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Abstract Pinus pinea stands have been identified as

one of the target species for agroforestry systems in

Europe. Its fruit yield is of importance to the local

development, especially in the Mediterranean basin,

due to its highly nutritional kernels and its economic

value. The objectives of this study were to analyze the

relation between pine nut and kernel weight and its

efficiencies in relation to cone and tree traits for

different stand structures. The statistical analysis was

carried out with correlation, multiple correlation

analysis, hurdle-gamma regression, principal compo-

nent and cluster analysis, with a dataset of about 3300

cones collected in four plots and 3 years. The results

indicate that pine nut and kernel and its efficiencies

depend on stand structure, year and tree

characteristics. The principal component analysis

and the cluster analysis enabled the identification of

four groups of trees related to the pine nut and kernel

efficiencies. The higher efficiencies per tree are

attained in stands managed for fruit production,

increasing with the decrease of the density.

Keywords Hurdle-gamma regression � Pine nut and
kernel efficiency � Principal component analysis �
Stem and crown diameter � Weight

Introduction

Agroforestry and silvopastoral systems combining

forest trees, agriculture (e.g., pasture) and grazing, are

known for the balance between facilitation and

competition, thus enabling to optimize the use of the

growing space (Jose et al. 2019). The several products

and yields derive in economically viable systems (Jose

et al. 2004, 2019; Eichhorn et al. 2006; Cubbage et al.

2012; Nerlich et al. 2013; Pasalodos-Tato et al. 2016;

Miah et al. 2018). The different components of the

system are designed to optimize the spatial and

temporal use of the growing space (Jose et al. 2019).

It includes maintaining or improving pasture and

forage quantity and quality (Orefice et al. 2019; Pang

et al. 2019a, b), especially under drought conditions

(Eichhorn et al. 2006; Ford et al. 2019) while
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Avançada, Universidade de Évora, Rua Romão Ramalho

59, 7000-671 Évora, Portugal
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maintaining tree productivity. These systems enhance

biomass and carbon storage (Cubbage et al. 2012;

Pantera et al. 2018; Adhikari et al. 2019; Aryal et al.

2019; López-Santiago et al. 2019) provide several

ecosystem services such as regulation of microcli-

mate, hydrological and nutrient cycling, soil conser-

vation, reduction of fire risk and a range of social and

cultural services (Reisner et al. 2007; Jose 2009;

Cubbage et al. 2012; Miah et al. 2018; Pantera et al.

2018; Jose et al. 2019; Orefice et al. 2019). The

European Mediterranean countries have the largest

areas of agroforestry and silvopastoral systems (den

Herder et al. 2017) and one of the target forest tree

species for this system is Pinus pinea (Reisner et al.

2007).

Pinus pinea L. (umbrella pine) forest stands are

usually managed as agroforestry systems, providing

several products (Agrimi and Ciancio 1994; Calama

et al. 2011; Nerlich et al. 2013). The stands have

frequently low density and fruit is their main produc-

tion (Agrimi and Ciancio 1994; Mutke et al. 2012).

Fruit production presents inter-annual variability

(Mutke et al. 2005a; Calama et al. 2011) in cycles of

3–6 years (Agrimi and Ciancio 1994). In the Mediter-

ranean countries of Europe, umbrella pine nuts are

economically important because of the high nutri-

tional value, due to the high protein, carbohydrate, fat,

vitamin and mineral content of the kernels (e.g.,

Cañellas et al. 2000; Nergiz and Dönmez 2004; Nasri

and Triki 2007; Costa et al. 2008; Evaristo et al.

2008, 2010).

The estimation of cone and seed production are of

primordial importance for tree regeneration (Red-

mond et al. 2016). In conifers in general, and in Pinus

spp. in particular, the number of cones per tree, the

number of pine nuts per cone and the seed efficiency

(defined as the percent of the number of fully

developed pine nuts in relation to the total number

of pine nuts per cone) are determinant for the seed

availability. In literature was reported a wide variabil-

ity of cone production per tree for pine species (e.g.,

Agrimi and Ciancio 1994; Mutke et al. 2005a; Zlotin

and Parmenter 2008; Ganatsas and Thanasis 2010;

Gonçalves et al. 2017), as well as for the number of

pine nuts per cone and the seed efficiency for Pinus

strobus (Noland et al. 2006; Owens and Fernando

2007; Parker et al. 2013), Pinus sylvestris (Bilir et al.

2008), Pinus albicaulis (Owens et al. 2008), and Pinus

pinea (Saraiva 1997; Montero et al. 2004; e.g., Calama

and Montero 2007; Evaristo et al. 2008, 2010; Ganat-

sas et al. 2008). This variability is related with soil

fertility and climate change. Several studies for Pinus

spp. referred that the increase in soil nutrients

availability, whether by silvicultural practices (e.g.,

thinning or cuts) or fertilization, produced a larger

number of cones and pine nuts (Turner et al. 2007;

Ortiz et al. 2012) as pines under low nutrient

availability invested their resources first on growth

and postpone their fruit production (Goubitz et al.

2002; Eugenio and Lloret 2006). Climate change, with

temperature rise and changes in rainfall patterns, led to

a cone yield reduction (Mutke et al. 2005a).

