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Abstract

Coastal counties in the United States account for less than 10% of the nation’s

land mass. Yet, approximately 40% of the country’s population, or over 127

million people, live in these areas. The population density of coastal counties

is 461 people per square mile, much larger than the nation’s average popu-

lation density of 87 people per square mile. Coasts also present the logistic

benefit of allowing the transportation of goods between countries and conti-

nents through maritime ports. However, the increase in coastal population

and economic activity means an increased exposure and vulnerability to po-

tential natural hazards, such as hurricanes and tropical storms. These weather

events are powerful, with the capacity to devastate coastal regions. Therefore,

understanding these potentially catastrophic events is critical to assess vul-

nerability and support informed decision-making at local, state, and federal

levels. This research provides valuable insights related to the characteristics of

tropical cyclones and to their potential impacts to the coastal United States.

First, an extensive review of the literature related to maritime supply chain

resilience and the impacts of port disruptions to the maritime supply chain

is performed. Ports are complex enterprises, comprised of a wide variety of

stakeholders and subject to risks of many kinds, both man-made and natural

hazards. This review allowed the identification of gaps of knowledge to be
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explored on the topic of maritime supply chain resilience. One of the gaps

is the lack of a clearly quantifiable metric for the impacts of one of the most

common sources of weather disruptions: hurricane and tropical storms. Albeit

the immediate impacts are limited to areas prone to these events, tropical

cyclones have been known to impact extensive areas and cause long lasting

negative effects.

Second, machine learning is used to rigorously explore and quantify the

relationship of tropical cyclone characteristics and their destructive outcomes

on the coast of the United States. Historical data on hurricanes and tropical

storms is identified and curated to support supervised learning. A novel Storm

Damage Ratio is introduced to address the inherent challenge of comparing

damage to regions with distinct assets and population. Multiple mathematical

models to predict economic impacts from tropical events are created using

machine learning methods and the results are compared. Additionally, the

storm features that most influence the accuracy of predictions are identified

and ranked.

The third research component consists in analyzing coastal vulnerability

to tropical cyclones at the state-level by providing mechanisms to account for

uncertainty in studying the destructive potential of storms, supporting the

decision-making process to improve community resilience. The previously de-

veloped concept of Storm Damage Ratio is extended, creating the Local Storm

Damage Ratio, which assess the destructive potential of storms with respect

to intrinsic characteristics, regardless of the local economic characteristics.

Multiple machine learning models are developed to predict the value of Local

Storm Damage Ratio at a state-level. The most promising machine learning

model is used to study the relationship between state and damage, as well as

xii



evaluate state preparedness. Finally, this work makes the innovative approach

of building state-level empirical fragility curves to tropical storms. The novelty

curves are built for three damage levels: minor, moderate, and major damage.

xiii



Chapter 1

Introduction

1.1 Overview

Coastal zones have always been attractive locations to settle due to their rich

resources and extensive supply of provisions. Coastal population growth and

urbanization rates are exceeding the demographic development observed in-

land, driven by rapid economic growth and coast-ward migration [151, 210,

225]. Logistical reasons are a major motivation for coastal settlement, as these

regions offer access points to marine trade and transport. In the United States

alone, 90% of international trades involve at least one form of marine trans-

portation, with the 25 largest maritime ports in the country handling over

1.88 billion tons in 2018 [161, 88]. Many of these ports are located in the

Southeastern region of the United States, which is particularly vulnerable to

severe weather events such as hurricanes and tropical storms, including the

Ports of Houston, New Orleans, South Louisiana, Tampa, and Savannah.

Hurricanes and tropical storms are dangerous weather events and pose a

considerable threat to the regions vulnerable to them. Between the years 2000
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and 2019, the United States was affected by 273 events that resulted in costs

of US $1 billion or more, recorded on the billion-dollar events list, which is

updated annually by the National Oceanic and Atmospheric Administration

(NOAA) [157]. Out of these 273 events, 45 were tropical cyclones, representing

only 16.5% of the billion-dollar events occurrence. In terms of costs, however,

tropical cyclones were responsible for 53.3% of the losses, or US $954.4 billion,

out of the US $1,791.5 billion in total losses. Tropical cyclones also accounted

for 6,507 deaths caused by billion-dollar events since 2000, a number that

represents over 45% of the deaths from all types of disasters [157, 211]. Ad-

ditionally, the intensity and destructive potential of these natural events are

poorly understood. The strength of a hurricane is usually determined based

solely on the maximum sustained wind speed observed, following the clas-

sification of the Saffir-Simpson Hurricane Wind Scale (SSHS). However, the

SSHS does not consider other fundamental attributes of the storms’ systems,

resulting in discrepancies between expected and actual destruction caused by

hurricane systems. This shortcoming has been observed, but has not yet been

successfully addressed [186, 97, 98, 99, 96, 103, 191].

1.2 Problem Statement

As one of the main agents of the maritime supply chain, smooth port opera-

tions are critical for continuous and timely supply chain performance. Ports

are complex entities, comprised of a wide variety of stakeholders and subject

to significant uncertainties and risks from multiple sources. Identifying the

sources of possible disruptions and exploring the impacts of these disruptions

to the maritime supply chain allows for the identification of research gaps.
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Among the identified gaps is the shortage of research focused on the risks and

impacts that weather events, such as hurricanes and tropical storms, have on

port operations and infrastructure.

The economic impacts caused by hurricanes and tropical storms to the

United States are an understudied topic, with a vast opportunity for improve-

ment and contributions. Existing methods are not able to adequately evaluate

the destructive potential of a storm or to identify the intrinsic characteristics

that are the most important when it comes to estimating the economic im-

pacts of hurricanes and tropical storms. These methods are also unable to

clearly determine and quantify the significance of inherent features of tropical

cyclones.

The impacts that tropical cyclones have on regions vary significantly due,

at least partially, to three elements: (i) the inherent variability of the eco-

nomic, geographic, and human-related features of the impacted regions, (ii)

the intricacy of critical storm features, and (iii) the complexity of the storm-

region intersection. Addressing one or more of these elements will allow for a

more definite understanding of the threat and, consequently, a more precise

vulnerability assessment, which, in turn, will lead to more adequate resilience

actions.

1.3 Research Objectives

The objectives of this research are: (i) identify sources of risk and uncer-

tainty in port operations and their impact to maritime supply chain; (ii) ex-

plore, identify, and quantify the relationship of tropical cyclone characteristics

and their destructive outcomes using supervised machine learning; (iii) assess
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coastal preparedness and vulnerability to tropical cyclones at a state level; and

(iv) introduce a probabilistic methodology to quantify coastal vulnerability to

tropical cyclones by adapting the concept of empirical fragility curves.

To achieve the stated goals, the specific research tasks are given as follows:

• Perform an extensive literature review in maritime supply chain resilience

to port disruptions to identify gaps and future research potential.

• Perform a literature review on existing alternative metrics to the SSHS

and on the utilization of machines learning methods on weather-related

problems.

• Implement a weighted aggregation of storm features over time to obtain

a single set of characteristics per storm.

• Develop a novel metric to account for the differences in assets among

regions, allowing a clear distinction between region-specific and storm-

specific factors.

• Perform an extensive exploration of storm’s intrinsic characteristics and

economic impacts using supervised machine learning.

• Explore historical storm characteristics and impacts and determine if

there are significant distinctions between predictive models for differ-

ent subsets of storms, namely all storms, including both hurricanes and

tropical storms, only hurricanes, and only tropical storms.

• Obtain a machine learning model capable of obtaining a superior esti-

mate of potential damage of tropical cyclones than existing methods.
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• Determine the most important storm features and demonstrate their

influence to the overall economic impact of the tropical cyclone.

• Use supervised machine learning to estimate the economic impacts of

tropical cyclones at state-level.

• Explore and assess state-preparedness with respect to expected versus

actual economic losses resulting from hurricanes and tropical storms.

• Develop a novel probabilistic methodology to quantify coastal vulnera-

bility to tropical cyclones at a state-level using the concept of fragility

curves.

1.4 Dissertation Organization

The remaining of this dissertation is organized as follows. Chapter 2 provides

an extensive review of the literature on the impacts of port disruptions to the

maritime supply chain. The sources of risk and uncertainties to port operations

are identified, the impacts of port disruptions to the maritime supply chain are

explored, and research gaps on the topic are discussed. Among the identified

gaps is the shortage of research focused on the risks and impacts that weather

events, such as hurricanes and tropical storms, have on port operations and

infrastructure.

In Chapter 3, existing methods of assessing the strength of hurricanes and

tropical storms are reviewed and tested with respect to their adequacy to

measure the economical impacts of these storms. Subsequently, the concept of

Storm Damage Ratio is presented as an alternative to address the obstacle of

comparing damage between regions with different assets. Next, the method-

5



ology of the study is presented, including information on data selection and

transformation, and details on the machine learning methods used to estimate

the economic impacts of hurricanes and tropical storms based on the storm’s

characteristics. Finally, the most important storm characteristics to prediction

accuracy are identified.

Chapter 4 presents an analysis of state-level vulnerability to tropical storms

and hurricanes. The storm’s intrinsic characteristics and the economic losses

resulting from each storm are analyzed per state, allowing for an opportunity to

explore the distinctions between states in terms of tropical cyclone vulnerabil-

ity. The metric Local Storm Damage Ratio, based on the Storm Damage Ratio

presented in Chapter 3, is developed to allow for a fair comparison between

storm characteristics, irrespective of local assets. Multiple machine learning

models are developed to predict the value of Local Storm Damage Ratio at a

state-level using storm features. The most promising machine learning model

is used to study the relationship between state and damage, as well as evalu-

ate state preparedness. Finally, the concept of fragility curves is extended and

historical information are used to empirically develop probabilistic functions

associated with different impact states. The developed state-level empirical

fragility curves to tropical storms are an innovative probabilistic methodology

to quantify coastal vulnerability.

Finally, Chapter 5 contains the conclusion of this dissertation, summarizing

the work completed and suggesting potential future work.
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Chapter 2

Port Disruption Impact on the

Maritime Supply Chain: A

literature review

2.1 Introduction

Maritime transportation systems are as economically important as they are

complex. Over 90 percent of the global trade is transported by sea and the

world fleet is continuously growing, with over 93 thousand commercial vessels

registered in 2017 [91]. This represents a capacity of more than 1.86 billion

deadweight tons [7]. In the United States alone, the maritime transportation

system is responsible for more than 23 million jobs, supports over 99% of the

volume of oversea trades, and the total economic impact of ports (direct and

indirect) exceeds US $4.5 trillion dollars annually [6, 226, 13].

Most ports are located in low-lying coastal areas or at mouths of rivers,

exposing them to a variety of environmental hazards, such as tropical storms,
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which bring extreme winds, flooding, and storm surge. Climate change impacts

in the form of sea-level rise, increased storm intensity, and increased flooding,

aggravate these hazards and reveal ports’ vulnerabilities [20, 226, 190].

Despite its undeniable importance to global trade and transportation, stud-

ies focused on port disruptions and on improving port resilience are still sparse,

showing that the topics have not yet received substantial attention in the lit-

erature [77]. To the best of our knowledge, the most recent works reviewing

maritime supply chain disruption and risk management were conducted by

[132], [170], and [200].

[132] performed a thorough investigation of research on disaster resilience

of transportation infrastructure and seaports. Their work covers papers pub-

lished until 2011 in the areas of disaster in general, disaster resilience, trans-

portation infrastructure resilience, and port resilience. They conclude that

there is a significant amount of work on disaster resilience in terms of infras-

tructure disasters and community resilience. Work related to port resilience

or disaster resilience of port linked intermodal transportation, on the other

hand, is scarce. More recently, [170] reviewed applications of system dynamics

in the maritime transportation system. According to the authors, system dy-

namic models are able to depict the complexity of the maritime transportation

system and should be used to better understand and improve the maritime

transportation system. Finally, [200] reviewed the literature related to supply

chain risk management in the container liner shipping industry.

This literature review goes beyond that of the previous work in that it

identifies and addresses the impacts of a disruption to multiple agents in the

system and includes significant literature on the impacts of port disruption on

maritime supply chains. Among the topics reviewed are the identification of

8



the agents affected directly or indirectly by a port disruption and the impacts of

a port shutdown to different stakeholders. This chapter also reviews port and

maritime supply chain resilience, including both quantitative and qualitative

methods. Finally, literature in maritime intermodal transportation is also

reviewed.

2.2 Maritime Supply Chain and Port Disrup-

tion Impacts

Most literature available on maritime transportation systems and port dis-

ruptions apply analytical methods and simulation models to liner shipping

network reliability and container terminals. Areas such as the integration

between ports and other modes of transport, as well as the entire maritime

supply chain are limited [3, 22]. The following sections present studies that

(i) identify port stakeholders and (ii) address the sources of uncertainty in

the maritime supply chain that may lead to port disruptions and identify the

impacts of these disruptions to specific stakeholders.

2.2.1 Agents of a maritime supply chain: Port primary

stakeholders

Ports are intricate operational systems and include multiple stakeholders. The

vast network of stakeholders includes, but is not limited to, terminal operators,

shippers, federal, state and local government representatives, environmental

agencies and non-governmental organizations, academic researchers, as well as

the surrounding communities [19, 207, 146]. These stakeholders commonly
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have different, if not competing, interests, such as higher revenue, increased

customer satisfaction, or reduced environmental impacts [165, 172].

According to [77], protecting ports from adverse weather impacts while

also considering all stakeholders and variables involved is a “wicked problem”

– a problem characterized by being difficult or impossible to solve due to

incomplete, contradictory, and changing requirements that are often difficult

to recognize [77, 83].

It is possible to study a port through the lens of the stakeholder cluster

[54, 19, 77, 245, 114]. Clusters are commonly used by strategic management

scholars to analyze systems by identifying groups of stakeholders with common

interests [71]. Based on the idea of clusters, some authors define the stake-

holders of a port as any group or individual who can affect or is affected by

the achievement of the port’s objectives [77]. Other authors [18, 19] include

in the port stakeholder concept the key stakeholders that have an interest in

the functioning of a port and can somehow contribute, either in planning or

decision-making, to the port.

In general management, stakeholders may be clustered into three cate-

gories: internal, external, or interface. Internal stakeholders include employ-

ees and middle managers. External stakeholders include the local community,

federal government, suppliers, competitors, and customers. Finally, interface

stakeholders are represented by a corporation’s board of directors and its au-

ditors [201]. An alternative stakeholder framework, proposed by [46] while

evaluating corporate social performance and the relationship between corpora-

tions and society, consists of grouping stakeholders into primary and secondary

classes. The former is comprised of stakeholders who have a formal relationship

with and a direct economic impact upon the organization. The latter includes
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stakeholders that affect or are affected by the corporation’s operations, but

are not essential for the continuity of these operations.

In maritime transportation supply chain, stakeholders are commonly clus-

tered into two primary categories: external and internal stakeholders [245, 55,

19, 58]. [19] define internal stakeholders as those who constitute parts of the

port authority organization and are generally most concerned with return on

investment, shareholder value and creation of wealth. The authors subcatego-

rized the external stakeholders into four other groups: economic/contractual,

public policy, community/environmental, and academic/research. Economic/

contractual stakeholders are involved in port operations and are represented

by shippers, tenants, trucking companies, insurers, and others. Public policy

stakeholders are further divided into local, state, and federal. They include

government agencies that are responsible for transportation and economic af-

fairs, environmental agencies, planning departments and emergency manage-

ment agency. Community/environmental stakeholders consist of environmen-

tal groups, neighboring residents, community groups, and even the general

public. Finally, academic/research stakeholders are an important group, since

they often contribute with relevant information for the port planning process.

This cluster includes organizations and non-governmental groups that either

conduct their work independently or are contracted by another category of

stakeholder [19].

[164] proposed a classification where stakeholders are divided into four

groups: internal stakeholders, economic/contractual external stakeholders, pub-

lic policy stakeholders, and community stakeholders. [58] argued that the last

three stakeholder categories could be grouped together into a single category

of external stakeholders, resulting in the aforementioned internal and external
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stakeholder categorization. While studying the stakeholders’ perspective for

sustainable development of a port city, [115] divided port stakeholders similarly

to [164]. The four groups identified by the authors are internal stakeholders,

public sector, market players/corporate body, and community/interest groups.

They determined the level of influence held by each group of stakeholders in

making decisions and promoting reforms in favor of sustainable development.

In a somewhat similar approach to [46], [77] divided port stakeholders

focusing on the activities performed by each group. The authors classified

stakeholders in two groups: those who directly use, regulate, maintain, and

police the port, and those who indirectly benefit or are otherwise affected by

the port’s activities.

While the majority of researchers cluster port stakeholders into internal and

external groups, we observe that the choice of the paradigm should be driven

by the research question of interest and the granularity of the problem. There

is no single correct cluster method. Stakeholders’ interest and alignments

differ according to the problem being addressed and the diverse clustering

approaches allow researchers to focus on the appropriate elements for any

given scenario.

From the literature it is possible to determine the set of stakeholders that

are commonly identified by most authors (see Table 2.1). Through time, since

the early 2000’s, one can observe a tendency of research to address a more

holistic view, with a broader variety of stakeholders included in each study.

Figure 2.1 is a simple representation of the maritime supply chain agents most

commonly addressed in the literature: vessels, ports, inland shippers, and man-

ufacturers.
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Table 2.1: Stakeholders in the literature

Author
Port Authority
and Terminal
Operators

Vessels and
shipping
companies

Shippers
(manufacturers)

Intermodal
logistic
providers

Government Community Researchers

[164] X X X X X X
[165] X X X X
[15] X X X X X
[55] X X X X X
[23] X X X
[146] X X
[60] X X X X X
[58] X X X X X X
[114] X X X X X X
[177] X X X X
[44] X X X
[18] X X X X X X X
[19] X X X X X X X
[113] X X X X
[77] X X X X X X X
[231] X X X X
[207] X X X X X X X
[115] X X X X X X X
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[44] classifies vessels into three categories: tramp, liner, and industrial.

