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a b s t r a c t

To contribute for improved operational strategies of concentrating solar power plants with accurate
forecasts of direct normal irradiance, this work describes the use of several post-processing methods on
numerical weather prediction. Focus is given to a multivariate regression model that uses measured
irradiance values from previous hours to improve next-hour predictions, which can be used to refine
daily strategies based on day-ahead predictions. Short-term forecasts provided by the Integrated Fore-
casting System, the global model from the European Centre for Medium-Range Weather Forecasts
(ECMWF), are used together with measurements in southern Portugal. As a nowcasting tool, the pro-
posed regression model significantly improves hourly predictions with a skill score of z0.84 (i.e. an
increase of z27.29% towards the original hourly forecasts). Using previous-day measured availability to
improve next-day forecasts, the model shows a skill score of z0.78 (i.e. an increase of z6% towards the
original forecasts), being further improved if larger sets of data are used. Through a power plant
simulator (i.e. the System Advisor Model), a preliminary economic analysis shows that using improved
hourly predictions of electrical energy allows to enhance a power plant’s profit in z0.44 MV/year, as
compared with the original forecasts. Operational strategies are proposed accordingly.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical weather prediction (NWP) models have been
improved continuously over the last decades due to advances in
computational technology, meteorological analysis, physical pa-
rameterizations and numerical methods. Particularly, in the field of
solar radiation forecasting, remarkable progress has been made in
recent years with the constant upgrades regarding radiative and
aerosol schemes implemented in NWP models. Such advances
allowed NWP to provide the best possible forecasts for the two
most important solar components used for solar energy harvesting,
namely global horizontal and direct normal irradiances (GHI and
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DNI, respectively). These two solar resources are described in detail
throughout literature, such as in Refs. [1].

A precise prediction of DNI is essential for the energy manage-
ment of concentrating solar power (CSP) systems, particularly
during partly cloudy conditions [2], in which CSP plants experience
significant periods of solar intermittency. During such periods,
clouds passing over the solar field lead to an energy reduction, since
energy is suddenly not being collected and, at the same time, there
is energy being consumed by the plant due to its operation, such as
the production of electricity. Energy is mainly needed to feed the
power block, but also for auxiliary consumption, such as main-
taining the heat transfer fluid above a certain temperature (critical
for molten salt systems). The duration of these energy deficiency
periods can go from a few minutes to an entire day, depending on
various atmospheric parameters such as size and depth of clouds,
wind velocity and direction, and aerosols (concentration and type).
The latter, while less frequent, can also significantly affect CSP en-
ergy production, as during desert dust storms [3] or severe air
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pollution events [4].
Although NWP models currently provide satisfactory solar ra-

diation forecasts, depending on the forecast horizon, these have
always an associated error (i.e. a forecast uncertainty). This uncer-
tainty is a consequence of errors in the initial conditions and in the
formulation of the models itself [5]. Since models provide deter-
ministic values associatedwith systematic errors, the combined use
of NWP data, statistical, and machine learning methods (e.g.
Ref. [6]), allows the assessment of the uncertainty associated with
the forecast results. The statistical post-processing of dynamical
NWP outputs can be of practical use for weather forecasting [7], in
which two main categories of classification for statistical down-
scaling methods exist [8]: perfect prognosis and model output
statistics (MOS). Perfect prognosis [9] consists in the development
of statistical relationships between large-scale free atmospheric
and local surface variables (both sets of data are originated from
historical or actual observations). Whereas in MOS [10], the free
atmospheric variables are originated from numerical model out-
puts. Each method has its own advantages and disadvantages, but,
essentially, MOS accounts for systematic model errors (e.g. dry bias)
with the use of multiple predictors, allowing for a better fit to the
predictand data and higher accuracy. Such accuracy, is generally
better than pure statistical models, which have a high performance
at very short time resolutions (<30 min) within the nowcasting
range (i.e. from 0 to 6 h), or pure NWPmodels, which go beyond the
6-h range. After combining observations with NWP model outputs,
statistical techniques, such as the use of statistical regression
models (the most basic form of MOS), can be applied to derive
forecast equations, allowing to improve the original forecasts [11].
To reduce NWP uncertainty and improve the systematic error
correction of DNI forecasts, several statistical methods have been
used. In Ref. [12], a simple post-processing correction was imple-
mented over 3-h average values of predicted DNI, leading to
satisfactory results with correlations in the order of 0.9. In their
work, the authors concluded that clouds were the main source of
numerical bias. In Ref. [13], a third-degree polynomial fit was per-
formed over monthly mean hourly values, providing a high corre-
lation coefficient of about 0.96 between the clearness index and
historical DNI data. Depending on the forecast horizon, several
other more complex approaches have been used to evaluate the
systematic errors. For instance: Multi-Model [14]; Multi-
Parameterization [15]; Stochastic Parameterization [16]; Multi-
Parameter [17]; Stochastic Kinetic Energy Backscatter methods
[18]; artificial neural networks [19]; autoregressive integrated
moving average (ARIMA) models [20,21]; assemble MOS [22],
among others. Besides statistical downscaling methods, the nesting
of high-resolution limited-area models in global models (i.e. dy-
namic downscaling) can also be used to improve NWP outputs. As
described by Ref. [23], the method has the advantage of not
requiring local observations and the potential to provide better
results than statistical methods, particularly the prediction of
extreme events. However, the throwback lies in the fact that sys-
tematic errors present in the global models are propagated to the
mesoscale ones. Moreover, higher computational cost is needed for
implementing a high-resolution model.

In addition to NWP uncertainty, there are also particular diffi-
culties in providing accurate forecasts of DNI due to the inaccurate
prediction of clouds and aerosol concentrations. The mis-
representations of clouds and aerosols in the atmosphere signifi-
cantly reduce the accuracy of the forecasted DNI, as these are the
two main modulators of solar radiation at the surface [12]. For
instance, extreme aerosol effects such as desert dusts, which are
known to reduce the DNI up to 90% [24], are generally mis-
represented in the models. Although aerosol implementation in
NWP is commonly considered in several operational forecast
models, the actual concentration levels are not predicted. Thus, its
total effects in the radiative forcing mechanism (and therefore in
solar radiation at the surface) are still not accurately represented
[25]. Currently, the majority of NWP models consider monthly
mean aerosol climatologies, not allowing to represent the actual
aerosol content in the atmosphere, particularly on the hourly and
daily resolutions. Moreover, despite the fact that cloud formation
processes are quitewell understood, the representation of clouds in
NWP models is the most significant factor that contributes to the
lack in DNI accuracy. This occurs not only during overcast periods,
but also, and more severely, under partly cloudy days due to the
complex nature and scale of cloud microphysical mechanisms. At
such small scales, nonlinear and turbulent motions contribute to a
chaotic and stochastic system, as oppose to deterministic [26]. For
instance, during partly cloudy days, models are roughly able to
predict that clouds will appear, however the exact location and
timing of cloud formation and dissipation (i.e. cloud life cycle) are
difficult to predict. This occurs especially for mesoscale clouds, i.e.
below a horizontal resolution of several kilometres.

In this work, state-of-the-art statistical downscale methods are
presented for the correction of the systematic error associated with
hourly predictions of DNI to improve CSP plants operational stra-
tegies, an important information for the plant operator. In this
context, day-ahead forecasts (i.e. next 24-h) of DNI from the Inte-
grated Forecasting System (IFS), the global NWP model from the
European Centre for Medium-Range Weather Forecasts (ECMWF),
are used together with local measurements considering a period of
two years in �Evora (southern Portugal). The novelty of this work is
based on the use of improved hourly and daily predictions from the
ecRad (cycle 43R3) radiative scheme of the IFS to establish generic
next-hour and next-day CSP operational strategies. To this end,
several regression models are created, where a compound multi-
variate regression model (designated here by MRM2) that uses
previous measured hour of irradiance values to forecast next-hour
values (i.e. within the nowcasting range) is proposed. In order to
define generic daily operational strategies, the proposed method-
ology combines improved daily availabilities of DNI (also important
for day-ahead energy dispatchability operations) with improved
hourly predictions to refine hour-by-hour operational procedures
that occur throughout the day. Moreover, hourly predictions are
used in the System Advisor Model (SAM), from the National
Renewable Energy Laboratory (NREL), to simulated electrical en-
ergy values from a CSP plant with similar configurations to the
Andasol 3, i.e. a conventional linear focus parabolic-trough system.
The resulting electrical energy outputs of the simulated CSP plant
based on measured, predicted and improved predicted data, are
then analysed and compared as a rough verification of the impli-
cations of the DNI forecast improvement.

It should be noted that the present methodology is not limited
to one region only, since it can be performed in other regions of
high solar potential, such as in arid climates, ideally, far frommajor
sources of pollution (e.g. southern Spain, northern and southern
Africa, south and north America, northern Australia, and Saudi
Arabia). Applying the proposed procedures of this work in other
regions of interest, in which accurate DNI forecasts are demanded,
will improve the regional management and, consequently, energy
efficiency of solar electrical power plants.