For umbrella pine the number of nuts per cone

varied from 2 to 183 and their weight ranged from 28.4

to 57.1 g (Saraiva 1997; Montero et al. 2004; Calama

andMontero 2007; Evaristo et al. 2008; Ganatsas et al.

2008). Also, several authors (Calama and Montero

2007; Evaristo et al. 2008; Ganatsas et al. 2008;

Boutheina et al. 2013) referred a rate of undeveloped

pine nut per cone ranging between 2 and 34%. Kernel

weight per cone varied between 10 and 27 g (Saraiva

1997; Evaristo et al. 2008).

Many studies have been made on umbrella pine

cone production whether on quantity or on spatial and

temporal variability (e.g., Montero et al. 2004; Calama

andMontero 2007; Calama et al. 2008, 2011; Ganatsas

et al. 2008; Gonçalves and Pommerening 2012), on

mechanical harvest (e.g., Castro-Garcı́a et al. 2012;

Gonçalves et al. 2016), on the effect of pest on cones

(Calama et al. 2017), on the effect of water and light in

the seedlings and trees survival and growth (e.g.,

Pardos et al. 2009; Calama et al. 2013; Manso et al.

2014; De-Dios-Garcı́a et al. 2015; Mayoral et al.

2016), and on cone, pine nut and kernel characteristics

(e.g., Agrimi and Ciancio 1994; Saraiva 1997; Nergiz

and Dönmez 2004; Evaristo et al. 2008; Ganatsas et al.

2008; Evaristo et al. 2010). Other studies reported a

high variability of the number of pine nuts and kernels

per cone and their efficiencies (Calama and Montero

2007; Evaristo et al. 2008; Ganatsas et al. 2008).

Additionally, the profitability of umbrella pine stands

managed for timber and fruit is related to the number

of cones per tree and the cone market price (Pasalodos-

Tato et al. 2016). The shortcoming of these studies is

that they used a limited number of cones and did not

related them with the tree dendrometric variables and

stand structure.
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There are many variables to measure tree’ dimen-

sions and stand structure. Also, each tree has a large

variability in cone, pine nut and kernel productions,

which may correspond to a large data set. To analyze

this kind of data set several statistical techniques are

available. Principal component analysis (PCA) has

been used in forestry to narrow down a large variable

set to the most explaining variables (del Campo et al.

2007; Liu et al. 2018; Bueis et al. 2018). Several

authors used PCA to select a subset of environmental

variables that accounted for the highest variability of

edaphic, climatic and physiographic variables on tree

establishment and growth (e.g., del Campo et al. 2007;

Bueis et al. 2018) while others used it to identify

groups with different traits (e.g., Liu et al. 2018) and

others still correlated site and nut production variables

(e.g., del Campo et al. 2007; Ugese et al. 2010). Hurdle

models were used to model cone production variation

of Pinus palustris Mill. and dealt with the high

occurrence of zeros (Haymes and Fox 2012). Hurdle

models have the advantage of providing further insight

into production dynamics by analyzing those factors

driving production occurrence and yield separately

(Taye et al. 2016).

The main goal of this study is to understand the

relations of stand type, tree’ dimensions and cone

weight on the number and weight of pine nut and

weight of kernel per cone and its efficiencies with a

large data set. In more detail, the hypotheses of this

study are: (1) heavier cones have higher number,

weight and efficiency of fully developed pine nuts; (2)

trees with large diameter at breast height and crown

diameter produce higher number, weight and effi-

ciency of fully developed pine nuts per cone; (3)

heavier cones have higher kernel weight and effi-

ciency; (4) trees with large diameter at breast height

and crown diameter produce higher kernel weight and

efficiency; (5) groups of trees can be identified as

function of the number and weight of pine nuts and

kernels or its efficiencies, and stand structure and tree

dendrometric variables.

Materials and methods

Materials

The data was collected in four plots located in Alcácer

do Sal, Portugal; plot 1, Herdade do Pai Sobrado; plot

2, Mata de Valverde; plot 3, Herdade do Monte Novo;

and plot 4, Quinta de Sousa (Table 1). The plots are

representative of agroforestry (1, 3, and 4) and forestry

(2) systems. Plots 1, 3 and 4 are managed as

silvopastoral systems, with wide spacing to promote

stem and crown diameter growth, mainly through

thinning. Their productions are fruit and cattle grazing

on natural (plots 1 and 3) and artificial (plot 4)

pastures. Plot 2 is a pure even-aged stand, with a

silvicultural model that includes thinning and pruning

to promote stem growth. Plot 2 has total and stem

height higher than the other tree plots, 46–51% and

20–30%, respectively. Inversely, crown radii are in

average 15–23% smaller in plot 2 than in plots 1, 3 and

4. None of the plots is irrigated, grafted or fertilized,

except for plot 4 where the understory pasture is

fertilized. All plots were pruned and control of natural

vegetation was carried out periodically to reduce fire

risk, with cycles depending on their development. The

following dendrometric variables were measured in all

trees in each plot, for all individuals with diameter at

breast height larger than 10 cm: diameter at breast

height, total height, stem height, height of the begin-

ning of the crown, and four crown radii in the north,

south, east and west directions. In 120 trees per plot

cone were harvested, 30 manually and 90 mechani-

cally, during three years. Trees were allocated to

manual and mechanical harvest through a random

stratified sampling, with strata defined by 0.1 m

diameter at breast height classes (for details see

Gonçalves et al. 2016). In each harvest, 3 cones were

selected randomly per tree (Gonçalves et al. 2017).

