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Abstract Injection blow molding process is widely used in the industry to produce plastic parts. One of the main
challenges in optimizing this process is to find the best manufacturing thickness profiles which provides
the desirable mechanical properties to the final part with minimal material usage. This paper proposes a
methodology based on a neuroevolutionary approach to optimize this process. This approach focuses on
finding the optimal thickness distribution for a given blow molded product as a function of its geometry.
Neural networks are used to represent thickness distributions and an evolutionary multiobjective
optimization algorithm is applied to evolve neural networks in order to find the best solutions, i.e., to
obtain the best trade-off between material usage and mechanical properties. Each solution is evaluated
through finite element analysis simulation considering the design of an industrial bottle. The results
showed that the proposed technique was able to find good solutions where the material was distributed
along the most critical regions to maintain adequate mechanical properties. This approach is general and
can also be applied to different geometries.
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Abstract. Injection blow molding process is widely used in the industry to
produce plastic parts. One of the main challenges in optimizing this process is to
find the best manufacturing thickness profiles which provides the desirable
mechanical properties to the final part with minimal material usage. This paper
proposes a methodology based on a neuroevolutionary approach to optimize this
process. This approach focuses on finding the optimal thickness distribution for
a given blow molded product as a function of its geometry. Neural networks are
used to represent thickness distributions and an evolutionary multiobjective
optimization algorithm is applied to evolve neural networks in order to find the
best solutions, i.e., to obtain the best trade-off between material usage and
mechanical properties. Each solution is evaluated through finite element analysis
simulation considering the design of an industrial bottle. The results showed that
the proposed technique was able to find good solutions where the material was
distributed along the most critical regions to maintain adequate mechanical
properties. This approach is general and can also be applied to different
geometries.

Keywords: Blow molding - MOEA - Neuroevolutionary

1 Introduction

One of the most important processes to manufacture plastic parts in industry is the
injection blow molding process, which is widely used in the production of several
kinds of container products, such as bottles, jars and containers to hold different types
of liquids (laundry detergents, oil, water, among others). In general, this process
comprises the injection of molten material (to form a preform, also called parison) into
a mold which is inflated with gas (usually air). The pressure imposed by the gas pushes
the melted material towards the mold, leading the plastic material to acquire the shape
of the mold. After cooling, the plastic is pulled out, producing the final part.

The total costs of blow molded products are heavily influenced by the amount of
material used in manufacturing and therefore can be reduced by minimizing material
usage. However, several mechanical properties are also dependent on this feature.
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Thus, this requires a trade-off between production costs and quality criteria, once the
reduction of material can affect important properties of the final product [1].

A common approach to optimize blow molding process is reducing the material
empirically, but good results will rely on expert experience. In this context, numerical
models can help to reduce the number of empirical trials or even eliminate real pro-
ductions needs by using simulations during the optimization process. Several numerical
approaches, such as Finite Element Methods (FEMs), neural networks, gradient-based
and stochastic search techniques have been used in blow molding design [1-4]. The
major challenge to optimize this process is to find the best geometry and thickness
profile of injected preform in order to obtain the final part with all desirable mechanical
and weight properties satisfied.

Artificial Neural Networks (ANNs) has been used in several studies to describe
blow molding process with high accuracy. In [2] the authors use a neural network to
predict wall thickness distribution of a container from the parison (preform) thickness
distribution. In [5] the preform diameter and thickness swells were predicted by an
ANN from operation parameters. In [3] the authors use ANNs to model a parison
extrusion process based on experimental data.

Besides ANNSs, genetic algorithms and other kind of optimization techniques have
been used as well. In [6] the authors use a genetic algorithm to find the optimal
thickness distribution for a preform in order to produce a blow molded bottle with
desired wall thickness distribution. In [7] ANNs and particle swarm optimization are
used to modeling nonlinear relationships between power lamp settings and output
temperature in infrared ovens used to heat PET (Polyethylene terephthalate) preforms
during injection blow molding process.

This study proposes a new methodology for injection blow molding optimization
which merges several methods into a neuroevolutionary approach. Wall thicknesses
distributions are modeled through ANNS, the injection blow molding process are
simulated using Finite Element Models (FEM) and evolutionary multiobjective opti-
mization algorithms are applied to find optimal solutions, i.e., thickness distributions
which gives the best trade-off between the total amount of used material and suitable
mechanical properties. Although this approach can be applied to all stages of injection
blow molding process, this study focuses on the final stage, aiming at finding the
thickness profile of the final part which satisfies required mechanical properties. The
methodology is applied to an industrial bottle model.