After the introductory section, the remainder of the present
paper is structured as follows: measurements, forecast model and
power plant model are described in Section 2; the considered
methodology is presented in Section 3, including evaluation met-
rics and applied statistical methods used; results are given in Sec-
tion 4; the use of improved forecasts for CSP operations is discussed
in Section 5; conclusions and future perspectives are briefly out-
lined in Section 6.
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2. Data

2.1. Measurements

A ground measuring station (designated here by EVO station)
located in southern Portugal, namely in �Evora city (38.567686�N,
7.911722�W), was used to perform 1-min recordings of solar radi-
ation. Measurements were carried out during a period of two
consecutive years, i.e. from July 1st 2017 to June 30th 2018 and from
July 1st 2018 to June 30th 2019. The selected location stands as a
semi-arid region (cf. [27]), characterized by clean atmospheric
conditions with high DNI annual availability values and low vari-
ability [28]. The optimal conditions for solar harvesting allowed the
installation of several already operational solar power stations in
the region, with more solar projects being foreseen to take place.

Continuous measurements were performed using state-of-the-
art instrumentation. A pyranometer (model CMP11) was used to
measure GHI, according to the International Organization for
Standardization (ISO) 9060 Secondary Standard [29], with an
associated estimated uncertainty (i.e. estimates of observation er-
ror) below 2% on a daily basis. In the case of measured DNI, a
pyrheliometer (model CHP1) was used, according to the ISO
9059:1990 standard [30], with an associated estimated uncertainty
below 1% on a daily basis. Both instruments were mounted on a
SOLYS2 Sun-Tracker (Kipp & Zonen) installed at the Institute of
Earth Sciences (ICT - Instituto de Ciências da Terra) observatory in
the University of �Evora. The solar measuring equipment has been
operational since 2015, with a daily basis cleaning protocol in order
to prevent any anomalous recordings due to equipment malfunc-
tion (e.g. sudden power shutdowns) or soiling deposition [31].

For the same period of study, standard meteorological equip-
ment was used to measure EVO meteorological data, including air
temperature and relative humidity through the use of a hygro-
thermo transmitter model 1.1005.50.512 (Thies Clima), installed
near the SOLYS2 Sun-Tracker. Additionally, wind velocity and sur-
face air pressure at 10 m height were also recorded using an
anemometer model A100R (Vector Instruments) and a barometric
pressure sensor model PTB101B-CS105 (Campbell Scientific),
respectively. It should be noted that, in EVO station, surface pres-
sure is not available, and the wind is not representative, since the
flow is disturbed by nearby buildings. For these reasons, hourly
data from the Portuguese meteorological service station (IPMA e

Instituto Português do Mar e da Atmosfera), located at �Evora aero-
drome (38.53654�N, 7.88795�W), i.e. about 4 km apart from EVO
station, was used as representative of the wind velocity and surface
pressure in EVO.

Together with DNI measurements, this set of meteorological
data is required as input for the simulation of a linear focus
parabolic-trough system to assess the resulting CSP plant perfor-
mance outputs, as shown in Section 5.

After acquiring all the measured data needed, prior to the
analysis, data quality control procedures were carried out, as
described in Section 1 (Appendix A). After the application of the
proposed filters, and in order to compare with the predicted data,
measured hourly values were calculated through hourly backward
means, i.e. by considering the previous sixty 1-min records of
measured data.

2.2. Forecast model

To simulate atmospheric processes, NWP models make use of
equations based (as much as possible) in the fundamental princi-
ples of physics, requiring large computational effort. Among a wide
range of current operational models, the IFS, the global model from
the ECMWF, stands as one of the highest scored NWP models in
terms of medium range global weather forecasting capacity [32].
The radiative scheme currently used in the IFS, the ecRad (cycle
43R3), provides hourly forecasts of DNI and GHI, among a wide
range of available parameters. In order for the model to produce
solar radiation outputs, several prognostic variables, such as tem-
perature and cloud fraction, are interpolated horizontally into the
radiation grid through cubic interpolation on an hourly basis [33].
Moreover, the IFS uses the Copernicus Atmosphere Monitoring
Service (CAMS) system [34], an improvement towards the previous
versions implemented in the model, for instance Ref. [35],
providing the aerosol climatology.

In this work, day-ahead forecasts (i.e. next 24-h) from the IFS are
used for a post-processing analysis considering local measure-
ments over a grid of 0.125� � 0.125�. With its best horizontal res-
olution, and most accurate initial conditions, the model runs twice
a day, after the conclusion of the data assimilation process. Spe-
cifically, the IFS issue time can be set to start at 0 UTC or 12 UTC for
the day-ahead predictions, in which the former was used in this
analysis. The acquisition procedure comprised several available
atmospheric parameters due to their influence over DNI in the
operational strategies of a CSP plant. These include GHI, DNI, air
temperature, dew point temperature, wind velocity components,
total precipitation and total cloud cover. The irradiation parameters
given by the model were the surface solar radiation downwards
(ssrd) and the total sky direct solar radiation (dsrp), respectively for
GHI and DNI. To compare these predictions with actual observa-
tions, the hourly accumulated irradiation values (in J/m2) from the
IFS were divided by 3600 and converted to mean energy flux values
(W/m2). Air and dew point temperatures at 2 m height (t2m and
d2m, respectively, in K) were used to calculate the relative humidity
at 2 m height, as described in Eq. (A1) of Section 2 (Appendix A).
Other predicted variables were also considered throughout the
analysis: the horizontal components of wind velocity (u and v, in m/
s) at 10 m height; the total accumulated precipitation (tp, in m), i.e.
the sum of convective and large scale precipitation, being accu-
mulated since the beginning of the forecast; surface pressure (sp, in
Pa), which will be used only in the context of a CSP plant simula-
tion; and the total cloud cover (tcc), i.e. the percentage of the sky
hidden by all visible clouds.

2.3. Power plant model

The SAM software, version 2017.9.5 (NREL), enables the simu-
lation of several types of CSP systems, in which local atmospheric
variables that influence energy production values of a CSP plant are
used as input parameters. These not only include DNI but also air
temperature, relative humidity, wind speed and surface pressure.

Within the power plant model, a transient system (TRNSYS) is
implemented to perform hourly simulations of performance output
parameters, providing at the end of each run an annual perfor-
mance metrics summary. The TRNSYS assembles three compo-
nents: the first is given by a user-friendly interface, which allows
the user to define in detail the setup for the selected CSP plant,
including design and control procedures, as well as the input of
measured or predicted parameters; the second is the calculation
engine, which implements the hourly discretization procedures for
the simulation; and the third is a programming interface, which
allows the user to define the functions used within the SAM code to
obtained performance outputs. A more detail description of the
software is available online [36].

For this work, like in a previous study [37], the SAM was used to
simulate a conventional linear focus parabolic-trough system
installed at EVO locationwith similar configurations to the 50 MWe
Andasol 3 CSP plant, currently operational in Granada (Spain). The
objective in using the Andasol 3 configuration for the simulations of
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a CSP plant is not to compare the obtained results in EVO with the
ones from the actual power plant installation. Instead, energy
outputs based on different Andasol 3 simulations with EVO data are
assessed considering measurements, predictions, and improved
predictions as input parameters. Particular attention is given to
production values outputs, namely to values of electricity genera-
tion, represented by the parameter electricity injection to the grid
EG (MWeh). This parameter is important for the energy manage-
ment of a power plant since information regarding the power
plant’s production values for the next hours will help to improve
operational decisions performed by the plant’s operator. Moreover,
the use of improved predictions in these simulations will allow to
reduce bad predictions of production values, which can be related
to underestimation and overestimation of DNI. Although the
inherent overestimation of DNI by the IFS is expected to be present
in the estimated values of EG (when compared with measured-
based EG values), previous results [37] have shown the potential
that forecasted data has in the daily operational strategy of a CSP
plant. It is also important to consider the subsequent strategies that
result from the available EG estimates from the simulations. In this
context, generic operational strategies are also proposed accord-
ingly, as discussed in the Section 5.

3. Methodology

3.1. Evaluation metrics

Due to forecasting inaccuracies in NWP, hourly predictions of
DNI have a characteristic bias when compared with local mea-
surements. Overestimation is expected under an overcast sky due
to the known underestimation of the radiative effects of clouds. In
global models, such as the IFS, this effect is augmented during
partly cloudy days. Under very clean atmospheres, DNI predictions
have the tendency to underestimate measurements due to the use
of monthly mean aerosol values instead of actual values.

In order to quantify the forecast error and compare the perfor-
mance of different forecasts, it is important to compute the fore-
casting accuracy. Although several conventional metrics exist, to
determine the most appropriate ones depends on the user [38]. For
instance, CSP plant operators can be sanctioned per kWh deviation
from the expected production [39]. In such cases, error metrics,
which allow operators to perform an accurate estimation of the
costs related to forecasting errors, are crucial. Particularly, a very
important evaluation metric recommended for the application of
electrical grid management is the root mean square error (RMSE),
due to the importance that large errors have for the safety of an
electrical grid system [40]. Considering the mean square error
(MSE) of both forecast and persistence (i.e. persistence of the pre-
viousmeasured 24-h values) models with respect tomeasurements
(MSEfor and MSEper, respectively), forecasting ability can be carried
out using the MSE based skill score (SS). The SS allows to evaluate
the global performance of the forecast model towards measure-
ments, as described by Ref. [41] (Eq. (A2) in Section 2 of Appendix
A). Other conventional metrics used to assess the forecast error are
the mean bias error (MBE), mean absolute error (MAE), Pearson
correlation coefficient (r) and coefficient of determination (R2).
More detailed information concerning the use of these and other
error metrics for solar forecasting is available in Ref. [38].

