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Abstract. Camera systems used, e.g., in cars, UAVs, smartphones, and
tablets, are typically equipped with IMUs (inertial measurement units)
that can measure the gravity vector. Using the information from an IMU,
the y-axes of cameras can be aligned with the gravity, reducing their rel-
ative orientation to a single DOF (degree of freedom). In this paper, we
use the gravity information to derive extremely efficient minimal solvers
for homography-based egomotion estimation from orientation- and scale-
covariant features. We use the fact that orientation- and scale-covariant
features, such as SIFT or ORB, provide additional constraints on the
homography. Based on the prior knowledge about the target plane (hori-
zontal/vertical/general plane, w.r.t. the gravity direction) and using the
SIFT/ORB constraints, we derive new minimal solvers that require fewer
correspondences than traditional approaches and, thus, speed up the ro-
bust estimation procedure significantly. The proposed solvers are com-
pared with the state-of-the-art point-based solvers on both synthetic data
and real images, showing comparable accuracy and significant improve-
ment in terms of speed. The implementation of our solvers is available
at https://github.com/yaqding/relativepose-sift-gravity.

1 Introduction

Estimating the relative camera motion from two views is a fundamental prob-
lem in computer vision [1], which usually is approached by applying a minimal
solver combined with a robust estimator, e.g., RANSAC [2]. Using a minimal
set of point correspondences is important since the processing time of robust
estimation depends exponentially on the sample size. The well-known five-point
solver [3], which uses only the point coordinate information, is a minimal solu-
tion to the relative pose estimation problem with calibrated cameras. In order
to reduce the number of necessary points, we usually need to exploit additional
prior knowledge about the underlying camera motion or scene geometry. Such a
prior is, for example, the assumption that the camera moves on a plane – e.g., it
is mounted to a vehicle – and, therefore, only a single rotation and two transla-
tion parameters have to be estimated [4, 5]. Recently, largely motivated by the
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availability of camera-IMU systems, smart phones and tablets, which have ac-
celerometers to measure the gravity direction, point-plus-direction solvers have
shown a number of benefits [6–14]. Using this measurement, the y-axes of the
cameras can be aligned with the gravity direction, reducing the relative orienta-
tion of two cameras from three to a single degree of freedom (DOF). This allows
using only three point correspondences to obtain the relative camera motion (the
DOF of the estimated essential matrix reduces from five to three) [7].

Scenes containing large planar surfaces, e.g., floor, walls, doors, street or
other general structures, are very common in man-made environments. Thus,
homography-based methods [1] also play an important role in relative pose esti-
mation. For a known gravity direction, Saurer et al. [6] show that planes, in such
environments, can be divided into three categories: horizontal, vertical and gen-
eral planes. Using the orientation prior, the number of correspondences required
for the estimation is reduced: to two point correspondences for the ground and
a vertical plane with known normal, and 2.5 point correspondences for verti-
cal planes with unknown normals. For a general plane, the homography-based
relative pose estimation is equivalent to the epipolar geometry (the essential
matrix estimation), and therefore, it requires three point correspondences (note
that three points always lie on a general plane). In [15], the authors propose a
homography-based relative pose estimation approach assuming a known vertical
direction with points on the horizontal line.

Affine correspondences encode higher-order information about the underlying
scene geometry. Thus, fewer features are needed for model estimation compared
to point-based methods. Barath et al. [16, 17] show that two affine correspon-
dences are enough for relative pose estimation when the focal length is fixed and
unknown. Recently, it has been shown that the relative pose can be estimated
from one affine correspondence with known gravity direction or under the planar
motion assumption [18, 19]. However, a major drawback of using such features in
practice is that obtaining them, e.g., via Affine-SIFT [20] or Harris-Affine [21],
is time-consuming. This severely restricts the applicability of these techniques,
especially for real-time applications. Nevertheless, parts of the affine features
can be obtained from widely-used feature detectors. For example, SIFT [22] and
SURF [23] provide orientation- and scale-covariant features, which allows ho-
mography estimation from two correspondences [24]. ORB [25] provides oriented
features, and has been successfully used for fundamental matrix estimation [26].