Tramp ships operate as taxis, owned by the so called carriers and rented out

by those to the shippers. It commonly operates from one port to others,

with flexibility on its schedule, and following the demand of cargo owners.

Liner ships, on the other hand, operate as buses: they have a fixed route

and schedule. Liner ships usually carry cargo from many different shippers,

meaning, each shipper uses only a portion of the liner ship capacity. Finally,

industrial shipping is responsible solely for in-house traffic [227].

Ports are responsible for loading and unloading cargo from incoming and

outgoing vessels, as well as for temporary storage of cargo. Ports are only a

part of the operation of moving goods through a supply chain. Before being

loaded (unloaded) to (from) the ship, the goods are transferred using inland

transportation, that may be rail or road.

Inland shippers are the agents responsible for the movement of goods in-

land. Traditionally, inland shippers are third-party companies, hired by man-

ufacturers to deliver finished goods or pick up raw material. However, it is not

uncommon for large manufacturers to manage their own inland transportation.

Finally, the last represented stakeholders are national manufacturers. Man-

ufacturers may import their supply chain’s input through the port, may export

their finished goods through the port, or both. In either one of these situations,

the manufacturer will be impacted by a port disruption.
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Figure 2.1: Port primary stakeholders

2.2.2 Sources of uncertainty and impacts to stakehold-

ers

According to [102], the distinction between risk and uncertainty relies on the

existence of probability. The term risk refers to situations in which prob-

abilities associated to events are available. Meanwhile, uncertainty is used

to describe situations in which information is too imprecise or unreliable to

be represented by probabilities. Knight’s definitions are commonly used in

decision theory and economics [119, 228, 198, 199, 147].

In risk assessment and reliability engineering, however, these definitions

should be used with caution since not all authors agree. Some authors argue

that uncertainty is inherent to risk and thus safety should be addressed with

the goal of both risk and uncertainty reduction [145]. Other researchers be-

lieve that a broader risk perspective is required and that uncertainty should

replace the probability component in the concept of risk [9, 10, 11]. A more

comprehensive definition of risk is presented in [74], where the authors define

risk along three dimensions: probability of occurrence, the potential conse-

quences of an occurrence, and the inherent source of the risk (e.g., negligence,

natural hazard, etc.)
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When considering specific areas of research, one can be more specific along

defining the relevant components of risk. For example, in a global supply

chain, [43] identified nine different categories of risk that need to be taken into

account: disruptions, delays, systems risk, forecast risk, intellectual property

risk, procurement risk, receivables risk, inventory risk, and capacity risk.

In maritime supply chains, commonly identified sources of uncertainty are

weather, ground transportation, and information sharing. Some natural haz-

ards, such as hurricanes and tropical storms, are continuously monitored. As

time passes and they approach the coast, the uncertainty about the future evo-

lution of the storm disappears but not about the consequences [124]. Even

if it was possible to know for sure the category of a hurricane on the Saffir-

Simpson Hurricane Wind Scale before it hit, the range of wind speed within a

category is wide enough that the storm impacts vary. Ground transportation

network also represents a significant source of uncertainty. Ground transporta-

tion network uncertainties include capacity, availability, and reliability. The

final source of uncertainty that is frequently pointed out is related to infor-

mation sharing throughout the network. The size, complexity, and number

of stakeholders all contribute to make effective communication a challenge in

the port environment [36, 207]. After a disaster, information sharing becomes

both more crucial and more challenging. When an event takes place, it is

likely that power will go out for extended periods of time, which interfere, if

not completely disrupt, communication. This obstruction, combined with the

fact that human behavior may become unpredictable after a disaster, might

cause the flow of information to become compromised to the point of total

lack of communication [213].

Risks and uncertainties can cause port delays and port inoperability, con-
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sequently leading to maritime supply chain disruptions. For example, if there

is a possibility that a railroad leading to a port may be obstructed due to

potential landslides caused by heavy rain, trains could not able to reach the

port to be loaded with incoming cargo from ships. The port has a limited

storage space for cargo and may become overcrowded if not managed prop-

erly. Therefore, faced with a potential railroad disruption, the port must make

the decision to continue to unload cargo from vessels or not. If the port de-

cides to suspend loading and unloading activities until further information on

the railroad condition is gathered, docked vessels that are not unloaded will

be delayed. Similarly, other intermodal transportation systems will also be

impacted by port operations delay. This is just one example of the cascading

effects that may impact port operations.

[196] divided the impacts of a port shutdown into three levels: port level,

macroeconomic level, and total impacts. On the port level, common impacts

are disruption of imports and exports as well as disruption of port activities.

At the macroeconomic level, possible impacts are intermediate good shortfalls,

final goods shortfalls, and reduction in final demand. Finally, the total impacts

level consists in national impacts that expand from the port region as well as

permanent loss of port business.

The following sections review literature on the impacts of port unrelia-

bility and disruptions to three stakeholders: ports, domestic manufacturers,

and vessels. A list of the reviewed literature focused on the impacts of port

disruptions to stakeholders is provided on Table 2.2.
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Impacts to ports

Multiple authors [176, 95, 175, 130, 196, 222] used an input-output modeling

approach to estimate the economic impacts of port disruptions. [175] quantify

the impact of port disruptions across interdependent industries by combining

the multi-regional inoperability input-output model to a simulation model of

the operations of an inland port. Similarly, [222] measured the economic im-

pacts of sudden disruptions to port operations by combining scenario analysis

and interdependency modeling. [197] and [176] focused on man-made risks,

evaluating the economic impact of a terrorist attack and shutdown of the port

of Los Angeles/Long Beach. [196] estimated the total economic impact of

a seaport disruption by combining demand-driven and supply driven input-

output analysis, as well as including resilience through adjustments for each

case studied.

[116] applied a stochastic timed Petri Net approach to model and analyze

the impact of a port disruption on supply chains, while [252] evaluated the eco-

nomic losses of port disruptions by taking into account both the daily cargo

throughput of the port and the weather. The likelihood of a disruption was

evaluated by [252] based on historic data of the ports, while the throughput

estimation was given by a regression analysis. The total economic loss calcu-

lated was then split into loss to the shippers, loss to the carriers, and loss to

the ports in terms of income and reputation.

Impacts to domestic manufacturers

Domestic manufacturers are also impacted by disruptions in ports and mar-

itime transportations systems. [120] developed a model capable of quantifying
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the costs faced by a global supply chain firm that makes use of a seaport sub-

ject to unexpected closure. A Markov decision model with uncertain lead times

was used to determine the cost-minimizing inventory management policy. [69]

interviewed logistics and supply chain managers from a group of 30 companies

based in Sydney, Australia. The researchers focused on supply chain disrup-

tions caused by an international maritime transportation element. [69] gained

a better understanding of the causes, implications, and costs of a supply chain

disruption from a company’s perspective. The disruption costs indicated by

the interviewed managers were lost sales, expediting costs, loss of reputation,

and impacts to the company’s cash flow. More recently, [127] measured the

impact of a port-related threat on supply chains faced by a manufacturer in

Singapore by comparing the total costs, warehousing costs, and transportation

costs for four different disruption scenarios.

Impacts to vessels

Although vessels can be classified in three different categories (tramp, indus-

trial and liners), this review focus on liner shippers, as these are the most

commonly studied types of vessels on the impact of port disruption to mar-

itime shippers. As previously stated, liner shipping operations are different

from other shipping operations, in the sense that they have a fixed itinerary

and schedule. For that reason, ideal liner service networks have low operating

costs, high frequencies, fast transit times, and both tight and reliable voyage

schedules. Liner shipping most commonly transports containers. Container

transport systems are characterized by tight time schedules. Therefore, when

planning routes and schedules, liner services must maintain a high degree of

schedule reliability [166, 195].

19



Port-related uncertainty is the primary source of volatility and unreliability

on vessels schedules, leading to economic impacts to shippers. Moreover, global

transport networks are growing in both size and complexity, making the design

and operation of liner services a challenging task [187, 166]. While there

is extensive research on route scheduling, port selection, and fleet size and

scheduling regarding the liner shipping industry [236, 227], work focused on

the impact of a disruption in liner shipping operations is still scarce.

[166] explored potential costs experienced by liner shippers and their clients,

due to port unreliability. From the liner shippers perspective, the authors

identified potential costs in the form of time loss, loss of customer, additional

operating costs, additional port fees and tariffs, and increased fuel consump-

tion. For the liner clients, delay may result in increased logistics cost, in the

form of extra inventory and transportation costs, additional production costs,

and potential product losses. The authors also explored the causes of schedule

unreliability in the liner shipping industry and provided measures and planning

tools available to shipping lines to address the issue. [166] classified the causes

of delays into four categories: terminal operations, port access, maritime pas-

sages, and chance. The first and second groups are the ones of interest in this

work. The first group, terminal operations, refers to port or terminal conges-

tion before berthing or before starting the loading or unloading operations.

Meanwhile, the second group, port access, refers to disruption in a port’s ac-

cess channel. This may happen for multiple reasons, such as irregularities in

pilotage, low availability of pilots or tug boats, delays at sea locks, or access

channel availability related to tidal windows.

Identifying potential risks and solutions are important steps to minimize

the impacts suffered by the shippers due to port uncertainties and disrup-
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tions. [246] developed a risk assessment framework for container lines supply

chains based on the Formal Safety Assessment methodology. The developed

framework is summarized in five steps: vulnerability identification, quantified

estimation of risks associated with the identified vulnerability, development of

risk control options, cost and benefit analysis, and recommendation for deci-

sion making. [187] evaluated the impacts of port-related uncertainty on vessels

schedules in liner shipping routes, focusing on minimizing fuel emissions. The

authors formulated and solved the optimal vessel scheduling problem, in which

both delay and fuel costs were considered, using simulation-based stochastic

approximation methods. [38] assessed vulnerability of intercontinental ports

and estimated the impact of port closures on the total supply chain cost from

a liner shipping perspective through the formulation of different optimization

models.

Finally, [28] proposed a formulation for dealing with disruptions in liner

shipping named Vessel Schedule Recovery Problem based on the airline indus-

try. The three recovery modes considered on their model are speed adjustment,

port call omission, and port call swap. These actions can potentially lower

costs by allowing the maintenance of slow-steaming policy, while also decreas-

ing delay costs in a liner shipping network. The [28] formulation is particularly

interesting given that there are many similarities between maritime and airway

transportation. We speculate that there is more to be learned from the airline

industry that could be applied to maritime transportation problems.

2.3 Port Resilience

[85] defines resilience “as the inherent capacity of a system to adjust its func-
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Table 2.2: Impacts of port unreliability and disruptions to stakeholders

Author Port Manufacturers Vessels

[197] X
[176] X
[95] X
[175] X
[130] X
[116] X
[196] X
[252] X
[222] X
[120] X
[69] X
[127] X
[246] X
[166] X
[187] X
[187] X
[38] X
[28] X
[195] X
[236] X
[227] X

tioning prior to or following changes and disturbances so that it can sustain

operations even after a major mishap or in the face of continuous disruptions

stress.” [133] and [108] both define resilience in the context of a maritime

supply chain as a function of system’s vulnerability and its capacity to recover

to a sufficient level of service within an acceptable time frame after a disrup-

tion takes place. Similarly, in [149], resilience accounts for both the innate

reliability of a system and the ability of mitigating negative effects through

quick recovery actions.

Supply chains involving port operations are particularly complex and vul-

nerable to both internal and external disruptions. Moreover, port-related dis-
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ruption can trigger a cascade effect that can potentially affect the entire supply

chain, as well as impacting economical and societal well-being of its surround-

ings [108]. Therefore, increasing global supply chain resilience is closely related

to assessing port vulnerability [127, 15, 93].

Common resilience actions proposed by authors to minimize the impact of

a port disruption from a manufacturer perspective are the use of inventories

and input substitution [229, 196, 43]. Other authors suggest the promotion of

structural integrity to increase resilience, through the development of physi-

cally stronger infrastructure systems during the design and construction phases

[169, 53]. Creating modularity in systems, increasing staffing in safety-critical

areas and promoting training to increase knowledge, flexibility, and redun-

dancy in the system are also mentioned in the literature [94, 135, 169].

The actions mentioned above, even though useful when dealing with risks

and uncertainty, may not be enough to address the magnitude of the impacts

of a port disruption. In the following sections, resilience assessment approaches

are analyzed following a classification scheme suggested by [86]. First, work

on qualitative assessment of maritime supply chain resilience is presented,

consisting of conceptual papers and frameworks. Next, literature regarding

quantitative assessment methods is reviewed. This section includes proba-

bilistic and deterministic approaches, risk assessment methods, optimization

models, simulation models, and fuzzy logic models. Lastly, a brief review of

port resilience in the light of climate change is presented.
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2.3.1 Qualitative assessment of maritime supply chain

resilience

Conceptual frameworks constitute the majority of qualitative approaches pro-

posed to assess maritime supply chain resilience.

According to [15], the intricate interaction and complex interdependency

between the elements of maritime supply chains result in an inherently vulner-

able system. To examine maritime supply chain vulnerability, the authors de-

fined two classifications of vulnerability. Type I refers to vulnerability emerg-

ing from operational complexity within a port, including both port infrastruc-

ture and operators. Type II refers to vulnerability of maritime movements,

where the port is simply a node of the system. According to the authors, con-

sidering both types of vulnerability and their interdependencies can promote

a better understanding of the system for future crises.

As explained previously, [77] classified the problem of port resilience as a

“wicked problem”. [77] work, above all, had the goal of changing the way that

the port resilience problem is looked at. By presenting the port resilience in

the wicked problem context, the authors aim to change the decision-making

and policy-making approaches used by port managers. From the presented

perspective, port managers should make decisions in terms of mitigation and

minimization of the consequences of a disruption. The authors also emphasized

that the problem cannot be solved overnight, rather, it should be mitigated

overtime with the collaboration of stakeholders.

[134] developed a framework based on risk analysis and management method-

ologies that aids in the identification of elements of uncertainty in maritime

infrastructure and transportation systems. Their framework consisted of three
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phases: application of risk assessment methodology to identify, analyze and

prioritize risks; utilization of a cause-and-effect diagram methodology to create

a tree of events and effects; and at last, application of a decision tree analysis

methodology to assess the strategies and their value for the system. [135] later

applied a similar framework to port infrastructure systems.

[23] proposed a structured formal vulnerability assessment (FVA) method-

ology to evaluate the vulnerability of a maritime supply chain. According to

the authors, the methodology allows a clear and systematic identification and

mitigation of risks in the maritime transportation network.

[87] evaluated seven vulnerability factors derived from the literature and

previous disasters applying geographic information systems. The produced

model aimed to assist decision makers in obtaining a comprehensive under-

standing of port risk. Moreover, the risk analysis were to be used to help

decision makers understand the vulnerable system they are dealing with and

reduce disaster risks by choosing successful strategies of disaster prevention

and preparedness.

[146] proposed the so-called Cognitive Process Architecture Framework

(CPAF) to help seaport stakeholders sense changes, perceive operational sce-

narios, choose response alternatives based on trade-offs, and monitor the im-

plementation of the responses. The authors believed that the great variety of

stakeholders in seaports can easily produce fragmented information flows that

undermine its ability of a systemic response to disruption events.

[77] developed a conceptual framework for developing resilience strategies

for ports in the context of adverse weather events. The authors defend that,

due to the dynamic nature and constant change of the problem, mitigation

is the best way to approach the problem. The developed framework consists
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of the following steps: data collection and analysis, stakeholder analysis, re-

silience strategies development, and strategies implementation.

Due to its complexity and high levels of uncertainty, [94] proposed that

seaport operations should be broken down to facilitate the investigation of re-

silience strategies. The authors pointed out that different risk categories affect

different stakeholders and developed a list of the most common risk events and

the most significant causes of these events. They separated the risk events in

five categories: operational risk factors, which included port equipment failure,

vessel accident and cargo spillage; security risk factors, such as sabotage and

terrorism attacks; technical risk factors, consisting of lack of equipment main-

tenance, lack of navigational aid maintenance, as well as lack of IT system and

dredging maintenance; organizational risk factors, for example, labor unrest or

congestion at the storage area, berth or gate; and, finally, natural risks factors,

which include geologic, hydrologic and atmospheric events [94, 93].

Finally, [128] conducted interviews with professionals from the port man-

agement sector, as well as port users, to identify the most common port-related

supply chain threats. Based on these interviews, the authors proposed a prac-

tical management model with the intent of increasing port resilience. [113]

also conducted interviews in order to develop a quality function deployment

approach to improve maritime supply chain resilience. They interviewed con-

tainers liners and cargo shippers in order to be able to take both customer

requirements and maritime risks into account when prioritizing different re-

silience solutions.

Authors frequently classify ports as a system-of-system, due to their com-

plexity, and suggest that they should be analyzed using System Dynamics or

Systems Thinking methods. In terms of disruptions on the maritime trans-

26



portation supply chain, multiple authors utilized system dynamics to model

the uncertainties and complexities of those types of disruption [170, 247, 111].

[247] used system dynamics to evaluate the impact that security procedures

have on the performance of seaports. More specifically, the authors analyze the

relationship between seaport security levels and container throughput. Their

results show that increasing port security has a ripple effect on the productiv-

ity level of the entire port. Similarly, [111] used System Dynamics modeling to

analyze the impacts of policy interventions on the ability of different maritime

agents to mitigate risks and recover from disruptions. Their model demon-

strated that Disaster Preparedness levels are dependent, among other factors,

on port activities and attitude towards risk prevention.