3.2. Applied methods

Several methods have been used in this work to perform a
comparative analysis between IFS predictions and local measure-
ments at EVO station. In order to quantify the error metrics ob-
tained, hourly and daily clearness indices of DNI (kb and Kb,
respectively) were considered. These dimensionless parameters are
a fundamental tool in solar radiation analysis [12], allowing to
define the type of irradiance that reaches the Earth’s surface, and to
further assess the forecasts towards measurements, e.g. Ref. [42].
Based on DNI, a clearness index close to zero is characteristic of
overcast conditions, while a value close to 0.8 frequently occurs
under clear sky conditions.

In the present analysis, measured, IFS predicted, and improved
IFS predicted data were compared. The statistical results from the
corresponding kb and Kb were considered, similarly to Ref. [28],
including the forecasting quality obtained for each method. Besides
conventional metrics, probabilistic results from probability density
functions (PDF’s) were considered, allowing to determine the
probability distribution (given by the frequency of occurrence) of kb
and Kb. Moreover, skewness and kurtosis analysis were also used,
where the former measures the lack of symmetry in respect to the
normal distribution and the latter relates with the presence of
outliers in a distribution. Statistical models can also be used to
correct the IFS predictions. For instance, regression models, in
which a dependent variable, i.e. the predictand, is studied (in this
case, measured DNI) considering a set of independent variables, i.e.
the predictors (in this case, forecasted data), that influence and
have impact over the predictand. Each regression coefficient ob-
tained represents the effect that a predictor has in the predictand
over time (at the same time that all other predictors remain con-
stant). These basic regression models can be refined using complex
multivariate and non-linear relationships between several pre-
dictors and the predictand, providing better estimations. In this
work, three regression models are used to correct hourly predicted
DNI. The first model consists in a simple regression model (SRM),
based on a third-degree polynomial fit. The fitting method is based
on the use of regression coefficients obtained between measured
DNI (i.e. the predictand) and the predicted DNI (i.e. the predictor)
from the first year as input to adjust the second year of predicted
DNI. The second model is a linear multivariate regression model
(MRM1), which uses an interactive stepwise function with an
adjusted r-squared criterion. This function performs all possible
combinations between predictors to find the best fitting option, in
this case a second-degree polynomial is considered. The atmo-
spheric predictors used in the MRM1 are: GHIIFS, DNIIFS, GHITOA,
DNITOA, air temperature (TempIFS), relative humidity (RhIFS), wind
velocity (WIFS), total precipitation (PrecIFS) and total cloud cover
(TccIFS). Then, by including the previous hour (i-1) of measured DNI
and GHI as predictors to theMRM1 setup, a compoundmultivariate
regression model (MRM2) is created to perform next-hour (i) pre-
dictions of DNI accordingly to the following relation:

DNIMRM2
i ¼ F

0
@GHIOBSi�1 ;DNI

OBS
i�1 ;GHI

IFS
i ;DNIIFSi ; GHITOAi ; DNITOAi ;

TempIFSi ; RhIFSi WIFS
i ; PrecIFSi ; TccIFSi

1
A

(1)

where function F is adjusted so that the DNI prediction (DNIMRM2
i Þ

of the first year is closer to the predictand (DNIOBSi Þ for the same

year, including the previous hour of measured GHI and DNI (GHIOBSi�1

and DNIOBSi�1 , respectively) as predictors. The function F is then
applied to the second year of data for validation of the forecast
improvement. Regarding the use of previous hour from measured
data, only DNI and GHI were considered in the MRM2, since using
other available measured variables would require a higher
computational cost, with not significant improvement in the fore-
cast. That is, increasing the number of predictors would lead to
more complex polynomials, where the adjustments obtained
would not improve significantly the hourly DNI, as compared with
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the use of measured irradiances.
It should be noted that several polynomial terms, and respective

metrics, were obtained after applying linearmultivariate regression
for hourly and daily adjustments of MRM1 (Table A1 and Table A2,
respectively) andMRM2 (Table A3 and Table A4, respectively) using
the stepwise function. More detail information regarding these can
be seen in the Appendix A (section 3), including all possible itera-
tions between predictors and predictand. After running the step-
wise function, for the hourly adjustments of MRM1, nine predictors
were considered, while for the daily adjustments, only five pre-
dictors were used. In the case of MRM2 adjustments, in which two
more predictors were added (i.e. DNIi-1OBS and GHIi-1

OBS) to the previous
MRM1 setup, hourly adjustments considered ten predictors, while
for the daily adjustments five predictors were used.
4. Results

4.1. IFS predictions

A first analysis was carried out betweenmeasured and predicted
DNI over two consecutive years, i.e. from July 1st 2017 to June 30th

2018 and from July 1st 2018 to June 30th 2019. The respective sta-
tistical and descriptive results are presented and summarized in
Table 1, showing how the IFS predictions behave in comparison
with the EVO measured data. During these periods, the annual
predicted DNI obtained was remarkably close to the observed one,
with very slight overestimation (first year) and underestimation
(second year) of the measured values. For instance, mean annual
values of z480.38 and z 502.04 W/m2 predicted by the IFS cor-
responded to an overestimation of z0.09 W/m2 and an underes-
timation of z0.01 W/m2 for the first and second year, respectively.
Moreover, these small differences were respectively attended with
a MBE ofz -0.05 andz 0.01 W/m2. The overall good performed of
the IFS is also shown by the annual availability obtained values,
which were close to the expected regional ones (i.e. above
2100 kWh/m2/year). This is clearly seen by very small relative dif-
ferences obtained between annual measured and predicted avail-
abilities (DEb), particularly in the second year, where a value of
z0.002% was found. Regarding the obtained annual standard
Table 1
Statistical and descriptive analysis summary between measured and IFS predicted
DNI over two consecutive years in �Evora (southern Portugal), from July 1st 2017 to
June 30th 2018 and from July 1st 2018 to June 30th 2019. Several annual statistical and
error metrics are presented. These include: standard deviation (STD); root mean
square error (RMSE); mean absolute error (MAE); mean bias error (MBE); Skewness
and Kurtosis; annual DNI availability (Eb) and respective relative differences (DEb);
hourly and daily correlation coefficients (rhourly, rdaily); hourly and daily coefficient of
determination (R2

hourly, R2
daily). Results are presented considering only the daylight

period.

Year 1 Year 2

Measurements IFS Measurements IFS

Mean (W/m2) 480.29 480.38 502.05 502.04
Median (W/m2) 528.33 506.80 557.52 552.47
STD (W/m2) 353.42 296.78 347.05 288.77
RMSE (W/m2) 187.80 186.20
MAE (W/m2) 135.38 135.94
MBE (W/m2) �0.05 0.01
Skewness �0.113 �0.198 �0.180 �0.311
Kurtosis 1.459 1.597 1.527 1.690
Eb (kWh/m2/year) 2105 2105 2200 2199
DEb (%) 0.019 0.002
rhourly 0.847 0.844
R2

hourly 0.718 0.712
rdaily 0.910 0.912
R2

daily 0.829 0.832
deviation (STD), a smaller deviationwas registered for the IFS in the
second year (z288.77 W/m2), i.e. z8.01 W/m2 less than the
measured one. Despite the close approximation between the
annual values, the RMSE found between hourly values shows the
high variability that exists between hourly predicted and measured
DNI, mainly due to cloud and aerosol misrepresentation. Never-
theless, such values are found to be consistent with the ones ob-
tained in solar radiation forecasting, e.g. Ref. [40,41], reinforcing the
need to improve DNI predictions, as this work aim at. A smaller
RMSE of z186.20 W/m2 was obtained in the second year, in com-
parison to the error associated with measurements. For the hourly
r, values of z0.85 and z 0.84 were found in the first and second
year, respectively, corresponding to an R2 of z0.72 and z 0.71.
Considering the daily correlations, values in the order of z0.91
andz 0.83 were found respectively for r and R2 in both years. Such
high correlations on the daily scale are expected to be found, since
the daily summations filter the hourly variability, in which cloud
and aerosol misrepresentations are most noticed.