The pine nuts were extracted from the dry cones,

cleaned, separated in fully developed pine nuts and

undeveloped pine nuts, weighted and counted. The

pine nuts from each cone were broken manually and

the kernels weighted. Weights were recorded with a

precision scale to 1 mg. Seed efficiency per cone (sef ,

Eq. 1, in %) was computed by the number of fully

developed pine nuts in relation to the total number of

pine nuts. Pine nut efficiency (PNefw, Eq. 2, in %) and

kernel efficiency (Kefw, Eq. 3, in %) per cone on a

fresh weight basis were defined as the relation between

the fully developed pine nut weight and kernel weight

per cone in relation to the cone fresh weight.
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sef ¼
Number of fully developed pine nuts per cone

Total number of pine nuts per cone

ð1Þ

PNefw ¼ Fully developed pine nut weight per cone

Cone fresh weight

ð2Þ

Kefw ¼ Kernel weight per cone

Cone fresh weight
ð3Þ

Data set is composed of pine nuts (seed with shell)

and kernels (seed without shell) of 3313 cones. The

data set used is valuable for two reasons. First, it is

composed by a large number of samples thus enabling

data to include most of the variability of pine nuts and

kernels per cone. Second, harvests were done in stands

not affected by Leptoglossus occidentalis, resulting in

a pre-damage data that can be used as a standard or

baseline for the diagnosis of the stands affected by the

seed bug.

Statistical analysis

Normality was evaluated with Shapiro-Wilk test and

homogeneity of variance with Levene test. When the

assumptions of normality and homogeneity of vari-

ance were not met, nonparametric tests were used in

the analysis. Linear correlations between fresh and dry

cone weight, number and weight of pine nuts per cone,

weight of kernels per cone and pine nut, kernel and

seed efficiencies were evaluated using Pearson’s r

coefficient. Kruskal-Wallis test, followed by Fisher

LSD multiple comparisons test applied to ranks with

Holm method for adjusting p values (Wright 1992;

Sheskin 2007), were used to test differences in the

number and weight of pine nuts per cone and in its

efficiencies between plots and years. The analysis of

the differences in the average number of undeveloped

pine nuts per cone between trees was done with a

hurdle-gamma regression (Zuur and Ieno 2016), due to

the high occurrence of zeros in the dataset. The

explanatory variables considered were year, plot,

average of cone fresh weight per tree, average of the

cone moisture content per tree (quotient between the

difference of fresh and dry cone weight and cone fresh

weight), average number of pine nuts fully developed

per cone and tree, average seed efficiency, tree

characteristics (diameter at breast height, total height,

stem height, crown length, height of the beginning of

the live crown, crown diameter) as well as the second

order interactions. Collinearity was evaluated with

Generalized Variation Inflation Factor for the model’s

main effects. Likelihood ratio tests were used to

compare goodness of fit between nested models and

Akaike’s information criterion for non-nested models.

Additionally, Hosmer–Lemeshow test and pseudo R2

MacFadden were used to assess goodness of fit in

logistic part and the adjusted R2 for the gamma part.

Principal component analysis (PCA) (Johnson and

Table 1 Plots locations and characteristics

Variable Plot

1 2 3 4

Central coordinates 38� 210 3400 N
8� 310 07’’ W

38� 190 2800 N
8� 320 3600 W

38� 290 3500 N
8� 380 3500 W

38� 330 5500 N
8� 350 1500 W

System Agroforestry Forestry Agroforestry Agroforestry

Main production Fruit Timber Fruit Fruit

Soils Chromic regosols Chromic podzol regosols Chromic regosols Cambic podzol regosols

Composition Pure Pure Pure Pure

Structure Even-aged Even-aged Even-aged Even-aged

Mean age (years) & 60 & 60 & 60 & 60

Plot area (ha) 1.5 0.6 1.6 2.0

Number of trees (trees ha-1) 95 233 103 66

Basal area (m2ha-1) 9.8 25.3 10.7 8.1
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Wichern 2007) was used in multivariate data analysis

of average efficiency production per tree (fresh cone

weight, pine nut, kernel and seed efficiencies) and tree

characteristics. Original variables were standardized

to zero mean and unit variance, because they were

measured in different units. Year and plot were

considered as supplementary variables. Kaiser’s rule

was used to decide how many components were to be

retained: only the principal components with eigen-

values greater than one were selected. In addition, to

identify clusters of trees that may correspond to the

profiles identified with PCA, it was applied a non-

hierarchical cluster analysis (NHCA), considering as

variables the coordinates of the trees in the retained

components. The statistical analysis was performed

using R Project, version 3.3.0 (R Core Team 2016).

The level of significance used was 0.05.