[136] also approached the maritime transportation system from a system

of systems point of view. The authors applied systems thinking methodologies

and its systemic tools to study critical properties of the system. According to

the authors, applying a systems thinking approach can help stakeholders have

a better understanding about the system and empower them to solve problems

that may arise in a systemic way.

2.3.2 Quantitative assessment of maritime supply chain

resilience

In this section, a review of quantitative assessment methods of port resilience

is provided. These include quantitative risk assessment methods, simulation

models, decision support, fuzzy assessments, among others.

In maritime transportation systems and maritime supply chain, risk as-

sessment is frequently performed by researchers with a wide variety of goals
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[78]. [75] utilized risk assessment to identify, manage, and reduce risks in the

transport of petroleum products at sea, focusing on the environmental impacts

of maritime transportation accidents. [251] constructed a Bayesian belief net-

work model for risk assessment and prediction of the consequences of different

types of accidents in the Tiajian port. [214] assessed the structural safety

of ships at sea, while [122] reviewed quantitative risk assessment models for

vessels sailing in maritime waterways.

The utilization of risk assessment methods to address and improve mar-

itime supply chain and port resilience is less frequent. According to [12],

resilience assessment and management can be performed without performing

risk assessments, but both can be supported and even improved with risk

assessment techniques. The author used redundancy as an example for their

claims, arguing that adding redundancy to a system does not require assessing

specific events and associated risk.

[25] identified event tree analysis, Markov process, failure mode and effects,

and fault tree analysis as the major hazard analysis tools used in the litera-

ture of risk assessment in maritime transportation systems. [143] developed

a risk assessment method consisting of a generic bow-tie based risk analysis

combined with both Fault Tree Analysis and Event Tree Analysis to evaluate

risk factors. Later, [144] proposed a new methodology for risk evaluation for

seaport stakeholders based on fuzzy set theory and evidential reasoning.

In their work, [24] combined risk assessment methods and inventory routing

simulation of a maritime supply chain. It aimed to systematically address

vulnerability in a maritime transportation system using a formal vulnerability

assessment approach. Simulations with heuristic-based tools allow the authors

to quantify the impact of the disruption scenarios, as well as the mitigation
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measures.

[93] believed that the traditional risk modeling approaches cannot address

uncertainty effectively and are, therefore, inappropriate to address the com-

plexity of seaport operations risk assessment. To better address uncertainty in

seaport operations, the authors proposed a methodology using fuzzy analyti-

cal hierarchy process and evidential reasoning. Later, [94] used Bayesian belief

network (BBN) to assess the influencing factors leading to disruption of op-

erations. According to the authors, differently than other approaches for risk

analysis, BBN has the ability to address randomness and capture non-linear

causal relationships in complex systems. The authors also used a Fuzzy Ana-

lytical Hierarchy Process to evaluate the relative influence of each influencing

variable.

Ship rerouting is a mitigation strategy that is proposed by multiple authors.

[229] proposed rerouting on their model through an online freight network

assignment model. They proposed utilizing real time tracking technology to

find the best recourse options for the users in order to minimize transportation

costs while also avoiding costly delays and disruptions. The method could also

be used to estimate network flows and predict the behavior of freight decision

makers under a disruption. The authors addressed uncertainty by applying

their model to different scenarios with different weather impacts and port

operating conditions.

[137] developed a simulation model capable of making rerouting decisions

with the goal of minimizing the impact of crisis conditions on a supply chain.

They performed statistical analysis to illustrate how the simulation model

can be used by port decision makers. The system performance was measured

through the creation of five different scenarios, each with different percent-
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ages of ships being rerouted to different ports when a port in Texas is under

disruption. Each scenario was compared against a normal scenario (without

disruption) and statistical tests were performed to determine the significance

of the changes in terms of queue length and average time of a container in the

system.

[117] used discrete-event simulation to explore the feasible paths before

and during port disruptions on the West Coast of the United States. The

model compared fully and partially disrupted scenarios to the port current

operations.

[169] suggested a quantitative assessment of resilience for a maritime trans-

portation system based on key performance measures of the system. Resilience

is measured as the ratio between the original output of the system (prior to the

disruption) to the output after the disruption. The three identified resilience

metrics are tonnage resilience, time resilience and cost resilience. After the

identification, the system is modeled using optimization techniques and a sys-

tem dynamics model, where the objective function of the network optimization

problem is to maximize the total flow on the network links.

[181] developed a decision support system that aims to optimize the move-

ment of cargo through a port network during a disaster. The developed algo-

rithm allocates ships to ports maximizing the use of network capacity, while

considering inland transportation, port and inventory costs. Port capacities

are updated dynamically, in order to reflect the congestion conditions during

the disaster.

[14] used a dynamic decision model to minimize the loss of revenue a port

may suffer during a hurricane by determining when a port shutdown should

be ordered. A port is the agent that suffers the most with the disruption,
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since it not only loses revenue, but also incurs cost of preparation. Due to the

uncertainty of a hurricane path, finding the right moment to perform the port

shutdown not only reduces the costs, but also avoids potential damage in case

the preparation is not correctly made. [239] extended their work by adding the

perspective of incoming cargo vessels to the problem. In the newly formulated

problem, vessels seek to minimize the impact suffered from a hurricane landfall

by making the choice between rerouting to a port outside the hurricane’s path

or waiting for the storm to pass and the port to reopen. The first option

takes into account extra fuel and inland transportation costs incurred by the

shipper, while the second option includes possible extra labor and delay costs.

The authors formulated the problems as Markov decision processes and solved

using a backward-induction dynamic programming.

Ship rerouting is an alternative to avoid delays due to port disruptions.

However, it has multiple constraints associated with it, including: dock avail-

ability at the rerouted port, loading and unloading equipment availability at

the port, cost of last minute docking and unloading, fuel availability onboard to

complete the rerouting, cost of increased fuel consumption, and inland trans-

portation network availability. Although the goal of rerouting is ultimately

to minimize delay costs while the port returns to its normal operations, the

aforementioned costs can easily outweigh rerouting benefits, especially if the

rerouting is an unpremeditated decision. Existing papers account for many of

these costs, but none takes all these aspects into consideration.
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2.3.3 Port resilience to weather events

Located at the interface between land and large bodies of water, ports are

particularly vulnerable to weather hazards such as floods and storms.

According to [141], vulnerability of ports to weather events is a function

of three components: exposure, sensitivity, and adaptive capacity. Ports lo-

cated in areas prone to hurricanes present a higher than average exposure to

this type of extreme weather events. Other examples of exposure of ports to

weather events are ports located in earthquake prone areas and areas present-

ing a higher than average rate of sea level change. Sensitivity is the degree to

which the port is affected by climate-related stimuli. Poorly built or poorly

maintained ports are notably more sensitive to extreme weather events than

newer, well-maintained structures. Finally, adaptive capacity refers to the

ability of port stakeholders to adjust to potential damage by investing in re-

silience actions, plans, and personnel. [140] studied seaport exposure and

sensitivity to extreme weather by surveying port experts on their perceived

correlation of previously determined indicators of port vulnerability and the

three components of vulnerability.

Climate change is causing weather events to become more intense every

year, and ports are specially vulnerable to its impacts, such as sea-level rise,

stronger storm surges and increased coastal flood [18, 225]. Moreover, port

cities are commonly important concentrations for population, with many of

the most populated cities in the world being port cities. Therefore, dealing

with extreme weather impacts in ports are not only an economical issue, but

also a social issue [80].

Different reasons encouraged different ports to seek climate resilient struc-
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tures. In the case of the Port of Rotterdam (Netherlands) the reason for

addressing the vulnerability of the port structure to climate change was the

need to deal with the city’s extreme vulnerability. In order to do so, the port

joined forces with other stakeholders with the ultimate goal of making the

city one of the safest port cities in the world and fully resilient to climate

impacts [184]. Meanwhile, in Australia, the reason behind resilience enhance-

ment of the Sydney Port and Port Kembla was the fear that climate change

might impact the successful operations of the port sector; and in the Port of

New York and New Jersey the reason was actually a response to a poor rank-

ing in an Organization for Economic Co-operation and Development (OECD)

study [139, 168]. [212] compared the resilience actions taken by the ports

of Rotterdam, San Diego, and the Naval Base Kitsap, and observed the most

common adaptation choices made from a robustness perspective. However,

most ports around the world are still unaware of the latent hazards of climate

change or are slowly starting to acknowledge the necessity of investments in

port resilience [18].

[168] conducted interviews with seventy senior managements of the mar-

itime sector in Ireland, with the goal of understanding and identifying the pre-

paredness of the sector to build adaptive capacity to adapt to climate change.

The authors determined that, even though most interviewees were aware of

the importance of environmental management of the port sector and most

perceived the impact of climate changes on their lives, few actually compre-

hended the importance of mitigation and adaptation actions to climate change

in the port sector. Similarly, [104] determined the perceptions of the various

port stakeholders as to the responsibility of climate adaptation leadership at

the Port of Providence. Through interviews, the authors concluded that while
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stakeholders were aware of the importance of implementing resilience strate-

gies, the groups diverged greatly on whose responsibility said implementation

was.

There is a dearth of climate change related port resilience literature. The

limited research that does exist primarily focuses on particular ports. While

such work presents significant findings for the specific case studies involved,

it is difficult or impossible to extend the work as a basis for general climate-

change motivated operation policies, frameworks, or guidelines.

2.4 Ports as Part of an Intermodal Transporta-

tion Network

Intermodal transportation refers to the transportation of a person or a load

from an origin to a destination, through a sequence of two or more transporta-

tion modes. The transfer between two modes is performed at an intermodal

terminal. Similarly, when addressing freight rather than people, intermodal

freight transportation refers to a multimodal chain of container-transportation

services [41, 52, 73, 129]. In an intermodal transport chain, it is usual that

the shortest possible length is traveled by road, due to its higher cost. Most

of the route is traveled by rail, ocean-going vessel or inland waterway [129].

Globalization is transforming ports from simple bridges between land and

sea to important providers, responsible for complex logistics networks through

the usage of intermodal transportation networks [51, 173]. Intermodal trans-

port operations in maritime ports are commonly located at container termi-

nals, being divided into seaside operations, storage operations, and landside
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operations. On the landside, containers are loaded to or unloaded from trucks

or trains. Similarly, on the seaside, containers are loaded to or unloaded from

vessels. Storage operations refer to the transportation and storing of contain-

ers at the yard [108].

The tendency of increased integration between land and sea operations

emerge from the understanding of the necessity of having a holistic container

terminal operation [127]. This increasing importance has been attracting the

attention of researches progressively, as studies related to containerization and

intermodal transportation networks involving ports are beginning to emerge.

However, there is still a massive gap between the amount of studies focused

solely on rail and road intermodal transportation and the ones incorporating

the maritime sector [217].

[36] performed a literature review where they identify intermodal research

topics and determine gaps in the literature regarding decision support systems

for intermodal transport. The authors were able to identify trends among

the research papers. Three trends stood out: the development of models in a

dynamic context, the introduction of environmental concerns, and the appli-

cation of Operations Research techniques innovatively. The main difficulties

regarding decision support models for intermodal transport identified by the

authors in the literature refer to data availability and sharing, network size

and computational time, and incorporation of all the agents in the decision

support tools [36].

The following sections provide a literature review on containerization, re-

silience actions, and the utilization of quantitative methods to address inter-

modal transportation problems.
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2.4.1 Containerization

Containerization is the name given to the transportation of cargo between

different transportation modes through the use of standardized containers,

eliminating the need for re-handling its contents [192]. A significant part

of the international movement of goods is supported by containerized inter-

modal transportation and efficient container movement is fundamental for an

overall efficient intermodal supply chain. Containerized transportation is also

timely, reliable, and economical. Containers transportation equipment are

standardized, meaning movements and handling can be performed efficiently.

Containers are also considered a safe transportation method in terms of cargo

loss and damage [52].

Transportation of cargo with containers is the foundation of globalization

and international trade. Containerization is a key mechanism when providing

a global transportation with high quality and low price [166]. The utilization

of containers improve supply chain efficiency and reliability. Proof of these

benefits is the growth rates of container transportation in the last century

[3, 179]. Container transport is a highly synchronized process and, if a segment

of the container transportation does not function accordingly, the entire chain

will be affected [195].

To accommodate container ships and container handling, ports and con-

tainer terminals have been renewed or built all over the world. Following

the trend, containerization is increasingly receiving attention from the litera-

ture. Topics of interest include container vessels scheduling and operational

planning and control in container terminals. The second category includes

problems as berth scheduling, container crane scheduling, stowage planning
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and sequencing, storage activities in the yard, and allocation of yard cranes

and transporters [52].

2.4.2 Resilience actions

Work in intermodal transportation network considering seaports as part of the

network are still far behind when compared to intermodal networks consisting

solely of railways and roads [217]. Similarly, research focused on intermodal

transportation network resilience including maritime transportation are scarce.

This section provides a review of the existing literature on the topic.

An action that is widely accepted among authors in terms of resilience in in-

termodal transportation networks refers to information sharing [207, 36, 108].

Due to the presence of multiple agents, an intermodal transport requires more

data exchange than an unimodal transport system. Data exchange is a very

sensitive feature in any network, and becomes especially problematic when

multiple agents, with sometimes conflicting preferences, are involved [36, 207].

[108] used a simulation game to bring awareness to the fact that communica-

tion, information sharing, and plan alignment among main stakeholders within

a container terminal is severely overlooked.

[149] proposed an intermodal resilience framework that can be applied for

any intermodal component and has the ability to quantify the component’s

level of vulnerability, being a useful analysis tool for decision makers.

[5] sought to facilitate routing and rerouting options in the case of a network

disruption. They did so by establishing models and solution approaches with

the goal of determining the criticality of transportation infrastructures. The

authors developed models for different disrupted transportation networks: two
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for railroad networks and one for an intermodal system. The models built by

the authors take into account the congestion effects that are likely to happen

after a disaster takes place.

2.4.3 Quantitative methods in intermodal transporta-

tion

The use of Operations Research (OR) in intermodal transportation is still in

its early stages [73, 52].

Large intermodal transportation network problems usually cannot be solved

in a timely manner using traditional operations research techniques. The com-

binatorial explosion of these problems is one of its main difficulties when trying

to obtain the optimal solution. [73] addressed this problem by decomposing

the intermodal transportation problem into two subproblems and solving it

with a new hybrid approach. The authors developed a combination of linear

programming and automated planning. Linear programming is used to opti-

mally solve the assignments subproblem, while automated planning solved the

selection of the best transportation mode for the problem [73].

[101] developed a framework that combined the minimum cost flow prob-

lem on a intermodal freight network and three types of economies of scale:

quantity, distance, and vehicle size. The authors solve the problem using a

proposed genetic algorithm. [41] developed an optimal transport algorithm

for intermodal transport using dynamic programming to solve a weighted con-

strained shortest path problem. Finally, [89] developed an optimization model

to analyze the economics of container logistics systems beyond ports. The

author focused on seaports at the Campania region, in Italy, and aimed to
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evaluate possible economic advantages of utilizing regional intermodal facili-

ties and intermodal solutions for inland distributions.

Simulation models were used by multiple authors to gain a better under-

standing of intermodal supply chains. [230] observed the Finnish intermodal

maritime supply chain to identify and categorize the risks existent in the sup-

ply chain. The authors conducted interviews with members of different stages

of the intermodal maritime supply chain and worked with them in identify-

ing the risks and categorizing the risk effects. Once the risk probabilities and

impacts were determined based on the interviews, the authors implemented a

Monte Carlo simulation model to investigate the impacts that risk events had

in terms of delay in the supply chain.

[1] developed three simulation models with the goal of understanding the

movement of goods at a port. Similarly, [32] used an event-driven and agent-

based traffic micro simulation model to analyze intermodal transport networks.

The authors used real-life data to model a transport network, including the

agents of the network and their decisions in the event of a disruption. The

models aided planners and operators in the identification of critical portions

of the network and make decisions to reduce network vulnerability.

2.5 Concluding Remarks

Ports are extremely important agents in a global supply chain, being respon-

sible for transporting a large percentage of the world’s freight. The large

amount of cargo moved daily through ports, added to the presence of multi-

ple stakeholders, make the job of securing port operations especially complex.

Moreover, due to their location, ports are especially vulnerable to weather
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events, such as hurricanes, storm surges, and flooding.

The objective of this work is to review the existing literature on the im-

pact of port disruptions in the maritime supply chain. This chapter reviews

the existing agents on the maritime supply chain and the economic impacts

they suffer in light of a port disruption. Literature on port resilience is also ex-

amined. Finally, intermodal transportation systems that account for maritime

transportation nodes are reviewed.

It is clear that the number of studies available on port disruption is small

when compared to the disruption of other agents in transportation systems.

The lack of attention received is even more puzzling when considering the cargo

volume traded daily at ports and the economic impact that port operations

have to the global economy.

Several researchers have proposed qualitative frameworks and strategies

to improve maritime supply chain resilience and address port vulnerabilities.

Commonly, the motivation is to help port managers and stakeholders with

the decision making process during disruptive events. Upon review, we find

considerable overlap among the proposed frameworks along with significant

repetition of ideas. Research to unify these frameworks into a general standard

would help reduce redundancy and promote novel developments in the area.

This review also reveals that, even though there are quite a few quantitative

port resilience methodologies, no author simultaneously considers more than

a few possible resilience actions which are available in the literature. Ship

rerouting, which is an alternative explored by various authors, has significant

difficulties associated with it and is not always a viable option, especially in the

case of short term disruptions. Moreover, we find that port sustainability and

port resilience to climate change are important topics that are understudied.
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While most of the existing quantitative work relating to climate change is

characterized by case studies, with significant findings for the specific ports or

port groups present in the study, the literature lacks guidelines that can be

applied generally.