From the first to the second year of data, an overall decrease in
the deviations was observed. This may be related to different intra-
annual atmospheric variability. In fact, both measured and pre-
dicted data showed less variability in the second year. This can also
be associated to the occurrence of less clouds, which resulted in a
higher annual availability (2200 kWh/m2/year), i.e. z95 W/m2

more than in the first year.
In the context of assessing the error associated to the IFS original

predictions towards local measurements of DNI, hourly clearness
indices (kb) and respective PDF’s were also calculated for each year,
as shown in Fig.1. As expected, close to null-values of kb, a cluster of
values was obtained, as a consequence of the prediction over-
estimation (due to the misrepresentation of clouds) towards mea-
surements during overcast periods. For instance, during a cloudy
period, measurements yield kb values close to zero while the IFS
predictions consider values up to 0.6. As opposed to this, close to
high values of kb, another cluster of hourly values was found, cor-
responding to clear sky conditions (particularly, very clean atmo-
spheric days), in which an underestimation of the predictions
towards measurements occurs. This underestimation is most likely
to result from a sub-estimation of the radiative effects towards sub-
grid clouds and, most importantly, to the use of an aerosol clima-
tology, which overestimates the effect of the aerosols under such
conditions. For instance, close to kb values above 0.7, e.g. during a
sunny day that occurs after a rainy day, the actual aerosol con-
centration in the atmosphere is very low, as opposed to the cli-
matologic aerosol value implemented in the model. During very
clean atmosphere conditions, the relation between predicted and
measured data was depicted by a smaller dispersion of kb values in
comparison with the ones obtained under overcast and partly
cloudy conditions. Particularly, between both extremities, i.e. dur-
ing partly cloudy periods, there was a high distribution of hourly
values that resulted from clouds passing over the measuring
equipment, in which the forecast model had difficulties in repre-
senting these at the hourly scale. A similar behaviour was observed
in both years, as previously discussed. Moreover, the PDF’s allowed
to observe the frequency of occurrence of kb values, in which both
of the previous discussed clusters (i.e. for low and high values of kb)
were clearly identified. A summary of the statistical results be-
tween IFS and measured based kb values during the second year is
presented in Table 2. During this preliminary analysis, an hourly SS
of z0.66 was found for the second year, being similar to the value
obtained for the previous year (not shown here).

When considering daily values, a general improvement of the
deviation between predicted and measured values of Kb was found
for both years, as shown in Fig. 2. The results, based on the daily
availabilities of DNI, showed that the previous overestimation of



Fig. 1. Hourly (a, b) clearness indices for DNI (kb) between measurements (OBS) and predictions (IFS) considering two consecutive years of data in �Evora, from July 1st 2017 to June
30th 2018 (year 1) and from July 1st 2018 to June 30th 2019 (year 2), with the identity line y¼x being also represented (red-dashed line). The respective hourly probability density
functions (PDF’s) are also shown (c, d). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the model close to null Kb values was significantly reduced, leading
to higher correlations and lower errors. As previously discussed, at
this scale, such effect is expected in NWP, since that the IFS, like
most NWPmodels, has difficulties in predicting the precise location
and moment when a variation of DNI occurs, particularly from 1 h
to the next. For instance, cloud formation, advection and dissipa-
tion, result from complex microphysics process that can occur at
sub-grid and sub-hourly scales, and therefore the model will not be
able to represent them precisely. When considering daily values of
DNI, temporal phase errors are filtered, allowing the IFS to provide
satisfactory results when compared with local daily measured
based values. This was showed by the narrowing of Kb values to-
wards the identity line in Fig. 2, which depicted a closer behaviour
between predicted and measured daily data, although the under-
estimation of the model during clear sky conditions still prevailed.
The respective daily PDF’s, besides showing a reduction of the error
in comparison with the hourly results, showed a high inter-daily
variability, corresponding to the different atmospheric conditions
from one day to the other. Such effect is important, especially for
the proposed adjusted models at the daily scale. The statistical



Table 2
Statistical summary of hourly clearness indices for DNI (kb) betweenmeasurements and predictions (IFS, SRM,MRM1 andMRM2) for a one year (July 1st 2018 to June 30th 2019)
in �Evora (southern Portugal). Correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), mean bias error (MBE), mean absolute error (MAE)
and skill score (SS) are presented. The SS is calculated towards a referenced persistence model (i.e. measurements time series displaced 24 h ahead).

Year 2

IFS SRM MRM1 MRM2

R 0.846 0.849 0.866 0.929
R2 0.716 0.720 0.750 0.864
RMSE 0.137 0.136 0.129 0.095
MAE 0.100 0.099 0.092 0.062
MBE 1.855 x 10�4 5.091 x 10�4 0.003 7.834 x 10�4

SS 0.656 0.661 0.697 0.835

Fig. 2. Daily (a, b) clearness indices for DNI (Kb) between measurements (OBS) and predictions (IFS) for two consecutive years in �Evora, from July 1st 2017 to June 30th 2018 (year 1)
and from July 1st 2018 to June 30th 2019 (year 2), with the identity line y¼x being also represented (red-dashed line). Respective daily probability density functions (PDF’s) are also
shown (c, d). Daily values were calculated through DNI availabilities (kWh/m2), i.e. the sum of each 24-h period. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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Table 3
Statistical summary of daily clearness indices for DNI (Kb) between measurements and predictions (IFS, SRM, MRM1 and MRM2, for one year of data in �Evora (southern
Portugal), from July 1st 2018 to June 30th 2019. Correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), mean bias error (MBE), mean
absolute error (MAE) and skill score (SS) are presented. The SS is calculated towards a referenced persistence model (i.e. measurements time series displaced 24 h ahead).

Year 2

IFS SRM MRM1 MRM2

R 0.892 0.897 0.911 0.899
R2 0.795 0.804 0.831 0.809
RMSE 0.090 0.084 0.077 0.082
MAE 0.071 0.063 0.056 0.058
MBE �0.002 �0.002 0.006 0.005
SS 0.734 0.772 0.805 0.779
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results obtained are summarized in Table 3, where a daily SS of
z0.73 was attained between measurements and predictions for
the second year. The daily values, which consider predicted daily
availabilities, also allowed to visualize the potential of the IFS
regarding the definition of operational strategies of a CSP plant.
Such information is particularly important to a plant operator
concerning the expected DNI availability and the distribution of
energy dispatchability for the next day.

To further improve hourly predictions of DNI, post-processing
methods can be applied. Since the ecRad (cycle 43R3) was imple-
mented in July 2017, this work only considers the period of two
years. This can be seen as a limitation regarding statistical down-
scaling methods (e.g. the application of perfect prognosis) for the
correction of DNI, particularly towards daily adjustments. However,
MOS techniques are suitable for the present analysis, in which the
previous results allowed to set up a statistical reference henceforth,
using the first year to improve hourly predictions in the second
year.
4.2. Spatial average

Prior to the application of regression analysis, a simple error
correction was performed by implementing a spatial average that
considers the closest grid points to the actual measuring location,
instead of using the nearest global model grid point. The method
has some benefits [43], in which small improvements can be
attained when considering hourly predictions of DNI from the IFS.
This was the case when performing an average from a 3 x 3 grid
points (corresponding to an area of about 18 km � 18 km), centred
in the nearest grid point to the EVO geographic coordinates. The
spatial average, which was separately applied for both years, yield
very similar results. Overall, when comparedwith the nearest point
to the measuring location, results from the second year showed an
hourly correlation increase of z0.51% and a decrease of z1.20% in
the RMSE.

It should be noted that an increase in the number of available
grid points used for averaging could be an option, however the
resulting average DNI would be unrepresentative of the exact
location of study. Moreover, performing the spatial average
considering daily values did not provide any improvement, since
intra-day variability is already reduced by the daily summation. For
this matter, to further improve hourly DNI predictions, different
techniques should be pursued to significantly reduce the associated
error.
4.3. Simple regression model (SRM)

Regression coefficients obtained from a polynomial adjustment
in first year, between measured and predicted values of DNI, can be
used to correct the IFS predictions in the second year. To this end,
several polynomials were tested, in which a third-degree poly-
nomial was found to provide the best results with the IFS for the
application of the SRM.

Results showed small improvements and the presence of a non-
linear relation, as shown by the kb obtained values (Fig. 3a).
Comparing these results with the ones previously obtained be-
tween the IFS original predictions and measurements (Table 2), an
increase of z0.35% and a decrease of z0.73% were found for the r
and RMSE, respectively. An hourly SS of z0.66 was attained using
the SRM, corresponding to an increase ofz0.76%.When comparing
the respective PDF’s (Fig. 3b), the improvement is clear, particularly
for higher values of kb (i.e. in the absence of clouds) where hourly
SRM values are closer to the observed behaviour than the ones
obtained with the IFS (Fig. 1c).

A similar procedure but for the daily availabilities (Fig. 4a)
revealed correlations of z0.90 and a SS of z0.77 (Table 3), i.e. an
increase of z0.56% and z5.05% in comparison with the IFS daily
Kb’s, respectively.

These results, besides showing improvements using simple
regression methods, evidence the need of using more complex
approaches that can lead to a more substantial reduction of the
error associated to hourly predicted DNI. One example is to include
other variables related to DNI modulation for the polynomial
adjustment, as discussed in the following sections.
4.4. Multivariate regression model (MRM1)

As it was shown in the previous section, adjusting only DNI
forecast to the DNI observations, does not improve substantially the
forecasts. This is a result of the complex nature of the DNI related
physical processes. Thus, in this subsection, other forecasted
meteorological variables along with predicted DNI are considered
to match the observed DNI, using a multivariate regression tech-
nique. This technique uses the observed DNI as the objective
function and determines the optimal combination of coefficients
and input variables (in this case, the forecasted variables) to
approximate the predictions to the observations. The method has
the advantage of simulating some of the physical phenomena that
actual occur, allowing to consider interaction terms between vari-
ables (e.g. predicted DNI with predicted temperature).

