fn. The sequence ũn := Pun ∈ F is
relatively compact because F is finite dimensional. On the other hand, since Pn → P , we
have that ‖un− ũn‖ = ‖Pnun−Pun‖ ≤ ‖Pn−P‖ converges to 0. Therefore {un}n is also
relatively compact, which proves (2).

Item (3) is clear. �

It is well known (see e.g., ([6, p. 104]) that integral operators with an uniformly bounded
kernel are weakly compact. Therefore, it follows from Proposition 3.1 and Lemma 3.3 that:
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Proposition 3.14. Assume V , K with d ≡ 0 satisfy (A1). Then

(1) The operator A is weakly compact.
(2) Given λ ∈ C \ {0}, the reduced operators defined by (3.4) are weakly compact.

Proposition 3.15. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A quasi-B. Consider the sequence of kernels Kn in Definition 3.6. Then for
every compact set Λ ⊂ C \ Σd,

lim
n→+∞

RS,d,Kn(λ) = RS,d,K(λ) in L(L1(S)),

uniformly on λ ∈ Λ.

Proof. Given Λ ⊂ C \ Σd compact, choose r > 0 so that Ωr = {λ ∈ C : dist(λ,Σd) > r}
contains Λ.

Let K(x, dy) = h(x, y)µ(dy) and Kn(x, dy) = hn(x, y)µ(dy). By Definition 3.6 (of type
A quasi-B structural sets) ‖h− hn‖1,∞ → 0.

We need to compare R
(p)
S,K,λ with R

(p)
S,Kn,λ

. The density of the first kernel is

h
(p)
S,K,λ(x, y) :=

∫
Sc

· · ·
∫
Sc

h(x, z1)h(z1, z2) · · · h(zp−1, y)∏p−1
j=1 (λ− d(zj))

µ(dz1) . . . µ(dzp−1),

and a similar formula holds for the density of R
(p)
S,Kn,λ

with hn instead of h.

Write τ̂K,i := supx∈V τS,K,i(x, V ). Let M ≥ 0, M ∈ L1(V, µ) be a common upper bound
such that

∣∣h(x, y)
∣∣ ≤M(x) and

∣∣hn(x, y)
∣∣ ≤M(x) for all x, y ∈ V and n ∈ N. Then

‖h(p)
S,K,λ − h

(p)
S,Kn,λ

‖1,∞ ≤
‖M‖p−1

1

rp−1
‖h− hn‖1,∞

p−1∑
j=1

τ̂K,j τ̂Kn,p−j.

Then what we need to complete the proof is the following lemma. �

Lemma 3.16. If τn decays super exponentially then so does
∑n

j=1 τjτn−j.

Proof. It follows from the definition that τn decays super exponentially to 0 if and only if
for all L > 0 there exists C > 0 such that τn ≤ C e−Ln.

Hence, given L > 0 there exists C > 0 such that τn ≤ C e−2Ln for all n ≥ 1. Therefore
n∑
j=1

τj τn−j ≤ C2

n∑
j=1

e−2Lj e−2L(n−j) ≤ nC2 e2Ln ≤ C2 e−Ln

which proves that the sum
∑n

j=1 τj τn−j decays super exponentially to 0. �
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Proposition 3.17. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A quasi-B. Consider the sequence of kernels Kn in Definition 3.6. Then given
any compact set Λ ⊂ C \ Σd, the following limit exists

ΨS(λ) = ΨS,d,K(λ) := lim
n→+∞

ΨS,d,Kn(λ) (3.15)

with uniform convergence in λ ∈ Λ.

Proof. We claim that for some m ≥ 1, ‖(DQK)m‖ < 1.
From (3.11) in the proof of Lemma 3.9, we have

((DQK)nh)(z) =

∫
Sc

· · ·
∫
Sc

K(z, dz1) · · · K(zn−1, dzn)h(zn)

(λ0 − d(z))
∏n−1

p=1 (λ0 − d(zp))

for all z ∈ Sc, and ((DQK)nh)(z) = 0 whenever z ∈ S.
Arguing as in the proof of Lemma 3.3 we obtain for all large n

‖(DQ)n‖ ≤ tn
rn
‖M‖1,∞ � 1.