Finally, it is evident that maritime supply chain intermodal network re-

silience modeling is still in its early stages and has much room for improve-

ment. This is especially clear when compared to railways and roads intermodal

networks. Containerized intermodal transportation is the mode used to move

a significant parcel of cargo, especially international cargo. Yet, studies in-

cluding the maritime transportation portion of it are limited.

With respect to future research directions, we note that the existing litera-

ture on maritime supply chain resilience is dominated by qualitative concepts.

We believe that more quantitative approaches would improve the rigor and

clarity of the methodologies. There is a gap regarding the formulation of com-

prehensive ship rerouting problems, including all possible costs that may arise

from the rerouting decision. Detailed analysis can improve decision-support

and identify guidelines for determining when ship rerouting should be per-

formed. Furthermore, there is deficiency of analytical frameworks addressing

port resilience in context of climate change. An equally important research

suggestion is in the maritime intermodal transportation area. As previously

stated, port disruption’s can cause cascading effects to the entire supply chain.

There are insufficient studies to properly understand and address these effects.

Helpful information and guidelines that could arise from resilience related re-

search in this area include improved models for intermodal operations plan-

ning, optimal intermodal node allocations, and intermodal capacity planning.

In summary, ports are significant components of the U.S. economy account-
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ing for trillions of dollars in economic activity each year. Given their location

along coastlines they are susceptible to natural hazards such as hurricanes

and storm surge, which are expected to intensify in the future due to climate

change. Filling the research gaps identified in this chapter will help further

the science relating to port and maritime supply chain resiliency.
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Chapter 3

Modeling the economic impact

of incoming tropical cyclones

using machine learning

3.1 Introduction

Tropical cyclones are storm systems forming over tropical or subtropical wa-

ters that are characterized by a low pressure center and rapidly rotating

strong winds. Depending on their maximum sustained wind speed, tropi-

cal cyclones can be classified as tropical depressions (winds below 33 knots),

tropical storms (winds between 34 and 63 knots), or hurricanes (winds above

64 knots) [152, 84]. Tropical cyclones typically produce heavy rain and may

cause storm surge [123]. Coastal regions are particularly vulnerable to the

impact of these potentially destructive natural systems. Tropical cyclones ac-

count for a considerable fraction of economic losses due to natural hazards

[182, 253]. Between 2000 and 2019, 26 tropical cyclones caused losses exceed-
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ing US $1 billion each across the United States [156]. During this period,

nine out of the ten natural hazards that caused the most economic losses were

tropical cyclones [156]. Not only expensive, tropical cyclones are also rel-

atively frequent events. Between the same period, 306 named storms were

recorded in the North Atlantic Ocean, 146 of which reached hurricane sta-

tus. Figure 3.1 depicts the number of named storms per year, as well as the

number of these storms that were classified as hurricanes. The observations

of named storms from the National Hurricane Center (NHC) include tropical

storms, hurricanes, and subtropical storms. Subtropical storms are subtropi-

cal cyclones with a maximum sustained wind speed of at least 34 knots [153]

and are reclassified as fully tropical cyclones if they intensify enough to reach

hurricane force winds.

Hurricanes are commonly classified using the Saffir-Simpson Hurricane

Wind Scale (SSHS) which uses the maximum sustained wind speed when as-

sessing its strength. The SSHS classifies hurricanes from categories 1 to 5,

where 1 represents the least intense hurricanes and 5 represents catastrophic

hurricanes with the highest maximum sustained wind speeds. The NHC has

utilized the SSHS on its weather advisories and reports for over 40 years. More-

over, hurricane related communications, public warnings, evacuation orders,

among other important mitigation actions are based on this scale. Port shut-

down decisions, for example, are solely dependent upon wind speed [240, 241].

This scale, even though widely used, has the significant shortcoming of

ignoring other important attributes of the storm system. As we demonstrate

quantitatively in this research, wind speed characteristics alone are grossly

inadequate to assess the damage potential of a tropical cyclone. It is not

uncommon for hurricanes with low SSHS indices to be equally or more de-
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Figure 3.1: Named storms and hurricanes in the North Atlantic Ocean (2000
– 2019)

structive than hurricanes with higher SSHS indices. Furthermore, tropical

storms, which are not even considered on the SSHS can also be destructive,

as observed during tropical storm Alison in 2001.

Various researchers have observed the limitations of the SSHS and de-

veloped alternative methods to measure intensity and predict the impact of

incoming hurricanes. However, these methods fail to accurately reflect the ac-

tual economic impact caused by a hurricane. To the best of our knowledge, no

work to-date has successfully related the particular characteristics of tropical

cyclones to the impacts and destruction caused by them. This is due, in part,

to three elements: (i) the inherent variability of the economic qualities, geo-
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graphic features, and built environment characteristics of the regions of impact,

(ii) the complexity of understanding the critical storm characteristics, and (iii)

the existing measures have been developed without direct consideration of the

storm-region intersection. In this work, we address a component of the first

element (namely, the economic variability), and we employ a data-driven and

machine learning approach to address the second and third elements.

The remainder of this chapter is organized as follows: Section 3.2 presents

literature associated with existing alternative metrics to the SSHS and a review

of the utilization of machine learning methods on weather-related problems;

Section 3.3 introduces the concept of Storm Damage Ratio and its calcula-

tion; Section 3.4 presents the methodology, including a discussion on weather

data collection, selection, and transformation, as well as a description of the

relevant machine learning methods; Section 3.5 presents the analysis results;

and Section 3.6 concludes this dissertation chapter and describes appropriate

extensions for future research.

3.2 Literature Review

Throughout this chapter, the following notation will be utilized: vmax is the

maximum sustained wind speed of a tropical cyclone, tropical storm or hur-

ricane; pmin represents the minimum central pressure of a storm; R34 is the

radius of 34 knots wind speed, also referred to as the outermost wind radius;

R50 is the radius of 50 knots wind speed; and R64 is the radius of 64 knots

wind speed, also referred to as the radius of hurricane force winds.
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3.2.1 Alternative Methods to SSHS

The accumulated cyclone energy (ACE) is the metric used by the NHC to

evaluate the intensity of hurricane seasons [158]. The ACE, as the SSHS,

depends exclusively on the maximum sustained wind speed and only considers

events with maximum sustained wind speed above 64 knots. The ACE is

defined as the sum of the squares of the maximum wind speed over the period

containing hurricane-force winds [232, 235].

ACE =
∑

v2max

The power dissipation index (PDI) is similar to ACE and, again, only takes

wind speed into consideration. The PDI is the sum of the cubic of the maxi-

mum wind speed of a storm [232, 235].

PDI =
∑

v3max

The integrated kinetic energy (IKE) metric was developed by [186] and is the

foundation of multiple studies ever since it was published [142, 103, 17, 31].

It is more complete than ACE and PDI, given that it takes into account both

wind speeds and storm radii. It is calculated by integrating over the storm

domain volume (V ), and accounting for different quadrants of the storm (since

the storm may be asymmetric), for each wind speed threshold (34 to 50, 50

to 64, and 64 to vmax), where d is a constant value for air density and v is the

surface wind speed within specific wind speed ranges [186].

IKE =

∫
V

1

2
dAv2dV
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The hurricane classification index, proposed by [97] and further developed

on [98] and [99], is a combination of three separate indices: hurricane intensity

index (HII), hurricane hazard index (HHI), and hurricane surge index (HSI).

HII is a function of the ratio of cyclone wind speed to a given reference wind

speed, vref, equivalent to 64 knots.

HII =

(
vmax

vref

)2

HHI includes both a maximum wind speed measure and a value for the storm

size, in particular, the ratio of the size metric, R64, to a specified reference

value, Rref
64 , the radius corresponding to Hurricane Andrew [99],

HHI =

(
vmax

vref

)3(
R64

Rref
64

)

HSI is intended to reflect the potential surge impact of a hurricane and is a

function of the storm’s size ratio and the storm surge index (SSI) defined in

[92] and [99],

HSI = 0.36

(
R64

Rref
64

)
SSI

However, as demonstrated in [242] and expanded in this work to include named

storms through 2018, none of the aforementioned measures (ACE, PDI, IKE,

HII, HHI, or HSI) have a strong relationship to the immediate economic

impacts of a hurricane after landfall on the US coast. Immediate damage

data, obtained from the National Oceanic and Atmospheric Administration

(NOAA), includes only direct losses associated with a storm’s impact. Indi-

rect damage or long-term macroeconomic effects are not considered [183]. The
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damage dataset used in this work contains over 1,200,000 entries on damage

caused by multiple types of weather events between the years 2000 and 2018.

The entries referring to tropical cyclones are selected and the name of the

storm is obtained from the event description contained in the dataset. Table

3.1 shows the Pearson, Kendall, and Spearman correlation coefficients, r, τ ,

and ρ, respectively, for the alternative indices measured at time of landfall

with the economic damages of hurricanes between 2000 and 2018. The Pear-

son coefficient is a measure of the strength of a linear correlation between two

variables, whereas Kendall’s τ and the Spearman coefficient are measures of

rank correlation. The p-value of each measure is listed in parentheses below the

coefficients. Empirically, HII has the largest linear correlation among the al-

ternatives, yet r = 0.280 is not typically considered a strong correlation value.

PDI has the strongest rank relationship with damage with both Kendall’s τ

and Spearman’s ρ values of 0.318 and 0.446, respectively. The fact that PDI

has a relatively weak linear relationship with damage, but a moderately strong

rank relationship is indicative that non-linear relationships should be explored.

3.2.2 Machine Learning applied to weather-related events

Machine learning (ML) is a discipline that studies algorithms which, when

applied to data, are able to extract information by identifying structures, pat-

terns, and relationships among variables [223]. Machine learning algorithms

are gaining popularity for a variety of natural hazard related problems, from

weather prediction [39] to weather impacts in multiple areas (e.g., weather-

related airline delays [42, 237, 238]; weather impacts to agriculture and food

security [40, 107]; rainfall and water quality [110]; seismic impact prediction
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Table 3.1: Index correlation to economic damages

Index Pearson’s r Kendall’s τ Spearman’s ρ

ACE
0.053 0.257 0.365
(0.633) (≤0.001) (≤0.001)

PDI
0.169 0.318 0.446
(0.035) (≤0.001) (≤0.001)

IKE
0.138 0.181 0.292
(0.521) (0.223) (0.166)

HII
0.280 0.222 0.305
(0.003) (≤0.001) (≤0.001)

HHI
-0.280 0.005 0.003
(0.003) (0.940) (0.973)

HSI
0.271 0.367 0.451
(0.329) (0.059) (0.091)

[194, 8]; landslide susceptibility [4]; and, predicting forest fires [218, 49]).

A variety of ML methods have been successful in weather-related problems.

From relatively straightforward techniques such as multiple linear regression

(MLR) to predict rainfall [64, 215, 209, 189], to more advanced and so-called

‘black box’ methods that produce highly non-linear models. For instance, [188]

used support vector machines (SVM) to predict the maximum temperature of

the following day and [90] applied SVM to the problem of short-term rain fore-

casting. Multiple authors used SVM to forecast solar power generation from

weather forecast [206, 208, 250, 121]. [2] compared the performance of multi-

variate adaptive regression splines (MARS) to other methods for monthly rain-

fall forecast, while [59] utilized MARS to forecast drought in eastern Australia

and [68] compared the performance of MARS to that of empirical equations

to estimate the daily reference evapotranspiration with limited weather data.
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The k-nearest neighbors (k-NN) algorithm, another non-linear ML supervised

learning technique, has also been successfully applied to weather-related prob-

lems, albeit not as frequently as the methods already mentioned. For example,

[126] created a forecast model based on k-NN to estimate the photovoltaic out-

put based on weather and solar irradiance prediction data and [37] used k-NN,

among other methods, to create short-term forecast of rainfalls.

Tree-based methods, such as decision trees (DT), random forests (RF)

and boosted trees (BT), have also been applied to a wide variety of weather-

related problems. [90] used DT, among other methods, for the problem of

rain forecasting in Thailand. [244] and [50] used RF to help diagnose regions

of atmospheric turbulence for aviation safety. [243] employed RF to identify

the set of predictors that should be utilized in the forecasting of storms. [148]

applied RF to improve monthly temperature forecasts, while [112] predicted

wind power generation. [178] applied machine learning approaches – includ-

ing RF and BT – to the problem of monitoring and assessing droughts in

different regions. [248] used DT, RF, and BT to map landslide susceptibility

in Saudi Arabia. Similarly, [100] used RF and BT models to map landslide

susceptibility in Korea.

Although ML has been used to study and predict weather phenomena and

their related impacts, it has yet to be employed to explore the complex relation-

ship between tropical cyclones and their economic impacts at landfall. In this

study, we address this gap in four steps, by (i) curating and transforming data

for ML analysis, (ii) employing several ML strategies to construct economic

impact models, (iii) evaluating the predictive performance of each model, and

(iv) identifying and quantifying the important storm features associated with

economic impact.
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3.3 Storm Damage Ratio

The physical aftermath of hurricanes and tropical storms on land vary from

flooding and minor structural damage, to complete destruction of roads and

buildings. Similarly, the economic consequences can vary greatly, from thou-

sands to billions of dollars per event. While this variance is explainable in

part due to the strength of the incoming storm, it is also a function of the

specific coastal and inland locations affected. Of particular importance are

the socioeconomic characteristics of the impacted regions. Large population

centers with significant civil infrastructure and commercial development have

considerably more potential for damage than less populated, rural areas with

few assets and little economic activity. Gross domestic product (GDP) is one

well-established and comprehensive measure of a region’s economic well-being.

Among the coastal counties in the United States, the minimum GDP observed

in 2018 was US $28 million, in Yakutat County, Alaska. Meanwhile, the max-

imum was Los Angeles County, California, with a GDP of US $710 billion –

four orders of magnitude greater than the minimum. Figure 3.2 depicts the

GDP variability between counties in 2018.

In order to evaluate the damage potential of a storm, irrespective of the

economic particulars of the location of landfall and in terms purely related

to the cyclone’s endogenous characteristics, the geographic variability of GDP

must be accounted for. To address this gap, we introduce the Storm Damage

Ratio (SDR) to normalize the impact measure. The SDR is computed as the

ratio of the immediate storm damages (in terms of dollars) to the annual GDP

of the counties directly affected by the storm.

Table 3.2 lists the total damage caused by a storm, the GDP of the affected
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region, and the calculated SDR for the 15 storms with highest SDR. Hurri-

cane Katrina, by far the most costly named storm in the history of the United

States, has the highest SDR at 32 times the combined GDP of the 111 coun-

ties that were impacted. Hurricanes Sandy and Charley caused vastly different

total damage in terms of dollars, yet the storms have relatively similar SDRs.

The reason for this is the massive disparity between the GDPs of the counties

affected by each storm. Hurricane Sandy impacted large metropolitan centers,

including New York City, located in the New York County, which had GDP of

US $629.7 billion in 2015. In contrast, the highest GDP among the Hurricane

Charley impacted counties was approximately one tenth of this at US $72.3 bil-

lion. Another interesting comparison can be made between Hurricanes Wilma
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Table 3.2: Hurricanes with the highest SDR values

Storm
Total damage GDP of affected areas

SDR
(in millions of USD) (in millions of USD)

Katrina 72,320 2,245 32.21
Harvey 13,844 879 15.75
Wilma 10,283 752 13.67
Charley 8,259 1,275 6.48
Sandy 22,964 4,585 5.01
Rita 6,028 1,525 3.95
Florence 2,062 534 3.86
Ike 12,675 4,174 3.04
Dolly 1,396 564 2.48
Ivan 6,872 2,920 2.35
Irma 3,732 1,882 1.98
Dennis 1,647 839 1.96
Allison 5,246 2,771 1.89
Frances 5,653 3,078 1.84
Matthew 3,957 2,421 1.63
Issac 982 601 1.63
Jeanne 1,724 1,953 0.88
Katia 1,151 1,625 0.71

and Ike, both having caused a similar amount of total damage, US $10.3 and

US $12.7 billion, respectively. The SDR for these storms is notably different,

with Wilma presenting an SDR more than four times that of Hurricane Ike.

Hurricane Wilma impacted south Florida, where Florida’s county with the

highest GDP, the Miami-Dade County (GDP of US $132 billion), is located.

Hurricane Ike made landfall near Galveston and impacted multiple counties in

Texas, including Harris county, which has a GDP of US $418.4 billion. Figure

3.3 depicts the SDR versus the total immediate economic damage values for

each of the 72 tropical cyclones considered in this study.

The SDR is fundamental for a proper evaluation of the storms’ impact.
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Figure 3.3: Total damage vs. Storm Damage Ratio

To support this, consider the simple linear regression results of the total dam-

age as a function of GDP in Table 3.3. If the Katrina outlier is removed,

the counties’ GDP alone explains over 10% of the variance of storm damage.

However, when evaluating SDR as a function of GDP, the explained variance

drops to only 0.01% and GDP is no longer a significant predictor. This out-

come also supports the hypothesis that storm damage is highly dependent on

location of impact and thus cannot be accurately represented simply via storm

characteristics. It also shows that SDR reduces this effect well.
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Table 3.3: Economic damage and SDR as function of GDP

Model p-value R2

With Katrina
Damage ∼ GDP 0.0372 0.0389
SDR ∼ GDP 0.4314 0.0056

Without Katrina
Damage ∼ GDP 0.0005 0.1044
SDR ∼ GDP 0.6918 0.0014

3.4 Methodology

3.4.1 Data selection

Tropical cyclones are dynamic systems that evolve throughout their lifespan –

increasing and decreasing in size, wind speed, pressure, among other features.