In this paper, we investigate the case where the camera is equipped with an
IMU to align the y-axes with the gravity direction. After aligning the camera
coordinate system, we may have some information about the normal of the tar-
get plane, e.g., the ground plane usually becomes parallel to the XZ plane of the
aligned system. Since the scale and rotation of the feature is known at no cost
when using most of the widely-used feature detectors, e.g., SIFT or SURF, we
propose minimal solvers for homography estimation in man-made environments
based on orientation- and scale-covariant features. Our work builds on top of
the work of Saurer et al. [6] and Barath et. al. [24]. Our new solvers exploit the
orientation and scale constraints on Euclidean homographies introduced in [24]
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and apply them for homography-based egomotion estimation with a known ver-
tical direction. In contrast to the point correspondences used in the solvers of
Saurer et al. [6], our solvers require fewer correspondences. Thus, the new solvers
speed up the robust estimation procedure significantly. We support this claim
by extensive experiments, where we show that the new solvers have comparable
accuracy and notable improvement in speed over point-based solvers [6, 3].

The main contributions of this paper are: (i) Since the affine transforma-
tions will change after the cameras are aligned with the gravity direction, the
scale and orientation from features detected in the original image cannot be di-
rectly used for the aligned cameras. We thus investigate the relationship between
the original and aligned views so that the scale and orientation from the original
views can give constraints on the aligned views. (ii) When the points lie on the
ground plane, we show that the relative pose problem can be solved from a sin-
gle orientation- and scale-covariant feature. (iii) In addition, we prove that the
rotation estimation is independent of the feature scale for this case. (iv) If the
points are on a vertical plane, we show that a single orientation-covariant feature
and one point correspondence are sufficient to estimate the camera motion. (v)
In the case that the normal of the plane is completely unknown, we derive a
minimal solution using only two orientation-covariant features for general ho-
mography estimation. For more details on this solver we refer the reader to the
supplementary material.

2 Background

Suppose that we are given a point on a 3D plane and its two projections, m1 =
[u1, v1, 1]

⊤ and m2 = [u2, v2, 1]
⊤, with respect to two camera frames. These two

image points are related by a Euclidean homography matrix H ∈ R
3×3 as

γK−1

2
m2 = HK

−1

1
m1 , (1)

where γ ∈ R is a scaling factor, and K1, K2 ∈ R
3×3 are the camera intrinsic

matrices. The homography matrix H relates the normalized image points K−1

1
m1

and K
−1

2
m2. H is related to the rotation R, translation T, and distance d from the

camera frame to the target plane, and the normal N of the plane via

H = (R+ TN⊤) , (2)

where we can absorb the distance d into the translation T. Here, we assume that
the gravity direction is known. The gravity direction can be calculated, e.g., from
the IMU data or vanishing points [1]. With this assumption, and without loss of
generality, we can rotate the points so that the y-axes of the cameras are aligned
with the gravity direction (Fig. 1(a)). Let R1, R2 be the rotation matrices that
were used for the alignment of the first and the second camera. Applying the
rotations to the normalized image points, Eq. (1) becomes

γR2K
−1

2
m2 = HyR1K

−1

1
m1 , (3)
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with
Hy = (Ry + tn⊤) . (4)

Here, t is the translation (the distance is absorbed into t) after the alignment
and Ry is an unknown rotation around the y-axis of the form

Ry =



cos θ 0 sin θ
0 1 0

-sin θ 0 cos θ


 , (5)

where θ is the unknown yaw angle. The relationship between H and Hy is given
by the following formula:

H = R⊤
2
HyR1 . (6)

Hence, the full relative rotation and translation between the two views are

R = R⊤
2
RyR1 , T = R⊤

2
t . (7)

In this case, Hy can be used to get the 5-DOF relative pose between the views.

2.1 DOF analysis

It is well-known that the general Euclidean homography matrix has 8 degrees
of freedom originating from the three parameters of rotation R, two unknowns
describing the orientation of the unit plane normal n, the distance d of the plane
from the camera, and two DOF from the direction of t.