From the claim, and since by Definition 3.6(2), limn→+∞‖K − Kn‖∞ = 0, we also have
‖(DQKn)m‖ < 1 for all large enough n. Hence the operators I −DQK and I −DQKn are
all invertible with uniformly bounded inverses. In particular limn→+∞(I − DQKn)−1 =
(I −DQK)−1.

Given f ∈ L1(V ) and v ∈ L1(S), by the proof of Lemma 3.9, the ‘reconstructed’
function un = ΨS,d,Kn(λ)(f, v) is given by

un = (I −DQKn)−1(v̄ −Df).

Therefore (un)n converges in L1 to u = (I −DQK)−1(v̄ −Df). �

The previous proposition allows us to define the limit reconstruction operators as follows:
Given λ ∈ C \ Σd, ΦS(λ) : L1(S)→ L1(V ),

ΦS(λ)(v) := ΨS(λ)(0, v).

Theorem 3.18. Assume V , K and d : V → C satisfy (A1)-(A2) and S is a structural
set of type A quasi-B. Then

(1) sp(A) \ Σd ⊆ sp(RS).
(2) Given λ0 ∈ C \ Σd, λ0 is an eigenvalue of A iff λ0 is an eigenvalue of RS(λ0).
(3) If λ0 ∈ C\Σd is an eigenvalue of A and u ∈ L1(V ) is an associated eigenfunction,

Au = λ0 u, then RS(λ0)uS = λ0 uS, i.e., uS is the corresponding eigenfunction
for RS(λ0).

(4) If λ0 ∈ C \ Σd is an eigenvalue of RS(λ0) and v is an associated eigenfunction,
RS(λ0) v = λ0 v, then u = ΦS(λ0)(v) is an eigenfunction of A, i.e., Au = λ0 u.
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Proof. Since S is a structural set of type A, by Theorem 3.12, item (3) and the direct
implication in (2) follow. The converse implication in (2) will follow from item (4).

Let us prove item (1).
Take λ0 /∈ sp(RS). This means that RS(λ0) − λ0I is an invertible operator. We are

going to prove that A − λ0I is also invertible. By the direct implication in (2) we know
that A− λ0I is injective. Therefore, it is enough to show that A− λ0I is surjective.

To simplify notations we will write A, An, R, Rn, Ψ and Ψn respectively instead of
AS,d,K , AS,d,Kn , RS,d,K , RS,d,Kn , ΨS,d,K and ΨS,d,Kn .

Since λ0 /∈ sp(R) and by Proposition 3.15 Rn converges to R, one has λ0 /∈ sp(Rn) for
all large enough n.

Given f ∈ L1(V ), because Rn(λ0)− λ0I is invertible, there exists vn ∈ L1(S) such that
(Rn(λ0)− λ0I) vn = fS. The sequence vn is bounded because the operator Rn(λ0)− λ0I
is invertible.

By Proposition 3.14 the operator R(λ0) can be decomposed as R(λ0) = dS + R̂(λ0)

where dS is a diagonal operator and R̂(λ0) is weakly compact. Analogously, the operator

Rn(λ0) is decomposed as Rn(λ0) = dS+R̂n(λ0), with the same diagonal part dS and where

R̂n(λ0) is also weakly compact. Moreover, R̂n(λ0) converges to R̂(λ0) as n→ +∞.

By weak compactness of R̂(λ0), we can assume that R̂(λ0) vn converges to some w ∈
L1(S). Since

fS − R̂n(λ0) vn = (Rn(λ0)− λ0) vn − R̂n(λ0) vn = (dS − λ0) vn

and

‖R̂n(λ0) vn − w‖ ≤ ‖R̂n(λ0) vn − R̂(λ0) vn‖+ ‖R̂(λ0) vn − w‖
≤ ‖R̂n(λ0)− R̂(λ0)‖ sup

n
‖vn‖+ ‖R̂(λ0) vn − w‖,

we conclude that (dS − λ0) vn converges to fS − w, and hence

lim
n→+∞

vn = (dS − λ0)−1(fS − w) =: v in L1.