Only cyclones that obtain wind speeds exceeding 34 knots at some point during

their history, i.e., developed into either a tropical storm or hurricane, are

considered in this study. Storm characteristics are collected by the NHC and

stored in discrete time intervals, every six hours. Thus, the longer a storm is

active, the greater the number of observations for that storm. The discrete

nature of the collected data limits the granularity on analysis of the storm’s

evolution in time.

Tropical cyclones are directly dangerous to US counties only when they

are close enough to the coast or after landfall. As such, we only consider the

characteristics of a given storm if the radius of its outermost wind, R34, plus

a tolerance distance to allow for rainfall and storm asymmetries, intersects

the United States coastline. For each storm, the entries are selected using

the following criteria: if the great circle distance (GCD) of the center of the

storm to the closest point in the United States is less than or equal to 1.1 R34,
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the observation is used. Otherwise, the observation is discarded. Figures 3.4

and 3.5 show all tropical storm entries for the North Atlantic Ocean and the

selected entries, respectively.

Figure 3.4: All tropical storm entries

Figure 3.5: Selected tropical storm entries
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3.4.2 Data aggregation

For the type of supervised machine learning modeling involved in this study,

every data entry associated with storm characteristics must be associated with

an economic impact value. Since, the economic measures available are single

estimates in time (i.e., post-event immediate damage values), it is necessary

to obtain a single set of measures to reflect the overall storm significance. This

is addressed by creating a weighted aggregation of storm characteristics over

time. More precisely, we assign weights to the observations according to the

storm’s distance from the US. If the eye of the tropical cyclone is over land or

if the storm’s center is less than one kilometer from land, that entry is assigned

a weight value of 1. Otherwise, the weight of the observation is given by the

inverse of the great circle distance of the center of the eye to the closest point

on the United States’ coast.

To demonstrate the data aggregation, consider Hurricane Sandy and it’s

path in 2012 (Figure 3.6) and an excerpt of related data including the date,

time, observed vmax, GCD of the eye of the storm to the US coast, and the

resulting weighted vmax in Table 3.4. If the GCD value is greater than 1.1R34,

the value is not used, e.g. the first two entries in Table 3.4. If the eye of the

storm intersects the coastline or is within 1 km of the coastline, the values are

given a weight of 1. All entries in Table 3.4 occurring after 10/29/2012 are

associated with landfall, e.g., on midnight of 10/30/2012, the eye was 6.61 km

inland. Otherwise, vmax is weighted by the inverse of the GCD value, e.g., the

third and fourth entries in the table. The aggregation is made utilizing the

weighted sum of the observed values. Thus, if a storm has many entries on

land, it will be weighted heavier than a storm that spent a short time on land
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Table 3.4: Hurricane Sandy

Date Time vmax (knots) GCD (km) Weighted vmax

...
10/29/2012 0:00 70 441.02 0
10/29/2012 6:00 80 456.01 0
10/29/2012 12:00 85 394.15 0.22
10/29/2012 18:00 80 157.55 0.51
10/30/2012 0:00 70 6.61 70
10/30/2012 06:00 55 46.48 55
10/30/2012 12:00 50 138.17 50
10/30/2012 18:00 40 229.01 40
10/31/2012 0:00 35 194.83 35
10/31/2012 06:00 35 137.80 35
...

Weighted sum of maximum wind speed 285.73

or never made landfall.

Equation (3.1) defines the weight computation for each distinct date/time

entry i in the storm’s historical data. The binary variable Pi denotes the

landfall status of the storm at period i. In particular, Pi = 1 if the eye of the

storm is within at least 1 km of the coast or over land in that time period; and

0, otherwise. The values for GCD and R34 are also parameterized by i and

thus associated with the storm’s characteristics for the corresponding entry.

wi =


0, if Pi = 0 and GCDi > 1.1R34,i

1
GCDi

, if Pi = 0 and 1 ≤ GCDi ≤ 1.1R34,i

1, otherwise

(3.1)

Weather entries are obtained from the data set HURDAT from the NHC

and from the Extended Best Track data set [57]. Entries from the years 2000
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Figure 3.6: Complete Route of Hurricane Sandy

through 2018 on the North Atlantic Ocean were selected, resulting in a data

set containing 6,091 observations. The final sample contains 72 observations

of 9 attributes, the storm name and eight numeric attributes. The final list of

attributes per storm and the attributes’ type and unit is presented on Table

3.5. For convenience, the notation vmax refers to the weighted sum of maximum

wind speed. The same is true for the other attributes.

3.4.3 Machine Learning methods

Machine learning algorithms can be divided into three categories: unsupervised

learning, supervised learning, and reinforcement learning. In this work, we

are evaluating supervised learning methods which learn to associate input

60



Table 3.5: List of attributes per storm

Notation Attribute Units

SDR Damage Ratio N/A
vmax Weighted sum of maximum wind speed Knots
pmin Weighted sum of minimum central pressure Hectopascals
R34 Weighted sum of 34 knots wind speed Nautical miles
R50 Weighted sum of 50 knots wind speed Nautical miles
R64 Weighted sum of 64 knots wind speed Nautical miles
Land Periods that storm center is over land N/A
Weighted Dist Weighted distance traveled by storm center Nautical miles

variables (a.k.a., features) with response variables (a.k.a., outcomes).

Many supervised ML models must be tuned to balance model bias with

model variance thereby achieving sufficient predictive performance on new

data. This is commonly achieved by iteratively adjusting model hyperparam-

eters (parameters generally associated with the structural components of the

models) to control model flexibility and evaluating the resulting predictive per-

formance on several subsets of data using resampling methods such as k-fold

cross-validation [106, 81]. Additionally, for the best hyperparameter values,

the generalizable performance estimates (i.e., how well the model will perform

on new data) are computed by aggregating performance measures from the

k-folds. We consider the cross-validated (CV) estimates of R2 and root mean

squared error (RMSE).

Within supervised learning, there are two distinct types of modeling: clas-

sification and regression. The former is associated with predicted discrete out-

comes, whereas the latter is associated with predicting continuous response

values. In this work, eight distinct supervised machine learning methods for
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regression are employed to study the relationship between storm characteris-

tics and immediate economic damages. These methods and their respective

hyperparameters are briefly discussed in this section.

Tree-based methods: Boosted Tree and Random Forest

Boosted trees and random forests are both based on decision tree algorithms.

Decision trees recursively split the data based on variable values to minimize

the sum of squared error between the response and mean of the response of

the respective subset [27]. The random forest is an ensemble method that

combines the prediction of many trees, each built with additional randomness

imposed during the tree construction: each tree is built from a random subset

of the original data and only a random set of variables is considered during

each split [26]. Due to the fact that they contain multiple decision trees,

random forests have a lower risk of overfitting and tend to provide superior

results than individual decision trees. An important RF hyperparameter to

tune is the maximum number of variables considered during each recursive

split, mtry. Boosted tree, another ensemble method, enhances predictive re-

sults by constructing a series of DTs, where each subsequent tree is created

to address errors in previous trees [202, 248, 178]. Hyperparameters to tune

are (i) the number of iterations (n.trees), (ii) maximum tree depth (interac-

tion.depth), (iii) shrinkage or learning rate (shrinkage), and (iv) minimum size

of the terminal node (n.minobsinnode).

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method that con-

structs hyperplanes in a multidimensional space. The data points in the input
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space are transformed, using a kernel function, to a higher dimensional feature

space. The Radial Basis Function (RBF) kernel is often used with SVM to

model complex nonlinear domains [21]. While commonly used for classifica-

tion problems, SVM has been successfully extended for regression modeling.

SVM models should be tuned by considering various model hyperparameters.

In this work we consider the shape parameter (σ) of the RBF kernel and

constant value (C) to penalize incorrect predictions.

k-Nearest Neighbors

The k -nearest neighbors method is based on determining distances between

data points in the feature space (e.g., characteristics of different storms). For

a given set of features, the predicted outcome value is computed by taking the

mean of the response variables of the k-nearest points in the data. We tune

the hyperparameter k which controls the model bias variance tradeoff.

Multiple Linear Regression

Multiple linear regression (MLR) is an extension of simple linear regression

which fits a model to predict a dependent variable from two or more indepen-

dent variables [64]. There are no tuning parameters for MLR.

LASSO

Least absolute shrinkage and selection operator (LASSO) is a regression method

proposed by [224]. It estimates the regression coefficients through a penal-

ized least-squares criterion, which imposes a penalty on the regression coeffi-

cients. The shrinkage coefficient (lambda) is the only hyperparemeter tuned

for LASSO.
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Elastic Net

Elastic Net is a regularization and variable selection method proposed by [254]

and is considered a generalization of LASSO. Elastic net encourages a grouping

effect in which predictors that are strongly correlated tend to be grouped in the

model or removed from the model together. It is particularly useful in datasets

where the number of predictors is larger than the number of observations. The

hyperparemeters tuned for Elastic Net are the mixing percentage (alpha) and

regularization parameter (lambda).

Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is a method for solving re-

gression problems closely related to MLR. It was proposed by [72] and has

since been successfully applied in several areas of knowledge [68]. MARS

automatically transforms the input data to better model nonlinearities and

interactions between variables. Hyperparameters to tune include (i) the max-

imum number of terms to be retained in the model (nmax) and (ii) the degree

of variable interaction to explore (mi).

3.5 Empirical analysis and results

Eight machine learning methods are used to create several new, competing

mathematical models to estimate the economic impact of a storm, based on

the storm’s attributes. The eight approaches are BT, RF, SVM, k -NN, MLR,

Elastic Net, LASSO, and MARS. The goal of this section is to perform an in-

tensive exploration of the dataset’s behavior, as well as to explore the potential

of the ML methods with respect to the dataset.
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Preliminary testing indicated that the radius of hurricane force winds, R64,

is critical for SDR prediction. This metric refers to the size of the storm, but

is also directly related to the wind speed, since only storms that reached 64

knot wind speeds (hurricane classification) will have non-zero values for this

feature. To further explore the data, we developed ML models for all storms,

for a subset of the data consisting of all hurricanes, and for a subset of the

dataset consisting of all tropical storms. Section 3.5.1 presents the results and

variable importance of the aforementioned machine learning models for all 72

storms, encompassing both tropical storms and hurricanes. Sections 3.5.2 and

3.5.3 present the same information for hurricanes only or tropical storms only,

respectively.

For a deeper understanding and an improved predictive performance, ma-

chine learning models are developed to predict two distinct outcomes: SDR

and log SDR for each data group. Moreover, for each data group and for each

desired outcome, four different sets of predictors are utilized. The dataset

contains seven original predictors, as presented in Table 3.5. The number

of original predictors is extended, via mathematical transformations on four

of the original predictors, totaling 30 input variables. Two other scenarios

are created using two-way interactions of predictors. The four sets of input

variables for the models are: (1) ML models built using the seven original pre-

dictors (OP ); (2) ML models built using the extended set of predictors (EP );

(3) ML models built with OP two-way interactions (OP + interactions); and

(4) ML models built with EP two-way interactions (EP + interactions). This

results in two transformations of output and four transformations of input for

each data group, or eight experiments in each data group. ML models are

created for all eight combinations of input and output, with the exception of
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MLR, which cannot be implemented when the number of input features is

greater than the number of observations. The total number of models created

is 182. The goal of performing such a vast exploration and developing multiple

models is to obtain a ML model with the best prediction capability, as well as

fundamental insights into storm characteristics.

3.5.1 All tropical storms and hurricanes

Results

For the entire dataset with all storms included, the results of the models to

predict log SDR based on the different input sets are shown in Table 3.6. It is

possible to observe that the best model is obtained with BT and the two-way

interactions of the extended predictors (EP and interactions), with a RMSE

of 2.899 and a R2 of 0.564. RF is the second best model with very similar

results, RMSE of 2.932 and associated R2 of 0.558. These results can also be

observed in Figures 3.7 and 3.8, that show the relationship of the predicted

versus the actual SDR for BT and RF, respectively. The results are plotted

utilizing a logarithmic scale. From the images it is possible to observe that

both machine learning models provide satisfactory predictions for SDR values.

The direct SDR prediction results are shown in Table 3.7. When predicting

the SDR outcome, SVM is the best method, with an RMSE of 2.888 and R2

of 0.454, utilizing the extended predictors. BT is the second best model,

presenting a RMSE of 2.967 and R2 of 0.466. Even though the RMSE values

are low, there are issues with the predictive performance for the storms that

are not as economically impactful. This can easily be observed when plotting

the relationship between predicted SDR versus the actual SDR of the storms,
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Figure 3.7: Predicted vs. Actual SDR for all storms with BT

where even the best method (SVM) creates a poorly fitting model (Figure 3.9).

Since the predictions are performed in two different scales, it is not possible

to compare the results of RMSE for log SDR and SDR. However, by observing

the R2 obtained by the best method in each outcome, we verify that the R2

obtained by BT when predicting log SDR is better than that obtained by SVM

when predicting SDR. Additionally, this can be observed when comparing the

plots of actual SDR versus the predicted SDR for both models. The predictions

of BT, shown in Figure 3.7, follow a clear trend, unlike the predictions of SVM,

shown in Figure 3.9. Therefore, when predicting SDR for all storms, BT is

the most appropriate model.
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Figure 3.8: Predicted vs. Actual SDR for all storms with RF

3.5.2 Hurricane force wind speed radius

Results

Considering only the 35 named hurricanes in the dataset, the results for the

prediction of log SDR are shown on Table 3.8. SVM presents the best results

with an RMSE of 3.148 and R2 of 0.46, followed by BT with an RMSE of 3.234

and R2 of 0.438. Both methods provide adequate results and have similar

distribution when plotted. Figures 3.10 and 3.11 depict the actual versus the

predicted SDR on a logarithmic scale for SVM and BT, respectively.

Table 3.9 presents the results of the ML methods modeled for the SDR

outcome. SVM remains the method with the best predictive performance,
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Table 3.6: Results of log SDR predictions for all storms

Method Metric
Outcome: log SDR

OP EP OP + interactions EP + interactions

BT
RMSE 3.030 3.008 2.949 2.899
R2 0.517 0.505 0.522 0.564

RF
RMSE 3.079 3.062 3.010 2.932
R2 0.496 0.491 0.531 0.558

SVM
RMSE 3.251 3.23 3.521 3.264
R2 0.440 0.469 0.380 0.430

k -NN
RMSE 3.34 3.136 3.333 3.147
R2 0.439 0.486 0.418 0.499

MLR
RMSE 3.681 5.481 6.735 -
R2 0.343 0.305 0.252 -

LASSO
RMSE 3.568 3.066 3.27 3.179
R2 0.371 0.506 0.422 0.486

Elastic Net
RMSE 3.547 3.047 3.288 3.165
R2 0.404 0.525 0.425 0.510

MARS
RMSE 2.999 3.183 3.087 3.277
R2 0.518 0.465 0.516 0.459

with a minimum RMSE of 3.892 and R2 of 0.53. k -NN presents the second

best performance, with minimum RMSE of 4.182 and R2 of 0.558. Figures 3.12

and 3.13 present the predicted versus actual SDR for SVM with and without

a logarithmic scale, respectively. In Figure 3.13 it is possible to observe three

hurricanes that are clear outliers. They are identified as hurricanes Katrina,

Harvey and Wilma.

SVM is the method that presents the most promising results for hurri-

canes. The R2 obtained while predicting SDR directly is slightly better than

predicting log SDR.

69



Table 3.7: Results of SDR predictions for all storms

Method Metric
Outcome: SDR

OP EP OP + interactions EP + interactions

BT
RMSE 3.048 3.038 2.967 3.006
R2 0.475 0.446 0.466 0.469

RF
RMSE 3.248 3.233 3.159 3.235
R2 0.406 0.392 0.435 0.350

SVM
RMSE 2.948 2.888 2.972 2.949
R2 0.406 0.454 0.393 0.278

k -NN
RMSE 3.012 3.013 3.098 3.066
R2 0.416 0.402 0.319 0.305

MLR
RMSE 3.877 6.977 10.839 -
R2 0.386 0.314 0.31 -

LASSO
RMSE 3.154 3.23 3.603 3.141
R2 0.487 0.467 0.473 0.451

Elastic Net
RMSE 3.159 3.127 3.177 3.191
R2 0.507 0.476 0.433 0.414

MARS
RMSE 3.843 3.975 3.669 4.130
R2 0.341 0.334 0.394 0.322

3.5.3 Tropical storms

Results

The results for the prediction of log SDR for tropical storms can be observed

on Table 3.10, with BT presenting the minimum RMSE, followed by RF. BT

has a RMSE of 2.191and R2 of 0.593, while RF has a RMSE of 2.233 and

R2 of 0.516. It is possible to see the good performance of these methods by

plotting the predicted SDR versus the actual SDR. Figures 3.14 and 3.15 show

the prediction results on a logarithmic scale for BT and RF, respectively.
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Figure 3.9: Predicted vs. Actual SDR for all storms with SVM

As it can be observed on Table 3.11, the ML model with the lowest RMSE

is SVM with 0.128 and R2 of 0.54. Figure 3.16 depicts the relationship between

predicted and actual SDR on a logarithmic scale. Contrary of what one would

expect by looking at Figure 3.16, SVM actually present a R2 comparable to

those of the methods BT and RF presented on Figures 3.14 and 3.15. When

plotting SVM without the logarithmic scale (Figure 3.17), it is possible to

clearly visualize tropical storm Allison as an outlier.

SVM, the best method for the SDR outcome, has a R2 of 0.54, while BT,

the best method for log SDR, has a R2 of 0.593. Therefore, BT with EP

two-way interactions and log SDR outcome is the ML model with the best

performance when estimating the economic impacts of tropical storms.
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Figure 3.10: Predicted vs. Actual SDR for hurricanes with SVM

3.5.4 Variable Importance

Analyzing variable importance allows researchers to study the impact of differ-

ent predictors and find the predictor combinations for specific problems [243].