Results

Pine nuts

More than half of the cones (54%) had only fully

developed pine nuts. For the remaining 46%, 28.7%

had up to 5 undeveloped pine nuts, 7.5% from 6 to 10,

7.1% from 11 to 30, and 2.7% more than 30. The

overall mean proportion of undeveloped pine nuts was

5.4%, ranging from 0.7 to 93.1%, corresponding to an

average of seed efficiency of 94.6%. The overall

number of fully developed pine nuts per cone ranged

from 1 to 152, with a median of 78 (Table 2). The

weight of these pine nuts ranged from 0.8 to 124.4 g,

with a median of 54.8 g (Table 2) that corresponded to

pine nut efficiency between 16.2 and 21.4%. Note-

worthy is that half of the samples had a number of pine

nuts between 57 and 98 (IQR) and a weight between

36.5 and 70.5 g (IQR). The weight and the number of

pine nuts per cone were strongly linear positive

correlated (Pearson’s r = 0.891). Very strong and

strong linear positive correlations were found between

fresh and dry cone weight with the number and weight

of fully developed pine nuts per cone (Table 3). The

number and weight of fully developed pine nuts per

cone differed significantly between plots (v23 = 1147.7,

p\0.001 and v23 =1128.2, p\0.001, respectively) and

between years (v22 = 158.5, p\0.001 and v22 = 212.8, p

\ 0.001, respectively). Plot 4 had the heaviest pine

nuts and the highest pine nut efficiency while plot 2

had less and lighter pine nuts as well as the lowest pine

nut efficiency (Table 2). The pine nut efficiency

followed the same pattern as the weight and number

of fully developed pine nuts.

Total height, crown length, height of the beginning

of the live crown, crown diameter, and the average of

the cone moisture content per tree did not contribute to

explain either the existence or the average number of

undeveloped pine nuts per cone and per tree (Table 4).

The odds of a cone having undeveloped pine nuts were

lower for trees in plot 2 and higher for trees in plot 4

and plot 1, in this last plot only in 2003 (Table 4). The

odds were highest in 2005 in all plots. For all plots and

years, the odds were lower for cones with high number

of pine nuts fully developed, however these odds

increased with the stem height of the tree.

Among the cones with undeveloped pine nuts, the

average number of undeveloped pine nuts per cone

and per tree decreased exp(- 0.008) = 0.992 times

with a unit increase in diameter at breast height and

increased exp(0.656) = 1.927 times with a unit

increase in stem height (Table 4). For each unit

increase in seed efficiency this average decreased

17.2% (= (1 - exp(- 0.075)) 9 100). In all plots,

this average was smaller in year of 2004 and higher in

2005. With a unit increase in the average of the fresh

cone weight per tree the average number of pine nuts

undeveloped increased 1.004 times in plot 2, 1.002

times in plot 1 and 1.992 times in plot 4, and decreased

0.926 times in plot 3.

The number of fully developed pine nuts differed

significantly among diameter at breast height classes

(grouped in 0.1 m classes) (v24 ¼ 14:249; p ¼ 0:007)

and a marginally significant difference was detected in

the weight of fully developed pine nuts

(v24 ¼ 8:363; p ¼ 0:079). A similar trend was

observed for crown diameter (grouped in 1 m classes)

in the number of pine nuts (v210 ¼ 22:340; p ¼ 0:013),

with significant differences in pine nut weight among

crown diameter classes (v210 ¼ 41:538; p\0:001). The

pine nut efficiency did not differ with diameter at

breast height (v24 ¼ 4:691; p\0:320; Fig. 1 left),

however differed with crown diameter

(v210 ¼ 34:951; p\0:001; Fig. 1 right). The trees with

diameter at breast height between 0.4 and 0.6 m were

those with the lowest number of pine nuts. The trees

123

Agroforest Syst (2020) 94:2065–2079 2069



T
a
b
le
2

M
ed
ia
n
±

in
te
rq
u
ar
ti
le
ra
n
g
e
(I
Q
R
)
o
f
th
e
n
u
m
b
er

an
d
w
ei
g
h
t
o
f
p
in
e
n
u
ts
,
w
ei
g
h
t
o
f
th
e
co
n
es

an
d
k
er
n
el
s
p
er

co
n
e,
p
in
e
n
u
t
an
d
k
er
n
el
ef
fi
ci
en
ci
es

an
d
se
ed

ef
fi
ci
en
cy

(i
n
%
)
(d
if
fe
re
n
t
le
tt
er
s
in
d
ic
at
e
si
g
n
ifi
ca
n
t
d
if
fe
re
n
ce
s
am

o
n
g
p
lo
ts

o
r
y
ea
rs
,
at

p
\

0
.0
5
)

P
lo
t

Y
ea
r

n
F
re
sh

co
n
e

w
ei
g
h
t
(g
)

N
u
m
b
er

o
f
p
in
e
n
u
ts

p
er

co
n
e

W
ei
g
h
t
o
f
p
in
e
n
u
ts

p
er

co
n
e
(g
)

A
v
er
ag
e
w
ei
g
h
t

o
f
k
er
n
el
s
p
er

co
n
e
(g
)

A
v
er
ag
e
co
n
e

m
o
is
tu
re

co
n
te
n
t

p
er

tr
ee

(%
)