By Remark 3.5 the function un = Ψn(f, vn) satisfies

(An − λ0)un = f. (3.16)

On the other hand we have

‖Ψn(f, vn)−Ψ(f, v)‖ ≤ ‖Ψn(f, vn)−Ψ(f, vn)‖+ ‖Ψ(f, vn)−Ψ(f, v)‖
≤ ‖Ψn −Ψ‖ sup

n
‖vn‖+ ‖Ψ‖ ‖vn − v‖

which proves that un = Ψn(f, vn) converges to u = Ψ(f, v) in L1.
Thus, taking the limit in (3.16) we get that (A − λ0)u = f , which proves that λ0 /∈

sp(A).
Finally we prove (4).
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Let λ0 ∈ C\Σd be an eigenvalue of R(λ0) and v ∈ L1(S) be an associated eigenfunction,
R(λ0) v = λ0 v. Since, by Proposition 3.15, Rn converges to R, there exist (λn)n satisfying
λ0 = limn→+∞ λn such that λn ∈ sp(Rn(λ0)). By the uniformity of convergence in Propo-
sition 3.15, changing slightly the λn if necessary, we may assume that λn ∈ sp(Rn(λn)).

Let vn ∈ L1(S) be a unit eigenfunction of Rn(λn), i.e., Rn(λn)vn = λnvn. Consider, as

before, the weakly compact operators R̂(λ0) and R̂n(λn) so that R(λ0) and Rn(λn) de-

compose as R(λ0) = dS + R̂(λ0) and R(λn) = dS + R̂n(λn). Moreover, again by uniformity

of convergence, R̂n(λn) converges to R̂(λ0) as n → +∞. By Lemma 3.13, extracting a
subsequence if necessary we can assume that (vn)n converges to v.

Since S is a structural set of type B for Kn, by Theorem 3.8(4), there exists a sequence
of eigenfunctions un ∈ L1(V ) such that

un = Ψn(λn)(0, vn) and Anun = λnun.

Repeating the argument in the proof of item (1), now with f = 0, and using uniformity
of convergence in Proposition 3.17, we obtain that un = Ψn(λn)(0, vn) converges to u =
Ψ(λ0)(0, v) = Φ(λ0)(v). Hence Au = λ0 u. �

4. Infinite graphs

In this section we specialize the theory in Section 3 to countably infinite graphs with
a finite structural set. We also propose a numerical algorithm to approximate the eigen-
functions of such graphs.

Definition 4.1. A countable weighted graph is a pair G = (V,w) where V is a countable
set and w : V × V → C is any function, called the weight function of G.

Assume G = (V,w) is a countable weighted graph over an infinite set V . The weight
function w : V ×V → C determines the following kernel K(i, .) =

∑
j∈V w(i, j) δj(.), where

δj stands for the Dirac measure supported on j.

We define the Banach spaces

L1(V ) := { f : V → C : ‖f‖1 :=
∑
i∈V

∣∣f(i)
∣∣ < +∞} ,

and
L1,∞(V × V ) := {w : V × V → C : ‖w‖1,∞ := sup

j∈V

∑
i∈V

∣∣w(i, j)
∣∣ < +∞} .

Note that identifying the weight function w with the kernel K(i, .) =
∑

j∈V w(i, j) δj(.)

the norm ‖w‖1,∞ matches the one defined in (3.1).
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Definition 4.2. We say that the weight function w : V ×V → C is (1,∞)-bounded when
w ∈ L1,∞(V × V ).

Each (1,∞)-bounded function w determines a Markov operator Aw : L1(V )→ L1(V ),

(Awf)(i) :=
∑
j∈V

w(i, j) f(j) . (4.1)

The following proposition is a simple observation.

Proposition 4.1. If w is (1,∞)-bounded then Aw ∈ L (L1(V )) . Moreover, Aw has oper-
ator norm

‖Aw‖ ≤ ‖w‖1,∞.