For tree based methods the approximate relative influence of a variable is ob-

tained as the sum of the empirical improvement when splitting said variable.

For BT specifically, the calculated relative influence of a variable is averaged

across all trees generated by the boosting algorithm [193]. For SVM, a local

regression is fit between the outcome and the predictor. The relative measure

of variable importance is given by the R2 calculated for the model against the

intercept only null model [105].

Tables 3.12, 3.13, and 3.14 present the most influential input features
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Figure 3.11: Predicted vs. Actual SDR for hurricanes with BT

ranked according to their importance scores of the best ML methods for all

storms, hurricanes, and tropical storms, respectively. Variable importance is

scaled between 0 and 1, with 0 representing low relative importance, and 1

representing a high relative importance.

BT is the best method when predicting SDR for all storms, with R64 as its

most important variable, followed by the interaction between R2
50 and log pmin.

It is interesting to observe that the storm size, represented by R34, R50, and R64

is at least part of 8 out of 10 most important variables and variable interactions

in Table 3.12. This indicates the important role that the size plays in the

damage potential of a storm.

For hurricanes, the variable importance obtained with the SVM method is
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Figure 3.12: Predicted vs. Actual SDR for hurricanes with SVM on log scale

very different, as seen in Table 3.13. The first main distinction is that R64 is

no longer the most important variable, being only the third most important

feature. This happens because R64 no longer separates tropical storms from

hurricanes. By removing the tropical storms, we are able to observe the other

factors that influence the damage caused by hurricanes. Land becomes the

most important variable, being twice as important than R64. R50 is the second

highest scaled feature, followed by Dist. Additionally, our model indicates

that vmax is of no importance to estimate SDR for hurricanes. This directly

contradicts the SSHS, in which hurricanes are classified solely based on their

wind speed.

Finally, for tropical storms, the BT model produces interesting interactions
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Figure 3.13: Predicted vs. Actual SDR for hurricanes with SVM

between the variables, as shown in Table 3.14. Here, vmax is the most important

variable followed by R34. The size of the tropical storm, represented by R34

and R50, is part of six out of the ten most important variables and variable

interactions. Notably, vmax is the most important variable to tropical storms,

while it presented no importance on the model for hurricanes.

3.6 Concluding Remarks

The 182 machine learning models developed in this study provide novel data-

driven insights on the relationship between storm features and the potential

for significant economic losses in a region. To create these empirical models,
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Table 3.8: Results of log SDR predictions for hurricanes

Method Metric
Outcome: log SDR

OP EP OP + interactions EP + interactions

BT
RMSE 3.234 3.289 3.314 3.24
R2 0.438 0.419 0.413 0.499

RF
RMSE 3.485 3.416 3.543 3.499
R2 0.506 0.49 0.477 0.427

SVM
RMSE 3.148 3.227 3.195 3.340
R2 0.460 0.490 0.492 0.536

k -NN
RMSE 3.309 3.242 3.318 3.324
R2 0.452 0.488 0.500 0.419

MLR
RMSE 3.835 - - -
R2 0.451 - - -

LASSO
RMSE 3.29 3.308 3.348 3.358
R2 0.464 0.412 0.341 0.314

Elastic Net
RMSE 3.306 3.407 3.331 3.403
R2 0.468 0.508 0.486 0.389

MARS
RMSE 3.509 3.258 3.701 3.676
R2 0.304 0.440 0.221 0.474

we first introduce a new metric, SDR, that takes into account the GDP of the

affected ares to distinguish storm-specific factors from region-specific factors.

Through extensive exploration of historical storm characteristics and impacts,

we discover notable differences between predictive models for all storms, hur-

ricanes, and tropical storms.

The most accurate model for predicting impact for tropical storms and

hurricanes is created using a boosted tree algorithm to predict log SDR. The

most important variables are highly dependent on storm-size related features

(i.e., R64, R50 log pmin, and R34R50). For predicting SDR directly from hurri-
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Table 3.9: Results of SDR predictions for hurricanes

Method Metric
Outcome: SDR

OP EP OP + interactions EP + interactions

BT
RMSE 4.429 4.549 4.453 4.474
R2 0.449 0.474 0.432 0.555

RF
RMSE 4.570 4.647 4.706 4.744
R2 0.436 0.412 0.438 0.432

SVM
RMSE 4.002 4.040 3.892 3.983
R2 0.482 0.510 0.530 0.482

k -NN
RMSE 4.182 4.385 4.263 4.552
R2 0.558 0.49 0.488 0.377

MLR
RMSE 6.118 - - -
R2 0.568 - - -

LASSO
RMSE 4.704 5.512 4.611 5.051
R2 0.451 0.504 0.436 0.437

Elastic Net
RMSE 4.600 4.765 4.474 4.554
R2 0.496 0.393 0.449 0.458

MARS
RMSE 5.532 6.072 6.002 7.684
R2 0.489 0.400 0.478 0.445

canes alone, the SVM method has the best performance. According to this

model, the duration of a storm on land is the most important element, while

surprisingly, the maximum sustained wind speed is of no importance. When

considering only tropical storms which do not convert into hurricanes, the

boosted tree approach generates the highest quality predictions, and here, the

maximum sustained wind speed is the most important variable.

The best ML model performance is for the tropical storm data subset.

This implies that it is easier to predict the damage associated with a tropical

storm than from a hurricane. Nonetheless, it is still possible to obtain a better
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Figure 3.14: Predicted vs. Actual SDR for tropical storms with BT

estimation of hurricane potential damage than that provided by the SSHS or

the alternative indices such as ACE or PDI. Indeed, we demonstrate that the

heavy reliance on maximum sustained wind speed is unwarranted.

Tropical storms and hurricanes are natural and regularly occurring signif-

icant hazards which threaten coastal communities each year. The potential

impact from these systems can be devastating to the local populations and to

the economy at large. The results from this extensive analysis highlight some

of the complexity involved in predicting and explaining this potential. The

empirically derived mathematical models and variable importance measures

provide one step towards enhancing our understanding.
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Figure 3.15: Predicted vs. Actual SDR for tropical storms with RF
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Figure 3.16: Predicted vs. Actual SDR for tropical storms with SVM on log
scale
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Figure 3.17: Predicted vs. Actual SDR for tropical storms with SVM
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Table 3.10: Results of log SDR predictions for tropical storms

Method Metric
Outcome: log SDR

OP EP OP + interactions EP + interactions

BT
RMSE 2.397 2.27 2.381 2.191
R2 0.516 0.507 0.562 0.593

RF
RMSE 2.361 2.36 2.365 2.233
R2 0.523 0.558 0.488 0.516

SVM
RMSE 2.395 2.483 2.348 2.445
R2 0.532 0.569 0.521 0.466

k -NN
RMSE 2.373 2.418 2.408 2.34
R2 0.464 0.474 0.488 0.506

MLR
RMSE 2.631 54.560 42.338 -
R2 0.481 0.448 0.475 -

LASSO
RMSE 2.515 2.473 2.461 2.591
R2 0.563 0.456 0.488 0.454

Elastic Net
RMSE 2.443 2.51 2.379 2.625
R2 0.552 0.526 0.502 0.483

MARS
RMSE 2.597 2.642 2.938 3.176
R2 0.496 0.444 0.469 0.44
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Table 3.11: Results of SDR predictions for tropical storms

Method Metric
Outcome: log SDR

OP EP OP + interactions EP + interactions

BT
RMSE 0.157 0.150 0.157 0.151
R2 0.596 0.532 0.566 0.428

RF
RMSE 0.185 0.194 0.188 0.191
R2 0.504 0.536 0.526 0.574

SVM
RMSE 0.131 0.136 0.128 0.133
R2 0.59 0.553 0.540 0.622

k -NN
RMSE 0.157 0.159 0.150 0.153
R2 0.491 0.446 0.415 0.422

MLR
RMSE 0.261 8.163 2.053 -
R2 0.508 0.562 0.499 -

LASSO
RMSE 0.157 0.156 0.166 0.187
R2 0.586 0.641 0.558 0.578

Elastic Net
RMSE 0.158 0.157 0.161 0.163
R2 0.560 0.546 0.554 0.501

MARS
RMSE 0.171 0.255 0.287 0.282
R2 0.412 0.700 0.578 0.722

Table 3.12: Variable Importance for all storms - BT

Variable Scaled importance

R64 0.144
R2

50 log pmin 0.135
R34R50 0.105
R3

64Dist 0.092
R3

34
3
√
R50 0.079

R34

√
R50 0.071

vmaxp
3
min 0.068

R50 0.038√
pminR

2
50 0.033

pmin 0.028
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Table 3.13: Variable Importance for hurricanes - SVM

Variable Scaled importance

Land 0.329
R50 0.191
R64 0.159
Dist 0.135
R34 0.112
pmin 0.075
vmax 0

Table 3.14: Variable Importance for tropical storms - BT

Variable Scaled importance

vmax 0.239
R34 0.199
R34

3
√
R50 0.161

vmaxR34 0.070
Dist 0.042
log vmax logR34 0.041
v3maxLand 0.038
pmin 0.027
v2max

3
√
R34 0.024

R3
34

3
√
R50 0.021
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Chapter 4

State-level vulnerability to

tropical cyclones: Empirical

fragility curves and community

preparedness assessment

4.1 Introduction

Tropical cyclones are among the most destructive weather phenomenons. These

intense circular storms originate over warm tropical oceans and produce high

wind speed and heavy rain. The population of coastlines in the United States

is high, with approximately 40% of the nation’s total population living in

coastal counties [160]. Between the years 2000 and 2017, the population liv-

ing in coastal areas vulnerable to hurricanes and tropical storms in the US

increased 16%, with these areas reaching a total population of 60.2 million,

according to [47]. Tropical storms and hurricanes pose a significant threat to
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these communities.

The surge in population of coastal areas, added to increasingly frequent and

destructive tropical cyclones, confirm the importance of studying resilience of

coastal areas. This work contributes to the understanding of the threat tropi-

cal storms and hurricanes pose to coastal communities, which is the first step

to improve community resilience. Only after a clear understanding of the po-

tential hazard, can a community prepare itself to withstand that impact. This

work refines the Storm Damage Ratio (SDR) metric introduced in Chapter

3.3 to develop a localized ratio, Local Storm Damage Ratio (LSDR), which en-

hances the granularity of SDR and conveys the impact of a storm with respect

to the storm’s characteristics alone. Coastal preparedness and vulnerability

are assessed at a state level by studying the relationships between state and

destructive potential of tropical cyclones. Finally, using LSDR we extend the

well known concept of fragility curves to introduce a probabilistic methodology

to quantify tropical cyclone coastal vulnerability at a state-level.

The remainder of this chapter is organized as follows: Section 4.2 contains

the background and motivation for this work. Section 4.3 explains the concept

of LSDR and its importance. Section 4.4 contains a detailed explanation of

the fundamental methodologies that are employed, including data selection,

machine learning models, and fragility curves. Section 4.5 presents the results

and discussion of this study. Finally, Section 4.6 summarizes and concludes

this dissertation chapter.
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4.2 Background and Motivation

Tropical storms and hurricanes pose a major threat to coastal areas susceptible

to these events. Between the years 1998 and 2017, the proportion of the world’s

population living on coastlines vulnerable to cyclones increased 192%. During

the same period of time, it is estimated that 726 million people worldwide

were affected by storms, including tropical cyclones [233].

Between the years 2000 and 2019, a yearly average of 15.3 named storms,

out of which an average 7.3 were hurricanes, were recorded in the Atlantic

Ocean [156]. Named storms include tropical storms, subtropical storms, and

hurricanes [152]. The number and cost of extreme weather events is increasing

over time due to increased exposure, vulnerability, and climate change [211].

The intensity and frequency of tropical cyclones is also rising and improving

the resilience of communities subject to these natural hazards is of utmost

importance.

Resilience can be defined as “the ability to prepare and plan for, absorb,

recover from, and more successfully adapt to adverse events” [35]. [29] defined

resilience as the ability to adapt to changing conditions and withstand and

rapidly recover from disruption due to emergencies. [159] defines community

resilience as how well a community is prepared for and can respond to a natural

disaster. According to the National Preparedness Goal, to increase community

resilience is necessary to enable the recognition and understanding of risks, as

well as empower the communities to make informed risk management decisions

to adapt, withstand, and quickly recover from future incidents [204].

There is a substantial body of work in the development and improvement

of specific metrics and measures of community resilience, but the development
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of assessment standards for measuring resilience remains a challenge. The

ability to measure resilience is being identified as a key step toward disaster

risk reduction. However, the literature lacks procedures to outline how to

measure and compare resilience between communities [33]. According to

[66], the resilience of a community is a combination of characteristics that

reduce the vulnerability of said community. The authors add that knowledge

and awareness of the possible hazardous events is also important to resilience

improvement.

Coastal resilience is of particular interest in this dissertation. [159] devel-

oped a resilience cycle, in which the steps to improve community resilience are

detailed. The first step of the cycle is to asses the risk and vulnerability of

the community. Only after a community has an understanding of its vulnera-

bilities is that it is able to move to the next step of the resilience cycle, which

is to plan and prioritize strategies and potential actions to address said vul-

nerabilities. Multiple authors studied the resilience of coastal communities to

extreme events. [66] used knowledge acquired from past coastal disasters to de-

velop a community resilience index to help communities identify their resilience

strengths and weaknesses. [33] studied community resilience in the context of

recovery from Hurricane Katrina at a subcounty level and determined a set of

metrics for measuring and comparing disaster resilience among communities.

[35] developed a quantitative method to assess community resilience to coastal

hazards and to identify relationships between socio-environmental indicators

and community resilience in the Lower Mississippi River Basin. [216] assessed

community resilience to typhoons, which are rotating storm systems like hurri-

canes, but located on the Northwestern Pacific Basin. The authors performed

the study in Guangzhou, China, and developed a composite resilience index
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to facilitate the identification of at-risk regions. [234] obtained performance

objective of individual facilities and buildings exposed to extreme hazards by

disaggregating broader community resilience goals. [62] performed a similar

study and evaluated the resilience level of a residential community to hurri-

canes by disaggregating the community resilience goal to individual buildings

resilience goals.

Fragility curves have been used to study resilience to multiple natural haz-

ards. They provide the probability of reaching or exceeding a given damage

state as a function of the intensity of the natural event. They can also be

thought of as a conditional probability of exceedance, providing the proba-

bility that a certain level of damage will be met or exceeded at a certain

condition [185]. Fragility curves are commonly used to evaluate the vulner-

ability of buildings and structures to a specific hazard of a given intensity

(e.g. earthquakes, flooding, tsunamis, and hurricanes). Fragility functions

are widely used in seismic risk and damage assessment, with its use to derive

potential impacts of earthquakes to specific building types, based on its char-

acteristics and structure, dating back to the 1980s [56, 185]. Accordingly,

the literature on the topic is extremely vast, including the study of bridge

fragility [150, 180, 63, 205, 70, 155, 131, 171, 109, 154, 45, 221, 249], residen-

tial and housing structures [79, 65, 174], among others. Fragility functions

are increasingly being developed for other hazards, such as fires [76], flooding

[82, 162, 163], and tornadoes [138].

Fragility curves have also been built to estimate potential damage of hurri-

canes and tropical storms [219]. The Hazus-MH Hurricane Model, developed

by the Department of Homeland Security and the Federal Emergency Man-

agement Agency (FEMA), is a tool for estimating potential losses to buildings
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from hurricane winds [67]. The losses calculated with the program can be

used on a local and state level to improve mitigation actions and reduce dam-

age caused by hurricane winds. It is worth noting that the losses identified by

the Hazus software tool only account for the physical damage to buildings and

facilities. Also, it only refers to direct economic losses to the structure, con-

tents, and loss of use of buildings and for the loss of shelter. [219] evaluated

the prediction capability of the Hazus-MH Hurricane Model using machine

learning to explore sources of errors. The authors also improved the Hazus

Hurricane Model by developing a more refined fragility-curve-based model of

wind damage risk at 1 km2 blocks. [61] evaluated the forces on buildings

structures caused by hurricane’s surge and waves, while [220] identified crit-

ical facilities in the Cayman Islands and determined their level of exposure

to hurricanes and related natural hazards by using existing fragility functions

for different hazardous events and building types. [48] developed a simulation

model able to provide the probability of structural damage for multiple types

of residential structures based on hurricane’s wind speeds. The study was per-

formed in Florida and focused on typical residential structures of the state.

[62] performed a risk assessment of wood residential constructions subjected to

hurricanes. The authors used a hurricane simulation model to predict future

wind speed and performed a fragility analysis of the constructions utilizing

four structural damage modes.

Once obtained for a single building, fragility functions can be expanded to

determine how many buildings of similar type in an area will experience at

least a certain level of damage [48]. [163] developed flood fragility curves to

predict flood damage and losses at a community level in North Carolina, while

[138] developed fragility curves to evaluate the performance of community com-
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ponents under tornado loading. [34] incorporated probabilistic building per-

formance and recovery curves to the existing performance-based engineering

frameworks related to seismic events and [30] developed a framework for defin-

ing community resilience and specifying quantitative measures of resilience to

seismic events. [125] studied the performance of individual buildings exposed

to natural hazards compared to the overall performance of a building portfo-

lio. The authors introduced the concept of building portfolio fragility function

(BPFF), defined as the probability that a building portfolio fails to achieve the

expected performance under hazardous conditions. According to the authors,

the ability to characterize the vulnerability of a building portfolio, rather than

individual buildings, can support resilience-driven decisions at the community

level.

In the present work, we extend the concept of fragility curves, which are

typically used for individual structures or sets of structures, as a mechanism

for quantifying regional vulnerability to hurricanes. Instead of fragilities as-

sociated with physical structures, we use historical information on hurricane

paths, storm characteristics, and regional damage measured as LSDR to em-

pirically develop the probabilistic functions associated with different impact

states.