In our case, when the coordinate system is aligned, the DOF of R is reduced to
one, i.e., the angle of rotation around the vertical axis. In general configurations,
the relative translation t between the two cameras has only two degrees of free-
dom since it can only be recovered up to scale, due to the nature of perspective
projection [1]. However, since the distance d of the observed plane is absorbed
into t to achieve the special form of Hy, t cannot be arbitrarily scaled and, thus,
it has three degrees of freedom. As a consequence, we will be estimating all three
parameters of t and, also, the unknown rotation angle.

2.2 Orientation- and scale-covariant feature constraints

In this paper, we use orientation- and scale-covariant features to estimate the
unknown homography. Most of the widely-used feature detectors, e.g., SIFT and
SURF, not only provide point correspondences but also additional information
about each feature’s scale and rotation. This means that an orientation- and
scale-covariant feature correspondence can be considered as a correspondence of
triplets (m1, ϕ1, q1) ↔ (m2, ϕ2, q2), where m1 ↔ m2 is a point correspondence, and
ϕi and qi, i = 1, 2 are, respectively, the orientation and the scale of the feature.

For the point correspondence part, Eq. (1) holds and can be rewritten as

γm2 = Gm1 , (8)
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Fig. 1: (a) Illustration of the coordinate systems used in this paper. We can
align the y-axis of the camera with the gravity based on the IMU readings. (b)
Visualization of orientation- and scale-covariant features.

where G is a homography matrix which relates uncalibrated image points m1
and m2, i.e., G = K2HK

−1

1
. This means that each point correspondence yields the

following two linear constraints on G:
[
0 0 0 −u1 −v1 −1 v2u1 v2v1 v2
u1 v1 1 0 0 0 −u2u1 −u2v1 −u2

]
g = 0 , (9)

g = [g1 g2 g3 g4 g5 g6 g7 g8 g9]
⊤ , (10)

where g1, g2, ..., g9 are the elements of the homography G in a row-major order.
In [24], two constraints that relate the homography matrix to the scales and

rotations of the orientation- and scale-covariant features, e.g., SIFTs, in the first
and second image are derived. These constraints have the form

g8u2s1s2 + g7u2s2c1 − g8v2s1c2 − g7v2c1c2 + (11)

−g2s1s2 − g1s2c1 + g5s1c2 + g4c1c2 = 0 ,

g2
7
u2

1
q2 + 2g7g8u1v1q2 + g2

8
v2
1
q2 + g5g7u2q1 + (12)

−g4g8u2q1 − g2g7v2q1 + g1g8v2q1 + 2g7g9u1q2 +

2g8g9v1q2 + g2g4q1 − g1g5q1 + g2
9
q2 = 0 ,

where ci = cos(ϕi), si = sin(ϕi). Note that the first constraint (11) is not
dependent on scales. It can thus also be used for features that are orientation-
but not scale-covariant, e.g., ORB features [25].

This means that each SIFT correspondence gives four constraints on the
homography matrix G (three linear ones from (9) and (11) and one quadratic
one from (12)) and each ORB correspondence gives just three linear constraints
((9) and (11)). Our objective is to estimate the camera motion by estimating a
homography from a combination of SIFT/ORB and point correspondences. Note,
that constraints (11) and (12) were derived for a general homography. In our case,
the y-axes of the cameras are aligned with the gravity direction. This changes
not only the point coordinates, but also affects the orientation and scale of the
features. Thus, the constraints (11) and (12) cannot be directly applied when
estimating the Euclidean homography matrix Hy via Eq. (3). Next, we describe
how to use the orientation and scale constraints to estimate the homography Hy
under different assumptions about the camera motion and observed plane.
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3 Pose Estimation

Based on (1), (6) and (8), the relationship between the Euclidean homography
matrix Hy and the standard homography matrix G can be formulated as

Hy ∼ Ĥy = R2K
−1

2
GK1R

⊤

1
, (13)

where ∼ indicates equality up to a scaling factor, i.e., Ĥy = λHy, for some scale
λ 6= 0. In order to find the constraints on the Euclidean homography matrix Hy,
we first consider the matrix B defined as

B = Ĥy − λRy = λtn⊤ . (14)