In this context, like in the previous section, regression co-
efficients, which resulted from the adjustment made between
predictions and measurements for the first year, were used to
correct the IFS predictions in the second year with the inclusion of
eight new predictors. These include the same hour predicted var-
iables, i.e. GHI, irradiances calculated at TOA (GHITOA, DNITOA), air
temperature, relative humidity, wind velocity, total precipitation
and total cloud cover. Due to the large number of predictors, the
resulting model MRM1 was found to best perform through a
second-degree polynomial fitting with the stepwise function. It



Fig. 3. Hourly clearness indices for DNI (kb) between measurements (OBS) and improved DNI predictions with (a) SRM, (b) MRM1 and (c) MRM2, where the identity line y¼x is
represented as a red-dashed line. Analysis is performed over one year of data in �Evora (southern Portugal), from July 1st 2018 to June 30th 2019. The respective hourly probability
density functions (PDF’s) are also depicted (d, e and f). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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should be noted that when running the stepwise function, negative
values can result from the multivariate correction of the original IFS
data; especially for low observed and predicted DNI values. With
this method, a total of 121 negative values were found to occur. In
such cases, the original IFS predicted values of the second year of
data were maintained. The application of the stepwise function for
MRM1 was based on the best fitting found through an iterative
process that tested 43 different formulations between predictand
and all predictors (Table A1, Appendix A).

When performing an analogous method of multivariate
regression but to daily DNI availabilities, daily mean values of air
temperature, relative humidity, wind velocity, precipitation and
cloud cover, were considered. In the case of solar radiation vari-
ables, availability values (i.e. the sum of each 24-h periods) were
used. The resulting daily adjustment considered 11 different for-
mulations between daily predictand and predictors (Table A2,
Appendix A). After performing the correction to the originally
predicted availabilities, 7 negative values were found, being the
corresponding IFS daily predictions maintained instead.

Results showed that the hourly kb values obtained, presented in
Fig. 3b, and 3e, illustrate further improvements attained through
the MRM1, in comparison to simple linear regression methods.
Particularly, during cloudy conditions, i.e. close to null-values of kb,
there is a reduction in the previous overestimation of the
predictions towardsmeasurements. It is also observed that for clear
sky conditions, there is also a compensation in the underestimation
of the predictions. From its original value (i.e. from the IFS) to the
value obtained with MRM1, an increase of z2.36% in the correla-
tion was attained, together with an overall decrease in the errors,
such as z5.84% in the RMSE (Table 2). Regarding the hourly SS, a
value of z0.70 was found, corresponding to an increase of z6.25%
from the original value. Daily values (Fig. 4b and 4e), which resulted
from the polynomial adjustment expressed in Table A2 (Appendix
A), showed Kb values with correlations of z0.91 and RMSE of
z0.08 (Table 3). Moreover, an increase of z9.55% in the daily SS
was obtained in relation to the original value found when using the
IFS daily predictions.

In the next section, a new addition to MRM1 is carried out by
including the previous hour of measured GHI and DNI as predictors
in the case of the hourly analysis. While for the daily analysis, the
previous day of measured availability is used to improve the IFS
day-ahead predictions.

4.5. Compound multivariate regression model (MRM2)

As means to optimize the MRM1 outputs, the proposed MRM2
was created using the same setup as MRM1, but with the inclusion
of the previous hour measured GHI and DNI to the former MRM1



Fig. 4. Daily clearness indices for DNI (Kb) between measurements (OBS) and improved DNI predictions with (a) simple regression model (SRM), (b) multivariate regression model
(MRM1) and (c) compound multivariate regression model (MRM2), with identity line y¼x represented as a red-dashed line. Analysis is performed over one year of data in �Evora
(southern Portugal), from July 1st 2018 to June 30th 2019. The respective hourly probability density functions (PDF’s) are also being depicted (d, e and f). Daily values are calculated
through DNI availabilities (kWh/m2), i.e. the sum of each 24-h period. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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predictors. The resulting iterative process tested 50 different for-
mulations between predictand and all predictors (i.e. a total of 11
predictors), as shown in Table A3 (Appendix A). As before with the
MRM1, negative values (a total of 84) were obtained for the MRM2
during the regression procedure. Likewise, these values were
maintained by the original IFS predicted values, as well as for the
first forecast of the day (right after sunrise).

When compared with the IFS hourly values, the MRM2 signifi-
cantly improves DNI predictions, as shown by the obtained kb
values (Fig. 3c and d). The results depict a narrowing towards the
identity line y¼x, i.e. closer to a linear relation than the previous
results obtained. In addition to a lower occurrence of overestimated
kb values close to zero, a smaller dispersion of values was also
attained for partly cloudy conditions, as well as less underestimated
kb values during clear sky conditions. As shown in the statistical
summary (Table 2), an hourly correlation of z0.93 and a SS of
z0.84 were found, corresponding to increases of z9.81
and z 27.29%, together with a general decrease of the errors.

For the daily availability analysis, the IFS predicted availability of
the first day was preserved. Moreover, daily DNI availabilities
(Table 3), in which the previous day availability value was used to
forecast the next day, resulted from the polynomial adjustment
presented in Table A4 (Appendix A). After 23 different formulations,
the best fitting found produced 8 negative values, in which the IFS
forecasted values were maintained. The Kb values found with this
method are showed in Fig. 4c, and 4f, where high correlations and
low errors between adjusted predictions and measurements were
found. A daily correlation of z0.90 and an SS of z0.78 were ob-
tained for the second year of data. In comparison with the original
predicted value obtained with the IFS, these correspond to in-
creases of z0.78 and z 6.13%, respectively.

Despite a dependency on measurements taken in the previous
hour or previous day (depending on the case of study), the MRM2
method presents itself as the best fitting found when using
multivariate analysis. Through the use of the previous hour of
measured DNI and GHI, the model allowed to achieve the best re-
sults with significant improvements for the hourly values in com-
parison with the other presented methods. Moreover, it is possible
to observe that for daily availabilities, the improvements obtained
are not as significant as the ones obtained on the hourly basis. This
is due, in part, to the fact that the IFS daily predictions are already
satisfactory, making it more difficult to achieve further



Table 4
Hourly electrical energy injected into the grid (EG, MWeh) results through the SAM
simulations based on measurements (OBS) and predictions (IFS, SRM, MRM1 and
MRM2). One year of data was considered in each run for �Evora (southern Portugal).
The SAM simulations were performed with similar configurations to the Andasol 3
CSP plant. Correlation coefficient (r), coefficient of determination (R2), root mean
square error (RMSE), mean absolute error (MAE), mean bias error (MBE), total EG,
and relative differences (DEG, %), are presented.

OBS IFS SRM MRM1 MRM2

R e 0.89 0.89 0.90 0.97
R2 e 0.79 0.79 0.82 0.93
RMSE (MWeh) e 11.38 11.25 10.40 6.29
MAE (MWeh) e 4.11 4.08 3.61 1.85
MBE (MWeh) e �0.82 �0.62 �0.33 �0.11
EG (MWeh/year) 166,914 174,086 172,339 169,795 167,880
DEG (%) e 4.30 3.25 1.73 0.58
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improvements. Another important reason is the fact that only one
year of data is being used to correct DNI. This affects particularly the
daily correction, in which the daily data can be nearly twelve times
less than the data used for the hourly correction. For this matter, in
the context of MRM2 daily predictions, more statistical information
is required than the one used for this analysis. Thus, withmore data
(i.e. with an increased number of years) to perform the MRM2 daily
adjustments, better predictions with less dispersion of values to-
wards the measured ones from one day to the next should occur.

4.6. Application to CSP operation

After applying different methodologies to improved IFS fore-
casts, the following two-steps methodology is proposed for their
implementation as a tool in CSP operations: i) the use of daily
MRM1 improved DNI availabilities to define the generic operation
strategy for each day, as suggested by the authors in Ref. [37]; and
ii) the application of the improved hourly MRM2 improved DNI
predictions to refine hour-by-hour the operation strategy
throughout each day, similarly to nowcasting techniques [47]. In
summary, using this information for the optimization of CSP plants
is fundamental, since precise day-ahead forecasts of DNI allow to
predict the day-ahead CSP plant’s electricity generation. In addition
to improved daily strategies based on different estimates of DNI
availability, these can then be further refined with the use of hourly
corrections, particularly fromMRM2. Focus to these subjects will be
given in the next section.

5. CSP operations with improved forecasts

5.1. Power plant daily strategies

Considering the previous results, improved forecasts can now be
used for better operational strategies regarding CSP plant’s energy
management. Such strategies can be implemented on the hourly
basis, to optimize energy use throughout the day (being related to
short periods of solar intermittency), and, particularly, on the daily
basis. This allows the plant operator to decide on how and when to
sell the predicted electrical energy generated by the plant at a
premium tariff in the electrical market. Information concerning the
potential that day-ahead forecasts of DNI have in the operation of
CSP systems is available in literature, see Ref. [37,44,45], where
recommended strategies for typical days (i.e. days with different
weather conditions) are proposed.