4.3 Local Storm Damage Ratio

The concept of Storm Damage Ratio (SDR), presented on Chapter 3, allows for

an evaluation of the potential damage of a storm, irrespective of the economic

characteristics of the location of landfall. In order to do so, the geographic

variability of assets of a given region must be accounted for. Large population
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centers with significant civil infrastructure and commercial development have

considerably more potential for damage than less populated, rural areas with

few assets and little economic activity. Gross domestic product (GDP) is one

well-established and comprehensive measure of a region’s economic well-being.

The SDR allows an evaluation of storm’s strength solely based on the

cyclone’s endogenous characteristics. It is computed as the ratio of the imme-

diate storm damages (in terms of dollars) to the annual GDP of the counties

directly affected by the storm. In this work, the concept of SDR is adapted

to consider the impacts to the region of interest through the development of

the Local Storm Damage Ratio. This study is performed at a state-level, for

the states more commonly impacted by hurricanes and tropical storms in the

East Coast and Gulf of Mexico. The states included in this study are colored

on Figure 4.1. Therefore, throughout this study, LSDR refers to the storm’s

strength observed at the state-level, irrespective to the economic characteris-

tics of the location. The concept can be easily adapted to county or even city

level, if desired.

The values of LSDR can vary greatly for the same storm, ranging from

close to 0 to double digits values. This variation is explained by the difference

in characteristics of the storm when reaching each state, such as storm wind

speed, average radius of 34, 50, and 64 knots wind speeds, time periods over the

state, and forward speed. Table 4.1 shows the LSDR for storms Harvey, Irma,

and Matthew, all of which affected multiple states in recent years. Hurricane

Harvey, for example, affected both Texas and Louisiana. The damage to those

states, however, were widely different. The state of Texas suffered major

losses, with a calculated LSDR of 23.81. Meanwhile, Louisiana was affected

much more lightly, with a LSDR of 0.0003.
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Figure 4.1: States included on the analysis

4.4 Methodology

4.4.1 Data selection

Tropical cyclones are dynamic systems with intrinsic characteristics that vary

throughout their lifespan, such as size, wind speed, pressure, among other fea-

tures. Only cyclones that obtain wind speeds exceeding 34 knots at some point

during their history, i.e., developed into either a tropical storm or hurricane,

are considered in this study. Storm characteristics are collected by the NHC

and stored in discrete time intervals, every six hours. Thus, the longer a storm

is active, the greater the number of observations for that storm. The discrete

nature of the collected data limits the granularity on analysis of the storm’s

evolution in time.

Figure 4.2 shows how Hurricane Harvey (non-filled circle) and Hurricane

Irma (filled circle) moved through time. Note that all these entries were ob-
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Table 4.1: LSDR of storms in different states

Storm Year State LSDR

Matthew 2016

FL 3.35
GA 0.0022
NC 11.23
SC 3.14

Harvey 2017
LA 0.0003
TX 23.81

Irma 2017

AL 0.0018
FL 4.44
GA 2.44
NC 0.0019
SC 0.0020

served under a six-hour interval, Thus, the distance between subsequent points

are an indicator of the speed with which the storm moves, also referred to as

the storm’s forward speed. Points close together mean that the storm has a

low forward speed and is, therefore, impacting the same area. Hurricane Har-

vey, for example, was over the coast of Texas for multiple six-hour intervals,

which led to flooding being one of the primary causes of economical impact.

Tropical cyclones are directly dangerous to the states only when they are

close enough to the state’s border or over the state. As such, we only consider

that a given storm has affected a state if the radius of its outermost wind,

R34, plus a tolerance distance to allow for rainfall and storm asymmetries,

intersects the state’s borders. For each storm, the entries are selected using

the following criteria: if the great circle distance (GCD) of the center of the

storm to the closest point of the state border is less than or equal to 1.25 R34,

the observation is used. Otherwise, the observation is discarded. Figures 4.3

and 4.4 illustrate entry selection for Hurricane Harvey on Texas and Irma on
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Figure 4.2: Paths of Hurricanes Harvey and Irma

Florida, respectively. The filled circles in each image represent the entries that

were used to calculate the impact of the hurricanes in each of the states.

4.4.2 Machine Learning methods

After the entries of the storms are selected, machine learning is used to predict

the LSDR based on the storm’s characteristics. The methods used are Least

Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, k-Nearest

Neighbors (k-NN), Support Vector Machine (SVM), Random Forest (RF),

Boosted Trees (BT), and Multivariate Adaptive Regression Splines (MARS).

More information on the methods is provided in Section 3.4.3.
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Figure 4.3: Selected entries of Hurricane Harvey affecting Texas

4.4.3 Fragility Curves

Fragility curves can be a powerful way to assess vulnerability, as they convey

the probability of a structure reaching or exceeding a damage state due to

a natural hazard. There are four approaches to developing fragility curves:

judgmental, empirical, analytical, and hybrid [185]. This work uses the em-

pirical approach, which consists in the utilization of logistic regression to gen-

erate fragility curves. This approach has been widely used in the literature

[16, 118, 205, 203].

The value of LSDR varies greatly, ranging from 0 to 281. The vast majority

of storms cause low to moderate damage, while few storms cause significant or

major damage. Of the 178 storms in this study, 145 have a LSDR between 0
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Figure 4.4: Selected entries of Hurricane Irma affecting Florida

and 1, meaning that their economic impact to the state was less than the value

of the GDP of the region. For this reason, when building the fragility curves

to estimate the probability of exceedance of each damage level, the natural

logarithm of the LSDR was used. The logarithmic value of the LSDR for the

storms varied from -12.62 to 5.64. Utilizing the logarithmic function allowed

us to obtain a less skewed distribution, as seen on Figure 4.5.

The impact of tropical cyclones are divided into damage levels to the com-

munity, hereby called Storm Damage Levels, or SDL. The SDL categories are

determined empirically by analyzing the description of the damage caused by

the storms on the immediate damage data, obtained from the National Oceanic

and Atmospheric Administration (NOAA). Reports available on hurricane and

tropical storms are analyzed to add expert perspective to the classification pro-

cess. Unfortunately, said reports are vastly available for large and catastrophic
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Figure 4.5: Observations of log LSDR

storms, less so for smaller and less damaging events. Additionally, definitions

and details of technical terms are obtained from the National Weather Service

[167]. Relatively common forms of damage, that do not represent significant

threat to human life are considered low damage. Examples of low damage are:

roof damage to some properties; non-life-threatening damage to mobile homes;

slight tree damage; minor flooding (roads may be covered in water, but few,

if any, building structures are inundated); few power outages (short duration

and not affecting multiple communities). Examples of moderate damage are:

widespread roof damage; lengthy tree damage to properties; moderate flooding

(many roads are covered, building inundation is possible, but limited to vul-

nerable locations, not considered a significant threat to human life); localized

power outages. Storms are classified as causing significant damage if one or

more of the following were observed on reports or description: extensive dam-
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Table 4.2: Storm Damage Levels and respective log LSDR

Storm Damage Level Degree of damage Value of log LSDR

Storm Damage Level 1 (SDL 1) Low damage log LSDR > −6
Storm Damage Level 2 (SDL 2) Moderate damage log LSDR > −2
Storm Damage Level 3 (SDL 3) Significant damage log LSDR > 0

age to houses and buildings structures (including, but not limited to roofing);

extensive flooding in multiple areas (including life-threatening levels in some

locations); lengthy and widespread power outages; water supply interruption;

casualties due to the storm.

After storms are classified in each of the categories described, the value of

log LSDR the storms are observed and the maximum value is rounded to the

next integer. The final Storm Damage Levels, degree of damage, and value of

logarithmic LSDR can be observed on Table 4.2.

4.5 Results

4.5.1 Results of Machine Learning Methods

Machine learning models are developed for the data set with two possible

outcomes: log LSDR and LSDR. Similarly, two set of inputs are used to build

the machine learning models, an extended set of predictors (EP ) and the

original predictors (OP ). Additionally, the interactions between the two sets

of predictors is also used. The results of the machine learning models can be

observed on Table 4.4. Two methods present the lowest RMSE for the log

LSDR outcome, Elastic Net and LASSO. When comparing their R2 value,

Elastic Net presents a slightly better value of 0.413 versus 0.410 for LASSO.
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Table 4.3: Results of machine learning models for log LSDR predictions

Method Metric
Outcome: log SDR

OP EP OP + interactions EP + interactions

Elastic Net
RMSE 3.228 3.647 3.251 3.515
R2 0.413 0.285 0.404 0.310

LASSO
RMSE 3.228 3.687 3.245 3.532
R2 0.410 0.311 0.409 0.307

BT
RMSE 3.285 3.268 3.331 3.340
R2 0.390 0.405 0.385 0.375

RF
RMSE 3.427 3.391 3.415 3.367
R2 0.346 0.361 0.347 0.366

SVM
RMSE 3.272 3.602 3.348 3.564
R2 0.406 0.297 0.374 0.298

k -NN
RMSE 3.396 3.656 3.376 3.658
R2 0.359 0.258 0.359 0.252

MARS
RMSE 3.387 3.433 3.458 3.584
R2 0.360 0.351 0.343 0.306

For the LSDR outcome, k -NN presents the lowest RMSE, with a value of

16.746 and a respective R2 of 0.403. Given the fact that the Elastic Net model

presented a better R2, it is a better model for this empirical work. Therefore,

the remainder of this work uses the results of the Elastic Net machine learning

model when it predicts the values of log LSDR.

Model Validation

The Elastic Net model using the entire set of predictors (EP ) for the log LSDR

outcome produces the best results, with an RMSE of 3.228 and a R2 of 0.413.

Figure 4.6 shows the actual LSDR versus the predicted LSDR for the Elastic
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Table 4.4: Results of machine learning models for LSDR predictions

Method Metric
Outcome: SDR

OP EP OP + interactions EP + interactions

Elastic Net
RMSE 20.845 19.907 24.180 20.487
R2 0.376 0.359 0.404 0.435

LASSO
RMSE 22.122 19.882 31.895 20.047
R2 0.390 0.363 0.377 0.392

BT
RMSE 18.292 17.484 17.580 16.945
R2 0.414 0.446 0.454 0.399

RF
RMSE 20.310 21.299 19.627 20.502
R2 0.440 0.465 0.413 0.343

SVM
RMSE 16.923 16.766 17.179 16.980
R2 0.375 0.376 0.448 0.383

k -NN
RMSE 17.211 17.019 17.179 16.746
R2 0.408 0.440 0.395 0.403

MARS
RMSE 20.889 20.176 21.045 21.905
R2 0.360 0.407 0.420 0.339

Net model. Each point in the graph refers to the impact of one storm in a

single state. The different states are identified in different colors. Florida is

the state with more occurrences in the graph, with a total of 47 storms. North

Carolina and Georgia are the states that have the second highest number of

entries, with 19 each.

Table 4.5 presents the results of the Pearson correlation coefficients tests

for the predicted log LSDR per state and actual log LSDR. Pearson was chosen

due to its appropriateness to evaluate two linearly related variables. Georgia

and South Carolina are the only two states to present a p-value greater than

0.05. Additionally, Georgia is the only state to present a Pearson correlation
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Figure 4.6: Predicted vs Actual LSDR - Elastic Net

coefficient below 0.5 for the two variables. Louisiana and North Carolina

are the states with the highest correlation coefficients, 0.7708 and 0.7443,

respectively. This means that, except for the states of Georgia and South

Carolina, the two variables are correlated. Therefore, we can conclude that

the developed machine learning model is able to adequately predict LSDR.

4.5.2 State Preparedness

Based on their location, states are more or less prone to be impacted by storms

of higher intensity, i.e. higher LSDR. The LSDR model obtained using machine

learning is able to explain over 40% of the variation. There are factors that

the model is not able to predict, as a result of noise and state’s preparedness.
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Table 4.5: Pearson correlation coefficients between predicted and actual log
LSDR per state

State Correlation p-value

AL 0.6622 0.0038
FL 0.5844 < 0.0001
GA 0.2506 0.3008
LA 0.7708 0.0003
MS 0.6493 0.0088
NC 0.7443 0.0003
SC 0.5256 0.0651
TX 0.6756 0.0021
VA 0.6532 0.0155

Table 4.6: Analysis of Variance (ANOVA) and Kruskal-Wallis test results for
actual LSDR

ANOVA Pr(> F ) = 0.0350

Kruskal-Wallis p-value = 0.0389

An analysis of variance (ANOVA) is performed to evaluate whether the

state has an influence in the value of LSDR, or if the two variables are inde-

pendent. The result of the ANOVA test, shown on Table 4.6, is that there is a

statistically significant relationship between states and the value of LSDR. In

other words, the state that the storm impacts makes a difference on its destruc-

tive potential, represented by LSDR. Additionally, the Kruskal-Wallis test,

which does not make the assumption that the data is normally distributed, is

performed and the result obtained supports the ANOVA results that there is

a statistically significant difference between the values of LSDR and the state,

as seen on Table 4.6.

Figure 4.7 shows the boxplot of the LSDR values per state for the states
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included in this study. It is possible to observe the difference between the

mean LSDR for each state, as well as the variability of the distributions.

South Carolina, Georgia, and Virginia, for example, present a much smaller

range of LSDR values than other states, such as Texas and Louisiana.
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Figure 4.7: Boxplots of LSDR values by state

Similarly, ANOVA and Kruskal-Wallis tests are used to evaluate whether

the state has an influence in the predicted value of LSDR using the selected

elastic net machine learning model. The results of the ANOVA test and the

Kruskal-Wallis test, shown on Table 4.7, are that there is a statistically signifi-

cant relationship between states and the predicted value of LSDR. This means

that the machine learning model was able to assimilate these differences in

LSDR intensities among the states.

The fact that there is a statistically significant difference between both

actual and predicted LSDRs between the states corroborates that each state
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Table 4.7: Analysis of Variance (ANOVA) and Kruskal-Wallis test results for
predicted LSDR

ANOVA Pr(> F ) = 0.0126

Kruskal-Wallis p-value = 0.0003275

is affected by storms with intrinsically different characteristics and strengths.

In other words, there is an inherent difference between the storms that reach

each state.

After demonstrating the substantial difference between the storms that af-

fect each location, state preparedness is evaluated. Evaluating preparedness

of multiple locations to natural hazards is a challenge due to the fundamen-

tal differences between places.The metric Binary State Preparedness (BSP) is

created to assess state preparedness by analyzing the difference between the

actual and the expected (or predicted) LSDR. The BSP calculation and results

are detailed in Section 4.5.2.

Binary State Preparedness

The first metric, called Binary State Preparedness (BSP), is a binary variable

that conveys the information if the actual state damage, measured in terms of

LSDR, is above or below what was predicted with the machine learning model

developed. If the state suffered a damage above the predicted, the state is said

to be poorly prepared and the binary variable received the value of 1. On the

other hand, if the state suffered damage below the predicted, the state is said

to be well prepared and the binary variable receives the value of 0. Equation

4.1 shows how the BSP variable is calculated for each state.
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BSP =


0, if Actual LSDR ≤ Predicted LSDR

1, if Actual LSDR > Predicted LSDR

(4.1)

Table 4.8 shows the count of each type of preparedness (BSP = 0 and

BSP = 1) for each state, as well as the total number of storms and the per-

centage of times the state is deemed poorly and well prepared. It is possible to

see that Florida is by far the state with the most occurrences, with 47 observed

storms. Out of these 47, Florida presented damage below the expected, i.e.

was well prepared, for 27 of these, or 57.45% of the occurrences. Among the

states, Virginia is the best prepared, with 76.92% of its storms (or 10 out of

13) causing lower damage to the state than what was predicted. Mississippi,

on the other hand, is the state that is the least prepared, with 80% of the

storms causing damage above what was predicted.

A Chi-square test is performed to evaluate if the BSP and state variables

are independent. The result of the Chi-square test is p-value = 0.1387, mean-

ing we fail to reject the null hypothesis that there is no relationship between

the two variables, i.e. there is not sufficient evidence to determine that the

variables are dependent. Variable independence is also checked using Cramer’s

V, in which values vary from 0 to 1, with 1 indicating a perfect association be-

tween the two variables. A Cramer’s V value of 0.1549 is obtained, supporting

the Chi-square result of independence between the two variables. These re-

sults lead to the conclusion that all states are similarly prepared for incoming

storms.

The analyses in this chapter suggest that while states are important (sta-

tistically significant) to the strength and destructive potential of the storms,
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Table 4.8: Count of Binary State Preparedness (BSP) per state

State BSP Count Total storms % Preparedness

AL
BSP = 0 7

17
41.18

BSP = 1 10 58.82

FL
BSP = 0 27

47
57.45

BSP = 1 20 42.55

GA
BSP = 0 10

19
52.63

BSP = 1 9 47.37

LA
BSP = 0 7

17
41.18

BSP = 1 10 58.82

MS
BSP = 0 3

15
20.00

BSP = 1 12 80.00

NC
BSP = 0 9

19
47.37

BSP = 1 10 52.63

SC
BSP = 0 8

13
61.54

BSP = 1 5 38.46

TX
BSP = 0 8

18
44.44

BSP = 1 10 55.56

VA
BSP = 0 10

13
76.92

BSP = 1 3 23.08

measured in terms of LSDR, they are not significant in terms preparedness. In

other words, the lack of significant difference on the averages of BSPs among

states lead to the conclusion that all states are similarly prepared for incoming

storms. However, the characteristics of the storms are not the same among

states.

4.5.3 Fragility Curves

Fragility curves represent the probability of a community reaching or exceeding

a damage level as a function of the intensity of a tropical cyclone, numerically
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represented as the log LSDR. This means that the intensity of a given event,

in this case tropical cyclones, is measured on the x-axis, while the probability

of exceedance of a damage level is shown on the y-axis. Utilizing fragility

curves provides a way of incorporating uncertainty in damage estimates and

risk assessment, thus supporting risk-informed and resilience-driven decisions

at a higher level.