B is the difference between the homography Ĥy and the corresponding rotation
Ry (we have to add a scalar λ because (13) holds up to scale). Matrix λRy can
be written as

λRy =



α 0 β
0 λ 0
-β 0 α


 , (15)

where α = λ cos θ, β = λ sin θ, and θ is the yaw angle associated with Ry. Matrix
B in (14) can then be rewritten as

B =



h1 − α h2 h3 − β
h4 h5 − λ h6

h7 + β h8 h9 − α


 , (16)

where hi are the elements of the matrix Ĥy.
Next, we consider two different cases based on prior knowledge of the type

of target plane, i.e., situations where our points lie on a horizontal or a vertical
plane. The third case, i.e., a general plane, is discussed in the supplementary
material. The prior knowledge of the type of target plane gives additional con-
straints on the form of the matrix B that simplify the computation of Hy.

3.1 Points on a Horizontal Plane

An important case arises when the points lie on a horizontal plane. This is
practical and relevant when a camera is mounted on a vehicle/robot or a UAV
mounted with a bird-view camera, since the ground plane is virtually always
available. In this case, n = [0 1 0]⊤, and we have a 4-DOF problem with respect
to [θ, tx, ty, tz]. Hence, this problem can be solved from a single SIFT correspon-
dence which yields four independent constraints. From Eq. (14), it follows that
the matrix B has the form

B = λ



0 tx 0
0 ty 0
0 tz 0


 . (17)
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Using (16) and (17), we obtain six constraints on the elements of the homography
matrix Ĥy, i.e.,

h4 = 0, h6 = 0, h1 − α = 0, h3 − β = 0, h9 − α = 0, h7 + β = 0 . (18)

After eliminating the parameters {α, β} based on the last four equations in (18),
we obtain four constraints

h4 = 0, h6 = 0, h1 − h9 = 0, h3 + h7 = 0 (19)

which generally hold for this type of homographies. Given a single SIFT corre-
spondence, we have three linear constraints (from (9) and (11)) on the homog-
raphy matrix G. These constraints can be written in a matrix form

Mg = 0 , (20)

where M is a 3× 9 coefficient matrix and the vector g contains the elements of G
(cf. (10)). Vector g can be written as a linear combination of the six basis vectors
from the 6-dimensional null space of the matrix M as

g = x1ga + x2gb + x3gc + x4gd + x5ge + x6gf , (21)

where x1, . . . , x6 are new unknowns. Note that since G is given only up to scale,
we can fix one of the unknowns, e.g., x6 = 1. Substituting (21) into (13) yields
Ĥy = R2K

−1

2
GK1R

⊤
1
. The Euclidean homography matrix Ĥy, for calibrated cameras,

can be parameterized using five unknowns {x1, x2, x3, x4, x5}. Since there are
four linear constraints (19) on the elements of Ĥy, we can use these ones to
express four from the five unknowns, e.g., x1, . . . , x4 as a linear functions of x5.
This leads to a parameterization of the homography matrix G (21), as well as Ĥy,
using just one unknown, i.e., x5. This parameterization is finally substituted into
the SIFT constraint (12), leading to one quadratic equation in x5. After solving
this equation, Ĥy and, subsequently, Ry and t can be recovered. Although we can
directly decompose G into R and T using the SVD-based method, there will be
two possible rotations for a standard homography matrix G. By contrast, each
Ĥy corresponds to a unique rotation, where the redundant solution is eliminated.

3.2 Points on a Vertical Plane

As a complement to the case where points are on a horizontal plane, we address
the case where they lie on a vertical plane with unknown normal. This is also
practical, since walls and building facades in man-made environments are usually
parallel to the gravity direction. In this case, n = [nx 0 nz]

⊤ and we have a 5-DOF
problem w.r.t. {θ, tx, ty, tz, nx, nz} (the unit vector n has two parameters and one
DOF). We need at least one SIFT or ORB and one point correspondences to
solve this problem compared to the 2.5 point correspondences of the point-based
solver [6]. Note that one SIFT and one point correspondence provide 6 indepen-
dent constraints which result in an over-constrained system. We choose to only
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use the orientation constraint (11) from the feature (SIFT/ORB) correspondence
since, in practice, the scale is usually more noise-sensitive. Moreover, the orien-
tation constraint (11) is linear compared to the quadratic constraint (12). The
new solver only requires oriented features and thus also works with ORB [25]
features. Under the vertical plane constraint, matrix B in (14) becomes