S
ee
d

ef
fi
ci
en
cy

P
in
e
n
u
t

ef
fi
ci
en
cy

K
er
n
el

ef
fi
ci
en
cy

F
u
ll
y

d
ev
el
o
p
ed

U
n
d
ev
e-

lo
p
ed

F
u
ll
y

d
ev
el
o
p
ed

U
n
d
ev
e-

lo
p
ed

1
A
ll

7
6
4

2
3
4
.8

±
9
8
.3

6
9
.5

b
±

3
3
.0

0
.0

±
6
.0

4
1
.0

b
±

2
4
.2

0
.0

±
0
.3

9
.5

b
±

5
.9

2
9
.9

±
2
.2

1
0
0
±

8
.1

1
7
.8
b
±

4
.6

4
.2

b
±

1
.2

2
6
6
8

2
1
9
.8

±
1
1
4
.6

5
5
.0

a
±

3
6
.0

0
.0

±
0
.5

3
5
.0

a
±

3
1
.0

0
.0

±
0
.3

8
.0

a
±

7
.1

3
0
.6

±
3
.3

1
0
0
±

8
.9

1
6
.6
a
±

6
.2

3
.8

a
±

1
.4

3
1
0
0
2

3
1
5
.1

±
1
0
3
.3

7
8
.0

c
±

3
3
.0

0
.0

±
3
.0

5
9
.1

c
±

2
5
.4

0
.0

±
0
.2

1
3
.3

c
±

5
.5

2
9
.5

±
2
.9

1
0
0
±

2
.9

1
8
.7
c
±

3
.6

4
.2

b
±

0
.9

4
8
7
9

3
2
4
.6

±
9
1
.7

1
0
2
.0
d
±

2
3
.0

1
.0

±
3
.0

7
2
.3

d
±

2
2
.3

0
.1

±
0
.2

1
6
.0

d
±

5
.1

2
9
.3

±
2
.7

9
9
.1

±
3
.1

2
2
.4
d
±

2
.7

4
.9

c
±

0
.8

A
ll

2
0
0
3

1
0
9
1

2
4
0
.6

±
1
1
5
.8

6
8
.0

a
±

4
0
.0

0
.0

±
0
.0

4
4
.9

a
±

3
2
.9

0
.0

±
0
.0

1
0
.9

a
±

7
.3

2
8
.6

±
3
.2

1
0
0
±

0
.0

1
8
.9
b
±

5
.6

4
.5

b
±

1
.2

2
0
0
4

1
1
4
4

3
0
6
.0

±
9
6
.7

8
3
.0

c
±

3
3
.0

0
.0

±
2
.0

6
1
.0

c
±

2
6
.2

0
.0

±
0
.2

1
3
.5

c
±

6
.1

3
0
.6

±
2
.6

1
0
0
±

2
.5

1
9
.8
c
±

4
.0

4
.4

b
±

0
.9

2
0
0
5

1
0
7
8

3
0
2
.6

±
1
3
3
.4

8
2
.0

b
±

4
5
.8

4
.0

±
7
.0

5
6
.0

b
±

3
8
.2

0
.2

±
0
.4

1
2
.5

b
±

8
.2

2
9
.8

±
2
.1

9
5
.5

±
1
1
.5

1
8
.1
a
±

6
.3

4
.1

a
±

1
.4

A
ll

A
ll

3
3
1
3

2
8
5
.0

±
1
2
2
.2

7
8
.0

±
4
1
.0

0
.0

±
4
.0

5
4
.8

±
3
4
.0

0
.0

±
0
.2

1
2
.5

±
7
.3

2
9
.7

±
2
.8

1
0
0
±

4
.3

1
9
.1

±
5
.2

4
.3

±
1
.1

123

2070 Agroforest Syst (2020) 94:2065–2079



Table 3 Pearson correlation matrix between fresh and dry cone weight, with the number and weight of fully developed pine nuts and

weight of kernels per cone. All correlations are significant at 1%

Plot Year Fresh cone weight (g) Dry cone weight (g)

Number of pine

nuts

Weight of pine

nuts (g)

Weight of

kernels (g)

Number of pine

nuts

Weight of pine

nuts (g)

Weight of

kernels (g)

1 All 0.718 0.908 0.864 0.719 0.911 0.867

2 0.772 0.911 0.840 0.774 0.917 0.853

3 0.728 0.891 0.854 0.722 0.902 0.865

4 0.577 0.855 0.808 0.587 0.884 0.829

2003 0.722 0.926 0.893 0.717 0.934 0.901

All 2004 0.702 0.887 0.843 0.713 0.898 0.846

2005 0.766 0.905 0.897 0.772 0.912 0.904

All All 0.747 0.905 0.874 0.751 0.916 0.885

Table 4 Hurdle-gamma regression estimated coefficients (B), standard errors (SE) and p values, for the variable associated with the

average number of pine nuts per tree undeveloped

Variables Logistic parta Gamma partb

B SE p B SE p

Constant 0.047 1.048 0.964 6.933 0.211 \ 0.001

Year (ref: 2004)

2003 0.648 0.665 0.330 0.593 0.069 \ 0.001

2005 14.144 5.086 0.005 0.710 0.052 \ 0.001

Plot (ref: 2)