As mentioned in Section 4.4.3, the empirical fragility curves are generated

using logistic regression analysis. The Storm Damage Levels, or SDLs, are

determined based on the log LSDR values of observed storms and the damage

reported. Figure 4.8 shows the fragility curves for SDLs 1, 2, and 3. The

fragility curve for SDL 1, with non-filled circles, is the the first curve to show

points with probability of occurrence above zero. That happens because, as the

values of log LSDR become slightly larger, the probability of minor damages

raises. As the value of log LSDR rises, the probability of moderate damage,

represented by SDL 2 (middle curve, “x”), occurring also rises. Finally, major

damage, represented by SDL 3 (filled circles), occurs in few storms that present

log LSDR of greater values. The majority of storms presents log LSDR on the

lower end and, consequently, only cause minor to moderate damage to com-

munities. However, as log LSDR increases, the probability of major damage

occurring also increases, as can be observed in Figure 4.8. To the best of our

knowledge, this is the first time empirical fragility curves have been built for

tropical cyclones at a state-level.
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Figure 4.8: Logistic Regression for Storm Damage Levels

4.6 Concluding Remarks

This work contributes to the understanding of the threat tropical storms and

hurricanes pose to coastal communities, which is the first step to improve

community resilience. The first contribution of this paper is the development of

the concept of LSDR, which allows for an assessment of storm’s strength based

solely on the storm’s intrinsic characteristics, without influence from economic

particulars of the affected location. Multiple machine learning models are built

to predict the values of LSDR based on the storm’s characteristics. Eight

different models are built for each method, using two different outcomes and

four different sets of input variables. Elastic Net provides the best result and
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is, therefore, used for the state preparedness study and empirical fragility curve

generation.

The study indicates that there is a statistically significant relationship be-

tween states and the values of both actual and predicted LSDR, i.e. these

variables are not independent. It can be concluded that both the actual and

predicted strength of the storms, measured through LSDR, are dependent on

the state where the storm makes landfall. State preparedness is evaluated

with the BSP metric and statistical tests performed lead to the conclusion

that state preparedness is independent of the state. This means that, while

there is a significant difference between the strength of the storm in each of

the studied states, they are all equally prepared for the storms.

Finally, this work also contributes to the study of community resilience

by innovatively building state-level fragility curves with respect to hurricanes

and tropical storms. The empirical fragility curves are built using logistic

regression analysis and are a function of the intensity of the storms, in terms

of log LSDR. The curves represent the probability of a community reaching

or exceeding a given damage level, i.e. the probability of a certain level of

damage occurring. Fragility curves were developed for three storms damage

levels: minor, moderate, and major damage. As the strength of the storm

increases, so does the probability of exceeding the damage threshold for each

of the damage levels. This fragility-based approach allows for uncertainty to

be added into the analysis of resilience and preparedness to hurricanes and

tropical storms, supporting resilience-driven decisions at the state-level.

The results from this study could be utilized by decision makers at the

community, city, or state-level to support resilience decision. The method

LSDR created in this work can potentially be expanded to other types of
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natural hazards. Additionally, the original approach of fragility curves for

state-level damage assessment can also be implemented for other events.
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Chapter 5

Conclusion

5.1 Summary

The extensive literature review presented in Chapter 2 reveals critical elements

and research gaps in the field of maritime resilience. The review identifies key

port operations, stakeholders, and the related intermodal networks. Ports are

fundamental agents of global supply chains, being responsible for moving a

large percentage of the country’s cargo. Although there are studies available

on the impacts of port disruption, the extent to which the topic is covered is

limited, especially when compared to the disruption of other agents in trans-

portation systems. Ports are frequently located along coastlines, in areas par-

ticularly vulnerable to natural hazards such as hurricanes and tropical storms,

which are expected to intensify due to climate change.

While the threat hurricanes and tropical storms pose to coastal areas is

significant, the understanding of these natural hazards in terms of their in-

tensity and potential impacts is limited. Various researchers have observed

and attempted to address the deficiency of the SSHS in evaluating a hur-
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ricane’s destructive potential by developing alternative methods to measure

intensity. However, these methods failed to provide an acceptable prediction

of potential losses resulting from incoming hurricanes. Chapter 3 successfully

addresses this limitation, obtaining a machine learning model that better pre-

dicts the economic impacts of an incoming storm than existing metrics. A

vast number of empirical models are developed, using multiple machine learn-

ing methods, and, through this extensive exploration, important differences

between the predictive models for all storms (i.e. hurricanes and tropical

storms), only hurricanes, and only tropical storms are discovered. Further-

more, the generated models are used to explore and obtain crucial insights

in the relationship between storm features and the potential economic impact

of said storm. Chapter 3 also explains the importance of the novel Storm

Damage Ratio, a metric that addresses the challenge of evaluating the damage

of different regions that possess different assets and population. This metric

allows the evaluation and comparison of tropical cyclones based on their in-

trinsic characteristics alone, irrespective of the particularities of the affected

areas.

In Chapter 4 the economic impacts of hurricanes and tropical storms are

further investigated at a state-level. The previously developed SDR metric is

refined to enhance its granularity, obtaining the LSDR metric, which is used

to convey the impact of the storm characteristics alone. Supervised machine

learning is used to estimate potential losses due to tropical cyclones at a state-

level. The relationships between destructive potential of tropical cyclones and

actual state losses are analyzed to assess vulnerability and coastal preparedness

of states. The concept of fragility curves is then extended and used to quantify

regional vulnerability to hurricanes and tropical storms. Historical data related
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to storm paths, characteristics, and regional damage measured as LSDR are

utilized to empirically develop probabilistic functions for three damage levels.

5.2 Contributions

This dissertation makes multiple contributions, as listed below:

• Identifies risks and uncertainty in port operations and examines the im-

pacts of port disruption to maritime supply chains, thus providing valu-

able insights and allowing for the identification of research gaps and areas

where further investigation is necessary. Among these areas is the lim-

ited understanding of the impacts of hurricanes and tropical storms to

ports and the overall coastal areas.

• Compares and contrasts existing metrics alternative to the SSHS, prov-

ing that while some may consider additional features other than solely

sustained wind speed, no existing metric is able to provide adequate

estimations of potential economic losses caused by hurricanes.

• Uncovers novel data-driven insights on the relationship between storm

features and the potential for significant economic losses in a region

through the innovative use of supervised machine learning and the de-

velopment of 182 models.

• Introduces the new SDR, a metric that takes into consideration the GDP

of the affected areas to distinguish region-specific factors from intrinsic

storm characteristics.

• Explores, quantifies, and ranks the intrinsic characteristics of tropical
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cyclones and their effect in a cyclone’s destructive potential, providing

further awareness of other storm features that are relevant to the poten-

tial of a tropical cyclone’s to cause economic losses.

• Demonstrates that, contrary to the suggested by the widely accepted

SSHS, wind speed is not of the utmost importance in the context of

potential economic losses of hurricanes. Shows that damage potential is

actually highly dependent on other characteristics, particularly storm-

size related features.

• Demonstrates that there are significant distinctions between predictive

models for all storms, hurricanes, and tropical storms. Shows that the

economic impacts of tropical storms alone are relatively easier to esti-

mate than that of hurricanes, reinforcing the importance of continuing

to research the behavior, characteristics, and overall interactions of hur-

ricanes.

• Extends the previously created SDR metric to increase its granularity,

thus allowing for a similar approach of distinguishing intrinsic storm-

specific from region-specific factors at a local level, resulting in the novel

LSDR metric.

• Assesses state-level coastal preparedness and vulnerability by examining

the relationships between state and destructive potential of tropical cy-

clones. Demonstrates that there is a statistically significant difference

between the intrinsic characteristics of the storms affecting each state.

Meanwhile, there is no evidence suggesting that there is a difference in

state preparedness, measured in terms of the novel BSP metric.
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• Creates the novel SDL to determine the damage levels resulting from

tropical cyclones at a state level. Performs an extensive review to es-

tablish the degree of damage observed per storm and the appropriate

thresholds for the damage levels obtained.

• Develops a probabilistic approach that further assist in measuring coastal

vulnerability to tropical cyclones at a state level based on the concept

of fragility curves.

5.3 Future Work

The literature review in Chapter 2 reveals multiple research gaps. There is a

lack of quantitative methods to assess maritime supply chain resilience, an area

that is dominated by qualitative concepts and methodologies. Likewise, there

is significant lack of broad and robust solutions to vessel rerouting problems.

Additional focus should be given to maritime intermodal transportation, as

there is a lack of body of knowledge in the topic to understand and address

cascading effects throughout the supply chain resulting from disruptions to

intermodal operations. Finally, more attention should be directed to port

resilience to natural hazards. This dissertation partially addressed this gap

by focusing on developing a clearer understanding of one of these hazards,

namely hurricanes and tropical storms. However, given the fact that ports are

specially vulnerable to the effects of the stronger and more frequently weather

events resulting from climate change, due to their location, research efforts in

the topic are of utmost importance.

A valuable future work would be to perform similar studies utilizing ma-

chine learning to estimate the economic impact of hurricanes and tropical
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storms at county and city levels. This would allow for a valuable comparison

of vulnerability and preparedness to these events at national, state, county, and

regional level. Similar to the approach of this dissertation, empirical fragility

curves can be derived for county and city levels, potentially creating insightful

tools to assess and improve both county and city resilience to tropical cyclones.

The metrics SDR and LSDR created in this dissertation can be utilized

in the studying of other weather events that affect extensive and potentially

diverse geographical areas. Additionally, other natural hazards can be studied

utilizing the same innovative concept of empirical state-level fragility curves.

Finally, the results of the studies performed in this dissertation can be

adapted and utilized by decision makers at the community, city, or state-level

to support decision making process involving resilience to tropical cyclones.

Future research focused on assessing vulnerability and improving resilience

in coastal areas have the potential of reducing both financial and human losses

caused by hurricanes and tropical storms. Every year, the lives of millions of

people are put at risk during these events, due to limited understanding and

insufficient studies of these natural hazards. Tropical cyclones have caused

over US $954.4 billion in losses in the United States from the year 2000 to

2019. These destructive weather phenomenons also result in the disruption

of critical infrastructure systems and of important components in local and

global supply chains. Promoting resilience to hurricanes and tropical storms

is essential at national, state, and regional levels, and should be a priority of

leaders at all levels.
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Katerina Taškova. Learning to predict forest fires with different data
mining techniques. In Conference on data mining and data warehouses
(SiKDD 2006), Ljubljana, Slovenia, pages 255–258, 2006.

[219] Devika Subramanian, Josue Salazar, Leonardo Duenas-Osorio, and
Robert Stein. Building and validating geographically refined hurricane
wind risk models for residential structures. Natural Hazards Review,
15(3):04014002, 2014.

[220] A. Taramelli, E. Valentini, and S. Sterlacchini. A GIS-based approach for
hurricane hazard and vulnerability assessment in the Cayman Islands.
Ocean & Coastal Management, 108:116–130, 2015.

[221] Danusa H. Tavares, Jamie E. Padgett, and Patrick Paultre. Fragility
curves of typical as-built highway bridges in eastern Canada. Engineering
Structures, 40:107–118, 2012.

[222] Shital A Thekdi and Joost R Santos. Supply chain vulnerability anal-
ysis using scenario-based input-output modeling: Application to port
operations. Risk Analysis, 36(5):1025–1039, 2016.

[223] Sergios Theodoridis. Machine learning: a Bayesian and optimization
perspective. Academic Press, 2015.

[224] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (statistical methodol-
ogy), 58(1):267–288, 1996.

[225] Silvia Torresan, Andrea Critto, Matteo Dalla Valle, Nick Harvey, and
Antonio Marcomini. Assessing coastal vulnerability to climate change:
Comparing segmentation at global and regional scales. Sustainability
Science, 3(1):45–65, 2008.

[226] Katherine F Touzinsky, Brandan M Scully, Kenneth N Mitchell, and
Marin M Kress. Using empirical data to quantify port resilience: Hur-
ricane Matthew and the southeastern seaboard. Journal of Waterway,
Port, Coastal, and Ocean Engineering, 144(4):05018003, 2018.

138



[227] Nguyen Khoi Tran and Hans-Dietrich Haasis. Literature survey of net-
work optimization in container liner shipping. Flexible Services and Man-
ufacturing Journal, 27(2-3):139–179, 2015.

[228] Amos Tversky and Craig R Fox. Weighing risk and uncertainty. Psy-
chological review, 102(2):269–283, 1995.

[229] Avinash Unnikrishnan and Miguel Figliozzi. Online freight network as-
signment model with transportation disruptions and recourse. Trans-
portation Research Record: Journal of the Transportation Research
Board, 2224(1):17–25, 2011.

[230] Jyri Vilko and Jukka M Hallikas. Risk assessment in multimodal supply
chains. International Journal of Production Economics, 140(2):586–595,
2012.

[231] Jyri Vilko, Paavo Ritala, and Jukka Hallikas. Risk management abilities
in multimodal maritime supply chains: Visibility and control perspec-
tives. Accident Analysis & Prevention, 2016.

[232] Gabriele Villarini and Gabriel A Vecchi. North Atlantic power dissi-
pation index (PDI) and accumulated cyclone energy (ACE): Statistical
modeling and sensitivity to sea surface temperature changes. Journal of
climate, 25(2):625–637, 2012.

[233] Pascaline Wallemacq and Rowena House. Economic losses, poverty &
disasters: 1998-2017. Technical report, United Nations Office for Disas-
ter Risk Reduction (UNISDR) and Centre for Research on the Epidemi-
ology of Disasters (CRED), 2018.

[234] Naiyu Wang and Bruce R Ellingwood. Disaggregating community re-
silience objectives to achieve building performance goals. In 12th Inter-
national Conference on Applications of Statistics and Probability in Civil
Engineering, ICASP12, Vancouver BC, Canada, 2015.

[235] S Wang and R Toumi. On the relationship between hurricane cost
and the integrated wind profile. Environmental Research Letters,
11(11):114005, 2016.

[236] Shuaian Wang, Abdurahim Alharbi, and Pam Davy. Liner ship route
schedule design with port time windows. Transportation Research Part
C: Emerging Technologies, 41:1–17, 2014.

[237] Yao Wang. Prediction of weather impacted airport capacity using en-
semble learning. In 2011 IEEE/AIAA 30th Digital Avionics Systems
Conference, pages 1–11. IEEE, 2011.

139



[238] Yao Wang and Deepak Kulkarni. Modeling weather impact on ground
delay programs. In 2011 Society of Automotive Engineers, Toulouse,
France. Society of Automotive Engineers, 2011.

[239] Vera Wendler-Bosco and Charles Nicholson. Dynamic decision models
for port shutdown and ship rerouting. In Proceedings of the 2018 IISE
Annual Conference, pages 366–371. Institute of Industrial and Systems
Engineers, 2018.

[240] Vera Wendler-Bosco and Charles Nicholson. Dynamic decision models
for port shutdown and ship rerouting. In Proceedings of the 2018 IISE
Annual Conference, pages 366–371. Institute of Industrial and Systems
Engineers, 2018.

[241] Vera Wendler-Bosco and Charles Nicholson. Defining intensity levels and
potential impacts of incoming hurricanes. In Proceedings of the 2019 IISE
Annual Conference. Institute of Industrial and Systems Engineers, 2019.

[242] Vera Wendler-Bosco and Charles Nicholson. Port disruption impact on
the maritime supply chain: A literature review. Sustainable and Resilient
Infrastructure, pages 1–17, 2019.

[243] John K Williams, DA Ahijevych, CJ Kessinger, TR Saxen, Matthias
Steiner, and Susan Dettling. A machine learning approach to finding
weather regimes and skillful predictor combinations for short-term storm
forecasting. In AMS 6th Conference on Artificial Intelligence Applica-
tions to Environmental Science and 13th Conference on Aviation, Range
and Aerospace Meteorology, 2008.

[244] John K Williams, Jason Craig, Andrew Cotter, and Jamie K Wolff. A
hybrid machine learning and fuzzy logic approach to CIT diagnostic
development. In AMS Fifth Conference on Artificial Intelligence Appli-
cations to Environmental Science, 2007.

[245] W Winkelmans and T Notteboom. Port master planning: Balancing
stakeholders’ interests. The Reality and Dilemmas of Globalization,
Gdansk: The Foundation of the Development of Gdansk University,
pages 395–408, 2007.

[246] Zaili Yang, Steve Bonsall, Alan Wall, and Jin Wang. Reliable container
line supply chains. WMU Journal of Maritime Affairs, 4(1):105–120,
2005.

[247] Gi-Tae Yeo, Ji-Yeong Pak, and Zaili Yang. Analysis of dynamic effects
on seaports adopting port security policy. Transportation Research Part
A: Policy and Practice, 49:285–301, 2013.

140



[248] Ahmed Mohamed Youssef, Hamid Reza Pourghasemi, Zohre Sadat
Pourtaghi, and Mohamed M Al-Katheeri. Landslide susceptibility map-
ping using random forest, boosted regression tree, classification and re-
gression tree, and general linear models and comparison of their perfor-
mance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides,
13(5):839–856, 2016.

[249] YC Yue, D Zonta, F Bortot, and R Zandonini. Assessment of the oper-
ation level of a bridge network in post-earthquake scenarios. In Proc.”
5th International Conf. on Bridge Maintenance, Safety and Management
(IABMAS2010)”, Philadelphia, pages 11–15, 2010.

[250] Jianwu Zeng and Wei Qiao. Short-term solar power prediction using a
support vector machine. Renewable Energy, 52:118–127, 2013.
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