B = λ



txnx 0 txnz

tynx 0 tynz

tznx 0 tznz


 . (22)

There are 6 constraints on the matrix B as follows:

B(1, 2) = 0, B(2, 2) = 0, B(3, 2) = 0 ,

B(1, 1)B(2, 3) = B(1, 3)B(2, 1) ,

B(1, 1)B(3, 3) = B(1, 3)B(3, 1) ,

B(2, 1)B(3, 3) = B(2, 3)B(3, 1) .

(23)

Substituting (16) into (23), we have the following 6 equations

h2 = 0, h8 = 0, h5 − λ = 0, h4(h9 − α)− h6(h7 + β) = 0 ,

h6(h1 − α)− h4(h3 − β) = 0, (h1 − α)(h9 − α)− (h3 − β)(h7 + β) = 0 .
(24)

Similar to the case where points are on a horizontal plane, we find that two of the
equations in (24) (forth and fifth) are linear in α and β. Thus, we can use them
to express α and β using hi. Substituting the formulation into the last equation
of (24), we obtain the following constraint without parameters {λ, α, β}:

(h1h6 − h3h4)
2 + (h4h9 − h6h7)

2 − h2

5
(h2

4
+ h2

6
) = 0 . (25)

Together with h2 = 0, h8 = 0, we obtain three constraints for the vertical
plane-induced Euclidean homography matrix Hy. Given one SIFT/ORB and
one point correspondences, we have 3+2 linear constraints ((9) and (11)) on the
homography matrix G. These constraints can be written in a matrix form

Mg = 0 , (26)

where M is a 5 × 9 coefficient matrix and the vector g contains the elements of
G. The vector g can be written as a linear combination of the four basis vectors
from the 4-dimensional null space of the matrix M as

g = x1ga + x2gb + x3gc + x4gd , (27)

where x1, x2, x3, x4 are new unknowns. Again, we fix one of the unknowns, e.g.,
x4 = 1. Substituting (27) into (13) yields Ĥy = R2K

−1

2
GK1R

⊤
1
. The Euclidean ho-

mography matrix Ĥy, for calibrated cameras, can be parameterized using three
unknowns {x1, x2, x3}. We can use h2 = 0, h8 = 0 to express two from these
three unknowns, e.g., x1, x2 as a linear functions of x3. This leads to a param-
eterization of the homography matrix G, as well as Ĥy, using just one unknown
x3. This parameterization is finally substituted into the Euclidean homography
constraint (25), leading to one quartic equation in x3. The remaining steps are
the same as for the case where points lie on the horizontal plane.
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Table 1: Theoretical computational complexity of solvers (gray – proposed).

Solver SVD QR Eigen Operations
Total operations with outliers
0.25 0.50 0.75 0.90

1SIFT Ground 3×9 4×4 - 145 482 964 2321 6338
2PC Ground [6] 4×5 - - 80 446 1281 5709 3.6*104

1SIFT+1PC Vert. 5×9 2×2 4×4 297 1655 4755 2.1*104 1.3*105

3PC Vertical [6] 5×6 - 4×4 214 1799 7381 6.2*104 9.8*105

3PC Essential [7] 3×6 6×6 4×4 334 2807 1.1*104 9.7*104 1.5*106

5PC [3] 5×9 10×10 10×10 2225 3.8*104 3.2*105 ∼107 ∼109

4 Experiments

In this section, we study the performance of our solvers on both synthetic data
and real images. We compare our solvers with the most closely related work
by Saurer et al. [6] and the three-point essential matrix-based solver [7]. Since
in [6], the authors have shown that the five-point essential matrix-based solver [3]
outperforms the four-point homography algorithm [1], we only compare with the
five-point algorithm. Note that there are several different solvers for the five-
point relative pose problem [27–29] and three-point relative problem [7, 9, 30,
11, 12, 14], respectively. However, solving the same problem from the same data
using stable solvers, the results should be almost equal. We thus only compare
against one solver per problem.