Theorem 4.2. Let G = (V,w) be a countable weighted graph and S ⊂ V be a finite set.
Assume that:

(i) w is (1,∞)-bounded;
(ii) S is a structural set of type A quasi-B for w (in the sense of Definition 3.6).

Then

(1) sp(Aw) \ Σ = sp(RS,w).
(2) Given λ0 ∈ C \ Σ, λ0 is an eigenvalue of Aw iff λ0 is an eigenvalue of RS,w(λ0).
(3) If λ0 ∈ C\Σ is an eigenvalue of Aw and u ∈ L1(V ) is an associated eigenfunction,

Aw u = λ0 u, then RS,w(λ0)uS = λ0 uS, i.e., uS is the corresponding eigenfunction
for RS,w(λ0).

(4) If λ0 ∈ C \ Σ is an eigenvalue of RS,w(λ0) and v is an associated eigenfunction,
RS,w(λ0) v = λ0 v, then u = ΦS,w(λ0)(v) is an eigenfunction of Aw, i.e., Aw u =
λ0 u.

Proof. This theorem is a corollary of Theorem 3.18. Notice that item (i) implies (A1),
while (A2) is automatic since we are taking d = 0. Equality in item (1) holds because S
is finite (see Remark 3.4). �

We propose now a numerical algorithm to approximate the eigenfunctions of a countably
infinite graph. The input and output of the algorithm will consist on the following:

Input:

• a countable weighted graph G = (V,w),
• a finite set S,
• a sequence (wn)n of weight functions,
• an integer k,
• a finite subset V0 such that S ⊆ V0 ⊆ V ,
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where G = (V,w), S and (wn)n satisfy the assumptions (i)-(ii) of Theorem 4.2. The
weight functions wn are the (1,∞)-bounded kernels in Definition 3.6.

Output: an approximation of the k-th eigenvalue λ of Aw, and an approximation of
the values u(i) of a λ-eigenfunction u for Aw computed at all vertices i ∈ V0.

Now we describe the steps of the proposed algorithm.

Steps:

(1) Compute the k-th eigenvalue λk,n of Awn for n large, or, alternatively, compute
the k-the zero of the analytic function det[RS,wn(λ)− λ I].

(2) Compute an associated eigenvector v0 of the finite dimensional matrix RS,wn(λk,n),
for some large n.

(3) Use the reconstruction operator ΦS,wn(λk,n)(v0) to obtain the wanted approxima-
tion.

5. A family of infinite Markov chains

Consider a countable weighted graph G = (V,w) such that (w(i, j))i,j∈V is a stochastic
matrix. More precisely assume w(i, j) = pij is the transition probability from state j to
state i of some Markov chain with infinite countable state space V . Note that in this
case λ = 1 is an eigenvalue of the Markov operator Aw. We remark that the (normalized)
eigenvectors of Aw, corresponding to the eigenvalue λ = 1, are precisely the stationary
measures of the given Markov process.

In this section we present an example where the theory developed is applied to give a
closed formula for the stationary probability measures of a family of countable Markov
chains.

Consider a Markov chain with state space N = {1, 2, . . .} and transition probability
matrix (w(i, j))i,j∈N defined by

(i) w(i, 1) = ai, for all i ∈ N;

(ii) w(2, 2) = 1− b1;

(iii) w(i− 1, i) = bi−1, for all i ≥ 2;

(iv) w(1, i) = 1− bi−1, for all i ≥ 3; and

(v) w(i, j) = 0 otherwise,

where w(i, j) represents the transition probability from state j to state i (see Figure 1). We
assume that the transition probabilities (ai)i∈N and (bi)i∈N satisfy the following conditions:

(B1)
∑∞

i=1 ai = 1 and 0 < ai, bi < 1, for all i ∈ N ; and

(B2) there exist C > 1 and 0 < ρ < 1 such that bi < Cρi , for all i ∈ N.
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We notice that condition (B2) implies that the sequence tn :=
∏n−1

i=1 bi converges to 0
super exponentially. Indeed, for all n ∈ N,

n−1∏
i=1

bi <
n−1∏
i=1

Cρi = Cn−1ρn(n−1)/2 ,

which converges to 0 super exponentially.

 
a2

a1

b1 b2 b3 b4 b5 b6

a3 a4 a5 a6 a7

1− b6

1− b5

1− b4

1− b3

1− b2

1− b1

7654321

Figure 1. An infinite Markov chain.