1 0.794 0.399 0.047 0.656 0.202 0.001

3 0.786 0.344 0.022 0.131 0.237 0.579

4 2.614 0.465 \ 0.001 0.878 0.272 0.001

Stem height - 0.163 0.147 0.268 0.656 0.202 0.001

Diameter at breast height - 0.008 0.002 0.001

Average fresh cone weight 0.004 0.001 \ 0.001

Average number of pine nuts - 0.021 0.012 0.086

Average seed efficiency - 0.075 0.002 \ 0.001

Year 2003 9 Plot 1 1.792 0.388 \ 0.001

Year 2003 9 Plot 4 - 0.427 0.143 0.003

Year 2005 9 Plot 4 - 0.285 0.086 0.001

Year 2003 9 Average number of pine nuts - 0.039 0.008 \ 0.001

Year 2005 9 Average number of pine nuts - 0.061 0.056 0.273

Stem height 9 Average number of pine nuts 0.005 0.002 0.010

Average fresh cone weight 9 Plot 1 - 0.002 0.001 0.019

Average fresh cone weight 9 Plot 3 - 0.001 0.001 0.126

Average fresh cone weight 9 Plot 4 - 0.002 0.001 0.005

a N = 1148, R2 McFadden = 0.406, Hosmer–Lemeshow test:v28 ¼ 1:474, p = 0.993, AUC = 0.889, sensivity = 73.6%,

specificity = 87.7%, cutoff point = 0.642
b N = 747, Adjusted R2 = 0.821
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with the median crown diameters were those with the

highest number and weight of pine nuts and efficiency.

Kernels

Per cone, the weight of kernels ranged between 0.2 and

27.7 g with a median of 12.5 g (IQR = 8.5–15.8 g),

which corresponded to a kernel efficiency between

3,7% and 4.9% (Table 2). The weight and efficiency

of the kernels were lower in plot 2 and higher in plot 4

(Table 2). Per year analysis (Table 2) revealed that the

heaviest kernels were attained in 2004 (IQR =

10.4–16.5 g), followed by 2005 (IQR = 8.0–16.2 g)

and 2003 (IQR = 7.2–14.5 g), and presented a similar

tendency to the weight of fresh cone. A different

pattern was observed for kernel efficiencies where the

highest efficiency occurred in 2003 (IQR = 3.8–5.0%)

and 2004 (IQR = 3.9–4.8%), followed by 2005

(IQR = 3.3–4.6%) (Table 2).

Fresh and dry cone weight were strongly and

positively correlated with kernel weight per cone, and

the strength of the correlation varied among plots and

years (Table 3). The correlations with kernel effi-

ciency were weaker, thought statistically significant

(all Pearson’s r\ 0.55). Per tree, the average kernel

weight per cone was strongly and positively correlated

with the average of the weight and the mean number of

pine nuts fully developed per cone as well as with the

average of dry cone weight (Table 5). Weaker but

significant negative correlations were found between

kernel weight and height of the beginning of the

crown, stem height and total height, and a positive

correlation between kernel weight and crown length

and crown diameter. No significant correlation was

found between kernel weight and diameter at breast

height.

There was a statistically significant difference

between the kernel weight by crown diameter classes

(v10
2 = 31.752, p\ 0.001) but not by diameter at

breast height classes (v24 = 7.678, p\ 0.104). Trees

with median crown diameters have heavier kernel per

cone and also the highest variability in kernel weight.

The kernel efficiency differed significantly by diam-

eter at breast height classes (v24 ¼ 11:026; p\0:026;

Fig. 2 left) and by crown diameter classes

(v210 ¼ 38:431; p\0:001; Fig. 2 right). The efficiency

decreased with the increase of diameter at breast

height but no marked trend in the efficiency was

observed by crown diameter.

Effect of stand, tree and cone characteristics

in pine nut and kernel weight

PCA and NHCA were applied to tree characteristics

and pine nut and kernel average efficiencies, and the

results are shown in the biplot graphs, PC1–PC2
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Fig. 1 Pine nut efficiency per diameter at breast height classes

(left), and crown diameter classes (right) (different letters

indicate significant differences in pine nut weight between

diameter classes, at p\ 0.05). Boxes are drawn with widths

proportional to the square-roots of the number of observations in

the groups
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(Fig. 3 left) and PC2–PC3 (Fig. 3 right). The variables

are represented by arrows and the trees by points

colored according to their cluster. There were 3

principal components (PC) identified through eigen-

values larger than 1 and explained 79.1% of the total

variance of the data.

The first component (PC1), containing the largest

possible amount of information, was strongly corre-

lated with the trees’ dimensions (diameter at breast

height, total height, stem height, height of the

beginning of the live crown, crown length, crown

diameter), cone fresh weight, pine nut and kernel

efficiencies (Fig. 3 left). It was possible to name the

PC1 as cone production intent, since it opposed fruit

production efficiencies to tree height. The second

component (PC2) associated diameter at breast height

with the crown diameter. The third component (PC3)

was related to seed efficiency and stem height (Fig. 3

right). In the plots it was possible to clearly identify 3

profiles (Fig. 3): P1) trees for timber production; P2)

Table 5 Pearson’s correlation matrix between the characteristics of the trees, cones, pine nuts and kernels