4.1 Computational Complexity

Table 1 shows the theoretical computational complexity of each solver. The
number of operations for one RANSAC iteration for each solver is calculated
based on the solvers’ major computations, including SVD, QR and Eigenvalue
decomposition. The total number of operations (last four columns) are given as
the number of operations for one iteration multiplied by the number of RANSAC
iterations for different percentage of outliers. We can see that our solvers need
significant fewer operations than the other techniques.

4.2 Synthetic Evaluation

We chose the following setup that is similar to [6] to generate synthetic data.
100 spatial points were distributed uniformly on two planes, a horizontal plane
and a vertical plane. The focal length fg of the camera was set to 500 pixels
and the resolution of the image to 1000× 1000 pixels. We focused on two prac-
tical motions: forward motion (along the z-axis) and sideways motion (along
the x-axis). The Euclidean distance between the two cameras was set to be 10
percent of the average scene distance. In addition, the two cameras were rotated
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Fig. 2: Comparing the proposed 1SIFT solver with the 2PC Ground solver [6],
3PC Essential solver [7] and the 5PC solver [3]. Top: Increasing image noise.
(a,b) Rotation and translation errors with additional noise added to SIFT orien-
tations. (c) Translation error with additional noise added to SIFT scales. Bot-

tom: Increasing gravity vector noise and fixed image noise (2 px std.). (d,e)
Rotation and translation errors with noise added to SIFT orientations. (f) Trans-
lation error with noise added to SIFT scales.

around every axis. It was guaranteed that each 3D point was observed by two
cameras – however, it is theoretically not required. This is similar to [7, 6]. We
generated 10,000 pairs of images with different transformations. To simulate the
SIFT orientations and scales, the affine transformations were calculated from
the homography using the 4-point algorithm. Then the affine transformations
were decomposed into SIFT orientations and scales based on [24]. The rotation
error was defined as the angle difference between the estimated rotation and
the true rotation: arccos

((
tr(RgR

⊤
e )− 1

)
/2
)
, where Rg and Re represent the true

and estimated rotations, respectively. The translation error was measured as the
angle between the estimated and true translation vectors, since the estimated
translation is only defined up to scale. We only show the results for forward
motion. Results for sideways motion are shown in the supplementary material.

Fig. 2 reports the rotation and translation errors for points on the ground
plane. The top row shows the performance under image noise with different
standard deviations. We also add different levels of noise to the SIFT orientations
and scales (see the legend). We ran 10,000 trials per data point in the plots and
the first quartile of the rotation and translation errors are plotted. This measure
is an appropriate performance criterion when the method is used for RANSAC or
other robust statistics [6]. The bottom row shows the performance with increased
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Fig. 3: Comparing the proposed 1SIFT+1PC solver with 3PC Vertical [6], 3PC
Essential [7] and 5PC [3]. Top: Rotation and translation errors under image
noise. Bottom: Rotation and translation errors under gravity vector noise and
fixed image noise (2 px std.).

gravity vector noise and constant image noise of 2 pixel standard deviation. As
we can see, for different levels of noise, our 1SIFT solver performs well and
obtains promising results. As shown in previous studies, e.g., [7], smartphones in
2009 such as Nokia N900 and iPhone 4 had a maximum gravity vector error of
1◦, which is the maximum tested value in our synthetic experiments. For 1◦, the
new solvers provide stable results and thus, are useful even for low-cost sensors.
Nowadays, accelerometers used in cars and modern smartphones have noise levels
around 0.06◦ (and expensive “good” accelerometers have < 0.02◦) [7].

Note that, we do not report the rotation error under SIFT scale noise, since
there is a special property for our 1SIFT solver: the rotation estimation is inde-
pendent of the scale. The proof is given in the supplementary material.