Proposition 5.1. Consider a Markov chain with transition probability matrix (w(i, j))i,j∈N
defined by (i)-(v) and satisfying conditions (B1)-(B2).

This Markov chain has a unique stationary probability measure q = (q(i))i∈N given by

q(i) =
u(i)∑∞

j=1 |u(j)| ,

where 
u(i) = v(i) if i = 1, 2

u(i) =
∑∞

k=1

(∏k−2
`=0 bi+`

)
ai+k−1 v(1) if i ≥ 3

and (v(1), v(2)) is any eigenvector of the matrix

R =

 1−∑∞`=0

(∏`
k=1 bk+1

)
a`+2 b1∑∞

`=0

(∏`
k=1 bk+1

)
a`+2 1− b1


associated with the eigenvalue λ = 1.

The rest of this section is dedicated to the proof of this proposition.
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The matrix (w(i, j))i,j∈N is stochastic in the sense that the sum of the entries of each
column is 1. This Markov chain is irreducible and aperiodic and hence admits a unique
stationary probability measure. The weight function w : N × N → [0,+∞[ determines
the kernel K(i, .) =

∑
j∈Nw(i, j) δj(.), where δj stands for the Dirac measure supported

on j. To apply the previous results consider, as reference measure µ on N, the counting
measure. Clearly, the weight function w is (1,∞)-bounded.

Consider the following sequence of Markov chains (see Figure 2) whose stochastic tran-
sition probability matrices (wn(i, j))i,j∈N, n ≥ 2, are defined by

• wn(i, 1) = ai, for all i ∈ N;

• wn(2, 2) = 1− b1;

• wn(i− 1, i) = bi−1, for i ∈ {2, . . . , n};
• wn(1, i) = 1− bi−1, for i ∈ {3, . . . , n};
• wn(1, i) = 1, for all i > n; and

• wn(i, j) = 0 otherwise.

 
a2

a1

b1 b2 b3 b4

a3 a4 a5 a6 a7

1

1

1− b4

1− b3

1− b2

1− b1

7654321

Figure 2. The Markov chain approximation w5.

Let S = {1, 2}. We have that S is a structural set of type A quasi-B for w (in the sense
of Definition 3.6). Indeed,

(1) S is a structural set of type A for w (in the sense of Definition 3.4). Consider the
function M ∈ L1,∞(N×N) defined by M(i, j) = ρi−1, where 0 < ρ < 1 is given by
condition (B2). Since the function B 7→ τS,n,w(i, B) is a measure, and taking in
mind that the transition probabilities (ai)i∈N and (bi)i∈N satisfy conditions (B1)-
(B2), we just need to observe that for all n ≥ 2,
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• τS,n,w(1, 1) =
∑∞

`=1 (1− b`+1)
(∏n−2

k=1 bk+`+1

)
an+` ≤

∑∞
`=1

(∏n−2
k=1 bk+`+1

)
≤ C

(
ρ3 + ρn+1

1−ρ

) (∏n−3
k=1 Cρ

k
)
M(1, 1);

• for j > 1 + n,
τS,n,w(1, j) = (1− bj−n) .

(∏n−1
k=1 bj−k

)
≤∏n−1

k=1 bj−k ≤
(∏n−1

k=1 Cρ
k
)
M(1, j);

• for i ≥ 2,
τS,n,w(i, i+ n) =

∏n−1
k=0 bi+k =

(∏n−1
k=1 bi+k

)
bi ≤

(∏n−1
k=1 bi+k

)
Cρi

≤ C
(∏n−1

k=1 Cρ
k
)
M(i, i+ n); and

τS,n,w(i, 1) =
(∏n−2

k=0 bi+k
)
ai+n−1 ≤

∏n−2
k=0 bi+k ≤ C

(∏n−2
k=1 Cρ

k
)
M(i, 1);

• τS,n,w(i, j) = 0 in all other cases.