2 Injection Blow Molding Optimization

2.1 Process Overview

In general, the injection blow molding process can be summarized into five phases
which are illustrated in Fig. 1. These phases are (P1) Injection, (P2) Stretching, (P3)
Blowing, (P4) Mold opening and (P5) Blow molded part, respectively.

The process starts in P1, where the polymer should be melted at right conditions
considering injection molding parameters. This phase is performed at the injection
machine which has a heated barrel with a rotating screw that helps to mix molten
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Fig. 1. Injection blow molding process overview.

material, distribute heat and drive material forward. The molten material is injected into
a heated cavity to form the preform and then is clamped around a blowing rod.

The next phase (P2) comprises stretching the preform. This phase might be
unnecessary for certain products or even be executed simultaneously with phase P3.
Stretching the preform allow the maximization of the amount of material at the bottom
of final part. Temperature should be controlled to avoid deformation or damage to the
material during stretching. The geometry of blowing rod should be optimized to
facilitate material flow.

Phase P3 comprises the injection of air (at a certain pressure and velocity) inside the
preform resulting from the previous phase, pushing the material towards the mold and
leading it to match its internal shape. The preform thickness profile and the mold
geometry will determine the thickness profile and hence mechanical properties of the
final part. Thus, optimization process should find thickness profiles which lead to less
material utilization at the same time that required mechanical properties are
accomplished.
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Phase P4 starts right after the blowing phase and comprises the wait for material
cool down at a safe temperature, where the plastic are rigid enough to not break or
deform when pulled out from mold. The thickness profile is also important for this
phase since cooling time will be different across parts with irregular geometries. After
cooling time, the mold is opened and the plastic part is pulled out.

Phase PS5 is the last step of the process, when the final part keeps cooling and is
ready for storage. Controlling cooling rate is important to obtain uniform properties in
the final part.

2.2 Global Optimization

In this study, the optimization of injection blow molding process will be divided into
four major steps that can be optimized separately, as show in Fig. 2.

Step O1
Optimization of mechanical
properties and final weight

Step 02
Optimization of final parte
thickness profile

Results: blowing conditions
and pre-form (after
stretching) thickness profile

Results: thickness profile of
final part (and isotropic
mechanical properties)

Step O3
Optimization of pre-form (after
stretching) thickness profile

Optimization of pre-form
thickness profile

Results: stretching conditions
and (injected) pre-form
thickness profile

Results: injection conditions
and cavity geometry

Fig. 2. Global optimization steps for injection blow molding.

The optimization process can be started by taking into account a costumer speci-
fication for a blow molded product, i.e., which properties should be accomplished by
the final part. Then, the proposed optimization methods should be applied to each phase
of the blow molding process in order to find the best settings that will produce the
desirable final part at the end of the process. It should be clear in each optimization
which objectives to be accomplished and variables to be optimized.

This study proposes four major steps to compose the global optimization process of
injection blow molding (Fig. 2). In this methodology, the bests results of a given step
will be the objectives of the next (starting by the end of manufacturing process). Each
step can be summarized as follows:
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e (O1) Optimize the mechanical properties and weight of the final part. This step aims
at find the optimal thickness profile of the final part which gives the best trade-off
between mechanical properties and the total weight. Decision variables are the wall
thickness profile of the final part, which is composed by the thickness values for
each point of the mesh that represents the final part.

e (0O2) Optimize the final part thickness profile. This step aims at find the best preform
geometry which gives the optimal final part thickness profiles that was obtained in
the previous step. Decision variable are the blowing conditions and the preform
thickness profile (after stretching, when applicable).

e (0O3) Optimize the preform thickness profile after stretching. This step should be
done when stretching is applicable. Decision variables are stretching conditions and
the preform thickness profile. The optimization process is analogous as the previous
step, but this step aims at find the best solutions which produces the optimal
preform thickness profile obtained in step (02).

e (0O4) Optimize the preform thickness profile (before stretching). Decision variables
are injection conditions and cavity geometry. This step aims at find the best solu-
tions which produces the optimal preform thickness profile (before stretching)
obtained in previous step.

It is important to point out that the optimization algorithms and procedures used in
each step are exactly the same except by decision variables and results considered in
each of them. Since the results of a given step is used by the next one, the optimization
should follow the chain during its execution, but at any time it is possible to go back to
previous steps to reformulate the results. In this case, further steps should be executed
again to update the results. The optimization workflow is indicated by white arrows in
Fig. 2.

2.3 Proposed Methodology

Injection blow molding simulations are done through finite element methods hence all
parts are modeled in 3D meshes where each mesh point is supposed to have a certain
thickness value. One of the main issues concerning the optimization is how to handle
the different sizes and geometries of each mesh. For instance, a simple bottle mesh can
be composed by thousands of points (to have good accuracy). Furthermore, considering
each point as a decision variable will lead to a huge search space for optimization
algorithms.