Fig. 3 reports the rotation and translation errors for points on a vertical
plane. The top row shows the performance under image noise with different
standard deviations. Since this solver does not use the scale information from
SIFT, we only need to add noise to the SIFT orientations. The bottom row
shows the performance with increased gravity vector noise and constant image
noise of 2 pixel standard deviation. In this case, our vertical plane-based solver is
slightly sensitive to orientation noise. However, with the image noise increased,
it is still comparable to other solvers.
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Fig. 4: The cumulative distribution function of the rotation errors; processing
time; and log

10
iteration number of GC-RANSAC. The values were calculated

from a total of 9, 064 image pairs (15 scenes from the Malaga dataset). Being
more accurate or faster is interpreted as a curve close to the top-left corner.

4.3 Camera mounted to a moving vehicle

In order to test the proposed technique on real-world data, we chose the Malaga4

dataset [31]. This dataset was gathered entirely in urban scenarios with car-
mounted sensors, including one high-resolution stereo camera and five laser scan-
ners. We used the sequences of one high-resolution camera and every 10th frame
from each sequence. The proposed method was applied to every consecutive im-
age pair. The ground truth paths were composed using the GPS coordinates
provided in the dataset. Each consecutive frame-pair was processed indepen-
dently and we did not run any optimization minimizing the error on the whole
path or detecting loop-closures. The estimated relative poses of the consecutive
frames were simply concatenated. In total, 9, 064 image pairs were used.

Considering that the orientation and scale of local features are often noisier
than their point coordinates, we chose to use a locally optimized RANSAC, i.e.,
Graph-Cut RANSAC5 [32] (GC-RANSAC), as the robust estimator, where the
local optimization is applied to only the point coordinates, similarly as in [24]. In
GC-RANSAC (and other RANSAC-like methods), two different solvers are used:
(a) one for fitting to a minimal sample and (b) one for fitting to a non-minimal
sample when doing model polishing on all inliers or in the local optimization
step. For (a), the main objective is to solve the problem using as few data points
as possible since the processing time depends exponentially on the number of
points required for the model estimation. The proposed and compared solvers
were included in this part of the robust estimator. Also, we observed that the
considered special planes usually have lower inlier ratio, being localized in the
image, compared to general ones. Therefore, instead of verifying the homography
in the RANSAC loop, we composed the essential matrix immediately from the
recovered pose parameters and did not use the homography itself. For (b), we
applied the planar 3PC essential matrix solver [7] to estimate the relative pose

4 https://www.mrpt.org/MalagaUrbanDataset
5 https://github.com/danini/graph-cut-ransac
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Table 2: The avg. angular error (degrees) and processing time (seconds) of the
pose estimation on 13 scenes (columns) of the Malaga dataset using different min-
imal solvers and GC-RANSAC as robust estimator [32]. The compared methods
are the planar solver of [33] (3PC), essential matrix solver of [7] (3PC Ess.),
solver of [3] (5PC), ground (2PC Ground) and vertical plane (3PC Vert.) solvers
of [6], and the proposed two SIFT-based solvers assuming points on the ground
(1SIFT) or vertical plane (1SIFT+1PC). The CDFs are in shown Fig. 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 avg

Angular error (◦)

3PC 2.6 3.4 2.9 4.6 3.8 4.2 3.9 1.8 4.4 6.3 2.8 2.8 6.2 3.6
3PC Ess. 2.4 2.5 1.3 1.9 3.2 4.2 3.5 1.6 3.2 5.8 1.4 2.7 5.0 2.7

5PC 5.5 14.8 18.6 18.1 10.7 9.3 13.2 18.0 22.0 13.1 18.2 13.2 24.9 16.5
2PC Ground 2.5 3.0 2.2 2.1 3.8 4.2 4.1 2.5 4.3 6.8 2.1 2.8 5.7 3.5

3PC Vert. 2.5 3.6 4.5 3.5 4.1 4.4 4.3 2.9 8.5 5.9 2.5 3.9 6.9 4.4
1SIFT+1PC 2.5 3.6 4.0 3.1 4.1 4.3 4.2 3.1 5.2 7.0 3.2 3.5 6.7 4.2

1SIFT 2.4 3.5 2.0 2.5 4.0 4.3 3.5 2.1 3.9 6.3 2.2 3.2 6.4 3.5

Time (seconds)