Diameter

at breast

height

Total

height

Stem

height

Height of

the

beginning

of the live

crown

Crown

length

Crown

diameter

Average

of dry

cone

weight

per tree

Average of the

mean number

of pine nuts

fully

developed per

cone and per

tree

Average

of the

weight of

pine nuts

per cone

and per

tree

Total height 0.497**

Stem height 0.011 0.693**

Height of the

beginning of

the live

crown

0.146** 0.742** 0.827**

Crown length 0.442** 0.218** - 0.312** - 0.481**

Crown

diameter

0.757** 0.262** - 0.230** - 0.076* 0.467**

Average of dry

cone weight

per tree

0.005 - 0.194** - 0.323** - 0.460** 0.430** 0.133**

Average of the

mean

number of

pine nuts

fully

developed

per cone and

per tree

- 0.060* - 0.364** - 0.426** - 0.533** 0.306** 0.025 0.771**

Average of the

weight of

pine nuts per

cone and per

tree

- 0.017 - 0.267** - 0.381** - 0.514** 0.410** 0.084** 0.922** 0.907**

Average of the

weight of

kernels per

cone and per

tree

- 0.033 - 0.281** - 0.369** - 0.508** 0.386** 0.072* 0.896** 0.878** 0.964**

*Correlation is significant at the 0.05 level (2-tailed)

**Correlation is significant at the 0.01 level (2-tailed)
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large trees with high pine nut and kernel efficiencies;

P3) small trees with high pine nut and kernel

efficiencies. Trees in plot 2 were linked to profile 1

and trees in plot 4 to profile 3. The plots managed for

fruit production (plots 1, 3 and 4) had higher pine nut

and kernel weights and efficiencies when compared

with that managed for timber (plot 2). The years were

not related with the obtained components. Four

homogeneous groups of trees were identified with

NHCA, which corresponded to the aforementioned

profiles and are represented in Fig. 3: G1) The trees in

this cluster had low seed, pine nut and kernel
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Fig. 2 Kernel efficiency per diameter at breast height classes

(left), and crown diameter classes (right) (different letters

indicate significant differences in kernel weight between

diameter classes, at p\ 0.05). Boxes are drawn with widths

proportional to the square-roots of the number of observations in

the groups
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efficiencies which is associated to P1. Cluster G1 has

15% of the total number of trees. Half of the trees of

this cluster were from plot 1, which corresponded to

one third of the trees of this plot; G2) Clustered nearly

20% of the total number of trees. The trees in cluster

G2 had characteristics similar to those of G1, but were

taller trees. Nearly 80% of the trees from plot 2

belonged to G2, and 86% of the trees in G2 were from

plot 2; G3) Cluster G3 has 25% of the total of trees.

The characteristics of the trees in this cluster corre-

sponded to those described in P2. More than half of the

trees of this group were from plot 3; G4) Trees in

cluster G4 had the characteristics of P3 which

corresponded to 40% of the total number of trees.

Almost 70% of the trees from plot 4 belonged to G4.

Discussion

Pine nuts

The number and weight of fully developed pine nuts

per cone as well as their efficiency differed signifi-

cantly among years. The absence of relation between

annual, spring and autumn precipitation and the

number, weight and efficiency of pine nuts, can be

partially explained by the air relative humidity. On

average, the air relative humidity is higher than 70%

per year as well as for spring, and is higher than 60%

for the dry months, June, July and August (SNIRH

2007), which may reduce water stress. This reduction

can be due to the deposition of water in the leaves that

cool them, to the absorption of water by the leaves, and

to the mist precipitation with the increase of water in

the soil (Baguskas et al. 2016). Thus, the inter-annual

tree irregular fruiting patterns of umbrella pine could

be the determinant factor for the variability of

production (Agrimi and Ciancio 1994; Saraiva 1997;

Mutke et al. 2005b).

There are significant differences among different

stand structures, for the number and weight of fully

developed pine nuts per cone as well as for their

efficiencies. The highest number of pine nuts, the

heaviest weight of pine nuts and kernels per cone, was

attained in the stand with lowest density (cf.

Gonçalves et al. 2017). The overall number of fully

developed pine nuts per cone in this study (1–152 pine

nuts per cone) was in the range presented by other

authors (Saraiva 1997; Montero et al. 2004; Calama

andMontero 2007; Evaristo et al. 2008; Ganatsas et al.

2008; Boutheina et al. 2013). However, the proportion

of fully developed pine nuts (94.6%) is higher

(75.6–90.0%) than the referred by other authors for

umbrella pine (Saraiva 1997; Ganatsas et al. 2008;

Boutheina et al. 2013). It is also higher than that

reported for other timber oriented pine species, for

example 75–78% for Pinus strobus (Parker et al.

2013), 63% for Pinus sylvestris (Bilir et al. 2008) 59%

for Pinus albicaulis (Owens et al. 2008) and 80–83%

for Pinus halepensis (Ortiz et al. 2012). The propor-

tion of fully developed pine nuts is related to stand

structure, year, stem height and average of number of

pine nuts per cone. The stands with low density have

trees with large diameters at breast height and crown

diameters, and produced heavier cones which in turn

had more and heavier fully developed pine nuts. The

results of this study show that the trees with diameter

at breast height lower than 0.4 m and crown diameter

between 6 and 9 mwere those with the highest number

and weight of fully developed pine nuts, which

correspond to the diameter at breast height and crown

diameter classes with the heaviest cones (cf. Gon-

çalves et al. 2017). There were also differences in the

proportion of fully developed pine nuts among years

(years). This could be, at least partially, explained by

the inter-annual variability in cone production (Agrimi

and Ciancio 1994; Saraiva 1997; Mutke et al. 2005b;

Calama et al. 2008; Rodrigues et al. 2014; Gonçalves

et al. 2017). The position of the trees in the stand

vertical profile may also affect their fruiting pattern.