The proposed methodology follows the described global optimization to optimize
injection blow molding process. To reduce the search space and handle different kinds
of models (and meshes), thickness profiles are treated as a function of the container’s
geometry and neural networks are used to compute the wall thickness at any location of
the mesh based on the respective coordinates. It is important to point out that no
supervised training method are used, the parameters for the networks are determined by
the evolutionary multiobjective optimization process. As a result of optimizations, there
will be a neural network which gives the optimal thickness profile of the corresponding
optimization phase, that might be the profile of final part or the parison thickness
profile, for example.
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The proposed neuroevolutionary approach is illustrated in Fig. 3. It begins by
reading input parameters and generating the initial population randomly. Each popu-
lation is composed by a set of individuals, each of them representing a neural network
that models a wall thickness distribution. The information of ANNs (weights and
biases) is encoded in a chromosome of real numbers. Thus, the size of each chromo-
some will be directly related with the topology of the network. Figure 4 illustrates the
thickness calculation process. The coordinates of each point of a given mesh are fed
into an ANN that will output the wall thickness value for each point, respectively. The
network is composed of three layers where the number of neurons in the hidden layer
can be fixed or vary during optimization. Due to computational resources and time
constraints, in this study two fixed topologies were considered: 3-20-1 (20 neurons at
the hidden layer) and 3-5-1 (5 neurons at the hidden layer). These topologies were
previously determined by empirical experiments.

Initialization

Simulation

g+1

g

Fig. 3. Neuroevolutionary optimization workflow

Hidden Layer
Finite element model Input Layer

Artificial Neural Network

Fig. 4. Thickness calculation using neural network
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When initialization is done, the algorithm performs a predefined numbers of gen-
erations of a steady-state variant of evolutionary process based on the SMS-EMOA
multiobjective optimization algorithm [8]. A single offspring is produced in each
generation. Selection is done by a uniform distribution (each member of the population
has the same chance to be selected). Variation is performed by SBX-Crossover oper-
ator, which is adequate to work with real number representations and replacement
strategy is based on Pareto front and hypervolume measure.

After being generated, each individual is evaluated by a procedure that comprises
assembly the neural network from chromosome information and fed into the network
the coordinates of each point of the finite element model. As a result of this step, the
thickness of each point of the mesh will be provided, creating the thickness profile that
will be considered in the simulation process.

At the end of optimization process there will be a set of optimal solutions, i.e., wall
thickness profiles modeled by neural networks, each one giving different trade-off
between the considered objectives.

3 Experiments and Results

3.1 Experimental Setup

The proposed methodology was applied to optimize injection blow molding of an
industrial plastic bottle model. Figure 5a shows the geometry of the model, which is
45 mm in diameter and 182 mm height, composed by a plastic material with mass
density of 1.15 g/cm® and Poisson’s ration of 0.4. The ratio between the applied
blowing pressure and Young’s modulus is 0.0027.

| T7.26
45.05

—35.67— ' /'//

Thickness

2\
\
\

L Bottle Points

160.00

a) b)

Fig. 5. Bottle model with wall thickness distribution illustrated (dimensions in millimeters)
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The wall thickness distribution is composed by thickness values of each point of the
mesh considering vertical lines from bottleneck to the bottom on the model. Figure 5b
illustrates a thickness distribution plot for two vertical lines, but the points of all
vertical lines should be plotted on the same graph, being possible to visualize how the
thickness changes along the bottle. Note that for uniform distributions, lines will be
overlapped.

Numerical simulations were carried out by finite element analysis software ANSYS
Workbench version 18.1 to simulate an internal pressure applied to the final bottle. The
objective of the optimization in this phase is to find optimal thickness distributions
which provide the best relationships between the total mass and maximum strain
supported by the bottle.

Since the ANNs are not aware of the geometry of the final product, non-uniform
thickness distributions can be found by the optimization algorithm. However, for the
model considered in this study, uniform distributions are desirable. Thus, an objective
which takes into account the uniformness of thickness distributions was considered.
Three objectives were chosen for the optimization: (i) the total mass of final product
(f1), (ii) the maximum strain suffered (f,) and (iii) the maximum difference between
each vertical line in the thickness distribution (f3). The difference between two vertical
lines is calculated using the root-mean-square error index (RMSE), given by Eq. (1).

n

1 ~ 2
RMSE = [-> (5, — yi 1
S ni:l(y ¥i) (1)

In Eq. (1) y, and y; represents the thickness points of two different vertical lines and
n are the total number of points in each distribution. All vertical lines are compared to
each other and f; is the maximum calculated RMSE, that is to be minimized. The
minimum and maximum allowable values of wall thickness were 0.1 and 3 mm,
respectively.