3PC 0.20 0.22 0.15 0.19 0.21 0.15 0.18 0.24 0.17 0.20 0.14 0.19 0.24 0.19
3PC Ess. 0.17 0.27 0.06 0.20 0.22 0.09 0.12 0.16 0.08 0.24 0.09 0.10 0.21 0.19

5PC 0.28 0.48 0.26 0.76 0.29 0.27 0.21 0.23 0.10 0.22 0.50 0.18 0.41 0.31
2PC Ground 0.06 0.14 0.03 0.11 0.17 0.03 0.09 0.07 0.08 0.21 0.05 0.09 0.13 0.09

3PC Vert. 1.28 1.68 0.68 1.31 1.89 0.60 1.34 1.55 1.47 2.05 0.95 1.40 1.73 1.35
1SIFT+1PC 0.32 0.68 0.15 0.61 0.79 0.11 0.44 0.37 0.37 1.12 0.23 0.44 0.62 0.47

1SIFT 0.02 0.02 0.01 0.02 0.03 0.01 0.01 0.02 0.02 0.03 0.01 0.01 0.02 0.02

from all inlier correspondences. Note that, when testing a solver aiming to find a
particular plane (e.g., ground), we let GC-RANSAC decide which sample is good
by immediately decomposing H to the pose and validating the essential matrix.
Thus, the proposed solvers can be applied without a-priori knowing what types
of planes are present in the scene.

The cumulative distribution functions of the rotation errors (in degrees) of
the compared methods are shown in the left plot of Fig. 4. A method being
accurate is interpreted as the curve being close to the top-left corner. Both
of the proposed solvers are among the best performing ones. The cumulative
distribution functions of the processing times and iteration numbers of the whole
robust estimation procedure are shown in the right two plots of Fig. 4. The
proposed 1SIFT ground solver leads to significantly faster robust estimation
than the other algorithms. The average errors and processing times, for each
scene, are reported in Table 2. It can be seen that the proposed 1SIFT ground
solver is the fastest one on all scenes while being the second most accurate one.

4.4 Smart phone images

We captured two videos, at a resolution of 1920×1080 at 30Hz using an iPhone
6S, observing the ground or a vertical wall. The corresponding IMU data were
captured at 100Hz. The frames and IMU data were synchronized based on their
timestamps. The intrinsic camera parameters were obtained by using a Matlab
toolbox. We applied the RealityCapture [34] software to acquire camera poses
which we can use as ground truth when evaluating the solvers. For the sequence
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Table 3: The average rotation error (in degrees), processing time (in seconds)
and iteration numbers required for GC-RANSAC are reported.

Video 1 (ground) Video 2 (wall)

Solver Error (◦) Time (s) Iter. # Solver Error (◦) Time (s) Iter. #

1SIFT 0.627 0.571 286 1SIFT+1PC 5.364 0.219 233

2PC Ground 0.438 0.842 973 3PC Vert. 5.391 0.420 853
5PC 1.875 2.966 5208 5PC 11.162 1.071 4104

showing the ground, we used every consecutive images. For the video of the wall,
we used every 5th image. In total, the methods were tested on 1, 247 image pairs
from the videos.

The results are reported in Table 3. For the video observing the ground, the
proposed 1SIFT solver is marginally – by 0.2 degrees – less accurate than the
2PC solver of [6]. However, it leads to the most efficient robust estimation, being
0.3 seconds faster than the second fastest solver, i.e., 2PC Ground. For the video
showing a wall, the proposed 1SIFT+1PC methods marginally leads to the most
accurate solutions while being faster than the other algorithms. Furthermore, our
solvers can be combined in a RANSAC loop to improve the performance.

5 Conclusions

We propose three new minimal solvers for estimating the egomotion of cam-
eras with known vertical orientation and considering special target planes. The
methods use orientation- and scale-covariant features, thus reducing the sam-
ple size at no cost when the features are obtained by the most commonly used
detectors, e.g., SIFT. The proposed solvers are compared with state-of-the-art
point-based approaches on both synthetic data and real images, showing com-
parable accuracy and significant improvements in computation times. Based on
our experiments, the most promising method is the one which estimates the ho-
mography from a single correspondence if it originates from the ground plane.
We believe that the proposed solvers will be useful for the community.
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