This section focuses the use of contingency tables with daily
measured and predicted (IFS, SRM, MRM1 andMRM2) availabilities
separated by different ranges, according to the previously defined
strategies. Such tables aim to evidence the improved accuracy of
daily availability range predictions with the use of the correction
methods discussed previously. An improved prediction implies a
better day-ahead planning regarding a plant operation strategy.
This has the potential to lead, if properly articulated with the
improved hourly predictions, to an overall enhancement of the
solar to electricity conversion procedure. This will be reflected in an
increase of the plant’s efficiency (e.g. by enabling higher tempera-
tures of the superheated steam in the power block), as well as its
dispatchability (e.g. by smoothing temperature variations at the
solar field outlet of the heat transfer fluid). The improved hourly
predictions will be based on theMRM2model, which was shown to
be the best correction method. Thus, this analysis has the objective
of combining improved daily availability predictions with
improved hourly forecasts of DNI to increase a power plant oper-
ation reliability. Using such combined strategy would certainly
improve the electrical energy production and its value, reducing
the final levelized cost of electricity, i.e. the ratio between the sum
of the discounted total cost during the lifetime of a plant and the
sum of the discounted total amount of electrical energy delivered.
Consequently, the client’s electricity bill would also be reduced,
(another strong reason to optimize CSP plants). Although such life
cycle analysis is out of scope of the present analysis, it can certainly
be carried out in future studies.

Results for the daily availabilities from the IFS, SRM, MRM1 and
MRM2, respectively in Tables A5, A6, A7 and A8 (Appendix A), were
obtained for a period of one year (from July 1st 2018 to June 30th

2019). In these tables, the number of occurrences when predictions
coincide with measurements correspond to the ‘Hits’ (marked in
green), whereas the corresponding success rate (%) was calculated
considering the total number of measured availabilities values. The
range by which this evaluation was carried out is divided in four
intervals, which go from overcast to clear sky conditions, corre-
sponding to different strategies defined for the corresponding at-
mospheric conditions that have distinct effects over a CSP plant
electrical production [37]. As expected, all day-ahead correction
models provide satisfactory results, with prediction accuracies
generally above 50%, mainly due to the reduction of the intra-day
variability, as a consequence of the daily summation. This in-
cludes the original IFS day-ahead predictions, which depict the
highest daily success rates of ‘Hits’ between 3 and 9 kWh/m2/day
(z68.48 and 88.14%, respectively). The daily adjustments were able
to significantly increase the day-ahead estimations accuracy during
overcast and very clean atmospheric conditions. Success rates of
‘Hits’ between z70.89 and 73.42% were respectively found for the
MRM2 and for both SRM and MRM1, corresponding to cloudy days
(from 0 to 3 kWh/m2/day). Considering clear sky days (from 9 to
13 kWh/m2/day), success rates of z75 and 77.63% were respec-
tively found for the MRM1 and for both SRM and MRM2. Overall,
when planning CSP daily operational strategies, a plant operator
can rely on the correction models, particularly the MRM2 if longer
time-series are available, which can be complemented with the IFS
daily predictions during partly cloudy periods. Then, during the
day, the hour-ahead strategy could be improved by the hourly
predicted DNI value based on the MRM2 (as discussed in the next
section).

5.2. Power plant simulation

With the available data, i.e. measurements, IFS forecasts and
corrected forecasts, during a one year period, hourly values of DNI
andmeteorological variables were used as input parameters for the
simulation of a CSP plant with similar configurations to the Andasol
3 using the SAM. The corresponding electricity injected into the
grid values (EG, MWeh), generated by each simulation, based on
measured and predicted values (IFS, SRM, MRM1 and MRM2), were



F.M. Lopes et al. / Renewable Energy 163 (2021) 755e771766
then compared and discussed accordingly. To perform this simu-
lation in the SAM, input variables that influence the plant’s annual
performance (i.e. DNI, air temperature, relative humidity, surface
pressure and wind velocity) are considered in each run based on
measured or predicted data. Moreover, it is important to have in
consideration that the results obtained assume all the plant’s po-
wer consumption losses, including periods of non-production (i.e.
nights and overcast periods) and a constant derating value of 4%.

The Andasol 3 annual performance results (Table 4) showed
annual energies of z166,914 MWeh/year for the measured data,
while for the IFS predictions a value of z174,086 MWeh/year was
obtained. The predicted annual overestimation is a result of the IFS
tendency to overestimatemeasured values during overcast periods,
in which the plant efficiency is higher due to lower temperatures.
Such conditions occurmore frequently than very clean atmospheric
periods, in which the IFS has the tendency to underestimate
measured values (i.e. when the plant’s efficiency is lower). Using
the IFS improved DNI predictions, and themeteorological predicted
data, an annual value of z172,339 MWeh/year was found for the
SRM, while for the MRM1 z169,795 MWeh/year was reached.
However, it is with the MRM2 that the best results based on hourly
EG values were attained, with z167,880 MWeh/year and a relative
difference of z0.58%, being the closest value to the one based on
measurements. Moreover, a rough estimation of the economic
value of the improved MRM2 predictions can also be performed,
considering the average selling price of electricity of 7cV/kWeh [46]
for large industrial customers in Europe. In this context, consid-
ering the simulation that run the DNI observations for the
considered year, the profit of the plant would bez 11.68 MV, while
the one expected with IFS original forecasted data would be higher,
i.e. z12.19 MV, corresponding to a difference (DIFS) of z0.51 MV.
On the other hand, if the MRM2 predictions are used instead, such
value would be z 11.75 MV, i.e. an DMRM2 of z0.07 MV would be
attained. This allows to calculate the difference between the two
predicted values obtained (d ¼ DIFS - DMRM2), which can in some
way quantify the increased profit with the use of the proposed
improved predictions. Such value would be around 0.44 MV (i.e.
z3.80% of the total profit). A full range of possible economic im-
provements can only be accessed with a thorough CSP simulation
that allows the implementation of hourly and daily operational
strategies, which is out of the scope of this analysis. However, such
implementations should be carried out in future studies.

6. Conclusions and future perspectives

In order to improve hourly and daily predictions of DNI from the
ECMWF global model, statistical post-processing methods were
applied to the provided 24-h forecasts of the IFS. Considering two
consecutive years of predicted and measured data in �Evora, the
attained corrected predictions resulted from the use of simple
techniques, suitable to be used from the operational point of view,
including linear and multivariate regression analysis. It was
observed that best results were achieved with the use of the MRM2
correction model. Through the use of hourly clearness indices, the
MRM2 showed a high correlation (z0.93), representing an increase
of z9.81% in comparison with the IFS original value. Moreover, the
MRM2 demonstrated a skill score (SS) ofz0.84, i.e.z27.29% higher
than the one obtained with the IFS. As expected, on the daily scale,
the proposed correction models showed satisfactory results due to
the reduction of the cloud overestimation characteristic of the
hourly predictions, as a consequence to the daily summation. Lower
daily errors and higher correlations were found using the daily
correction models, where a daily SS of z0.78 was found for the
MRM2. However, to further improve the MRM2 daily predictions,
more than one year of data is required due to the high inter-daily
variability of DNI. Nevertheless, daily contingency tables were
created to provide generic strategies to a plant operator under
different atmospheric conditions. On a daily basis, predictions can
be used with the corrected values, particularly for overcast and
clear sky days, while during partly cloudy periods the original daily
availabilities from the IFS are maintained. Operational strategies
based on day-ahead predictions can also be refined throughout the
day using the MRM2, which was shown to be the most suitable
model to be used on the hourly time scale. The application of
measured and predicted data in the simulation of a conventional
linear parabolic-trough power plant (similar to the Andasol 3 CSP)
allowed to compare the electrical energy injected into the grid (EG).
The results showed that EG hourly values were best predicted with
the MRM2. Additionally, a preliminary economic analysis of the
simulated plant showed that the MRM2 predicted hourly values of
EG allowed to enhance the plant’s profit inz0.44 MV, as compared
to the use of the original IFS forecasts.

To further improve this analysis, future studies should focus on
the use of more robust post-processing techniques. At the same
time, these should be of easy application to the plant operator in
order to facilitate operational procedures, which sometimes can
require fast decisions. Future corrections should give more
emphasis in correcting hourly values during overcast and partly
cloudy periods, i.e. periods of high energy demand, inwhich hourly
overestimations towards measured values still remain one of the
main challenge’s in solar forecasting. For instance, the inclusion of
other important parameters in the MRM2, such as the previous
hour of measured aerosol optical depth values. Another method
that can be beneficial for improvement of short-terms forecasts of
DNI forecasts, is the integration of an all sky imager based now-
casting system, such as the one installed nearby �Evora [47]. Since
the SAM uses a single strategy, i.e. to produce electricity whenever
there is DNI available, more emphasis should be given to a model
that makes use of daily operational strategies [54], including the
use of hourly values of the MRM2, as it was shown to be the best
correction model found in this work.
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Table A1
Hourly multivariate regression metrics obtained through the use of the stepwise function considering a second-degree polynomial adjustment of DNI (MRM1) during one year
(from July 1st 2018 to June 30th 2019).