Due to high simulation time to compute each solution, 50 individuals were con-
sidered as the population size and a total of 5000 evaluations were performed in each
optimization, leading to a total of 100 generations. The two neural network topologies
described were considered: 3-20-1 and 3-5-1. All neurons uses sigmoid as activation
function.

3.2 Optimization Results

Figure 6 shows the evolution of hypervolume for each generation of both ANN
topologies. All objective function values were normalized with the maximum and
minimum values of the dataset, staying within the interval [0, 1]. The hypervolume was
calculated with reference point (1.0, 1.0, 1.0). Once all objective functions are being
minimized, higher hypervolume values means better optimization performance. Both
topologies converge at generation 30 (approximately) and topology 3-20-1 presented
better results than topology 3-5-1. Since the computational time for both optimizations
is almost the same, as the computation time is proportional to the modelling time, the
better topology can be used without significant loss of performance.
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Fig. 6. Evolution of hypervolume for different ANN topologies

Figure 7 shows the Pareto front (for 100™ generation) of both topologies. Topology
3-20-1 provides more different optimal solutions than topology 3-5-1, especially for the
objectives f; (mass) and f> (maximum strain), where the Pareto front is much more
distributed. Thus, the final results were selected from this front.

X T3-20-1
0.02, | © T3-5-1

Strain 0 o

X

J x 13-20-1
0.05R o T3.5.1

PO KK XIXHK

oA

R (% 7D e
0 50 100
Mass (g)

Fig. 7. Pareto front of each topology. In (a) all objectives are plotted whereas in (b) only
objectives f; (mass) and f, (maximum strain) are shown

Figure 8a shows the evolution between the initial and last populations in the
optimization process for topology 3-20-1. All objective functions were clearly mini-
mized forming the Pareto front, which is shown in Fig. 8b (for f; and f£,).

The five selected solutions in Fig. 8b were selected along the Pareto front to obtain
different trade-offs between the total mass of used material and the maximum strain
supported by the bottle for the imposed pressure. For example, solution S2 gives a
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Fig. 8. (a) Initial and last population for topology 3-20-1. (b) Pareto front of last population
where only objectives f; (mass) and f> (maximum strain) are shown. Five selected solutions are
highlighted

certain thickness distribution for the final bottle which leads to a maximum strain of
9.4 x 10~ with 9.8 g in weight. Considering the conflicting nature of the objectives,
best relationships will be provided by solutions usually located at the knee of the curve.
In this case, these solutions might be represented by S2 and S3. Table 1 contains the
numerical values for all objectives of selected solutions.

Table 1. Optimal solutions selected from Pareto front

Solution | Mass (g) | Max. strain (x 107%) | RMSE (x 107%)
S1 3.2 56.3 0.9
S2 9.8 9.4 10.4
S3 15.2 4.8 11.3
S4 37.1 1.2 25
S5 84.8 0.3 5.9

Figure 9 shows the thickness distribution of each selected solution. All graphs
except f) have the same absolute interval in y-axis (1 mm). Figure 9f contains all
distributions on the same graph. Although each solution has a different value for
RMSE, when considering absolute 1 mm interval (which is a high precision for an
industrial blow molding process) there is no significant differences in distributions
concerning the uniformity. However, each solution presents different thickness average
levels, which can be seen in Fig. 9f. For instance, solution S5 has a mean thickness of
2.8 mm, giving lowest strain (0.3 x 107°) but with higher weight (84.8 g).

Looking at Table 1 values, solution S3 (15.2 g in total weight with maximum strain
4.8 x 107°) can be considered the general optimal solution, i.e., which gives the best
trade-off between material utilization (mass) and the minimum strain suffered by the
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Fig. 9. Thickness distributions of selected solutions (a) S1, (b) S2, (¢) S3, (d) S4 and (e) S5,
respectively. (f) shows all distributions on the same graph

bottle. Thus, the thickness profile provided by S3 can be used in further optimizations
of the global optimization process.

4 Conclusions

Optimization of injection blow molding is a great asset in industry since it can decrease
production cost and improve manufacturing process. This paper proposes a new
methodology based on a neuroevolutionary approach to optimize the injection blow
molding process. Neural networks are used to model wall thickness distributions and
evolutionary multiobjective optimization algorithms are applied to find optimal solu-
tions, giving the best trade-offs between material utilization and mechanical properties.
The methodology has been successfully applied to an industrial bottle model to find the
best relationship between total mass and maximum strain when pressure is applied. As
the result, a set of optimal thickness profiles has been found, providing less strain under
pressure with less material utilization.

Optimization experiments provided by this study were applied to one phase of
injection blow molding process. As a future work, the proposed methodology will be
applied to other phases as well.
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