Stem height and, thus, tree crown position in the

canopy may, at least partially, justify the decrease of

fully developed pine nuts per cone. This can be related

to pollination as umbrella pine is wind pollinated, in

the upper canopy layer less pollen may reach the

female flowers, with the consequent decrease of fully

developed pine nuts per cone (Mutke et al. 2012).

The positive correlations between cones and pine

nut weight and its efficiencies indicated that the

heavier the cone the heavier the pine nut weight and

the higher the efficiency. Similarly, Sirois (2000) for

Picea mariana, Parker et al. (2013), Noland et al.

(2006) and Rajora et al. (2002) for Pinus strobus and

Bilir et al. (2008) for Pinus sylvestris, reported that the

larger the cones the larger the number of pine nuts and

the higher the number of fully developed pine nuts. In

this study the higher the crown diameter the heavier

the pine nuts per cone. Likewise, Parker et al. (2013)
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reported a positive correlation between crown area and

pine nut production for Pinus strobus. These relations

seem to be linked to stand structure, especially with

vigorous trees with large crowns and nutrient avail-

ability for fruit and seed development (Rajora et al.

2002; Noland et al. 2006). The weakest correlations

found in 2004, between fresh cone weight with the

number of fully developed pine nuts per cone and seed

efficiency, could be, at least partially, explained by the

higher cone moisture content due to rainfall prior to

harvest (cf. Gonçalves et al. 2017).

Kernels

Kernel weight and efficiency differed among plots and

years. There seems to be a similar trend between pine

nut and kernel weight per cone, with larger values for

the heavier cones, which in turn are found in the plots

with lower density. According to Gonçalves et al.

(2017) the heavier cones come from stands with low

competition between trees. Considering that plots are

under a climate with a dry season (from May/June to

September), characteristic of the Mediterranean

region, lower densities enable less water stress, as

referred for other pine species by some authors (Bueis

et al. 2018). As cone, pine nut and kernel yield is

affected by the amount of water available (Mutke et al.

2005a), the lower densities tend to promote heavier

cones with more fully developed pine nuts and kernels.

Strong positive correlations were found between

fresh and dry cone weight with kernel weight per cone

and weak positive linear correlation with kernel

efficiency. Similar results were reported for other pine

species (Rajora et al. 2002; Noland et al. 2006; Bilir

et al. 2008). Noland et al. (2006) suggest that these

results denote high efficiency of pollination and the

allocation of resources to the development of the

kernels. Kernel weight per cone seemed to be linear

independent of diameter at breast height, while kernel

efficiency decreased with the increase of the diameter

at breast height. In the four plots the trees with larger

diameters were also the tallest. It seems that crown

diameter affects kernel weight and efficiency.

Plot 4 has the highest pine nut number as well as the

highest pine nut and kernel weight and efficiencies per

cone.When compared to the other plots, the difference

could be related to the pasture fertilization that benefit

the umbrella pine trees and their fruiting. A similar

trend is referred by Turner et al. (2007) and Ortiz et al.

(2012).

Effect of stand, tree and cone characteristics

in pine nut and kernel weight

PCA identified three profile and NHCA four groups of

trees, using tree dimensions and cone weight, as

function of the pine nut and kernel weight and

efficiency. The higher pine nut and kernel weights

were associated to the plots with low density and trees

in free growth, whether with small or large stem and

crown diameters. As plots are under similar soil and

climatic conditions, it seems that competition among

trees for light, water and nutrients, were the drivers of

the weight and efficiency of pine nuts and kernels.

Some authors refer the primordial role of water

availability for growth, cone yield and pine nut

production of Pinus halepensis (del Campo et al.

2007; Bueis et al. 2018). In this study the higher pine

nut and kernel weights and efficiencies are attained in

the plots with the low densities, and thus with higher

growing space and lower competition per tree. In a

simulation study Pasalodos-Tato et al. (2016) attained

a similar trend.

Conclusions

The weight and efficiency of pine nuts and kernels at

tree level depends on the stand structure and year.

Significant correlations were found between cone

fresh weight and the number of pine nuts, the weight of

pine nuts and kernels. Thus, from a silvicultural

perspective, practices, such as thinning, directed to

tree free growth, where trees are subjected to lower

stress levels (e.g., competition for light, water and

nutrients) will enhance higher pine nut and kernel

efficiencies at tree level. Also, the low densities of

umbrella pine stands are well suited to agroforestry

and silvopastoral systems as it is possible to associate

high pine nut yield and an efficient production of

pasture and grazing, due to its low forest stand density,

as well as simultaneously providing other services,

such as regulation of climate, hydrological and

nutrient cycles, soil conservation and reduction of fire

risk. However, there are some gaps in knowledge, thus

future research should study the effects of stand

management on pine nut and kernel productions, in
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particular the effects of biotic and abiotic

disturbances.
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