MRM1

Terms Estimates SE tStat pValue

’(Intercept)’ �3.59 x 104 1.27 x 104 �2.83 4.65 x 10�3

’x1’ 8.18 2.10 3.90 9.84 x 10�5

’x2’ 1.30 3.20 0.41 0.68
’x3’ �3.56 1.40 �2.54 0.01
’x4’ 47.51 17.80 2.67 7.64 x 10�3

’x5’ 174.09 65.97 2.64 8.35 x 10�3

’x6’ 29.45 17.65 1.67 0.10
’x7’ 327.68 130.22 2.52 0.01
’x8’ �1.35 x 104 4.18 x 103 �3.22 1.29 x 10�3

’x9’ 3.54 x 103 850.58 4.16 3.25 x 10�5

’x1�x3’ �8.65 x 10�4 1.90 x 10�4 �4.55 5.56 x 10�6

’x1�x4’ �5.04 x 10�3 1.45 x 10�3 �3.48 5.07 x 10�4

’x1�x5’ �0.03 7.20 x 10�3 �3.90 9.68 x 10�5

’x1�x6’ �4.43 x 10�3 2.33 x 10�3 �1.90 0.06
’x1�x8’ �16.42 10.71 �1.53 0.13
’x1�x9’ �0.06 0.11 �0.50 0.62
’x2�x4’ �1.88 x 10�3 2.24 x 10�3 �0.84 0.40
’x2�x5’ 0.02 6.65 x 10�3 2.26 0.02
’x2�x6’ 2.70 x 10�3 3.50 x 10�3 0.77 0.44
’x2�x7’ �0.01 9.54 x 10�3 �1.39 0.16
’x2�x8’ �5.94 18.78 �0.32 0.75
’x2�x9’ 0.99 0.21 4.78 1.83 x 10�6

’x3�x4’ 3.57 x 10�3 1.02 x 10�3 3.52 4.44 x 10�4

’x3�x6’ �4.27 x 10�3 1.64 x 10�3 �2.60 9.42 x 10�3

’x3�x8’ 15.35 7.20 2.13 0.03
’x3�x9’ �0.84 0.16 �5.13 3.02 x 10�7

’x4�x5’ �0.11 0.04 �2.49 0.01
’x4�x6’ �0.02 0.01 �1.40 0.16
’x4�x7’ �0.22 0.09 �2.52 0.01
’x4�x9’ �2.50 0.59 �4.24 2.33 x 10�5

’x5�x6’ �0.15 0.08 �1.97 0.05
’x5�x7’ �0.85 0.47 �1.80 0.07
’x5�x9’ �6.39 3.07 �2.08 0.04
’x6�x7’ 0.20 0.15 1.39 0.16
’x6�x9’ �2.81 1.00 �2.80 5.06 x 10�3

’x7�x9’ �23.55 5.83 �4.04 5.49 x 10�5

’x12’ 7.81 x 10�4 1.42 x 10�4 5.51 3.83 x 10�8

’x22’ 4.24 x 10�4 1.49 x 10�4 2.85 4.44 x 10�3

’x32’ �1.69 x 10�4 5.91 x 10�5 �2.85 4.35 x 10�3

’x42’ �0.02 6.30 x 10�3 �2.51 0.01
’x52’ �0.35 0.15 �2.38 0.02
’x62’ �0.04 0.02 �2.52 0.01
’x82’ 4.68 x 105 1.20 x 105 2.34 0.02
’x92’ 246.04 52.12 4.72 2.42 x 10�6
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Table A2
Daily multivariate regression metrics obtained through the use of the stepwise function c
(from July 1st 2018 to June 30th 2019).

MRM1

Terms Estimates SE

’(Intercept)’ �5.98 4.06
’x1’ 1.27 0.50
’x2’ 0.40 0.22
’x5’ 0.05 0.08
’x6’ 0.21 0.09
’x9’ 3.88 1.53
’x1�x6’ �0.02 6.16
’x2�x5’ �0.01 0.01
’x6�x9’ �0.11 0.03
’x12’ 0.05 0.02
’x52’ �2.21 x 10�3 2.88
’x62’ �9.48 x 10�4 4.81
onsidering a second-degree polynomial adjustment of DNI (MRM1) during one year

tStat pValue

�1.47 0.14
2.53 0.01
1.78 0.08
0.69 0.49
2.41 0.02
2.53 0.01

x 10�3 �2.97 3.16 x 10�3

�1.13 0.26
�3.63 3.29 x 10�4

2.46 0.01
x 10�3 �0.77 0.44
x 10�4 �1.97 0.05



Table A3
Hourly multivariate regression metrics obtained through the use of the stepwise function considering a second-degree polynomial adjustment of DNI that uses the previous
measured irradiance (MRM2) values during one year (from July 1st 2018 to June 30th 2019).

MRM2

Terms Estimates SE tStat pValue

’(Intercept)’ �2.18 x 104 7.11 x 103 �3.06 2.21 x 10�3

’x1’ 7.48 1.74 4.30 1.74 x 10�5

’x2’ �4.45 2.12 �2.10 0.04
’x3’ 0.39 0.18 2.21 0.03
’x4’ 33.55 10.60 3.16 1.57 x 10�3

’x5’ �10.92 2.74 �3.98 6.96 x 10�5

’x6’ �18.20 9.64 �1.89 0.06
’x7’ 103.16 72.98 1.41 0.16
’x9’ �257.21 647.21 �0.40 0.69
’x10’ �2.82 1.00 �2.81 4.96 x 10�3

’x11’ 0.46 1.77 0.26 0.80
’x1�x2’ 1.20 x 10�3 3.48 x 10�4 3.46 5.53 x 10�4

’x1�x3’ �1.02 x 10�3 2.56 x 10�4 �3.97 7.25 x 10�5

’x1�x4’ �4.25 x 10�3 1.24 x 10�3 �3.43 6.07 x 10�4

’x1�x5’ �0.03 5.73 x 10�3 �6.04 1.70 x 10�9

’x1�x6’ �3.49 x 10�3 1.81 x 10�3 �1.93 0.05
’x1�x9’ �0.43 0.11 �3.95 7.90 x 10�5

’x1�x10’ 7.82 x 10�4 1.58 x 10�4 4.96 7.44 x 10�7

’x1�x11’ �7.67 x 10�4 3.00 x 10�4 �2.55 0.01
’x2�x30 �5.72 x 10�4 2.38 x 10�4 �2.41 0.02
’x2�x4’ 2.84 x 10�3 1.47 x 10�3 1.94 0.05
’x2�x5’ 0.02 9.13 x 10�3 2.53 0.01
’x2�x6’ 1.26 x 10�3 2.49 x 10�3 0.50 0.61
’x2�x9’ 0.66 0.22 2.98 2.93 x 10�3

’x2�x10’ �1.57 x 10�3 2.99 x 10�4 �5.27 1.47 x 10�7

’x2�x11’ 1.34 x 10�3 4.32 x 10�4 3.10 1.96 x 10�3

’x3�x5’ 5.03 x 10�3 4.73 x 10�3 1.06 0.29
’x3�x9’ �0.30 0.15 �1.99 0.05
’x3�x10’ 8.13 x 10�4 1.70 x 10�4 4.78 1.85 x 10�6

’x3�x11’ 5.20 x 10�4 2.24 x 10�4 2.33 0.02
’x4�x6’ 0.01 6.87 x 10�3 1.80 0.07
’x4�x7’ �0.07 0.05 �1.26 0.21
’x4�x9’ 0.15 0.48 0.31 0.75
’x4�x10’ 1.70 x 10�3 6.91 x 10�4 2.45 0.01
’x4�x11’ �3.11 x 10�4 1.23 x 10�3 �0.25 0.80
’x5�x6’ 0.04 0.03 1.51 0.13
’x5�x9’ 2.97 1.79 1.66 0.10
’x5�x10’ 0.03 3.88 x 10�3 7.06 1.96 x 10�12

’x5�x11’ �0.01 6.50 x 10�3 �1.97 0.05
’x6�x10’ 4.06 x 10�3 1.34 x 10�3 3.03 2.44 x 10�3

’x6�x11’ �1.97 x 10�3 2.24 x 10�3 �0.88 0.38
’x7�x10’ �6.48 x 10�3 4.54 x 10�3 �1.43 0.15
’x9�x10’ 0.35 0.06 5.71 1.24 x 10�8

’x9�x11’ �0.27 0.11 �2.40 0.02
’x10�x1’ 2.31 x 10�4 1.30 x 10�4 1.78 0.08
’x12’ �2.48 x 10�4 1.82 x 10�4 �1.37 0.17
’x32’ �1.37 x 10�4 9.07 x 10�5 �1.51 0.13
’x42’ �0.01 3.97 x 10�3 �3.23 1.27 x 10�3

’x72’ �0.64 0.61 �1.04 0.30
’x92’ 50.03 42.74 1.17 0.24
’x112 ’ �6.98 x 10�4 1.62 x 10�4 �4.31 1.67 x 10�5
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Table A4
Daily multivariate regression metrics obtained through the use of the stepwise function considering a second-degree polynomial adjustment of DNI that uses the previous
measured irradiance values (MRM2) during one year (from July 1st 2018 to June 30th 2019).