Therefore, we can take in Definition 3.4 tn := C2
(
ρ3 + ρn+1

1−ρ

) (∏n−3
k=1 Cρ

k
)
, which

converges to 0 super exponentially.

(2) limn→+∞‖w − wn‖1,∞ = 0. Observe first that, for all n ≥ 2,

(w(i, j)− wn(i, j))i,j∈N =



0 . . . 0 −bn −bn+1 −bn+2 −bn+3 . . .

0 0 0 0 . . .
...

. . .
...

...
...

...
...

0 0 0 0 . . .
0 . . . 0 bn 0 0 0 . . .

0 . . . 0 0 bn+1 0 0 . . .
...

... 0 0 bn+2 0 . . .
0 0 0 bn+3

...
...

...
...

...
. . . . . .


.

Now, since

‖w − wn‖1,∞ = sup
j∈N

∑
i∈N

∣∣w(i, j)− wn(i, j)
∣∣,

a simple calculation shows that ‖w − wn‖1,∞ = 2 maxi≥n bi ≤ 2Cρn, which con-
verges to 0.

(3) For all n ≥ 2, S is a structural set of type B for wn (in the sense of Definition 3.5).
Fix n ≥ 2. Let the function M = Mn : N \ S → [0,+∞) be defined by M(i) = bi
and consider the function nS = nS,wn : N \ S → N introduced in Definition 3.5(3).

We have that nS(i) = n−i+1 for i ∈ {3, . . . , n}, and nS(i) = 1 for i ≥ n+1 (see
Figure 2). Thus, taking in mind that the transition probabilities (bi)i∈N satisfy
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condition (B2), we have that∑
i∈N\S

nS(i)M(i) =
n∑
i=3

(n− i+ 1) bi +
∞∑

i=n+1

bi < +∞.

We are left to check (2) in Definition 3.5. We just need to observe that, for all
i ∈ {3, . . . , n− 1}, ∣∣wn(i, i+ 1)

∣∣ = bi ≤M(i) .

We also have that:

(1) λ = 1 is an eigenvalue of Aw and Awn for all n ≥ 2.

(2) Since 1 is an eigenvalue of A we can define a reduction operator RS,w(1) : L1(S)→
L1(S) which keeps 1 as an eigenvalue. A simple calculation2 shows that the 2× 2
reduced matrix RS,w(1) is given by

RS,w(1) =

 1−∑∞`=0

(∏`
k=1 bk+1

)
a`+2 b1∑∞

`=0

(∏`
k=1 bk+1

)
a`+2 1− b1

 .
Let v0 be an associated eigenvector.

(3) Given n ≥ 2, the reconstruction operator ΦS,wn = ΦS,wn(1) : L1(S)→ L1(N) can
be characterized by un = ΦS,wn(v0) with v0 = (v(1), v(2)), un = (un(i))i∈N and



un(i) = v(i) if i ∈ S = {1, 2}

un(i) = wn(i, 1) v(1) +

= 0︷ ︸︸ ︷
wn(i, 2) v(2) = ai v(1) if i ≥ n

un(i) = wn(i, i+ 1)un(i+ 1) + wn(i, 1) v(1) +

= 0︷ ︸︸ ︷
wn(i, 2) v(2)

=
∑n−i+1

k=1

(∏k−2
`=0 bi+`

)
ai+k−1 v(1) if i ∈ {3, . . . , n− 1}

.

By Theorem 4.2, the vector qn = un
‖un‖1 converges to the stationay probability measure

q defined in the statement of the proposition.

2We have used here that if w = (w(i, j))i,j∈N is a stochastic matrix such that w(j, j) = 0 for all j /∈ S
then RS,w(1) is also a stochastic matrix.
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