MRM2

Terms Estimates SE tStat pValue

’(Intercept)’ �2.79 5.97 �0.47 0.64
’x1’ 0.61 1.13 0.54 0.59
’x2’ �0.81 0.56 �1.44 0.15
’x5’ 0.31 0.15 2.07 0.04
’x6’ 0.25 0.09 2.68 7.81 x 10�3

’x9’ �4.84 5.57 �0.87 0.39
’x10’ �0.47 0.18 �2.66 8.09 x 10�3

’x11’ 1.18 0.75 1.59 0.11
’x1�x2’ 0.08 0.05 1.50 0.13
’x1�x5’ �0.07 0.03 �2.62 9.24 x 10�3

’x1�x6’ �0.03 8.80 x 10�3 �3.14 1.82 x 10�3

’x1�x9’ 2.03 0.60 3.37 8.30 x 10�4

’x1�x11’ �0.08 0.05 �1.77 0.08
’x2�x5’ 0.07 0.03 2.06 0.04
’x5�x9’ �0.22 0.12 �1.83 0.07
’x5�x10’ 0.04 9.72 x 10�3 3.88 1.25 x 10�4

’x5�x11’ �0.07 0.03 �2.48 0.01
’x6�x9’ �0.17 0.05 �3.46 6.06 x 10�4

’x6�x11’ 6.51 x 10�3 5.43 x 10�3 1.20 0.23
’x9�x11’ �0.74 0.31 �2.38 0.02
’x12’ 0.14 0.07 2.07 0.04
’x52’ �3.53 x 10�3 2.99 x 10�3 �1.18 0.24
’x62’ �9.45 x 10�4 4.93 x 10�4 �1.9 0.06
’x92’ 7.39 2.07 3.56 4.17 x 10�04

Table A5
Contingency table for availability values of DNI (kWh/m2/day) between observations
(OBS) and IFS predictions. A range divided in four intervals defines different weather
conditions during a one year period (from July 1st 2018 to June 30th 2019) in �Evora
(southern Portugal). The total number of measurements (Total OBS) is also
presented.

IFS

OBS 0e3 3e6 6e9 9e13 Total OBS
0e3 47 (59.49%) 28 (35.44%) 4 (5.06%) 0 79
3e6 2 (2.17%) 63 (68.48%) 27 (29.35%) 0 92
6e9 0 12 (10.17%) 104 (88.14%) 2 (1.70%) 118
9e13 0 1 (1.32%) 37 (48.68%) 38 (50.00%) 76

Table A6
Contingency table for availability values of DNI (kWh/m2/day) between observations
(OBS) and SRM predictions. A range divided in four intervals defines different
weather conditions during a one year period (from July 1st 2018 to June 30th 2019) in
�Evora (southern Portugal). The total number of measurements (Total OBS) is also
presented.

SRM

OBS 0e3 3e6 6e9 9e13 Total OBS
0e3 58 (73.42%) 17 (21.52%) 3 (3.80%) 1 (1.27%) 79
3e6 10 (10.87%) 55 (59.78%) 26 (28.26%) 1 (1.09%) 92
6e9 0 16 (13.56%) 97 (82.20%) 5 (4.24%) 118
9e13 0 1 (1.32%) 16 (21.05%) 59 (77.63%) 76

Table A7
Contingency table for availability values of DNI (kWh/m2/day) between observations
(OBS) and MRM1 predictions. A range divided in four intervals defines different
weather conditions during a one year period (from July 1st 2018 to June 30th 2019) in
�Evora (southern Portugal). The total number of measurements (Total OBS) is also
presented.

MRM1

OBS 0e3 3e6 6e9 9e13 Total OBS
0e3 58 (73.42%) 19 (24.05%) 2 (2.53%) 0 79
3e6 14 (15.22%) 57 (61.96%) 20 (21.74%) 1 (1.09%) 92
6e9 1 (0.85%) 15 (12.71%) 98 (83.05%) 4 (3.39%) 118
9e13 0 1 (1.32%) 18 (23.68%) 57 (75.00%) 76

Table A8
Contingency table for availability values of DNI (kWh/m2/day) between observations
(OBS) and MRM2 predictions. A range divided in four intervals defines different
weather conditions during a one year period (from July 1st 2018 to June 30th 2019) in
�Evora (southern Portugal). The total number of measurements (Total OBS) is also
presented.

MRM2

OBS 0e3 3e6 6e9 9e13 Total OBS
0e3 56 (70.89%) 21 (26.58%) 2 (2.53%) 0 79
3e6 15 (16.30%) 62 (67.40%) 14 (15.22%) 1 (1.09%) 92
6e9 1 (1.85%) 11 (9.32%) 97 (82.20%) 9 (7.63%) 118
9e13 0 1 (1.32%) 16 (21.05%) 59 (77.63%) 76
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Appendix A

1. Data quality-control

Although there is no definitive procedure for data processing
[48], to perform a correct analysis of surface solar radiation, it is
important to apply a posteriori proper filters to the measured
data. Since the nature of the latter is site-dependent, several
factors can affect the measured data, as described in Ref. [49]:
geographical coordinates (latitude, longitude), astronomical
factors (solar declination, daylight hours), geometric factors
(solar azimuth angle), physical factors (scattering and absorp-
tion effects due to aerosol content present in the atmosphere),
terrain topography, surface albedo, nearby structures (e.g. trees,
buildings) and meteorological variables (e.g. clouds, air tem-
perature, wind speed, air relative humidity, precipitation).
Particularly, remote locations of difficult man-made access
often show large missing periods of recorded data (from a few
days to several weeks), whether due to equipment malfunction
or to sudden power supply shutdowns, which can last up to
several hours.

In this context, considering the study location (i.e. southern
region of Portugal) and two years of continuous GHI and DNI
measurements, the following filters were applied:

a. Only positive values, i.e. daylight hours, are considered.
b. Linear interpolation is performed for gaps greater than 15% of

the total number of hours within each day.
c. BSRN Global Network maximum and minimum physically

possible limits [50].
d. Deterministic variables, i.e. solar zenith angle, DNI and GHI at

the top-of-the-atmosphere (TOA), respectively DNITOA and
GHITOA, are calculated on an hourly basis, as described by Eq.
2.77 in Ref. [51], considering the geographical coordinates of
EVO station and a total solar irradiance at TOA of 1361 W/m2

[52].

Condition a allows to remove irradiance night values (i.e.
negative values) from the analysis. In condition b, linear inter-
polation of GHI and DNI is performed for days that have z3.5 h
(depending on the available number of daylight hours
throughout the year) of missing data. In order to refine the
analysis, condition c is used taking into consideration the phys-
ically possible limits for GHI and DNI (shortwave components),
allowing to remove any irradiance value measured at surface that
is higher than the respective value calculated at TOA (condition
d). Such abnormal values can be recorded mainly due to equip-
ment mal function.

The application of the proposed filters to themeasured radiation
data at EVO station resulted in the following percentage of missing
data: z0.0011% (z0.096 h) and z0.0015% (z0.13 h) for the first
and second years, respectively. Moreover, regarding the local
meteorological parameters,z0.0076% (z0.67 h) was found for the
first year of measurements, whereas for the second only very few
minutes of missing data occurred. These numbers show how well-
maintained is the measuring equipment used. For consistency
reasons, the same missing periods found in measurements are set
equally in the IFS forecasts.

2. Relative humidity and skill score formulas

As described by Ref. [53], the following relation was used to
calculate the relative humidity (Rh) considering both ECMWF
predicted dew point and air temperatures (Tdew and Tair,
respectively):
Rh¼

2
646:11 � 10

�
7:5 � Tdew

237:7þTdew

�,
6:11 � 10

�
7:5 � Tair

237:7þTair

�3
75 �

(A1)

The forecasting skill considered in the analysis made use of the
skill score (SS) in regards to the mean square error obtained be-
tween measurements and forecast model (MSEfor) and measure-
ments and persistence model (MSEper), as described by Ref. [41]:

SS¼1� MSEfor
.
MSEper

(A2)

where an SS equal to one indicates a perfect forecast, negative
values of SS mean that the forecast model performs worse than the
persistence model, while a null result shows that the forecast
model has no improvement towards the persistence model.

3. Multivariate regression tables

In the following tables (A1, A2, A3 and A4) are all significant and
possible relations between predictors and predictand (Terms), the
weight (Estimates) that each relation has in the respective adjust-
ment, the standard error (SE) obtained, the t-statistics (tStat), and
the p-value (pValue), for both MRM1 and MRM2 hourly and daily
adjustments. The following set of predictors were considered for the
hourly adjustments: x1 (DNIiIFS), x2 (GHIiIFS), x3 (GHIiTOA), x4 (DNIiTOA),
x5 (Tempi

IFS), x6 (RhiIFS), x7 (Wi
IFS), x8 (PreciIFS), x9 (TcciIFS), x10 (DNIi-1OBS)

and x11 (GHIi-1OBS), with DNIi
OBS as the predictand. In the case of the

daily adjustments, predictors x1, x2, x5, x6 and x9 were considered.

4. Daily contingency tables

For the evaluation of daily availability values regarding the op-
erations of a CSP plant, contingency tables were used considering
daily measured and predicted (IFS, SRM, MRM1 and MRM2) data
for one year in EVO.
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